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Abstract. The rank aggregation problem consists in finding a consen-
sus ranking on a set of alternatives, based on the preferences of individ-
ual voters. These are expressed by permutations, whose distance can be
measured in many ways.

In this work we study a collection of distances, including the Kendall
tau, Spearman footrule, Spearman rho, Cayley, Hamming, Ulam, and
Minkowski distances, and compute the consensus against the maximum,
which attempts to minimize the discrimination against any voter.

We provide a general schema from which we can derive the NP-hardness
of the maximum rank aggregation problems under the aforementioned
distances. This reveals a dichotomy for rank aggregation problems under
the Spearman footrule and Minkowski distances: the common sum ver-
sion is solvable in polynomial time whereas the maximum version is NP-
hard. Moreover, the maximum rank aggregation problems are proved to
be 2-approximable under all pseudometrics and fixed-parameter tractable
under the Kendall tau, Hamming, and Minkowski distances.

1 Introduction

The task of ranking a list of alternatives is encountered in many situations. One
of the underlying goals is to find the best consensus. This task is known as the
rank aggregation problem, and was widely studied in the past decade [1, 13].
The problem has numerous applications in sports, voting systems for elections,
search engines and evaluation systems on the web.

From mathematical and computational perspectives, the rank aggregation
problem is given by a set of m permutations on a set of size n, and the goal is to
find a consensus permutation with minimum distance to the given permutations.
There are many ways to measure the distance between two permutations and to
aggregate the cost by an objective function. Kemeny [19] proposed to count the
pairwise disagreements between the orderings of two items, which is commonly
known as the Kendall tau distance. For permutations it is the ’bubble sort’ dis-
tance, i. e., the number of pairwise adjacent transpositions needed to transform
one permutation into the other, or the number of crossings in a two-layered
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drawing [6]. Another popular measure is the Spearman footrule distance [11],
which is the L1-norm of two n-dimensional vectors.

The geometric median of the input permutations is commonly taken for the
optimal aggregation, which means the sum of the cost of the comparison of each
input permutation and the consensus. From the computational perspective this
makes a difference between the Spearman footrule and the Kendall tau distance,
since the further allows a polynomial time solution via weighted bipartite match-
ing [13], whereas the latter leads to an NP-hard rank aggregation problem [3],
even for four voters [6,13]. It has an expected 11

7 randomization [2], a PTAS [20],
and is fixed-parameter tractable [5, 18].

Here we study the maximum version, which attempts to avoid a discrimina-
tion of a single voter or permutation against the consensus. The objective is a
minimum k such that all permutations are within distance k from the consensus.
Biedl et al. [6] studied this version for the Kendall tau distance and showed that
determining whether there is a permutation τ which is within distance at most
k to all input permutations, is NP-hard, even for any m ≥ 4 permutations.

There are other distance measures on permutations than the Kendall tau
and the Spearman footrule distances. These can be derived from steps in sorting
algorithms. In their fundamental study Diaconis and Graham [11] relate the
Kendall tau and Spearman footrule distance, and the Spearman rho and Cayley
distance. Critchlow [9] added the Hamming and edit distances.

Our main contribution is a general schema for the complexity analysis, which
allows us to prove that the maximum rank aggregation problem is NP-hard and
fixed-parameter tractable under any metric d which satisfies some requirements.
These are granted by the aforementioned distances. For the NP-hardness results
we provide a simpler reduction from the Closest Binary String problem and
from the Hitting String problem. Previous reductions used the Feedback
Arc Set problem (see [6, 13]).

The paper is organized as follows. After some preliminaries in Sect. 2 we show
in Sect. 3 that Maximum Ranking (MR) is tractable under the Maximum
distance, whereas MR is intractable under many other distances as shown in
Sect. 4. In Sect. 5 we establish that MR is 2-approximable for pseudometrics.
Finally, in Sect. 6, we present fixed-parameter algorithms to solve MR under
various distances.

2 Preliminaries

For a binary relation R on a domain D and for each x, y ∈ D, we write x <R y if
(x, y) ∈ R and x ≮R y if (x, y) /∈ R. A binary relation κ is a (strict) partial order
if it is irreflexive, asymmetric and transitive, i. e., x ≮κ x, x <κ y ⇒ y ≮κ x,
and x <κ y ∧ y <κ z ⇒ x <κ z for all x, y, z ∈ D. Candidates x and y are called
unrelated by κ if x ≮κ y ∧ y ≮κ x, which we denote by x 6≷κ y. The intuition
of x <κ y is that κ ranks x before y, which means a preference for x. If x <κ y
or y <κ x, we speak of a constraint of κ on x and y. For X ,Y ⊆ D we denote
X <κ Y if ∀

x∈X
∀
y∈Y

x <κ y and define x <κ Y and X <κ y accordingly.



On Maximum Rank Aggregation Problems 3

A total order is a complete partial order, i. e., x <τ y ∨ y <τ x for all
x, y ∈ D with x 6= y. Let n = |D| and n = {1, . . . , n}. For every total or-
der τ there is a unique permutation, i. e., a bijection τ ′ : D → n such that
x <τ y ⇔ τ ′(x) < τ ′(y). In the rest of the paper we identify total orders
and their corresponding permutations, taking the view whichever comes in more
handy. The set of all permutations on D is denoted by Perm(D). We denote the
permutation {x1, . . . , xn} → n : xi 7→ i by [x1x2 . . . xn].

