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Abstract. In stack and queue layouts the vertices of a graph are linearly
ordered from left to right, where each edge corresponds to an item and
the left and right end vertex of each edge represents the addition and
removal of the item to the used data structure. A graph admitting a
stack or queue layout is a stack or queue graph, respectively.
Typical stack and queue layouts are rainbows and twists visualizing the
LIFO and FIFO principles, respectively. However, in such visualizations,
twists cause many crossings, which make the drawings incomprehensible.
We introduce linear cylindric layouts as a visualization technique for
queue and deque (double-ended queue) graphs. It provides new insights
into the characteristics of these fundamental data structures and extends
to the visualization of mixed layouts with stacks and queues. Our main
result states that a graph is a deque graph if and only if it has a plane
linear cylindric drawing.

1 Introduction

In his pioneering work on the Art of Computer Programming, D. E. Knuth
raises the question “How shall we draw a tree?” [10, p. 306], which can be
seen as the beginning of Graph Drawing. Knuth also studied elementary data
structures, such as stacks, queues and deques, and represented their behavior as
train tracks. In this paper we pose the question “How shall we draw a stack, a
queue, or a deque?”. The purpose of such drawings is to visualize the underlying
data structure and the operations applied to it.

Stack and queue layouts have been studied extensively in the past, e.g., in
[1,2,4–9,12–14], and are used for 3D drawings of graphs [12,13], in VLSI design [2]
and in other application scenarios (see [9] for a short survey). In these layouts the
vertices of a graph are linearly ordered from the left to the right. The vertices are
processed in this order and each edge corresponds to an item which is inserted
into the data structure at its left endpoint and is removed at its right endpoint.
These operations must obey the principles of the underlying data structure, such
as “last-in, first-out” for a stack or “first-in, first-out” for a queue.

k-stack (k-queue) layouts are a generalization of stack (queue) layouts: Such
layouts consist of a single linear order of the vertices and a partition of the
set of edges into k subsets, where each subset permits a stack (queue) layout,
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Fig. 1. Visualizing queue layouts

see, e.g., [5, 9]. k-stack (k-queue) layouts have also been generalized to mixed
layouts, e.g., two stacks and one queue, and have been studied in [5]. The authors
motivate their studies of mixed layouts by their investigations of the deque data
structure: A deque can either emulate two stacks or one queue. Conversely, two
stacks and one queue can emulate one deque.

Stack layouts are also known as book-embeddings of graphs [1] and the num-
ber of pages corresponds to the number of used stacks. These graphs have inter-
esting graph theoretic properties: A graph G is a stack graph if and only if G is
outer-planar [1]. Bernhart and Kainen [1] have characterized the class of 2-stack
graphs as the subgraphs of planar graphs with a Hamiltonian cycle, and every
planar graph has a layout with four stacks [14].

Common visualizations of stack and queue graphs with a given layout place
the vertices from left to right on the x-axis according to the given order. The
edges are drawn as arches, which are x-monotone curves above the x-axis. Stack
layout visualizations show rainbows [13] as characteristic structures, which are
properly nested arches, whereas the equivalent structure in queue layouts are
twists [9]. Conversely, in a visualization of queue graphs rainbows are not allowed,
while stack graphs forbid twists.

Fig. 1(a) depicts a queue graph. The edges drawn as solid lines constitute
a valid queue layout since no two arches nest completely (nesting edges with
common end vertices are allowed). A characteristic twist is displayed by edges
{1, 4} and {2, 5}, i.e., {1, 4} is added to the queue before {2, 5} and both are
removed in the same order. However, due to the many crossings (one crossing
per twist), it is hard to follow the routing of the edges and to validate the queue
layout. Introducing the edge {2, 3} (dashed) destroys the queue layout since it is
completely nested in the arch {1, 5}, i.e., at first {1, 5} and then {2, 3} is added
to the queue but {2, 3} has to be removed before {1, 5}. Nevertheless, it is hard
to recognize immediately that {2, 3} destroys the queue layout.

