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Abstract

The domain of high-performance computing is still dominated by manual optimiza-
tions of programs written in C or Fortran. The reason why high-level languages failed
to gain ground is the execution overhead entailed by the potential abstractions intro-
duced.

This thesis proposes MetaOCaml for enriching the domain of high-performance
computing by multi-staged programming. MetaOCaml extends the OCaml language
by three new constructs in order to provide run-time code generation. By tagging
OCaml code fragments with a pair of special brackets, they become abstract data ob-
jects of the program enclosing them. This program can create and combine code objects
at run time as well as execute them in its environment by the application of a single op-
erator. This allows the easy construction of speed-optimized code. Furthermore, like
OCaml, MetaOCaml is a language with static types. Though code objects are generated
and executed at run time, its type system guarantees the type correctness of run-time
generated code at the time the program is compiled.

This thesis presents important speed-related issues, like speed-aware coding style,
offshoring or interfacing to C. Three case studies demonstrate the applicability of these
in realistic contexts and discuss the impact in terms of execution speedup.

Focusing on numerical applications, the first case study examines iterative and re-
cursive implementations of matrix multiplications, comparing low-level C optimiza-
tions with high-level implementations using MetaOCaml. Hybrid implementations
show how to combine the optimization opportunities of both approaches.

A second case study demonstrates how MetaOCaml can be used for the implemen-
tation of a domain-specific language. The presented compiler combines a simplifier
working on the abstract syntax and a code generation function using MetaOCaml syn-
tax. As the code generator can be constructed by adding MetaOCaml constructs to the
code of an interpreter, the effort of this implementation is marginal compared to the
speedups attained.

Finally, the case study of a parallel Karatsuba polynomial multiplication presents
an embedded specification language for a static parallel computation structure. The
implementation of this language gives an example of how specialized code can be gen-
erated with MetaOCaml by using information about the parallel run-time environment.
Also, it demonstrates a clean approach to separate the concerns of the application im-
plementer and the parallel engineer.

Benchmarks for all presented implementations confirm that the execution time can
be reduced significantly by high-level optimizations. Some MetaOCaml programs even
run as fast as respective C implementations. Furthermore, in situations where opti-
mizations in pure MetaOCaml are limited, computation hotspots can be explicitly or
implicitly exported to C. This combination of high-level and low-level techniques al-
lows optimizations which cannot be obtained in pure C without enormous effort.
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Chapter 1

Introduction

1.1 Motivation

To this day, Fortran and C are the most popular programming languages for imple-
menting programs in the field of high-performance computing. This is primarily moti-
vated by the ability of Fortran and C compilers to generate fast, optimized executables
for almost any platform available. Another convenience of using these languages is
the simple compilation process, which offers machine-independent programming on
the one hand, and straightforward understanding of the assembly of the target pro-
gram on the other. As a drawback, C and Fortran do not offer the level of abstraction
and safety modern high-level languages do, e.g., the amenities of strong typing, auto-
matic memory management and programming abstractions like object-orientation or
unnamed functions.

This thesis presents approaches for bridging this gap between programming com-
fort and execution efficiency. The language of choice is Objective Caml (Caml Consor-
tium, 2005), or OCaml for short, a multi-purpose programming language which pro-
vides a wide range of abstraction mechanisms as well as the fast execution of target
programs. Unfortunately, typical OCaml programs cannot compete in performance
with C programs, let alone with those aggressively optimized. This problem can be
tackled by applying different techniques, which are addressed in detail in the course of
this thesis.

Programming style. There are a number of recommendations, given by experienced
developers and OCaml compiler implementers, for coding efficient OCaml pro-
grams. They are all founded on knowledge about the compilation process and the
run-time behavior. E.g., in a certain context, a programmer has to know whether
a function is being inlined or whether a recursive function is as fast as an itera-
tion. Also the run-time system can be tuned to the needs of the run-time environ-
ment. E.g., the garbage collector can be adjusted to trade off between memory
consumption and execution time.

Interfacing to low-level languages. Analysis or profiling of programs commonly
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12 Chapter 1. Introduction

shows that most time-consuming calculations are restricted to certain small func-
tions or fragments of code. Such hotspots typically originate from repeated calls
in a loop or a recursion. To profit from the execution efficiency and the opti-
mization capabilities offered by low-level languages, these fragments can be im-
plemented as C functions or Fortran subroutines. The interfacing mechanism
provided by OCaml makes them callable like any genuine OCaml function.

Runtime code generation. MetaOCaml (Taha et al., 2005) is an extension of the OCaml
language, which provides a convenient way to generate and run OCaml code at
run time. MetaOCaml introduces only three new constructs and, unlike other
code generation tools, generates not only well-formed but also statically well-
typed code.