A total order τ ∈ Perm(D) is a total extension of a partial order κ if τ does
not contradict κ, i. e., x <κ y implies x <τ y for all x, y ∈ D. We denote the set
of total extensions of a partial order κ by Ext(κ).

A bucket order is a partial order κ for which unrelatedness 6≷κ is transitive.
Then 6≷κ is an equivalence relation whose equivalence classes are called buckets.
In other words, κ induces a total order order on the buckets while candidates of
the same bucket are unrelated, see [1, 2, 15].

A transposition is a permutation on n switching the positions of two candi-
dates. Hence, for positions i, j ∈ n, we define the transposition Ti,j ∈ Perm(n)
by Ti,j(i) = j, Ti,j(j) = i and Ti,j(k) = k for k 6∈ {i, j}. Transpositions can
also be considered as operations acting on permutations on D. For x, y ∈ D and
σ ∈ Perm(D) we say Tσ(x),σ(y) ◦ σ ∈ Perm(D) is the transposition of x and y in
σ. Transpositions Ti,j of adjacent candidates with |i− j| = 1 are called swaps.

A binary function d : Perm(D) × Perm(D) → R is called a pseudometric if
d(σ, τ) ≥ 0, d(σ, τ) = d(τ, σ), σ = τ ⇒ d(σ, τ) = 0, and d(σ, τ)+d(τ, ρ) ≥ d(σ, ρ)
for all σ, τ, ρ ∈ Perm(D). It is a metric if, additionally, σ = τ ⇔ d(σ, τ) = 0.

Next we introduce the main concepts of this work: The maximum version of
the rank aggregation problem under various distances [9, 10].

Definition 1 (Maximum Ranking (MR)).
Instance: A set D of n candidates, m voters σ1, . . . , σm ∈ Perm(D), k ∈ N.
Question: Does there exist a permutation τ ∈ D with maxmj=1 d(σj , τ) ≤ k?

Then permutation τ is called k-consensus. Observe that this is equivalent to say
that d(σj , τ) ≤ k for all voters σj , j ∈ m.

Let σ, τ ∈ Perm(D). Define the set of dirty pairs K(σ, τ) = {{x, y} ⊆ D :
x <σ y ∧ y <τ x} as the set of pairs of candidates x, y ∈ D where σ and τ
disagree on their order. Then the Kendall tau distance K is defined by K(σ, τ) =
|K(σ, τ)|. It coincides with the minimum number k of swaps T1, . . . , Tk such that
τ = Tk ◦ . . .◦T1◦σ. If we also allow switching non-adjacent candidates, we obtain
the Cayley distance C(σ, τ), which is the minimum number of transpositions
T1, . . . , Tk such that τ = Tk ◦ . . . ◦ T1 ◦ σ. A permutation on n can also be
specified by its constituent cycles. A cycle C = (x1x2 . . . x|C|) of ρ ∈ Perm(n) is
a (cyclic) sequence of distinct candidates such that ρ(xi) = xi+1 for 1 ≤ i < |C|
and ρ(x|C|) = x1. The cycles form a partition of n. Denote by ]C(ρ) the number of
cycles of ρ. The Cayley distance can be expressed as C(σ, τ) = n−]C(τ◦σ−1) [10].

Define the set of displaced candidates by H(σ, τ) = {x ∈ D : σ(x) 6= τ(x)} as
the set of candidates x ∈ D where σ and τ disagree on their position. The
Hamming distance H is defined by H(σ, τ) = |H(σ, τ)|, which is the num-
ber of positions i ∈ n where σ−1(i) 6= τ−1(i). This view is also taken by the
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Hamming distance between strings s, t ∈ {0, 1}n, which is defined as H(s, t) =
|{i ∈ n : s(i) 6= t(i)}| where s(i) denotes the i-th character of s.

Let σ, τ ∈ Perm(D). A tuple (x1, . . . , xl) with xi ∈ D is a common sub-
sequence of σ and τ if i < j ⇔ xi <σ xj ∧ xi <τ xj . Let lcs(σ, τ) =
max{ l : (x1, . . . , xl) is a common subsequence of σ and τ }. Then the Ulam dis-
tance is U(σ, τ) = n− lcs(σ, τ).

Finally, the Minkowski distance Fp is defined as Fp(σ, τ) =(∑
x∈D |σ(x)− τ(x)|p

) 1
p for p ∈ N \ {0}. F1 is also known as the Spear-

man Footrule distance or taxicab metric. F2 is the Euclidean metric
and also known as the Spearman rho distance [10]. To simplify proofs
we introduce the notion of the raised Minkowski distance F̂p defined by

F̂p(τ, σ) = (Fp(τ, σ))p =
∑
x∈D |τ(x)− σ(x)|p.

One can also consider the limit for p → ∞ and p → −∞. The Chebyshev
or Maximum distance is F∞(σ, τ) = maxx∈D |σ(x)− τ(x)|. Define the Minimum
distance F−∞(σ, τ) = minx∈D |σ(x)− τ(x)|. Note that F−∞ is not a metric and
satisfies only non-negativity and symmetry.

3 Efficient Algorithms

Theorem 1. MR is efficiently solvable under the Maximum distance F∞.

