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Abstract

The most popular method of drawing directed graphs is to place vertices on a set
of horizontal or concentric levels, known as level drawings. Level drawings are well
studied in Graph Drawing due to their strong application for the visualization of
hierarchy in graphs. There are two drawing conventions: horizontal drawings use a
set of parallel lines and radial drawings use a set of concentric circles.
In level drawings, edges are only allowed between vertices on different levels.

However, many real world graphs exhibit hierarchies with edges between vertices
on the same level. In this paper, we initiate the new problem of extended level
drawings of graphs, which was addressed as one of the open problems in social
network visualization, in particular, displaying centrality values of actors. More
specifically, we study minimizing the number of edge crossings in extended level
drawings of graphs. The main problem can be formulated as the extended one-sided
crossing minimization problem between two adjacent levels, as it is folklore with
the one-sided crossing minimization problem in horizontal drawings.
We first show that the extended one-sided crossing minimization problem is NP-

hard for both horizontal and radial drawings, and then present efficient heuristics for
minimizing edge crossings in extended level drawings. Our extensive experimental
results show that our new methods reduce up to 30% of edge crossings.
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1 Introduction

A level drawing (or hierarchical drawing) of a graph is the most popular
drawing convention for directed graphs, alternatively known as the Sugiyama
method [1]. Consequently, drawing level graphs is a well-studied problem in
Graph Drawing. There is a rich literature on drawing level graphs includ-
ing characterizations of level-planar graphs, level planarity testing, crossing
minimization, and planarization methods for non-level planar graphs, see [2].

There are two drawing conventions for level graphs: in horizontal drawings,
vertices are placed on parallel horizontal lines and edges are drawn as strictly
y-monotone polylines that may bend when they intersect a level line [1–3]. In
radial drawings, vertices are placed on concentric circles and edges are drawn
as polyline segments of spirals which are monotone from the concentric center
to the outside [4]. Both drawings are produced based on the same drawing
framework, the Sugiyama method, which consists of the following four steps:

(1) Cycle removal: Reverse appropriate edges to eliminate cycles.
(2) Level assignment: Assign vertices to levels such that no edges have both

end vertices on the same level, and introduce dummy vertices to represent
long edges which span more than one level by a path of proper edges. The
dummy vertices represent edge bends.

(3) Crossing minimization: Compute a good ordering of the vertices on each
level to minimize edge crossings between two adjacent levels.

(4) Coordinate assignment: Assign x-/angular coordinates to the vertices
to meet some esthetic criteria. The y-/radial coordinates are implicit
through the levels.

However, many real world graphs exhibit hierarchies with edges between the
vertices on the same level. For example, the visualization of centrality of actors
in social networks produces level graphs with both inter-level and intra-level
edges [5]. Note that up to now it is neither shown if intra-level edges reduce the
visual complexity nor if they reduce the overall number of crossings. The fact
that all existing hierarchical drawing methods more or less simply ignore intra-
level edges, although they are present from the respective application in most
cases, justifies an investigation. To our best knowledge, the only exception is
the compound graph drawing algorithm of Sugiyama and Misue [6] where a
fast but qualitatively inferior barycenter strategy on intra-level edges is used
to avoid crossings of edges and bounding rectangles of a compound node.

We initiate the new problem of drawing extended level graphs, i. e., level graphs
with intra-level edges. Drawing extended level graphs was addressed as one of
the open problems in social network visualization by Brandes [7]. The proposed
goal is an easy human perception, where one of the main criteria seems to be
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Fig. 1. Example drawings.

an overall low number of crossings [8]. Extended level graphs often occur in
practice, for example graphs where the level assignment is already predefined
by breadth first search to express distances, or social networks where the
importance (centrality) of an actor (modeled by a vertex) defines its level [9–
11]. More specifically, the visualization of an actor’s status in a social network
is a horizontal drawing where the levels are not equidistant, because each
level represents a real-valued centrality index for the actors [5]. Since the
centrality values often differ only marginally, status values can be clustered.
The actors with centrality values in the same range are assigned to the same
level to avoid perceptual problems of having too many levels. However, this
approach introduces many intra-level edges. In the conclusion of [5], Brandes
et al. state that the treatment of intra-level edges needs further investigation.
Later, Brandes proposed a new research direction on minimizing all types of
crossings including inter-level edge and intra-level edges, for social network
visualization as an open problem [7].

Another application of extended level graphs with radial drawings is the visu-
alization of micro/macro graphs [12], e. g., arising from group analysis or role
assignment in social networks [11]. In general, intra-level edges may help to
gain better aspect ratios, since drawings tend to be much longer than wide,
especially with the Sugiyama method.

In our extended level drawings of extended level graphs, we represent intra-
level edges using circular arcs with different radii in order to avoid overlapping
edges and crossings between vertices and edges, see Fig. 1. Further, we restrict
to drawing the arcs only on one-side of the level lines, say above (inside), in
order to model the problem as in the Sugiyama framework.
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Table 1
Survey of treated edge crossing variants.

inter-level mixed intra-level all

horizontal drawings [2] X [13]/X X

radial drawings [4] X X X

In this paper, we study the crossing minimization problem in extended level
graphs to improve the readability [8] of the extended level drawings. More
precisely, we study the new problem of minimizing the number of edge cross-
ings in extended level drawings of graphs. The main focus of this paper can
be formally defined as the extended one-sided crossing minimization problem
between two adjacent levels, similar to the well-known one-sided crossing min-
imization for the horizontal drawing convention. We show that the one-sided
crossing minimization problem for extended level graphs is NP-hard for both
horizontal and radial drawings, and present greedy heuristics for minimizing
edge crossings that take different types of edge crossings into account: inter-
level crossings between two inter-level edges, intra-level crossings between two
intra-level edges, and mixed crossings between intra-level edges and inter-level
edges. Note that greedy heuristics are state of the art in this area [2] since
they are much faster and, thus, can treat larger graphs than common local
search algorithms.

Our main aim is to extend the well-known sifting heuristic for level drawings.
More specifically, we designed new extended sifting heuristics by carefully in-
tegrating sifting, radial sifting, and circular sifting methods together with a
new crossing counting algorithm. Our extensive experimental results show that
our new methods reduce up to 30% of crossings compared to existing standard
heuristics which only consider inter-level edge crossings. Of course, this value
is only a rule of thumb for reasonable ratios between inter-level and intra-level
edges. Since our algorithm is the first one which does not simply ignore intra-
level edge crossings, it is clear that the more intra-level edges are present, the
higher the gain will be. The running times of our algorithms are within the
same bounds as the traditional sifting algorithms. Thus, we are able to handle
the same graph sizes within similar times.

