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Abstract

In a stack layout, also known as book embedding, the vertices of a
graph are placed on a line and an edge is a data item that is pushed on
the stack at the left vertex and removed at the right vertex. The LIFO
principle of the stack is represented by a rainbow of nesting edges.

We introduce linear cylindric drawings for the representation of the
working principles of fundamental data structures including stack, queue,
double-stack and deque. The resulting graphs are called stack (queue,
double-stack, deque) graphs. We characterize the feasibility of a sequence of
insertions and removals by planarity and use the graph classes to compare
the relative power of these data structures.

In particular, we show that the deque graphs are the linear cylindric
planar graphs, and are the subgraphs of the planar graphs with a Hamil-
tonian path. In comparison, the double-stack graphs are the graphs with
a linear layout in the plane, and are known as the subgraphs of the planar
graphs with a Hamiltonian cycle. Hence, the power of the queue mode of a
deque is expressed both by the differences between Hamiltonian path and
Hamiltonian cycle and by linear layouts on the cylinder and in the plane.
It is also reflected in the dual graph. Linear cylindric drawings provide
an intuitive planar representation of the FIFO principle of a queue. We
show that a queue graph augmented by a Hamiltonian path has a dual of
the same type, and that the dual has an Eulerian path. Finally, we study
recognition problems.
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1 Introduction

In his pioneering work on “The Art of Computer Programming” [31] D. E. Knuth
studied fundamental data structures including stack, queue, double-stack and
double-ended queue (deque). Here, a data structure D is a (doubly connected)
list with insertions and removals of data items only at the ends, called the head
and the tail. A sequence of insertions and removals of data items is feasible if all
data items are inserted and removed at the ends of D. D is a stack if insertions
and removals occur at the head, and a queue if data items are inserted at the
head and removed at the tail. The resulting principles are “last in, first out”
(LIFO) for a stack and “first in, first out” (FIFO) for a queue. If each item is
removed at the side at which it is inserted, D is a double-stack and D is a deque
if no restrictions apply.

The behavior of these data structures can be modeled by graphs, where each
data item is represented by an edge and the endpoints mark the points of time
of its insertion and removal. In a data structure, there is one action at a time
which results in graphs with vertices of degree one. For general graphs, actions
are grouped at a vertex if the time line of the actions is preserved at each vertex.
Our paradigm says that the working principle of D is satisfied if and only if the
graph is drawn planar under specific geometric constraints, which are described
by a linear layout.

A linear layout of an undirected graph G = (V,E) is a total ordering ≺ of
the vertices, which are placed left to right on a horizontal line according to ≺. It
imposes a direction on each edge e = {u, v}, where we identify e with its directed
version e = (u, v) if u ≺ v. Two edges e = (u, v) and e′ = (u′, v′) with no
common endpoints and u ≺ u′ have three possibilities for the relative positions
of their endpoints: e and e′ nest if u ≺ u′ ≺ v′ ≺ v, twist if u ≺ u′ ≺ v ≺ v′, and
are disjoint if u ≺ v ≺ u′ ≺ v′. A graph G = (V,E) has a D layout if there is a
linear layout for the vertices and the edges are processed by a data structure D,
such that each edge e = (u, v) is inserted to D at u and removed from D at v if
u ≺ v in the linear layout. If the sequence of insertions and removals is feasible,
G is called a D graph.

In a stack layout, the edges must obey the LIFO principle and thus either
nest or are disjoint; twists are excluded. See Fig. 1(a) for a stack layout (without
the dashed edge). The dashed edge twists (with (1, 3)) and is invalid. In a
queue layout under the FIFO principle the edges twist or are disjoint, whereas
nesting edges are excluded. A queue layout (without the dashed edge) is shown
in Fig. 1(b). The dashed edge and (1, 4) nest and invalidate the layout. The
LIFO principle of a stack is visualized by a rainbow of nesting edges. Such edges
do not cross. To the contrary, the FIFO principle of a queue excludes the nesting
of edges, and each pair of twisting edges induces a crossing. Thus, it is hard
to check the correctness of a queue layout visually and to recognize the FIFO
principle. A graph is a stack graph if it has a linear layout without twists or,
equivalently, a planar drawing respecting the linear layout and with all edges
above the line of the vertices, i.e., a 1-page book embedding. Analogously, a
queue graph has a linear layout without a rainbow.
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Figure 1: Examples of (a) a stack layout, (b) a queue layout, (c) its arched
leveled-planar drawing, and (d) its LC drawing in the fundamental polygon
representation. The dashed edges are invalid.

One-page stack layouts are also known as book embeddings and were studied
first by Atneosen [1], Ollman [32] and Kainen [30]. Bernhart and Kainen [9]
showed that the stack graphs are exactly the outerplanar graphs. They also
characterized the double-stack graphs, where the set of edges is partitioned into
two disjoint subsets such that no two edges in one subset twist in a given linear
layout. The double-stack graphs were characterized as the spanning subgraphs
of the planar graphs with a Hamiltonian cycle. The generalization to k-stack
layouts or k-page book embeddings are obtained by a partition of the edges
into k subsets each of which allows for a stack layout with the same linear
ordering of the vertices [16, 18, 38], and to k-stack subdivisions or topological
book embeddings, where edges can be replaced by paths. Then every planar
graph has a 4-stack layout [38] and a 2-stack subdivision [18].

Queue layouts were introduced by Heath, Leighton and Rosenberg [23, 24]
and were further studied in [2, 3, 14, 16, 18, 17, 37]. Queue graphs are planar,
although a linear drawing of a queue layout contains many crossings. Heath
and Rosenberg [24] characterized the queue graphs as the arched leveled-planar
graphs. These graphs have a planar drawing in which the vertices are placed on
horizontal levels. An edge either connects two vertices on adjacent levels or is an
arch from the leftmost vertex on a level to vertices on the right side on the same
level such that the right vertices are not obstructed by other edges to vertices
on the lower level. A linear layout is obtained by ordering the vertices from
bottom to top and from left to right on the levels. The arched leveled-planar
drawing of the graph from Fig. 1(b) is shown in Fig. 1(c). Note that the dashed
edge is invalid as it is an arch that is not incident to the leftmost vertex. A
linear cylindric drawing in the fundamental polygon representation is shown in
Fig. 1(d). Such layouts make the FIFO principle of queues clearly visible and
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are described next.

In this paper, we introduce linear cylindric drawings to display stack, queue,
double-stack and double-ended queue (deque) layouts, and establish that a
drawing is planar if and only if the sequence of insertions and removals of the
edges in the data structure is feasible. In Section 3.1, we introduce linear cylindric
drawings on the surface of the rolling 3D cylinder. The vertices are placed on a
horizontal line, called the front line, that is parallel to the cylinder’s axis and
the edge curves do not cross the front line. Fig. 2(b) shows an example where
the front line is dotted. A representation in the plane is obtained by “cutting”
the cylinder’s surface along the front line and unfolding it (see Fig. 2(c)). The
vertices remain on the top side and each vertex has a clone on the bottom side.

In Section 3.3, we apply linear cylindric drawings to deque layouts, and prove
that the deque graphs are exactly the graphs with a planar linear cylindric
drawing. In consequence, all deque graphs are planar, which is unexpected as a
deque is an extension of both a double-stack and a queue, the latter of which has
many crossings in linear drawings. Linear cylindric planar drawings reflect the
working principle of the deque by processing edges that wind around the cylinder
as in a queue, whereas edges that enter both endpoints from either above or
below the front line are processed as in a stack, as displayed in Fig. 2(b). In fact,
the deque can be seen as a double-stack with a transfer of items from one stack
to the other. If an item is owned by the stack into which it is inserted, then an
item that is processed in queue mode is stolen by the other stack. Hence, the
behavior of a deque is not that of a double-ended queue, and the full name is
misleading.

Based on these insights, we prove in Section 3.4 that a graph is a deque graph
if and only if it is a spanning subgraph of a planar graph with a Hamiltonian path.
This result complements the known characterization of double-stack graphs as
the spanning subgraphs of planar graphs with a Hamiltonian cycle [9]. Thus, the
additional “queue mode” ability of the deque in comparison to the double-stack
exactly corresponds to the difference between Hamiltonian paths and cycles in
planar graphs, and to planar linear layouts on the surface of a cylinder and in
the plane. The difference between double-stack and deque layouts is also visible
in the dual graphs, which are investigated in Section 3.5. Note that deques and
double-stacks are equivalent in power as working tapes of nondeterministic linear
time bounded Turing machines [33].

