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Abstract

The rank aggregation problem consists in finding a consensus ranking on
a set of alternatives, based on the preferences of individual voters. The
alternatives are expressed by permutations, whose pairwise distance can be
measured in many ways.

In this work we study a collection of distances, including the Kendall
tau, Spearman footrule, Minkowski, Cayley, Hamming, Ulam, and related
edit distances. Unlike the common median by summation, we compute the
consensus against the maximum. The maximum consensus attempts to mini-
mize the discrimination against any voter and is a smallest enclosing ball or
center problem.

We provide a general schema via local permutations for the NP-hardness
of the maximum rank aggregation problems under all distances which sat-
isfy some general requirements. This unifies former NP-hardness results for
some distances and lays the ground for further ones. In particular, we estab-
lish a dichotomy for rank aggregation problems under the Spearman footrule
and Minkowski distances: The median version is solvable in polynomial time
whereas the maximum version is NP-hard. Moreover, we show that the
maximum rank aggregation problem is 2-approximable under any pseudo-
metric and fixed-parameter tractable under the Kendall tau, Hamming, and
Minkowski distances, where again a general schema via modification sets
applies.
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1. Introduction

The task of ranking a list of alternatives is encountered in many situations.
A major goal is to find the best consensus. This task is known as the rank
aggregation problem, and was widely studied in recent years [1–9]. The
problem has numerous applications in sports, voting systems for elections,
search engines, and evaluation systems on the web [7].

From mathematical and computational perspectives, the rank aggregation
problem is given by a set of m permutations on a set of size n, and the
goal is to find a consensus permutation with minimum distance to the given
permutations. There are many ways to measure the distance between two
permutations and to aggregate the cost by an objective function. Various
distances are based on primitive operations on permutations, as they are
used in sorting algorithms and string matching. Aggregation is by taking
the sum or the maximum.

For the rank aggregation problem Kemeny, [10] proposed to count the
pairwise disagreements between the orderings of two items, which is com-
monly known as the Kendall tau distance. For permutations it is the “bubble
sort” distance, i. e., the number of pairwise adjacent transpositions needed
to transform one permutation into the other, or the number of crossings in
a two-layered drawing of a bipartite graph with vertices of 1 to n on each
layer and edges {i, i} for i = 1, . . . , n [11]. Another popular measure is the
Spearman footrule distance [12], which is the L1-norm of two n-dimensional
vectors and expresses the total movement of items.

The geometric median of the input permutations is commonly taken for
the aggregation, which means summing up the cost of comparing each in-
put permutation with the consensus. From the computational perspective
this makes an essential difference between the Spearman footrule and the
Kendall tau distances, since the further allows a polynomial time solution
via weighted bipartite matching [7], whereas the latter leads to an NP-hard
rank aggregation problem [6], even for four voters [7, 11]. It has a PTAS [8]
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and is fixed-parameter tractable [3, 9].
Here we study the maximum version, which is also known as a smallest

enclosing ball or center problem. The aim is to avoid a discrimination of a
single voter or permutation against the consensus. The objective is a mini-
mum k such that all permutations are within distance k from the consensus.
Biedl et al. [11] studied this version for the Kendall tau distance and showed
that it is NP-hard to determine whether there is a permutation τ which is
within a distance of at most k to all input permutations, even for any m ≥ 4
permutations. The NP-hardness was independently proven by Popov [13]
and further investigated by Schwarz [14]. The smallest enclosing ball problem
is a famous mathematical problem. It dates back to Sylvester in 1857 [15]
and has been intensively studied in computational geometry [16], production
planning [17], and stringology [18].

Besides the Kendall tau and the Spearman footrule distances there are
other distance measures on permutations [7, 10, 19]. Many of them are edit
distances, which can be expressed as the minimum number of specific primi-
tive operations to transform one permutation into the other. Some operations
are local, others operate globally on singletons, and the most powerful ones
manipulate blocks or subsequences in a single step. The swap of two adjacent
items, a unit movement of an item and a substitution are local operations and
are used for the Kendall tau, Spearman footrule, and Hamming distances,
respectively, whereas the Cayley distance allows the exchange of two items
at arbitrary positions. The block reversal distance counts the reversal of a
block in a permutation as a unit step. In consequence, the distance between
two permutations often varies by a factor of O(n), e. g., if the first and last
candidates are interchanged or if the second is the reversal of the first per-
mutation. Such permutations are within unit distance for the block reversal
distance and O(n2) for the Kendall tau and Spearman footrule distances. As
shown by Diaconis and Graham [12], these two distances are within a factor
of two. The same applies to the Hamming and Cayley distances. Thus, these
pairs meet the metric boundedness property [20]. For a broad discussion of
distances we refer to [19]. Since computing the block reversal or the block
transposition distance is NP-hard [21, 22], we do not expect that maximum
ranking under these distances is efficiently solvable and refrain from treating
them any further.

We extend the collection of distances on permutations by Swap-and-
Mismatch, Damerau-Levenshtein, and Lee distances, which are used in com-
binatorics for genome comparisons [19]. Our main contribution is a general
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schema for the complexity analysis of maximum rank aggregation problems,
which allows us to prove NP-hardness and fixed-parameter tractability under
any metric which satisfies some requirements. These requirements are met
by our collection of distances. We associate the maximum rank aggregations
on permutations and the string consensus problem on strings. Permutations
on a set of size n can be seen as strings on an alphabet of size n, where each
element occurs exactly once. However, the alphabet must scale with the
length of the permutation and the uniqueness of the elements makes them
special as strings.

For the association we use the generalization of total to bucket orders
and local permutations as extensions of bucket orders. The technique of lo-
cal permutations was first used implicitly by Popov [13] for Kendall tau and
Cayley distances and with the main focus on the string consensus problem.
Thereafter we obtain the NP-hardness results by reductions from the Clos-
est Binary String and Hitting String problems, which is more general
than the previous reductions [6, 7, 11, 13].

The paper is organized as follows. After some preliminaries in Sect. 2
we show in Sect. 3 that Maximum Ranking (MR) is tractable under the
Maximum distance, whereas MR is intractable under many other distances
as shown in Sect. 4. In Sect. 5 we establish that MR is 2-approximable for
pseudometrics. Finally, in Sect. 6, we present fixed-parameter algorithms to
solve MR under various distances.

In a preliminary version of this paper [23] presented at IWOCA 2013 we
consider only a subset of the distances, but our generalized schema applies
to a broader set.

2. Preliminaries

For a binary relation ρ on a domain D and for each x, y ∈ D, we write
x <ρ y if (x, y) ∈ ρ and x ≮ρ y if (x, y) /∈ ρ. A binary relation κ is a (strict)
partial order if it is irreflexive, asymmetric and transitive, i. e., x ≮κ x,
x <κ y ⇒ y ≮κ x, and x <κ y ∧ y <κ z ⇒ x <κ z for all x, y, z ∈ D.
Candidates x and y are called unrelated by κ if x ≮κ y ∧ y ≮κ x, which we
denote by x 6≷κ y. The intuition of x <κ y is that κ ranks x before y, which
means a preference for x. If x <κ y or y <κ x, we speak of a constraint of
κ on x and y. For X ,Y ⊆ D we denote X <κ Y if x <κ y for all x ∈ X
and y ∈ Y , and define x <κ Y and X <κ y accordingly. The intersection of
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two partial orders µ∩κ is a partial order consisting of all pairs of candidates
where µ and κ agree.

