
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 16, no. 2, pp. 151–198 (2012)

Drawing Recurrent Hierarchies

Christian Bachmaier 1 Franz J. Brandenburg 1 Wolfgang Brunner 1

Raymund Fülöp 2

1University of Passau, 94030 Passau, Germany
2CipSoft GmbH, 93047 Regensburg, Germany

Abstract

Directed graphs are generally drawn as level drawings using the hi-
erarchical approach. Such drawings are constructed by a framework of
algorithms which operates in four phases: cycle removal, leveling, cross-
ing reduction, and coordinate assignment.

However, there are situations where cycles should be displayed as such,
e. g., distinguished cycles in the biosciences and scheduling processes re-
peating in a daily or weekly turn. In their seminal paper on hierarchical
drawings Sugiyama et al. [31] also introduced recurrent hierarchies. This
concept supports the drawing of cycles and their unidirectional display.
However, it had not been investigated.

In this paper we complete the cyclic approach and investigate the
coordinate assignment phase. The leveling and the crossing reduction for
recurrent hierarchies have been studied in the companion papers [3, 4].

We provide an algorithm which runs in linear time and constructs an
intermediate drawing with at most two bends per edge and aligned edge
segments in an area of quadratic width times the preset number of levels
height. This area bound is optimal for such drawings. Our approach
needs new techniques for solving cyclic dependencies, such as skewing
edges and cutting components. The drawings can be transformed into 2D
drawings displaying all cycles counterclockwise around a center and into
3D drawings winding the cycles around a cylinder.

Submitted:
October 2010

Reviewed:
March 2011

Revised:
May 2011

Accepted:
December 2011

Final:
January 2012

Published:
January 2012

Article type:
Regular paper

Communicated by:
Michael Kaufmann

Supported in part by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/15-1.
E-mail addresses: bachmaier@fim.uni-passau.de (Christian Bachmaier)
brandenb@informatik.uni-passau.de (Franz J. Brandenburg) brunner@fim.uni-passau.de
(Wolfgang Brunner) fueloep@cipsoft.com (Raymund Fülöp)

mailto:bachmaier@fim.uni-passau.de
mailto:brandenb@informatik.uni-passau.de
mailto:brunner@fim.uni-passau.de
mailto:fueloep@cipsoft.com

152 Bachmaier et al. Drawing Recurrent Hierarchies

1 Introduction

The hierarchical approach is generally used for poly-line drawings of directed
graphs with vertices arranged on horizontal levels. The concept was introduced
in 1981 by Sugiyama et al. [31]. It consists of four phases: cycle removal, level-
ing, crossing reduction, and coordinate assignment. The hierarchical approach
has achieved much attention in graph drawing. There are many extensions
and improvements and detailed studies of the phases, see [11, 20]. These draw-
ings translate the topological edge direction into a geometric one. It is the
appropriate drawing style for directed acyclic graphs, where the drawings have
unidirectional edges and reflect the underlying graph as a partial order. Typical
applications are schedules, UML diagrams and flow charts, where temporal or
causal dependencies are modeled by directed edges and are expressed by a left
to right or a downward direction.

In its first phase the hierarchical approach destroys all cycles. However,
there are situations where this is unacceptable. For example, there are well-
known cycles in the biosciences, where it is a common standard to display them
as such. These cycles often serve as a landmark [22]. Cycles are also crucial
for repeating processes. Such daily, weekly, or monthly schedules with the same
tasks define the periodic event scheduling problem [27]. Again it is important
that the cycles are clearly visible. This makes such drawings “nice”.

In their seminal paper [31] Sugiyama et al. suggested a solution for the
hierarchical style and addressed the cyclic style. The latter is called recurrent
hierarchy. A recurrent hierarchy is a level graph with additional edges from
the last to the first levels. Here, an intermediate drawing is the appropriate
drawing style. It is the common hierarchical style with horizontal levels in
the plane. However, the first level is duplicated and reappears at the bottom.
It is crucial that these two levels are drawn identically, and that there is no
disruption or hidden bend for the edges entering the duplicated bottom level.
This style supports a continuous vertical scrolling of the drawing. The aesthetic
criteria hold for these drawings, in particular, aligned long edges and at most
two bends per edge. Typical applications can be found in VLSI design, where it
is often necessary to build regular layouts of one-dimensional arrays of identical
cells [21].

There are at least two more drawing styles for recurrent hierarchies. Both
can be derived from an intermediate drawing, see Fig. 2(b). The first is a
2D drawing, where the levels are rays from a common center and are sorted
counterclockwise by their number, see Fig. 2(c). All vertices of a level are
placed at different positions on their ray, and an edge e = (u, v) is drawn as a
monotone counterclockwise poly-spiral curve from u to v wrapping around the
center at most once. This style is the best to display cycles as closed curves and
to illustrate cyclic dependencies, see Figs. 6(b) and 22. The second style is a 3D
drawing on a rolling cylinder, where the levels are horizontal lines and the first
level follows the last, see Fig. 2(d). The intermediate and the 3D drawings can be
used for an interactive 2D view. A window shows a section of the drawing with
some horizontal levels, and it can endlessly be scrolled upwards and downwards,

JGAA, 16(2) 151–198 (2012) 153

9

10

2

1

4
3

11

5

6

15

8

7
14

13

12

(a) Input graph G1

9

10

2

1

4
3

11

5

6

15

8

7
14

13

12

(b) G1 after decycling

9 10

21

43

11

5 6

15

87

141312

(c) G1 after leveling and crossing
reduction

9 10

21

43

11

5 6

15

87

141312

x

y

(d) G1 after coordinate assignment and
postprocessing

Figure 1: Hierarchical coordinate assignment

see Fig. 2(b). This meets the underlying concept of unidirectional cycles while
treating all levels and edges homogeneously.

In cyclic drawings all edges are unidirectional, which makes the cycle removal
phase vacuous. This saves much effort since the underlying feedback arc set
problem is NP-hard [18]. Further advantages over hierarchical drawings are
shorter edges and fewer crossings, as Fig. 1(d) illustrates vs. Fig. 2(b). These
effects emerge, in particular, if there are back edges from the last to the upper
levels, which are long in hierarchical drawings and may cause many crossings.

A planar recurrent hierarchy in 2D style is shown on the cover of the text-
book by Kaufmann and Wagner [20]. In their survey paper on the hierarchical
approach Bastert and Matuszewski state that “unfortunately this problem (re-
current hierarchies) is still not well studied” [20, page 119]. In fact, recurrent
hierarchies had not been studied at all.

Another 2D drawing of a recurrent hierarchy appears in Sugiyama’s textbook
[29]. He proposes to draw a recurrent hierarchy by computing a hierarchical
layout with emphasis on matching the vertex orders on the uppermost and
lowermost levels, using a radial layout of the levels for a clockwise routing of
the edges. As our investigations have shown this does not cope with the inherent

154 Bachmaier et al. Drawing Recurrent Hierarchies

2 1

4

3

11

5

6

15

87

10 14

9 13

12

(a) Graph G1 from Fig. 1(a) after lev-
eling and crossing reduction

21

43

11

5 6

15

87

10

14

9

1312

21

right

left

x

y

(b) Intermediate drawing of (a)

2 1

4

3

11

5

6

15

87

10
14

9

13

12

right

left

x

y

(c) Cyclic 2D drawing of (a)

141312

109 11

1

15

2

z

x

y

left right

(d) Cyclic 3D drawing of (a)

Figure 2: Cyclic coordinate assignment (after 4 runs and postprocessing)

JGAA, 16(2) 151–198 (2012) 155

problems. For cyclic drawings the algorithmic problems behind the phases are
different and mostly algorithmically harder, since the common techniques for
leveling, crossing reduction and coordinate assignment fail due to the absence
of a well-defined top and bottom of the drawing. The first and last levels are
often used for a fresh start and for resolving conflicts, e. g., in the level-by-level
sweeps of the third phase.

There are alternative approaches for cyclic drawings of directed graphs.
They follow other paradigms which makes them incomparable to our approach.
Sugiyama and Misue [30] use a force-based algorithm to obtain a cyclic edge ori-
entation. Pich [23] supplies spectral graph layout techniques to generate cyclic
drawings of directed graphs. Both approaches do not draw recurrent hierarchies,
since they do not preserve the given leveling of the vertices.

In this work we consider the coordinate assignment phase for cyclic level
drawings. Its input is any graph in the proper format, namely an ordered
proper cyclic k-level graph. This is the follow-up to our companion papers on the
leveling phase [4], a cyclic level planarity test [6], and the crossing reduction [3].
It is part of our frameworks for drawing directed graphs in the hierarchical,
radial [1, 2] and cyclic styles, which have been realized in Gravisto [5].

There are several algorithms for the coordinate assignment in the hierarchi-
cal approach [10, 12, 13, 16, 17, 20, 24–26, 31]. Here we extend the established
algorithm of Brandes and Köpf [8] to cyclic level drawings of directed graphs
and provide a linear time algorithm using quadratic width and with at most two
bends per edge. In the hierarchical approach the algorithm draws long edges
vertically aligned. This is not possible any longer since there can be cyclic de-
pendencies in the left-to-right order of the vertices. This particular problem is
solved by skewing subgraphs of the drawing and aligning their edges. Cyclic
dependencies exclude the exact algorithm of Gansner et al. [16] if in addition
to the usual constraints the dummy vertices of a long edge are restricted to the
same x-coordinates, such that these are drawn vertically. Then the underlying
LP becomes infeasible, as can be seen from the graph G2 in Fig. 4.

Altogether the cyclic drawing style posed new challenges, which could largely
be settled. It gives pleasing drawings for well-suited graphs with cycles.

This paper is organized as follows: After some preliminary definitions in
Sect. 2 we first review hierarchical coordinate assignment algorithms in Sect. 3.
The main part is the description of our cyclic coordinate assignment algorithm in
Sect. 4, which solves the new problem of cyclic dependencies by skewing edges.
The time complexity and the area of the drawings are analyzed in Sect. 5.
In Sect. 6 cyclic dependencies are settled in a different way. We close with a
summary, report on a comparison of the hierarchical and cyclic drawing styles,
state some open problems, and show example drawings.

2 Preliminaries

A cyclic k-level graph G = (V,E, φ) where k ≥ 1 is a directed graph with-
out self-loops with a given surjective level assignment of the vertices φ : V →

156 Bachmaier et al. Drawing Recurrent Hierarchies

{1, 2, . . . , k}. Let Vi ⊆ V be the set of vertices v with φ(v) = i. For an edge
e = (u, v) ∈ E, u and v are the start and end vertices. Let span(e) = φ(v)−φ(u)
if φ(u) < φ(v) and span(e) = φ(v)− φ(u) + k, otherwise. An edge e is short if
span(e) = 1 and long, otherwise. A graph is proper if all edges are short. Every
cyclic level graph can be made proper by adding span(e) − 1 dummy vertices
for each edge e and thus splitting e into span(e) many short edges, which are
the segments of e. In total this may lead to up to O(k · |E|) new vertices. The
first and the last segments of each edge are its outer segments, and all other
segments between two dummy vertices are its inner segments. A proper cyclic
k-level graph G = (V,E, φ,<) is ordered if < is a total order for the vertices Vi
of each level i with 1 ≤ i ≤ k. Let v(i)j ∈ Vi denote the j-th vertex on level i and
pos(v) the index of the vertex v on its level, i. e., pos(v

(i)
j) = j. In accordance

with [8] we say that two segments are in conflict in an ordered cyclic level graph
if they cross or share a common vertex. Conflicts are of type 0, 1 or 2 if they
are induced by 0, 1, or 2 inner segments, respectively.

We represent drawings of cyclic level graphs by an intermediate drawing
which is a hierarchical drawing in the plane, where the last level is a one-to-
one copy of the first level. Each vertex v is assigned a coordinate (x(v), y(v))
with x(v) ∈ R and y(v) = φ(v) ∈ N. The x-coordinates increase from left
to right, whereas the y-coordinates increase downwards in edge direction, see
Fig. 2(b). All vertices on level 1 are duplicated on level k + 1 using the same
x-coordinates. Each segment s = (u, v) is drawn straight-line from

(
x(u), y(u)

)
to
(
x(v), y(u) + 1

)
with slope 1

x(v)−x(u) .
A 2D drawing as in Fig. 2(c) is obtained from an intermediate drawing by

transforming each point p = (x(p), y(p)) of the plane to
(
x2D(p), y2D(p)

)
=(

r(p) · cos(α(p)), r(p) · sin(α(p))
)
with radius r(p) = (offsetx + maxv∈V (x(v)))−

x(p) · δx and angle α(p) = (y(p) − 1) · 2π
k . The constant offsetx defines the

minimum distance of a vertex from the center and δx is the minimum distance
between vertices on the same level. After the transformation each vertex on
level 1 coincides with its copy on level k + 1. Note that then right corresponds
to the center and left to the outside, see Fig. 2. Accordingly, a 3D drawing
as in Fig. 2(d) uses the coordinates

(
x3D(p), y3D(p), z3D(p)

)
=
(
x(p) · δx,−rk ·

sin(α(p)), rk · cos(α(p))
)
for all points p of the drawing, where rk is the radius

of the cylinder. These equations define one-to-one mappings from intermediate
to 2D and 3D drawings and transform straight lines to spiral segments.