In Section 4, we apply our findings to queues. In comparison to linear
drawings (Fig. 1(b)) and arched leveled-planar drawings (Fig. 1(c)), linear
cylindric drawings (Fig. 1(d)) of queue layouts display the FIFO principle, and
invalid queue operations are immediately recognizable as crossings. Further,
we derive a novel characterization of queue graphs by means of their dual, and
show that the dual of a queue graph augmented by a Hamiltonian path is a
queue graph augmented by a Hamiltonian path. As a consequence, the dual
of a queue graph has an Eulerian path. Recognition problems are studied in
Section 5 and we conclude in Section 6 and illustrate new perspectives for linear
cylindric drawings.
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2 Preliminaries

We consider undirected graphs G = (V,E) with vertices V and edges E. A
path p in G consists of a sequence of vertices and edges from a vertex u to a
vertex v and is denoted by p = u v. A path is simple if it contains no vertex
twice. A cycle C is a path starting and ending at the same vertex, and is simple
if all vertices are distinct except at the start and end.

A linear layout of G is a total ordering ≺ on the set of vertices V . The
reflexive closure of ≺ is denoted by �. A linear layout imposes a direction on
each edge {u, v} ∈ E such that {u, v} is directed from u to v if u ≺ v. We
identify each edge with its directed version whenever a linear layout is given.
If u ≺ v, then u is a predecessor of v and v is a successor of u. If there is no
vertex w with u ≺ w ≺ v, then u is the immediate predecessor of v and v is
the immediate successor of u. The vertex with no predecessor is called the first
vertex and the vertex with no successor is called the last vertex.

A drawing Γ of a graph G maps each vertex v ∈ V to a position Γv in the
plane and each edge e = {u, v} to an edge curve Γe : [0, 1] → R2 which is a
simple Jordan arc between its endpoints. The set of points {Γe(t) | 0 < t < 1}
is the inner part of the edge curve Γe. We call Γ planar if all vertex positions
are distinct, no vertex lies on the inner part of an edge curve, and no two edge
curves share points except for common endpoints, i. e., they do not cross. A
graph is planar if it has a planar drawing. A rotation system R defines a cyclic
clockwise ordering of the incident edges for each vertex v. We denote the rotation
system Rv at a vertex v by a total ordering e0, . . . , ek−1 of its incident edges
where each edge ei has a successor edge ei+1 and a predecessor edge ei−1, where
indices are computed modulo k. Every planar drawing induces a planar rotation
system. However, there are non-planar rotation systems for planar graphs, e. g.,
if a K4 is drawn with a pair of crossing edges. A planar rotation system is
in one-to-one correspondence with a planar embedding which specifies faces.
Each face f is a connected region which is described by a cycle C = (v1, e1, v2,
e2, . . . , vk−1, ek−1, vk = v1) such that ei ∈ E is the successor of ei−1 ∈ E
according to the rotation system Rvi . The edges and vertices of C are said to be
incident to f and C in a clockwise traversal of f . The dual graph G∗ = (F,E∗)
has a one-to-one correspondence between the vertices of G∗ and the faces of an
embedding of G and between the edges of G and G∗. For each edge e ∈ E there
is a dual edge e∗ ∈ E∗, where e∗ = {f, g} and f and g are the faces to which e is
incident. Note that f = g is possible. For clarity, we always call the elements in V
vertices and display them by circular shapes, and we call the elements in F faces
and use rectangular shapes. A cut is a partition of V into proper subsets VC ( V
and V C = V \ VC . The set of edges EC = {{u, v} ∈ E | u ∈ VC ∧ v ∈ V C}
that connect vertices in VC with vertices in V C is called a cutset. E∗C denotes
the duals of EC . The edges of E∗C constitute a simple cycle in G∗ [19, pp. 149].
Conversely, the primal edges of a cutset in G∗ constitute a simple cycle in G.

The surface of the 3D rolling cylinder is given by C3
r = {(x, y, z) ∈ R3 |

y2 + z2 = 1 ∧ −1 ≤ x ≤ 1}. A drawing Γ of a graph on C3
r is called cylindric. Γ

and G are cylindric planar if Γ is planar. The standing cylinder is obtained by
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Figure 2: Illustration of graph drawings. (a) a planar graph and a common
drawing, (b) an LC drawing as 3D-projection, (c) the fundamental polygon
representation and (d) a concentric representation of the LC drawing.

exchanging the roles of the x and z-coordinates. Note that the cylinder (and the
sphere) and the plane are equivalent with respect to planarity, i. e., every planar
graph is cylindric planar and vice versa. This does no longer hold true for planar
upward drawings of directed planar graphs [4, 10], and for linear layouts, as we
shall show in Section 3.1.

3 Deque Graphs and Linear Cylindric Drawings

3.1 Linear Cylindric Drawings

Consider the surface C3
r of the rolling cylinder and let h = {(x, y, z) ∈ C3

r | y =
0∧ z = −1} be a straight-line segment on the cylinder’s surfaces which is parallel
to the cylinder’s axis. We call h the front line.

Definition 3.1 A drawing Γ of a graph G = (V,E) in C3
r is linear cylindric

(LC) if all vertices lie on the front line and no inner part of an edge curve has a
point on the front line. The drawing and the graph are called linear cylindric
planar (LC planar) if the edges do not cross.

Clearly, every graph has a (not necessarily planar) linear cylindric drawing by
arbitrarily placing the vertices on distinct points on the front line and connecting
them by edge curves which do not cross the front line. For an illustration,
consider the planar graph from Fig. 2(a) and a possible LC drawing in Fig. 2(b)
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as a 3D projection. The front line is drawn dotted and the vertices are labeled
according to their positions on the front line from left to right. The LC drawing
is planar without the dashed edge. Some edges, e. g., {1, 4}, wind around the
cylinder. A concentric representation is obtained by mapping the cylinder’s
surface onto a ring as shown in Fig. 2(d), where the edges that wind around the
cylinder are spiral segments. Note that all types of representation are equivalent
with respect to planarity since the surfaces have genus 0. Fig. 2(c) shows the
fundamental polygon representation of the LC drawing in which the surface
of the cylinder corresponds to the rectangle where the top and bottom sides
are identified (indicated by the arrows). The front line coincides with the top
and bottom of the fundamental polygon. Intuitively, the fundamental polygon
representation is obtained from the rolling cylinder by “cutting” the cylinder’s
surface along the front line and unfolding it.

Proposition 3.1 An LC planar graph is planar.

The fundamental polygon representation of LC drawings can also be seen as
the drawing of an extended 2-level planar graph. In a k-level planar drawing of a
graph G = (V,E), the vertices are placed on k horizontal lines and the edges
are drawn as vertically strictly monotone curves without crossings. Then the set
of vertices partitions into pairwise disjoint sets V1, . . . , Vk so that the vertices
of Vi are placed on the i-th line. A graph is a k-level planar if it admits such a
drawing, where the partition of the set of vertices is given [15, 22, 29].

An extended k-level drawing also admits intra-level [8, 26] or track edges [7]
between vertices on the same level. The other edges are called inter-level edges.
Intra-level edges on level i are drawn as arches above or below the i-th line
that do not cross the center line between adjacent levels. The k-level planarity
problem, which is solvable in linear time [29], asks whether a graph together with
a partition of its set of vertices admits a k-level drawing without edge crossings.
In addition, the extended k-level planarity problem has a partition of the set
of intra-level edges into the sets of edges above and below each level. It is also
solvable in linear time if some requirements are fulfilled [26].

An extended two-level drawing is obtained from a linear cylindric drawing of
graph G = (V,E) by taking a clone v′ of each vertex v. The vertices of V are
placed on the first level and the clones are placed on the second layer such that
the vertices and the clones obey the same permutation. If v is the i-th vertex
from the left then so is v′. There are edges {u, v′} between vertices and clones,
which are taken as inter-edges, and edges {u, v} and {u′, v′}, which are taken as
intra-edges. The recognition problem asks whether there is a planar drawing,
i. e., whether there is a single permutation for the vertices on both levels so that
there are no crossings. However, this problem is NP-complete, as we shall show
in Section 6. In consequence, viewing planar LC drawings as planar two-level
drawings may be misleading.

In a planar LC drawing, the vertices are placed at distinct points on the
front line which induces a linear layout ≺. Further, the edge curve of an edge e
incident to a vertex v enters v from above or below the front line. For instance, in
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Figure 3: The rotation system at a vertex v defines total orders of the sets E⊥(v)
and E>(v).

Fig. 2(c), edge (2, 4) enters both of its endpoints from above, whereas edge (1, 4)
enters 1 from below and 4 from above. This specializes the rotation system. The
front line partitions the rotation system of v. Denote by E⊥(v) = (e⊥1 , . . . , e

⊥
k )

the edges incident to v that enter v from above, where E⊥(v) is totally ordered
according to the rotation system of v in clockwise direction. Likewise, the
edges E>(v) = (e>1 , . . . , e

>
` ) are the edges that enter v from below and E>(v) is

totally ordered in counterclockwise direction of v’s rotation system. Thus the cw
rotation system of v is partitioned into two sequences with a left-to-right order.
We call the tuple Λ = (≺, E⊥, E>) an LC rotation system and, if it is obtained
from a planar LC drawing, we call it planar. A rotation system of a vertex v in
a planar LC drawing is illustrated in Fig. 3. Note that an LC rotation system is
not necessarily planar, since the prescribed order may enforce crossings.

