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Abstract. We provide a highly configurable generator for creating ran-
dom directed acyclic graphs and level graphs. The graphs are drawn
uniformly from the set of all possible graphs respecting the provided
parameter set. Generating a structured set of benchmark graphs is a
built-in feature.

1 Introduction

A basic goal of empirically testing (graph) algorithms is to obtain preferably
general statements about properties of the considered algorithm. The graphs of
the benchmark set should be as unbiased as possible. Minimizing bias ultimately
leads to the demand of drawing the graphs uniformly from the overall set of
graphs restricted to the given parameter set like number of vertices or density.
However, finding such graphs, which usually also have further properties as
connectedness or levels, is not as straightforward as described by the seminal
Erdős/Rényi model [5]. According to the survey [1] among the graph drawing
and algorithm engineering community attending the Dagstuhl seminar 11191,
connectedness is the most important property for analytical benchmarks.

We generate simple directed acyclic graphs (DAGs) with a specified number
of vertices n, a number of edges m, and with or without a leveling of the vertices.
Simple means that the graphs do not contain self-loops or multi-edges. The
generation consists of two steps. First, a leveling is drawn uniformly from all
assignments of the vertices to levels (with an optional restriction to a maximum
number of levels and/or to a maximum number of vertices per level), which allow
for at least m edges. Second, the edges are drawn by sampling uniformly from all
m-element subsets, which correspond to a connected graph, of the set containing
all potential edges.

The special case m = n− 1 is equivalent to sampling a uniform spanning tree,
for which there are elaborate algorithms based on the matrix-tree theorem and
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Markov chains. Wilson [10] gives a survey of previous approaches and proposes
an algorithm which samples a uniform spanning tree in the cover time of a graph.
To our best knowledge, up to date there is no special algorithm for sampling
uniform connected graphs for m > n− 1. The algorithm proposed by Rodionov
et al. [8, 9], which draws a spanning tree first and then uniformly samples the
remaining m − n + 1 edges, guarantees only attainability, i. e., each graph is
drawn from the set of graphs with the specified parameters with only positive
probability rather than uniformly, i. e., with equal probability. Thus, we resort
to the commonly used trial method, which repeatedly uniformly samples graphs
until the first happens to be connected.

We provide an example set of benchmark graphs and a generator, which is
given both as a ready to use binary executable, and as well documented Java
source code on http://www.graphdrawing.org/data.html and within the Graph
Archive [2]. All parts are published under a liberal free license, i. e., you can do
anything with them as long as their origin is cited.

2 Preliminaries

A k-level graph G = (V,E, φ) is a DAG G = (V,E) with a surjective level
assignment φ : V → {0, 1, . . . , k − 1} for the vertices where φ(u) < φ(v) for
each edge (u, v) ∈ E. We define n = |V |, m = |E|, and the width w to be the
maximum number of (non-dummy) vertices per level. An edge (u, v) is short if
φ(v)− φ(u) = 1 and long otherwise. A graph is proper if all edges are short.

Sometimes it is useful to make a level graph proper by adding φ(v)−φ(u)− 1
dummy vertices for each edge (u, v), which split (u, v) into φ(v) − φ(u) many
short edges. For an embedded level graph, the vertices on each level are ordered
from left to right. As this does not fix the routing for long edges, it can be useful
to make the graph proper as described above and let the numbering also contain
the dummy vertices.

3 Generation

We consider the problem of sampling uniformly from the set G of n-vertex
m-edge undirected labeled graphs with a specific property. An obvious way of
guaranteeing uniformity is to explicitly construct each element of G and then
randomly select one of them. However, this gives rise to astronomically large
memory demands. If, for instance, G was the set of all (labeled) trees, a number

of
(n(n−1)

2
n−1

)
trees would have to be simultaneously held in memory. A common

approach to circumvent this is the trial method [8, 9]. If there is an effective
algorithm for sampling uniformly from some superset G′ ⊃ G, repeatedly sample
an element G of G′ until G happens to be member of G, too, where the outcome of
each repetition is stochastically independent. On the downside, the trial method

may still be highly impractical if the fraction |G|
|G′| is very small, thus requiring a

huge number of restarts.
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Let k be the maximum number of levels and w be the maximum number of
vertices on a level. If we are only interested in uniform DAGs without levelings,
we delegate to generating a leveled graph with k = n and w = 1 and discard the
leveling afterwards.