Heath et al. [5,9] characterize the class of queue graphs as the arched leveled-
planar graphs. Such a graph has a planar drawing with vertices placed on levels
and inter-level edges only between two adjacent levels or intra-level edges from
the left-most vertex to vertices on the right side. Fig. 1(b) shows the queue layout
from Fig. 1(a) again, where levels are drawn as dotted lines. Again it is hard to
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see immediately that edge {2, 3} is illegal. Moreover, an invalid drawing of an
arched leveled-planar graph does not necessarily indicate an invalid queue layout
since a valid drawing with a different leveling of the vertices is still possible.

In this paper we propose a novel approach for visualizing queue graphs that
overcomes the aforementioned drawbacks. We achieve our visualization of a
queue graph by winding the arcs at most once around the surface of a 3D cylin-
der. A 2D representation is achieved by cutting the cylinder and duplicating the
vertices. Moreover, our representation is also suitable for deque (double-ended
queue) graphs where the deque may even have a restricted set of input or output
operations. We can also display graphs with mixed layouts of stacks, queues and
deques together in one concise drawing. By applying our drawing technique we
immediately arrive at the result that every deque graph is planar.

The remainder of the paper is structured as follows. In Sect. 2 we intro-
duce deque layouts. In Section 3 we define linear cylindric drawings and their
equivalent representations. We also characterize the class of graphs permitting
a deque layout as the graphs permitting a crossing-free linear cylindric drawing.
We describe how linear cylindric drawings help to investigate mixed layouts in
Sect. 4. We also revisit queue layouts and show how linear cylindric drawings of
queue graphs overcome the drawbacks of the drawings depicted in Fig. 1. Finally,
Sect. 5 gives a conclusion and an outlook to future work.

2 Preliminaries

We consider simple undirected graphs G = (V,E) with n vertices and m edges. A
linear layout π is a bijective assignment π : V → {1, . . . , n} of the vertices to po-
sitions {1, . . . , n}. For each edge e = {u, v} we denote by l(e) = min{π(u), π(v)}
and r(e) = max{π(u), π(v)} the position of its left- and right-hand vertex, re-
spectively. Edge e ∈ E is said to cover the range from l(e) to r(e) (both included).

A deque generalizes a stack and a queue: It has two ends, a head h and a
tail t, to insert and remove items. If insertions or removals are only allowed at
the deque’s head, it is called input or output restricted, respectively. Let α and
ω be two functions from E to {h, t} that assign to each edge e the side of its
addition and its removal, respectively. α/ω are called input/output assignments
(I/O assignments). If α(e) = ω(e), then e is called a stack edge, otherwise a
queue edge, according to the manner the edges are processed by the deque. We
denote by ∆(G) the tuple (π, α, ω) and call it linear I/O layout. ∆(G) is a deque
layout iff the vertices can be processed from left to right according to π such
that all edges can be processed by the deque according to α and ω.

Definition 1. A graph is a deque graph if and only if G has a deque layout.
Accordingly, a graph is an input restricted deque (an output restricted deque, a
stack, a queue) graph if it has a respective layout.

Note that at each vertex v, before any edge can be inserted to a particular
side, e.g., head, all edges that end at v and are accessible from the head need to
be removed. Also note that at each vertex v, when inserting edges e ∈ E into
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Fig. 2. A graph and its linear cylindric drawing

the deque pointing to right-hand neighbors, i.e., l(e) = π(v), the queue (stack)
edges have to be inserted in (in reverse) order of their respective positions of the
right-hand neighbors. This is to ensure that the edges can be removed from the
deque when processing the corresponding right-hand neighbor. Furthermore, at
first always all queue edges and then all stack edges have to be inserted into the
deque since otherwise edges cannot be removed anymore, e.g., consider a stack
and a queue edge inserted at the head in that order, then neither of the edges
can be removed.

3 Linear Cylindric Drawings of Deque Graphs

In this section we introduce a new type of drawing on the surface of a 3D cylinder
(Sect. 3.1) and transform the drawings into equivalent 2D representations. In the
case of planar drawings they exactly fit to deque graphs (Sect. 3.2).

