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Abstract. In radial drawings of hierarchical graphs the vertices are
drawn on concentric circles instead of on horizontal lines as in the stan-
dard Sugiyama framework. This drawing style is well suited for the vi-
sualisation of centrality in social networks and similar concepts. Radial
drawings also allow a more flexible edge routing than horizontal draw-
ings, as edges can be routed around the center in two directions. In ex-
perimental results this reduces the number of crossings by approx. 30%
on average.
This paper is the last step to complete the framework for drawing hierar-
chical graphs in a radial fashion. We present three heuristics for crossing
reduction in radial level drawings of hierarchical graphs, and also briefly
cover extensions of the level assignment step to take advantage of the
increasing perimeter of the circles.

1 Introduction

In hierarchical graph layout vertices are usually drawn on parallel horizon-
tal lines, and edges are drawn as y-monotone polylines that may bend when
they intersect a level line. The standard drawing algorithm [16] consists of four
phases: cycle removal (reverses appropriate edges to eliminate cycles), level as-
signment (assigns vertices to levels and introduces dummy vertices to represent
edge bends), crossing reduction (permutes vertices on the levels), and coordinate
assignment (assigns x-coordinates to vertices, y-coordinates are implicit through
the levels). See [11] for an extended overview.

The novelty of radial coordinate assignment [2] is to draw the level lines as
concentric circles instead of as parallel horizontal lines. The apparent advantage
is that level graphs can be drawn with fewer edge crossings. It is also more
likely that a graph can be drawn without any crossings at all, i. e., the set of
level planar graphs is a proper subset of the set of radial level planar graphs [1].
Note that radial level drawings are different from circular drawings [3, 13, 15]
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where only one circle contains all vertices. Here “inner level edges” with both
end vertices on a common level are prohibited.

Radial level drawings are common, e. g., in the study of social networks [4,5].
There vertices model actors and edges represent relations between the actors.
The importance (centrality) of a vertex is expressed by its distance (closeness)
to the center, i. e., a position on a low level. Radial level drawings are also well
suited for level graphs with an increasing number of vertices on higher levels.
For example, in a graph that shows which web pages are reachable from a given
start page by following k hyperlinks, higher levels are likely to contain many
vertices while there are only few vertices on the lower levels.

In this paper we complete the Sugiyama framework for radial level drawings
of hierarchical graphs by introducing methods for radial level assignment in
Sect. 3 and radial crossing reduction in Sect. 4. The cycle removal does not
differ from the horizontal case, thus standard algorithms can be used, see [11]
for an overview. For the final coordinate assignment see [2].

2 Preliminaries

A k-level graph G = (V,E, φ) is a directed acyclic graph (DAG) with a level
assignment φ : V → {1, 2, . . . , k}, which partitions the vertex set into k ≤ |V |
pairwise disjoint subsets V = V1

.
∪V2

.
∪· · ·

.
∪Vk, Vi = φ−1(i), 1 ≤ i ≤ k, such that

φ(u) < φ(v) for each edge (u, v) ∈ E. Particularly, k = 1 implies that E = ∅. An
edge (u, v) is short if φ(v) − φ(u) = 1, otherwise it is long and spans the levels
φ(u) + 1, . . . , φ(v)− 1. A level graph without long edges is proper.

An ordering of a proper level graph is a partial order ≺ of V such that u ≺ v
or v ≺ u iff φ(u) = φ(v). This is equivalent to a definition of the vertex positions
on level i as a bijective function πi : Vi → {0, . . . , |Vi|−1} with u ≺ v ⇔ πi(u) <
πi(v) for any two vertices u, v ∈ Vi and π = (πi)1≤i≤k. We call an ordering of
a level graph a horizontal embedding. Throughout the paper let N−(v) = {u |
(u, v) ∈ E } denote the predecessors of v ∈ V and sgn : R → {−1, 0, 1} be the
signum function.