3.2 Deque Layouts

A deque is a linear list with two sides, a head h and a tail t, at which data items
are inserted and removed. In our case, data items are edges of a graph. At any
time instant, the current state of the deque is given by its content C = (e1, . . . , ek)
(k ≥ 0), where e1 is at the deque’s head and ek at its tail. The deque is empty if
k = 0. We say ei ∈ C if ei appears in C. A content C = (e1, e2, . . . , ek) induces a
total ordering � of the edges in C with e1 � e2 � . . .� ek. If C = (e1, . . . , ek)
(k ≥ 1), edge e1 can be removed at the head and ek can be removed at the
tail which results in (e2, . . . , ek) and (e1, . . . , ek−1), respectively. These and only
these removals are feasible. Inserting an edge e at the head or tail transforms
a deque’s content C = (e1, . . . , ek) to C = (e, e1, . . . , ek) or C = (e1, . . . , ek, e),
respectively.

In a graph layout by the deque, the vertices are visited according to a linear
layout ≺, and the edges are processed at their endpoints. We start with an empty
deque at the first vertex. At each vertex v, all incoming edges from predecessors
must be removed from the deque and all outgoing edges to successors must be
inserted into the deque. Each edge is processed at the head or the tail. For
each vertex v, let Eh(v) = (eh1, . . . , e

h
k) and Et(v) = (et1, . . . , e

t
`) be a partition of

v’s incident edges into two sets, both of which are totally ordered. The edges
in Eh(v) (Et(v)) are processed at the head (tail) of the deque in order. That
is, at vertex v, starting with eh1, all edges in Eh(v) are inserted and removed



JGAA, 22(2) 207–237 (2018) 215

at the head in order, depending on whether they are incoming or outgoing.
Likewise, all edges in Et(v) are processed at the tail in order. We call the
tuple Σ = (≺, Eh, Et) a deque schedule. A deque schedule is called a deque layout
if all operations are feasible. A graph is a deque graph if it has a deque layout.
Note that an edge can always be inserted at either side of a deque. However, at
the removal it must be at the head or tail, as otherwise another edge is blocking
its way and the deque cannot operate properly. At each vertex v, we assume
that all edges in Eh(v) are processed before the edges in Et(v), since operations
at opposite sides do not interfere. An edge e is called stack edge if it is inserted
and removed at the same side and queue edge otherwise.

Suppose that two edges e and e′ are processed at the head such that e is
removed and e′ is inserted. Then inserting e′ first would imply that e′ � e,
which makes it impossible to remove e at the head. Hence, there is a local
ordering of incoming and outgoing edges.

Proposition 3.2 Let Σ = (≺, Eh, Et) be a deque layout. For each vertex v,
Eh(v) = (eh1, . . . , e

h
k) can be divided into Eh

Pred(v) = (eh1, . . . , e
h
i ) and Eh

Succ(v) =
(ehi+1, . . . , e

h
k) for some 0 ≤ i ≤ k such that all edges in Eh

Pred(v) are removed
at the head, and all edges in Eh

Succ(v) are inserted at the head. If i = 0, then
Eh

Pred(v) = ∅ and, if i = k, then Eh
Succ(v) = ∅. The same holds true for Et(v).

Processing the edges of a deque graph G according to a deque schedule Σ is
described by a trajectory τ(Σ). The trajectory maps each vertex to two points
in the plane and each edge to a polyline.

Let v1 ≺ v2 ≺ . . . ≺ vn be the linear layout of G and for each vertex vi,
i = 1, . . . , n, let Eh(vi) = Eh

Pred(vi) ·Eh
Succ(vi) and Et(vi) = Et

Pred(vi) ·Et
Succ(vi).

Let s0 = 0 and let si denote the size of the deque after vi. Then si+1 =
si−|Eh

Pred(vi)|+ |Eh
Succ(vi)|− |Et

Pred(vi)|+ |Et
Succ(vi)| for i = 0, . . . , n−1, where

si ≥ 0 and sn = 0 and |L| denotes the length of list L. The deque is empty at
the start and at the end.

The trajectory τ(Σ) maps each vertex vi to points (i, 0) and (i,max{si−1, si}),
called the head and tail positions. It can be seen as a two-level drawing. Each
processed edge at vi is drawn as a straight line to a point on a small circle of
radius 0.25 around the positions of vi. The edges of Eh

Succ(vi) are in the first
quadrant and those of Eh

Pred(vi) in the second quadrant of the head position (i, 0),
and those of Et

Pred(vi) and Et
Succ(vi) are in the third and forth quadrants of the

tail position, respectively, as illustrated in Fig. 3. If C(vi) = (e1, . . . , ek) is the
content of the deque after vi, then there is a bend point P (vi, ej) = (i+0.5, j−0.5)
for each edge ej . If edge e is inserted at the head of the deque at vi, then draw a
straight line from the endpoint of e on the circle around the head point of vi to
P (vi, e), and if e is removed at vi, then draw a straight line from P (vi−1, e) to
the endpoint of e on the circle, and similarly if e is processed at the tail. If edge e
remains in the deque, then draw a straight line from P (vi−1, e) to P (vi, e). Note
that the position of e in the deque may change due to insertions and removals of
edges at vi, and e may be the h-th edge from the head of the deque before vi
and the j-th edge after vi. Clearly, j can be computed from h and the deque
schedule Σ.
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1 2 3 4 5 6 7 8

Figure 4: The trajectory of the deque schedule Σ from Fig. 2(b).

The trajectory of an edge e is a polyline that begins at the head or tail
position of vertex vi where e is inserted and ends at vertex vj where e is removed.
Intermediately, it first passes a point on the circle around vi in the first or forth
quadrant, then it goes through points P (vp, e) for p = i, . . . , j − 1 and finally it
enters the circle around vj in the second or third quadrant. The trajectory of
the Σ from Fig. 2(b) is shown in Fig. 4, including the illegal edge (3, 8). The
fundamental polygon representation in Fig. 2(c) is a smoothed version with all
tail positions moved to the upper boundary.

3.3 Deque Graphs and Planar Linear Cylindric Graphs

Our first main result describes the power of a deque in terms of linear cylindric
planar graphs, and conversely, shows that linear cylindric planar graphs can be
processed on a deque.

Theorem 1 A graph is a deque graph if and only if it is LC planar.

We use an LC rotation system Λ = (≺, E⊥, E>) for an LC drawing of a graph
G and describe a graph layout in the deque by a deque schedule Σ = (≺, Eh, Et).
Both are the same objects with the same linear ordering of the vertices and
a partition of the incident edges at each vertex. Even more, the equivalence
“planar ⇔ feasible” holds, and this implies Theorem 1.

There is a partition for planar LC rotation systems similar to the one for
deque layouts given in Proposition 3.2, as Fig. 5 illustrates.

Lemma 1 Let Λ = (≺, E⊥, E>) be a planar LC rotation system. For each
vertex v, the total ordering of the edges in E⊥(v) = (e⊥1 , . . . , e

⊥
k ) can be divided

into E⊥Pred(v) = (e⊥1 , . . . , e
⊥
i ) and E⊥Succ(v) = (e⊥i+1, . . . , e

⊥
k ) for some 0 ≤ i ≤ k

such that all edges in E⊥Pred(v) are incident to predecessors of v, and all edges in
E⊥Succ(v) are incident to successors. If i = 0, then E⊥Pred(v) = ∅ and, if i = k,
then E⊥Succ(v) = ∅. The same holds true for E>(v).
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Figure 5: Structure of a planar LC rotation system.
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Figure 6: Illustration to the proof of Lemma 1: A crossing is inevitable if an
edge e⊥j to a predecessor comes after an edge e⊥i to a successor, where edge e⊥j
enters the bottom line (a) from above or (b) from below.

Proof: For contradiction, suppose that there is a vertex v and edges e⊥i and
e⊥j in E⊥(v) = (e⊥1 , . . . , e

⊥
k ) such that i < j and e⊥i is incident to a successor w

of v and e⊥j is incident to a predecessor u of v. The situation is depicted in

Fig. 6(a). As the inner part of the edge curve of e⊥j has no point in common

with the front line, the edge curve of e⊥j and the front line enclose a region R

(shaded in Fig. 6(a)). Edge e⊥i enters v from above and has no point in common
with the front line except for its endpoints, and thus crosses the boundary of
R. The other endpoint w of e⊥i lies outside R as if w would lie within, an inner
point of e⊥j ’s edge curve would lie on the front line. Consequently, the inner part

of e⊥i ’s edge curve has points inside and outside R which inevitably leads to a
crossing by Jordan’s curve theorem; a contradiction to the planarity of the LC
rotation system. The proof for E>(v) is analogous.