3.1 Linear Cylindric Drawings

Definition 2. In a linear cylindric drawing Γ (G) of a graph G the vertices are
placed disjointly on a straight line L, the front line, on the surface of the cylinder
parallel to its axis. The edges are drawn as monotone curves in direction of the
cylinder’s axis and do not cross L.

For convenience, we consider horizontal cylinders where L is parallel to the
x-axis. Moreover, we identify the placement of the vertices on L with the per-
mutation π : V → {1, . . . , n}.

Obviously, every graph has a linear cylindric drawing. The vertices can be
arranged arbitrarily on the front line and the edges are drawn as simple curves
on the side surface of the cylinder while not crossing L.

For an example, consider graph G = ({1, . . . , 8}, E) as displayed in Fig. 2(a).
Fig. 2(b) visualizes a linear cylindric drawing of G: The vertices are drawn on the
horizontal front line (dashed) and edges are either drawn as arches, e.g., {2, 4},
or wrap at most once around the cylinder, e.g., {1, 4}. Note that the dashed edge
{3, 8} causes a crossing with edge {4, 7}.
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(b) Unrolled cylinder on the circle

Fig. 3. 2D representations of the linear cylindric drawing of Fig. 2(b)

A linear cylindric drawing Γ (G) imposes a direction onto each edge from the
lower to the higher π-value of its vertices. We denote an undirected edge {u, v}
with π(u) < π(v) by the directed edge (u, v). Moreover, Γ (G) partitions the set
of edges into four subsets according to their orientation with respect to the front
line. Let E∩ (E∪) denote the set of edges leaving and entering their vertices
above (below) the front line and let E/ (E\) denote the set of edges leaving the
front line above (below) and entering at the opposite side. The subscripts of the
sets illustrate the shape of the edges. The edges from E/ and E\ wrap around
the cylinder once and the edges from E∩ (E∪) can be drawn as arches above
(below) the front line.

Definition 3. The tuple C(G) = (π,E∪, E∩, E\, E/) is a linear cylindric em-
bedding of G = (V,E).

We obtain a 2D representation of a linear cylindric drawing, which we call
unrolled cylinder, by cutting the cylinder along the front line and “bending”
the surface of the cylinder until it is plane. The front line with the vertices is
duplicated and the two copies constitute the bottom (Lbottom) and top (Ltop)
of the so obtained drawing.

For instance, when applied to Fig. 2(b), the result is depicted in Fig. 3(a),
where the area that was formerly placed above the front line is now situated at
the bottom of the drawing. Then an edge (u, v) ∈ E\ can be drawn as a straight
line from its vertex u on Ltop to its vertex v on Lbottom. Symmetrically, the
edges from E/ can be drawn as straight lines Lbottom to Ltop. The edges in E∩
can be represented as arches above Lbottom and, accordingly, the edges from E∪
can be represented as arches below Ltop. Note that crossings between each pair
of edges (e1, e2) ∈ E∩ × E∪ can always be avoided.

The drawing in Fig. 3(a) can further be continuously transformed to the
unrolled cylinder on the circle by mapping Ltop and Lbottom to two halves of a
circle. The result is depicted in Fig. 3(b). Note that in this drawing all edges are
drawn as straight lines and, hence, their routing is uniquely determined.

Without further proof, note that all different types of drawings are topologi-
cally equivalent, i.e., all drawings can be transformed into each other by a contin-
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uous function without changing the topological structure of the drawing. In par-
ticular, planarity is preserved. The equivalence of the drawings has an important
implication: Consider a linear cylindric drawing where non-monotonous edges
are allowed. Such a drawing can be continuously transformed to a drawing on
the unrolled cylinder on the circle with straight-line edges that are monotonous.
This justifies our assumption of monotonous edges in Def. 2.

Definition 4. A graph G is linear cylindric planar if G has a linear cylindric
embedding that permits a linear cylindric drawing without crossing edges.

The classes of graphs that can be drawn without crossings on the plane and on
the cylinder are equal. We thus obtain:

Corollary 1. Every linear cylindric planar graph is a planar graph.