3.1 Counting Admissible Graphs

The function call f(n, k,m, 0) with f recursively defined as shown by (1) counts
the number of admissible level graphs within the given parameters. There, rn,
rm, and rl are the numbers of remaining vertices, edges, and levels, respectively.
If the result should be proper, then np := n0 determines the number of vertices
recursively placed on the preceding level. For non-proper graphs np := n− rn is
the number of possible edges from a new vertex to the previously placed ones.
Then n0 is ignored.

f(rn, rl, rm, n0) =



1 if rn = 0 ∧ rm = 0

0 if rn = 0 ∧ rm > 0

0 if rl = 0 ∧ (rn > 0 ∨ rm > 0)(
rn·np

rm

)
if rl = 1 ∧ rn ≤ w

0 if rl = 1 ∧ rn > w

z else

with z :=

min{rn,w}∑
c=0

(
rn
c

)
·
min{rm,c·np}∑

d=0

(
rm
d

)
· f(rn − c, rl − 1, rm − d, c)

(1)

In the first case of (1) all vertices and edges are uniquely placed and the
recursion terminates. In both the second and third case no possibility is left to
complete the graph and, thus, we are done. In the fourth case there is only one
level left, which has to hold all remaining vertices rn. If possible, then we choose
the positions of the remaining rm edges from the set of all possibilities of an
edge to the vertices on the last level from all previously positioned vertices. If
there is not enough space on this level there are no admissible graphs, covered
by case five. In all other cases we sum up over all possibilities to draw vertices
from the remaining vertices times the sum of all possibilities to draw edges from
the remaining edges times the previous result.

To evaluate f(n, k,m, 0), we need an overall running time of O(n3 ·m2) for
arbitrary level graphs and O(n4 ·m2) for proper level graphs. For that we use
dynamic programming with a (n3 ·m2)- or (n4 ·m2)-dimensional look-up table,
respectively, to cache already computed intermediate results.

To generate connected level graphs the only method known so far is the
restart method. However, then the above method is too slow since many restarts
are necessary for sparse graphs. Thus, we use the more relaxed version (2), which
only gives a uniformly drawn leveling from the set of all possible levelings. We
then add the edges in an independent second step.
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3.2 Algorithm

The outline of our sampling algorithm is as follows. First, a random leveling
φ is drawn employing the same idea of dynamic programming as above. The
admissible candidates are levelings which allow for at least one level graph with
the given parameters. This leads to the recursive equation shown in (2). As a
consequence, we need only O(n3 · m) time for arbitrary levelings graphs and
O(n4 ·m) time for proper levelings.

f(rn, rl, rm, n0) =



1 if rn = 0 ∧ rm = 0

0 if rn = 0 ∧ rm > 0

0 if rl = 0 ∧ (rn > 0 ∨ rm > 0)

1 if rl = 1 ∧ rn ≤ w ∧ rm ≤ rn · np
0 if rl = 1 ∧ (rn > w ∨ rm > n · np)

z else

with z :=

min{rn,w}∑
c=0

(
rn
c

)
· f(rn − c, rl − 1,max{0, rm − c · np}, c)

(2)

The differences to (1) are that we count the number of admissible edges
instead of the edges actually drawn. Thus, rm counts how many potential places
for edges have to be provided by the forthcoming levels instead of the remaining
edges to be drawn. In the fourth and fifth case we ensure to only count possibilities
of edges of the last level to vertices on the second to last level. Further, in the
else-case we need not to multiply with the number of edge combinations.

To ensure that there are no empty levels between any two non-empty levels
it suffices to let in (2) the sum index c start from 1 instead of 0 if vertices have
been placed yet. The same holds for arbitrary level graphs and (1).