The checkmarks in Tab. 1 summarize the problems solved in this paper,
which is organized as follows: After explaining some necessary preliminaries in
Sect. 2, we present our extended sifting heuristics for extended level graphs,
which explicitly consider three different types of crossings in horizontal draw-
ings in Sect. 3. Then, we present extended radial sifting heuristics for extended
level graphs in radial drawings in Sect. 4. Section 5 presents our experimental
results and Sect. 6 concludes with some open problems.
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2 Preliminaries

A (proper) k-level graph G = (V,E, φ) is a graph with a level assignment
φ : V → {1, 2, . . . , k}, which partitions the vertex set into k ≤ |V | pairwise
disjoint subsets V = V1

.
∪ V2

.
∪ · · ·

.
∪ Vk, Vi = φ−1(i), 1 ≤ i ≤ k, such that

|φ(u) − φ(v)| = 1 for each inter-level edge {u, v} ∈ E. Particularly, k = 1
implies that E = ∅. For v ∈ V with φ(v) > 1 let E(v) = { {u, v} ∈ E | u ∈
Vφ(v)−1 } be the (predecessor) inter-level adjacency list. Define E(v) = ∅, if
φ(v) = 1. An ordering of a level graph is a partial order ≺ of V such that
u ≺ v or v ≺ u iff φ(u) = φ(v) for each pair of vertices u, v ∈ V . If the vertex
sets Vi are ordered sets (according to ≺), we call G an ordered level graph.

2.1 Sifting with a Crossing Matrix

The most common technique for crossing minimization in level drawings is
to only consider two consecutive levels at a time in multiple top-down and
bottom-up passes. Starting with an arbitrary ordering of the first level, sub-
sequently the ordering of one level is fixed, while the subsequent level is re-
ordered to minimize the number of crossings in-between. Thus, the 2-level
horizontal drawing is the fundamental building block for drawing level graphs
with k-levels.

The well-studied one-sided 2-level crossing minimization problem is formally
defined as follows: Given a 2-level graph G = (V1

.
∪V2, E, φ), where the vertex

set V1 is given with a fixed ordering, compute an ordering of V2 which pro-
duces the minimum number of crossings. This is known to be NP-hard [14]
and a number of heuristics, approximation algorithms, and exact algorithms
have been proposed. Eades and Wormald [14] proposed a median heuristic,
which produces a 3-approximate solution to the one-sided crossing minimiza-
tion problem. The barycenter heuristic by Sugiyama et al. [1] is an O(

√
n)-

approximation [14]. The barycenter (median) heuristic assigns each vertex of
V2 the barycenter (median) value of its neighbors in V1, assuming the positions
of vertices in V1 are numbered from 1 to |V1| according to ≺. A sorting accord-
ing to these values defines the ordering among the vertices in V2. Currently,
the best known approximation algorithm for the one-sided crossing minimiza-
tion problem given by Nagamochi [15] delivers 1.4664-approximate solutions.
Jünger et al. [16,17] presented integer linear programming algorithms and ex-
perimentally compared the exact results with various heuristics. See [2, 3] for
an extended overview.

For our new problem of one-sided crossing minimization in extended level
graphs, we will adopt the sifting heuristic, which is slower than simple heuris-
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tics like barycenter or median heuristics, however, produces fewer crossings
in practice. Sifting was originally introduced as a heuristic for vertex mini-
mization in ordered binary decision diagrams [18] and later adapted for the
one-sided crossing minimization problem [19]. The main idea is to keep track of
the objective function while moving in a sifting step a vertex u ∈ V2 along with
a fixed ordering of all other vertices in V2 and then placing u to its locally
optimal position. This is done by iteratively swapping consecutive vertices
only.

The method is thus an extension of the greedy-switch heuristic [20], where
u is swapped iteratively with its successor. We call a single swap a sifting
swap. Executing a sifting step for every vertex in V2 is called a sifting round.
For crossing minimization, the objective function is the number of crossings
between the edges incident to the vertex under consideration and all other
edges. The efficient computation of the crossing count in sifting is based on
the crossing matrix. The |V2|2 entries in the crossing matrix correspond to the
number of crossings caused by (the edges of) pairs of vertices in a particular
relative ordering and can be computed as a preprocessing step in O(|E|2) time
[21, 22]. Whenever a vertex is placed in a new position, only a small number
of updates is necessary. This allows a running time of O(|V2|2) for one round.
In practice, only few sifting rounds (3 – 5 for reasonable problem instances)
are necessary to reach a local optimum for all vertices simultaneously. Our
experiments showed that this is in most cases also the global optimum which
we computed for small graphs with the ILP formulation of [17]. The largest
reduction of crossings usually occurs in the first round.

2.2 Crossing Minimization in Radial Drawings

Compared to the horizontal drawings of level graphs, radial drawings of level
graphs have not been well studied. The problem of crossing minimization in
radial drawing is more challenging, as it involves both vertex ordering and edge
routing problems. That is, even if the orderings of vertices in both orbits are
fixed, we still need to decide how to route (i. e. clockwise or counterclockwise)
each edge around the inner orbit in order to minimize the number of edge
crossings in a radial drawing.

Bachmaier [4] presented a new radial drawing framework, an adaptation of the
Sugiyama method [1] to radial drawings. He proved that the one-sided crossing
minimization problem in radial drawings is NP-hard and presented a number
of heuristics including radial sifting with experimental results. The first poly-
nomial time 15-approximation algorithm for one-sided crossing minimization
problem in radial drawings was presented by Hong and Nagamochi [23]. Their
main contribution was to reduce a given instance of the one-sided crossing
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minimization in a radial drawing to that of the one-sided crossing minimiza-
tion in a horizontal drawing.

As our new extended radial sifting heuristics for extended level graphs is based
on radial sifting, we will explain details including basic terminologies in Sect. 4.

2.3 Circular Sifting

The asymptotic overall running time of the original algorithm described above
is O(|E|2 + |V2|2) and too high for our purposes, i. e., to handle large graphs.
Thus, we apply the circular sifting heuristic of Baur and Brandes [13] used for
the NP-hard [24] crossing minimization problem in circular drawings: Order
the vertices V of a graph G = (V,E) which all are placed on a single circle,
e. g., as in Fig. 5, to minimize the number of crossings among the straight-
line edges in E. Since there is no “circular” order, Baur and Brandes define
linear orders ≺α by selecting a reference vertex α ∈ V which is the first of
the (here counterclockwise) sequence. For finding the locally optimal position
of a vertex u ∈ V in a sifting step, it is sufficient to record the change in
crossing count while swapping u with its successor vp ∈ V . This can be done
by considering only edges incident to u or vp: After a swap exactly those pairs
of these edges cross which did not cross before. All other crossings remain
unchanged (let χ(π) be the number of crossings of a drawing π and N(v) be
the set of adjacent vertices of v ∈ V ).

