
Drawing Phylogenetic Trees?

(Extended Abstract)

Christian Bachmaier, Ulrik Brandes, and Barbara Schlieper

Department of Computer & Information Science, University of Konstanz, Germany
{christian.bachmaier,ulrik.brandes,barbara.schlieper}@uni-konstanz.de

Abstract. We present linear-time algorithms for drawing phylogenetic
trees in radial and circular representations. In radial drawings given edge
lengths (representing evolutionary distances) are preserved, but labels
(names of taxons represented in the leaves) need to be adjusted, whereas
in circular drawings labels are perfectly spread out, but edge lengths
adjusted. Our algorithms produce drawings that are unique solutions to
reasonable criteria and assign to each subtree a wedge of its own. The
linear running time is particularly interesting in the circular case, because
our approach is a special case of Tutte’s barycentric layout algorithm
involving the solution of a system of linear equations.

1 Introduction

Phylogeny is the study of the evolutionary relationships within a group of or-
ganisms. A phylogenetic tree represents the evolutionary distances among the
organisms represented by its leaves. Due to the increasing size of data sets,
drawings are essential for exploration and analysis. In addition to the usual re-
quirements for arbitrary tree structures, drawings of phylogenetic trees should
also depict given edge lengths and leaf names. Standard approaches [3,12,18] do
not take these criteria into account (see [2,7] for an overview of tree drawing algo-
rithms). Popular software tools in computational biology such as TreeView [10],
PAUP∗ [14], or PHYLIP [11] also provide drawings of phylogenetic trees, but
the underlying algorithms are not documented.

There are essentially two forms of representation for phylogenetic trees. For
an overview see, e. g., [1]. Both are variations of dendrograms, since many algo-
rithms for the construction of phylogenetic trees are based on clustering (see,
e. g., [15]). They differ in that leaf labels are either placed monotonically along
one axis or around the tree structure. While the first class of representations is
very similar to standard dendrograms and easy to layout, it is somewhat diffi-
cult to understand the nesting of subtrees from the resulting drawings. We focus
on the algorithmically more challenging and graphically more appealing second
class of representations.

In radial tree drawings edges extend radially monotonic away from the root,
and we give a linear-time algorithm that preserves all edge lengths exactly. In
? Partially supported by DFG under grant Br 2158/1-2.

circular tree drawings leaves are placed equidistantly on the perimeter of a circle
and the tree is confined to the inside of the circle. Note that it may not be
possible to preserve edge lengths in this representation. We give an algorithm
that heuristically minimizes length deviations and, even though based on solving
a system of linear equations, runs in linear time as well. Both algorithms yield
drawings that are unique in a well-defined sense up to scaling, rotation, and
translation. Since each subtree is confined to a wedge rather than an interval of
its own, their nesting structure is more apparent than in vertical or horizontal
representations. While, typically, phylogenetic trees are cases extended binary
trees, our algorithms apply to general trees.

This paper is organized as follows. Basic notation and some background is
provided in Sect. 2. In Sects. 3 and 4 we present our algorithms for radial and
circular representations, and conclude in Sect. 5.

2 Preliminaries

Throughout the paper let T = (V,E, δ) denote a phylogenetic tree with n = |V |
vertices, m = |E| edges, and positive edge lengths δ : E → R+. The leaves of a
phylogenetic tree represent the species, molecules, or DNA sequences (taxons)
under study and its inner vertices represent virtual or hypothetical ancestors.
The length of an edge represents the evolutionary divergence between its incident
vertices, and the entire tree represents a tree metric fitted to a (potentially noisy
and incomplete) dissimilarity matrix defined over all taxons. Since we want the
length of an edge e ∈ E to resemble δ(e) as closely as possible, only positive
values are allowed. If a method for tree construction, e. g., [5, 6, 9, 13], assigns
negative or zero length to an edge, we set it to a small positive constant, e. g.,
to a fraction of the smallest positive edge length in the tree.