Proof. To find a permutation τ satisfying maxmj=1 maxx∈D |σj(x)− τ(x)| ≤ k ,
we solve a maximum matching problem in the bipartite graph G = (V, E) with
vertices V = D ·∪ n and an edge (x, i) ∈ E if maxmj=1 |σj(x)− i| ≤ k. Every
matching of size n corresponds to a k-consensus τ and vice versa. As |E| <
n(2k + 1), this can be done in O(n2 · k) time. For an improvement observe that
the suitable positions for each candidate are consecutive, thus form an interval.
Assign to each candidate x ∈ D the interval Ix = {i ∈ n : maxmj=1 |σj(x)− i| ≤
k}. Then iterate over the positions i ∈ n. In step i, select the candidate to
place at position i. Choose from those candidates x with i ∈ Ix and which
have not been placed before. If there are multiple suitable candidates, prefer a
candidate whose interval has the least upper endpoint. In the case that there
are no suitable candidates, reject the instance. We use a heap to manage the
intervals of unplaced candidates, inserting the interval once we reach its lower
endpoint. Determining the endpoints of the intervals can be done in O(n · m)
and the iteration is done in O(n log n), resulting in a total running time of
O(n(log n+m)). ut

4 Intractability Results

We show that MR is NP-complete under the Hamming, Minkowski, Kendall
tau, Cayley, Ulam and the Minimum distances. As these distances can be effi-
ciently computed between total orders [4,6,9,21], membership is in NP. For the
NP-hardness proofs we develop a general schema. First we proof that the NP-
complete Closest Binary String problem [16] can be reduced to a special
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case of MR under any metric subject to Requirements 1 and 2 defined below.
Then we show that these requirements are satisfied by all of the aforementioned
metrics except the Minimum distance, for which we provide a reduction from
the NP-complete Hitting String problem [14].

Definition 2 (Closest Binary String [16]).
Instance: k, n ∈ N, a list s1, . . . , sm ∈ {0, 1}n of m binary strings of length n.

Question: Does there exist a string t ∈ {0, 1}n with maxmj=1H(sj , t) ≤ k?

For the rest of this section, we introduce distinct elements ai, bi and sets
Bi = {ai, bi} for i ∈ n and let D =

⋃n
i=1 Bi. Let κ be the bucket order on D

with buckets Bi ordered by B1 <κ . . . <κ Bn. We call a permutation local if it is
an extension of κ. We state the following properties to be met by a metric d in
order to be applicable in the forthcoming reduction.

Requirement 1 (Optimality of local permutations). Let σ1, . . . , σm ∈
Ext(κ) and k ∈ N. If there is a k-consensus τ ∈ Perm(D) with maxmj=1 d(σj , τ) ≤
k, then there also is a local permutation τ ′ ∈ Ext(κ) with maxmj=1 d(σj , τ

′) ≤ k.

In other words, if all voters are local and our metric meets Requirement 1,
then we can safely demand that the consensus is local, too, without impairing
its chance to satisfy the upper bound k. Note that d satisfies Requirement 1
if for every σ ∈ Ext(κ) and τ ∈ Perm(D) we can find τ ′ ∈ Ext(κ) such that
d(τ ′, σ) ≤ d(τ, σ). The second requirement puts tight constraints on the distance
of local permutations.

Requirement 2 (Distance constraints). There is a constant c > 0 such that
for all local permutations σ, τ ∈ Ext(κ) the distance is d(σ, τ) = c · |K(σ, τ)|.

Note that all local permutations agree on the order of candidates from dif-
ferent buckets. Thus, a distance satisfying Requirement 2 is exactly a constant
multiple of the number of buckets Bi where one permutation ranks ai before bi
and the other ranks bi before ai.

Theorem 2. MR under a metric d is NP-hard if d satisfies Requirements 1
and 2.

Proof. Consider an instance of Closest Binary String consisting in a list
s1, . . . , sm ∈ {0, 1}n of m binary strings of length n and an upper bound k ∈ N
as in Definition 2. We choose the candidate set D as defined above. Consider
the bijective mapping f : {0, 1}n → Ext(κ), which encodes strings of length n
as a local permutation where ai <f(s) bi if s(i) = 0 and bi <f(s) ai if s(i) = 1.
More formally, f(s)(ai) = 2i − 1 + s(i) and f(s)(bi) = 2i − s(i) for all strings
s ∈ {0, 1}n. For instance, f("010") = [a1b1︸︷︷︸

B1

b2a2︸︷︷︸
B2

a3b3︸︷︷︸
B3

]. Observe that for strings

s, t ∈ {0, 1}n and i ∈ n we have s(i) 6= t(i) if and only if {ai, bi} ∈ K(f(s), f(t)).
For each string sj we introduce the voter σj = f(sj) and let k′ = c · k, where c
is the constant from Requirement 2.
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Suppose that a string t∗ ∈ {0, 1}n satisfies maxmj=1H(sj , t
∗) ≤ k. Let j ∈ m.

We have

k′ = c · k ≥ c ·H(sj , t
∗) = c · |{i ∈ n : sj(i) 6= t∗(i)}| = c · |K(f(sj), f(t∗))|

= d(σj , f(t∗))

by Requirement 2. Therefore, f(t∗) is a k′-consensus for the MR problem.
Conversely suppose that τ∗ satisfies maxmj=1 d(σj , τ

∗) ≤ k′. W. l. o. g. assume
that τ∗ is local by Requirement 1. Again, let j ∈ m. By Requirement 2 we obtain

k =
k′

c
≥ 1

c
· d(σj , τ

∗) = |K(σj , τ
∗)| =

∣∣{i ∈ n : f−1(σj) 6= f−1(τ∗)}
∣∣

= H(sj , f
−1(τ∗)) ,

i. e., the string t∗ = f−1(τ∗) ∈ {0, 1}n satisfies maxmj=1H(sj , t
∗) ≤ k. ut

Lemma 1. Let σ, τ ∈ Perm(D) and {x, y} ∈ K(σ, τ) be a dirty pair between σ
and τ . Then the Kendall tau distance strictly decreases if we transpose x and y
in τ , i. e., K(σ, Tτ(x),τ(y) ◦ τ) < K(σ, τ).