Lemma 2.1 (Baur, Brandes) Let u ≺u vp ∈ V be consecutive vertices in a
circular drawing π and let π′ be the drawing with their positions swapped, then

χ(π′) = χ(π)−
∑

x∈N(u)
|{ y ∈ N(vp) | y ≺πx u }|

+
∑

y∈N(vp)
|{x ∈ N(u) | x ≺π′y vp }| .

At the end of one step, u is placed where the intermediary crossing counts
reached their minimum. For efficiency reasons, the computation of the change
in crossing count is implemented over suffix lengths in ordered adjacency lists.

2.4 Inter-Level Sifting for Crossings between Inter-Level Edges

For horizontal level lines, we adapt the above idea to one-sided 2-level cross-
ing minimization, which we call inter-level sifting for simplicity. We mainly
exchange ≺α by ≺ and virtually connect the start and the end points of
the level lines to obtain a circle. Then, we only consider the ordering of the
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permutable level 2 as presented by Algorithms 1, 2, and 3. We obtain the
same results as with the matrix method, without knowing the absolute cross-
ing numbers, however. Since all three methods are generic and are also used
for the following algorithms, Algorithm 2 already contains lines 4 and 8. At
present, these lines can be ignored and the input graphs can be considered as
G = (V1

.
∪V2, E, φ) for ease of understanding. For efficiency reasons, all shown

operations are implemented in place on the graph data structure.

Algorithm 1. SIFTING-ROUND
Input: Ordered 2-level graph G = (V1

.
∪ V2, E,H, φ)

Output: Updated ordering of V2

1 foreach u ∈ V2 do
2 V2 ← SIFTING-STEP(G, u)
3 return V2

Algorithm 2. SIFTING-STEP
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Vertex u ∈ V2 to sift

Output: Updated ordering of V2

1 let v0 = u ≺ v1 ≺ · · · ≺ v|V2|−1 be the current ordering of V2 with u put to front
2 foreach v ∈ V2 do
3 Sort E(v) ⊆ E on ascending ordering of V1 in O(|E|) time
4 Sort Hl(v), Hr(v) ⊆ H on ascending ordering of V2 in O(|H|) time
5 χ← 0; χ∗ ← 0 // current and best number of crossings
6 p∗ ← 0 // best vertex position
7 for p← 1 to |V2| − 1 do
8 l← UPDATE-INTRA-ADJ(G, u, vp)
9 χ← χ+SIFTING-SWAP-INTER(G, u, vp)

10 if χ < χ∗ then
11 χ∗ ← χ; p∗ ← p

12 return V2←v1≺ · · · ≺vp∗−1≺u≺vp∗≺ · · · ≺v|V2|−1

3 Crossing Minimization on Horizontal Levels

An extended k-level graph G = (V,E,H, φ) is a k-level graph (V,E, φ) which
additionally has intra-level edges {u, v} ∈ H with φ(u) = φ(v). For v ∈ Vi
let Hl(v) = { {u, v} ∈ H | u ≺ v } be the left intra-level adjacency list and
Hr(v) = { {v, w} ∈ H | v ≺ w } be the right intra-level adjacency list.

In this section, we first consider the new problem of one-sided 2-level crossing
minimization for extended level graphs with horizontal drawings. It is easy to
see that the one-sided 2-level crossing minimization problem for an extended
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Algorithm 3. SIFTING-SWAP-INTER
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Swap vertices u, vp ∈ V2

Output: Change in crossing count
1 let x0 ≺ · · · ≺ xr−1 be the neighbors of u in V1
2 let y0 ≺ · · · ≺ ys−1 be the neighbors of vp in V1
3 c← 0; i← 0; j ← 0
4 while i < r and j < s do
5 if xi ≺ yj then
6 c← c+ (s− j)
7 i← i+ 1
8 else if yj ≺ xi then
9 c← c− (r − i)

10 j ← j + 1
11 else
12 c← c+ (s− j)− (r − i)
13 i← i+ 1; j ← j + 1

14 return c

2-level graph is NP-hard, since at least two subproblems, considering only
inter-level edges [14] and considering only intra-level edges [24] are NP-hard.
The circular crossing minimization in [24] is exactly the same as minimizing
crossings among intra-level edges of a horizontal level i (consider the level line
i bent to a circle).

Lemma 3.1 The one-sided 2-level crossing minimization problem for extended
level graphs in horizontal drawings is NP-hard.

This motivates us to design efficient heuristics for the problem and we design
extensions of the sifting heuristic for extended level graphs in order to compute
a reasonable solution efficiently. After presenting a simple integrated method
that only works for horizontal drawings, we then present our main method,
extended sifting heuristics for horizontal drawings, which consists of three
subroutines, each minimizing different types of crossings.

3.1 Compact Method

The extended one-sided 2-level crossing minimization problem on horizontal
levels can be transformed into a corresponding circular crossing minimization
problem where the vertices of the two levels are placed on the two disjoint
semicircles, i. e., vertices on level 1 clockwise on semicircle 1 and vertices on
level 2 counterclockwise on semicircle 2, see Fig. 2. Then, only vertices in V2
are sifted using positions in semicircle 2 only. This is a minor modification of
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Fig. 2. Using circular sifting for extended one-sided 2-level crossing minimization.

the original circular sifting.

Definition 3.1 For a 2-level graph G = (V1
.
∪V2, E,H, φ) let π be a horizontal

drawing with

u1 ≺π u2 ≺π · · · ≺π ur=|V1| and v1 ≺π v2 ≺π · · · ≺π v|V2|

for vertices ui, r ∈ V1, 1 ≤ i ≤ |V1|, and vj ∈ V2, 1 ≤ j ≤ |V2|.

A corresponding circular drawing π′ is a circular drawing of G with

u|V1| ≺π
′

r u|V1|−1 ≺π
′

r · · · ≺π
′

r u1 ≺π
′

r v1 ≺π
′

r v2 ≺π
′

r · · · ≺π
′

r v|V2|−1 .

Lemma 3.2 Let π′ be a corresponding circular drawing of a 2-level graph
G = (V1

.
∪ V2, E,H, φ) drawing π. Then two edges cross in π′ if and only if

they cross in π.