Let deg : V → N denote the number of edges incident to a vertex and note
that typical tree reconstruction methods yield rooted trees in which most inner
vertices have two children. We use root(T) to refer to the root of a tree T . Each
vertex v ∈ V \{root(T)} has an unique parent parent(v), and we denote the set of
children by children(v). For a vertex v ∈ V let T (v) be the induced subtree, i. e.,
the subtree of all descendants of v (including v itself). Clearly, T (root(T)) = T .
For a subtree T (v) of T we use leaves (T (v)) containing all vertices v in T (v)
which have deg(v) = 1 in T to denote the set of its leaves. Tree edges are directed
away from the root, i. e., for an edge (u, v) we have u = parent(v). We sometimes
use {u, v} to refer to the underlying undirected edge.

Finally, we assume that in ordered trees the outgoing edges are to be drawn
in counterclockwise order, i. e., for an inner vertex other than the root the coun-
terclockwise first edge after the incoming edge is that of the first child.

3 Radial Drawings

In this section, we describe a drawing algorithm that yields a planar radial draw-
ing of a phylogenetic tree T = (V,E, δ). It is NP-complete to decide whether a

graph can be drawn in the plane with prescribed edge lengths, even if the graph
is planar and all edges have unit lengths [4], but for trees we can represent any
assignment of positive edge lengths exactly.

3.1 Basic Algorithm

The main idea is to assign to each subtree T (v) a wedge of angular width propor-
tional to the number of leaves in T (v). The wedge of an inner vertex is divided
among its children, and tree edges are drawn along wedge angle bisectors, so
that they can have any length without violating disjointness. See Fig. 1 for il-
lustration. Algorithm 1 therefore traverses the input tree twice:

– in a postorder traversal, the number lv = |leaves(Tv)| of leaves in each subtree
T (v) is determined, and

– in a subsequent preorder traversal, a child w of an inner vertex v is placed
at distance δ(v, w) on the angular bisector of the wedge reserved for w.

w2

w1

v

u

!
v
/2

±
u

v
(

,
)

T w(2)

T w(1)leaves(
(

))

T
w

1

lea
ve

s(
(

))
T
w 2

±
v
w

(
,

)
1

±
v
w

(
,

)2!
w

2
1

!
w /22

!
w2

!
w1

!
v
/2

!
w /21

!
w /22

Fig. 1. Wedges of vertex v’s neighbors

The following theorem shows that the layouts determined by Algorithm 1 are
essentially the only ones that fulfill all natural requirements for radial drawings
of trees with given edge lengths.

Theorem 1. For an unrooted ordered phylogenetic tree T = (V,E, δ), there is a
unique planar radial drawing up to rotation, translation and scaling, that satisfies
the following properties:

1. Relative edge lengths are preserved exactly.
2. Disjoint subtrees are confined to disjoint wedges.
3. Subtrees are centered at the bisectors of their wedges.
4. The angular width of the wedge of a subtree is proportional to the number of

leaves in that subtree.

Moreover, it can be computed in linear time.

Algorithm 1: RADIAL-LAYOUT
Input: Rooted tree T = (V,E, δ)
Data: Vertex arrays l (number of leaves in subtree), ω (wedge size), and

τ (angle of right wedge border)
Output: Coordinates xv for all v ∈ V

begin
postorder_traversal (root(T))
xroot(T) ← (0, 0)
ωroot(T) ← 2π
τroot(T) ← 0
preorder_traversal (root(T))

end
procedure postorder_traversal(vertex v)

if deg(v) = 1 then
lv ← 1

else
lv ← 0
foreach w ∈ children(v) do

postorder_traversal(w)
lv ← lv + lw

procedure preorder_traversal(vertex v)
if v 6= root(T) then

u← parent(v)
xv ← xu + δ(u, v) ·

(
cos(τv + ωv

2), sin(τv + ωv

2)
)