A total order is a complete partial order, i. e., x <τ y ∨ y <τ x for
all x, y ∈ D with x 6= y. Let n = |D|. For every total order τ there
is a unique permutation, i. e., a bijection τ ′ : D → {1, . . . , n} such that
x <τ y ⇔ τ ′(x) < τ ′(y). In the rest of the paper we identify total orders and
their corresponding permutations, taking the view whichever comes in more
handy. The set of permutations on D is denoted by Perm(D). We denote
the permutation {x1, . . . , xn} → {1, . . . , n} : xi 7→ i by [x1x2 . . . xn].

We distinguish between permutations in Perm(D) representing votes on
an arbitrary candidate set D and permutations in Perm({1, . . . , n}) repre-
senting an exchange of positions, i. e., transformations on votes. Let τ ∈
Perm(D) be a vote, T ∈ Perm({1, . . . , n}) be an exchange of positions and
τ ′ = T ◦ τ . Then τ ′ ∈ Perm(D), i. e., τ ′ can be seen as another vote obtained
from τ by applying a change represented by T .

A transposition is a permutation on {1, . . . , n} switching the positions of
two candidates. Hence, for positions i, j ∈ {1, . . . , n}, we define the trans-
position Ti,j ∈ Perm({1, . . . , n}) by Ti,j(i) = j, Ti,j(j) = i and Ti,j(k) = k
for k 6∈ {i, j}. Transpositions can also be considered as operations acting on
permutations on D. For x, y ∈ D and σ ∈ Perm(D) we call Tσ(x),σ(y) ◦ σ ∈
Perm(D) the transposition of x and y in σ. Transpositions Ti,j of adjacent
candidates with |i− j| = 1 are called swaps.

For the connection between consensus problems on strings and permuta-
tions we use bucket orders and their extensions. A total order τ ∈ Perm(D)
is a total extension of a partial order κ if τ does not contradict κ, i. e., x <κ y
implies x <τ y for all x, y ∈ D. We denote the set of total extensions of a
partial order κ by Ext(κ).

A bucket order is a partial order κ for which unrelatedness 6≷κ is transi-
tive. Then 6≷κ is an equivalence relation whose equivalence classes are called
buckets. In other words, κ induces a total order order on the buckets while
candidates of the same bucket are unrelated, see [1, 2, 24]. An extension
of a bucket order preserves the total order of the buckets and allows any
permutation of the candidates within each bucket.

A binary function d : Perm(D)× Perm(D)→ R is called a pseudometric
if d(σ, τ) ≥ 0, d(σ, τ) = d(τ, σ), σ = τ ⇒ d(σ, τ) = 0, and d(σ, τ) + d(τ, ρ) ≥
d(σ, ρ) for all σ, τ, ρ ∈ Perm(D). It is a metric if, additionally, d(σ, τ) = 0
implies σ = τ .

A string s of length k over an alphabet D is a k-tuple in Dk or a map-
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ping s : {1, . . . , k} → D from positions to characters. We use both notions
interchangeably. We say that a string s represents a permutation φ if s is
bijective and s−1 = φ. Then the alphabet D is taken as a candidate set and
vice versa.

Next we introduce the main concept of this work: The maximum version
of the rank aggregation problem under various distances [19, 25, 26].

Definition 1 (Maximum Ranking (MR)).
Instance: A set D of n candidates, a list of m voters σ1, . . . , σm ∈ Perm(D),
and an integer k ∈ N.
Question: Does there exist a permutation τ ∈ D (called k-consensus) with
maxmj=1 d(σj, τ) ≤ k?

The maximum ranking problem is also known as the smallest enclosing
ball or center problem [14, 15]. The k-consensus τ guarantees a distance
of at most k to the preferences of all voters and avoids the discrimination
of any voter. The maximum ranking problem is investigated under several
distances, which evaluate disagreements differently. They are defined next.

Let σ and τ ∈ Perm(D) be two permutations. Define the set of dirty pairs
K(σ, τ) = {{x, y} ⊆ D : x <σ y ∧ y <τ x} as the set of pairs of candidates
x, y ∈ D where σ and τ disagree on their order. Then the Kendall tau
distance K is defined by K(σ, τ) = |K(σ, τ)|. It coincides with the minimum
number k of swaps T1, . . . , Tk such that τ = Tk ◦ . . . ◦ T1 ◦ σ. We obtain
the Cayley distance C(σ, τ) if additionally non-adjacent candidates can be
exchanged. C(σ, τ) is the minimum number of transpositions T1, . . . , Tk such
that τ = Tk ◦ . . . ◦ T1 ◦ σ. The Cayley distance can also be expressed as
C(σ, τ) = n − ]C(τ ◦ σ−1) [26], where ]C(ρ) is the number of cycles of a
permutation ρ. A cycle C = (x1x2 . . . x|C|) of ρ ∈ Perm({1, . . . , n}) is a
(cyclic) sequence of distinct candidates such that ρ(xi) = xi+1 for 1 ≤ i < |C|
and ρ(x|C|) = x1. The cycles form a partition of {1, . . . , n} and can be used
to specify any permutation.

Define the set of displaced candidates byH(σ, τ) = {x ∈ D : σ(x) 6= τ(x)}
as the set of candidates x ∈ D where σ and τ disagree on their position. The
Hamming distance H is defined by H(σ, τ) = |H(σ, τ)|, which is the number
of positions i ∈ {1, . . . , n} where σ−1(i) 6= τ−1(i). This view is also taken
by the Hamming distance between binary strings s, t ∈ {0, 1}n defined by
H(s, t) = |{i ∈ {1, . . . , n} : s(i) 6= t(i)}|, where s(i) is the i-th character of s.

Edit distances take the minimum number of operations from some pre-
defined set to change one string into an other. For example, the Hamming
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Insert/Delete Substitute Swap

Kendall tau K ×
Hamming H ×

Swap-and-Mismatch S × ×
Ulam U × ×

Damerau-Levenshtein D × × ×

Table 1: Operations for some edit distances

distance is an edit distance for the operation of substituting single charac-
ters. For an overview see Table 1. In general, every edit distance on strings
can also be seen as a permutation metric. Note that in the sequence of
strings constituting the step-by-step transformation, only the first and the
last string actually need to represent a permutation, whereas the immediate
strings may also have duplicates or missing candidates.

The Levenshtein distance U is the edit distance where the operations
are substitutions, insertions, or deletions of a single character [27]. In
the context of permutations it is known as the Ulam distance. A dif-
ferent characterization is as follows. Let σ, τ ∈ Perm(D) be two per-
mutations. A tuple (x1, . . . , xl) with xi ∈ D is a common subsequence
of σ and τ if i < j ⇔ xi <σ xj ∧ xi <τ xj. Let lcs(σ, τ) =
max{ l : (x1, . . . , xl) is a common subsequence of σ and τ }. Then the Ulam
distance is U(σ, τ) = n− lcs(σ, τ).

The Damerau-Levenshtein distance D unites the operation sets of the
Ulam and Kendall tau distances [28]. Another variant is the Swap-and-
Mismatch edit distance, which only allows for swaps and substitutions [29].

Next we turn to metrics which are based on summing up positional dif-
ferences rather than edit operations.

Define the Minkowski distance by Fp(σ, τ) =
(∑

x∈D |σ(x)− τ(x)|p
) 1
p for

p ∈ N \ {0}. F1 is also known as the Spearman footrule distance or taxicab
metric. F2 is the Euclidean metric and also known as the Spearman rho dis-
tance [26]. To simplify proofs we introduce the notion of the raised Minkowski
distance F̂p defined by F̂p(τ, σ) = (Fp(τ, σ))p =

∑
x∈D |τ(x)− σ(x)|p.