PROOF. Let e1 = (u1, v1), e2 = (u2, v2) ∈ E be two arbitrary inter-level
edges with w. l. o. g. u1 ≺π u2. They cross in π if and only if v2 ≺π v1, whereas
they cross in π′ if and only if u2 ≺π

′
v1 u1 and v2 ≺π

′
u1 v1.

Now, let e1 = (v1, v3), v2 = (v2, v4) ∈ H be two arbitrary intra-level edges
with w. l. o. g. v1 ≺π v2. They cross in π if and only if v2 ≺π v3 ≺π v4, whereas
they cross in π′ if and only if v1 ≺π

′
v1 v2 ≺π

′
v1 v3 ≺π

′
v1 v4.

Finally, let e1 = (u, v2) ∈ E be an arbitrary inter-level edge and e2 = (v1, v3) ∈
H be an arbitrary intra-level edge with w. l. o. g. v1 ≺π v3. They cross in
π if and only if v1 ≺π v2 ≺π v3, whereas they cross in π′ if and only if
v1 ≺π

′
u v2 ≺π

′
u v3 and v3 ≺π

′
v3 u ≺

π′
v3 v1. ut

Unfortunately, this simple transformation cannot be applied to radial draw-
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Fig. 3. The first two levels of Fig. 1.

ings. Thus, we present a new method for extended one-sided crossing mini-
mization in the following section.

3.2 Extended Sifting

We now present a new extended sifting algorithm for extended one-sided cross-
ing minimization, where we treat the three different kinds of crossings sepa-
rately without any impact on the running time and quality. The algorithm
runs not only theoretically but also practically within the same time and gen-
erates exactly the same orderings and number of crossings. Further, speaking
in terms of algorithm or software engineering, the problem is attacked with a
more modular approach.

3.2.1 Intra-Level Sifting for Crossings Between Intra-Level Edges

Consider overlapping intra-level edges {v1, v4}, {v2, v3} ∈ H with v1 ≺ v2 ≺
v3 ≺ v4. They do not cross, since we draw each edge {u, v} as a circular
arc instead of a straight line. For that, we use a quadratic spline with an
amplitude, i. e., height of the only interpolation point, rising with the number
of enclosed vertices between u and v in the current ordering ≺ of V2. Thus,
even if v1 = v2 or v3 = v4 the edges do not cross, except in common end points.
We further take care not to introduce unnecessary “double” crossings between
intra-level and inter-level edges by restricting the maximum edge amplitude
according to the dimension of the drawing. For example, if the edge {5, 8} in
Fig. 3(a) has a higher amplitude, it would cross the edge {4, 5}. Note that we
require to draw all intra-level edges completely above the second level line, as
will be explained in Sect. 3.2.2.

Note that Sugiyama and Misue [6] presented a faster but qualitatively inferior
insertion barycenter method for intra-level crossing minimization. More specif-
ically, they created a dummy vertex splitting each intra-level edge, which they
placed on a common dummy level. After computing the barycenter value of the
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Fig. 4. Insertion Barycenter of [6].

neighbors for each dummy vertex, they ordered the dummy level in ascending
value. Finally, they computed the barycenter values for the original vertices
according to the new positions of their dummy neighbors, which define the fi-
nal ordering. Unfortunately, this method introduces unnecessary crossings, as
Fig. 4 shows. A straightforward solution to avoid these unnecessary crossings
may be to make the amplitudes of the edges pairwise different, which leads
up to |H| different dummy levels. As a consequence, in order to be able to
run a 2-level crossing minimization algorithm considering all types of cross-
ings later, each inter-level edge must be split in |H|+ 1 segments by |H| new
dummy vertices. This prevents not only time efficient processing, but also is
obstructive for a good result, i. e., fewer crossings: Each of the additionally
necessary |H| crossing minimization rounds is a heuristic only and is thus not
exact.

Thus, we again use the idea from circular sifting (Sect. 2.3), which we al-
ready have used in inter-level sifting in Sect. 2.4, however, now for crossing
minimization between intra-level edges. Hence, we call it intra-level sifting.

Considering the horizontal line of level 2 bent to a circle (see Fig. 5), the
circular crossing minimization algorithm fits out of the box: For one round call
Algorithm 1 where line 9 of Algorithm 2 is changed to call Algorithm 4 instead
of Algorithm 3. Line 3 of Algorithm 2 is left away in this case. Algorithm 4
is the same as Algorithm 3 except that the neighbors are on level 2 and the
ordering ≺ is replaced by ≺vp , i. e., the ordering of V2 is different in each swap.

With Algorithm 5 we keep the ordered intra-level adjacencies of vertex u up
to date during a sifting step. Thus, we know the ordering ≺vp among u’s
neighbors, since this is the concatenation of Hr(u) and Hl(u) (in this order).
Therefore, we need no reordering for determining the xis per swap. The same
holds for the yis: Algorithm 5 also updates the intra-level adjacencies of the
swap vertex vp, but does not maintain their ordering due to performance
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Fig. 5. Circular crossing minimization for intra-level edges of the graph in Fig. 3.

Algorithm 4. SIFTING-SWAP-INTRA
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Swap vertices u, vp ∈ V2

Output: Change in crossing count
1 let x0 ≺vp · · · ≺vp xr−1 be the neighbors of u in V2 − {vp}, {xi, u} ∈ H
2 let y0 ≺vp · · · ≺vp ys−1 be the neighbors of vp in V2 − {u}, {yj , vp} ∈ H
3 c← 0; i← 0; j ← 0
4 while i < r and j < s do
5 if xi ≺vp yj then
6 c← c− (s− j)
7 i← i+ 1
8 else if yj ≺vp xi then
9 c← c+ (r − i)

10 j ← j + 1
11 else
12 c← c− (s− j) + (r − i)
13 i← i+ 1; j ← j + 1

14 return c

restrictions, in contrast to u. However, we rely on the fact that a short edge
h = {u, vp} is always the first of Hl(vp). This is true since we build up the
sorting of this adjacency list right after u was placed on the first position
of V2 in Algorithm 2 and there never were any updates to this ordering. In
other words, the ordering of the intra-level adjacencies of all vertices vp is
valid throughout the complete sifting step besides obsolete positions of edges
{u, vp}. However, these exceptions are irrelevant for the determination of the
orderings of the yis, since they never contain u.
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Algorithm 5. UPDATE-INTRA-ADJ
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Swap vertices u, vp ∈ V2

Output: Number of edges between u and vp, Updated Hl(u), Hr(u), Hl(vp), and
Hr(vp) as side effect

1 l← 0 // number of short intra-level edges
2 while {u, vp} = getF irst(Hr(u)) ∈ H do
3 h← removeFirst(Hr(u))
4 append(Hl(u), h)
5 removeFirst(Hl(vp)) // first, since list was never updated before
6 prepend(Hr(vp), h)
7 l← l + 1
8 return l

E( )vpE( )u

Hl( )u
h vpu

H ( )r u

H ( )vpr

H( )vpl

(a) Before swap.

h

H ( )r uH( )vpl

E( )uE( )vp

uvp

H ( )vprHl( )u

(b) After swap.

