
Improved Symmetric Lists

Technical Report MIP-0409
October, 2004

Christian Bachmaier and Marcus Raitner

University of Passau,
94030 Passau, Germany
Fax: +49 851 509 3032

{bachmaier,raitner}@fmi.uni-passau.de

Abstract. We introduce a new data structure called symlist based on
an idea of Tarjan [17]. A symlist is a doubly linked list without any di-
rectional information encoded into its cells. In a symlist the two pointers
in each cell have no fixed meaning like previous or next in standard lists.
Besides the common operations on doubly linked lists, symlists support
the reversal of a list and the insertion of a (reversed) symlist into another
one, both in constant time. This is an improvement over common imple-
mentations, e. g., the Stl class list, where reversal needs linear time.
A typical application of symlists is storing the children of a so called Q-
node in a PQ-tree, a data structure used in linear time graph planarity
testing algorithms. We show that a straightforward implementation of
Tarjan’s idea [17] leads to an anomaly when inserting a new element and
provide a simple solution to avoid it. Finally, we present an implementa-
tion of symlists with iterators that is similar to the Stl class list and
its iterators.

1 Introduction

A doubly linked list consists of cells each containing a data field storing an ele-
ment of the list and two pointers to its neighbours. In general, the interpretation
of these pointers is hard-coded [1, 5, 10, 13]. Lists usually rely on the interpreta-
tion that the pointer named prev refers to the previous cell and the one named
next to the next cell. Clearly, reversing such a list can either be done in linear
time by interchanging the pointers in all cells or in constant time by globally
reversing their interpretation. However, then the pointers are interpreted identi-
cally for all cells. This prevents inserting a reversed list into another in constant
time, since then the pointers of the cells of the inserted list and of the original
list have different meanings.

Example 1. Consider the two lists in Fig. 1(a) and Fig. 1(b). As the arrows in the
background indicate, the list in Fig. 1(b) has been reversed, i. e., the pointers in
cells 1, 2, and 3 on the one hand and cells A, B, and C on the other are interpreted



2

differently. If the list in Fig. 1(b) is inserted in the list in Fig 1(a) between cells 1
and 2 (in constant time), we obtain Fig. 1(c). Obviously, the adjacency pointers
do not have the same meaning in all cells in this list. Of course, this can be
fixed by interchanging the pointers in each cell of the inserted list, but this takes
linear time.

1 n
p 2 n

p 3 n
p

(a) A non-reversed list,
i. e., n refers to the next
and p to the previous cell

A n
p B n

p C n
p

(b) A list which was re-
versed by switching the in-
terpretation of n and p

1 n
p 2 n

p 3 n
p

A

n
pB

n
pC

n
p

(c) The result of inserting the list in 1(b) into the one in 1(a).
Not all pointers in this list have the same meaning, e. g., n in cell
1 refers to the next cell, but n in cell B refers to the previous one

Fig. 1. Example for the problem of inserting a reversed list into a non-reversed one in
constant time with fixed interpretation for the pointers in the cells. In each cell n and
p denote pointer next and prev respectively

1.1 The Concept

Following an idea of Tarjan [17], our data structure symlist solves this problem
by ignoring the common direction information of the pointers in a cell. Symlists
only preserve the invariant that the two pointers refer to the two adjacent cells
without specifying directly or indirectly which one is the previous and which
is the next. Although this is not common in data structures (cf. [1, 5, 10, 13]),
it makes sense from a software engineering perspective because the directional
information is no feature of the cell. It is needed only for traversing a list.

Clearly, a traversal is more complicated for a symlist than for an ordinary
doubly linked list. In our implementation, we use iterators that store the direc-
tional information along with the cell they refer to. Whenever the iterator is
moved in either direction both its position and its direction must be updated
(see Sect. 2 for a detailed description). Although the basic idea of symlists is



3

already described in [17], an anomaly which a straight-forward implementation
of this idea will have (cf. Sect. 3.1) is not mentioned.