One can also consider the limit for p → ∞ and p → −∞. The Cheby-
shev or Maximum distance is F∞(σ, τ) = maxx∈D |σ(x)− τ(x)|. Define the
Minimum distance by F−∞(σ, τ) = minx∈D |σ(x)− τ(x)|. Note that F−∞ is
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Complexity FPT for distance k

Kendall tau K
NP-complete

(also in
[11, 14])

O((2k)k · (mn log n+ k))

Cayley C NP-complete
Hamming H NP-complete O((2k)k ·mn)

Ulam U NP-complete
Damerau-Levenshtein D NP-complete

Swap-and-Mismatch S NP-complete
Lee L NP-complete

Minkowski Fp, p ∈ N \ {0} NP-complete O((2kp+1)d
kp

p+1e ·mn)
Spearman footrule F1 NP-complete O((2k)k ·mn)

Minimum F−∞ NP-complete fixed-parameter intractable
Maximum F∞ O(n (log n+m))

Table 2: Summary of complexity results for the maximum ranking problem

not a metric and satisfies only non-negativity and symmetry.
Finally, the Lee distance is L(σ, τ) =

∑
x∈Dmin{|σ(x)− τ(x)| , n −

|σ(x)− τ(x)|} [30]. Roughly speaking, it may be regarded as a variant of
the Spearman footrule distance F1 where the positions are arranged in a cir-
cular manner rather than linear such that the first and the last position are
taken as next to each other.

Our complexity results on the maximum rank aggregation problem under
diverse distances are summarized in Table 2.

3. Efficient Algorithms

First, we consider a case where MR is efficiently solvable.

Theorem 1. MR is efficiently solvable under the Maximum distance F∞.

Proof. To find a permutation τ satisfying maxmj=1 maxx∈D |σj(x)− τ(x)| ≤ k ,
we solve a maximum matching problem in the bipartite graph G = (V , E) with
vertices V = D ·∪ {1, . . . , n} and an edge (x, i) ∈ E if maxmj=1 |σj(x)− i| ≤ k.
Every matching of size n corresponds to a k-consensus τ and vice versa. As
|E| < n(2k + 1), this can be done in O(n2 · k) time. For an improvement
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observe that the suitable positions for each candidate are consecutive, thus
form an interval. To each candidate x ∈ D assign the interval Ix = {i ∈
{1, . . . , n} : maxmj=1 |σj(x)− i| ≤ k}. Then, iterate over the positions i ∈
{1, . . . , n}. In step i, select the candidate to place at position i. Choose from
those candidates x with i ∈ Ix and which have not been placed before. If there
are multiple suitable candidates, prefer a candidate whose interval has the
least upper endpoint. In the case that there are no suitable candidates, reject
the instance. We use a heap to manage the intervals of unplaced candidates,
inserting the interval once we reach its lower endpoint. Determining the
endpoints of the intervals can be done in O(n ·m) and the iteration is done
in O(n log n), resulting in a total running time of O(n(log n+m)).

4. Intractability Results

We prove that MR is NP-complete under the Hamming, Minkowski,
Kendall tau, Cayley, Ulam, Damerau-Levenshtein, Swap-and-Mismatch, Lee
and Minimum distances. As these distances can be efficiently computed for
two total orders [11, 25, 29, 31, 32], membership is in NP.

For the NP-hardness proofs we develop a general schema, which gener-
alizes techniques from [13]. First, we prove that the NP-complete Closest
Binary String problem [33] can be reduced to a special case of MR un-
der any metric subject to Requirements 1 and 2 defined below. Then, we
show that these requirements are satisfied by the aforementioned metrics
except the Minimum distance, for which we provide a reduction from the
NP-complete Hitting String problem [34].

Definition 2 (Closest Binary String [33]).
Instance: k, n ∈ N, a list s1, . . . , sm ∈ {0, 1}n of m binary strings of length
n.
Question: Does there exist a string t ∈ {0, 1}n with maxmj=1H(sj, t) ≤ k?

For the rest of this section, let D be a set of 2n candidates. We arbitrarily
partition D into n disjoint 2-element sets Bi = {ai, bi} called buckets.

Definition 3 (local permutation).
A permutation is local if it is an extension of a bucket order κ on D with
buckets Bi ordered by B1 <κ . . . <κ Bn

We state the following properties to be met by a metric d in order to be
applicable in the forthcoming reduction.
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Requirement 1 (optimality of local permutations). Let σ1, . . . , σm ∈ Ext(κ)
be local permutations and k ∈ N. If there is a k-consensus τ ∈ Perm(D)
with maxmj=1 d(σj, τ) ≤ k, then there is a local permutation τ ′ ∈ Ext(κ) with
maxmj=1 d(σj, τ

′) ≤ k.

In other words, if all voters are local and our metric meets Requirement 1,
then we can safely demand that the consensus is local, too, without impair-
ing its chance to satisfy the upper bound k. Note that distance d satisfies
Requirement 1 if for every local permutation σ ∈ Ext(κ) and permutation
τ ∈ Perm(D) we can find a τ ′ ∈ Ext(κ) such that d(σ, τ ′) ≤ d(σ, τ).

The second requirement puts tight constraints on the distance of local
permutations.

Requirement 2 (distance constraints). There is a constant c > 0 such that
for all local permutations σ, τ ∈ Ext(κ) the distance is d(σ, τ) = c · |K(σ, τ)|.

Requirement 2 tightens the metric boundedness property [20] when re-
stricted to local permutations. Two metrics d and d′ are related by the
metric boundedness property if there are constants c1 and c2 such that
c1d
′(σ, τ) ≤ d(σ, τ) ≤ c2d

′(σ, τ) for arbitrary permutations σ, τ ∈ Perm(D).
If d and d′ satisfy Requirement 2 for constants c and c′, respectively, they
are tied by d′(σ, τ) = c′

c
d(σ, τ) for local permutations σ, τ ∈ Ext(κ).

Note that all local permutations agree on the order of candidates from
different buckets. Thus, a distance satisfying Requirement 2 is exactly a
constant multiple of the number of buckets Bi where one permutation ranks
ai before bi and the other ranks bi before ai.

Now we can state our schema for the NP-hardness reduction.

Theorem 2. MR under a metric d is NP-hard if d satisfies Requirements 1
and 2.

Proof. Consider an instance of Closest Binary String consisting in a list
s1, . . . , sm ∈ {0, 1}n ofm binary strings of length n and an upper bound k ∈ N
as in Definition 2. We choose the candidate set D =

⋃n
i=1 Bi. Consider the

bijective mapping f : {0, 1}n → Ext(κ), which encodes a string s of length n
as a local permutation where ai <f(s) bi if s(i) = 0 and bi <f(s) ai if s(i) = 1.
More formally, f(s)(ai) = 2i− 1 + s(i) and f(s)(bi) = 2i− s(i) for all strings
s ∈ {0, 1}n. For instance, f("010") = [a1b1︸︷︷︸

B1

b2a2︸︷︷︸
B2

a3b3︸︷︷︸
B3

], see also [13]. Observe

that for strings s, t ∈ {0, 1}n and i ∈ {1, . . . , n} we have s(i) 6= t(i) if and only
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if {ai, bi} ∈ K(f(s), f(t)). For each string sj introduce the voter σj = f(sj)
and let k′ = c · k, where c is the constant from Requirement 2.