Finally, a drawing is (cyclic level) plane if the edges do not meet or cross
except at common endpoints. A (cyclic k-level) graph is (cyclic level) planar if
such a drawing exists. If there is a plane drawing of an ordered (cyclic) level
graph G = (V,E, φ,<) which respects the order <, then we call G plane.

3 Foundations

The coordinate assignment is the final phase of the hierarchical approach. The
input is an ordered k-level graph. Its vertices are placed on levels where they are

JGAA, 16(2) 151–198 (2012) 157

horizontally ordered. The levels determine the y-coordinates. Thus it remains to
compute the x-coordinate of each vertex of the input graph and of each dummy
vertex for the edge routing. Fig. 1(c) shows the result of the crossing reduction
phase for an example graph G1 and the final drawing is shown in Fig. 1(d).

In the cyclic approach the x-coordinates of the original and the dummy
vertices must be computed for the intermediate drawing. This parallels the hi-
erarchical case; however, there are cyclic dependencies, which enforce a skewing.
In the 2D case an x-coordinate corresponds to the distance from the center. The
ray or the angle is given by the leveling. Fig. 2(a) shows a possible result of the
crossing reduction of G1. Fig. 2(b) is the intermediate drawing with dummy
vertices removed. Fig. 2(c) depicts the final 2D drawing, and in Fig. 2(d) the
3D drawing on a cylinder is shown.

The coordinate assignment determines the edge routing. Important drawing
conventions and aesthetic criteria are (1) few bends per edge, (2) aligning long
edges, (3) a uniform distribution of the vertices and similar distances between a
vertex and all its neighbors, and (4) a small width of the drawing. The criteria
(1) and (2) are necessary to avoid a “spaghetti” effect [15]. In the hierarchical
case long edges are aligned vertically. In cyclic drawings this is not always
possible as shall be shown. In the intermediate drawings we align long edges
and try to draw them as vertical as possible. They are mapped to concentric
circles in 2D drawings.

3.1 Hierarchical Coordinate Assignment

The narrowest drawings are obtained by aligning all vertices leftmost on their
levels, as in Fig. 1(c). However, such drawings are not really pleasing, as they
have (too) many edge bends and there is no balancing of the vertices among
their neighbors. Several better heuristics have been proposed.

Sugiyama et al. [31] suggest a quadratic programming approach for the
fourth phase, and propose a priority layout method with several up and down
sweeps similar to many crossing reduction techniques. In the down sweeps
the x-coordinates of the vertices on the current level are adapted while the x-
coordinates on the previous level are fixed. The heuristic has to ensure that the
vertex order on the levels remains unchanged. Dummy vertices are prioritized
and are moved first for vertically aligned long edges. Heuristics like barycen-
ter [31] and median [14] can be used to position vertices with lower priority.

In their exact approach Gansner et al. [16] model the problem by an LP.
The objective function is to minimize the weighted sum of the difference of
x-coordinates for adjacent vertices restricted to preserve at least unit distance
between vertices on the same level. Inner segments are given the highest weight
to draw this lines as close to vertical as possible. Sander [24, 26] uses force
directed methods to balance vertices among their neighbors.

Eades et al. [12] spread the vertices of the first and last levels equidistantly
on their levels and place all other vertices at the barycenter of their neighbors.
They use their algorithm only for special graphs where all sources and sinks

158 Bachmaier et al. Drawing Recurrent Hierarchies

are on the extreme levels. Note that this approach may change the computed
vertex orders on the levels.

The algorithm of Buchheim et al. [10] consists of two phases. First the
x-coordinates of dummy vertices are computed and then considering these as
fixed the non-dummy vertices are placed between them. It guarantees at most
two bends per edge and draws inner segments vertically. The running time
is O((|V | + |E|) · (log(|V | + |E|))2) for a leveled graph G = (V,E) containing
dummy vertices and only short edges.

3.1.1 Algorithm by Brandes and Köpf

Our favorite algorithm for the hierarchical coordinate assignment is the one by
Brandes and Köpf [8], since it runs in linear time and the resulting drawings
are of high quality. They have a good resolution, i. e., integral coordinates,
if the horizontal separation between vertices is even. Most importantly, they
guarantee at most two bends per edge, which in addition occur at the first and
last levels properly crossed by an edge. Moreover, the inner segments of long
edges are vertically aligned and the vertices are balanced over their neighbors.
These aesthetics shall be adopted. We describe it in more detail here, as our
cyclic coordinate assignment algorithm is an extension to cyclic level graphs.

The algorithm uses a thinning strategy. Whenever possible vertices are
aligned with their median neighbors extracting all other incident segments. The
alignment is directed towards the median of its incoming (align upwards) or out-
going neighbors (align downwards). If the number of neighbors is even, there is
a left (align left) and a right median (align right). Hence, the alignment and the
subsequent phase is executed four times, once for each combination of upwards
and downwards with left and right alignment. We call each such execution one
run and describe the upward alignment to the left only. The others are obtained
by flipping the ordered k-level graph horizontally and/or vertically.

Segments of the graph are extracted until each vertex has at most one in-
coming and one outgoing segment and there are no crossings in a drawing re-
specting the order of the vertices on each level. The crossing of an outer and an
inner segment is a type 1 conflict. In that case the outer segment is removed.
By assumption type 2 conflicts are excluded, which are crossings of two inner
segments. Thus all inner segments are kept. The remaining type 0 conflicts
correspond to a pair of outer segments which either cross or share a common
vertex. They are resolved greedily in a leftmost fashion. First, it is tried to
align a vertex with its left median incoming neighbor, otherwise, with the right
median. An alignment fails if the used segment causes a crossing with an al-
ready aligned segment or its end vertex was already used for another alignment.
The remaining segments build paths, which are called blocks and are drawn
vertically in the hierarchical case. For a horizontal compaction the blocks are
sorted topologically according to the left-to-right order on the levels. So the
x-coordinate of each (dummy) vertex is obtained in the left upwards run. In [8]
the results of the four runs are finally balanced out by taking the average of the
two median x-coordinates for each vertex.

JGAA, 16(2) 151–198 (2012) 159

9 10

21

43

11

5 6

15

87

141312

(a) Remove edges to align vertices

9 10

21

43

11

5 6

15

87

141312

(b) Compact blocks

Figure 3: The algorithm of Brandes and Köpf [8] for G1 from Fig. 1(c)

As an example consider the graph in Fig. 1(c). The graph in Fig. 3(a)
is obtained by aligning vertices upwards to the left and removing the other
segments. Each path in the graph is a block, which is compacted in Fig. 3(b).
The final drawing results from the balancing step of the four drawings and is
shown in Fig. 1(d).

3.1.2 Postprocessing

After the computation of all x-coordinates some additional steps are taken to
clean up the drawing. All dummy vertices are removed and if necessary are
replaced by edge bends. Edges are redirected to their original direction if they
were reversed in the decycling phase. Lastly, the computed x- and y-coordinates
are multiplied with user-given values to scale the drawing to the desired size.

4 Cyclic Coordinate Assignment
In this section we describe the coordinate assignment phase for cyclic level
graphs. We extend the algorithm of Brandes and Köpf [8] and use their notation.
The input for our algorithm is an ordered proper cyclic level graph. It can be
obtained by running the earlier phases of the framework. As in [8] we assume
that there are no type 2 conflicts after the crossing reduction phase. This is
guaranteed, e. g., by the global sifting algorithm for crossing reduction [3]. The
algorithm has no further preconditions and does not change the levels and the
orderings of the vertices on the levels. Note that dummy vertices have been
introduced after the leveling.

Algorithm 1 consists of three basic steps: block building (lines 4–5), hor-
izontal compaction (lines 6–12), and balancing (line 14), which correspond to
the according steps in [8]. The first two steps are carried out four times with
runs for each combination of a left/right and an upwards/downwards alignment
(line 2). The four results are merged by the balancing step. We only describe

160 Bachmaier et al. Drawing Recurrent Hierarchies

Algorithm 1: cyclicCoordinateAssignment
Input: An ordered proper cyclic k-level graph G′ = (V ′, E′, φ′, <)
Output: Coordinates (x(v), y(v)) for each v ∈ V ′ in the intermediate

drawing I
1 P ← ∅
2 foreach (h, v) ∈ {left, right} × {upwards, downwards} do
3 G′′ ← flip(G′, h, v) // according to the current run
4 H ← buildCyclicBlockGraph(G′′)
5 H ← normalize(H) // split long and closed blocks
6 S ← computeSCCs(H)
7 foreach complex SCC S ∈ S do
8 (S′, EI)← cutSCC(S) // returns the hierarchical block graph
9 width(S′)← compactBlocks(S′, EI)

10 skew(S′,−(wind(S′) · k)/width(S′)) // skew S′ with given slope
11 S ← S \ S ∪ S′

12 compact(S) // globally all SCCs
13 P ← P ∪ flip(S, h, v)

14 I ← balance(P) // balance four runs
15 return I

the run for the upwards alignment to the left. The other three runs are realized
by flipping the graph horizontally and/or vertically before and after each run
(lines 3, 13). The thereby computed intermediate drawing can be transformed
into the 2D or 3D drawings. Bends occur at dummy vertices which are removed
thereafter.

In the cyclic case there may be unavoidable cyclic dependencies in the left-
to-right order among vertically aligned paths. This is the major new challenge
in the cyclic coordinate assignment. For an illustration consider the graph G2

in Fig. 4 to Fig. 6. In each figure an intermediate drawing of the same graph is
shown on the left and the corresponding cyclic drawing is shown on the right.
If all inner segments were drawn vertically (see Fig. 4), this would lead to the
cyclic dependency x(d1) < x(d2) < x(d3) = x(d5) = x(d7) < x(d8) < x(d9) =
x(d11) = x(d1), which is a contradiction. We will later formalize these cyclic
dependencies and call them rings. In the intermediate drawing (see Fig. 4(a)),
the vertices of the two copies of the first level do not have the same x-coordinate.
The two copies of these vertices cannot be drawn at the same position in the
cyclic drawing (see Fig. 4(b)). This problem could be solved by additional
bends, e. g., between the last and the first levels. Then the two copies of each
vertex on level 1 have the same x-coordinate (see Fig. 5(a)) and there is a cyclic
drawing (see Fig. 5(b)). However, then edges can have up to four bends, and
the edges from the last to the first level need a special treatment. This is a
drawing one would get from a hierarchical layout with a simple matching of the
vertices on the levels 1 and k + 1 as proposed in [29]. Another possibility is to

JGAA, 16(2) 151–198 (2012) 161

2

d
6

d
8

d
10

1

4

d
9

d
11

d
1

d
1

3

6

d
12

d
2

d
2

d
4

5

8

d
3

d
3

d
5

d
7

7

2

1

(a) Intermediate drawing

1,2

d6

d8

d10

1

4

d9

d11

d1

3

6

d12

d2

d4

5

8

d3

d5

d7

7

d2d3
d1

2

(b) Cyclic drawing

Figure 4: Graph G2 with vertical inner segments

2

d
6

d
8

d
10

1

4

d
9

d
11

d
1

d
1

3

6

d
12

d
2

d
2

d
4

5

8

d
3

d
3

d
5

d
7

7

2

1

(a) Intermediate drawing

2

d
6

d
8

d
10

1

4

d
9

d
11

d
1

3

6

d
12

d
2

d
4

5

8

d
3

d
5

d
7

7

(b) Cyclic drawing

Figure 5: Graph G2 with additional bends

162 Bachmaier et al. Drawing Recurrent Hierarchies

2

d
6

d
8

d
10

1

4

d
9

d
11

d
1

d
1

3

6

d
12

d
2

d
2

d
4

5

8

d
3

d
3

d
5

d
7

7

2

1

(a) Intermediate drawing

2

d
6

d
8

d
10

1

4

d
9

d
11

d
1

3

6

d
12

d
2

d
4

5

8

d
3

d
5

d
7

7

(b) Cyclic drawing

Figure 6: Graph G2 with skewed inner segments

align inner vertices using the same slope (see Fig. 6). Then there are at most
two bends per edge, and the symmetry of the graph is reflected by the drawing.
We pursue this approach and solve the associated problems, i. e., computing the
slopes and determining how many different slopes are needed.