3.2 Characterization of Deque Graphs

In this section we present the main result of this paper:

Theorem 1. A graph G is a deque graph iff G is linear cylindric planar.

The idea of the proof is to construct a one-to-one correspondence between
a linear I/O layout ∆(G) = (π′, α, ω) and a linear cylindric embedding C(G) =
(π,E∪, E∩, E\, E/) as follows: The positions π of the vertices on L are equal to
the linear layout π′. The crucial point of the proof concerns the edges: Consider
the edges in E∩ in the linear cylindric embedding that all leave and enter their
end vertices above the front line, e.g., (2, 4) in Fig. 2(b). Edges in E∩ are drawn
as arches in a linear cylindric layout and, hence, they do not cross iff they form
rainbows and, consequently, constitute a stack layout. Hence, an edge (u, v) ∈ E∩
is interpreted as an edge that is processed by the deque like by a stack, that is,
it is inserted at and removed from the same side, e.g., tail. The same holds true
for edges in E∪ with respect to the deque’s head. Edges in E\ or E/ which
enter and leave at opposite sides of the front line are interpreted as “moving”
from one side of the deque to its opposite side. For instance, (1, 4) ∈ E\, which
leaves below and enters above the front line, is interpreted as being inserted at
the deque’s head and removed from its tail. Consequently, E\ and E/ are queue
edges inserted at the head and tail, respectively.

Using this one-to-one correspondence, we are then able to prove that edges
cause no crossings in a linear cylindric drawing if and only if they can be pro-
cessed by the deque. Conversely, any unavoidable crossing in such a drawing can
be interpreted as a violation of the deque layout, i.e., crossing edges cannot be
processed by the deque by any allowed operation.

First we show that it is sufficient to only consider pairs of edges when inves-
tigating a deque layout or a linear cylindric planar embedding. We start with
deque layouts: 1

1 A similar statement is proven in [3], which is concerned with trains entering and
leaving a train station from two sides. Such a train station with n tracks can be
modelled by n deques and the trains must be assigned to the deques such that they
do not block each other.
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Lemma 1. ∆(G) = (π, α, ω) is a deque layout if and only if for each pair of
edges e, e′ ∈ E with e 6= e′ , ∆|e,e′(G) = (π, α|e,e′ , ω|e,e′) is a deque layout, where
α|e,e′ and ω|e,e′ are the restrictions of α and ω to {e, e′}, respectively.

Proof. “⇒”: If all edges can be processed by the deque, in particular any two
edges can be processed.

“⇐”: For each pair of distinct edges e, e′ ∈ E, ∆|e,e′ is a deque layout. We
assume for contradiction that ∆(G) is not a deque layout.

Since an edge can always be inserted into the deque a problem can only occur
when removing an edge.

Let e ∈ E be the first edge that cannot be removed at some vertex v. W. l.
o. g. we assume that ω(e) = h. Let e1, . . . , ek be the elements between the head
and e in the deque. k ≥ 1 since otherwise e could be removed from the deque.
If for all edges ei with 1 ≤ i ≤ k, r(ei) = π(v) and ω(ei) = h, then all edges
ei could be removed and e could also be removed. Thus, there exists an edge ej
with 1 ≤ j ≤ k which prevents the removal of e, i.e., r(ej) > r(e) or ω(ej) = t.

In the first case, i.e., r(ej) > r(e), if l(ej) = l(e) and α(ej) = α(e), then at the
vertex at position l(e) the edges e and e′ would have been inserted into the deque
such that e would always be accessible from the head (see also Sec. 2), where four
cases have to be distinguished: If both are stack edges added to the head then ej
would be have been inserted before e since r(ej) > r(e). If both are queue edges
then e and ej would have been inserted at the tail in that order. Similarly if e is
a stack and ej a queue edge, then ej would have been inserted at the head before
e is inserted at the head. If e is a queue edge and ej a stack edge, then e would
have been inserted at the tail before ej is inserted at the tail as a stack edge. In
all cases e is accessible from the head. If l(ej) = l(e) and α(ej) 6= α(e), then ej
and e can not be processed in ∆|e,ej (G) as well independently of their insertion
order. In all other cases the relative order in which ej and e are inserted into
the deque is uniquely determined by l(e) and l(ej). The same order has to be
used in ∆|e,ej (G) and causes a problem there as well. The second case ω(ej) = t

follows analogously. Hence, in each case ∆|e,ej (G) is no deque layout, which is a
contradiction. ut