Suppose that a string t∗ ∈ {0, 1}n satisfies maxmj=1H(sj, t
∗) ≤ k. Let

j ∈ {1, . . . ,m}. We have

k′ = c · k ≥ c ·H(sj, t
∗) = c · |{i ∈ {1, . . . , n} : sj(i) 6= t∗(i)}|

= c · |K(f(sj), f(t∗))| = d(σj, f(t∗))

by Requirement 2 and the fact that f(sj) and f(t) are local permutations.
Therefore, f(t∗) is a k′-consensus for the MR problem.

Conversely, suppose that τ ∗ satisfies maxmj=1 d(σj, τ
∗) ≤ k′. W. l. o. g.

assume that τ ∗ is local by Requirement 1. Again, let j ∈ {1, . . . ,m}. By
Requirement 2 we obtain

k =
k′

c
≥ 1

c
· d(σj, τ

∗) = |K(σj, τ
∗)| =

∣∣{i ∈ {1, . . . , n} : f−1(σj) 6= f−1(τ ∗)}
∣∣

= H(sj, f
−1(τ ∗)) ,

i. e., the string t∗ = f−1(τ ∗) ∈ {0, 1}n satisfies maxmj=1H(sj, t
∗) ≤ k.

We conclude that there is a binary string t∗ ∈ {0, 1}n with
maxj∈{1,...,m}H(sj, t

∗) ≤ k if and only if there is a permutation τ ∗ ∈ Perm(D)
with maxj∈{1,...,m} d(f(sj), τ

∗) ≤ c · k.

Next we show that Requirements 1 and 2 are met by the Kendall tau,
Cayley, Hamming, Ulam, Damerau-Levenshtein, Swap-and-Mismatch, Lee,
and Minkowski distances.

Lemma 1. Let {x, y} ∈ K(σ, τ) be a dirty pair of candidates where two
permutations σ and τ ∈ Perm(D) disagree on their order. Then the
Kendall tau distance strictly decreases if we transpose x and y in τ , i. e.,
K(σ, Tτ(x),τ(y) ◦ τ) < K(σ, τ).

Proof. Let τ ′ = Tτ(x),τ(y) ◦ τ . W. l. o. g. assume x <τ y. Now compare the
set K+ = K(σ, τ ′) \ K(σ, τ) with the set K− = K(σ, τ) \ K(σ, τ ′). Then
K(σ, τ ′) < K(σ, τ) if |K+| < |K−|. Let Z<, Z| and Z> be the candidates that
are ranked by σ before, between, and after x and y, respectively. Formally,
Z< = {z ∈ D : x <τ z <τ y ∧ z <σ y <σ x}, Z| = {z ∈ D : x <τ z <τ

y ∧ y <σ z <σ x}, and Z> = {z ∈ D : x <τ z <τ y ∧ y <σ x <σ z}. By a
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distinction of cases we obtain

K+ =
⋃
z∈Z<

{{y, z}} ∪
⋃
z∈Z>

{{x, z}} , and

K− =
⋃
z∈Z<

{{x, z}} ∪
⋃
z∈Z>

{{y, z}} ∪
⋃
z∈Z|

{{x, z}, {y, z}} ∪ {{x, y}} .

Hence, K(σ, τ ′) = K(σ, τ)−
∣∣Z|∣∣− 1.

Lemma 2. Let τ ∗ be an optimal consensus for the MR problem under the
Kendall tau distance K with voters σ1, . . . , σm. Let µ =

⋂m
j=1 σj be the partial

order with x <µ y if and only if x <σj y for all j ∈ {1, . . . ,m}. Then
τ ∗ ∈ Ext(µ).

Proof. Assume by contradiction that there are candidates x, y ∈ D with x <µ

y and y <τ∗ x. Then x <σj y and {x, y} ∈ K(σj, τ
∗) for every j ∈ {1, . . . ,m}.

Thus, maxmj=1 d(σj, Tτ∗(x),τ∗(y) ◦ τ ∗) < maxmj=1 d(σj, τ
∗) by Lemma 1, which is

a contradiction to the optimality of τ ∗.

Corollary 1. The Kendall tau distance K satisfies Requirements 1 and 2.

Proof. Let σ1, . . . , σm ∈ Ext(κ) be local permutations and µ =
⋂m
j=1 σj.

Every extension of µ is also an extension of κ, since κ ⊆ µ is a binary
relation. Hence, Requirement 1 follows immediately from Lemma 2. Let
c = 1. Then Requirement 2 is just the definition of the Kendall tau distance
restricted to local permutations.

Note that our general schema shows the NP-hardness of MR under the
Kendall tau distance for many voters, which parallels the result from [13].
However, the problem is known to be NP-hard even for four voters [7, 11].

For the proof of the following lemmas, we define two operations trans-
forming an arbitrary into a local permutation.

For a permutation τ ∈ Perm(D) let Aτ = {x ∈ D : x ∈ Bi and τ(x) 6∈
{2i− 1, 2i}} be the set of candidates which are not placed by τ in positions
belonging to their bucket and let Iτ = {τ(x) : x ∈ Aτ} be the set of positions
taken by those candidates. Define the position preserving localization lpos :
Perm(D) → Ext(κ) as follows. Let lpos(τ)(x) = τ(x) if x 6∈ Aτ , i. e., all
candidates placed on positions corresponding to their bucket are unaffected.
The remaining candidates in Aτ are reordered by lpos and assigned to free
positions in Iτ to obtain a local permutation. Define lpos(τ)|Aτ : Aτ → Iτ such
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that x <κ y ⇒ x <lpos(τ) y for x, y ∈ Aτ . As a tie breaker use ai <lpos(τ) bi if
Bi = {ai, bi} ⊆ Aτ .

The order preserving localization lord : Perm(D) → Ext(κ) is derived
from the refinements of partial orders introduced by Fagin [24]. The local
permutation lord(τ) is defined by x <lord(τ) y if and only if x <κ y ∨ (x 6≷κ

y ∧ x <τ y) for all x, y ∈ D.
Both localization operations yield local permutations. They differ in that

lpos changes the position of as few candidates as possible while lord preserves
the order of candidates from the same bucket. For example, let τ = [a2b1b2a1].
Then lpos(τ) = [a1b1b2a2], since lpos preserves the position of b1 and b2, and
lord(τ) = [b1a1a2b2], since lord preserves b1 < a1 and a2 < b2.

Lemma 3. The Cayley distance C satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations. Since σ and τ agree on
the order of candidates in different buckets, K(σ, τ) ⊆ {Bi : i ∈ {1, . . . , n} }.
Consider a bucket Bi = {ai, bi}. If Bi ∈ K(σ, τ), then ai and bi form a
single cycle (aibi) of size 2 in τ ◦ σ−1 as σ(ai) = τ(bi) and σ(bi) = τ(ai). If
otherwise Bi 6∈ K(σ, τ), ai and bi each form a cycle of size 1. Thus, C(σ, τ) =
2n − ]C(τ ◦ σ−1) = 2n − |K(σ, τ)| − 2 · |{ Bi : i ∈ {1, . . . , n} } \ K(σ, τ)| =
|K(σ, τ)| = K(σ, τ).

Lemma 4. The Cayley distance C satisfies Requirement 1. In particular,
C(lpos(τ), σ) ≤ C(τ, σ) for every local permutation σ ∈ Ext(κ) and permuta-
tion τ ∈ Perm(D).