Fig. 6. Crossings among intra-level and inter-level edges.

3.2.2 Mixed Sifting for Crossings Between Inter-Level and Intra-Level Edges

As mentioned previously, we restrict intra-level edges to be only routed above
the second level line. Otherwise, if we allowed routing on both sides, the num-
ber of crossings between inter-level and intra-level edges would depend on the
inter-level edges to vertices on a third level, which contradicts the pairwise
level by level sweep approach.

As with the previous inter-level and intra-level sifting algorithms, swapping
vertex u with its successor vp changes only crossings (here among inter-level
and intra-level edges) between edges incident to u or vp. Thus for computing
the change in the crossing count, we only need the sizes of the six sets Hl(v),
Hr(v), E(v) with v ∈ {u, vp}, see Fig. 6.

Neglecting potentially existing short edges h = {u, vp} ∈ H which is a non-
contributing special case, we obtain (1) as change in crossing count ∆ when
swapping u and successor vp. The correctness follows again from the invariant
that after a swap exactly those pairs of intra-level (excluding short edges) and
inter-level edges cross which did not cross previously.

∆ = (|Hr(vp)| − |Hl(vp)|) · |E(u)|+ (|Hl(u)| − |Hr(u)|) · |E(vp)| (1)
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Thus, for mixed sifting a complete round can be started by calling Algorithm 1
and updating line 9 of Algorithm 2 to call Algorithm 6. Line 3 of Algorithm 2
does not need to be executed here. Note that the intra-level adjacency updates
caused by a swap are done prior to a call of Algorithm 6. Thus l has now to
be subtracted from Hl(u) and Hr(vp) instead of Hr(u) and Hl(vp).

Algorithm 6. SIFTING-SWAP-MIXED
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Swap vertices u, vp ∈ V2,

Number of short edges l = |{{u, vp} ∈ H}|
Output: Change in crossing count

1 return ((|Hr(vp)| − l)− |Hl(vp)|) · |E(u)|+ ((|Hl(u)| − l)− |Hr(u)|) · |E(vp)|

3.3 Combining all Crossings

Finally, for our main algorithm extended sifting considering all types of cross-
ings, we call Algorithm 1 with an updated line 9 of Algorithm 2 in order
to call Algorithm 7. There, we simply add the three independent changes in
crossing counts. However, other formulas preferring some type of crossings at
the expense of more crossings of other types are possible, e. g., the usage of
weighting factors.

Algorithm 7. SIFTING-SWAP-EXT
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Swap vertices u, vp ∈ V2

Output: Change in crossing count
1 cE ← SIFTING-SWAP-INTER(G, u, vp)
2 cH ← SIFTING-SWAP-INTRA(G, u, vp)
3 cHE ← SIFTING-SWAP-MIXED(G, u, vp)
4 return cV + cH + cHV

We obtain the same time bound as the original sifting algorithm for a level
graph G = (V,E, φ) considering only inter-level edges, or for a graph G =
(V,H) considering only intra-level edges.

Theorem 3.1 One round of extended one-sided sifting on an extended 2-level
graph G = (V,E,H, φ) takes O(|V | · (|E|+ |H|)) time.

PROOF. For running time calculations, we assume w. l. o. g. that there are
no isolated vertices. They can be removed in preprocessing step and added
again in postprocessing since their positions have no influence on the crossing
number.

One round of inter-level (intra-level) sifting takes O(|V | · |E|) (O(|V | · |H|))
time according to Theorem 3 of [13]. One round of mixed sifting takes O(|V | ·
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|H|) time, since one step needs O(|H|) time: The initial sorting of the intra-
level adjacency in Algorithm 2 can be done in O(|H|) time by traversing the
vertices of V2 in order and adding each to the adjacency lists of its right or left
neighbors. Each of the |V2| sifting swaps takes constant time. An integrated
execution is possible, since the only updates to the intra-level adjacency list
are done by Algorithm 2. Thus the algorithms mutually do not compromise
each other. ut

3.4 Sweep over all Levels

According to our experience, the quality of sifting does not depend much on
the quality of the initial vertex ordering of the first level. However, a “bad”
initialization raises the number of needed sifting rounds and thus the absolute
running time. Therefore, it may be useful to apply some rounds of intra-level
sifting to V1 to get a practical initial ordering.

In a top-down sweep, we reorder the levels i from 2 to k by consecutively ap-
plying our extended one-sided 2-level crossing minimization on the fix ordered
set Vi−1 and on the freely permutable set Vi. In the subsequent bottom-up
sweep we reorder the levels i from k − 1 down to 1 by consecutively applying
the extended one-sided 2-level crossing minimization on the fix ordered set
Vi+1 and the permutable set Vi. However, in the bottom-up sweep we have a
slightly different situation, since the intra-level edges are below the current
level i and cross edges from level i and i − 1 (see Fig. 7 for an example).
Nevertheless, the formula for crossings of intra-level and inter-level edges (1)
does not depend on any vertex ordering different to that on level i and espe-
cially does not depend on that of level i − 1. Thus, we count the change in
the number of crossings of the intra-level edges of level i with the inter-level
edges between level i and i− 1 during a swap. For this, we let for every v ∈ Vi
be E(v) = { (x, v) | x ∈ Vi−1 } instead of { (y, v) | y ∈ Vi+1 } in Algorithm 6,
which then is the same as a top-down sweep. After some iterations (for our
experiments 10) of top-down with subsequent bottom-up sweeps the algorithm
terminates.

4 Crossing Minimization on Concentric Levels

In this section, we present a heuristic for extended one-sided crossing mini-
mization with radial drawings. In radial drawings, we place vertices on con-
centric circles, instead of parallel horizontal lines [4,25]. The major advantage
of radial over horizontal drawings is the additional freedom of routing edges in
two directions around the center, i. e., clockwise and counterclockwise, which
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Fig. 7. Bottom-up sweep for the graph in Fig. 1.

results in fewer edge crossings and therefore reduced visual complexity. Fur-
ther, there is also a higher probability of no crossings, because of the fact that
the set of level planar graphs is a proper subset of radial planar graphs [25].