Lemma 2 is the corresponding version of Lemma 1 for pairs of edges in linear
cylindric planar embeddings:

Lemma 2. C(G) = (π,E∪, E∩, E\, E/) is a linear cylindric planar embedding
of a graph G = (V,E) if and only if for each pair of edges e, e′ ∈ E with e 6= e′

C|e,e′(G) = (π,E∪ ∩ {e, e′}, E∩ ∩ {e, e′}, E\ ∩ {e, e′}, E/ ∩ {e, e′}) is a linear
cylindric planar embedding.

Proof. “⇒”: Take a linear cylindric drawing without crossings. From this draw-
ing a linear cylindric planar embedding for each pair of edges can be obtained.

“⇐”: The drawing of the unrolled cylinder on the circle (e.g., Fig. 3(b)) is a
drawing with straight lines and is topologically equivalent to a linear cylindric
drawing. Note that the routing of the edges is uniquely determined if the edges
are drawn as straight lines. In order to construct a plane drawing with all edges,
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Fig. 4. Different cases in the proof of Lemma 3

simply draw all edges according to their unique straight-line representation. This
drawing has no crossings since no pair of edges cross and is conform to embedding
C(G). Hence, C(G) is linear cylindric planar. ut

Lemma 3 is the main step to our theorem. It states that every pair of edges
can be processed by a deque if and only if they cause no crossing in the drawing.
In order to show this we utilize the aforementioned one-to-one correspondence
between a linear cylindric embedding and a linear I/O layout:

Lemma 3. Given G = (V,E), let C(G) = (π,E∪, E∩, E\, E/) be a linear cylin-
dric embedding and ∆(G) = (π, α, ω) be a linear I/O layout. If ∀e ∈ E:

α(e) = h ∧ ω(e) = h⇔ e ∈ E∪ , α(e) = h ∧ ω(e) = t⇔ e ∈ E\ ,

α(e) = t ∧ ω(e) = h⇔ e ∈ E/ , α(e) = t ∧ ω(e) = t⇔ e ∈ E∩ ,

then, for every pair of distinct edges e, e′ ∈ E, C|e,e′(G) is a linear cylindric
planar embedding if and only if ∆|e,e′(G) is a deque layout.

Proof. Let e, e′ ∈ E be two distinct edges, therefore l(e) 6= l(e′) or r(e) 6= r(e′).
W. l. o. g., we assume l(e) < l(e′).

The proof is a complete differentiation between all cases of how two edges are
processed by the deque and routed in the embedding: For each case we show that
two distinct edges e, e′ ∈ E do not cross if and only if they can be processed by
the deque. We assume that e and e′ have non-disjoint ranges, i.e., they overlap.
Otherwise, they can be drawn without crossings, and, conversely, they can be
processed disjointly by the deque according to their I/O assignments. The same
holds true if r(e) = l(e′). Note that l(e) = r(e′) is not possible since we assume
l(e) < l(e′). The following five cases remain:

Case (a): α(e) = ω(e), α(e′) 6= ω(e′) (e is a stack edge and e′ a queue edge):
Without loss of generality, we assume α(e) = ω(e) = h. If α(e′) = h, then e and e′

do not cross iff l(e′) ≤ l(e), which is not possible by assumption, or l(e′) ≥ r(e),
which is not possible by assumption since the edges have to overlap.

If α(e′) = t, then e and e′ do not cross if and only if r(e′) ≤ l(e), i.e., the edges
do not overlap which contradicts our assumption, or r(e′) ≥ r(e) (Fig. 4 (a)). In
the deque first e is inserted at the head, then e′ at the tail. Afterwards, e can
be removed from the head and then e′.