η ← τv

foreach w ∈ children(v) do
ωw ← lw

lroot(T)
· 2π

τw ← η
η ← η + ωw

preorder_traversal(w)

Proof. Choose any vertex as the root. By Property 4, the angular width of the
wedge of a subtree T (v) is

ωv = α · |leaves (T (v)) |
|leaves(T)|

. (1)

If the root is altered such that u = parent(v) becomes a child of v in the newly
rooted tree T ′, then

|leaves (T ′(u)) |
|leaves(T ′)|

=
|leaves(T)| − |leaves (T (v)) |

|leaves(T)|
, (2)

so that the proportionality factor α = 2π and Properties 4, 3 and 2 imply that
angles between incident edges are independent of the actual choice of the root.
Since relative lengths of edges need to be preserved as well, layouts are unique up
to rotation, translation and scaling. Planarity is implied. Clearly, Algorithm 1
determines the desired layouts in linear time. ut

3.2 Extensions

Labels of leaves are placed on the angle bisector of the respective wedge. Since
the angle of a leaf wedge is 2π

|leaves(T)| , labels placed close to their leaf may not
fit into the wedge. When using a font of height h, non-overlapping labels are
guaranteed if they are placed at distance at least

h

2 · tan (π / |leaves(T)|)
(3)

from the parent of their associated leaf.
While the number of leaves is a good indicator of how much angular space is

required by a subtree, other scaling schemes can be used to emphasize different
aspects such as height, size, or importance of subtrees.

Since child orders are respected by the algorithm, we may sort children ac-
cording to, say, the size of their subtrees in a preprocessing step. This serves to
modify the general appearance of the final layout.

While the confinement of subtrees to wedges of their own nicely separates
them, it also results in poor angular resolution and a fair amount of wasted
drawing space. We may thus wish to relax this requirement and increase an-
gles between incident edges where possible. This can be achieved during post-
processing using a bottom-up traversal, in which the angle between outgoing
edges of a vertex v are scaled to the maximum value possible within the wedge
of v rooted at parent(v) (see Fig. 2). Note that labels need to be be taken into
account in this angular spreading step, and that the resulting drawings depend
on the choice of root. Our experiments suggest that placing the root at the center
of the tree yields favorable results.

u

z

¯

°z

°
0

d

kx xv z
- k

2

±
u

v
(

,
)

v

w
k

b

z

!v

2
kx

x
v

z- k2

®(,)u v

b

Fig. 2. Increasing angles to fill empty strips around subtrees

4 Circle Drawings

Since it can be difficult to place labels in radial tree drawings, we describe a
second method to draw phylogenetic trees. Here, leaves are placed equidistantly
along the perimeter of a circle. Again, each leaf thus obtains a wedge of angular
width 2π

|leaves(T)| , but now the radius of the circle determines the maximum height
of the font according to (3). It is easy to see that, with this constraint, it might
not be possible to draw all edges e ∈ E with length proportional to δ(e). Edge
length preservation therefore turns into an optimization criterion.

4.1 Basic Algorithm

We use a variant of the weighted version of Tutte’s barycentric layout algo-
rithm [16, 17]. The general idea is to fix some vertices to the boundary of a
convex polygon and place all other vertices in the weighted barycenter of their
neighbors, i. e. vi is positioned at xi =

∑
vj∈V (aijxj) where aij is the relative

influence of vj on vi.
For circular drawings, the leaves of a tree T are fixed to a circle and we define

weights aij by (4). These weights reflect the desired edge lengths, i. e., the shorter
an edge {vi, vj} should be, the more influence has xj on the resulting coordinate
xi. In the original Tutte algorithm aij = 1

deg(vi)
. Note that the weights aij sum

up to 1 for each vi, so that vi is placed inside of the convex hull of its neighbors.
Since we fix leaves to the perimeter of a circle, we can expect in general that

an inner vertex of a tree is placed between its children on the one side and its
parent on the other side. To counterbalance the accumulated radial influence of
the children, their weight is scaled down.