A symlist is related to the quad-edge data structure [7] that is used for effi-
ciently representing embeddings of graphs in two-dimensional manifolds. It con-
sists of quad-edges and each node contains four references to adjacent quad-
edges. For iterating through this data structure, two flags are stored along with
the current quad-edge. These are used to determine the next quad-edge in the
iteration. Depending on the value of these flags, either the graph, its dual, or
its mirror image are traversed. If we use two of the four pointers of a quad-
edge and one of its flags only, iterating through this data structure is similar
to the iteration through a symlist. However, the quad-edge data structure was
designed for that particular purpose only and is not meant to be generic. It is
used for iterating through the represented graph and does not support reversals
and insertions.

Sleator and Tarjan [16] describe the efficient management of dynamic paths
via biased trees. There every internal node v of the tree has a flag reversed(v).
The reversal state of v is an exclusive or of the reversed flags from v to the root.
This indicates whether the path segment descendant to v is reversed or not and
can be computed within logarithmic time. We touch on this work because a list
can be seen as a path containing data information in its nodes. Of course, an
insertion of a new element in the path, an operation not mentioned in [16], has
to update this tree structure which is not possible in constant time.

1.2 Applications

Symlists can be used for any doubly linked list; in particular, when in addition to
the standard operations, both reversing the list and inserting a list into another
has to be done in constant time.

Within the PQ-tree data structure [2], we have these requirements for the lists
storing the children of a tree node. A PQ-tree is used for the efficient storage and
manipulation of permutations of a set S. PQ-trees are rooted trees with leaves
and two types of inner nodes, namely P- and Q-nodes. The leaves correspond to
the elements of S, and the possible permutations are encoded by the combination
of the two types of inner nodes. The children of a P-node can be permuted
arbitrarily, whereas the children of a Q-node are ordered, and this order can
only be reversed.

The most important operation on PQ-trees is reduce. It restricts the encoded
set of permutations such that all elements of a given set S′ ⊆ S are consecutive in
all remaining permutations. This operation may reverse the order of the children
of some Q-nodes and insert the children of a Q-node somewhere in between the
children of another Q-node. In order to achieve the complexity of reduce proved
in [2], both reversing a list of children and inserting a list of children into another
must be done in constant time. This complexity of reduce is crucial for the linear
time graph planarity testing and embedding algorithm [4].

In some implementations of PQ-trees no separate list data structure is used
for storing the children of a Q-node. The references to the adjacent siblings are



4

stored in each child [2, 11, 12]. In these implementations the adjacency pointers
are treated as an unordered set. Hence, they have no fixed meaning either and
reversing and inserting a reversed list can be done in constant time. However,
from a software engineering perspective, it is better to have a separate and
reusable data structure with a well-defined interface that provides appropriate
methods for accessing and manipulating the children of a Q-node.

There is another linear time planarity test of Boyer and Myrvold [3] which
does not use PQ-trees but also needs an efficient data structure for flipping
biconnected components, see [3, Section 2]. They call this data structure doubly
linked cycle with no sense of clockwise. This is exactly the paradigm of symlists.

Table 1. Typical operations on lists and iterators and their time complexity

Operation symlist ordinary list

List insert O(1) O(1)
splice O(1) O(1)
erase O(1) O(1)
reverse O(1) O(n)
size O(n) O(n)
empty O(1) O(1)

Iterator ++ O(1) O(1)
-- O(1) O(1)

Common implementations of doubly linked lists encode the direction of the
list into their cell by using pointers with a uniform meaning for the whole list [1,
5, 10, 13]. As illustrated by Example 1, these implementations cannot provide
constant time methods for both reversing a list and inserting a reversed list
into another. Hence, they cannot be used in a PQ-tree within the desired time
bounds. Our data structure symlist fills this gap. As shown in Table 1, the time
complexity of all methods on lists are identical except for reversing a list that
can be done in constant time on a symlist.

2 Implementation

Our implementation is based on the interface of the Stl class list [14] contain-
ing methods like empty, insert, splice, erase, and reverse, see Fig. 2. The
interface is enriched with some new methods attach_sublist, detach_sublist,
blind_insert, and blind_erase (see Sect. 3.2).