3 Radial Level Assignment

Although the main focus of this paper is on crossing reduction, it is also inter-
esting to study the level assignment step for radial level drawings. The basic
problem is the same as in horizontal level drawings: A given DAG is to be trans-
formed into a level graph by assigning the vertices to levels. Thus, any existing
level assignment algorithm for horizontal level drawings can directly be used for
radial level drawings. The optimization criteria, however, slightly change: Radial
level drawings use k concentric circles to place the vertices of the k levels. Con-
trary to the constant line lengths in horizontal level drawings, the perimeters of
the circles get longer with ascending level numbers: On an outer circle, there is
space for more vertices than on an inner circle. In the following, we investigate
how level assignment methods can be extended to take advantage of this.
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A straight-forward idea is to apply the longest path level assignment method
from outer to inner levels: First, each sink of the graph is assigned to the high-
est level. For the remaining vertices the level is recursively defined by φ(v) =
min{φ(w) | (v, w) ∈ E } − 1. This puts each vertex on the outermost possible
level while minimizing the number k of levels. There is no explicit balancing of
level sizes, however.

For a better vertex distribution, an extension of the Coffman/Graham algo-
rithm [6] can be used that explicitly takes into account the growing perimeter of
the circles. The original Coffman/Graham algorithm computes a leveling where
the number of vertices per level is bounded by a given constant W . We change
this bound to a function w(i) which grows proportionally to the number i of
the level: w(i) = W · i. The first phase of the algorithm remains unchanged, but
we apply it using the opposite edge direction: After removing transitive edges
in linear time, an appropriate ordering o : V → {0, . . . , |V | − 1} of the vertices
is computed: Initially, all vertices are unnumbered. We consecutively choose one
vertex at a time and assign the next ascending number to it. The vertex is chosen
so that it has no unnumbered successors and that the numbers of the successors
are minimal regarding a specific ordering of integer sets: a set of vertex numbers
is considered less than another one, if the maximum is less. If the maximum of
both sets is equal, the next smaller value is compared, and so on. In the second
phase the algorithm places one vertex at a time, starting with the vertex num-
bered with |V |−1 on level i = 1 and filling the levels from inner to outer circles.
In one step it places the next unleveled vertex v ∈ V with maximum o(v) whose
predecessors are already leveled. If level i is full, i. e., if i contains w(i) vertices,
or if v has a predecessor u with φ(u) = i, then a new level is started, i. e., i is
increased by 1. The level of v is then set to φ(v) = i.

As the last step of the level assignment phase the level graph is made proper,
because for drawing level graphs it is necessary to know where long edges should
be routed, i. e., between which two vertices on a spanned level. Thus, each long
edge (u, v) ∈ E is subdivided by new dummy vertices vi on the spanned levels
i = φ(u) + 1, . . . , φ(v) − 1, φ(vi) = i. In total, this results in up to O(k|E|)
dummy vertices and running time. In the following we will only consider proper
level graphs.

4 Radial Crossing Reduction

Regardless of whether the leveling of a level graph is given by the application
or if it has been computed by one of the algorithms in the previous section,
the next step towards a hierarchical drawing is to compute an embedding. In
horizontal hierarchical drawings the embedding is fully defined by the vertex
ordering π = (πi)1≤i≤k. For radial embeddings it is also necessary to know
where the orderings start and end on each level. Therefore, we introduce a ray
that tags this borderline between the vertices. The ray is a straight halfline
from the center to infinity between the vertices on each level with extremal
positions. Edges crossed by the ray are called cut edges. In horizontal drawings
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of level graphs a crossing between two edges only depends on the orderings
of the end vertices. In radial level drawings, however, it is also necessary to
consider the direction, in which the edges are wound around the center. There
a two directions, clockwise and counter-clockwise, and edges can also be wound
around the center multiple times. We call this the offset ψ : E → Z of an edge.
Thereby, |ψ(e)| counts the crossings of an edge e ∈ E with the ray. If ψ(e) < 0
(ψ(e) > 0), e is a clockwise (counter-clockwise) cut edge, i. e., the sign of ψ(e)
reflects the mathematical direction of rotation, see Fig. 1. If ψ(e) = 0, then e is
not a cut edge and thus needs no direction information. Observe that a cut edge
cannot cross the ray clockwise and counter-clockwise simultaneously. We define
a radial embedding E of a graph G = (V,E, φ) to consist of the vertex ordering
π and of the edge offsets ψ, i. e., E = (π, ψ).