Now that we have a fixed leveling, we uniformly draw the edges of the graph.
Let E(φ) be the set of potential edges which the graph to generate may contain.
General leveled graphs forbid intra-level edges, i. e., E(φ) = {(u, v) ∈ V × V :
φ(v)− φ(u) ≥ 1}. If the graph has to be proper leveled, then E(φ) = {(u, v) ∈
V × V : φ(v)− φ(u) = 1}. The algorithm builds up the array representing the
set of potential edges E(φ) in O(n2) by checking each pair of vertices if the edge
connecting them is inter level (or proper, if required).

The algorithm (re)draws m-element subsets of E(φ) until the corresponding
graph is connected. Let s be the number of repetitions required to find such a
suitable edge set. The running time for each restart is in O(m) as the algorithm
repeatedly draws an edge from the back part of the array, which is then swapped
to the front part. This is a common technique for uniformly sampling m-element
subsets.

The complete algorithm is sketched in Algorithm 1. Its overall running time is
in O(n3 ·m+ s ·m) for arbitrary and O(n4 ·m+ s · n) for proper level graphs. If
connectedness is not required, then any m-element edge set is suitable, resulting
in an improved runtime with s = 1.
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Input: Number of vertices n, number of edges m, number of levels k, maximum
number of vertices per level w.

Output: Uniformly random simple (connected, proper) leveled graph
1 V ← {1, . . . , n}
2 RV ← V // |RV | = rn
3 rm ← m
4 n0 ← 0
5 for l← 0 to k − 1 do
6 if leveling shall be proper then np ← n0

7 else np ← n− |RV |
8

9 for c← 0 to min{|RV | , w} do
10 qc ←

(|RV |
c

)
· f(|RV | − c, k − l − 1,max{0, rm − c · np}, c)

11 end
12 draw c from {0, . . . ,min{|RV | , w} with probability qc∑

d∈{0,...,min{|RV |,w}} qd

13 draw Vl uniformly from
(
RV
c

)
14 for v ∈ Vl do φ(v)← l
15

16 RV ← RV \ Vl
17 rm ← max{0, rm − c · np}
18 n0 ← c

19 end
20 repeat

21 draw E uniformly from
(E(φ)
m

)
22 until (V,E) is connected or connectedness is not intended
23 return (V,E, φ)

Algorithm 1: Generation

In practice, we found that the lazily evaluated look-up table for the computa-
tion of the leveling is in most cases filled only sparsely. Thus, the running time
is dominated by the summand s ·m when generating sparse connected graphs,
while for dense graphs, the computation of the leveling accounts for the majority
of time.

3.3 Checking Parameters

First we have to check the provided (ranges of) parameters, i. e., if the desired
graph(s) do exist and thus our algorithm terminates successfully. For connected-
ness the number of desired edges m must be large enough, i. e., m ≥ n− 1.

For level graphs, we have to check that there is enough space to contain
all vertices, i. e., n ≥ k · w. Remember that n excludes dummy vertices. Again,
for connectedness, k > 1 is required. Further, we check that m is at most the
maximum number of potential edges in any leveling.

In the proper case the leveling allowing for the highest number of edges mmax

has a minimum (but not less than two) number of levels, each occupied by a
maximum number of vertices, i. e., only capped by dn2 e and w. This can be proven
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by a simple inductive argument. Moving a vertex v from the last level to the
last but two level does not reduce the number of potential edges, as then v is
potentially adjacent not only to the vertices on the last but one level (as before),
but additionally to the vertices placed on the last but three level (if there is one).
Thus, if the level width was unrestricted, i. e., w ≥ n

2 , the most dense leveling
consists in two nearly equally occupied levels. When n is not divisible by w, it
is optimal if the first or last level is the single level with less than min{w, dn2 e}
vertices, as its vertices are anyway potentially adjacent to the vertices of only
one level. We obtain

mmax = (l> − 1) · w2
>︸ ︷︷ ︸

between maximally
occupied levels

+ w< · w>︸ ︷︷ ︸
between the last and
the last but one level
if n not divisible by w

, (3)

where w> = min{w, dn2 e}, w< = n mod w>, and l> = b k
w>
c.