A symlist consists of cells containing two adjacency pointers, p[0] and p[1].
As suggested in [10] and used in Stl, our implementation is a cyclic list with an
additional cell between the first and the last cell, see Fig. 3. It is called the end
cell because this is the cell where the end iterator, symlist::end(), refers to.



5

T:class

Ref:classsymlist_iterator

+symlist_iterator()

+symlist_iterator(it:const self&)

+operator=(it:const self&):self&

+operator==(it:const self&):bool

+operator!=(it:const self&):bool

+operator*():Ref

+operator++():self&

+operator--():self&

+reverse():void

uses

T:class

symlist

+symlist()

+symlist(l:const symlist<T>&)

+operator=(l:const symlist<T>&):symlist<T>&

+~symlist()

+empty():bool

+front():T&
+back():T&

+begin():symlist_iterator

+end():symlist_iterator

+rbegin():symlist_iterator

+rend():symlist_iterator

+insert(pos:symlist_iterator,data:const T&):symlist_iterator

+splice(pos:symlist_iterator,it:symlist_iterator):void

+splice(pos:symlist_iterator,begin:symlist_iterator,end:symlist_iterator):void

+erase(pos:iterator):iterator

+erase(begin:symlist_iterator,end:symlist_iterator):symlist_iterator

+attach_sublist(begin:symlist_iterator,end:symlist_iterator):void

+detach_sublist():void

+reverse():void

+blind_insert(pos:symlist_iterator,data:const T&):symlist_iterator

+blind_erase(pos:symlist_iterator):symlist_iterator

Fig. 2. The interface of our implementation in UML notation



6

The end cell is stored in our list class along with a flag dir ∈ {0, 1} indicating
which of the two pointers refers to the first cell of the list. In addition to its cell
object cell, each iterator stores its current direction as a flag dir ∈ {0, 1}
indicating that p[dir] in cell leads to the next cell.

Algorithm 1 explains the effect of the ++-operator applied to an arbitrary
iterator it in detail (the ---operator operates analogously).

Algorithm 1: Advancing to the next cell in iterator’s direction
operator++()

begin
tmp←− it.cell // make a copy of the current cell
it.cell←− tmp.p[it.dir] // move to the next cell
if it.cell.p[0] = tmp then

it.dir←− 1 // p[0] points back, hence new dir is 1
else

it.dir←− 0 // p[1] points back, hence new dir is 0
end

end

Insertion of a new cell z before an arbitrary iterator it referring to cell x
works as follows: With --it we determine the previous cell y of x in the sense
of it’s local direction. After updating the appropriate pointers of x, y, and z, a
new iterator pointing to z and having the same direction as it is returned.

For an iteration we need begin and end iterators. As already mentioned, the
end iterator points to the end cell, and its direction flag is set to the direction flag
of the list. In order to get a begin iterator, i. e., symlist::begin(), we internally
call ++ on the end iterator, which gives an iterator pointing to the first element
in the list and heading in the direction of the list.

Now reversing a symlist can be done in constant time by flipping the direction
flag of the list. This avoids the problems illustrated in Example 1 and avoids
using linear time for reversing. Furthermore, an iterator can easily be reversed
by flipping its direction flag. As in Stl, all existing iterators, except the ones
referring to erased cells, stay valid and consistent to their possibly new adjacency
throughout the lifetime of a symlist and all update operations on it. This also
holds if the blind operations from Sect. 3.2 are used.

3 Extensions

3.1 Losing Information

In the basic implementation as outlined above, the information stored in an
iterator together with the direction flag of the list may be insufficient. This is
clarified by the following example.



7

Example 2. Consider the symlists in Fig. 3(a) and Fig. 3(b). These are almost
identical. The only difference is that p[0] and p[1] in cell A are switched. There-
fore the iterator t in Fig. 3(a) has the same direction as the end iterator, whereas
t in Fig. 3(b) has the opposite direction. Hence, inserting a new cell before t in
Fig. 3(a) results in a new cell between end and A. On the other hand, in Fig. 3(b)
this insertion results in a new cell between A and B.