Proof. Let τ ′ = Tτ(x),τ(y)◦τ . W. l. o. g. assume x <τ y. We compare the set K+ =
K(τ ′, σ) \K(τ, σ) with the set K− = K(τ, σ) \K(τ ′, σ). Then K(τ ′, σ) < K(τ, σ)
if |K+| < |K−|. Now, let Z<, Z| and Z> be the candidates that are ranked by
σ before, between, and after x and y, respectively. Formally, Z< = {z ∈ D :
x <τ z <τ y ∧ z <σ y <σ x}, Z| = {z ∈ D : x <τ z <τ y ∧ y <σ z <σ x},
and Z> = {z ∈ D : x <τ z <τ y ∧ y <σ x <σ z}. By a simple but cumbersome
distinction of cases we obtain

K+ =
⋃
z∈Z<

{{y, z}} ∪
⋃
z∈Z>

{{x, z}} , and

K− =
⋃
z∈Z<

{{x, z}} ∪
⋃
z∈Z>

{{y, z}} ∪
⋃
z∈Z|

{{x, z}, {y, z}} ∪ {{x, y}} .

Hence, K(τ ′, σ) = K(τ, σ)−
∣∣Z|∣∣− 1. ut

Next we show that Requirements 1 and 2 hold for the Kendall tau, Cayley,
Hamming, Ulam, and Minkowski distances.

Lemma 2. Let τ∗ be an optimal consensus for the MR problem under the
Kendall tau distance K with voters σ1, . . . , σm. Let µ =

⋂m
j=1 σj be the par-

tial order with x <µ y if and only if x <σj y for all j ∈ m. Then τ∗ ∈ Ext(µ).

Proof. Assume by contradiction that there are candidates x, y ∈ D with x <µ y
and y <τ∗ x. Then x <σj y and {x, y} ∈ K(σj , τ

∗) for every j ∈ m. Thus,
maxmj=1 d(σj , Tτ∗(x),τ∗(y) ◦ τ∗) < maxmj=1 d(σj , τ

∗) by Lemma 1, which is a con-
tradiction to the optimality of τ∗. ut

Corollary 1. The Kendall tau distance K satisfies Requirements 1 and 2.
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Proof. Let σ1, . . . , σm ∈ Ext(κ) be local permutations and µ =
⋂m
j=1 σj . Every

extension of µ is also an extension of κ since κ ⊆ µ. Hence, Requirement 1
follows immediately from Lemma 2. Let c = 1. Then Requirement 2 is just the
definition of the Kendall tau distance restricted to local permutations. ut

Lemma 3. The Cayley distance C satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations. Since σ and τ agree on the
order of candidates in different buckets, K(σ, τ) ⊆ {Bi : i ∈ n }. Consider a
bucket Bi = {ai, bi}. If Bi ∈ K(σ, τ), then ai and bi form a single cycle (aibi) of
size 2 in τ ◦ σ−1 as σ(ai) = τ(bi) and σ(bi) = τ(ai). If otherwise Bi 6∈ K(σ, τ),
ai and bi each form a cycle of size 1. Thus, C(σ, τ) = 2n − ]C(τ ◦ σ−1) =
2n− |K(σ, τ)| − 2 · |{ Bi : i ∈ n } \ K(σ, τ)| = |K(σ, τ)| = K(σ, τ). ut

Lemma 4. The Cayley distance C satisfies Requirement 1, i. e., C(l(τ), σ) ≤
C(τ, σ) for every σ ∈ Ext(κ) and τ ∈ Perm(D).

Proof. For x ∈ D, denote by
∣∣Cx(τ ◦ σ−1)

∣∣ the size of the cycle in τ ◦ σ−1 con-

taining x. If σ(x) 6= τ(x), then
∣∣Cx(τ ◦ σ−1)

∣∣ ≥ 2, but
∣∣Cx(l(τ) ◦ σ−1)

∣∣ ≤ 2 as

shown in the proof of Lemma 3. If otherwise σ(x) = τ(x), then
∣∣Cx(τ ◦ σ−1)

∣∣ =∣∣Cx(l(τ) ◦ σ−1)
∣∣ = 1. Observe that

∑
x∈D

1
|Cx(τ◦σ−1)| = ]C(τ ◦ σ−1). Hence,

]C(τ ◦ σ−1) ≤ ]C(l(τ) ◦ σ−1). ut

Proposition 1. Let σ, τ ∈ Perm(D) and x ∈ H(σ, τ) be a displaced candidate.
Then H(σ, Tσ(x),τ(x) ◦ τ) < H(σ, τ).

Proof. Let y ∈ D such that τ(y) = σ(x). Note that y ∈ H(σ, τ) and the transpo-
sition of x and y in τ does not affect other candidates. Thus,H(σ, Tσ(x),τ(x)◦τ) =
H(σ, τ) \ {x} or even H(σ, Tσ(x),τ(x) ◦ τ) = H(σ, τ) \ {x, y} if τ(x) = σ(y). ut

Lemma 5. If p ∈ N \ {0}, then the raised Minkowski distance F̂p satisfies Re-

quirement 1, i. e., F̂p(l(τ), σ) ≤ F̂p(τ, σ) for every σ ∈ Ext(κ) and τ ∈ Perm(D).