1

3

24
1+

1-

(a) Edge (1, 3) drawn counter-
clockwise and clockwise (dotted)

1 2

3+

(b) ψ ((1, 2)) = +3

Fig. 1. Offsets of edges

Compared to horizontal drawings there is an additional freedom in radial
drawings without changing the crossing number: rotation of a level i. A clockwise
rotation moves the vertex v with minimum position on the ordered level φ(v) = i
over the ray by setting πi(v) to the maximum on i. The other values of πi are
updated accordingly. For an illustration see Fig. 2, where v = 5. A counter-
clockwise rotation is symmetric. Rotations do not modify the “cyclic order”, i. e.,
the neighborhood of every vertex on its radial level line is preserved. However,
the offsets of the edges incident to v must be updated. If rotating clockwise,
the offsets of incoming edges of v are reduced by 1 and the offsets of outgoing
edges are increased by 1. The offset updates for rotating counter-clockwise are
symmetric. Depending on the implementation, rotation needs O(deg(v)) resp.
O(|V |+ deg(v)) running time.

The most common technique for crossing reduction in proper level graphs is to
only consider two consecutive levels at a time in multiple top-down and bottom-
up passes. Starting with an arbitrary permutation of the first level, subsequently
the ordering of one level is fixed, while the next one is reordered to minimize
the number of crossings in-between. This one-sided two-level crossing reduction
problem is NP-hard [9] and well-studied. For radial level embeddings we follow
the same strategy and consider the radial one-sided two-level crossing reduction
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(b) Clockwise rotation of level i

Fig. 2. Rotation

problem. Given a 2-level graph G = (V1
.
∪ V2, E, φ) and an ordering π1 of the

first level, our objective is to compute an ordering of the second level and offsets
for the edges with few crossings.

4.1 Properties

Crossings between edges in radial embeddings depend on their offsets and on
the order of the end vertices. There can be more than one crossing between
two edges, if they have very different offsets. We denote the number of cross-
ings between two edges e1, e2 ∈ E in an embedding E by χE(e1, e2). Intuitively,
this number is approximately equal to the difference of the offsets |ψ(e2) −
ψ(e1)|. The exact formula is slightly different, however, with a small shift de-
pending on the vertex ordering, see Lemma 1. The (radial) crossing number
of a radial embedding E and of a level graph G = (V,E, φ) are then natu-
rally defined as χ(E) =

∑
{e1,e2}⊆E,e1 6=e2

χE(e1, e2) and χ(G) = min{χ(E) |
E is a radial embedding of G}.

Lemma 1. Let E = (π, ψ) be a radial embedding of a 2-level graph G = (V1
.
∪

V2, E, φ). Then the number of crossings between two edges e1 = (u1, v1) and
e2 = (u2, v2) is

χE(e1, e2) = max
{

0,
∣∣ψ(e2)− ψ(e1) + b−a

2
∣∣+ |a|+|b|

2 − 1
}

, where

a = sgn (π1(u2)− π1(u1)) and
b = sgn (π2(v2)− π2(v1)) .

Proof. In analogy to horizontal embeddings, edge crossings do not depend on
the exact position of the end vertices, but only on the relative ordering (≺ , �,
or =) and on the edge offsets. We can assume w. l. o. g. that ψ(e1) = 0, because
in any embedding we can rotate the whole second level multiple times without
changing π2 or the offset difference δ = ψ(e2)−ψ(e1). This leads to 3 · 3 · 3 = 27
cases, which are straight-forward to prove, see Tab. 4.1. ut
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Table 1. The crossing number in relation to δ = ψ(e2)− ψ(e1)

u1 v1 ψ(e2) u1 v1 ψ(e2)
vs. vs. vs. χE(e1, e2) vs. vs. vs. χE(e1, e2)
u2 v2 ψ(e1) u2 v2 ψ(e1)

≺ ≺ < |δ| � � > |δ|
≺ ≺ = 0 � � = 0
≺ ≺ > |δ| � � < |δ|
≺ = <

∣∣δ − 1
2

∣∣− 1
2 � = >

∣∣δ + 1
2

∣∣− 1
2

≺ = = 0 � = = 0
≺ = >

∣∣δ − 1
2

∣∣− 1
2 � = <

∣∣δ + 1
2

∣∣− 1
2

≺ � < |δ − 1| � ≺ > |δ|+ 1
≺ � = 1 � ≺ = 1
≺ � > |δ − 1| � ≺ < |δ|+ 1
= ≺ <

∣∣δ − 1
2

∣∣− 1
2 = � >

∣∣δ − 1
2

∣∣− 1
2

= ≺ = 0 = � = 0
= ≺ >

∣∣δ − 1
2

∣∣− 1
2 = � <

∣∣δ − 1
2

∣∣− 1
2

= = < |δ| − 1 = = > |δ| − 1
= = = 0

Corollary 1. Let E be a radial embedding of a 2-level graph G = (V1
.
∪V2, E, φ).