In the general case with long edges, the leveling allowing for the highest
number of edges mmax has k levels, which are occupied by vertices almost equally.
This is because the only edges of the complete graph, which are forbidden by a
given leveling, are the intra level edges, such that minimizing the number of pairs
of vertices on the same level maximizes the number of potential edges. We obtain

mmax =
l< · (l< − 1)

2
· w2

< +
l> · (l> − 1)

2
· w2

> + l< · l> · w< · w> , (4)

where w< = bnk c, w> = w< + 1, l> = n mod k, and l< = k − l>.

3.4 Uniformity

The primary design goal of our generator was to sample the graph uniformly from
the set of all graphs with the requested properties. Note that we are referring to
labeled graphs, i. e., all vertices are considered distinct and we do not make any
statements about the probability distributions of graphs up to isomorphism. To
our best knowledge, up to date there is no special algorithm known that uniformly
samples connected graphs with prescribed vertex and edge numbers. Therefore,
we employ the commonly used trial method, which repeatedly uniformly samples
graphs until the first happens to be connected.

For generating embedded graphs, we uniformly sample the leveling first and
then uniformly sample the order of the vertices on their level under the condition
of that fixed leveling.

4 Generator

4.1 Usage

The general calling scheme for the generation of single graphs is java -jar

DAGmar.jar <parameters>, where <parameters> is a valid combination of the
options listed in Tab. 1. For example, the call



DAGmar: Library for DAGs 7

java jar DAGmar.jar -n 10 -d 1.5 -c -l 4,5 -f uniform

generates a connected graph with 10 vertices, 15 edges using at most 4
levels with at most 5 vertices per level. The result is written into the file
uniform.graphml.

Table 1. Parameters for generating single graphs

Option Description

-n <n> Defines the number of vertices n. Mandatory.
-e <m> Defines the number of edges m. Excludes -d, but one of either -e or

-d is mandatory.
-d <d> Defines the density d = m

n
, i. e., the ratio of edges compared to the

vertices. Excludes -e, but one of either -e or -d is mandatory.
-c The graph will be connected. Optional.
-l <k>[,<w>] Generate a level graph. Optional. The mandatory parameter defines

the number of levels k. The optional parameter defines the maximum
width w ∈ {1, . . . , n}, i. e., the maximum number of (non-dummy)
vertices per level (if omitted, w = n). Levels may be empty.

-p Generate a proper graph, i. e., all edges connect vertices on consecutive
levels. Optional, but only valid in conjunction with -l and invalid in
conjunction with -el or -ed.

-el Generate a level embedding for the graph, i. e., positions for the vertices
on their levels. Optional, but only valid in conjunction with -l and
invalid in conjunction with -p or -ed. Contrary to -ed, the routing of
long edges is not determined here.

-ed Generate a level embedding for the graph, i. e., positions for the vertices
on their levels and crossings of long edges with level lines represented
by dummy vertices. Optional, but only valid in conjunction with -l and
invalid in conjunction with -p or -el. This may cause the generation
of up to O(m · k) dummy vertices.

-s <seed> Define a seed (long int) for the internal random number generator.
Optional. This ensures reproducible results. If omitted, a (pseudo)
random seed will be used.

-f <file> The resulting graph will be written into the GraphML file
<file>.graphml. Optional. If it is omitted, the graph is written to the
standard output (e.g., the console).

The general calling scheme for generating suites of graphs is java -jar

DAGmar.jar multi <parameters> <targetdir>, where <parameters> is a valid
combination of the options listed in Tab. 2. Here each <range> parameter is
a comma separated list of ranges of the form <l> to <h> by <s>, which de-
fines the set of numbers {r ∈ Q|l ≤ r ≤ h, (r − l) ≡ 0 (mod s)}. Alternatively,
the suffix by <s> may be omitted, which is a shortcut for "<l> to <h> by 1".
Further, a sole number l suffices, which is a shortcut for "<l> to <l> by 1".
Each parameter <form> can either be the same as a <range> or an arithmetic
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expression whose result will be rounded to the nearest integer. The expression
may contain the variables n, m, d, k as defined in Tab. 1, the arithmetic op-
erators +, -, *, /, ^ with the usual precedence and unary functions sqrt(),
ceil(), floor(), as well as braces (). Additionally, the binary operators & and
| represent the minimum and maximum of two values, respectively, and have the
least precedence. -l goldenratio is a shortcut for -l "ceil(sqrt(2 * 1.2 *

n / (1 + sqrt(5)))), ceil((1 + sqrt(5)) / 2 * k)", which corresponds

to a bounding rectangle with an aspect ratio of w
k = 1+

√
5

2 and an area large
enough to contain all vertices (see Sect. 4.5). The resulting graphs are written
into the directory <targetdir>.