As in the previous section, to display extended k-level graphs G = (V,E,H, φ),
we define extended radial drawings as radial drawings with additional intra-
level edges. For crossing minimization in extended radial drawings, we use
exactly the same framework as for horizontal drawings, described in the pre-
vious section. Thus, we restrict ourselves to the only difference, the one-sided
radial 2-level crossing minimization, in the following.

4.1 Radial Sifting for Crossing Minimization in Radial Drawings

In this section we briefly review the results and terminology of radial sifting [4]
for crossing minimization in radial drawings of level graphs G = (V1

.
∪V2, E, φ)

containing inter-level edges, an adaption of the original sifting algorithm to
radial drawings.

In order to represent orderings π1 and π2 (w. l. o. g. counterclockwise) of the
vertices on the circular levels, a ray is introduced as a straight half-line from
the concentric center to infinity which tags the borderline between the vertices
with extremal positions. Edges crossing the ray are called cut edges.

How many times and in which direction an edge is wound around the center is
crucial for radial drawings. This information is stored by the offset ψ : E → Z
of an edge. Thereby, |ψ(e)| counts the crossings of an edge e ∈ E with the
ray. If ψ(e) < 0 (ψ(e) > 0), e is a clockwise (counterclockwise) cut edge, i. e.,
the sign of ψ(e) reflects the mathematical direction of rotation, see Fig. 8.
If ψ(e) = 0, then e is no cut edge and thus needs no direction information.
Observe that a cut edge cannot cross the ray clockwise and counterclockwise
simultaneously and for a small number of crossings only offsets in {−1, 0, 1}
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Fig. 8. Offsets of edges [4].

are of interest. A radial embedding E of G is defined by the vertex order π and
the edge offsets ψ, i. e., E = (π, ψ).

Lemma 4.1 ([4]) Radial one-sided 2-level crossing minimization is NP-hard.

For radial drawings, however, the idea of circular sifting cannot be adopted
directly, as the crossing number between inter-level edges also depends on
their offsets, which are not necessarily constant. Thus inter-level sifting as
described in Sect. 2.3 is used, with a different formula for counting crossings
(sgn : R→ {−1, 0, 1} is the signum function):

Lemma 4.2 ([4]) Let E = (π, ψ) be a radial embedding of a 2-level graph
G = (V1

.
∪ V2, E, φ). Then the number of crossings between two edges e1 =

(u1, v1) ∈ E and e2 = (u2, v2) ∈ E is

χE(e1, e2) = max
{

0,
∣∣∣ψ(e2)− ψ(e1) + b−a

2

∣∣∣+ |a|+|b|
2 − 1

}
,

where a = sgn (π1(u2)− π1(u1)) and b = sgn (π2(v2)− π2(v1)) .

Before counting the change in crossing number by considering the edges in-
cident to those two swapped vertices, it is crucial to adapt the offsets of the
edges. Let u be the vertex moved along in counterclockwise direction in a sift-
ing step. Initially, the offset of all edges (·, u) are set to 1 and ordered according
to the positions of incident vertices on level 1. While moving u along level 2
in counterclockwise direction, the offsets of edges are decreased according to
their ordering by 1 as long as that reduces the number of crossings. The split
in the edge list is called the parting, i. e., where the offsets differ by 1. The
parting may move around the center twice, as offsets can be decreased from 1
to −1.

Theorem 4.1 ([4]) Given a 2-level graph G = (V,E, φ), radial sifting runs
in O(|V |2 · |E|) time.
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Fig. 9. Extended radial sifting: crossings between inter-level and intra-level edges
and optimal routing.

4.2 Intra-Level Edges in Extended Radial Drawings

We now discuss the new problem of extended radial crossing minimization for
extended 2-level graphs G = (V1

.
∪V2, E,H, φ). For an extended radial drawing

we draw intra-level edges as segments of circles with different radii (with the
interpolation point in the middle) according to the edge lengths, i. e., the
number of spanned vertices plus 1. The interpolation point of longer edges is
closer to the concentric center, see Fig. 1(b) for an example. Intra-level edges
lie in the inner face of level 2, but must not intersect with the circle of level
1. Further, they must be “flat” enough, i. e., they must nestle to the circle
of level 2 close enough, not intersecting inter-level edges of their end vertices
unnecessarily. Contrary to straight-line edges, there are two possibilities to
wind the edges around the center, clockwise or counterclockwise. For a low
crossing number and low visual complexity, we always use the direction with
shorter length, i. e., ≤ b |V2|

2 c. See Fig. 9(b) where long edges are marked by
dotted lines. For an easy notation (v1, v2) ∈ H denotes an intra-level edge
that is wound counterclockwise around the center starting at vertex v1 and
ending at vertex v2. This partitions the intra-level adjacency H(v) for each
v ∈ V2 in two sets, the incoming set Hl(v) = {h = (·, v) | h ∈ H } and the
outgoing set Hr(v) = {h = (v, ·) | h ∈ H }. Per convention, we store edges
for which each direction results in the same length in Hl. Hl and Hr are again
kept sorted similar to Algorithm 5. As a consequence, both the left and the
right adjacency lists of both vertices are updated after their sifting swap.
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4.3 Extended Radial Sifting for Crossing Minimization in Extended level
Graphs

In this section, we present our extended radial sifting heuristic for the extended
one-sided radial crossing minimization problem. We first analyze the time
complexity of the problem.

Lemma 4.3 Extended radial one-sided 2-level crossing minimization is NP-
hard.

PROOF. It is straightforward that the extended one-sided radial crossing
minimization is NP-hard, as the two subproblems, circular crossing mini-
mization [24] and the radial one-sided 2-level crossing minimization [4] are
NP-hard. ut

For extended radial sifting we also use the same modular approach as in ex-
tended intra-level sifting described in Sect. 3.2 to reduce the three different
types of crossings, and add the resulting changes using the separate crossing
numbers. For the minimization of crossings only between inter-level edges, the
radial sifting heuristic is used as it is. Also, drawing intra-level edges as seg-
ments of circles instead of straight-lines clearly does not change the number of
crossings between them. Thus, we can use the circular sifting heuristic. How-
ever, the algorithm for crossing minimization of crossings between intra-level
edges and inter-level edges needs some modification, as will be described in
the following section.

4.3.1 Crossings Between Inter-Level and Intra-Level Edges in Extended Ra-
dial Drawings

Since we have split the intra-level adjacencies in incoming and outgoing edges,
computing the change in crossings when swapping two consecutive vertices u
and vp stays principally the same as in (1). Thereby, we again neglect short
edges {u, vp} which do not contribute to the crossings. What remains is the
additional freedom of routing the intra-level edges around the center in two
different directions. Contrary to crossings between only intra-level edges, this
now has an effect, see Fig. 9 for an example. To overcome this problem, we
use the heuristic to always prefer the shorter direction.