Swapping the position of two vertices v, w ∈ V2 changes the number of crossing
between two edges (·, v), (·, w) ∈ E by at most 1.

Before we show our radial crossing reduction algorithms, we first discuss some
more properties which follow from radial level lines.

Lemma 2. Let G = (V1
.
∪ V2, E, φ) be a 2-level graph and let e1 = (u1, v) ∈ E

and e2 = (u2, v) ∈ E be two edges with a common target vertex v. Then in any
crossing minimal radial embedding E = (π, ψ) of G, π1(u1) < π1(u2) implies
ψ(e2)− ψ(e1) ∈ {0, 1}.

Proof. Assume that ψ(e2)−ψ(e1) 6∈ {0, 1}. Then Lemma 1 implies χE(e1, e2) >
0. We choose an arbitrary crossing between e1 and e2 and show how the em-
bedding can be modified to reduce the number of crossings, see Fig. 3(a) for an
illustration. We exchange the routing of e1 and e2 between v and the crossing: e1
is routed along the old course of e2 until it reaches the crossing. The routing from
there to u1 is not changed. We symmetrically do the same with e2. In the new
embedding e1 and e2 have one crossing less and the number of crossings has not
changed otherwise, contradicting the assumption and proving the lemma. ut

Because of this result, it is clear that only embeddings need to be considered,
where there is a clear parting between all edges incident to the same vertex as
in Fig. 3(b). The parting is that position of the edge list of v that separates the
two subsequences with offsets ψ0 resp. ψ0 + 1. Otherwise unnecessary crossings
are generated between the incident edges, see Fig. 3(c). We also only consider
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radial embeddings with small edge offsets, because large offsets correspond to
very long edges which are difficult to follow, and also lead to more crossings.
Therefore, only the offsets −1, 0, and 1 are used in our algorithms.
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Fig. 3. Not all offset combinations for edges (·, v) ∈ E result in few crossings

Lemma 3. Radial one-sided two-level crossing minimization is NP-hard.

Proof. We show the NP-hardness by reduction from the horizontal one-sided
two-level crossing minimization problem, which is known to be NP-hard [9].
Given a 2-level graph G = (V1

.
∪ V2, E, φ) with a fixed permutation π1 of the

first level, we construct a new 2-level graph G′ = (V ′1
.
∪ V ′2 , E′, φ′) as follows:

G is extended by |E|2 new vertices x0, . . . , x|E|2−1 at the end of the first level
π′1(xi) = |V1| + i, φ′(xi) = 1 and a new vertex y on the second level φ′(y) = 2
that is connected to them by new edges e0, . . . , e|E|2−1, ei = (xi, y).

Let E ′ = ((π′1, π′2), ψ) be a radial embedding of G′ that has a minimum
number of crossings subject to π′1. We can assume w. l. o. g. (because of rotation
and Lemma 2) that π′2(y) = |V2| and ψ(ei) = 0 for all new edges. Then none of
the new edges has a crossing with any of the original edges, because this would
lead to |E|2 crossings, contradicting the minimality of the embedding. Thus,
there are no cut edges, and π2 = π′2|V2 is a solution of the original horizontal
one-sided two-level crossing minimization problem. ut

As a consequence, we use heuristics for an efficient solution of the problem. In
the following, we present three different approaches, extending some well-known
horizontal one-sided two-level crossing reduction methods, namely the median,
barycenter, and sifting heuristics.

4.2 Cartesian Barycenter

With some restrictions, the horizontal barycenter crossing reduction method can
be directly used to compute a radial embedding: The horizontal vertex ordering
defines a radial vertex ordering, and all edge offsets are set to 0. This does not use
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the additional freedom of radial edge routing, however, and therefore introduces
more crossings than necessary. The result is especially bad for vertices whose
neighbors on the first level are far apart. If, for example, a vertex is only adjacent
to the first and last vertex of the first level, its best position is obviously near the
ray, labeling one of the edges as a cut edge. But the horizontal algorithm cannot
do that, and therefore produces an out-of-balance embedding. Even worse, the
result depends on the current position of the ray.