There are means to avoid cyclic dependencies. For example the global sifting
heuristic for the crossing reduction from [3] can be used together with a slight
modification of our coordinate assignment algorithm. However, this is at the
expense of more crossings, less balanced drawings, and the loss of generality. We
will provide a particular solution in Sect. 6. In order to draw any given ordered
cyclic level graph, we need an algorithm which can handle cyclic dependencies.
As an example consider the graph in Fig. 6, which can only be drawn without
crossings with the permutations of each level as given in Fig. 6 or their reversal.
These permutations are the result of an optimal crossing reduction, e. g., a cyclic
adaption of [19] or a planarity testing and embedding algorithm [6]. To avoid
cyclic dependencies other permutations on the levels are needed which result
inevitably in crossings.

4.1 Block Building

The algorithm of Brandes and Köpf [8] builds blocks by the selection of paths.
We follow this approach with extensions for the cyclic structure. We try to
align each vertex with the median of its upper neighbors by assigning them to
the same block. Removing all other non-aligned segments results in a graph,
where each vertex has at most one incoming and one outgoing segment and thus
consists of paths and cycles. Such graphs are called cyclic path graphs.

Definition 1 A cyclic path graph H ′ = (V,Eintra, φ,<) is a plane ordered
proper cyclic k-level graph. Each vertex of H ′ has in-degree and out-degree

JGAA, 16(2) 151–198 (2012) 163

i

j

k
0

k
1

cl

Figure 7: Marking type 1 conflicts

at most one. We call each connected component of H ′ a block and all edges
e ∈ Eintra intra-block edges. A block B is closed if each vertex of B has in-
degree and out-degree one and B is open, otherwise. The height of B is defined
as the number of intra-block edges in B. Let block(v) be the block of a vertex
v ∈ V , and levels(B) the set of levels on which B has (dummy) vertices. For an
open block B let top(B) and bottom(B) be the topmost and lowermost vertex,
i. e., the vertices with in-degree and out-degree zero, respectively. Let B denote
the set of all blocks.

The cyclic block graph H = (V,Eintra

.
∪Einter, φ) of H ′ is obtained by adding

an inter-block edge e ∈ Einter from each vertex in H ′ to its consecutive right
vertex on the same level. For a vertex v ∈ V let left(v), right(v), up(v), and
down(v) be the start vertex of the incoming inter-block edge, the end vertex of
the outgoing inter-block edge, the start vertex of the incoming intra-block edge,
and the end vertex of the outgoing intra-block edge, respectively. A cyclic block
graph is normalized if it consists of open blocks of height at most k − 1.

A hierarchical path graph is defined analogously being an ordered proper
(non-cyclic) level graph. A hierarchical block graph is a hierarchical path graph
extended by inter-block edges.

The drawing of the cyclic block graph determines the coordinates of all
(dummy) vertices in the final drawing of the original graph. As all segments
of the original graph are straight lines, the drawing is completely determined.
Algorithm 2 constructs a cyclic block graph from an ordered proper cyclic k-
level graph. Each level is traversed separately (line 3). First, outer segments
involved in type 1 conflicts between the current level j and its predecessor level
i are marked. For that traverse the lower level from left to right (lines 7–18)
and stop at each end vertex of an inner segment and after the last vertex on
the level. Traverse all (non-dummy) vertices l between the last and the current
inner segment on level j (lines 13–17). If an incoming segment of the non-
dummy vertex l starts left of the last found inner segment (k < k0) or starts
right of the current inner segment (k > k1), it is marked as it crosses at least
one inner segment. See Fig. 7 for an illustration of this situation where marked
segments are dashed.

Next traverse the current level j from left to right again and try to align
each vertex v(j)c with one of its median predecessors (lines 20–28). First, try its
upper left median, then its upper right median (lines 24–28). The second test
is skipped if the first was successful (line 25). A segment cannot be used for
aligning if it is marked or if it would cross a segment already used for aligning.
In the latter case both segments are outer segments and are in a type 0 conflict.

164 Bachmaier et al. Drawing Recurrent Hierarchies

Algorithm 2: buildCyclicBlockGraph
Input: An ordered and proper cyclic k-level graph G′ = (V ′, E′, φ′, <)
Output: The cyclic block graph H of G′ (left upper run)

1 Eintra ← ∅
2 Einter ← ∅
3 for 1 ≤ i ≤ k do
4 j ← (i mod k) + 1 // next level after i
5 k0 ← 0
6 l← 1
7 for 1 ≤ c ≤ |V ′j | do
8 if c = |V ′j | or v

(j)
c is an end vertex of an inner segment then

9 if v(j)c is an end vertex of an inner segment s then
10 k1 ← position of the start vertex of s in V ′i
11 else
12 k1 ← |V ′i |
13 while l ≤ c do
14 foreach upper neighbor v(i)k of v(j)l do
15 if k < k0 or k > k1 then
16 mark the segment (v

(i)
k , v

(j)
l)

17 l← l + 1

18 k0 ← k1

19 r ← 0
20 for 1 ≤ c ≤ |V ′j | do
21 if c < |V ′j | then
22 Einter ← Einter ∪ {(v(j)c , v

(j)
c+1)}

23 if v(j)c has upper neighbors u1 < . . . < ud with d > 0 then
24 for bd+1

2 c ≤ m ≤ d
d+1
2 e do

25 if up(v
(j)
c) = null then // v(j)c is not yet aligned

26 if (um, v
(j)
c) is not marked and r < pos(um) then

27 Eintra ← Eintra ∪ {(um, v(j)c)} // up(v
(j)
c)← um

28 r ← pos(um)

29 H ← (V ′, Eintra

.
∪ Einter, φ

′)
30 return H

JGAA, 16(2) 151–198 (2012) 165

Algorithm 3: normalize

Input: A cyclic k-level block graph H = (V,Eintra

.
∪Einter, φ) with blocks

B
Output: A cyclic block graph H with all blocks of height at most k − 1

1 for B ∈ B do
2 if B is a closed block then
3 remove an arbitrary outer segment of B from Eintra

4 else if height(B) ≥ k then
5 v ← top(B)
6 v0 ← ∅
7 w ← 0
8 w0 ← 0
9 while down(v) 6= null do

10 w ← w + 1
11 if (v,down(v)) is an inner segment then
12 v0 ← v
13 w0 ← w

14 if w = k then
15 Eintra ← Eintra \ {(v0,down(v0))}
16 w ← w − w0

17 v ← down(v)

18 return H

166 Bachmaier et al. Drawing Recurrent Hierarchies

1

2
3

4

5 6

1

3

5

7

11

12

14

15

2

6

4

8

10

13

9

(a) Left upper run

1

2

3

4

5

6

1

3

7

9

11

14

15

2

4

8

10

13

5

6

12

(b) Right upper run

Figure 8: Block graphs of G1 from Fig. 2(a) as cyclic 2D drawings after nor-
malization; dashed edges are absent in the block graph. We prefer 2D drawings
to display the cyclic dependencies

The current vertex v(j)c becomes the top vertex of a new block if both alignments
fail or if the vertex does not have any upper neighbors. Outer segments involved
in type 1 conflicts are never used for aligning and there are no type 2 conflicts.
Hence, all inner segments of the graph are kept for aligning. The invariants that
there are at most two bends per edge and that inner segments are aligned are
guaranteed by the fact that all inner segments of an edge are in one block which
is drawn with a fixed slope. All segments not used for aligning are removed to
obtain the cyclic path graph. Eintra is the set of all remaining segments. See
Fig. 8 for examples of cyclic block graphs of G1. Vertices and intra-block edges
of the same block are framed. The dotted segments have been removed in the
block building phase by Algorithms 2 and 3. The cyclic block graph contains the
additional inter-block edges which lie on the level lines pointing to the center.
Note that there are no crossings in a drawing of the cyclic block graph which
respects the order of the vertices on each level.

The cyclic block graph can have closed blocks (with height k) and open
blocks with height ≥ k (spirals). To simplify the coordinate assignment we
normalize blocks in Algorithm 3 to a height of at most k − 1. In a closed block
removing an arbitrary outer segment yields an open block of height k− 1 (lines
2–3). In a spiral we traverse the block from the topmost to the lowest segment
and iteratively remove the latest possible outer segment such that the block
above has height at most k− 1 (lines 4–17). In both cases, such outer segments
always exist as no edge can span more than k levels. So the invariant of at most

JGAA, 16(2) 151–198 (2012) 167

two bends per edge is preserved. Note that an originally closed block is not
skewed as are other blocks in Sect. 4.2. It cannot be part of a cyclic dependency
since it splits the graph into two disjoint parts. An open block of height at least
k would have to be skewed anyway as it contains a cyclic dependency. See Fig. 8
as an example: In both runs the edge (5, 7) has been removed to split a long
block into two shorter ones. In the right upper run the segment (2, 4) has been
removed to open a closed block. The result is a cyclic block graph with open
blocks of height at most 5.

4.2 Horizontal Compaction

In this section we compact the cyclic block graph by arranging all blocks as
close to each other as possible to reduce the width of its drawing. Not all blocks
can be drawn vertically, as there may be cyclic dependencies in the left-to-right
order among blocks, which we call rings. A ring is a cycle in the block graph
where the direction of the inter-block edges is preserved and the intra-block
edges are used in any direction.

Definition 2 Let H = (V,Eintra

.
∪ Einter, φ) be a cyclic block graph. A block

path P in H is a sequence of vertices v1, . . . , vs ∈ V such that for each pair
of consecutive vertices vi and vi+1, 1 ≤ i < s, (vi, vi+1) ∈ Eintra or (vi+1, vi) ∈
Eintra or (vi, vi+1) ∈ Einter. It is simple if all vertices are distinct. A block path
is a ring R if v1 = vs and it traverses at least one inter-block edge.1 A ring is
simple if the vertices v1, . . . , vs−1 are distinct. The width of R is the number of
its traversed inter-block edges. Let cdown and cup be the number of intra-block
edges traversed in R in and against their direction, respectively. The number of
windings of R is defined by wind(R) = b(cdown − cup)/kc ∈ Z.

We traverse intra-block edges in both directions and regard each block as
strongly connected. Using both directions is essential to finding a ring with
maximum width. Reconsider the drawing in Fig. 4(a) and the cyclic dependency
of the vertices’ x-coordinates x(d1) < x(d2) < x(d3) = x(d5) = x(d7) < x(d8) <
x(d9) = x(d11) = x(d1). In the cyclic block graph of this graph the sequence
of vertices d1, d2, d3, d5, d7, d8, d9, d11, d1 is a ring. Each inequality represents
an inter-block edge traversed from left to right and each equality represents
an intra-block edge traversed upwards or downwards. The ring has width 4 as
four inter-block edges are used. This corresponds to the fact that the lower
copy of level 1 is shifted four units to the right versus level 1 in the drawing
in Fig. 4(a). A ring needs at least one inter-block edge, otherwise also the
sequence d3, d5, d7, d5, d3 would be a ring. However, such a sequence does not
raise a problem, as the block is never left and the same x-coordinate can be
assigned to all vertices of the sequence. Since we split spirals the start and
end vertices of each inter-block edge lie in different blocks and, hence, each ring
traverses at least two blocks.

1The latter ensures that R “wraps round the center” and is not only a single vertex/block.

168 Bachmaier et al. Drawing Recurrent Hierarchies

Informally, wind(R) counts how often a ringR wraps around the center or the
cylinder in a drawing. As each ring is an ordered sequence we count windings
along increasing and decreasing levels positively and negatively, respectively.
The reachability of vertices using block paths partitions the block graph into
strongly connected components (SCCs) which we consider separately. There
are two types of SCCs: The simple SCCs consist of a single block. All other
SCCs are complex and contain rings. Figure 8(a) consists of three simple SCCs
((2, 4), (7, 9, 12) and (13)) and one complex SCC (the remaining two blocks),
whose simple rings R have width(R) = 2 and wind(R) = 1. For rings some
properties can be established:

Lemma 1 A hierarchical block graph G does not contain a ring.