4.2 Example

We created the 1960 provided graphs with the following call.

java -jar DAGmar.jar multi -n "20 to 400 by 20" \

-d "1.6 to 10.6 by 1" -i "0 to 9" -l goldenratio -c -s 308 \

-f uniform graphs

We obtain for each n ∈ {20, 40, . . . , 400} and m ∈ {1.6n, 2.6n, . . . , 10.6n}
ten random connected graphs with a leveling respecting the aspect ratio of the

golden rectangle 1+
√
5

2 . Thus, the maximum number of vertices per level is about
1.6 times the maximum number of levels. Note that, considering graphs with
a number of 20 vertices, there are no graphs with a density of 9.6 or 10.6 as
even the complete graph only has 190 edges, and the suite also lacks graphs with
a density of 7.6 and 8.6 because the leveling constraints allow for at most 150
edges. This is explained in Sect. 4.5.

The result is a directory graphs containing subdirectories for each density
d, which in turn contains all graph instances with density d. The graph file
names match the uniform n<n> e<e> i<i>.graphml pattern. The generation
completed after a (sequential) computation time of 198 hours and 37 minutes on
an Intel Core 2 CPU at 2.66 GHz.

4.3 Seeds

In order to guarantee reproducible results, the generator uses the pseudorandom
number generator of the Java API, which implements an algorithm based on
a linear congruential formula proposed by Knuth [7]. The generator can be
initialized by a seed. Calling the generator twice with the same parameters and
seed yields the same graph.

For generating a suite of graphs, the specified seed is used to in turn generate
the seeds of the individual graphs. As this allows to skip the actual generation of
individual graphs without influencing the outcome of the others, the generation
of different instances can executed in parallel. For an example, the execution of

java -jar DAGmar.jar multi -n 400 -d 2.0 -i "0 to 4" -s 1234
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Table 2. Parameters for generating a suite

Option Description

-n <range> Define the integer range N for the number of vertices n ∈ N .
-d <range> Define the rational range D for the densities d ∈ D.
-i <range> Define the number of instances which will be produced per graph size.

Optional. This is an integer range rather than a single number, as
this has consequences on the reproducibility. While using the same
random generator the ith generated instance is (most likely) different
from the (i+ 1)th. For example, the range l to h with step s causes
the generation of h+ 1 graphs with the same size, but only bh−l

s
+ 1c

of them will be stored. Omitting this parameter has the same effect as
-i 0.

-c The graphs will be connected. Optional.
-l <form>[,<form>]

Generate level graphs. Optional. The mandatory parameter defines
the number of levels k. The optional parameter defines the maximum
width w ∈ {1, . . . , n}, i. e., the maximum number of (non-dummy)
vertices per level (if omitted w = n). Levels may be empty.

-p Generate proper graphs, i. e., all edges of a graph end on consecutive
levels. Optional, but only valid in conjunction with -l.

-el Generate a level embedding for each graph, i. e., positions for the
vertices on their levels. Optional, but only valid in conjunction with
-l and invalid in conjunction with -p or -ed. Contrary to -ed, the
routing of long edges is not determined here.

-ed Generate a level embedding for each graph, i. e., positions for the
vertices on their levels and crossings of long edges with level lines
represented by dummy vertices. Optional, but only valid in conjunction
with -l and invalid in conjunction with -p or -el. This may cause the
generation of up to O(m · k) dummy vertices per graph.

-s <seed> Define an integral seed for the random number generator. Optional.
This ensures reproducible results. If omitted, a (pseudo) random seed
will be used.