Conversely, assume that e and e′ can be processed by the deque but, for the
sake of contradiction, r(e′) < r(e), i.e., e and e′ cross. This implies that e′ must
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be removed from the head before e. However, at first e is inserted at the head
and then e′ at the tail and, hence, e′ cannot be removed from the head because
e is blocking its way.

The case where e is a queue and e′ is a stack edge follows analogously.
Case (b): α(e) 6= ω(e), α(e′) 6= ω(e′), α(e) 6= α(e′) (two queue edges inserted

at different sides): Since e and e′ overlap this situation always causes a crossing
(Fig. 4(b)). Moreover, since e and e′ overlap, there is a time instance where both
edges are in the deque. However, since both have to be removed from opposite
sides they cannot be removed at all.

Case (c): α(e) = ω(e) 6= α(e′) = ω(e′) (two stack edges inserted at different
sides): These edges never cross (Fig. 4(c)) and, in the deque, two stack edges
inserted at different sides, can always be processed without any problems.

Case (d): α(e) = ω(e) = α(e′) = ω(e′) (two stack edges inserted at the
same side): e and e′ do not cross if and only if e nests e′ and, hence, r(e′) ≤ r(e)
(Fig. 4(d)). In the deque, at first e and then e′ can be inserted at the same side
of the deque and both are removed from this side in reverse order.

Conversely, since l(e) < l(e′), e is inserted before e′ into the deque. Since
both are stack edges inserted at the same side, e must not be removed before e′

and, hence, r(e′) ≤ r(e). Thus, e properly nests e′ and they cause no crossing.
Case (e): α(e) = α(e′) 6= ω(e) = ω(e′) (two queue edges inserted at the

same side): Since e and e′ do not cross, we have that r(e) ≤ r(e′) (Fig. 4(e)).
Consequently, e is inserted before e′ and both are removed in the same order.

Conversely, since e and e′ are both queue edges inserted at the same side
and e is inserted before e′ it follows that e is removed from the deque before e′.
Hence, r(e) ≤ r(e′) and e and e do not cross in the drawing. ut

We are now able to prove our main result of Theorem 1:

Proof. Let ∆(G) be a linear I/O layout and C(G) a linear cylindric embedding
of G. By Lemma 1, G permits a deque layout iff each pair of edges permits a
deque layout. By Lemma 3 this holds true if and only if no pair of edges causes
a crossing in the linear cylindric embedding. Finally, by Lemma 2 this is true if
and only if C(G) is a plane embedding. ut

By Corollary 1 and Theorem 1 we can conclude:

Corollary 2. A graph G = (V,E) that permits a deque layout is planar.

Theorem 1 leads to the following interpretation of a linear cylindric drawing:
Consider a vertical line drawn in the middle between vertices 2 and 3 from Ltop

to Lbottom in Fig. 3(a). This line intersects the edges (2, 3), (1, 3), (1, 4) and
(2, 4) in that order from top to bottom. This sequence reflects the content of the
deque after vertex 2 and before vertex 3 is processed, where (2, 3) is situated at
the head and (2, 4) at the tail. When moving this vertical line like a scan line
further to the right, its crossings with edges always correspond to the content of
the deque. If the vertical line passes a crossing between two edges e and e′, e.g.,
(3, 8) and (4, 7), then this can be interpreted as swapping the positions of e and
e′ in the deque, which is an invalid deque operation.
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Fig. 5. Unrolled cylinder drawing of a queue graph

Note that the aforementioned interpretation of a linear cylindric drawing is
only true if all edges are monotonously drawn from the left to the right, which
is another reason why we assume monotonicity in Definition 2.

4 Linear Cylindric Drawings of Queue and Mixed
Layouts

In this section we show how linear cylindric drawings can help to investigate
layouts of graphs on data structures that allow only a subset of the operations
of a deque and layouts with mixtures of data structures like a deque together
with a stack or two stacks. Queue, 1- and 2-stack, and input and output restricted
deque layouts are special cases of a deque layout:

Corollary 3.