Similarly, if e⊥j enters u from below, it encloses a region R together with the
front line as illustrated in Fig. 6(b) and the proof is analogous. �

Fig. 5 shows how the rotation system in a planar LC rotation system is split
according to Lemma 1.

Lemma 2 Let Σ = (≺, Eh, Et) be a deque schedule and let Λ = (≺, E⊥, E>)
be an LC rotation system with Σ = Λ. Σ is a deque layout if and only if Λ is
planar.

Proof: ⇒: Consider the trajectory τ(Σ) of a deque layout Σ. The polylines of
two edges e and e′ do not cross, since once they are inserted, their ordering in the
deque is unchanged by insertions and removals of edges at the vertices. Hence,
τ(Σ) is planar. Now, transform τ(Σ) into an LC planar drawing by moving the
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Figure 7: Cases obtained in the proof of Lemma 2. (a) Both edges are stack
edges processed at the head. (b) Both edges are stack edges incident to u and
processed at the head. (c) Both edges are queue edges inserted at the same side.
(d) Both edges are queue edges inserted at different sides. (e) e is a stack and e′

a queue edge inserted at the head. (f) e is a stack and e′ a queue edge inserted
at the tail. (g) e is a queue and e′ a stack edge.

tail position of vertex vi to (i, s), where s is the maximum size of the deque and
then map all points to the surface of a cylinder by a transformation (x, y) 7→
( xn ,

2π
s cos y, 2πs sin y). Obviously, both transformations preserve planarity.

⇐: In the following, we assume that Λ is a planar LC rotation system but,
towards a contradiction, Σ is no deque layout. As insertions to the deque never
cause trouble, there must be an edge which cannot be removed from the deque
because another edge is blocking its way. Let e = (u, v) and e′ = (u′, v′) with
u ≺ v and u′ ≺ v′ be two such edges. We assume that e is inserted to the deque
before e′ such that u � u′ ≺ v by Lemma 1. We distinguish five cases according
to the side of the insertion and removal of the edges.

Case 1: Both e and e′ are stack edges. We assume that both edges are
inserted and removed at the head. As e is inserted before e′, we get e′ � e.
Removing e is not possible if and only if e is removed before e′ and, thus, v � v′,
where for v = v′ edge e comes before e′ in Eh(v). If v ≺ v′, then u � u′ ≺ v ≺ v′
and we obtain a twist (Fig. 7(a)) and there is an inevitable crossing between e
and e′. If v = v′ and e comes before e′ in Eh(v), we also obtain an inevitable
crossing as shown in Fig. 7(b). Hence, Λ were not planar.

Case 2: Both e and e′ are queue edges inserted at the same side. If both
edges are inserted at the head, then e′ � e and we have no deque layout if and
only if e′ has to be removed before e. Hence, u � u′ ≺ v′ � v and e nests e′.
We obtain the situation in Fig. 7(c); again a contradiction to the planarity of Λ.
The reasoning is analogous if e and e′ are inserted at the tail.

Case 3: Both e and e′ are queue edges inserted at different sides. In the LC
drawing, e and e′ always cross as shown in Fig. 7(d).

Case 4: e is a stack and e′ a queue edge. We assume that e is inserted at
the head and distinguish two cases: either e′ is inserted at the head or at the
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tail. In the first case, e′ � e and e neither can be removed from the head nor e′

from the tail. We obtain the situation in Fig. 7(e) and Λ cannot be planar. If e′

is inserted at the tail, then e � e′. Now, removing e from the head is always
possible. However, removing e′ before e is not possible. This is the case if and
only if v′ ≺ v, or v′ = v and e′ comes before e in Eh(v). For the LC drawing, we
obtain the situation in Fig. 7(f) and an inevitable crossing.

Case 5: e is a queue and e′ a stack edge. By swapping the role of e with e′,
and h with t, and reversing the linear layout, the proof of this case is analogous
to the previous one.

Altogether, we have obtained a contradiction and can conclude that Σ is a
deque layout. �

For an illustration, consider Fig. 2(c), where we ignore the dashed edge for
the moment. From the planar LC drawing, we obtain the planar LC rotation
system Λ = (≺, E⊥, E>), which is used as a deque schedule, and Fig. 4 shows
the obtained trajectory. The ordering in which the vertices are processed for the
deque layout is equal to the ordering of the vertices on the front line of the LC
drawing. The head and tail correspond to the regions above and below the front
line, respectively. If e = (v, w) is an edge with e ∈ E⊥(v), e. g., edge (2, 4) in
Fig. 2(c) in the LC layout, then e ∈ Eh(v) in the deque layout. Likewise, any
edge in E>(v) is processed at the tail of the deque. An edge is a queue edge if
and only if it winds around the cylinder and has its endpoints on opposite sides
of the fundamental polygon. In Fig. 2(c), stack edges remain inside the regions
of the head or the tail, which is shaded. The content of the deque is given by a
vertical scan line from bottom to top. The dashed edge (3, 8) causes an error at
vertex 7, since the content is ((6, 7), (6, 8), (5, 8), (4, 7), (3, 8), (3, 7), (5, 7)) and
(3, 8) blocks the removal of (4, 7). Furthermore, at each vertex the incoming
edges from predecessors must be removed before the outgoing edges to successors.

From Theorem 1 and Proposition 3.1 we obtain:

Corollary 3.1 Deque graphs are planar.

3.4 Deque Graphs and Hamiltonian Paths

The double-stack graphs are the planar sub-Hamiltonian graphs [9], where
Hamiltonian means the class of graphs with a Hamiltonian cycle. Here we extend
this characterization to deque graphs and Hamiltonian paths.

Theorem 2 A graph is a deque graph if and only if it is a spanning subgraph
of a planar graph with a Hamiltonian path.

Proof: Consider an LC drawing of G according to the deque schedule and an LC
rotation system Σ = (≺, Eh, Et), which is planar by Lemma 2. Augment G by
the edges E′ = {(u, v) 6∈ E | v is the immediate successor of u according to ≺}.
Then G′ = (V,E ∪E′) has a Hamiltonian path given by ≺. The edges of E′ can
be drawn close to the front line of the cylinder and do not cross other edges, so
that G′ is planar.
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Figure 8: (a) Rotation system of an inner vertex vi of a graph with a Hamiltonian
path and (b) the obtained LC rotation system.

For the converse, let G = (V,E) be a planar graph with a Hamiltonian
path P = (v1, . . . , vn) and endowed with a planar clockwise rotation system R.
Let n ≥ 2 as otherwise G consists of a single vertex and is a deque graph. We con-
struct a planar LC rotation system ΛP = (≺, E⊥, E>) from G’s rotation system
and the Hamiltonian path P , where P plays the role of a guideline and splits the
rotation system at each vertex into an upper and a lower part. The linear layout ≺
is the ordering of the vertices on P . Let Rvi = (e1, . . . , ep−1, ep, ep+1, . . . , eq)
be the rotation system of vi. For each inner vertex vi with 1 < i < n on
P , let ep be the edge to the immediate successor vi+1 of vi and eq the edge
to the immediate predecessor vi−1 of vi on the Hamiltonian path. Fig. 8(a)
illustrates the rotation system of vi, where the edges ep and eq are drawn
bold. Let E⊥(vi) = (eq, eq−1, . . . , ep+1, ep) and E>(vi) = (e1, e2, . . . , ep−2, ep−1).
Note the reverse ordering in E⊥(vi). The so obtained LC rotation system
is illustrated in Fig. 8(b). For the extreme vertices v1 and vn on P , we de-
fine the LC rotation system of v1 (vn) such that all edges enter v1 (vn) from
above. If ep is the first edge on P to v2 and eq is the last edge from vn−1 to
vn, then E⊥(v1) = (ep−1, ep−2, . . . , e2, e1, ep) such that E>(v1) is empty, and
E⊥(vn) = (eq, eq−1, . . . , e2, e1) and E>(vn) is empty.

It remains to show that there is a planar LC drawing of G that respects the
constructed LC rotation system ΛP = (≺, E⊥, E>). By the construction of ΛP ,
the Hamiltonian path is aligned with the front line and planarity ensures that
no edge curve has as a point in common with the front line. We now show that
ΛP is planar. For contradiction, assume that every such LC drawing has at least
one crossing. Let e and e′ be two crossing edges, where e = {vi, vj}. There is a
cycle C formed by the edge e and the path from vi to vj which is part of the
Hamiltonian path. Circle C encloses a region R such that at least one inner
point of the edge curve of e′ lies within R and one inner point lies outside R.
Recall that G is endowed with a planar rotation system R and, hence, it has a
planar drawing Γ which induces R. By construction, R is the rotation system
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induced by the LC drawing ΓP . Thus, cycle C encloses a region R in Γ such that
at least one inner point of the edge curve of e′ must lie within R and one inner
point must lie outside, which causes a crossing in Γ by Jordan’s curve theorem.
This contradicts the planarity of Γ and, hence, ΛP is planar. �

The constructions from the second part of the proof of Theorem 2 lead to
the following generalization. Let G be a graph endowed with a not necessarily
planar rotation system R and assume that G contains a Hamiltonian path P .
Let ΛP = (≺, E⊥, E>) be the LC rotation system obtained from R and P ,
such that P splits the rotation systems at the vertices and defines a deque
schedule ΣP = ΛP . ΛP and ΣP are called P-induced. From Theorems 1 and 2
we obtain:

Corollary 3.2 Let G be a graph endowed with a rotation system and assume
that G contains a Hamiltonian path P . Further, let ΛP and ΣP be the P-induced
LC rotation system and P-induced deque schedule, respectively. The following
statements are equivalent:

(i) The rotation system of G is planar.