-flat Omit the generation of subdirectories for different densities. Optional.
All files will be placed directly under the directory <targetdir>.

-f <file> The resulting graphs will be named <file> n<n> e<e> i<i>.graphml.
Mandatory.
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and

java -jar DAGmar.jar multi -n 400 -d 2.0 -i "5 to 9" -s 1234

on two different computers yields the same set of graphs as calling

java -jar DAGmar.jar multi -n 400 -d 2.0 -i "0 to 9" -s 1234

on a single computer.

4.4 Format

The resulting graphs are in the GraphML [6] format with some user defined node
(vertex) attributes. The attribute hierarchy.level defines the level number
from 0 to k − 1. When using one of the embedding option -el or -ed, then
hierarchy.pos defines the order of the vertices on a level by consecutively
numbering them from 0 to at most w − 1. Finally, only when using the option
-ed, then there is the boolean flag hierarchy.dummy indicating whether or not
the current vertex is a dummy. Figure 1 shows the general outline.

<graphml ...>
<key id="level" for="node" attr.name="hierarchy.level" attr.type="int" />
<key id="pos" for="node" attr.name="hierarchy.pos" attr.type="int" />
<key id="dummy" for="node" attr.name="hierarchy.dummy" attr.type="boolean" />
<graph edgedefault="directed">

<node id="n0">
<data key="level">0</data>
<data key="pos">0</data>
<data key="dummy">false</data>

</node>
<node id="n1">

<data key="level">1</data>
<data key="pos">0</data>
<data key="dummy">false</data>

</node>
...
<edge source="n0" target="n1" />
...
</graph>

</graphml>

Fig. 1. Example Document

4.5 Golden Ratio

The set of non-proper graphs bundled with this generator were generated with
the -l goldenratio option, so that the leveling constraints k and w obey the
golden ratio, i. e.,

w =
1 +
√

5

2
· k . (5)



DAGmar: Library for DAGs 11

We require the rectangle defined by k and w to be large enough to support for
at least β · n vertices. β = 1 would be sufficient but we also want to leave some
space for variation on the placement of the vertices. Solving

β · n ≤ w · k =
1 +
√

5

2
· k2 (6)

for k we obtain

k ≥

√
2 · β · n
1 +
√

5
. (7)

We have chosen β = 1.2 for the generation of the bundled graphs. For

graphs with n = 20 vertices, k is set to 4 because k ≥
√

2·1.2·20
1+
√
5
≈ 3.85. Then

mmax = 4·3
2 · 5

2 = 150, so that in this case, the levelling constraints do not allow
for graphs with a density greater than m

n = 150
20 = 7.5. We could have chosen

β to be large enough for our suite to contain the graphs with 20 vertices and
densities of 7.6 or even 8.6, too. But those graphs would be higher than wide and
thus be far from golden ratio.

When the program detects that the suite to generate contains some infeasible
combinations of n, m, k, and w, it simply skips those combinations and issues a
warning.

5 Conclusion

To our best knowledge, the trial method is the only known method for generating
level graphs which are drawn uniformly from the set of all level graphs with
the same parameters. This is somehow unsatisfactory, as it causes long running
times especially for thin graphs. Then, many results must be discarded and the
algorithm restarted. There is no concrete upper bound on the number of passes,
although the algorithm terminates almost surely, i. e., with probability one.

A next step will be to randomly generate level graphs with some structure,
e. g., the graphs in Rome library [3] are “basically” series-parallel graphs. Thus,
specialized algorithms, e. g., crossing reduction algorithms, may have a chance
to detect and then exploit such structures. However, an open question is what
“basically” means at all. On the other hand, on nearly complete level graphs, each
crossing reduction is similarly successful as there is no good embedding with
significantly fewer crossings.

A problem with real world graphs, like the North DAGs, which are a subset
of the AT&T Graphs [4], is that most of them are very biased, e. g., have
irregular sizes, which makes them unsuitable for benchmarks verifying asymptotic
running times. In many cases either the characteristics of the graphs are virtually
unexplored or the graphs are lacking most of the desired properties, such that
special qualities of the algorithms cannot be evaluated.
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