Proof. For x ∈ D, denote by |Cx(τ ◦ σ−1)| the size of the cycle in τ ◦σ−1 con-
taining x. If σ(x) 6= τ(x), then |Cx(τ ◦ σ−1)| ≥ 2, but |Cx(lpos(τ) ◦ σ−1)| ≤ 2
as shown in the proof of Lemma 3. If otherwise σ(x) = τ(x), then
|Cx(τ ◦ σ−1)| = |Cx(lpos(τ) ◦ σ−1)| = 1. Observe that

∑
x∈D

1
|Cx(τ◦σ−1)| =

]C(τ ◦ σ−1). Hence, ]C(τ ◦ σ−1) ≤ ]C(lpos(τ) ◦ σ−1).

Lemma 5. The Hamming distance H satisfies Requirement 1. In parti-
cular, H(lpos(τ), σ) ≤ H(τ, σ) for every local permutation σ ∈ Ext(κ) and
permutation τ ∈ Perm(D).

Proof. Let x 6∈ H(τ, σ) be a candidate where τ and σ agree, i. e., σ(x) =
τ(x). Since σ is local, x is not moved by lpos as x is placed at a position
belonging to its bucket, i. e., x /∈ Aτ . Hence, x 6∈ H(lpos(τ), σ) and thus,
H(lpos(τ), σ) ⊆ H(τ, σ).
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Lemma 6. For every p ∈ N \ {0} the raised Minkowski distance F̂p satis-

fies Requirement 1. In particular, F̂p(lpos(τ), σ) ≤ F̂p(τ, σ) for every local
permutation σ ∈ Ext(κ) and permutation τ ∈ Perm(D).

Proof. Let x ∈ D. If τ(x) = σ(x) then lpos(τ)(x) = σ(x), since
x 6∈ Aτ . Otherwise, |τ(x)− σ(x)| ≥ 1 implies |τ(x)− σ(x)|p ≥
1, but |lpos(τ)(x)− σ(x)| ≤ 1. In both cases |lpos(τ)(x)− σ(x)|p ≤
|τ(x)− σ(x)|p.

Lemma 7. MR under the raised Minkowski distance F̂p for p ∈ N \ {0} and
under the Hamming distance H satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations. Recall that K(σ, τ) ⊆
{Bi : i ∈ {1, . . . , n} } as σ and τ agree on the order of candidates in dif-
ferent buckets. Hence, |τ(x)− σ(x)| = |τ(y)− σ(y)| = 1 for every bucket
{x, y} ∈ K(σ, τ), i. e., both x and y contribute 1 to the distance. Members
of the remaining buckets {x, y} ∈ {Bi : i ∈ {1, . . . , n} } \ K(σ, τ) contribute
0 to the distance. Thus, d(σ, τ) = |K(σ, τ)| = K(σ, τ).

Lemma 8. The Ulam distance U satisfies Requirement 1. In particular,
U(lord(τ), σ) ≤ U(τ, σ) for every local permutation σ ∈ Ext(κ) and permuta-
tion τ ∈ Perm(D).

Proof. Let (x1, . . . , xl) be a longest common subsequence of τ and σ with
l = lcs(σ, τ). As σ ∈ Ext(κ), all elements x1, . . . , xl are ordered by both σ and
τ according to κ. Hence, (x1, . . . , xl) is also a common subsequence of lord(τ)
and σ and thus, lcs(lord(τ), σ) ≥ lcs(τ, σ). Consequently, U(lord(τ), σ) =
|D| − lcs(lord(τ), σ) ≤ |D| − lcs(τ, σ) = U(τ, σ).

Lemma 9. The Ulam distance U satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations and let ai, bi ∈ Bi for some
bucket Bi. Then {ai, bi}might be a dirty pair, but ai and bi are not part of any
other dirty pair, since σ and τ agree on the order of candidates in different
buckets. Hence, at least one of ai or bi appears in every longest common
subsequence of σ and τ . Both ai and bi occur in every longest common
subsequence if and only if {ai, bi} /∈ K(σ, τ). Hence, for n = |D| candidates
and n

2
buckets, we obtain n− lcs(σ, τ) = n− (n− |K(σ, τ)|) = K(σ, τ).

For the proof of the following lemma, we extend the notion of the set of
dirty pairs from permutations to strings which may contain duplicates. For
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strings s and t over an alphabet D of size 2n, define the set of dirty character
pairs {x, y} such that in s some occurrence of x is before some occurrence of
y and conversely in t:

K(s, t) = {{x, y} ⊆ D : ∃i, j, i′, j′ ∈ {1, . . . , 2n} :

s(i) = t(i′) = x ∧ s(j) = t(j′) = y ∧ i < j ∧ i′ > j′} .

Observe that this generalization is backwards-compatible: If the strings s and
t are duplicate-free, i. e., σ = s−1 and τ ∈ t−1 are permutations on D, then
K(s, t) = K(σ, τ). The extension to strings is pessimistic in the sense that
two characters x and y attempt to belong to K(s, t) if they occur in different
orders. As a consequence, a dirty pair cannot be resolved by inserting more
occurrences of x or y into the strings.

Lemma 10. The Damerau-Levenshtein and Swap-and-Mismatch distances
satisfy Requirement 1. In particular, d(lord(τ), σ) ≤ d(τ, σ) for every local
permutation σ ∈ Ext(κ), permutation τ ∈ Perm(D), and d ∈ {D,S}.

Proof. For a string t define the set X (t) = {Bi : i ∈ {1, . . . , n}} ∩ K(σ−1, t)
of buckets forming a dirty pair. Hence, every character x occurs in at most
one dirty pair Bi ∈ X (t) for some i ∈ {1, . . . , n}.

Consider a shortest sequence (s1 = τ−1, s2, . . . , sk+1 = σ−1) transforming
τ into σ with k operations allowed for d. We examine the size of X (si) during
the transformation process. In the end, X (sk+1) = ∅, since sk+1 and σ−1 are
identical and duplicate-free.

However, for every applied operation, X (si) may decrease by at most one
dirty pair: Inserting a character cannot decrease the number of dirty pairs,
while substituting, deleting, or swapping adjacent characters eliminates at
most one dirty pair as the buckets are disjoint. Thus, |X (τ−1)| is a lower
bound on the number of needed operations.

Now consider the local permutation lord(τ). We have X (lord(τ)−1) =
X (τ−1), since lord preserves the order of elements from the same bucket.
Again, |X (lord(τ)−1)| is a lower bound on the number of needed operations
to transform lord(τ) into σ. However, we actually need only |X (lord(τ)−1)|
operations, since in lord(τ) candidates from each dirty pair are placed next
to each other, thus can be resolved by a single swap. Hence, d(lord(τ), σ) =
|X (lord(τ)−1)| = |X (τ−1)| ≤ d(τ, σ).

Lemma 11. The Damerau-Levenshtein and Swap-and-Mismatch distances
satisfy Requirement 2.
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Proof. Let σ, τ ∈ Ext(κ) be local permutations and d ∈ {D,S}. As shown
in the proof of Lemma 10, iteratively resolving dirty pairs by a swap of
adjacent characters is a shortest sequence of transforming τ into σ. Thus,
d(τ, σ) = K(τ, σ).

Lemma 12. The Lee distance L satisfies Requirement 1, i. e., L(lpos(τ), σ) ≤
L(τ, σ) for every local permutation σ ∈ Ext(κ) and permutation τ ∈
Perm(D).