We denote intra-level edges that span at least b |V2|
2 c− 1 vertices as long edges.

After the swap, the length of all incoming intra-level edges of u, in Hl(u) and
all outgoing intra-level edges of vp in Hr(vp) is increased by 1. Likewise, the
length of all outgoing edges of u in Hr(u) and all incoming edges of vp in Hl(vp)
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is decreased by 1. In the case of an increase, it only can happen that the first
(last) edge of the adjacency list Hl(u) (Hr(vp)) becomes a long edge. This
is true, since we keep the adjacency lists ordered according to ≺u (≺vp) and
ascending edge lengths. The necessary updates are done with Algorithm 8. The
number of crossings with inter-level edges COUNT-MIXED-CROSSINGS(h)
caused by an intra-level edge h = (v1, v2) is the number of inter-level edges
which have exactly one incident vertex between v1 and v2 and the other one
outside.

Algorithm 8. SHORTEN-LONG-EDGES
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Swapped vertices vp, u ∈ V2

Output: Change in crossing count
1 c← 0
2 while h = (o, u) = getF irst(Hl(u)) ∈ H is long do
3 c← c − COUNT-MIXED-CROSSINGS(h)
4 removeFirst(Hl(u))
5 remove(Hr(o), h)
6 h← (u, o) // swap direction
7 append(Hr(u), h)
8 prepend(Hl(o), h)
9 c← c + COUNT-MIXED-CROSSINGS(h)

10 while h = (vk, o) = getLast(Hr(vp)) ∈ H is long do
11 c← c − COUNT-MIXED-CROSSINGS(h)
12 removeLast(Hr(vp))
13 remove(Hl(o), h)
14 h← (o, vk) // swap direction
15 prepend(Hl(vp), h)
16 append(Hr(o), h)
17 c← c + COUNT-MIXED-CROSSINGS(h)

18 return c

One special case remains: If |V2| is even, then some intra-level edges may have
the same length |V2|

2 in both directions. We call them vis-à-vis edges, since
they are incident to two vertices that are placed opposite to each other. In
order to locally minimize the number of crossings, we break ties in favor of
the direction that causes less mixed crossings as shown in Algorithm 9. We
update the adjacency lists according to which direction of the current edge
causes less crossings.

4.3.2 All Crossings in Extended Radial Drawings

The overall sifting swap is essentially analogous to Algorithm 7. First we
compute the change in the number of crossings between inter-level edges,
then between intra-level edges, and finally between intra-level and inter-level
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Algorithm 9. SHORTEN-VISAVIS-EDGES
Input: Ordered 2-level graph G=(V1

.
∪ V2, E,H, φ), Swapped vertices vp, u ∈ V2

Output: Change in crossing count
1 c← 0
2 while h = (o, u) = getF irst(Hl(u)) ∈ H is vis-à-vis do
3 c1 ← COUNT-MIXED-CROSSINGS(h)
4 removeFirst(Hl(u))
5 remove(Hr(o), h)
6 h← (u, o) // swap direction
7 append(Hr(u), h)
8 prepend(Hl(o), h)
9 c2 ← COUNT-MIXED-CROSSINGS(h)

10 if c2 ≤ c1 then c← c+ c2 − c1
11
12 else undo changes
13

14 while h = (vk, o) = getLast(Hr(vp)) ∈ H is vis-à-vis do
15 c1 ← COUNT-MIXED-CROSSINGS(h)
16 removeLast(Hr(vp))
17 remove(Hl(o), h)
18 h← (o, vk) // swap direction
19 prepend(Hl(vp), h)
20 append(Hr(o), h)
21 c2 ← COUNT-MIXED-CROSSINGS(h)
22 if c2 ≤ c1 then c← c+ c2 − c1
23
24 else undo changes
25

26 return c

edges. However, the sifting step (Algorithm 10) is extended as more updating
parts are needed: After the preliminary steps and swapping the current vertex
with its successor in the sifting swap, the offsets and parting of the involved
inter-level edges must be updated as well as the routing of some intra-level
edges, depending on their length.

4.3.3 Computational Complexity

For our extended radial sifting, we use the radial sifting algorithm as a subcom-
ponent. Thereby, we consider the numbers of intra-level and mixed crossings
additionally to the inter-level crossings. We obtain the following time com-
plexity:

Theorem 4.2 One round of extended radial sifting on an extended 2-level
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Algorithm 10. SIFTING-STEP
Input: Ordered 2-level offset graph G=(V1

.
∪ V2, E,H, φE), Vertex u ∈ V2 to sift

Output: Updated ordering of V2

1 let v0 = u ≺ v1 ≺ · · · ≺ v|V2|−1 be the current ordering of V2 with u put to front
2 sort all edges
3 find best parting and offsets for edges (·, u) ∈ E
4 χ← 0; χ∗ ← 0 // current and best number of crossings
5 p∗ ← 0 // best vertex position
6 j ← 0; j∗ ← 0 // current and best offset at the parting
7 i← 0; i∗ ← 0 // current and best parting
8 for p← 1 to |V2| − 1 do
9 χ← χ+SIFTING-SWAP-EXT(G, u, vp)

10 χ← χ+SHORTEN-LONG-EDGES(G, u, vp)
11 χ← χ+UPDATE-OFFSETS(G, u, vp)
12 χ← χ+SHORTEN-VISAVIS-EDGES(G, u, vp)
13 if χ < χ∗ then
14 χ∗ ← χ; p∗ ← p
15 j∗ ← j
16 i∗ ← i

17 set best parting and offsets for edges (·, u) ∈ E
18 return V2←v1≺ · · · ≺vp∗−1≺u≺vp∗≺ · · · ≺v|V2|−1

graph G = (V,E,H, φ) takes O(|V |2 · (|E|+ |H|)) time.

PROOF. The worst case in terms of computational complexity occurs for
the current vertex u being a vertex with inter-level and intra-level edges. In
that case, the running time for one round of radial sifting is O(|V2|2 ·|E|+|E|2)
and for circular sifting O(|V2| · |H|).