(ii) ΛP is a planar LC rotation system.

(iii) ΣP is a deque layout.

The relative power of double-stacks and deques can now be compared from
the viewpoint of linear graph layouts. A double-stack is a specialization of a
deque. The surplus of a deque is the “queue mode” with insertions and removals
at opposite sides. What does this really mean? How large is the gap between
a double-stack and a deque? The queue mode of a deque is reflected by the
queue edges. These wind around the cylinder, and so they preserve the FIFO
structure. This property is captured by upward planar drawings of directed
graphs. Upward means that the edge curves must be monotone in y-direction.
Here, the plane is strictly weaker than the sphere which is equivalent to the
standing cylinder [4, 10, 13, 21]. The difference between upward planar graphs
in the plane and on the sphere lies in an (s, t)-edge from the lowest to the highest
vertex, which prevents edges from winding around the cylinder.

On the other hand, the ability to process queue edges in addition to stack
edges exactly corresponds to the difference between Hamiltonian paths and
Hamiltonian cycles in planar graphs. Moreover, we shall show in Section 3.5
that the missing edge closing the Hamiltonian cycle crosses all queue edges.

3.5 Duals of Deque Graphs

The difference between double-stack and deque graphs is also reflected in the
dual graphs. Consider the maximal planar graph depicted in Fig. 9(a) which
contains the Hamiltonian cycle (1, . . . , 8, 1), where the edges of the Hamiltonian
cycle are drawn bold. The Hamiltonian cycle defines a closed curve C that
divides the plane into regions R and R := R2 \R as shown in Fig. 9(a), where R
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Figure 9: (a) A maximal planar graph with a Hamiltonian cycle and (b) the
obtained double-stack layout. (c) The Goldner-Harary graph with a Hamiltonian
path and (d) its deque layout.

is shaded. Now, the inner part of each edge not on the Hamiltonian cycle either
lies completely in R or in R. By identifying R with the head and R with the tail
of a deque, we obtain the double-stack layout displayed in Fig. 9(b), where the
linear layout is obtained by splitting the Hamiltonian cycle between vertices 8
and 1.

We can apply the same line of arguments to deque layouts, however, with an
intriguing twist. Fig. 9(c) shows the Goldner-Harary graph GGH [20] which is
the smallest maximal planar graph with no Hamiltonian cycle. The edges drawn
bold belong to the Hamiltonian path (1, . . . , 11). Therefore, GGH is a deque but
no double-stack graph. We use the same idea as before to construct the deque
layout. Consider the open curve defined by the Hamiltonian path in Fig. 9(c).
We close the curve by proceeding in the dual graph. First, connect vertex 11
with face f to which 11 is incident. The choice of face f is arbitrary as long as
vertex 11 is incident to f . Then, we find a path in the dual graph from face f to
face g, where vertex 1 is incident to g, such that we never use any dual edge of
the Hamiltonian path. Finally, connect g to 1 and close the curve. Thereby, we
obtain a simple closed curve C that partitions the plane into regions R and R
(shaded). Again, identify R with the head and R with the tail. The linear layout
is the ordering of the vertices on the Hamiltonian path. The corresponding LC
drawing is shown in Fig. 9(d). As with the double-stack graph from before, we
have edge curves within either R or R which are stack edges, e. g., edge (1, 4).
Consider the edges that cross C. For instance, edge (3, 10) starts within R and
ends within R which means that it is inserted at the tail and removed at the
head of the deque. In general, all queue edges cross C and they are exactly the
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primal of the edges on the path from f to g in the dual. We comprise these
observations in the following theorem which we use later to characterize queue
graphs:

Theorem 3 Let G = (V,E) be a graph with a planar rotation system and a
Hamiltonian path P = (v1, . . . , vn) consisting of edges EP . Let G∗ = (F,E∗) be
the dual of G and E∗P the dual edges of EP . Further, let f1, fp ∈ F be two faces
such that v1 is incident to fp and vn is incident to f1. Then:

(i) There is a simple path Q∗ = f1  fp in G∗6P = (F,E∗ \ E∗P ).

(ii) Let E∗Q be the set of edges traversed by Q∗ and let EQ be the primal edges

of E∗Q. G has a deque layout Σ = (≺, Eh, Et) such that ≺ is the ordering
of the vertices on P , and an edge e ∈ E is a queue edge if and only if
e ∈ EQ.

Proof: (i): Suppose for contradiction that there is no path f1  fp in G∗6P . Since
G has a Hamiltonian path, G is connected and so is its dual G∗. Hence, there
is a path from f1 to fp in G∗ but removing the dual edges of the Hamiltonian
path disconnects f1 from fp. Denote by FC the set of faces f for which there is
a path f1  f in G∗6P . By construction, f1 ∈ FC and fp ∈ FC = F \ FC . Then,

FC and FC is a cut with cutset E∗C ⊆ E∗. Let e∗ = {f, g} be an edge from E∗C
with f ∈ FC and g ∈ FC . The dual edge e∗ must be in E∗P , as otherwise there
would be a path from f1 to g. Hence, E∗C ⊆ E∗P and EC ⊆ EP , where EC are
the primal edges of E∗C . As E∗C is a cutset, EC forms a cycle in G. However,
then the Hamiltonian path contains a cycle which is a contradiction. Therefore,
there is a simple path from f1 to fp.

(ii): It was shown by Tutte [34] that a planar graph G = (V,E) and its
dual G = (F,E∗) can be drawn simultaneously such that each of G and G∗ is
drawn planar, all faces are placed within the regions to which they correspond,
and each primal edge e crosses its dual e∗ exactly once. Let Γ be such a
simultaneous drawing of G and G∗. The situation is illustrated in Fig. 10(a).
Denote by ΓP the set of points in Γ of the simple curve defined by the Hamiltonian
path P in G (drawn bold in Fig. 10(a)). By (i), there is a simple path Q∗ =
f1  fp in G∗ (shaded line between f1 and fp). ΓQ∗ denotes the set of points
in Γ that belong to Q∗. Since Q∗ contains no edge of E∗P , ΓP and ΓQ∗ are two
disjoint simple curves. We connect these two curves as follows: Let Γv1 be the
position of v1 and Γfp be the position of fp. Since v1 is incident to fp, there is a
simple curve from v1 to fp that shares no point with Γ except for its endpoints
(dashed line between v1 and fp). Likewise, there is a simple curve from vn to f1
(dashed line between vn and f1). Altogether, we obtain the simple and closed
curve C that partitions R2 into regions R and R (shaded).

Let Λ = (≺, E⊥, E>) be the LC rotation system induced by the Hamiltonian
path. Recall that the Hamiltonian path P splits the rotation system of each
vertex v into the edges that enter v from above and from below, and the rotation
systems of v1 and vn can be split arbitrarily. In the construction of C, we
have connected v1 with fp by a curve which can be seen as an edge curve.
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Figure 10: Situation obtained in the proof of Theorem 3. (a) Connecting the
endpoints of the Hamiltonian path P and Q∗ encloses the region R. (b) The
rotation system of v1 is split by the Hamiltonian path and by the curve connecting
v1 and f1.

Together with the edge to vertex v2, the rotation system of v1 is split as shown
in Fig. 10(b), where the curve between v1 and fp is dashed. The edges that
enter v1 within R (R), enter v1 from above (below) in the LC rotation system
Λ. Likewise, the rotation system of vn is split. The so obtained LC rotation
system is planar, as shown in the proof of Theorem 2, and the corresponding
deque schedule Σ = (≺, Eh, Et) is a deque layout by Corollary 3.2.