sij =

1

δ(vi, vj) · (deg(vi)− 1)
if vi = parent(vj),

1
δ(vi, vj)

if vj = parent(vi)

aij =

sij∑

{vi,vj′}∈E sij′
if {vi, vj} ∈ E,

0 otherwise

(4)

In the following, let V = {v1, . . . , vn} with leaves(T) = {v1, . . . , vk} for k =⌈
n
2

⌉
. After fixing the leaves equidistantly around the circle, we need to solve

ak+1,1 . . . ak+1,n

...
...

an,1 . . . an,n

 ·

x1

...

xn

 =

xk+1

...
xn

 . (5)

By the following lemma, this can be done in linear time by traversing the tree
first in postorder to resolve the influence of leaves and then in preorder passing
down positions of parents.

Lemma 1. For vi ∈ V and vp = parent(vi) define coefficients

ci =

0 if vi ∈ leaves(T) ∪ {root(T)},
api

1−
∑

(vi,vj)∈E(aijcj)
otherwise (6a)

and offsets

di =

xi if vi ∈ leaves(T),∑

(vi,vj)∈E(aijdj)

1−
∑

(vi,vj)∈E(aijcj)
otherwise .

(6b)

Then, (5) has a unique solution with

xi =

{
di if vi = root(T),
cixp + di otherwise

(7)

for all inner vertices vi ∈ V \ leaves(T).

Proof. We use induction over the vertices. For the base case let vi be an inner
vertex having only leaves as children. Then in case vi 6= root(T) let vp be the
parent of vi and thus

xi = apixp +
∑

(vi,vj)∈E

(aij xj︸︷︷︸
=dj

) =
api

1− 0
xp +

∑
(vi,vj)∈E(aijdj)

1− 0
=

=
api

1−
∑

(vi,vj)∈E(aijcj)
xp +

∑
(vi,vj)∈E(aijdj)

1−
∑

(vi,vj)∈E(aijcj)
= cixp + di .

(8)

The case vi = root(T) is a special case of (8) which uses only the second addend.
For the inductive step let vi 6= root(T) be an inner vertex and vp the parent of
vi. Then

xi = apixp +
∑

(vi,vj)∈E

(aijxj)
i. h.= apixp +

∑
(vi,vj)∈E

(aij(cjxi + dj)) =

= apixp + xi

∑
(vi,vj)∈E

(aijcj) +
∑

(vi,vj)∈E

(aijdj) =

=
api

1−
∑

(vi,vj)∈E(aijcj)
xp +

∑
(vi,vj)∈E(aijdj)

1−
∑

(vi,vj)∈E(aijcj)
= cixp + di .

(9)

The proof for vi = root(T) is a special case of (9) which uses only the second
addend. ut

Algorithm 2: CIRCLE-LAYOUT
Input: Ordered rooted tree T = (V, E, δ)
Data: Vertex arrays c (coefficient), d (offset), and edge array s (weighting)
Output: Coordinates xv in/on the unit circle for each vertex v ∈ V

begin
i← 0
k ← 0
foreach v ∈ V do

if deg(v) = 1 then k ← k + 1

postorder_traversal (root(T))
preorder_traversal (root(T))

end
procedure postorder_traversal(vertex v)

foreach w ∈ children(v) do
postorder_traversal(w) // opt. ordered by h(w) + δ(v, w)

if is_leaf(v) or (v = root(T) and deg (root(T)) = 1) then
cv ← 0
dv ←

�
cos

�
2πi
k

�
, sin

�
2πi
k

��
// fix vertex on circle

i← i + 1
else

S ← 0
foreach adjacent edge e← {v, w} do

if v = root(T) or w = parent(v) then
se ← 1

δ(e)

else
se ← 1

δ(e)·(deg(v)−1)