Proof: The proof is by constructing real x-coordinates for each vertex such that
all vertices in the same block have the same x-coordinate. Assign x-coordinate
j to the j-th vertex on level 1. For each level i > 1 and each vertex v on level i,
which is in the same block as a vertex u on level i−1, assign v the x-coordinate
x(v) = x(u). This does not contradict the order on level i as there are no type
2 conflicts. Let v1, . . . , vl be the vertices on level i which have been assigned
x-coordinates so far. For each 1 ≤ m < l assign all vertices between vm and
vm+1 increasing x-coordinates between x(vm) and x(vm+1) respecting the order
on level i. Finally, assign all vertices left of v1 and all right of vl x-coordinates
respecting the order smaller than x(v1) and larger than x(vl), respectively.

This procedure computes x-coordinates for all vertices, which coincide for
all vertices of each block. Suppose that G contains a ring R = (v1, . . . , vs−1, v1).
Then x(va) = x(vb) for every intra-block edge (va, vb) in R and x(vc) < x(vd)
for every inter-block edge (vc, vd) in R. According to Definition 2 R contains at
least one inter-block edge (vf , vg). Thus x(v1) ≤ x(vf) < x(vg) ≤ x(vs) = x(v1),
which is a contradiction. �

Lemma 2 If R is a ring of a cyclic block graph of an ordered proper cyclic level
graph G, then wind(R) 6= 0.

Proof: Assume that R is a ring in the cyclic block graph of G with wind(R) = 0.
Then R contains the same number c of intra-block edges traversed in and against
their direction. Thus in any cyclic 2D drawing respecting the vertex order
R may wrap at most c

k times around the center but returns in the opposite
direction without enclosing it. Unwrap G a number of l = d ck e + 1 times by
placing multiple copies of the intermediate drawing one below the other and
merging first and last levels. This gives an ordered hierarchical level graph
Gl = (Vl, El, φl, <l) such that its block graph Hl completely contains R as a
connected subgraph Rl. If Rl is a circle it is a ring contradicting Lemma 1. If
Rl is a block path, then Rl starts at a vertex u and ends at a copy u′ of u with
φl(u) 6= φl(u

′). Thus Rl does not contain the same number of intra-block edges
traversed in and against their direction, which is a contradiction to wind(R) = 0.

�

JGAA, 16(2) 151–198 (2012) 169

R3
R1 R2

v1 v2

P2

P1

wind() = 1R1 wind() = -1R1

Figure 9: Schematic construction of the proof of Theorem 1 with wind(S) > 0

Lemma 3 If R is a simple ring of a cyclic block graph, then |wind(R)| ≤ 1.

Proof: Suppose there is a simple ring R with |wind(R)| > 1. As R wraps
around the center in any cyclic 2D drawing respecting the vertex order more
than once, the corresponding curve crosses itself in any drawing of R. As R is
simple the crossing cannot be at a common vertex.

Each cyclic path graph is plane. Further, each drawing of it respecting its
order can be extended to a plane drawing of its cyclic block graph by adding
the inter-block edges along the level lines. Since R is a subgraph of the cyclic
block graph, this is a contradiction. �

Theorem 1 Let R be the set of all simple rings of an SCC in a cyclic block
graph. Then all rings R ∈ R have the same winding number wind(R), either 1
or −1.

Proof: According to Lemmas 2 and 3, |wind(R)| = 1 holds for each ring R ∈ R.
Suppose that there are two simple rings R1, R2 ∈ R with wind(R1) = 1 and
wind(R2) = −1, see Fig. 9. Let v1 ∈ R1 and v2 ∈ R2 be vertices in different
blocks. Such vertices exist as each ring traverses at least two blocks. Let P1

be a block path from v1 to v2 and P2 be a block path from v2 to v1. Both
exist due to the strong connectivity. Concatenating P1 and P2 results in a (not
necessarily simple) ring R3 through v1 and v2. By Lemma 2 wind(R3) 6= 0. If
wind(R3) > 0, let R4 be a non-simple ring consisting of R3 and wind(R3) many
copies of R2 joined at v2. Otherwise, let R4 be a ring consisting of R3 and
−wind(R3) many copies of R1 joined at v1. In both cases wind(R4) = 0, which
contradicts Lemma 2.

�

Hence, all simple rings of an SCC S have the same winding number which
is taken as the winding number of S.

Definition 3 For a complex SCC S of a cyclic block graph containing a simple
ring R define wind(S) = wind(R) and let width(S) be the maximum width of
all simple rings in S.

4.2.1 Compaction of a Complex Strongly Connected Component

In the intermediate drawing it is impossible to draw all blocks of a complex
SCC S straight-line and vertically. However, it is possible to draw all blocks of

170 Bachmaier et al. Drawing Recurrent Hierarchies

S with the same slope. The slope has to be chosen such that the curve of each
ring in S starts and ends at the same coordinate. All simple rings of S have
the same number of windings wind(S), which is either 1 or −1. Traversing a
simple ring R visits all k levels and uses width(R) inter-block edges. To draw R
we could use the slope −(wind(R) · k)/width(R), which would result in inter-
block edges of unit length. In order to draw all blocks of S with the same slope
(line 10 in Algorithm 1), we must use the width of the widest simple ring of
S and the slope −(wind(S) · k)/width(S). With this slope the widest ring fits
exactly and uses unit length inter-block edges. All narrower rings have some
unused horizontal space in the drawing and have inter-block edges which are
longer than one unit. As an example consider Fig. 6 again: The inner segments
form an SCC S with width(S) = 4 and wind(S) = 1 and the graph uses k = 4
levels. Hence, the slope of −(wind(S) · k)/width(S) = −1 is used for these
inner segments in Fig. 6(a). Note that the positive y-axis points downwards in
intermediate drawings. These properties are comprised by slope alignment.

Definition 4 Let S be an SCC of a cyclic block graph. An intermediate or 3D
drawing of S is slope aligned if the blocks are drawn as straight lines with the
same slope, vertices have at least unit distance in x-direction, and the left-to-
right order of the vertices is preserved. A 2D drawing of S is slope aligned if
the corresponding conditions hold. Then blocks are drawn as spirals, where the
change in the angle over the change in the radius of all blocks is a constant. We
call this constant slope as well.

A drawing of a block graph is slope aligned if its SCCs are drawn slope
aligned and the vertex order and unit distance is preserved. It is uniformly
slope aligned if additionally only three slopes −s,∞, s are used for all SCCs.

Let Γ be a drawing of an ordered cyclic k-level graph which is obtained from
the drawing of a single block graph H by inserting the deleted edge segments.
Then Γ is (uniformly) slope aligned if so is the drawing of H.

For the slope of the SCC S we have to compute wind(S) and width(S).
wind(S) is determined by wind(R) for an arbitrary ring R in S. Hence, it
suffices to find a simple ring R in S, which can easily be done in linear time. In
the sequel we shall assume wind(S) = 1. Computing width(S) corresponds to
determining the width of the widest simple ring in S. In general, the problem
of finding the longest cycle in a directed graph is NP-hard [18]. But complex
SCCs are very special graphs, which can be drawn without crossings with the
given leveling. Finding the widest simple ring can be solved in linear time by
cutting the SCC as the following section shows.

4.2.2 Cutting a Strongly Connected Component

The idea is to cut an SCC S from a leftmost vertex to a rightmost vertex on
their levels along a special block path in the cyclic block graph. Computing the
width of S and compacting the layout is done simultaneously.

JGAA, 16(2) 151–198 (2012) 171

Lemma 4 Let S be an SCC of a cyclic block graph with wind(S) = 1. Then S
contains a block B where the lowest vertex v = bottom(B) is the leftmost vertex
of the vertices of S on its level φ(v).

Proof: Suppose that the lowest vertex of each block of S has a left neighbor in
S. Then it has an incoming intra-block edge. Starting at any vertex traverse
each block downwards to its lowest vertex and then against the direction of
inter-block edges to a new block. This can be repeated and ends in a circle
through some vertex v since there is no sink. The reversal of this circle is a
simple ring R with wind(R) = −1, since all intra-block edges are used against
their direction. However, wind(S) = 1, which contradicts Theorem 1. �

Recall that we consider the case wind(S) = 1. To cut the SCC S Algorithm 4
finds a path P starting at a leftmost vertex v on its level which is the lowest
vertex in its block B (line 1). Such a vertex and block always exist by Lemma 4.
It traverses the block to the topmost vertex and uses the outgoing inter-block
edge of that vertex to enter a new block. This procedure is repeated until a
block is reached, whose topmost vertex does not have an outgoing inter-block
edge and therefore is a rightmost vertex on its level (lines 4–12). This process
will terminate, as otherwise a vertex u would have been visited twice. The
sequence between the two occurrences of u is a ring R with wind(R) = −1,
which contradicts wind(S) = 1. Hence, P is a path from a leftmost vertex to a
rightmost vertex.

Let P consist of the vertices v1, . . . , vm. For each vertex vi (i > 1) we remove
its incoming inter-block edge if it does not start at vi−1 (lines 9–10). In other
words, we remove all incoming inter-block edges not belonging to P and thus all
those edges left of P . Note that P is only constructed for clarity in Algorithm 4
and not needed otherwise, as we cut the inter-block edges while traversing from
left to right.

We construct a hierarchical block graph S′ corresponding to the cyclic block
graph in the following way: Initially we assign the level φ′(v) = φ(v) (line 15)
to the chosen leftmost vertex v. In a traversal of the block graph we assign each
vertex a new level φ′: Using an inter-block edge (in any direction) we assign
both end vertices the same level φ′ (lines 19–24). Using an intra-block edge in
or against its direction we increase (lines 28–30) or decrease (lines 25–27) the
level φ′ by 1, respectively, without using a modulo operation.

See Fig. 10(a) for an example. Cutting the SCC starts at the bottom of the
black block and the dashed path crosses all removed inter-block edges. Fig. 10(b)
shows the resulting hierarchical block graph, where we allow negative levels for
simplicity.

The removed incoming inter-block edges left of P cut all simple rings in S
exactly once as the following lemma shows.

Lemma 5 Let S be a complex SCC of a cyclic block graph with wind(S) = 1.
If the inter-block edges EI computed by Algorithm 4 are removed from S, then
exactly one inter-block edge is taken from each simple ring in S.

172 Bachmaier et al. Drawing Recurrent Hierarchies

Algorithm 4: cutSCC

Input: An SCC S = (V,Eintra

.
∪ Einter, φ) of a cyclic k-level block graph

Output: A hierarchical block graph S′ and the set EI of removed
inter-block edges

1 u← v ← any leftmost vertex on its level with v = bottom(block(v))
2 P ← ∅
3 EI ← ∅
4 while u 6= null do
5 P ← P ◦ (u)
6 if up(u) 6= null then
7 u← up(u)
8 if left(u) 6= null then
9 Einter ← Einter \ {(left(u), u)}

10 EI ← EI ∪ {(left(u), u)}

11 else
12 u← right(u)

13 for u ∈ V do // initialize leveling of hierarchical block graph
14 φ′(u)← null

15 φ′(v)← φ(v)
16 Q← {v}
17 while Q 6= ∅ do
18 u← Q.remove()
19 if left(u) 6= null and φ′(left(u)) = null then
20 φ′(left(u))← φ′(u)
21 Q.add(left(u))

22 if right(u) 6= null and φ′(right(u)) = null then
23 φ′(right(u))← φ′(u)
24 Q.add(right(u))

25 if up(u) 6= null and φ′(up(u)) = null then
26 φ′(up(u))← φ′(u)− 1
27 Q.add(up(u))

28 if down(u) 6= null and φ′(down(u)) = null then
29 φ′(down(u))← φ′(u) + 1
30 Q.add(down(u))

31 S′ ← (V,Eintra

.
∪ Einter, φ

′)
32 return (S′, EI)

JGAA, 16(2) 151–198 (2012) 173

0

1

1

(a) Left-aligned intermediate drawing

-5

7

1

B

C

B

e
1

e
2

e
3

e
6

e
5

e
4

e
1

e
2

e
3

e
6

e
5

e
4

(b) Compacted drawing

-5

7

1

(c) Skewed drawing

0

1

1

(d) Final intermediate drawing

Figure 10: Drawing of a complex SCC with the dotted line as cut

174 Bachmaier et al. Drawing Recurrent Hierarchies

Proof: Consider any cyclic 2D drawing Γ of S respecting the order of the
vertices, e. g., a leftmost drawing. Algorithm 4 computes a block path P which
connects a leftmost vertex v1 and a rightmost vertex vm. Every vertex vi ∈ P
has three possibilities for an incident edge e in S with respect to the traversing
direction of P from v1 to vm: e can be left of P , right of P or part of P . As
Γ is plane no edge crosses P . Let R be a simple ring in S. Since wind(R) = 1
it has at least one common vertex vj with P . Deleting the incident edges of vj
left of P removes exactly one edge in R. As P only traverses inter-block edges
in their direction and intra-block edges against their direction, edges incident to
vj and left of P can only be incoming edges (u, vj) ∈ Einter or (w, vj) ∈ Eintra.
The latter is not possible by the construction of P , because otherwise the next
edge e = (vj , ·) in P would be an inter-block edge where vj is not the topmost
vertex of its block as up(vj) = w. Removing the incident inter-block edges left
of P for each vertex of P removes at least one edge of each simple ring in S.