Proof. Let x ∈ D. If τ(x) = σ(x) then l(τ)(x) = σ(x) since x 6∈ Aτ . Otherwise,
|τ(x)− σ(x)| ≥ 1 implies |τ(x)− σ(x)|p ≥ 1, but |l(τ)(x)− σ(x)| ≤ 1. In both
cases |l(τ)(x)− σ(x)|p ≤ |τ(x)− σ(x)|p. ut

Proposition 2. MR under the raised Minkowski distance F̂p for p ∈ N \ {0}
and under the Hamming distance H satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations. Recall that K(σ, τ) ⊆ {Bi : i ∈
n } as σ and τ agree on the order of candidates in different buckets. Hence,
|τ(x)− σ(x)| = |τ(y)− σ(y)| = 1 for every bucket {x, y} ∈ K(σ, τ), i. e., both x
and y contribute 1 to the distance. Members of the remaining buckets {x, y} ∈
{Bi : i ∈ n } \ K(σ, τ) contribute 0. ut

By a similar proof we obtain:

Lemma 6. The Ulam distance U satisfies Requirement 2.
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For the proof of the following lemma we define the refinement of a bucket by
a total order as in [7,15]. The refinement of a bucket order κ by a total order τ
is the total order τ ∗ κ such that x <τ∗κ y ⇔ x <κ y ∨ x 6≷κ y ∧ x <τ y holds for
all x, y ∈ D. Note that τ ∗ κ ∈ Ext(κ).

Lemma 7. The Ulam distance U satisfies Requirement 1, i. e., U(τ ∗ κ, σ) ≤
U(τ, σ) for every σ ∈ Ext(κ) and τ ∈ Perm(D).

Proof. Let σ ∈ Ext(κ), τ ∈ Perm(D), and (x1, . . . , xl) be a longest common
subsequence of τ and σ, i. e., l = lcs(σ, τ). As σ ∈ Ext(κ), all elements x1, . . . , xl
are ordered by both σ and τ according to κ. Hence, (x1, . . . , xl) is also a common
subsequence for τ ∗ κ and σ and thus, lcs(τ ∗ κ, σ) ≥ lcs(τ, σ). ut

Theorem 3. Requirements 1 and 2 are satisfied by the Kendall tau, Cayley,
Hamming, Ulam, and Minkowski distances Fp for p ∈ N \ {0}. Thus, MR is
NP-complete under these distances.

In consequence we have a dichotomy between the sum and the maximum
versions of the rank aggregation problem, in particular for the Spearman footrule
distance.

Corollary 2. For the Minkowski distances Fp and p ∈ N \ {0} (i) the com-
mon rank aggregation problem taking the sum is efficiently solvable, and (ii) the
maximum rank aggregation problem MR is NP-complete.

Proof. The common rank aggregation problem can be solved by weighted bipar-
tite matching, where the weights wx,i express the cost of placing x at position
i [13], and (ii) follows from Theorem 3. ut

Since the Minimum distance does not satisfy Requirement 2, we provide a
different reduction from Hitting String.

Definition 3 (Hitting String [14]).
Instance: n ∈ N, a list s1, . . . , sm ∈ {0, 1, ∗}n of m strings of length n.
Question: Does there exist a string t ∈ {0, 1}n such that every string sj is hit by
t in at least one position, i. e., ∀j ∈ m : ∃i ∈ n : sj(i) = t(i).

Theorem 4. MR under the Minimum distance F−∞ is NP-complete even for
k = 0.

Proof. There is a consensus τ ∈ Perm(D) with maxmj=1 minx∈D |σj(x)− τ(x)| =
0 if and only if for every σj there is a candidate x such that σj(x) = τ(x). Then
τ hits σj at position τ(x) and we call τ hitting consensus.

First we show how to construct an instance with 2n voters of length n which
has no hitting consensus. Let D = {u1, . . . , un} and σ1 : D → n : ui 7→ i.
We obtain n primary voters σ1, . . . , σn by rotating σ1, i. e., for every j ∈ n let
σj(ui) = (i+ j− 2) mod n+ 1. Additionally, we introduce the secondary voters
σ′1, . . . , σ

′
n defined by σ′j = T1,2 ◦ σj . For instance if D = {a, b, c, d, e}, then the

list of voters is
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σ1 = [abcde] σ′1 = [bacde]
σ2 = [eabcd] σ′2 = [aebcd]
σ3 = [deabc] σ′3 = [edabc]
σ4 = [cdeab] σ′4 = [dceab]
σ5 = [bcdea] σ′5 = [cbdea] .

Assume for contradiction that this list of voters has a hitting consensus τ . Since
there are n primary voters and no two primary voters place any candidate at
the same position, every primary voter is hit at exactly one position and τ hits
exactly one primary voter at position 1. Let σ be the primary voter hit at position
1 by a candidate x. Then τ cannot hit the secondary voter σ′ = T1,2 ◦ σ at the
positions 1 or 2 as τ(x) = σ(x) = 1 6= 2 = σ′(x). Thus, it cannot hit σ′ at all
since σ and σ′ agree in all other positions n \ {1, 2}, a contradiction. We call the
above list of voters the n-anti-pattern. With this in mind, we reduce from the
NP-complete Hitting String to MR under the Minimum distance.