If we delete cell B in both Fig. 3(a) and 3(b), we get the configurations shown
in Fig. 3(c) and Fig. 3(d), respectively. Clearly, inserting a new cell before t
in Fig. 3(c) should give a list beginning with the new cell, and inserting it in
Fig. 3(d) should give a list with the new cell at the end. But the two configura-
tions in Fig. 3(c) and Fig. 3(d) are indistinguishable, i. e., both pointers in each
cell refer to the other cell, the direction flag of the list is 0, and t has direction 0.
Thus it is impossible to determine what “insertion before t” really means. Both
positions could be correct.

t

Aend B

0 0

1

0

1

0

1

0

(a) Here inserting before t results
in a new cell between end and A

t

A
0

1

end
0

1
B

0

1

00

(b) In this configuration inserting
before t results in a new cell be-
tween A and B

t

A
0

1
end

0

1

00

(c) Result of deleting cell B in
Fig. 3(a). Inserting the new cell
should behave as in Fig. 3(a), i. e.,
should result in a list with the new
cell at the beginning

t

A
0

1

end
0

1

0 0

(d) The result of deleting cell B

in Fig. 3(b). This is identical to
Fig. 3(c), but inserting a new cell
should behave as in Fig. 3(b), i. e.,
with the new cell at the end

Fig. 3. Example where the information stored in an iterator is not sufficient to deter-
mine where to insert a new cell. The 0 and 1 in the cells denote pointers p[0] and p[1]

respectively. The circles pointing to a cell are iterators. The number in an iterator is its
direction flag. The iterator pointing to the end cell is the end iterator, i. e., its direction
flag is the direction of the list



8

Obviously, this problem occurs only on singleton lists as in Fig 3(c). Through
the iterator pointing to the only data cell and its direction flag, it is known which
pointer of this cell is affected by an insertion. But it is impossible to determine
which pointer in the end cell needs to be updated (cf. Fig. 3(c) and 3(d)). If
the direction is encoded into the cells using pointers prev and next, this cannot
occur because we know that the corresponding pointer for prev in the data cell
is next in the end cell, for instance.

This problem can and must be resolved to prevent errors. As a particular
application consider for example level planarity testing, which has been inves-
tigated in graph drawing, see [8, 9]. Like the ordinary graph planarity testing
algorithm [2], it uses PQ-Trees. The children of all nodes could be stored in
symlists, and in the template matching algorithm it can happen that a Q-node
temporarily has only one child.

Since this anomaly occurs only on singleton lists, we simply can keep a hidden
cell to avoid it. In our implementation this additional cell is always a neighbour
of the end cell. This enforces some modifications in the methods of symlist to
hide the existence of the additional cell. Beside the insert and erase methods,
the ++ and -- operations on iterators must be changed to ignore the invisible
cell. To achieve this efficiently, our extension is to mark each cell according to
its type (data, hidden, or end) when it is created.

Exactly the same problem occurs with Tarjan’s reversible lists, as described
in [17], but on lists of size two and not on singleton lists. This is due to the fact
that there is no extra end cell and the global direction of the list is stored within
the last data cell, the so called tail. Moreover, Tarjan does not describe what
previous or next means to an arbitrary external pointer on a cell. In a symlist
every iterator has a local direction, for a simple pointer this is impossible. But
for some applications this feature is very useful, e. g. for (level) planarity testing.

3.2 Blind Operations

Besides the standard methods on doubly linked lists, we need the more spe-
cialised methods attach_sublist and detach_sublist for maintaining the chil-
dren of a Q-node. If a planarity testing algorithm uses PQ-trees, sometimes a
so called pseudo Q-node, e. g. in [2, p. 355], must be created, which temporarily
contains a sequence of children out of the middle of another Q-node. This parent
Q-node may not be known at the moment, because due to time complexity re-
strictions inner children of a Q-node do not know their parent in general. Hence,
because only the iterators to the relevant children are known, we need a con-
stant time operation attach_sublist which sets the adjacency pointers of that
pseudo list’s end cell e to the first and the last data cell, w and v, of the sublist.
The adjacencies of w and v are adapted accordingly. Moreover, pointers to the
previous and next cells from that sequence in the original list are stored in the
pseudo list in order to know where the sublist must be inserted in the original
list by detach_sublist later in the algorithm.