One approach to improve that could be to rotate the first level before comput-
ing the barycenter values to an appropriate position, or maybe even use differ-
ent rotations for different vertices. We propose a simpler, yet equally promising
method. The basic idea stays the same: each vertex should be close to the average
position of its neighbors. However, we use the terms “average” and “position” in
a geometric sense. We assume the vertices of the first level V1 to be uniformly
distributed on a unit circle, according to the given ordering π1. This defines
Cartesian coordinates (x(u), y(u)) ∈ R2 for each u ∈ V1. Then we compute for
each v ∈ V2 the Cartesian barycenter1

bary(v) =
(∑

u∈N−(v) x(u)
|N−(v)| ,

∑
u∈N−(v) y(u)
|N−(v)|

)
of its predecessors N−(v) and sort the vertices circularly around the origin, i. e.,
by the angles of bary(v) in polar coordinates,

β(v) = arctan y (bary(v))
x (bary(v)) + π ·H (−x (bary(v))) · sgn (y (bary(v))) ,

where H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0 is the unit step function.
Many programming languages provide a specialized function atan2(x, y) for
this purpose.

After sorting, we distribute the vertices of the second level uniformly on a
concentric circle with radius 2 and choose for the offset of each edge one of −1,
0, or +1, whichever leads to the shortest edge in a geometric sense. Obviously,
this algorithm has the same running time as its horizontal version:
Theorem 1. The running time of the Cartesian barycenter heuristic is O(|E|+
|V | log |V |).

4.3 Cartesian Median
The Cartesian median heuristic is similar to the Cartesian barycenter heuristic.
The only difference is that we take component-wise the x and y median in-
stead of the component-wise barycenter. The running time stays the same, since
med(v) can be computed in O(N−(v)), see [7]. The median values depend on the
underlying coordinate system (origin and rotation). But since we use the same
coordinates for all median computations, this is no problem. Rotated coordinate
systems, however, might lead to a different results.
1 Note that the division by |N−(v)| can be omitted in an implementation, because it
does not change the polar angle of bary(v).
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4.4 Radial Sifting

As a contrast to the fast and simple algorithms described above, we also de-
veloped an extension of the sifting heuristic, which is slower but generates less
crossings. Sifting was originally introduced as a heuristic for vertex minimization
in ordered binary decision diagrams [14] and later adapted for the (horizontal)
one-sided crossing minimization problem [12]. The idea is to keep track of the
objective function while moving a vertex v ∈ V2 along a fixed ordering of all other
vertices in V2. Then v is placed to its locally optimal position. The method is thus
an extension of the greedy-switch heuristic [8], where v is swapped iteratively
with its successor. For crossing reduction the objective function is the number
of crossings between the edges incident to the vertex under consideration and
all other edges.

The efficient computation of crossing numbers in sifting for horizontal em-
beddings is based on the crossing matrix. Its entries correspond to the number
of crossings caused by pairs of vertices in a particular relative ordering and can
be computed as a preprocessing step. Whenever a vertex is placed to a new po-
sition, only a smallish number of updates is necessary. For radial embeddings,
however, the crossings matrix cannot be computed in advance, because two ver-
tices cannot be said to be in a particular (linear) relative order on radial levels.

Let E = (π, ψ) and E ′ = (π′, ψ) be two embeddings ofG, where E ′ is computed
from E by swapping the vertex v ∈ V2 and its successor w ∈ V2 according to π2,
i. e., π′2(w) = π2(v) and π′2(v) = π2(v)+1. Since swapping the positions of v and
w only affects the crossings of incident edges, the number of crossings in E ′ is
efficiently computed as

χ(E ′) = χ(E)− cE(v, w) + cE′(v, w) , where

cE(v, w) =
∑

u∈N−(v)

∑
x∈N−(w)

χE ((u, v), (x,w)) .

Unfortunately, we cannot directly transfer the ideas of [3] for the efficient
computation of that formula, because in radial sifting the crossing numbers also
depend on the edge offsets, which are not constant in our approach. A change in
the offset of an edge may affect all other edges. Therefore, the overall running
time of this part of the algorithm for one sifting round is O(|E|2) instead of
O(|V ||E|). The total running time of the algorithm, however, is dominated by
the next step, anyway.