Proof. Let σ ∈ Ext(κ) be a local permutation, τ ∈ Perm(D) a permuta-
tion on a candidate set D of size n, and x ∈ D. If τ(x) = σ(x), then
lpos(τ)(x) = σ(x), since x 6∈ Aτ . Otherwise, both |τ(x)− σ(x)| ≥ 1 and
n− |τ(x)− σ(x)| ≥ 1. In both cases |lpos(τ)(x)− σ(x)| ≤ |τ(x)− σ(x)| and
|lpos(τ)(x)− σ(x)| ≤ n− |τ(x)− σ(x)|. Thus, L(lpos(τ), σ) ≤ L(τ, σ).

Lemma 13. The Lee distance L satisfies Requirement 2.

Proof. Let σ, τ ∈ Ext(κ) be local permutations and n = |D| > 1.
Then |τ(x)− σ(x)| ≤ 1 ≤ n − |τ(x)− σ(x)| for every candidate x ∈
D. Hence, L(σ, τ) =

∑
x∈Dmin{|τ(x)− σ(x)| , n − |τ(x)− σ(x)|} =∑

x∈D |τ(x)− σ(x)| = F1(σ, τ) = 2 |K(σ, τ)| by Lemma 7.

Theorem 3. Requirements 1 and 2 are satisfied by the Kendall tau, Cay-
ley, Hamming, Ulam, Damerau-Levenshtein, Swap-and-Mismatch, Lee, and
Minkowski distances Fp for p ∈ N \ {0}. Thus, MR is NP-complete under
these distances.

A notable consequence is the dichotomy between the sum and the maxi-
mum versions of the rank aggregation problem, in particular for the Spear-
man footrule distance.

Corollary 2. For the Minkowski distances Fp and p ∈ N \ {0} the common
rank aggregation problem is efficiently solvable, whereas the maximum rank
aggregation problem MR is NP-complete.

Proof. The common rank aggregation problem can be solved by weighted
bipartite matching, where the weights wx,i express the cost of placing x at
position i [7], and NP-completeness of MR follows from Theorem 3.

Since the Minimum distance does not satisfy Requirement 2, we provide
a different reduction from Hitting String.
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Definition 4 (Hitting String [34]).
Instance: n ∈ N, a list s1, . . . , sm ∈ {0, 1, ∗}n of m strings of length n.
Question: Does there exist a string t ∈ {0, 1}n such that each string sj is hit
by t in at least one position, i. e., ∀j ∈ {1, . . . ,m} : ∃i ∈ {1, . . . , n} : sj(i) =
t(i).

Theorem 4. MR under the Minimum distance F−∞ is NP-complete even
for zero distance k = 0.

Proof. There is a consensus permutation τ ∈ Perm(D) with
maxmj=1 minx∈D |σj(x)− τ(x)| = 0 if and only if for every σj there is a
candidate x such that σj(x) = τ(x). Then τ hits σj at position τ(x) and τ
is a hitting consensus.

First, we show how to construct an instance with 2n voters of length
n which has no hitting consensus. Let D = {u1, . . . , un} and σ1 : D →
{1, . . . , n} : ui 7→ i. We obtain n primary voters σ1, . . . , σn by rotating σ1,
i. e., for every j ∈ {1, . . . , n} let σj(ui) = (i+j−2) mod n+1. Additionally,
we introduce secondary voters σ′1, . . . , σ

′
n defined by σ′j = T1,2 ◦ σj. For

instance if D = {a, b, c, d, e}, then the list of voters is

σ1 = [abcde] σ′1 = [bacde]
σ2 = [eabcd] σ′2 = [aebcd]
σ3 = [deabc] σ′3 = [edabc]
σ4 = [cdeab] σ′4 = [dceab]
σ5 = [bcdea] σ′5 = [cbdea].

Assume for contradiction that this list of voters has a hitting consensus τ .
Since there are n primary voters and no two primary voters place any candi-
date at the same position, every primary voter is hit at exactly one position
and τ hits exactly one primary voter at position 1. Let σ be the primary
voter hit at position 1 by a candidate x. Then τ cannot hit the secondary
voter σ′ = T1,2 ◦ σ at the positions 1 or 2 as τ(x) = σ(x) = 1 6= 2 = σ′(x).
Thus, it cannot hit σ′ at all, since σ and σ′ agree in all other positions
{1, . . . , n} \ {1, 2}, a contradiction. We call the above list of voters the n-
anti-pattern. With this in mind, we reduce from the NP-complete Hitting
String to MR under the Minimum distance.

As in the proof of Theorem 2 (see also [13]), letD =
⋃n
i=1{ai, bi} be the set

of candidates and let f : {0, 1}n → Perm(D) with f(s)(ai) = 2i−1+s(i) and
f(s)(bi) = 2i− s(i). For each string sj, j ∈ {1, . . . ,m}, we introduce a list of
voters Σj in two steps. The instance of MR is then the concatenation of all Σj
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and k = 0. In the first step, we create a template ρj : D → {1, . . . , n} ∪ {∗}
from which the actual list is obtained in the second step. Let ρj(ai) =
f(sj)(ai) and ρ(bi) = f(sj)(bi) if s(i) ∈ {0, 1} and ρj(ai) = ρj(bj) = ∗,
otherwise. If none of the strings sj did contain ∗, then we could establish a
one-to-one correspondence between a hitting consensus for voters ρ1, . . . , ρm
and a hitting string for s1, . . . , sm as in Theorem 2 and would be done. Let
Uj = {x ∈ D : ρj = ∗} be the set of candidates which are not assigned a
position by ρj. In Hitting String the ∗ marks a position where an input
string cannot be hit however the hitting string looks alike. We reproduce

this situation for MR by making 2 |Uj| copies σ
(1)
j , . . . , σ

(2|Uj |)
j of ρj such that

all copies agree on the candidates D \ Uj but form a |Uj|-anti-pattern if the
candidate set is restricted to Uj.

Suppose that t∗ is a hitting string for s1, . . . , sm. Then f(t∗) is a hitting
consensus, since for every j ∈ {1, . . . ,m} there is an i ∈ {1, . . . , n} with
t∗(i) = sj(i), thus f(t∗)(ai) = σj(ai). Conversely, suppose that τ ∗ is a
hitting consensus. Consider the string t∗ ∈ {0, 1}n defined by t∗(i) = 0 if
τ ∗(ai) = 2i−1∨τ ∗(bi) = 2i and t∗(i) = 1, otherwise. For every j ∈ {1, . . . ,m}
there must be a candidate x 6∈ Uj with τ(x) = σ

(r)
j (x) for all σ

(r)
j ∈ Σj, since

they form a |Uj|-anti-pattern when restricted to Uj. The position of x ∈ D\Uj
in all σ

(r)
j ∈ Σj is identical and determined by sj. Therefore, x = ai or x = bi

for a position i where sj(i) 6= ∗ and thus, t∗(i) = sj(i). Hence, t∗ is a hitting
string.

5. Approximability

Due to the general NP-hardness of MR, one may ask for an approxima-
tion. In fact, there is a straightforward 2-approximation.

Lemma 14. The associated minimization problem of MR is 2-approximable
for any pseudometric d.

Proof. Let τ ∗ ∈ Perm(D) be the optimal consensus for the MR problem
under pseudometric d with voters σ1, . . . , σm ∈ D. Then the pick-a-perm
method [1] with τ = σj for any j ∈ {1, . . . ,m} yields a 2-approximation,
since for all i ∈ {1, . . . ,m} we have

d(σi, τ) ≤ d(σi, τ
∗) + d(τ ∗, τ) ≤ 2 ·max{d(σi, τ

∗), d(τ ∗, τ)}

≤ 2 · m
max
j=1

d(σj, τ
∗) .
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Note that this approximation ratio for pick-a-perm is tight for all met-
rics satisfying Requirements 1 and 2. For instance, consider the voters
f("1000 . . . "), f("0100 . . . "), f("0010 . . . ") with f as defined in the proof of
Theorem 2. The distance between each pair of voters is 2c, while the optimal
consensus is f("0000 . . . ") with distance c.