Let R be a simple ring in S. Assume that b > 1 inter-block edges {e1, . . . , eb}
⊆ Einter of R were removed. Then for each ei = (w, vj) the vertex w is left of
P and vj is in P . Since R traverses inter-block edges only in their direction, R
cannot leave P to the left. Thus R enters P b times from the left and has to
leave it b times to the right (to be able to enter it again). Then wind(R) = b > 1,
which contradicts Lemma 3. �

4.2.3 Compacting

We compact the hierarchical block graph S′ in a different way as in [8] by
Algorithm 5: The array X stores the last used x-coordinate on level i at X[i]
(lines 2–6). We place each block, which is a source in the acyclic block graph,
on an imaginary zero line, treat all other blocks in topological order, and move
them as much to the left as possible, preserving unit distance (lines 7–11). On
a high level this corresponds to a leftmost longest path compaction of the block
graph with the blocks as super vertices. Afterwards, we fix all sinks at their
positions, consider all other blocks in reversed topological order, and move them
as much to the right as possible (lines 12–18). This corresponds to a rightmost
longest path compaction preserving the x-coordinates of the sinks. In order to
place a block as close as possible to the already placed ones, we traverse its levels
(lines 8 and 15). After the compaction each block and therefore each vertex v
in S′ has an assigned x′-coordinate.

4.2.4 Determining the Slope

Let e = (u, v) ∈ R be a removed inter-block edge. The width of the widest simple
ring of S through e is x′(u) − x′(v) + 1, where x′ are the x-coordinates in the
compacted drawing. Considering all removed inter-block edges and computing
the maximum value gives the width of the widest simple ring width(S) in S
(line 19 of Algorithm 5).

See Fig. 10 for an example of an SCC S with wind(S) = 1 and k = 6 levels.
The dotted line in Fig. 10(a) cuts six inter-block edges. Figure 10(b) shows the

JGAA, 16(2) 151–198 (2012) 175

Algorithm 5: compactBlocks

Input: A hierarchical k′-level block graph S = (V,Eintra

.
∪ Einter, φ

′) and
the set of removed inter-block edges EI

Output: The width of S and the values x′(v) set for each v ∈ V
1 Let B be the list of blocks of S in topological order from the left
2 lmin ← minv∈V {φ′(v)}
3 lmax ← maxv∈V {φ′(v)}
4 Let X be an array of size k′ with indices [lmin, . . . , lmax]
5 for lmin ≤ i ≤ lmax do
6 X[i]← −1

7 for B ∈ B do in topological order
8 x← maxl∈levels(B)X[l]
9 foreach v ∈ V (B) do

10 x′(v)← x+ 1
11 X[φ′(v)]← x+ 1

12 for B ∈ B do in reversed topological order
13 if B has outgoing inter-block edges then
14 Let L be the set of levels of B with outgoing inter-block edges
15 x← minl∈LX[l]
16 foreach v ∈ V (B) do
17 x′(v)← x− 1
18 X[φ′(v)]← x− 1

19 w ← maxe=(u,v)∈EI
(x′(u)− x′(v) + 1)

20 return w

176 Bachmaier et al. Drawing Recurrent Hierarchies

resulting compacted hierarchical block graph using the leveling φ′. The widths
of the widest rings through each of the six cut edges e1, . . . , e6 are 5, 5, 7, 10, 10,
10. Consequently, width(S) = 10. This example shows the necessity to traverse
intra-block edges in two directions. Otherwise, the widest ring would have width
9 as the blocks B and C could not be in the same ring. Skewing the drawing
by the slope −1·610 results in Fig. 10(c). Using the modulo operation for the
y-coordinates gives the final intermediate drawing in Fig. 10(d). Algorithm 6
computes the coordinates of the intermediate drawing.

Algorithm 6: skew

Input: A hierarchical block graph S = (V,Eintra

.
∪ Einter, φ

′) and the
slope s

Output: A skewed cyclic block graph with x(v) and y(v) set for each
v ∈ V

1 for v ∈ V do
2 x(v) = x′(v) + y′(v)

s
3 y(v) = ((φ′(v)− 1) mod k) + 1 // = φ(v)

4 S′ ← (V,Eintra

.
∪ Einter, y)

5 return S′

Theorem 2 For an SCC S of a block graph of a cyclic k-level graph let the in-
termediate drawing of S use the coordinates x(v) = x′(v)−(width(S)/(wind(S) ·
k))·φ′(v) and y(v) = ((φ′(v)−1) mod k)+1 = φ(v) for each vertex v in S. Then
the drawing is slope aligned with slope slope(S) = −(wind(S) · k)/width(S).

Proof: In the compacted drawing of the hierarchical block graph all blocks are
drawn vertically. Skewing the drawing does not change the φ′-coordinates and
results in the new x-coordinates x(v) = x′(v) + φ′(v)/ slope(S). Now all edges
have a slope with value slope(S). Using the y-coordinates y(v) = ((φ′(v) − 1)
mod k) + 1 = φ(v) does not affect the slope of the edges but results in the
same y-coordinates of all vertices on the same level again. Let u and v be two
consecutive vertices on the same level. Let u be left of v in S as defined by the
inter-block edge (u, v). If Algorithm 4 did not cut (u, v), then u and v have the
same φ′-coordinate in the compacted drawing and u is the left neighbor of v
with at least unit distance between them. This does not change in the skewed or
resulting intermediate drawing. If (u, v) was cut, then φ′(v) = φ′(u)−k·wind(S).
Then there is a simple block path P from v to u, since we are compacting an
SCC. P cannot have been cut, as otherwise P and (u, v) form a simple ring
that would have been cut twice. The ring formed by P and (u, v) is at most
width(S) wide and thus x′(v) ≥ x′(u) − (width(S) − 1). After skewing the
drawing, x(v) ≥ x(u)+1 holds. Therefore, u is left of v and the two vertices are
at least one unit apart. As a result, all consecutive vertices and so all vertices
on the same level are separated at least by unit distance and they have kept
their initial order. �

JGAA, 16(2) 151–198 (2012) 177

4.2.5 Compaction of all Compacted Strongly Connected Compo-
nents

Our next step is a global compaction of the set of compacted complex and simple
SCCs, which yields slope uniform drawings. First, we show that all SCCs are
separate.

Lemma 6 A drawing of a cyclic k-level graph respecting the vertex order places
all vertices of an SCC consecutively on their level.

Proof: Let u and w be two vertices of an SCC S on some level l with u left of
w. Suppose there is a vertex v on level l with u < v < w which does not belong
to S. Then there is a block path from w to u, and there are horizontal paths
from u to v and v to w using inter-block edges only. Therefore, v is in a ring
containing u and w and belongs to S, which is a contradiction. �

Hence, SCCs cannot interleave. We interpret the SCCs as super vertices and
run a longest path algorithm on the resulting DAG. We then compact the SCCs
as we compact the blocks of a hierarchical block graph. One simple problem
remains: The leftmost (rightmost) vertices of each level of the SCC may have
different x-coordinates. Thus the SCC has no straight vertical left and right
borders. To compute the shift of one SCC we simply traverse all vertices of the
SCC. Algorithm 7 gives the details of this compaction step. It places the SCCs
next to each other and as close as possible.

4.3 Balancing
In this phase (see Algorithm 8) the four results are balanced by computing one
x-coordinate for each vertex from the four x-coordinates computed by the four
preceding runs. We differ from the algorithm of Brandes and Köpf [8] and do
not use the average median of the four x-coordinates for each vertex, since in
the cyclic case this can induce additional bends. The reason is that the median
of lines with different slopes changes at their crossings, i. e., it is a non-linear
function. Hence, we use the average of all four x-coordinates for each vertex.
The result is not integral, but still of bounded precision.

Lemma 7 Algorithm 8, averaging over the x-coordinates of the four runs to
determine the final x-coordinate for each vertex, constructs a so called weakly
slope aligned drawing. This means, it preserves the order of the vertices on each
level. It guarantees at most two bends per edge occurring only at the topmost and
bottommost dummy vertices. It does not add bends to the edges of subgraphs,
which belong to an SCC in all four runs. There are additional bends, since the
blocks of the four runs may differ. Finally, it preserves at least a horizontal unit
distance between the vertices and has a discrete resolution.

Proof: Each drawing of the four runs has the same order and at least unit
distance on each level. Thus both properties hold for the average of the four
runs. Let e1 = (u, v) and e2 = (v, w) be two intra-block edges in all four runs.

178 Bachmaier et al. Drawing Recurrent Hierarchies

Algorithm 7: compact
Input: The set S of compacted SCCs of a cyclic k-level graph
Output: The values x(v) set for each vertex v of each SCC of S

1 Let S be the list of SCCs in topological order from the left
2 Let X be an array of size k with indices [1, . . . , k]
3 for 1 ≤ i ≤ k do
4 X[i]← −1

5 for S ∈ S do in topological order
6 δx ← minv∈V (S)(x

′(v)−X[φ(v)])
7 foreach v ∈ V (S) do
8 x(v)← x′(v)− δx + 1
9 if x(v) > X[φ(v)] then

10 X[φ(v)]← x(v)

11 for S ∈ S do in reversed topological order
12 if S has outgoing inter-block edges into another SCC then
13 Let M be the set of vertices of S with outgoing inter-block edges

into another SCC
14 δx ← minv∈M (X[φ(v)]− x(v))
15 foreach v ∈ V (S) do
16 x(v)← x(v) + δx − 1
17 if x(v) < X[φ(v)] then
18 X[φ(v)]← x(v)

Algorithm 8: balance
Input: The set P of the results of the four runs of G′ = (V ′, E′, φ′, <)
Output: x(v) and y(v) for each vertex v ∈ V ′

1 Let xi(v) be the x-coordinate of the vertex v in the i-th run (1 ≤ i ≤ 4)
2 foreach v ∈ V ′ do
3 x(v)← (x1(v) + x2(v) + x3(v) + x4(v))/4
4 y(v)← φ′(v)

JGAA, 16(2) 151–198 (2012) 179

Then e1 and e2 are drawn with the same slope in each of the four drawings.
Thus they have identical slopes in the balanced final drawing, i. e., there is no
bend at v. As all dummy vertices of a long edge belong to one block in each
drawing, the argument holds for each of its non-extremal dummy vertices.

As in each run the x-coordinate of a vertex is an integral multiple of 1
k

(Theorem 2), the average of them is an integral multiple of 1
4k . Thus we have a

discrete resolution in dependency of |V |. �

Note that some vertices may belong to a block of a complex SCC in one run
although they do not belong to a complex SCC or even one block in another
run. Consequently, balancing can lead to more slopes than in any of the four
runs. See Fig. 8 for two different block graphs of two runs of the same graph.

If similar slopes are more important than balancing, we compute only one
downwards balanced run with a modified block building phase. We start with
the median vertex of the upper level and align it with its median successor.
Whenever one of the two medians is not unique, we choose arbitrarily. From
this vertex we traverse to the left (right) to align the remaining vertices on
the level trying the right (left) median first. However, this results in balanced
outgoing edges only. We compact unsymmetrically to the left first as described
in Sect. 4.2.3.

5 Algorithm Analysis
Next we establish upper and lower bounds on the width and the area of the
resulting drawings and of the running time of the algorithm.

Theorem 3 Let G = (V,E, φ,<) be a (not necessarily proper) ordered cyclic
k-level graph. Algorithm 1 constructs slope aligned drawings of G. The inter-
mediate and the 3D drawing have a width of O((|V | + |E|)2) and an area of
O((|V |+ |E|)2 ·k). The 2D drawing has a width and a height of O((|V |+ |E|)2)
and an area of O((|V |+ |E|)4).