Another useful feature is the ability to insert or erase an element of a symlist
if its position is given by an external iterator, but not the symlist object itself.



9

Therefore, we introduce two static methods blind_insert and blind_erase,
both running in constant time. The use of such methods prohibits maintaining a
size counter as a data member of symlist which is updated with each operation
affecting the size.

4 Conclusion

We have completed and extended an idea of Tarjan [17] for usage in practice. A
symlist is a variant of a doubly linked list which does not store any directional
information in its cells. This makes it possible both to reverse a symlist and to
insert a reversed symlist into another in constant time without affecting the time
complexity of the other operations. Usual implementations of doubly linked lists,
for instance the Stl class list, require linear time for reversing [14,15].

We have introduced new methods for attaching and detaching sublists or
insertions and deletions that modify the list without knowing the list object
itself. These are very important in the implementation of PQ-trees.

Our implementation of a symlist is similar to the Stl class list. It is available
as part of the Gtl library [6]. Furthermore we have enhanced our implementation
in order to use it as part of efficient level planarity testing on graphs. These
extensions are used in a prototypic implementation of that test which is based
on the technique of [8, 9].

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms,
pages 204–205. Addison Wesley, 1983.

[2] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computers and
System Sciences, 12:335–379, 1976.

[3] John M. Boyer and Wendy Myrvold. Stop minding your P’s and Q’s: A simplified
O(n) planar embedding algorithm. In Proc. 10th ACM-SIAM Symposium on
Discrete Algorithms, SODA 1999, pages 140–146, 1999.

[4] S. Even. Graph Algorithms, chapter 7–8, pages 148–191. Computer Science Press,
1979.

[5] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java, chapter
5.2. John Wiley & Sons, second edition, 2001.

[6] GTL. Graph Template Library. http://www.infosun.fmi.uni-passau.de/GTL/.
[7] L. J. Guibas and J. Stolfi. Primitives for the manipulations of general subdivi-

sions and the computation of voronoi diagrams. ACM Transactions on Graphics,
4(2):74–123, April 1985.

[8] L. S. Heath and S. V. Pemmeraju. Recognizing level-planar dags in linear time. In
F. J. Brandenburg, editor, Proc. 3rd International Symposium, GD ’95, number
1027 in LNCS, pages 300–311. Springer, 1995.

[9] M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In
S. H. Whitesides, editor, Proc. 6th International Symposium, GD ’98, number
1547 in LNCS, pages 193–204. Springer, 1998.



10

[10] D. S. Knuth. The Art of Computer Programming, volume 1, pages 280–281.
Addison Wesley Longman, 3 edition, 1997.

[11] S. Leipert. PQ-trees – an implementation as template class in C++. Technical
Report 97.259, Institut für Informatik Universität zu Köln, 1997.

[12] S. Leipert. Level Planarity Testing and Embedding in Linear Time. Dissertation,
Mathematisch-Naturwissenschaftliche Fakultät der Universität zu Köln, 1998.

[13] K. Mehlhorn and S. Näher. LEDA, A Platform for Combinatorial and Geometric
Computing, chapter 3.2. Cambridge University Press, 1999.

[14] D. R. Musser and A. Saini. The STL Tutorial and Reference Guide. Addison
Wesley, 1996.

[15] Silicon Graphics, Inc. STL. Standard Template Library. http://www.sgi.com/

tech/stl/.
[16] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences, 26(1):362–391, 1983.
[17] R. E. Tarjan. Data Structures and Network Algorithms, chapter 1.3, page 11.

CBMS-NSF Regional Conferences Series in Applied Mathematics. Society for In-
dustrial and Applied Mathematics, 1983.