As in the proof of Theorem 2, let D =
⋃n
i=1{ai, bi} be the set of candidates

and let f : {0, 1}n → Perm(D) with f(s)(ai) = 2i − 1 + s(i) and f(s)(bi) =
2i − s(i). For every string sj , j ∈ m, we introduce a list of voters Σj in two
steps. The instance of MR is then the concatenation of all Σj , j ∈ m and k = 0.
In the first step we create a template ρj : D → n ∪ {∗} from which the actual
list is obtained in the second step. Let ρj(ai) = f(sj)(ai) and ρ(bi) = f(sj)(bi)
if s(i) ∈ {0, 1} and ρj(ai) = ρj(bj) = ∗, otherwise. If none of the strings sj did
contain ∗, then we could establish a one-to-one correspondence between a hitting
consensus for voters ρ1, . . . , ρm and a hitting string for s1, . . . , sm as in Theorem 2
and would be done. Let Uj = {x ∈ D : ρj = ∗} be the set of candidates which
are not assigned a position by ρj . In Hitting String the ∗ marks a position
where an input string cannot be hit however the hitting string looks alike. We

reproduce this situation for MR by making 2 |Uj | copies σ
(1)
j , . . . , σ

(2|Uj |)
j of ρj

such that all copies agree on the candidates D \ Uj but form a |Uj |-anti-pattern
if the candidate set is restricted to Uj .

Suppose that t∗ is a hitting string for s1, . . . , sm. Then f(t∗) is a hitting
consensus since for every j ∈ m there is an i ∈ n with t∗(i) = sj(i), thus
f(t∗)(ai) = σj(ai). Conversely suppose that τ∗ is a hitting consensus. Consider
the string t∗ ∈ {0, 1}n defined by t∗(i) = 0 if τ∗(ai) = 2i − 1 ∨ τ∗(bi) = 2i
and t∗(i) = 1, otherwise. For every j ∈ m there must be a candidate x 6∈ Uj
with τ(x) = σ

(r)
j (x) for all σ

(r)
j ∈ Σj since they form a |Uj |-anti-pattern when

restricted to Uj . The position of x ∈ D \ Uj in all σ
(r)
j ∈ Σj is identical and

determined by sj . Therefore, x = ai or x = bi for a position i where sj(i) 6= ∗,
and thus, t∗(i) = sj(i). Hence, t∗ is a hitting string. ut

5 Approximability

We shortly discuss approximations.

Lemma 8. The associated minimization problem of MR is 2-approximable for
any pseudometric d.
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Proof. Let τ∗ ∈ Perm(D) be the optimal consensus for the MR problem under
pseudometric d with voters σ1, . . . , σm ∈ D. Then the pick-a-perm method [1]
with τ = σj for j ∈ m yields a 2-approximation since for all i ∈ m we have

d(σi, τ) ≤ d(σi, τ
∗) + d(τ∗, τ) ≤ 2 ·max{d(σi, τ

∗), d(τ∗, τ)} ≤ 2 · m
max
j=1

d(σj , τ
∗)ut

Note that this approximation ratio for pick-a-perm is tight for all metrics satis-
fying Requirements 1 and 2. For instance, consider the voters f("1000 . . . "),
f("0100 . . . "), f("0010 . . . ") with f as defined in the last section. The dis-
tance between each pair of voters is 2c, while the optimal consensus would be
f("0000 . . . ") with a distance of c.

6 Fixed-Parameter Tractability

The reduction in Sect. 4 demonstrates a close relationship between Closest
Binary String and MR. We strengthen this observation by extending a fixed
parameter algorithm for Closest Binary String [17, 22] such that it can be
applied to MR under several metrics. For an introduction to fixed-parameter
tractability see [12,22].

The notion of the modification set M(τ, σ) ⊆ Perm(D) is at the heart of our
generalized algorithm. Intuitively, it captures the idea of going “one step” from
τ to σ. The structure of the modification set must be chosen individually for
each metric d. We state a sufficient condition, which we call the δ-improving of
M , such that the algorithm actually finds the optimal consensus.

Requirement 3 (δ-improving). Let δ ∈ N \ {0}. Let σ, τ, τ∗ ∈ Perm(D) and
k ∈ N such that d(τ∗, σ) ≤ k and d(τ, τ∗) ≤ k. If k < d(τ, σ) ≤ 2k, then there
exists a τ ′ ∈M(τ, σ) such that d(τ ′, τ∗) ≤ d(τ, τ∗)− δ.

Input: Voters σ1, . . . , σm ∈ Perm(D), bound k ∈ N.
Output: k-consensus τ∗ ∈ Perm(D) or reject.

1 search(σ1, k);

2 function search(τ,∆k)
3 if ∀j ∈ m : d(τ, σj) ≤ k then return {τ} ;
4 if ∃j ∈ m : d(τ, σj) > k +∆k then return ∅;
5 if ∆k > 0 then
6 let j ∈ m such that k < d(τ, σj) ≤ k +∆k;
7 foreach τ ′ ∈M(τ, σj) do
8 R← search(τ ′,∆k − δ);
9 if R 6= ∅ then return R;

10 return ∅

Algorithm 1: Fixed-parameter algorithm for MR
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Lemma 9. Suppose that there is a k-consensus τ∗, i. e., maxmj=1 d(τ∗, σj) ≤ k.
If M is δ-improving, then at recursion depth i, search in Algorithm 1 has either
already found a k-consensus, or is called at least once with a parameter τ such
that d(τ, τ∗) ≤ k − δi.