S ← S + se

t← t′ ← 0
foreach outgoing edge e← (v, w) do

t← t + se
S
· cw

t′ ← t′ + se
S
· dw

if v 6= root(T) then
e← (parent(v), v)
cv ← se

S·(1−t)

dv ← t′

1−t

procedure preorder_traversal(vertex v)
if v = root(T) then

xv ← dv

else
u← parent(v)
xv ← cv · xu + dv

foreach w ∈ children(v) do
preorder_traversal(w)

Theorem 2. For a rooted ordered phylogenetic tree T = (V,E, δ), there is a
unique planar circle drawing up to rotation, translation, and scaling, that satisfies
the following properties:

1. Leaves are placed equidistantly on the perimeter of a circle.
2. Disjoint subtrees are confined to disjoint wedges.
3. Inner vertices are placed in the weighted barycenter of their neighbors with

weights defined by Eq. (4).

Moreover, it can be computed in linear time.

The most general version of Tutte’s algorithm for arbitrary graphs fixes at
least one vertex of each component and simply places each vertex in the barycen-
ter of its neighbors, which yields a unique solution. The running time corresponds
to solving n symmetric equations, which can be done in O(n3) time. For planar
graphs O(n log n) time can be achieved [8], but it is not known whether this is
also a lower bound. We showed that for trees with all leaves in convex position,
the running time is in O(n). Giving up planarity this result can be generalized
to trees having arbitrary fixed vertices (at least one). Consider a fixed inner
vertex v and let each other vertex w in the subtree T (v) be free. Then T (v)
collapses to the position of v. On the other hand, if v has a fixed ancestor u,
then all positions of vertices in T (v) are computed and for the rest a restart on
T\T (v)∪ {v} computes all remaining positions. It follows by induction that our
algorithm computes in O(n) time the unique solution.

Note that the desirable property of disjoint subtree wedges together with
the circular leaves constraint further restricts the class of edge lengths that
can are represented exactly. Nevertheless, our experiments indicate that typical
phylogenetic tree metrics are represented fairly accurately.

4.2 Extensions

Our weights depend on the choice of the root, since re-rooting the tree changes
weights along the path between the previous and the new root. The rationale
behind reducing the influence weights of children suggests that the tree should be
rooted at its center (minimum eccentricity element). Using weights independent
of the parent-child relation the layout can be made independent of the root just
like the radial layouts discussed in the previous section.

It is easy to see that by fixing the order of leaves we are also fixing the child
order of all inner vertices. If no particular order is given, we can permute the
children of inner vertices to improve edge lengths preservation. Ordering the chil-
dren of each vertex v according to ascending height h(w) of the subtrees T (w)
plus δ(v, w) ensures that shallow and deep subtrees are never placed alternat-
ingly. See Fig. 3. Though sorting the children leads to O(n log n) preprocessing
time in general, most phylogenetic trees have bounded degree, so that sorting
can be performed in linear time.

Since correct edge lengths cannot be guaranteed in circle drawings, we use
the following coloring scheme to depict the error: Let σ =

P
e=(u,v)∈E‖xv−xu‖2
P

e∈E δ(e)

v

Fig. 3. Ordering children according to subtree hight supports postulated edge lengths

be the mean resolution of the drawing, i. e., the scaling factor between drawn
units and length units of δ. Then we obtain the (multiplicative) error of an edge
e = (u, v) by fe = ‖xu−xv‖2

σ·δ(e) , which we encode into a color rgb: R+ → [0; 1]3 by

rgb(fe) =

(0, 0, 1) if fe ≤ 1

2 ,

(0, 0,− log2(fe)) if 1
2 < fe < 1,

(log2(fe), 0, 0) if 1 ≤ fe < 2,

(1, 0, 0) if 2 ≤ fe .