Now, let e∗ be an edge on Q∗ and let e = {u, v} be its primal. By construction,
the edge curve of e crosses C exactly once, e. g., e1 in Fig. 10(a). This implies
that e either enters u within R and v within R or vice versa. Hence, e enters
u from above and v from below or vice versa. In both cases, e is a queue edge
in Σ. Further, let e be an edge such that the inner part of its edge curve lies
completely within R, e. g., edge e2. Then, e enters both its endpoints from above
and is, thus, a stack edge inserted at the head in Σ. Likewise, an edge that lies
within R is a stack edge inserted at the tail in Σ. This proves (ii). �

In conclusion, the additional power of a deque over a double-stack is to
connect the endpoints of the Hamiltonian path via the dual, which in turn
produces queue edges. Conversely, if a graph can be augmented to a planar
graph with a Hamiltonian path such that its endpoints are incident to the same
face, we can connect these endpoints in the dual without traversing any dual
edges. Hence, we need no queue edges and the graph is a double-stack graph.

4 Queue Graphs

Our results on deque graphs have relevant implications on queue graphs. A
queue is a restricted deque, where all edges are queue edges inserted at the head
and removed at the tail. With this specialization we have queue schedules Σ =
(≺, Eh, Et), queue layouts and queue graphs and we can conclude:

Corollary 4.1 A queue schedule Σ is a queue layout if and only if the LC
rotation system Λ with Λ = Σ is planar.
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Figure 11: (a) A planar graph and (b) its queue layout.

Corollary 4.2 A graph is a queue graph if and only if it has a planar LC
drawing such that all edges e = (u, v) enter u from above and v from below the
front line, i. e., they wind around the cylinder.

Now there are three ways to display queue layouts. First, in the common
way, where each twist generates a crossing [16, 18, 24], which is bad from the
viewpoint of graph drawing (Fig. 1(b)). Second, the arch leveled drawings from
[24] are planar, however, they do not reflect the FIFO principle (Fig. 1(c)). Also,
it is quite cumbersome to construct such a drawing, and to check an infeasibility.
Why is the dashed edge in Fig. 1(c) illegal? If we keep this edge, which others
must be removed? Finally, our linear cylindric drawings (see Fig. 11(b)) are
planar, the FIFO principle is made transparent by a scan line and illegal edges
are directly recognizable.

The restriction to queue edges has a strong impact on the dual of queue
graphs. The addition of the edges between the vertices that are consecutive
in the linear layout or on a Hamilton path results in a multi-graph, whose
distinguished property is that the dual is of the same type. The added edges are
not necessarily queue edges; they could be used as stack edges in a deque, and
are taken for the Hamilton path, which implies that the original queue edges are
all crossed in the dual graph when connecting the endpoints of the Hamiltonian
path.

Given a linear layout ≺ and a graph G = (V,EQ), the ≺-augmentation
G≺ = (V,EQ ∪̇ EP ) of G is a multi-graph with disjoint sets of edges EQ
and EP = {{u, v} | u, v ∈ V and v is the immediate successor of u in ≺}. We
specialize Theorem 3 for queue graphs.

Lemma 3 Let G = (V,EQ) be a queue graph with queue layout Σ = (≺, Eh, Et)
and ≺-augmentation G≺ = (V,EQ ∪̇ EP ). Let v1 and vn be the first and last
vertex of the Hamiltonian path with edges EP . Then G≺ has an embedding with
dual G∗≺ = (F≺, E

∗
Q ∪̇ E∗P ) such that there exist faces f1, fp ∈ F≺, where vn is

incident to f1 and v1 is incident to fp and there is a simple path f1  fp in
G∗≺ \ E∗P that contains all edges E∗Q.

Proof: Let Σ≺ be the ≺-augmentation of Σ, where Σ≺ is a deque schedule of G≺
that equals Σ for all edges in EQ and all edges in EP are stack edges processed at
the head. Note that Σ≺ is not necessarily a queue layout. Let Λ≺ = (≺, E⊥, E>)
be the LC rotation system with Λ≺ = Σ≺. Then Λ≺ is planar by Lemma 2, and
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we obtain an embedding of G≺ with dual graph G∗≺ = (F≺, E
∗
Q ∪̇E∗P ). Further,

G≺ contains the Hamiltonian path EP with first vertex v1 and last vertex vn.
Now, we apply Theorem 3 and choose f1 and fp so that all edges in EQ that
are incident to v1 enter v1 from above and all edges in EQ incident to vn enter
vn from below. Hence, there is a simple path Q∗ = f1  fp in G∗≺ \ E∗P that
contains each edge in E∗Q. �

Given a ≺-augmentation G≺ = (V,EQ ∪̇EP ) of a queue graph, we say that an
embedding of G≺ is an augmented queue embedding (with Hamiltonian path EP
and queue edges EQ) if it fulfills the properties of Lemma 3. This augmented
queue embedding can readily be constructed following the proof of Lemma 3.

Corollary 4.3 A graph G = (V,EQ) is a queue graph if and only if it is a
spanning subgraph of a ≺-augmentation G≺ = (V,EQ ∪̇ EP ) such that G≺ has
an augmented queue embedding.

Proof: The only if direction follows from Lemma 3. For the if-direction, note
that the augmented queue embedding of G≺ and the Hamiltonian path induce
a deque layout Σ≺ = (≺, Eh, Et) where all edges in EP are stack edges and all
edges in EQ are queue edges. Removing all edges EP from G≺ yields G, which
is then a queue graph. �

Figs. 12(a) and 12(b) show the augmented queue embedding of G≺ = (V,EQ∪̇
EP ) (solid) and its dual G∗≺ = (F,E∗Q ∪̇ E∗P ) (dashed) of the queue graph
in Fig. 11(b) (without the dashed edge). Note that all edges of EP enter
their endpoints from above, whereas all edges in EQ change sides. G≺ is a
multigraph as it contains the edge (6, 7) twice. Interestingly, the dual has the
same type as the primal: The duals of EQ, denoted by E∗Q, are a Hamiltonian
path Q∗ = f1, . . . , f10 in G∗≺. Let ≺∗ be the linear layout of G∗≺ in order of
Q∗, e. g., fi ≺∗ fj ⇔ i < j for all 1 ≤ i, j ≤ 10 in Figs. 12(a) and 12(b). The
duals of EP , denoted by E∗P , behave like queue edges: For instance, the dual
of (4, 5) ∈ EP is edge (f3, f8) which enters f3 from below and f8 from above.
Thus, the embedding of G∗≺ is an augmented queue embedding with Hamiltonian
path E∗Q and queue edges E∗P . Put differently, Hamiltonian path edges and
queue edges switch roles when going from the primal to the dual. In fact, this
characterizes augmented queue embeddings:

Theorem 4 Let G = (V,EQ ∪̇ EP ) be an embedded graph such that EP is a
Hamiltonian path, and let G∗ = (F,E∗Q ∪̇ E∗P ) be the dual of G. The following
are equivalent:

(i) The embedding of G is an augmented queue embedding, where EP is the
Hamiltonian path and EQ are the queue edges.

(ii) The embedding of G∗ is an augmented queue embedding, where E∗Q is the
Hamiltonian path and E∗P are the queue edges.
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Figure 12: The augmented queue embedding and its dual (dashed) of the queue
graph in Fig. 11(b), (a) in fundamental polygon representation and (b) in
concentric representation.

Proof: (i) ⇒ (ii): Let v1, . . . , vn be the Hamiltonian path with edges EP and
let ≺ be the respective linear layout. As the embedding of G is an augmented
queue embedding, there exist two faces f1 and fp such that vn is incident to f1,
v1 is incident to fp, and there is a simple path Q∗ = f1  fp in G∗ \ E∗P that
contains all edges E∗Q by Lemma 3.

First, we show that Q∗ is a Hamiltonian path of G∗. Every face f ∈ F has at
least one incident edge of E∗Q, otherwise there is a face f with incident edges E∗f
such that E∗f ⊆ E∗P . Then E∗f 6= ∅, since the dual is connected. As E∗f is a cutset,
the primal edges of E∗f form a simple cycle in G that consists of Hamiltonian
path edges, which is a contradiction. As Q∗ visits each face at least once, it
contains all edges in E∗Q. Further, Q∗ is simple and, thus, is a Hamiltonian path
of G∗ from f1 to fp.

Let Λ∗ = (≺∗, E∗⊥, E∗>) be the LC rotation system of G∗ as induced by the
Hamiltonian path Q∗. We can assume that all edges incident to f1 enter f1 from
above and all edges incident to fp enter fp from below. Let Σ∗ = (≺, E∗h, E∗t)
be the deque schedule with Σ∗ = Λ∗. Due to planarity and Theorem 3, Λ∗ is
planar and Σ∗ is a deque layout. It remains to show that all edges in E∗P are
queue edges in Σ∗ that are inserted at the head and removed at the tail.