In addition to the position of v, we also have to compute the offsets of the
incident edges. As v moves along the second level circle in counter-clockwise
direction, we update the offsets accordingly. Because of Lemma 2 we do not
consider each possible offset combination for each position of v. Intuitively, the
parting of the edges should move around the first level circle in the same direction
as v, but on the opposite side of the circle. Otherwise, the edges incident to v
get longer and tend to increase the number of crossings. Thus, we only decrease
edge offsets by 1, starting with ψ(e) = 1 for all incident edges e, and we also
do this one by one in the order of the end vertices on level 1. The decision for
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which offsets are updated at which position of v is made subject to whether this
leads to an improvement or not. Note that the parting may move around level
1 twice, as offsets are decreased from 1 to −1.

Algorithm 1 shows one round of radial sifting, i. e., each vertex v ∈ V2 is
consecutively tested on each position once. We do not try the position |V2| − 1,
because it is equivalent to position 0 modulo rotation.

Theorem 2. Given a 2-level graph G = (V,E, φ), the algorithm RADIAL-
SIFTING runs in O(|V |2 · |E|) time.

Proof. For each node v ∈ V2 the content of the repeat-until loop in lines 13–
26 is executed O(|V | + deg(v)) times: once per position, and additionally once
per shifted parting. It is thus executed O(|V |2 + |E|) times in total. As the
running times of lines 15 and 17 are O(|E|), the repeat-until loop contributes
O(|V |2 · |E|+ |E|2) to the overall running time.

The only other relevant part are lines 31 and 33, which are executed once for
each pair (v, vi+1). Since the summation needs O(deg(v) · deg(vi+1)), the total
running time of this part is O(|E|2) and is therefore dominated by the above. ut

To allow a harmonic drawing of the computed embedding in the next phase
a final postprocessing step which rotates level 2 with respect to uniform edge
lengths is useful. However, this is only for esthetic reasons and does neither affect
the number of crossings nor the asymptotic running time.

5 Experimental Results

To analyse the performance of our heuristics, we have implemented them in Java.
Further, we have realized the corresponding horizontal versions to compare the
resulting number of crossings with the radial algorithms. We have tested the
implementations using a total number of 5000 random graphs: 50 graphs for
each combination of the following parameters: |V1| = |V2| ∈ {20, 40, 60, 80, 100}
and |E|/|V2| ∈ {1, . . . , 20}.

Figure 5 shows that all radial heuristics generate fewer crossings than their
horizontal equivalents, experimentally by a factor of 0.7. This is a very encour-
aging result, since the running times of the radial algorithms (except sifting) are
similar, see Fig. 4. Like in the horizontal case [10], Cartesian barycenter on av-
erage leaves slightly fewer crossings than Cartesian median. Another similarity
is that radial sifting is the best among all three radial heuristics, but also the
slowest. Usually only few sifting rounds (3−5 for reasonable problem instances)
are necessary to reach a local optimum for all vertices simultaneously, and the
largest reduction of crossings usually occurs in the first round. In our exper-
iments we further observed that the quality of radial sifting does not depend
much on the quality of the initial embedding. However, a “bad” initialization
raises the number of needed sifting rounds and thus the absolute running time.
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Algorithm 1: RADIAL-SIFTING
Input: Two level graph G = (V1

.
∪ V2, E, φ) with radial embedding E = (π, ψ)

Output: Updated embedding E , i. e., positions π2 and offsets ψ
1 foreach v ∈ V2 with deg(v) > 0 do
2 // put v to the first position
3 foreach w ∈ V2 with π2(w) < π2(v) do π2(w)← π2(w) + 1
4 π2(v)← 0
5 let {v = v0, . . . , v|V2|−1} ← V2 be ordered by π2
6 let Ev ← {e0, . . . , edeg(v)−1} be the edges (u, v) ∈ E ordered by π1(u)
7 // initialize offsets as 1
8 foreach ev ∈ Ev do ψ(ev)← 1
9 // initialize counters for position, offset, parting, and crossing number

10 i∗ ← 0; j∗ ← j ← 0; l∗ ← l← 0; c∗ ← c← 0
11 // search the best position for v
12 for i← 0 to |V2| − 2 do
13 repeat
14 // try to improve the parting by reducing the offset of the next edge
15 c1 ←

∑
e∈E

χE(el, e)
16 ψ(el)← j
17 c2 ←

∑
e∈E

χE(el, e)

18 // if successful, then try again, else restore the offset
19 if c2 ≤ c1 then
20 c← c− c1 + c2
21 l← l + 1
22 if l = deg(v) then
23 j ← j − 1
24 l← 0