Proof: Let S = {S1, . . . , Sr} be the set of SCCs of G. Let βi be the number of
blocks in Si and νi be the number of (dummy) vertices in Si. The width of the
compacted drawing of Si is at most βi. The height of the drawing is at most
the sum of the height of all blocks and is therefore bounded by νi. Skewing this
drawing by a slope of −wind(Si) · k/width(Si) adds at most (νi · βi)/k to the
width. As νi ≤ βi · k, the width of the drawing of Si is in O(β2

i). The width of
the drawing of G is O((|V |+ |E|)2), since it is at most the sum of the widths of
the drawings of all SCCs and

∑r
i=1 β

2
i ≤ (

∑r
i=1 βi)

2 ≤ (|V |+ |E|)2.
The area is in O((|V |+ |E|)2 ·k), since the height is k. The height and width

of the 2D drawing is twice the width of the intermediate drawing, which results
in an area of O((|V |+ |E|)4).

The slope alignment holds by Theorem 2 and using one balanced run. �

Note that the width of the drawing reduces to O(|V | + |E|) if there are no
complex SCCs in the graph. This reduces the area of the intermediate and 3D

180 Bachmaier et al. Drawing Recurrent Hierarchies

drawings to O((|V |+|E|)·k) and of the 2D drawing to O((|V |+|E|)2). Complex
SCCs can always be avoided at the cost of crossings and balance by using our
global sifting heuristic and a modified block building algorithm as we show in
the next section.

Although the width of the produced drawings can be quadratic, bench-
marks [9] have shown that the average width is much smaller. Note that in the
degenerate case of just one level, the normalization step (Algorithm 3) removes
all intra-block edges from the block graph. Hence, the vertices are compacted
without any constraints and the width is exactly |V |.

Next, we prove the lower bound of the width of such drawings. For 2D
and 3D drawings we use δx instead of unit distance for consecutive vertices as
described in Sect. 2. For simplicity we use the term unit distance nevertheless.
We now show that there are block graphs such that any slope aligned drawing
has quadratic width.

Theorem 4 For each number of vertices |V | and levels k > 1 there exists an
ordered cyclic k-level graph G = (V,E, φ,<) such that each slope aligned inter-
mediate drawing of G has a width of Ω(|V |2). The area of such a drawing is in
Ω(|V |2 · k). For slope aligned 3D drawings of G the same bounds hold. Each
slope aligned 2D drawing of G has a width and height of Ω(|V |2) and an area of
Ω(|V |4).

Proof: For the proof we first consider intermediate drawings. We construct
a family of ordered cyclic k-level graphs {Cn,k = (Vn,k, En,k, φn,k, <n,k)}n,k∈N
which achieve the stated bounds. For a concise description the graphs are first
simplified. Vn,k consists of 4n vertices ai, bi, ci, di for each 1 ≤ i ≤ n and 2
additional vertices u, v, which all lie on level 1. The left-to-right order of the
vertices is bn <n,k dn <n,k bn−1 <n,k an <n,k cn <n,k dn−1 <n,k . . . <n,k
b1 <n,k a2 <n,k c2 <n,k d1 <n,k v <n,k a1 <n,k c1 <n,k u. En,k has 2n directed
edges (ai, bi) and (ci, di) for each 1 ≤ i ≤ n and the additional edge (u, v).
The order of the (dummy) vertices on levels 2 to k is completely defined by
the unique planar routing of the straight-line edges. See Fig. 11 for possible
drawings of C4,3.

As there are no crossings in the ordered cyclic level graph and all original
vertices have degree 1, the block graph of Cn,k returned by Algorithm 2 contains
all segments of Cn,k. However, the normalization step in Algorithm 3 removes
some segments of the block graph. This can be avoided by a slight modification
of the graphs Cn,k, splitting each edge into two non-adjacent edges and intro-
ducing two new vertices on level 2. We suppress this detail for now. Each of
the 2n + 1 edges represents exactly one block consisting of k segments. Thus
we identify Cn,k with its cyclic block graph. Cn,k consists of a single SCC, as
the vertices a1, b1, a2, b2, . . . an, bn, dn, cn, . . . , d1, c1, u, v, a1 form a ring R with
wind(R) = 1. For a slope aligned drawing of Cn,k the only degree of freedom is
the slope of all blocks and the distances of each pair of consecutive vertices on
the same level. Consider an arbitrary slope aligned intermediate drawing Γ with
slope s. A complete traversal of R from a1 ends at a1 (see Fig. 11(b)). Hence,

JGAA, 16(2) 151–198 (2012) 181

1

2

3

1

b
4
d

4
b

3
d

3
a

4
c

4
b

2
a

3
c

3
d

2
b

1
a

2
c

2
a

1
d

1
v c

1
u

b
4
d

4
b

3
d

3
a

4
c

4
b

2
a

3
c

3
d

2
b

1
a

2
c

2
a

1
d

1
v c

1
u

(a) Quadratic width in the intermediate drawing

a
1

1

2

3

1

2

3

1

2

3

1

1

2

3

c
1 u

b
1

a
2

b
2

a
3

b
3

a
4

b
4 d

4

c
4 d

3

c
3

d
2

v

c
2

d
1

a
1

(b) Quadratic width in the skewed drawing (with duplicated
vertex a1)

u
1

2

3

c
1

a
1 d

1

c
2

v

a
2

b
1
d

2

c
3
a

3

b
2

d
4
b

4

d
3

c
4

a
4

b
3

(c) Quadratic width and height in the cyclic 2D drawing

Figure 11: Graph C4,3

182 Bachmaier et al. Drawing Recurrent Hierarchies

the sum of the changes in the x-coordinates of the vertices is 0 while traversing
R. Note that traversing one segment of slope s results in the change in the
x-coordinate by ± 1

s depending on the direction of the traversal. While R is
traversed from a1 to bn n edges, i. e., kn segments, with slope s are traversed in
their direction. This leads to a change in the x-coordinate by kn · 1s . Traversing
R from dn to c1 uses kn segments with slope s against their direction, which
leads to a change in the x-coordinate by −kn · 1

s . Finally, (u, v) consists of
k segments with slope s and is traversed in its direction inducing a change of
k · 1s . Furthermore, while traversing R each of the 2n + 1 blocks is left once
to the consecutive right block. Each time this adds at least a unit distance to
the change in the x-coordinate, i. e., δ ≥ 2n + 1 in total. The change in the
x-coordinate is therefore 0 = kn/s−kn/s+k/s+δ. Hence, the (negative) slope
is at least s = −k/δ ≥ −k/(2n+ 1).

Consider the difference in the x-coordinates of the vertices dn and c1 in Γ.
The path between them consists of kn segments and n− 1 horizontal distances.
As the segments have a slope of at least −k/(2n + 1) and consecutive vertices
on the same level have at least unit distance, the absolute difference in the x-
coordinates of dn and c1 is at least −kn/s+ (n− 1) · 1 ≥ kn · (2n+ 1)/k+ (n−
1) ∈ Ω(n2). As the number of vertices |Vn,k| is linear in n, each slope aligned
intermediate drawing of Cn,k has a width of Ω(|Vn,k|2).

If we split each edge (x, y) of Cn,k into two edges (x, x′) and (y′, y) with
φ(x′) = φ(y′) = 2, all edges of the graph have a span of at most k − 1. Hence,
the normalization step (Algorithm 3) does not remove any segment. If the ring
R traverses (x, y) in its direction we set x′ < y′ and y′ < x′, otherwise. Thus
R contains the same number of segments as before. However, the number of
blocks has doubled. Then the blocks have to be skewed even more since the
slope is halved and the width is still quadratic.

The leftmost vertex bn and the rightmost vertex u of level 1 differ by
Ω(|Vn,k|2) in their x-coordinates. Since the edge (an, bn) has slope s, the x-
coordinates of an and bn differ by at most |k/s| ≤ k/(k/(2n+ 1)) ∈ O(n). For
the edge (u, v) the same argument holds. The leftmost (rightmost) vertices of
the levels 2 to k are dummy vertices of the edge (an, bn) ((u, v)). Thus each
leftmost and rightmost dummy vertex differs in their x-coordinates by at least
Ω(|Vn,k|2). Furthermore, the difference of the x-coordinates of the leftmost and
the rightmost intersection of each horizontal straight line with the drawing is
in Ω(|Vn,k|2). Note that splitting each edge even increases the distance between
the leftmost and rightmost vertex on each level.

For slope aligned 3D drawings the same arguments hold. For 2D drawings
assume for contradiction that there is a slope aligned 2D drawing of Cn,k with
width or height in o(|Vn,k|2). Using the reverse transformation of intermediate
drawings to 2D drawings of Sect. 2 leads to a slope aligned intermediate drawing
where a horizontal straight line with a difference in extremal intersections of
o(|Vn,k|2) can be found at least once. This is a contradiction. Hence, the width
and height of the slope aligned 2D drawing are in Ω(|Vn,k|2) and the area is in
Ω(|Vn,k|4). �

JGAA, 16(2) 151–198 (2012) 183

Since the graphs of Theorem 4 used to prove the lower bound are planar, we
conclude:

Corollary 1 Let G = (V,E, φ,<) be a (not necessarily proper) ordered planar
cyclic k-level graph. The bounds on the width and the area of slope aligned
intermediate drawings of G are Θ((|V |+ |E|)2) and Θ((|V |+ |E|)2 ·k). For slope
aligned 3D drawings of G the same bounds hold. Each slope aligned 2D drawing
of G has a width and a height of Θ((|V |+ |E|)2) and an area of Θ((|V |+ |E|)4).

In addition, just three slopes suffice for a drawing within the shown area
bounds.

Corollary 2 Let G = (V,E, φ,<) be a (not necessarily proper) ordered cyclic
k-level graph. Then there exists a slope s such that G has a uniformly slope
aligned intermediate drawing with slope s and width O((|V |+ |E|)2).

Proof: Let Γ′ be a slope aligned intermediate drawing of G computed with
Algorithm 1 with one balanced run. Then Γ′ has a width of O((|V | + |E|)2).
Let S be the set of all complex SCCs of the block graph of G and let s be the
minimum of the absolute slopes of the segments in each SCC S ∈ S. For each
S ∈ S we construct a new drawing by multiplying the x-coordinates by |s′|/s,
where s′ is the uniform slope of S. Then all segments in S have a uniform slope
of ±s. Compacting these new drawings of the complex SCCs together with
the unchanged drawings of the simple SCCs results in a drawing Γ where all
slopes are in {−s,∞, s}. As the horizontal distances between the vertices are
increased, the minimum of one unit is preserved.

The minimum absolute slope used in Algorithm 1 for skewing an SCC S is
k/width(S) ≥ k/(|V |+|E|), see the proof of Theorem 3. Thus s ≥ k/(|V |+|E|).
Traversing a segment with slope s results in the change in the x-coordinates of at
most (|V |+ |E|)/k. Since each block consists of at most k segments, its traversal
results in a change of at most (|V |+ |E|). Placing all O(|V |+ |E|) blocks side
by side without compacting results in a drawing Γ with width O((|V |+ |E|)2).

�

Note that the construction in the proof of Corollary 2 enforces non-integral
x-coordinates for the vertices. Furthermore, the segments in the drawing of
G which are not in the block graph have different slopes. The runtime of the
algorithm in total can be bounded as follows.

Theorem 5 The layout algorithm (Algorithm 1) has time complexity O(|V ′|+
|E′|) for a proper ordered cyclic k-level graph G′ = (V ′, E′, φ′, <′).

Proof: Flipping the input graph horizontally and/or vertically can be done in
O(|V ′|+ |E′|) time. Building the cyclic block graph consists of two parts: Mark-
ing all type 1 conflicts takes O(deg−(v)) time for one vertex and O(|V ′|+|E′|) in
total. Aligning each (dummy) vertex with a median neighbor is done in O(|V ′|).
The size of the cyclic block graph is O(|V ′|) as it contains O(|V ′|) (dummy) ver-
tices, intra-block edges, and inter-block edges. Normalizing long blocks results

184 Bachmaier et al. Drawing Recurrent Hierarchies

in traversing each block completely and takes O(|V ′|) time. Computing the
strongly connected components of the cyclic block graph can be done in time
O(|V ′|). Cutting an SCC, assigning new levels φ′, compacting, and skewing an
SCC has a time complexity linear in the size of the SCC, which adds up to
O(|V ′|) for all SCCs. Finally, compacting G′ is done in linear time as well. All
these steps are carried out four times. Finally, balancing the four results takes
O(|V ′|) time. �

6 Avoiding Cyclic Dependencies

Cyclic dependencies in the left-to-right order of cyclic level graphs force skewed
inner segments. Skewing gives symmetric layouts at the expense of the width
of the drawing. In the coordinate assignment phase it is too late to avoid
these dependencies as they are generated during the crossing reduction phase.
Fig. 6 shows a cyclic level graph which inevitably has cyclic dependencies when
the optimal permutations on all levels are used. An optimal cyclic crossing
reduction [19] or a cyclic level planarity testing and embedding algorithm [6]
finds these permutations and therefore produces cyclic dependencies.