As in the proof of Theorem 3, we assume that we are given a simultaneous
drawing of G and G∗, which are both drawn planar according to the given LC
rotation systems, all faces are placed within the regions to which they correspond,
and each primal edge e crosses its dual e∗ exactly once. For every edge e ∈
EP ∪EQ, let l(e) and r(e) denote the endpoints of e with v1 � l(e) ≺ r(e) � vn.
Then r(e) is the immediate successor of l(e) on the Hamiltonian path EP if
e ∈ EP , and if e ∈ EQ, then e is inserted at l(e) and removed at r(e) in the
queue layout of G. Analogously, for every edge e∗ ∈ E∗P ∪E∗Q, l(e∗) and r(e∗) are
the faces to which e is incident and f1 �∗ l(e∗) ≺∗ r(e∗) �∗ fp. By assumption,
all edges incident to f1 enter f1 from above and, hence, are inserted at the head
in Σ∗. Likewise, all edges incident to fp are removed at the tail.
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Let e∗ ∈ E∗P be an edge such that f1 ≺∗ l(e∗) ≺∗ r(e∗) ≺∗ fp. In the
remainder of the proof, we show that e∗ enters l(e∗) from above and r(e∗) from
below the Hamiltonian path E∗Q. The situation is depicted in Fig. 13, where
again the dual edges are drawn dashed for clarity. The dual edge e∗ must lie
in the shaded region, which forms a “tube” and guarantees that e∗ enters its
endpoints from the correct sides. We start by defining the elements that form
the border of the “tube”.

As l(e∗) ≺∗ r(e∗) there is an edge e∗1 ∈ E∗Q on the Hamiltonian path of
G∗ such that l(e∗) �∗ l(e∗1) ≺∗ r(e∗1) �∗ r(e∗). Its primal e1 is a queue edge
and enters l(e1) from above and r(e1) from below by our assumption. For the
endpoints of e1, we show that:

v1 � l(e1) � l(e) ≺ r(e) � r(e1) � vn . (1)

First, e1 crosses its dual e∗1 between l(e∗) and r(e∗) on the Hamiltonian path
of G∗ since l(e∗) �∗ l(e∗1) ≺∗ r(e∗1) �∗ r(e∗). Second, e1 enters l(e1) from above
and r(e1) from below by assumption. Hence, if l(e) ≺ l(e1) or r(e1) ≺ r(e), then
e1 would cross e∗ which is not possible as e1 is not the primal of e∗. Note that
this crossing exists independently of the sides from which e∗ enters its endpoints.
Hence, Eq. (1) follows.

e2

e1

e3
e∗

v1 vn

e

f1 fp

e∗3 e∗1 e∗2

x1 x2x3

R⊥

R>

Figure 13: Situation obtained in the proof of Theorem 4.

Further, as r(e∗) ≺∗ fp, there is an edge e∗2 ∈ E∗Q such that r(e∗) �∗ l(e∗2) ≺∗
r(e∗2) �∗ fp. For the endpoints of the primal e2 of e∗2, we show that:

v1 � l(e2) � l(e1) and l(e2) ≺ r(e2) � l(e) . (2)

The edge curves of e1 and the edges on the Hamiltonian path between l(e1) and
r(e1) enclose a region R in the drawing, where, w. l. o. g., fp is situated within R.
By definition, the endpoints of e∗2 lie between r(e∗) and fp on the Hamiltonian
path of G∗. Thus, the position of the crossing of e2 with e∗2 is between r(e∗)
and fp and, in particular, between the crossing of e∗1 with e1 and the position
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of fp. Recall that vertex v1 is incident to fp. For these reasons and due to
the planarity of the drawing of G, the inner part of the edge curve of e2 lies
completely within R. Further, e2 enters l(e2) from above and r(e2) from below
and, hence, v1 � l(e2) � l(e1) and l(e2) ≺ r(e2) � r(e1). It remains to show
that r(e2) � l(e). For this, consider the crossing of e∗ with e. If l(e) ≺ r(e2),
then e2 would cross e∗ which is not possible as e∗ is not the dual of e2. Hence,
Eq. (2) follows.

By symmetric arguments, there is an edge e∗3 ∈ E∗Q such that f1 �∗ l(e∗3) ≺∗
r(e∗3) �∗ l(e∗), where the primal e3 of e∗3 has the properties:

r(e) � l(e3) ≺ r(e3) and r(e1) � r(e3) � vn . (3)

Consider the bounded region R⊥ enclosed by the curve that consists of the
following elements of the drawing (shaded and above the front line in Fig. 13):

• The edge curves on the Hamiltonian path EP of G from l(e1) to l(e3),
where l(e1) � l(e) ≺ r(e) � l(e3) by Eqs. (1) and (3).

• The part of the edge curve of e3 from l(e3) to the crossing point x3 of e3
with dual edge e∗3.

• The edge curves of the Hamiltonian path E∗Q from x3 to the crossing
point x1 between e1 and e∗1.

• The part of the edge curve of e1 from x1 to l(e1), which closes the curve.

Additionally, we define the bounded region R> which is enclosed by the
following elements of the drawing (shaded and below the front line in Fig. 13):

• The edge curves on the Hamiltonian path EP of G from r(e2) to r(e1),
where r(e2) � l(e) ≺ r(e) � r(e1) by Eqs. (1) and (2).

• The part of the edge curve of e1 from r(e1) to the crossing point x1 of e1
with dual edge e∗1.

• The edge curves of the Hamiltonian path E∗Q of G∗ from x1 to the crossing
point x2 of e2 with e∗2.

• The part of the edge curve of e2 from x2 to r(e2), which closes the curve.

Note that due to the properties of e1, e2, and e3, both curves we have just
constructed are non-selfintersecting and, thus, R⊥ and R> are well defined.
They force the edge curve of e∗ to enter its endpoints from the correct sides.
First note that the crossing point of e with e∗ lies on the boundaries of both
R⊥ and R> as l(e1) � l(e) ≺ r(e) � l(e3) and r(e2) ≺ l(e) ≺ r(e) � r(e1),
respectively. Moreover, l(e∗) is on the boundary of R⊥ and r(e∗) is on the
boundary of R>. Hence, all inner points of the edge curve of e∗ are within
R⊥ ∪ R> as otherwise e∗ cannot cross its primal e. Consequently, e∗ enters
l(e∗) from within R⊥ and, by the construction of R⊥, e∗ must enter l(e∗) from
above. Similarly, e∗ enters r(e∗) from within R> and, thus, from below. We can
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Figure 14: The dual (a) of an augmented stack graph and (b) an augmented
deque graph.

conclude that e∗ is a queue edge in the deque schedule Σ∗ inserted at the head
and removed at the tail.

For an edge e∗ with endpoint f1, an analogous reasoning shows that e∗ is
removed at the tail, and if e∗ has endpoint fp, it is inserted at the head.

(ii) ⇒ (i): The proof is similar with swapped roles of primal and dual. �

From Corollary 4.3 and Theorem 4, we obtain the following characterization
of queue graphs:

Corollary 4.4 For a graph G = (V,EQ), the following are equivalent.

(i) G is a queue graph.

(ii) G is a spanning subgraph of a ≺-augmentation G≺ = (V,EQ ∪̇ EP ) such
that G≺ has an augmented queue embedding with Hamiltonian path EP
and queue edges EQ.

(iii) G is a spanning subgraph of a ≺-augmentation G≺ = (V,EQ ∪̇EP ), where
G≺ has an embedding such that the embedding of its dual G∗≺ = (F,E∗Q∪̇E∗P )
is an augmented queue embedding with Hamiltonian path E∗Q and queue
edges E∗P .

Theorem 4 shows that the FIFO principle of a queue is represented in the
dual of queue graphs. The dual Hamiltonian path E∗Q defines a linear ordering
of the faces of the queue graph, which simultaneously reflects the linear ordering
of insertions and of removals of data items. Accordingly, the ≺-augmentation of
a stack graph G = (V,ES ∪̇ EP ) with stack edges ES processed at the tail and
Hamiltonian path EP (drawn bold) yields a tree for the dual which is a (weak)
dual of an outerplanar graph and reflects the LIFO principle (see Fig 14(a)). For
the double-stack, the dual consists of two trees which are glued at their leaves
and have a common root. The deque combines the stack with the queue and we
obtain trees, for the stack edges, whose roots are connected by a path by the
queue edges (see Fig. 14(b) for an example).

For another observation, let a graph G = (V,EQ ∪̇ EP ) be endowed with an
augmented queue embedding. Then, G∗ = (F,E∗Q ∪̇ E∗P ) is endowed with an
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augmented queue embedding with Hamiltonian path Q∗, which is also Eulerian
on E∗Q as each edge of E∗Q is traversed exactly once. Now, we remove an edge
e ∈ EP from G. In the dual G∗, this is equivalent to contracting the dual edge e∗

of e, i. e., the endpoints of e∗ are identified. In the obtained dual graph, Q∗

is not Hamiltonian anymore as one face is visited twice. However, Q∗ is still
Eulerian and it remains so after removing all edges of EP from G. The obtained
graph G \EP is a queue graph and is endowed with a planar LC rotation system
that corresponds to a queue layout.

Corollary 4.5 If G is a queue graph with queue layout Σ such that G is embed-
ded according to the corresponding LC rotation system Λ = Σ, then G∗ contains
a Eulerian path.