Proof. We proof by induction on the recursion depth i. Induction basis: Since
τ = σ1 in depth 0, we have d(τ, τ∗) ≤ k−0 by definition. Induction step: Suppose
the program has not found the solution yet and that at recursion depth i ≤

⌈
k
δ

⌉
search is called with τ ′ having d(τ, τ∗) ≤ k − δi. If d(τ, σj) ≤ k we have found a
k-consensus and are done. Otherwise, d(τ, σj) > k. The break condition in line
4 does not hold since d(τ, σj) ≤ d(τ, τ∗) + d(τ∗, σj) ≤ k − δi + k = ∆k + k. As
τ ′ iterates over M(τ, σj), by Requirement 3 there is at least one iteration where
search is called with a τ ′ where d(τ ′, τ∗) ≤ k − δi− δ. ut

Theorem 5. If M is δ-improving, then Algorithm 1 finds a k-consensus τ∗ or

correctly reports that no such consensus exists. Its running time is O((f(k))d
k
δ e ·

g(k, n)), where f(k) is the maximum size of the constructed modification sets
and g(k, n) is the time required for the construction of a modification set.

Proof. The recursion depth is bounded by
⌈
k
δ

⌉
and the branching factor is limited

by the maximum size of the modification set. The running time is worst if no k-
consensus exists, in which case search returns the empty set. Otherwise, suppose
that τ∗ is a k-consensus. Then, by Lemma 9, search finds a different k-consensus
or is eventually called with a τ such that d(τ, τ∗) = 0 which implies τ = τ∗. ut

For fixed-parameter results it remains to construct a suitable modification
set for each distance.

Lemma 10. The modification set M(τ, σ) = {Tτ(x),τ(y) ◦ τ : {x, y} ∈ K(τ, σ)}
is 1-improving under the Kendall tau distance K.

Proof. Let k ∈ N and σ, τ, τ∗ ∈ Perm(D) such that K(τ∗, σ) ≤ k < K(τ, σ) ≤
2k. We show that K(τ, σ) ∩ K(τ, τ∗) 6= ∅ since for any dirty pair {x, y} ∈
K(τ, σ) ∩ K(τ, τ∗) we have d(Tτ(x),τ(y) ◦ τ, τ∗) < d(τ, τ∗) by Lemma 1. Assume
for contradiction that K(τ, σ) and K(τ, τ∗) are disjoint. Let {x, y} ∈ K(τ, σ).
As {x, y} 6∈ K(τ, τ∗), we know that τ and τ∗ agree on the relative order of x
and y, which implies that {x, y} ∈ K(σ, τ∗). Hence, K(τ, σ) ⊆ K(σ, τ∗). Now let
{x, y} ∈ K(τ, τ∗). As {x, y} 6∈ K(τ, σ), τ and σ agree on the relative order of x
and y, implying {x, y} ∈ K(σ, τ∗). Hence, K(τ, τ∗) ⊆ K(σ, τ∗). We conclude that
K(σ, τ∗) = |K(σ, τ∗)| ≥ |K(τ, σ)|+ |K(τ, τ∗)| ≥ k + 1, a contradiction. ut

Corollary 3. MR under the Kendall tau distance K can be computed in
O((2k)k · (mn log n+ k)}) time.

Proof. Consider the modification set of Lemma 10, whose size is |M(τ, σ)| =
|K(τ, σ)| = K(τ, σ) ≤ 2k. The distance of two permutations can be computed
in O(n log n) time [21]. Hence, lines 3, 4 and 6 of Algorithm 1 need O(mn log n)
time. For efficiency, we represent the modification set M(τ, σ) only implicitly by
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the set K(τ, σ) of at most 2k dirty pairs, which can be computed in O(n log n+k)
time [6]. We iterate τ ′ over M(τ, σ) by transposing the next dirty pair in K(τ, σ),
descent recursively, and undo the transposition after the recursive call returns.
Thus, excluding the recursion, the loop requires O(n log n+ k) time. ut

Lemma 11. The modification set M(τ, σ) = {Tτ(x),σ(x) ◦ τ : x ∈ H(τ, σ)} is
1-improving under the Hamming distance H.

Proof. Let k ∈ N and σ, τ, τ∗ ∈ Perm(D) such that H(τ∗, σ) ≤ k < H(τ, σ) ≤
2k. The size of the modification set is |M(τ, σ)| = |H(τ, σ)| = H(τ, σ) ≤ 2k. σ
and τ∗ agree in the position of at least |D|−k candidates. As H(τ, σ) > k, there is
at least one candidate x with τ(x) 6= σ(x) = τ∗(x). Hence, H(Tτ(x),σ(x)◦τ, τ∗) <
H(τ, τ∗) (see Proposition 1). ut

Corollary 4. MR under the Hamming distance H can be computed in O((2k)k ·
mn) time.

Proof. Consider the modification set of Lemma 11. The Hamming distance be-
tween two permutations can be computed in linear time. Thus, lines 3, 4 and
6 of Algorithm 1 need O(mn) time. Similarly to the proof of Corollary 3, the
iteration of τ ′ over the modification set M(τ, σ) with |M(τ, σ)| ≤ 2k is done in
place and needs only O(k) time. ut

Lemma 12. The modification set M(τ, σ) = {Tτ(x),i ◦ τ : x ∈ H(τ, σ) ∧ i ∈
{τ(x)+j · sgn(σ(x)−τ(x)) : j ∈ dk

1
p e}∩n} is (p+1)-improving under the raised

Minkowski distance F̂p for p ∈ N \ {0}.