One option is using the global sifting algorithm [3] for cyclic crossing reduc-
tion. There each original vertex and each chain of inner segments has a distinct
x-coordinate. These subgraphs are called blocks as well, but they are smaller
than the ones used here. Using these x-coordinates results in an intermediate
drawing where all inner segments are vertically aligned. However, drawing all
inner segments vertically is impossible if there are cyclic dependencies. Thus
there are no cyclic dependencies among these blocks. Fig. 12 shows a respective
drawing of G2 from Fig. 6 with vertical inner segments. As illustrated the aes-
thetic criterion of vertical inner segments generally costs additional crossings,
which do not occur in the drawing with skewed blocks. Since the coordinate
assignment should leave the vertex orders unchanged, a crossing reduction is
desirable which supports vertical blocks.

Our cyclic coordinate assignment phase (as well as [8]) uses larger blocks
than the global sifting heuristic [3]. It tries to assemble as many (dummy)
vertices as possible in a block which may result in cyclic dependencies.

When applying the global sifting heuristic for crossing reduction, there are
two options which blocks are used in our coordinate assignment algorithm. The
minimal blocks from the crossing reduction avoid cyclic dependencies and result
in vertical inner segments and a linear width of the drawing. But the drawings
are unbalanced as only dummy vertices are aligned. Using the maximal blocks
described in this paper places vertices balanced with respect to their neighbors.
However, there may be cyclic dependencies which cause skewing inner segments
and potentially quadratic width.

Consider the intermediate drawings of the cyclic 4-level graph G3 of Fig. 13
and Fig. 14. G3 consists of four edges each spanning three levels. With maximal
blocks the graph has cyclic dependencies, e. g., x(1) < x(d1) = x(3) < x(d3) =
x(5) < x(d5) = x(d7) = x(1), see Fig. 14(a). The vertices are aligned, but the

JGAA, 16(2) 151–198 (2012) 185

2

d
6

d
8

d
10

1

4

d
9

d
11

d
1

d
1

3

6

d
12

d
2

d
2

d
4

5

8

d
3

d
3

d
5

d
7

7

2

1

(a) Intermediate drawing

2

d
6

d
8

d
12

1

4

d
9

d
11

d
1

3

6

d
10

d
2

d
4

5

8

d
3

d
5

d
7

7

(b) Cyclic drawing

Figure 12: Graph G2 from Fig. 6 with vertical inner segments at the expense of
crossings

d
2

1 2

3

4

d
3

d
4

d
5

d
6

56

7

8

d
7

d
8

d
1

Figure 13: Ordered graph G3

edges must be skewed, and the drawing may have a quadratic width. However,
there are no such rings when using the minimal blocks of the global sifting
algorithm [3]. Fig. 14(b) shows such a drawing with vertical inner segments and
fewer aligned vertices.

Obviously, using smaller blocks is only reasonable if larger ones would cause
a cyclic dependency. Therefore, we start with the maximal blocks and only
split them into smaller ones if they imply a cyclic dependency. Reconsider
Fig. 14(a). When using maximal blocks all eight outer segments are used for
aligning. However, removing four of them already destroys all cyclic dependen-
cies. One possible result is shown in Fig. 14(c): The four outer segments in the
blocks result in the alignment of the vertices 1 and 2 in contrast to Fig. 14(b).
By coincidence, the vertices 3 and 8 were already aligned in Fig. 14(b).

186 Bachmaier et al. Drawing Recurrent Hierarchies

d
2

1 2

3 4
d

3
d

4

d
5

d
6

5 6

7 8
d

7
d

8

d
1

d
1

d
2

1 2

(a) Intermediate drawing with maxi-
mal blocks

d
2

1 2

3 4
d

3

d
4

d
5

d
6

5 6

7 8
d

7

d
8

d
1

d
1

d
2

1 2

(b) Intermediate drawing with mini-
mal blocks

d
2

1 2

3 4
d

3

d
4

d
5

d
6

5 6

7 8
d

7

d
8

d
1

d
1

d
2

1 2

(c) Intermediate drawing with
largest blocks without cyclic de-
pendencies

11

1

1

11

1 1

1

1

d
2

1 2

3 4
d

3 d
4

d
5

d
6

5 6

7 8
d

7
d

8

d
1

d
1

d
2

1 2

s t

(d) Outer segments graph

d2
1 2

3 4d3 d4

d5

d6
5 6

7 8d7 d8

d1

d1 d2
1 2

(e) Interpretation as dual graph

P

R

()a ()b ()a

()c

()a

()d

(f) Crossings of paths and rings

Figure 14: The deletion of a minimal set of intra-block edges for the ordered
graph G3 from Fig. 13

JGAA, 16(2) 151–198 (2012) 187

For our new goal we must find a minimal set of intra-block edges of outer
segments whose removal results in an acyclic block graph. Finding such a min-
imum set in an arbitrary graph corresponds to the NP-hard feedback arc set
problem [18]. But a cyclic block graph has a very regular structure: Each vertex
has at most two incoming and two outgoing edges forming a grid with edges
pointing to the right and downwards. Furthermore, it is plane and all rings
wrap around the center in the same direction. Note that the feedback arc set
problem in planar graphs can be solved in polynomial time [7]. For the special
case of removing all clockwise or counter-clockwise cycles in a fixed embedding
an O(|V | log |V |) time algorithm has been established [28].

However, we only want to remove intra-block edges of outer segments to
destroy all rings. Furthermore, rings can traverse intra-block edges in both
directions. In this special case, we can find the minimal number of such edges
in linear time. The idea is similar to cutting SCCs. However, this time we
cut intra-block edges instead of inter-block edges and we cut as few as possible.
Each SCC (with maximal blocks) is treated separately.

Definition 5 Let S be an SCC with wind(S) = 1. Define the outer segments
graph S′ of S to consist of the vertices of S and of two new vertices s and t.
The edges of S′ have length 0 or 1.

There is a directed edge of length 0 from each rightmost vertex of S to t. S′
contains all intra-block edges of S with assigned length 0.

Let v be a vertex with an incoming inter-block edge e = (u, v) ∈ Einter. If v
is the topmost vertex of its block, then S′ contains e with length 0. Otherwise,
v has an incoming intra-block edge e′. If e′ represents an outer segment of the
cyclic level graph, then S′ contains e with length 1, else e′ represents an inner
segment and S′ does not contain e.

Let v be a leftmost vertex on its level. If v is the topmost vertex of its block,
then S′ contains the edge (s, v) with length 0. Otherwise, v has an incoming
intra-block edge e′. If e′ represents an outer segment of the cyclic level graph,
then S′ contains the edge (s, v) with length 1. Otherwise, e′ represents an inner
segment and S′ does not contain the edge (s, v).

We now prove that the length of the shortest directed path from s to t in the
outer segments graph is the number of intra-block edges whose deletion destroys
all cyclic dependencies. We remove the incoming intra-block edge of v of each
used edge (u, v) with length 1. Fig. 14(d) shows the resulting outer segments
graph for the graph in Fig. 14(a), where length 0 is not indicated. Each vertex
with an incoming outer segment has an incoming edge from the left with length
1. The shortest path from s to t is drawn in bold. The vertices 5, d5, 7 and d8
are entered from the left and have an incoming outer segment. These four outer
segments are dashed and are removed in Fig. 14(c). Note that the drawing of
the outer segments graph in Fig. 14(d) contains duplicates of horizontal edges
on the first and last levels, since the corresponding vertices are drawn twice.
The graph itself has the same cyclic structure as the cyclic block graph.

The intuition behind the outer segments graph is as follows: An outer seg-
ments graph is (apart from s and t) a subgraph of the cyclic block graph. Both

188 Bachmaier et al. Drawing Recurrent Hierarchies

have a grid structure: Each vertex has at most one incoming edge from above
and one from the left, one outgoing edge downwards, and one outgoing edge
to the right. A path from s to t in the outer segments graph is only allowed
to traverse in edge direction, i. e., downwards and to the right. A ring in the
cyclic block graph can use intra-block edges in both directions and inter-block
edges in their direction only. Hence, a ring in the cyclic block graph traverses
upwards, downwards and to the right.

Intuitively, we remove the incoming intra-block edge each time the path from
s to t in the outer segments graph enters a vertex from the left. We can only
do so if the edge from the left exists, which is the case if the intra-block edge
from above represents an outer segment. As these edges are the only ones with
length 1, their number is minimized in a shortest path from s to t.

This method has some similarities to [28] which uses the dual graph of the
input graph to solve the feedback arc set problem in planar graphs. Due to the
regular grid structure of the block graph the outer segments graph resembles
the dual graph of the block graph. Each vertex v of the outer segments graph
can be interpreted as the vertex of the dual graph belonging to the face of the
grid above the right outgoing edge of v. In Fig. 14(e) the path of Fig. 14(d)
is shifted to represent a path in the dual graph. Now the path crosses exactly
the outer segments we remove. We use the dual graph as an intuition only as
the proofs benefit from having the same vertex set for the block graph and the
outer segments graph.

Lemma 8 Let S be a complex SCC with wind(S) = 1 of a cyclic block graph
using maximal blocks such that there is no ring when using minimal blocks. Let
P be a path from s to t in the outer segments graph. Further, let Q be the
set of vertices of P , which are entered from the left by P . Then, removing the
incoming intra-block edge of each vertex q ∈ Q from S results in an acyclic block
graph.

Proof: Let R be a simple ring in S. Then wind(S) = wind(R) = 1 holds. Since
R is a cycle in the cyclic block graph, it splits the block graph into a left and a
right part. Since P is a path from a leftmost to a rightmost vertex, R and P have
at least one common vertex. Let v be the first common vertex on P . Hence,
the predecessor of v in P lies in the left part of the block graph. Note that P
can only traverse to the right and downwards and R can only traverse to the
right, upwards, and downwards. P and R cannot enter v using the same edge
since then v is not the first common vertex. Fig. 14(f) contains the remaining
four cases. If P enters v from above and R from the left (case (c)) or from
below (case (d)) or if P enters from the left and R from below (case (b)), then
the path P has already been in the right part of the block graph. Hence, this
cannot be the first crossing. The remaining case (case (a)) is that P enters from
the left and R from above. Then the incoming intra-block edge of v is one of
the removed edges and R does not exist in the new block graph. �

Lemma 9 Let S be a complex SCC of a cyclic block graph using maximal blocks
such that there is no ring when using minimal blocks. Let wind(S) = 1. Let

JGAA, 16(2) 151–198 (2012) 189

M be a minimal set in terms of inclusion of intra-block edges, whose removal
results in an acyclic block graph. Then there exists a path in the outer segments
graph from s to t using |M | edges of length 1.

Proof: Removing all the segments of M from S makes S acyclic. Let L =
v1, . . . , v|M | be the set of lower end vertices of the outer segments in M sorted
in topological order of their minimal blocks. We search for a path from s to t by
traversing all vertices of L in this order and using only edges of length 1 to enter
a vertex vi (1 ≤ i ≤ |M |). We construct that path piecewise and backwards
from each vi.

Vertex v1 has an incoming edge from the left, which is traversed against
its direction to enter a new block B. We traverse the intra-block edges of B
against their direction to the topmost vertex and repeat this procedure. Note
that the topmost vertex of each block has an incoming edge from the left in the
outer segments graph. Furthermore, note that all traversed edges except the
first have length 0. We cannot enter a vertex a second time, since otherwise we
would have traversed a ring backwards. We cannot reach a vertex vj (j > 1)
as we traverse the outer segments graph in reversed topological order. Hence,
we have to reach s eventually. Reversing this path gives a path from s to v1.
Starting at a vertex vi (i > 1) gives a similar result. We have to reach vi−1
eventually. If we reach any vertex a second time, we have found a ring. If we
reach vj (j < i − 1), deleting the incoming outer segments of vj+1 to vi−1 was
unnecessary. This is a contradiction to the minimality of M . For the same
reason reaching s is impossible. Again, we cannot reach a vertex vj (j > i) as
we traverse the outer segments graph in reversed topological order. The only
remaining case is to reach vi−1. A similar argument shows that a path against
the edge directions from t to v|M | exists. Reversing and concatenating all these
paths gives a path s, . . . , v1, . . . , v2, . . . , . . . , . . . , v|M |, . . . , t using |M | edges of
length 1. �

Theorem 6 Let S be a complex SCC of a cyclic block graph using maximal
blocks such that there is no ring when using minimal blocks. Let P be a shortest
path from s to t in the outer segments graph. Let Q be the set of vertices of P
which are entered from the left by P , and let I be the set of incoming intra-block
edges of the vertices in Q. Then I is a smallest set of intra-block edges whose
removal from the cyclic block graph destroys all rings.