Before and after a sifting swap, the computation and update of the mixed
crossing number between two consecutive vertices u and vp without any intra-
level edges involved that change their direction runs in O(1) time. As in one
round of sifting each vertex is at each position once, this contributes O(|V2|2)
to the overall running time. If an intra-level edge h ∈ H changes direction, the
computation of its number of crossings with inter-level edges runs in O(|E|)
time. Now consider only one sifting step, i. e., one vertex u is moved along
the periphery of its level. Let h = (v1, v2) be an edge incident to two vertices
v1, v2 ∈ V2 with v1, v2 6= u. Both v1 and v2 only change their position once
during the sifting step of u. Thus, h can change its direction at most twice
in one sifting step. Considering the incident intra-level edges of u, they can
change their direction at most twice as well. Therefore, the contribution to
the time complexity for one sifting step is O(|V2| · |E|+ |H|) and thus for one
round of sifting is O(|V2|2 · |E|). ut
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5 Experimental Results

To analyze the performance of one sifting round of our extended one-sided
2-level crossing minimization heuristics, we have implemented them in Java.
Further, we have implemented the corresponding standard sifting algorithm
which uses a crossing matrix to compare its practical running time with the
sifting algorithm of [13]. We have evaluated the implementations for horizon-
tal drawings using 15625 random level graphs: 25 graphs for each combination
of the parameters |V1| = |V2| ∈ {50, 100, . . . , 1250}, |E|/|V2| ∈ {1, . . . , 5},
and |H|/|V2| ∈ {1, . . . , 5}. With the same parameters, but |V1| = |V2| ∈
{20, 30, . . . , 290}, we similarly have tested 17500 random radial level graphs.

Figure A.2 and A.3 (Fig. A.11 and A.12 for concentric levels) confirm that it
makes sense to consider all types of crossings simultaneously, since the algo-
rithms generate (as expected) fewer crossings than standard sifting, experi-
mentally by a factor of 0.7. This is a very encouraging result, since the differ-
ences in absolute running times between our extended sifting and the existing
standard (inter-level) sifting and intra-level sifting, i. e., the running time of
mixed sifting, are negligible in practice even on larger graphs (see Fig. A.1 and
A.10). For example, in our experiment the running time of extended sifting
for horizontal drawings with |V1| = |V1| = |E| = |H| = 104 is about 4 minutes
and for radial drawings with |V1| = |V1| = |E| = |H| = 103 is about 6 minutes.

To give a feeling about the performance of inter-level sifting in horizontal
drawings compared to an optimal algorithm: The ILP approach of [17] using
the free lpsolve library needs for |V1| = |V2| = 150 and |E| = 750 about 50
minutes to reduce the number of crossings from 145925 to the optimum of
94742. One round of sifting needs less than 20 ms and leaves 94981 crossings.
After 3 rounds we have 94770 crossings.

6 Conclusion

In this paper, we studied the new problem of crossing minimization in extended
level graphs. We considered two different drawings, horizontal drawing and
radial drawings, and presented two heuristics for extended one-sided crossing
minimization in both drawings. Essentially, we extended the well-known sifting
heuristic for crossing minimization of level graphs to handle three different
types of crossings in extended level graphs. Ignoring non-contributing self
loops, our algorithms can work also on multi-graphs within the same time
bounds.

So far, we have used only random initial orderings of the vertices. However, the
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quality of the orderings produced by extended sifting is not independent from
the input. Thus, it may be helpful to use some extensions of fast and simple
heuristics, e. g., barycenter or median [2,4] heuristics, to reduce crossings in a
preprocessing step.

One future research is the investigation on the freedom of routing intra-level
edges above and below the level lines, not restricting them to one side. As an
alternative for the crossing minimization approach, a planarization approach
was also studied for extended level graphs [26]: The planarization problem of
extended-level graph is NP-hard and, thus, heuristics are suggested. However,
these should be evaluated with extensive experimental results.
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A Benchmark Results

The appendix shows the practical performance of the algorithms. All bench-
marks were run on a 2.4 GHz Core 2 PC under the Java 6.0 platform from
Sun Microsystems, Inc.

A.1 Horizontal Level Lines

Figures A.1 to A.9 provide benchmark results comparing the heuristics to
minimize crossings in horizontal drawings: inter-level sifting (CM with crossing
matrix as in Sect. 2.1, ES without as in Sect. 2.2), circular sifting with semi-
circles (CS) as in Sect. 3.1, intra-level sifting (HS) as in Sect. 3.2.1, mixed
sifting (MS) as in Sect. 3.2.2, and extended sifting (XS) as in Sect. 3.3.
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Fig. A.1. Benchmark: running times.
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Fig. A.2. Benchmark: total crossing numbers.
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Fig. A.3. Benchmark: total crossing numbers.
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Fig. A.4. Benchmark: numbers of crossings between intra-level and inter-level edges.
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Fig. A.5. Benchmark: numbers of crossings between intra-level and inter-level edges.
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Fig. A.6. Benchmark: numbers of crossings between intra-level edges.
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Fig. A.7. Benchmark: numbers of crossings between intra-level edges.
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Fig. A.8. Benchmark: numbers of crossings between inter-level edges.
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Fig. A.9. Benchmark: numbers of crossings between inter-level edges.

A.2 Concentric Level Lines

Figures A.10 to A.18 provide benchmark results comparing the heuristics to
minimize crossings in radial drawings: inter-level sifting (ES) as in Sect. 4.1,
intra-level sifting (HS) as in Sect. 4.2, mixed sifting (MS) as in Sect. 4.3.1,
and extended sifting (XS) as in Sect. 4.3.2.
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Fig. A.10. Benchmark: running times.
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Fig. A.11. Benchmark: total crossing numbers.
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Fig. A.12. Benchmark: total crossing numbers.
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Fig. A.13. Benchmark: numbers of crossings between intra-level and inter-level
edges.
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Fig. A.14. Benchmark: numbers of crossings between intra-level and inter-level
edges.
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Fig. A.15. Benchmark: numbers of crossings between intra-level edges.

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

1 2 3 4 5

A
fte

r
vs
.b

ef
or
e

Edge density |H|/|V2|

ES
MS
XS
HS

Fig. A.16. Benchmark: numbers of crossings between intra-level edges.
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Fig. A.17. Benchmark: numbers of crossings between inter-level edges.
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Fig. A.18. Benchmark: numbers of crossings between inter-level edges.
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B Examples

Figures B.1 and B.2 show example outputs of both extended sifting algorithms.
Remember, these are not results of a complete Sugiyama framework, as the
fourth phase for the coordinate assignment is missing. Here, the vertices are
uniformly distributed on their levels to show the orderings.

(a) Input with χ(π) = 768. (b) Output after one sifting round
with χ(π′) = 441.

Fig. B.1. Horizontal example with |V1| = |V2| = 20, |E| = 50, and H = 10.

(a) Input with χ(π) = 2405. (b) Output one sifting round with
χ(π′) = 1397.

Fig. B.2. Radial example with |V1| = |V2| = 20, |E| = 50, and H = 10.
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