Proof. Let k ∈ N and σ, τ, τ∗ ∈ Perm(D) such that F̂p(τ
∗, σ) ≤ k < F̂p(τ, σ) ≤

2k. We take every displaced candidate x ∈ H(τ, σ) and try all possibilities to
transpose it with candidates placed at most k positions to its right or left,
depending on whether σ(x) > τ(x) or σ(x) < τ(x), respectively. Suppose we
have a candidate x ∈ H(τ, σ) with |σ(x)− τ∗(x)| < |σ(x)− τ(x)|. There must
be at least one such candidate since F̂p(τ

∗, σ) < F̂p(τ, σ). W. l. o. g. assume
σ(x) > τ(x). Otherwise, the following arguments apply symmetrically. Let Y =
{τ∗−1(i) : i ≤ τ(x)} be the set of candidates which are placed in τ∗ to the left of
or on the same position where x is placed in τ . As τ∗(x) > τ(x), x 6∈ Y, so by a
counting argument there must be some y ∈ Y with τ(y) > τ(x). We know that

τ ′ = Tτ(x),τ(y) ◦ τ is contained in the modification set because τ(y)− τ∗(y) ≤ k
1
p

due to F̂p(τ, τ
∗) ≤ k by Requirement 3. We distinguish two cases whether or not

τ(y) ≤ τ∗(x).

Case 1: τ∗(y) ≤ τ (x) < τ (y) ≤ τ∗(x). Then both τ∗(x)− τ ′(x) = τ∗(x)−
τ(y) < τ∗(x)− τ(x) and τ ′(y)− τ∗(y) = τ(x)− τ∗(y) < τ(y)− τ∗(y). Hence, by
the Binomial Theorem, |τ(x)− τ∗(x)|p − |τ ′(x)− τ∗(x)|p =

(|τ(x)− τ∗(x)| − |τ ′(x)− τ∗(x)|)︸ ︷︷ ︸
≥1

·
p−1∑
i=0

|τ(x)− τ∗(x)|i︸ ︷︷ ︸
≥1

· |τ ′(x)− τ∗(x)|p−i−1︸ ︷︷ ︸
≥1
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and thus |τ ′(x)− τ∗(x)|p ≤ |τ(x)− τ∗(x)|p − p. We obtain |τ ′(y)− τ∗(y)|p ≤
|τ(y)− τ∗(y)|p − p symmetrically. In sum |τ ′(x)− τ∗(x)|p + |τ ′(y)− τ∗(y)|p ≤
|τ(x)− τ∗(x)|p + |τ(y)− τ∗(y)|p − 2p.

Case 2: τ∗(y) ≤ τ (x) < τ∗(x) < τ (y). Then τ ′(x)−τ∗(x)+τ ′(y)−τ∗(y) =
τ(y)− τ∗(x) + τ(x)− τ∗(y) < τ(y)− τ∗(y). By the Binomial Theorem we derive

(τ ′(x)− τ∗(x) + τ ′(y)− τ∗(y))p ≤ (τ(y)− τ∗(y))p − p
|τ ′(x)− τ∗(x)|p + |τ ′(y)− τ∗(y)|p ≤ |τ(y)− τ∗(y)|p − p+ |τ(x)− τ∗(x)|p︸ ︷︷ ︸

≥1

−1

Recall that the positions of candidates D \ {x, y} are unaffected. Hence, in both
cases F̂p(τ

′, τ∗) ≤ F̂p(τ, τ∗)− (p+ 1). ut

Corollary 5. MR under the Minkowski distance Fp for p ∈ N \ {0} can be

computed in O((2kp+1)d
kp

p+1e ·mn) time.

Proof. Let k̂ = kp. Finding a k-consensus for Fp is equivalent to finding a

k̂-consensus for F̂p. Consider the modification set of Lemma 12. Its size is

|M(τ, σ)| ≤ 2k̂1+
1
p since there are most 2k̂ displaced candidates which are each

tested on at most k̂
1
p positions. The Minkowski distance between two permuta-

tions can be computed in linear time. Thus, lines 3, 4 and 6 of Algorithm 1 need
O(mn) time. Finding the up to 2k̂ displaced candidates to build the modification

set needs O(n) time. Each displaced candidate is tested on k̂
1
p positions. Then

the total running time is in O((2k̂1+
1
p )

⌈
k̂
p+1

⌉
·mn) = O((2kp+1)d

kp

p+1e ·mn). ut

There are tractable algorithms for Closest Binary String parameterizing
the number of strings m [22]. However, parameterizing MR by the number of
voters m does not lead to efficient algorithms since MR under the Kendall tau
distance is NP-hard for m = 4 [6].

Note that the NP-hardness of MR under the Minimum distance even for
k = 0 implies that this problem is not fixed-parameter tractable by k unless
P = NP.

7 Conclusion

We explored the complexity of MR by stating sufficient conditions for metrics
under which MR is NP-complete and fixed-parameter tractable. Considering
NP-hardness, the Requirements 1 and 2 should also hold for other distances,
e. g., Damerau-Levenshtein, Block-Transpositions, or Reversals [9, 10]. Finding
a suitable modification set (Requirement 3) for Cayley and Ulam distances is
still open. Another extension of MR is to allow the voters providing partial
orders. The distance is then measured by the Nearest Neighbor distance, which
we studied for Spearman footrule and Kendall tau in [7, 8].
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