6. Fixed-Parameter Tractability

The reduction in Sect. 4 demonstrates a close relationship between Clos-
est Binary String and MR. We strengthen this observation by extending
a fixed parameter algorithm for Closest Binary String [35, 36] such that
it can be applied to MR under several metrics. A similar approach has been
developed by Schwarz [14]. Again we pursue a general schema which cap-
tures several distances. For an introduction to fixed-parameter tractability
see [36, 37].

The notion of the modification set M(τ, σ) ⊆ Perm(D) is at the heart of
our schema. Intuitively, it captures the idea of going “one step” from τ to
σ, i. e., the set consists of permutations near τ which are slightly closer to
σ. The structure of the modification set must be chosen separately for each
metric d. We state a sufficient condition, which we call the δ-improving of
M , such that the algorithm actually finds a k-consensus.

Requirement 3 (δ-improving). Let δ ∈ N \ {0}, σ, τ, τ ∗ ∈ Perm(D), and
k ∈ N such that d(τ ∗, σ) ≤ k and d(τ, τ ∗) ≤ k. If k < d(τ, σ) ≤ 2k, then
there exists a permutation τ ′ ∈ M(τ, σ) in the modification set such that
d(τ ′, τ ∗) ≤ d(τ, τ ∗)− δ.

In other words, by approaching distant voters σ from τ , Requirement 3
guarantees that at least one permutation in M(τ, σ) is closer to the (un-
known) k-consensus τ ∗ if such a k-consensus exists. Hence, in Algorithm 1
we start with τ = σ1 and recursively test all permutations of the modification
set until τ actually reaches τ ∗ or no τ ∗ exists within a search depth of k.

Lemma 15. Let σ1, . . . , σm ∈ Perm(D) be a list of m voters and k ∈ N
be a non-negative integer. Suppose that there is a k-consensus τ ∗, i. e.,
maxmj=1 d(τ ∗, σj) ≤ k. If M is δ-improving, then at recursion depth i, search
in Algorithm 1 has either already found a k-consensus, or is called at least
once with a parameter τ such that d(τ, τ ∗) ≤ k − δi.
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Input: Voters σ1, . . . , σm ∈ Perm(D), bound k ∈ N.
Output: k-consensus τ ∗ ∈ Perm(D) or reject.

1 search(σ1, k);

2 function search(τ,∆k)
3 if ∀j ∈ {1, . . . ,m} : d(τ, σj) ≤ k then return τ ;
4 if ∃j ∈ {1, . . . ,m} : d(τ, σj) > k + ∆k then return ⊥;
5 if ∆k > 0 then
6 let j ∈ {1, . . . ,m} such that k < d(τ, σj) ≤ k + ∆k;
7 foreach τ ′ ∈M(τ, σj) do
8 ρ← search(τ ′,∆k − δ);
9 if ρ 6= ⊥ then return ρ;

10 return ⊥;

Algorithm 1: Fixed-parameter algorithm for MR

Proof. The proof is by induction on the recursion depth i. The induction
basis d(τ, τ ∗) ≤ k− 0 holds, since τ = σ1 in depth 0. For the induction step,
suppose the program has not yet found the solution and that at recursion
depth i ≤

⌈
k
δ

⌉
search is called with τ ′ having d(τ, τ ∗) ≤ k− δi. If d(τ, σj) ≤ k

for all j ∈ {1, . . . ,m}, we have found a k-consensus and are done. Otherwise,
there is a j such that d(τ, σj) > k. The break condition in line 4 does not
hold, since d(τ, σj) ≤ d(τ, τ ∗)+d(τ ∗, σj) ≤ k−δi+k = ∆k+k. As τ ′ iterates
over M(τ, σj), by Requirement 3 there is at least one iteration where search
is called with a τ ′ where d(τ ′, τ ∗) ≤ k − δi− δ.

Theorem 5. If M is δ-improving, then Algorithm 1 finds a k-consensus
τ ∗ or correctly reports that no such consensus exists. Its running time is

O((f(k))d
k
δ e · g(k, n)), where f(k) is the maximum size of the constructed

modification sets and g(k, n) is the time required for the construction of a
modification set.

Proof. The recursion depth is bounded by
⌈
k
δ

⌉
and the branching factor is

limited by the maximum size of the modification set. The running time is
worst if no k-consensus exists, in which case search returns the empty set.
Otherwise, suppose that τ ∗ is a k-consensus. Then, by Lemma 15, search finds
a different k-consensus or is eventually called with a τ such that d(τ, τ ∗) = 0
which implies τ = τ ∗.
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For fixed-parameter results it remains to construct a suitable modification
set for each distance.

Lemma 16. The modification set M(τ, σ) = {Tτ(x),τ(y)◦τ : {x, y} ∈ K(τ, σ)}
is 1-improving under the Kendall tau distance K.

Proof. Let k ∈ N and σ, τ, τ ∗ ∈ Perm(D) such thatK(τ ∗, σ) ≤ k < K(τ, σ) ≤
2k. Note that by Lemma 1, d(Tτ(x),τ(y) ◦ τ, τ ∗) < d(τ, τ ∗) for each dirty pair
{x, y} ∈ K(τ, σ)∩K(τ, τ ∗). Thus, it suffices to show that K(τ, σ)∩K(τ, τ ∗) 6=
∅.

Assume for contradiction that K(τ, σ) and K(τ, τ ∗) are disjoint. Let
{x, y} ∈ K(τ, σ). As {x, y} 6∈ K(τ, τ ∗), we know that τ and τ ∗ agree on
the relative order of x and y, which implies that {x, y} ∈ K(σ, τ ∗). Hence,
K(τ, σ) ⊆ K(σ, τ ∗). Now let {x, y} ∈ K(τ, τ ∗). As {x, y} 6∈ K(τ, σ), τ
and σ agree on the relative order of x and y, implying {x, y} ∈ K(σ, τ ∗).
Hence, K(τ, τ ∗) ⊆ K(σ, τ ∗). We conclude that K(σ, τ ∗) = |K(σ, τ ∗)| ≥
|K(τ, σ)|+ |K(τ, τ ∗)| ≥ k + 1, a contradiction.

Corollary 3. MR under the Kendall tau distance K can be computed in
O((2k)k · (mn log n+ k)}) time.

Proof. Consider the modification set of Lemma 16, whose size is |M(τ, σ)| =
|K(τ, σ)| = K(τ, σ) ≤ 2k. The distance of two permutations can be com-
puted in O(n log n) time [31]. Hence, lines 3, 4 and 6 of Algorithm 1 need
O(mn log n) time. For efficiency reasons, we represent the modification set
M(τ, σ) only implicitly by the set K(τ, σ) of at most 2k dirty pairs, which
can be computed in O(n log n + k) time [11]. We iterate τ ′ over M(τ, σ) by
transposing the next dirty pair in K(τ, σ), descent recursively, and undo the
transposition after the recursive call returns. Thus, excluding the recursion,
the loop requires O(n log n+ k) time.