Proof: Lemma 8 proves that removing the incoming intra-block edges for each
vertex q ∈ Q results in a acyclic block graph. Lemma 9 shows that for each
minimal set of such edges (in terms of inclusion) a corresponding path exists.
Hence, the shortest path gives the smallest set of edges (in terms of cardinality)
to delete. �

Finding the shortest path from s to t with edge lengths only 0 and 1 is doable
in linear time with a slightly modified breadth first search.

190 Bachmaier et al. Drawing Recurrent Hierarchies

7 Conclusion

7.1 Summary

We investigated the drawing of recurrent hierarchies and established the first
coordinate assignment algorithm for cyclic level graphs. Like the algorithm of
Brandes and Köpf [8] it generates at most two bends per edge, tries to draw
long edges as straight parallel lines, and centers vertices among their neighbors.
These are the major aesthetic criteria for such drawings. Drawing all inner
segments vertically is no longer possible, as there are cyclic dependencies in
the left-to-right order of the vertices. This new challenge is settled by skewing
subgraphs. Hence, the symmetry of a graph can be represented in the resulting
(weak) slope aligned drawing. However, the width of the drawing is quadratic.
This can be avoided by combining our global sifting crossing reduction and
our cyclic coordinate assignment at the cost of slightly less balanced drawings.
However, all inner segments are aligned vertically then.

7.2 Discussion

We decided to base our approach on the algorithm by Brandes and Köpf, because
it follows the linear segment approach and avoids the negative “spaghetti” effect
with many bends per edge. Exact algorithms like Gansner et al. [16] or force-
directed approaches like Sander [26] may be extendable to the cyclic case as well.
However, adding restrictions to identify the vertices on the first and last levels
must be done with care to preserve the feasibility of the established system.

As described in Sect. 4.3 one (balanced) run uses fewer different slopes, but
each vertex is only aligned with an outgoing median. Then there is no balanced
compaction. In our version we always compact first to the left and afterwards
to the right. This is a bias and may induce asymmetry. The hardest challenge
were cyclic dependencies. They force skewing and wider drawings. This can be
avoided at the cost of more crossings and bends as discussed in Sect. 6. What
is the best compromise?

There is a gap between the lower bound for the width of Ω(|V |2) from The-
orem 4 and the upper bound of O((|V |+ |E|)2). It would be interesting to see
which bound is valid for dense graphs.

7.3 Experience

The algorithm has been implemented as part of the cyclic Sugiyama framework
of the graph visualization toolkit Gravisto [5]. The resulting drawings have
been compared with those from the hierarchical Sugiyama framework. Several
benchmarks were run on randomly generated graphs with up to 500 vertices and
750 edges, see [9]. In summary, the cyclic framework produces drawings with a
reduction of the number of bends from about 0.85 to 0.7 per edge on the average
compared to the hierarchical framework. However, there is an increase of the
width and of the displacements of outer segments by about 10%. The latter is

JGAA, 16(2) 151–198 (2012) 191

consumed by a coresponding reduction in the number of outer segments. These
test indicate that the width of cyclic drawings grows only linearly with the size
of the graphs, and not quadratically, which is the established worse case bound
in Theorem 3.

7.4 Examples
In this section we show some example drawings produced by our implementation.
Similar to the benchmarks in Sect. 7.3 these are generated with the coordinate
assignment algorithm, which does not avoid cyclic dependencies within the block
graph and which generates weak slope aligned drawings. Graph G20 has 20
original vertices and 35 edges. Fig. 15 shows a classical hierarchical drawing on
6 horizontal levels. It has 5 (dashed) back edges pointing in the wrong direction.
6 horizontal levels form 5 spaces for edge routing between them. To parallel this
we used 5 levels in the cyclic case. Fig. 16 presents the final cyclic drawing of
G20. Fig. 17 shows the intermediate drawing of G20. This is also the surface
of the cylinder of the 3D drawing of G20. Fig. 18 and Fig. 19 contain the same
graph drawn with only one balanced run as suggested in Sect. 4.3. It is clearly
visible in the intermediate drawing that this produces fewer slopes. In the cyclic
drawing, however, this difference is much more difficult to recognize. All these
cyclic drawings contain fewer crossings and shorter edges than the hierarchical
drawing in Fig. 15.

Fig. 20 and Fig. 21 illustrate the cyclic drawing of the graph G24, which
consists of 24 vertices and 44 edges. Due to the 76 dummy vertices, G24 has 120
segments. The slope aligned drawings are again produced by only one balanced
run. In Fig. 21 two separate complex SCCs of the cyclic block graph are clearly
recognizable. The edges on the left are skewed with a different slope than the
edges in the middle of the drawing.

Finally, Fig. 22 shows a deterministic finite automaton (DFA) using the
alphabet Σ = {a, b}. It accepts all words with an even number of a’s and whose
length is a multiple of six. Clearly, the regular cyclic structure of the DFA is
better represented in the cyclic drawing.

1

2

3

4

5 6

7

8

9

10

11 12

13

14

15

1617

18

19

20

Figure 15: Hierarchical drawing of G20 with 20 vertices, 35 edges and 6 levels

192 Bachmaier et al. Drawing Recurrent Hierarchies

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 16: 2D drawing of G20 with 20 vertices, 35 edges and 5 levels

1

2

3

4

5

67 8

9

10 1112

13

14

15

16

17

18

1920

2 95

Figure 17: Intermediate drawing and surface of the 3D drawing of G20

JGAA, 16(2) 151–198 (2012) 193

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 18: 2D drawing of G20 produced by one balanced run

1

2

3

4

5

67 8

9

10 1112

13

14

15

16

17

18

1920

5 92

Figure 19: Intermediate drawing, surface of the 3D drawing of G20 (one run)

194 Bachmaier et al. Drawing Recurrent Hierarchies

Figure 20: 2D drawing of G24 produced by one balanced run

Figure 21: Intermediate drawing and surface of the 3D drawing of G24 (one run)

JGAA, 16(2) 151–198 (2012) 195

ab

b a

ba

ba

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

(a) Hierarchical drawing

b

a

b

a

b

a

b

a
b

a

b

a

b

a

b
a

b

a
b

a

b

a

b

a

(b) Cyclic drawing

Figure 22: Drawings of a deterministic finite automaton (DFA) accepting the
language L = {w ∈ {a, b}∗ | |w| = 0 (mod 6) ∧ |w|a = 0 (mod 2) }, where |w|a
counts the symbols a within the word w

196 Bachmaier et al. Drawing Recurrent Hierarchies

References
[1] C. Bachmaier. A radial adaption of the Sugiyama framework for visualizing

hierarchical information. IEEE Trans. Vis. Comput. Graphics, 13(3):583–
594, 2007.

[2] C. Bachmaier. A Generalized Framework for Drawing Directed Graphs.
Habilitation thesis, University of Passau, 2009.

[3] C. Bachmaier, F. J. Brandenburg, W. Brunner, and F. Hübner. Global
k-level crossing reduction. J. Graph Alg. App., 2011. To appear.

[4] C. Bachmaier, F. J. Brandenburg, W. Brunner, and G. Lovász. Cyclic
leveling of directed graphs. In I. G. Tollis and M. Patrignani, editors, Proc.
Graph Drawing, GD 2008, volume 5417 of LNCS, pages 348–359. Springer,
2009.

[5] C. Bachmaier, F. J. Brandenburg, M. Forster, P. Holleis, and M. Raitner.
Gravisto: Graph visualization toolkit. In J. Pach, editor, Proc. Graph
Drawing, GD 2004, volume 3383 of LNCS, pages 502–503. Springer, 2004.

[6] C. Bachmaier and W. Brunner. Linear time planarity testing and em-
bedding of strongly connected cyclic level graphs. In D. Halperin and
K. Mehlhorn, editors, ESA 2008, volume 5193 of LNCS, pages 136–147.
Springer, 2008.

[7] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Ap-
plications. Monographs in Mathematics. Springer, 2007.

[8] U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment.
In P. Mutzel, M. Jünger, and S. Leipert, editors, Proc. Graph Drawing, GD
2001, volume 2265 of LNCS, pages 31–44. Springer, 2002.

[9] W. Brunner. Cyclic Level Drawings of Directed Graphs. Dissertation, Uni-
versity of Passau, 2010.

[10] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level
graphs. In J. Marks, editor, Proc. Graph Drawing, GD 2000, volume 1984
of LNCS, pages 229–240. Springer, 2001.

[11] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[12] P. Eades, X. Lin, and R. Tamassia. An algorithm for drawing hierarchical
graphs. Internat. J. Comput. Geom. Appl., 6:145–156, 1996.

[13] P. Eades and K. Sugiyama. How to draw a directed graph. J. Inform.
Process., 13(4):424–437, 1990.

[14] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(1):379–403, 1994.

JGAA, 16(2) 151–198 (2012) 197

[15] M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. An efficient imple-
mentation of Sugiyama’s algorithm for layered graph drawing. J. Graph
Alg. App., 9(3):305–325, 2005.

[16] E. R. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Trans. Software Eng., 19(3):214–230, 1993.

[17] E. R. Gansner, S. C. North, and K.-P. Vo. DAG, a program that draws
directed graphs. Software Pract. Exper., 17(1):1047–1062, 1988.

[18] M. R. Garey and D. S. Johnson. A Guide to the Theory of NP-
Completeness. W. H. Freemann, New York, 1979.

[19] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach
to the multi-layer crossing minimization problem. In G. Di Battista, edi-
tor, Proc. Graph Drawing, GD 1997, volume 1353 of LNCS, pages 13–24.
Springer, 1997.

[20] M. Kaufmann and D. Wagner. Drawing Graphs, volume 2025 of LNCS.
Springer, 2001.

[21] K. Mehlhorn and W. Rülling. Compaction on the torus. IEEE Trans.
Comput.-aided Des. Integr. Circuits Syst., 9:389–397, 1990.

[22] G. Michal, editor. Biochemical Pathways: An Atlas of Biochemistry and
Molecular Biology. Wiley, 1998.

[23] C. Pich. Drawing directed graphs clockwise. In D. Eppstein and E. R.
Gansner, editors, Proc. Graph Drawing, GD 2009, volume 5849 of LNCS,
pages 369–380. Springer, 2010.

[24] G. Sander. Graph layout through the VCG tool. In R. Tamassia and I. G.
Tollis, editors, Proc. Graph Drawing, GD 1994, volume 894 of LNCS, pages
194–205. Springer, 1995.

[25] G. Sander. A fast heuristic for hierarchical Manhattan Layout. In F. J.
Brandenburg, editor, Proc. Graph Drawing, GD 1995, volume 1027 of
LNCS, pages 447–458. Springer, 1996.

[26] G. Sander. Graph layout for applications in compiler construction. Theor.
Comput. Sci., 217:175–214, 1999.

[27] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling
problems. SIAM J. Discrete Math., 2(4):550–581, 1989.

[28] H. Stamm. On feedback problems in planar digraphs. In Graph-Theoretic
Concepts in Computer Science, volume 484 of LNCS, pages 79–89. Springer,
1991.

198 Bachmaier et al. Drawing Recurrent Hierarchies

[29] K. Sugiyama. Graph Drawing and Applications for Software and Knowl-
edge Engineers, volume 11 of Software Engineering and Knowledge. World
Scientific, 2002.

[30] K. Sugiyama and K. Misue. A simple and unified method for drawing
graphs: Magnetic-spring algorithm. In R. Tamassia and I. G. Tollis, edi-
tors, Proc. Graph Drawing, GD 1994, volume 894 of LNCS, pages 364–375.
Springer, 1995.

[31] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understand-
ing of hierarchical system structures. IEEE Trans. Syst., Man, Cybern.,
11(2):109–125, 1981.

	Introduction
	Preliminaries
	Foundations
	Hierarchical Coordinate Assignment
	Algorithm by Brandes and Köpf
	Postprocessing

	Cyclic Coordinate Assignment
	Block Building
	Horizontal Compaction
	Compaction of a Complex Strongly Connected Component
	Cutting a Strongly Connected Component
	Compacting
	Determining the Slope
	Compaction of all Compacted Strongly Connected Components

	Balancing

	Algorithm Analysis
	Avoiding Cyclic Dependencies
	Conclusion
	Summary
	Discussion
	Experience
	Examples