25 else ψ(el)← j + 1
26 until c1 < c2

27 // remember the best position, offset, parting, and crossing number
28 if c < c∗ then i∗ ← i; j∗ ← j; l∗ ← l; c∗ ← c

29 // swap v and vi+1 and update the crossing number
30 let Evi+1 be the set of edges (·, vi+1) ∈ E incident to vi+1

31 c← c−
∑

ev∈Ev

∑
evi+1∈Evi+1

χE(ev, evi+1 )
32 π2(vi+1)← i; π2(v)← i+ 1
33 c← c+

∑
ev∈Ev

∑
evi+1∈Evi+1

χE(ev, evi+1 )

34 // place v to the best position
35 foreach w ∈ V2 with π2(w) ≥ i∗ do π2(w)← π2(w) + 1
36 π2(v)← i∗

37 // set the best offsets for v’s incident edges
38 for i← 0 to l∗ − 1 do ψ(ei)← j∗

39 for i← l∗ to deg(v)− 1 do ψ(ei)← j∗ + 1
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6 Conclusion

We extended three well known crossing reduction techniques to radial level draw-
ings. Further, we showed by empirical evidence, that using radial instead of
horizontal level lines reduces the number of crossings significantly.

Future research on this topic can be a more efficient sifting algorithm. Also,
there are some interesting problems which we do not touch in this paper: Can
the number of crossings χ(E) in a radial embedding E be computed in O(χ(E))
time? Is χ(E) ≤ 3χ(G) (or similar) for an embedding E computed by one-sided
Cartesian median heuristic on a 2-level graph G as it is for horizontal median [9]?
Are there efficient radial extensions of other crossing reduction heuristics?

References

[1] C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing
and embedding in linear time. Journal of Graph Algorithms and Applications,
9(1):53–97, 2005.

[2] C. Bachmaier, F. Fischer, and M. Forster. Radial coordinate assignment for level
graphs. In L. Wang, editor, Proc. Computing and Combinatorics, COCOON 2005,
volume 3595 of LNCS, pages 401–410. Springer, 2005.

[3] M. Baur and U. Brandes. Crossing reduction in circular layout. In J. Hromkovic,
M. Nagl, and B. Westfechtel, editors, Proc. Workshop on Graph-Theoretic Con-
cepts in Computer Science, WG 2004, volume 3353 of LNCS, pages 332–343.
Springer, 2005.

[4] U. Brandes, P. Kenis, and D. Wagner. Centrality in policy network drawings.
In J. Kratochvíl, editor, Proc. Graph Drawing, GD 1999, volume 1731 of LNCS,
pages 250–258. Springer, 1999.

[5] U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy network
drawings. IEEE Trans. Visual. Comput. Graphics, 9(2):241–253, 2003.

[6] E. G. Coffman and R. L. Graham. Optimal scheduling for two processor systems.
Acta Informatica, 1:200–213, 1972.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 2000.

[8] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks.
Ars Combinatorica, 21(A):89–98, 1986.

[9] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(1):379–403, 1994.

[10] M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance
of exact and heuristic algorithms. Journal of Graph Algorithms and Applications,
1(1):1–25, 1997.

[11] M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS. Springer,
2001.

[12] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline
crossing minimization. In J. Kratochvíl, editor, Proc. Graph Drawing, GD 1999,
volume 1731 of LNCS, pages 217–224. Springer, 1999.

[13] E. Mäkinen. On circular layouts. International Journal of Computer Mathematics,
24:29–37, 1988.



A Radial Adaptation of the Sugiyama Framework 13

[14] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proc. IEEE/ACM International Conference on Computer Aided Design, ICCAD
1993, pages 42–47. IEEE Computer Society Press, 1993.

[15] J. M. Six and I. G. Tollis. A framework and algorithms for circular drawings of
graphs. Journal of Discrete Algorithms, 4(1):25–50, 2006.

[16] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Syst., Man, Cybern., 11(2):109–125,
1981.



14 C. Bachmaier, M. Forster

A Benchmark Results

The following figures provide benchmark results comparing horizontal barycenter
(HB), horizontal median (HM), and horizontal sifting (HS) heuristics with their
radial variants, i. e., Cartesian barycenter (CB), Cartesian median (RM), and
radial sifting (RS).
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