– A graph is a queue (stack) graph iff it is a deque graph where all edges are
queue (stack) edges and are inserted either all at the head or all at the tail.

– A graph is a 2-stack graph iff it is a deque graph with stack edges only.
– A graph is an input (output) restricted deque graph iff it is a deque graph

where α(e) = h (ω(e) = h) for all e ∈ E.

Corollary 4.

– A graph is a queue (stack) graph iff it is linear cylindric planar with the
edges either all in E\ or all in E/ (all in E∩ or all in E∪).

– A graph is a 2-stack graph iff it is linear cylindric planar with all edges in
E∪ ∪ E∩.

– A graph is an input (output) restricted deque graph iff it is linear cylindric
planar with all edges in E∪ ∪ E\ (E∪ ∪ E/).

4.1 Queue Graphs

In this section we revisit queue graphs and their drawings that have been dis-
cussed in Sect. 1. Consider again the two drawings in Fig. 1. In both drawings
it is hard to recognize immediately that the edges drawn as solid lines depict
a queue layout and that edge (2, 3) destroys this layout with respect to the
depicted linear layout.

The same graph can be depicted with the same linear layout on an unrolled
cylinder (Fig. 5) where all edges are in E\. It is immediately visible that none of
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Fig. 6. Linear cylindric drawings of mixed layouts

the solid drawn edges cross and, hence, display a valid queue layout. Edge (2, 3)
crosses edges (1, 4) and (1, 5) and, consequently, (2, 3) destroys the queue layout.
Moreover, it is immediately visible that exactly these three crossing edges de-
stroy the queue layout. Removing edges until the drawing is crossing-free, e.g.,
edges (1, 4) and (1, 5), reestablishes a valid queue layout.

4.2 Linear Cylindric Drawings of Mixed Layouts

Stack, queue, and deque layouts can be extended to mixed layouts, where k
(possibly different) data structures {D1, . . . , Dk} are given. Such a mixed layout
consists of a single linear layout π of the vertices and a partition of the set of
edges E consisting of k subsets E1, E2, . . . , Ek, where for each i ∈ {1, . . . , k}, G =
(V,Ei) has a layout in data structure Di with linear layout π. Our technique of
representing layouts by an unrolled cylinder straightforwardly extends to mixed
layouts: Create k+ 1 copies L1, . . . , Lk+1 of the front line, place them one upon
the other and display the edges Ei of data structure Di between the i-th and
(i+ 1)-th front line as described in Sect. 3.1.

As an example consider the complete graph K6 with six vertices. This graph
has neither a 2-stack nor a 2-queue layout. Fig. 6(a) shows the K6 in a linear
cylindric drawing with two data structures. Between L1 and L2 only stack edges
are used. The region between L2 and L3 contains only queue edges. Since no
edges cross in this drawing we can conclude that the K6 is a graph with a mixed
layout consisting of one stack and one queue.

Figure 6(b) shows a possible mixed layout of the complete graph K8 with 8
vertices using one input-restricted deque drawn between L1 and L2, one queue
between L2 and L3 and one stack between L3 and L4. Note that each edge of
the K8 appears in the representation of exactly one data structure and the same
linear layout π is used for all data structures.

5 Conclusion and Future Work

In this paper we introduced the new graph visualization technique by linear
cylindric drawings. We proved that the class of graphs that have a plane linear
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cylindric drawing are exactly those graphs that permit a layout by the deque
data structure. We also showed how our new representation gives deeper insights
into the fundamental data structures queue, stack and deque and can even be
used to investigate graph layouts with mixed data structures.

The decision problem whether or not a graph permits a stack layout can be
solved in linear time [1, 11]. In contrast the corresponding decision problem for
a queue layout is NP-hard [9]. The question is open whether or not the decision
problem in the case of a deque is solvable in polynomial time. Currently we are
in the progress of proving that the class of deque graphs coincides with the class
of graphs that are a subgraph of a planar graph with a Hamiltonian path. These
are new insights we gained by linear cylindric drawings, which also give new
characterizations of, e.g., queue graphs and proper level planar graphs.
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