(10)

so that blue and red signify edges that are too short and too long, respectively.
100% red means that the edge is at least twice as long as desired whereas 100%
blue means that the edge should be at least twice as long. Weaker saturation
reflects intermediate values. Black edges have the correct lengths.

5 Discussion

We have presented two linear-time algorithms for drawing phylogenetic trees.
Example drawings are shown in Figs. 4 and 5. Both are easy to implement and
scale very well. While the algorithm for radial drawings preserves edge lengths
exactly, the algorithm for circle drawings is constrained by having leaves fixed
on the perimeter of a circle. Since each inner vertex is positioned in the weighted
barycenter of its neighbors, it would be interesting to devise a weighting scheme
that, in a sense to be defined, is provably optimal with respect to the pre-
specified edge lengths. A related open question is the complexity status of de-
ciding whether a circle drawing preserving the edge lengths exists.

Acknowledgment. We wish to thank Lars Volkhardt for implementing our
algorithms in Java using yFiles version 2.3 [19], and Falk Schreiber from the
Institute of Plant Genetics and Crop Plant Research in Gatersleben for providing
real-world data.

pseudomona

microc
occu

shewanella

sa
lm

on
ell

a

eco
li--

bacillus--

m
y
co

-g
en

tl

C
h
la

m
y
d
ia

B

th
e
rm

o
to

g
a

b
o
re

li
a
-b

de
in
on

em
a-

T
th

er
m

o
p
h
i

T
aq

u
at

iu
s

plectonema
gloeobacte

anacystis-

gracilaria

p
orp

h
yra--

sm
ith

o
ra

--

lam
inaria-coscinodia

cyclotella

ochromonas

cynophora

raphidonem

as
ta

sia
---eugle
na--

-

b
ry

o
p
si
s-

-

ch
lo

re
ll
a
-

go
n
iu

m
--
--

ch
la
m
yd

om
o

ch
ara-----

n
ico

-ta
b
a
c

n
ico

-sy
l-A

a
ra

b
id

o
p
si

g
ly

c
in

e
--
-

(a) Our basic algorithm

pseudomona

micro
coc

cu

shewanella
sa

lm
on

ell
a

eco
li--

bacillus--

m
y
co

-g
en

tl

C
h
la

m
y
d
ia

B

th
e
rm

o
to

g
a

b
o
re

li
a
-b

de
ino

ne
ma-

T
th

er
m

o
p
h
i

T
aq

ua
ti
us

plecto
nema

gloeobacte

anacystis-
grac

ilari
a

p
o
rp

h
y
ra

--

sm
ith

o
ra

--

lam
inaria-

coscinodia

cyclotella

ochromonas

cynophora

rap
hidonem

as
ta

si
a-

--eu
gle

na

b
ry

o
p
sis--

c
h
lo

re
ll
a
-

g
o
n
iu

m
--
--

ch
la
m
yd

om
o

chara-----

nico-tabac
nico-syl-A

a
ra

b
id

o
p
si

g
ly

c
in

e
--
-

(b) Angle-spread extension

Fig. 4. Radial drawing examples

pseudomona

micrococcu

shewanella

salmonella
ecoli-----bacillus--

m
y
co

-g
en

tl

C
h
la

m
y
d
ia

B

th
erm

o
to

g
a

b
o
re

lia
-b

d
e
in

o
n
e
m

a
-

T
th

e
rm

o
p
h
i

T
a
q
u
a
ti
u
spl
ec

to
ne

m
agl

oe
ob

ac
te

an
ac

ys
tis

-

g
ra

c
il
a
ri
a

po
rp

hy
ra

--

sm
ith

or
a-
-

lam
ina

ria
-

cos
cin

odia

cyclotell
a

o
ch

ro
m

o
n
a
s

cy
n
o
p
h
o
ra

rap
hidonem

astasia

euglena---

b
ry

o
p
sis--

ch
lo

rella
-

g
o
n
iu

m

c
h
la

m
y
d
o
m

o

chara-----

nico-tabac

nico-syl-A

arabidopsi

glycine---

(a) Our basic algorithm

ps
eu

do
mon

a

micro
coc