Lemma 17. Let σ and τ ∈ Perm(D) be two permutations which dis-
agree on the position of a displaced candidate x, i. e., x ∈ H(σ, τ). Then
H(σ, Tσ(x),τ(x) ◦ τ) < H(σ, τ).

Proof. Let y ∈ D such that τ(y) = σ(x). Note that y ∈ H(σ, τ) and
the transposition of x and y in τ does not affect other candidates. Thus,
H(σ, Tσ(x),τ(x)◦τ) = H(σ, τ)\{x} or even H(σ, Tσ(x),τ(x)◦τ) = H(σ, τ)\{x, y}
if τ(x) = σ(y).
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Lemma 18. The modification set M(τ, σ) = {Tτ(x),σ(x) ◦ τ : x ∈ H(τ, σ)} is
1-improving under the Hamming distance H.

Proof. Let k ∈ N and σ, τ, τ ∗ ∈ Perm(D) such thatH(τ ∗, σ) ≤ k < H(τ, σ) ≤
2k. The size of the modification set is |M(τ, σ)| = |H(τ, σ)| = H(τ, σ) ≤ 2k.
σ and τ ∗ agree in the position of at least |D| − k candidates. As H(τ, σ) >
k, there is at least one candidate x with τ(x) 6= σ(x) = τ ∗(x). Hence,
H(Tτ(x),σ(x) ◦ τ, τ ∗) < H(τ, τ ∗) by Lemma 17.

Corollary 4. MR under the Hamming distance H can be computed in
O((2k)k ·mn) time.

Proof. Consider the modification set of Lemma 18. The Hamming distance
between two permutations can be computed in linear time. Thus, lines 3, 4
and 6 of Algorithm 1 need O(mn) time. Similarly to the proof of Corollary 3,
the iteration of τ ′ over the modification set M(τ, σ) with |M(τ, σ)| ≤ 2k is
done in place and needs only O(k) time.

Lemma 19. The modification set M(τ, σ) = {Tτ(x),i ◦ τ : x ∈ H(τ, σ) ∧ i ∈
{τ(x) + j · sgn(σ(x) − τ(x)) : j ∈ {1, . . . , dk

1
p e}} ∩ {1, . . . , n}} is (p + 1)-

improving under the raised Minkowski distance F̂p for p ∈ N \ {0}.

Proof. Let k ∈ N and σ, τ, τ ∗ ∈ Perm(D) such that F̂p(τ
∗, σ) ≤ k <

F̂p(τ, σ) ≤ 2k. We take every displaced candidate x ∈ H(τ, σ) and try all pos-
sibilities to transpose it with candidates placed at most k positions to its right
or left, depending on whether σ(x) > τ(x) or σ(x) < τ(x), respectively. Sup-
pose we have a candidate x ∈ H(τ, σ) with |σ(x)− τ ∗(x)| < |σ(x)− τ(x)|.
There must be at least one such candidate, since F̂p(τ

∗, σ) < F̂p(τ, σ).
W. l. o. g. assume σ(x) > τ(x). Otherwise, the following arguments apply
symmetrically. Let Y = {τ ∗−1(i) : i ≤ τ(x)} be the set of candidates which
are placed in τ ∗ to the left of or on the same position where x is placed
in τ . As τ ∗(x) > τ(x), x 6∈ Y , so by a counting argument there must be
some y ∈ Y with τ(y) > τ(x). We know that τ ′ = Tτ(x),τ(y) ◦ τ is contained

in the modification set because τ(y) − τ ∗(y) ≤ k
1
p due to F̂p(τ, τ

∗) ≤ k by
Requirement 3. We distinguish two cases whether or not τ(y) ≤ τ ∗(x).

Case 1: τ ∗(y) ≤ τ(x) < τ(y) ≤ τ ∗(x).. Then both τ ∗(x) − τ ′(x) = τ ∗(x) −
τ(y) < τ ∗(x)− τ(x) and τ ′(y)− τ ∗(y) = τ(x)− τ ∗(y) < τ(y)− τ ∗(y). Hence,
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by the Binomial Theorem, |τ(x)− τ ∗(x)|p − |τ ′(x)− τ ∗(x)|p =

(|τ(x)− τ ∗(x)| − |τ ′(x)− τ ∗(x)|)︸ ︷︷ ︸
≥1

·
p−1∑
i=0

|τ(x)− τ ∗(x)|i︸ ︷︷ ︸
≥1

· |τ ′(x)− τ ∗(x)|p−i−1︸ ︷︷ ︸
≥1

and thus, |τ ′(x)− τ ∗(x)|p ≤ |τ(x)− τ ∗(x)|p−p. We obtain |τ ′(y)− τ ∗(y)|p ≤
|τ(y)− τ ∗(y)|p−p symmetrically. In sum |τ ′(x)− τ ∗(x)|p+|τ ′(y)− τ ∗(y)|p ≤
|τ(x)− τ ∗(x)|p + |τ(y)− τ ∗(y)|p − 2p.

Case 2: τ ∗(y) ≤ τ(x) < τ ∗(x) < τ(y).. Then τ ′(x)− τ ∗(x) + τ ′(y)− τ ∗(y) =
τ(y) − τ ∗(x) + τ(x) − τ ∗(y) < τ(y) − τ ∗(y). By the Binomial Theorem we
derive

(τ ′(x)− τ ∗(x) + τ ′(y)− τ ∗(y))p ≤ (τ(y)− τ ∗(y))p − p
|τ ′(x)− τ ∗(x)|p + |τ ′(y)− τ ∗(y)|p ≤ |τ(y)− τ ∗(y)|p − p+ |τ(x)− τ ∗(x)|p︸ ︷︷ ︸

≥1

−1

Recall that the positions of candidates D \ {x, y} are unaffected. Hence, in
both cases F̂p(τ

′, τ ∗) ≤ F̂p(τ, τ
∗)− (p+ 1).

Corollary 5. MR under the Minkowski distance Fp for p ∈ N \ {0} can be

computed in O((2kp+1)d
kp

p+1e ·mn) time.

Proof. Let k̂ = kp. Finding a k-consensus for Fp is equivalent to finding

a k̂-consensus for F̂p. Consider the modification set of Lemma 19. Its size

is |M(τ, σ)| ≤ 2k̂1+
1
p , since there are most 2k̂ displaced candidates which

are each tested on at most k̂
1
p positions. The Minkowski distance between

two permutations can be computed in linear time. Thus, lines 3, 4 and 6 of
Algorithm 1 need O(mn) time. Finding the up to 2k̂ displaced candidates
to build the modification set needs O(n) time. Each displaced candidate is

tested on k̂
1
p positions. Then the total running time is in O((2k̂1+

1
p )

⌈
k̂
p+1

⌉
·

mn) = O((2kp+1)d
kp

p+1e ·mn).

There are tractable algorithms for Closest Binary String parame-
terizing the number of strings m [36]. However, parameterizing MR by the
number of voters m does not lead to efficient algorithms, since MR under the
Kendall tau distance is NP-hard for m = 4 [7, 11].

Note that the NP-hardness of MR under the Minimum distance even for
k = 0 implies that this problem is not fixed-parameter tractable by k unless
P = NP.
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7. Conclusion

We explored the complexity of MR using a general schema which en-
ables us to establish sufficient requirements for metrics under which MR is
NP-complete and fixed-parameter tractable. Considering NP-hardness, the
Requirements 1 and 2 may also hold for other distances. Considering fixed
parameter tractability suitable modification sets (Requirement 3) must be
found. An open field are better approximation ratios and the extension of
MR for partial orders [4, 5, 19].
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