5 Recognition Problems

The recognition problems have been raised and settled for stack, queue and
deque graphs. Deciding whether a graph is a one-stack graph can be done in
linear time as it is equivalent to testing outerplanarity [9, 35]. The other decision
problems are NP-complete, and were proved in [11, 36] for a double-stack, in
[6] for a deque, and in [24] for a queue. For a double-stack and a deque, the
NP-hardness is due to the existence of a Hamiltonian cycle or path in a planar
drawing.

A planar deque schedule Σ takes its viewpoint at the vertices and sees only
the tail or the head of an edge but not the other endpoint. If the other endpoint
is taken into account, then it defines an edge classification and partitions the set
of edges into E = Ehh

.
∪Eht

.
∪Ett

.
∪Eth, where, e. g., Ehh is the set of edges that

leave and enter the deque at the head. Thereby, it classifies the edges into first
and second stack edges Ehh and Ett, and upward and downward queue edges Eth
and Eht, respectively. The situation is similar for a planar LC rotation system.

Recall from Section 3.1 that the fundamental polygon representation of an
LC drawing can be seen as an extended two-level drawing with intra-level and
inter-level edges [8, 26], so that the vertices on the upper level (at the tail) are
clones of the vertices on the lower level (at the head), or vice versa. The queue
edges are inter-level edges and the stack edges intra-level edges. The LC drawing
is planar if and only if the two-level drawing is planar.

For the recognition problem of extended k-level graphs, we are given a
partition of the vertices V = V1

.
∪ . . .

.
∪Vk so that the vertices of Vi are placed on

the i-th level, and an edge partition of the intra-level edges Ei between vertices
of Vi into the sets of edges Eai ∪Ebi above and below the i-th level. We search for
k permutations π1, . . . , πk, one for the vertices of each level, so that the extended
k-level drawing obtained by ordering the vertices of Vi according to πi is planar.
This is the k-level planarity problem if there are no intra-level edges, and is
solvable in linear time [29]. The extended k-level problem with intra-edges is
solvable in linear time if, for every i, the subgraph induced by the set of edges
below level i consists of a single connected component [26].
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In contrast, the recognition problem for deque graphs (or LC graphs) asks
for an edge partition and a single permutation for the vertices (on both sides of
the fundamental polygon or two levels) such that the drawing is planar. This
problem is NP-complete [6], even if there are only inter-level edges [11, 36] or
only intra-level edges [24].

In consequence, LC drawings should not be regarded as two-level drawings
when the recognition problem is taken into account.

The recognition problem for deque graphs can be specialized such that either
an edge partition or a linear ordering of the vertices, i. e., a Hamiltonian cycle
(path), is given.

Lemma 4 There is a linear time algorithm that computes the edge classification
of a deque (double-stack) graph if the Hamiltonian path (cycle) is given.

Proof: Since a deque graph G is planar, we run a dfs-based planarity test
[12, 19, 28] so that the Hamiltonian path is the leftmost path in the initial
dfs-tree. If there is a Hamilton cycle first remove one edge. Then the algorithm
flips the remaining edges to the left or to the right of this path, in which case
they are stack edges that enter the deque from one side, or the edges go from one
side to the other, in which case they are queue edges, see also [5]. The planarity
test algorithms run in linear time. �

Note that the problem of minimizing the number of stacks for a k-stack
layout of a graph is NP-complete if the linear ordering of the vertices is fixed
[24]. Thus the edge classification problem becomes hard if the objective is a
minimum number of stacks, even if the linear ordering of the vertices is given.

The recognition problems reveals another distinction between deque and
double-stack graphs. An instance of the edge-partitioned deque graph recognition
problem consists of a graph G = (V,E) and an edge partition E = Ehh

.
∪ Eht

.
∪

Ett
.
∪Eth and it asks for a planar deque layout such that Ehh is the set of edges

that leave and enter the deque at the head, and similarly for Eht, Eth and Ett.

Theorem 5 The edge-partitioned deque graph recognition problem is

(i) NP-complete for deque graphs and for queue graphs,

(ii) solvable in linear time for double-stack graphs.

Proof: (i) follows from the NP-completeness of recognizing queue graphs [24],
where E = Eht, and the fact that queue graphs are deque graphs without stack
edges. If there are only queue edges, then edges of Eth can be converted into
edges of Eht, since the deque must be empty after the removal of an upward
queue edge and before the insertion of a downward queue edge, as shown in the
proof of Lemma 1.

(ii) has been proved by Hong and Nagamochi [27] for the identical setting of
2-page book embedding with a given assignment of edges to pages. �



JGAA, 22(2) 207–237 (2018) 233

6 Summary and Perspectives

We have introduced linear cylindric drawings as a new drawing technique to
display the working principles of a stack, double-stack, queue and deque, respec-
tively. There is a one-to-one correspondence between feasibility and planarity.
Conversely, an invalid operation is directly visible as a crossing. We characterized
the deque graphs as the graphs with a linear cylindric planar drawing and as
the subgraphs of planar graphs with a Hamiltonian path. In comparison, the
double-stack graphs are the graphs with a linear drawing in the plane and are the
subgraphs of planar graphs with a Hamiltonian cycle. Hence, the gap between a
deque and a double-stack is “small” and consists of a single edge from the first
to the last vertex that either augments a Hamiltonian path to a Hamiltonian
cycle or excludes winding edges around the cylinder. However, the gap is “large”
for the recognition problem if an edge partition is given. The differences between
deque and double-stack graphs are summarized in Table 1.

double-stack deque
linear layout on a surface plane cylinder
planar graph with Hamiltonian cycle path
edge-partitioned recognition problem O(n) NP-complete

Table 1: Differences between double-stack and deque graphs

Linear cylindric drawings are well-suited for queue layouts. Then all edges
wind around the cylinder or connect vertices on opposite sides of the fundamental
polygon by straight lines, and they do not cross. This makes them superior to
common drawings with twists and to arched leveled-planar drawings [16, 18],
as Fig. 1 illustrates. Queue graphs have the special property that the dual of
their augmentation by a Hamiltonian path is of the same type and the dual of a
queue graph has an Eulerian path.

Stack and queue layouts and stack and queue graphs were studied at several
places. Yet, the relationship between stack and queue layouts is not fully
understood. Heath and Rosenberg [24] showed that there is an outerplanar
graph with seven vertices that is not a queue graph. It is an extended complete
binary tree with edges between vertices on the same level. There was no example
for the converse. Graph G from Fig. 15 is a subdivision of K4 and thus not
outerplanar, but is it a queue graph. Note that K4 is neither a (1-)stack graph
nor a (1-)queue graph. Hence, the classes of 1-stack graphs and 1-queue graphs
are incomparable, and the class of 1-queue graphs is not minor-closed, whereas
the class of 1-stack graphs is closed under taking minors. Heath and Rosenberg
showed that every 1-stack graph has a 2-queue layout and every 1-queue graph
has a 2-stack layout. The latter also follows from Corollary 4.3.

Recall that it is open whether stack-number is bounded by queue-number
and conversely [18, 23], where the stack-number (queue-number) of a graph is
the minimum k such that G has a k-stack layout (k-queue layout). The queue-
number of planar graphs is bounded by O(log4 n) [14], whereas the stack-number
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Figure 15: (a) A non-outerplanar graphs and (b) its 1-queue layout.

is at most four [38].
Linear cylindric drawings can be used to represent input- and output restricted

deques from [31]. A head (tail) of an output restricted deque does not allow
removals at the head (tail). These restrictions simplify the drawings, since the
set Eth (Eht) of the edge partition is empty.

There are maximal planar graphs without a Hamiltonian cycle, such as the
Goldner-Harary graph (Fig. 9(c)), and without a Hamiltonian path [25]. Hence,
the deque (double-stack) is not powerful enough to capture all planar graphs.
In [5] a splittable deque was introduced as an extension of a deque and it was
shown that a graph is planar if and only if it has a layout in the splittable deque.
The surplus is to split a deque into sub-deques, and the splits are controlled by
a depth-first search tree.

The usefulness of our approach can also be exploited for the representation
of mixed data structures, such as a stack and a queue. A stack-queue layout of
a graph is given by a linear ordering of the vertices and a partition of the edges
into stack edges and queue edges, which each have a planar layout. However,
such graphs are no longer planar, since, e.g., K3,3 admits such a representation,
and our paradigm does not longer hold. Classes of graphs from mixed data
structures are not well-understood. It is known that every graph has a 3-stack
subdivision, a 2-queue subdivision, or a 1-stack 1-queue subdivision [18]. But
1-deque graphs are planar, and so are their subdivisions. This fact shows again
that the stack and the queue modes of a deque restrict one another, and that a
deque is not a double-ended queue, as the full name, given by D. E. Knuth [31],
may suggest.
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