cu

shewanella

sa
lm

on
el
la

ec
ol
i--

b
a
ci
ll
u
s-
-

m
yco-gentl

C
h
la

m
y
d
ia

B

th
erm

o
to

g
a

b
o
re

lia
-b

d
e
in

o
n
e
m

a
-

T
th

e
rm

o
p
h
i

T
a
q
u
a
ti
u
s

plectonema

gloeobacte

anacystis-

g
ra

ci
la

ri
a

po
rp

hy
ra

--

smithora
--

laminaria-

coscinodia

cyclotella

oc
hr

om
on

ascy
no

ph
or

a

raphidonem

astasia---

euglena---

b
ry

o
p
sis--c

h
lo

re
ll
a
-

g
o
n
iu

m
--
--

ch
la

m
y
d
o
m

o

chara-----
nico-tabacnico-syl-A

a
ra

b
id

o
p
si

g
ly

cin
e---

(b) Re-rooted at center

Fig. 5. Circular drawing examples

References

1. S. F. Carrizo. Phylogenetic trees: An information visualization perspective. In
Y.-P. Phoebe Chen, editor, Asia-Pacific Bioinformatics Conference (APBC 2004),
volume 29 of CRPIT, pages 315–320. Australian Compter Science, 2004.

2. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

3. P. Eades. Drawing free trees. Bulletin of the Institute of Combinatorics and its
Applications, 5:10–36, 1992.

4. P. Eades and N. C. Wormald. Fixed edge-length graph drawing is NP-hard.
Discrete Applied Mathematics, 28:111–134, 1990.

5. J. Felsenstein. Maximum likelihood and minimum-steps methods for estimating
evolutionary trees from data on discrete characters. Systematic Zoology, 22:240–
249, 1973.

6. W. M. Fitch. Torward defining the course of evolution: Minimum change for a
specified tree topology. Systematic Zoology, 20:406–416, 1971.

7. M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS. Springer,
2001.

8. R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16:346–358, 1979.

9. C. D. Michener and R. R. Sokal. A quantitative approach to a problem in classi-
fication. Evolution, 11:130–162, 1957.

10. R. D. M. Page. TreeView. http://taxonomy.zoology.gla.ac.uk/rod/treeview.
html. University of Glasgow.

11. PHYLIP. Phylogeny inference package.
http://evolution.genetics.washington.edu/phylip.html.

12. E. M. Reingold and J. S. Tilford. Tidies drawing of trees. IEEE Transactions on
Software Engineering, 7(2):223–228, 1981.

13. N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

14. D. L. Swofford. PAUP∗. Phylogenetic analysis using parsimony (and other meth-
ods). http://paup.csit.fsu.edu/. Florida State University.

15. D. L. Swofford, G. J. Olsen, P. J. Waddel, and D. M. Hillis. Phylogenetic inference.
In D. Hillis, C. Moritz, and B. Mable, editors, Molecular Systematics, pages 407–
514. Sinauer Associates, 2nd edition, 1996.

16. W. T. Tutte. Convex representations of graphs. In Proc. London Mathematical
Society, Third Series, volume 10, pages 304–320, 1960.

17. W. T. Tutte. How to draw a graph. In Proc. London Mathematical Society, Third
Series, volume 13, pages 743–768, 1963.

18. J. Q. Walker. A node-positioning algorithm for general trees. Software Practice &
Experience, 20(7):685–705, 1990.

19. R. Wiese, M. Eiglsperger, and M. Kaufmann. yFiles: Visualization and automatic
layout of graphs. In P. Mutzel, M. Jünger, and S. Leipert, editors, Proc. Graph
Drawing 2001, volume 2265 of LNCS, pages 453–454. Springer, 2002.