The important field of application for MetaOCaml is the elimination of interpre-
tation overhead. Instead of writing a subroutine which requires all arguments in
order to perform its computation, the invocation and execution can be split into
two stages: the first stage performs only those operations which depend exclu-
sively on input available at a certain point time. For the remaining operations,
OCaml code is generated and returned as a residual program awaiting the rest of
the input. The second stage consists of the execution of this residual program. By
splitting the computation in two stages, the running time of a repeated execution
can be reduced significantly if the first stage requires only a single execution and
the iteration is performed on the simpler second-stage code.

Further optimization techniques. Another way of speeding up OCaml code is to
make use of existing C compilers by transforming computation-intensive code
automatically to equivalent C code. Eckhardt et al. (2005) present a light-weight
solution called offshoring by restricting the transformable constructs to an ade-
quate subset of OCaml. Unlike the complex C interfacing mechanism provided
by OCaml, the implementer simply tags code he plans to be offshored with spe-
cial brackets and initiates the compilation and execution with a special run oper-
ator.

Unlike native machine code, bytecode represents programs in a machine-
independent way and is executed on a virtual machine. While simple virtual
machines perform an interpretation of the bytecode, just-in-time (JIT) compila-
tion (Starynkevitch, 2004) is a technique which speeds up the execution by com-
piling bytecode dynamically at run time. A code fragment is compiled to native
code before its first use. Thus, a speedup of the running program can be expected
if the overhead of the compilation can be amortized by frequent execution of the
compiled code.

1.2 Language Features of MetaOCaml

OCaml, which forms the basis of the MetaOCaml distribution, is a programming lan-
guage which combines functional programming, derived from the ML programming
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language, with constructs of the object-oriented programming paradigm. It was devel-
oped in the “Cristal Project” group at the INRIA Rocquencourt research institute, and
is freely available for various platforms including Unix/Linux, Windows and MacOS.

OCaml has a static type system, which enhances the safety of compiled programs.
It guarantees the absence of false data usage and incorrect access of compound data.
Like in Standard ML, in many cases there is no need to provide explicit type informa-
tion because correct types can be inferred by the compiler. Nevertheless, adding type
information to the program is widely encouraged. It enables the compiler to support
the programmer with more detailed information about type errors, and it enhances the
readability of the code by providing additional documentation.

Typically for functional languages, functions are considered as “first class citizens”,
i.e., like any data object, functions can be created at any point of the program and
can serve as argument or return value of another function. As this requires a rather
complex memory management, OCaml features automatic garbage collection, so ex-
plicit memory management is not needed. The object-oriented extension integrated in
OCaml obeys the strong type checking paradigm of the language, too.

Like in any modern programming language, OCaml programs can be modularized
by separate compilation units and by linking them to an executable file. The compi-
lation may yield a native program to be run on the desired platform or a bytecode
executable to be run with a bytecode interpreter. The OCaml bytecode interpreter is
a virtual stack machine, like the JAVA virtual machine, but, in contrast to JAVA, the
OCaml bytecode also contains constructs for an effective creation and application of
so-called closures, the compiler’s representation of function objects.

1.3 Meta-Programming

In many cases, state-of-the-art software development already uses techniques to auto-
mate the creation of specialized code. The idea of meta-programming is to generate
code by a meta-program in a first stage, and to run the residual program in a second
stage. The advantages of this technique are an increase in maintainability of large
projects, like autoconf and automake (The Free Software Foundation, 2005b), an im-
proved reusability of code, like C++ templates (Lippman and Lajoie, 1998, Chap. 10
and 16), and, which is an important aspect of the subsequent examinations, the ability
to construct optimized code from a high-level specification. Unfortunately, most pro-
gramming languages still lack safe and convenient facilities for generating program
code. One common way of forming valid source code is to use macro substitutions for
combining code fragments. The drawback of this method, which is commonly used in
C, is the permanent risk of producing syntactically incorrect or type-marred code. In
C, we can define the macro

#define inc(n) (n++)

to increment the value of a variable n. While using inc(v) with any variable v pro-
duces valid code, the expansion of constants, like inc(42), makes the compiler fail.
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C++ templates remedy this problem only in part. While a template guarantees a syn-
tactically well-formed expansion, its type correctness is not checked until the template
is instantiated in the code (Czarnecki et al., 2004). This approach grants sufficient type
safety if template expansion and compilation are performed in one run.

For a type-safe generation of code at run time, the static typing of code-generating
functions has to be combined with the ability to construct and compile code at run time.
Generating and compiling source code from strings does not address this problem be-
cause it carries the same risks of producing syntactically malformed code as C macros.
Correct syntax can be guaranteed by constructing a parse tree of the target language via
the meta-language, a method which also allows a subsequent inspection of the object.
Unfortunately it does not guarantee the type correctness of the generated code.

1.3.1 Multi-staged Programming

As a means of run-time code generation, MetaOCaml introduces the concept of multi-
staged programming (MSP) into the OCaml language. It extends the OCaml language by
a pleasing syntax for constructing and running code at run time. Only three additional
constructs have been added:

• Brackets (.< exp >.) for creating an object which represents the expression exp,
the so-called object code.

• The unary escape operator (.~) for inserting object code into a new code object
to be constructed.

• The unary run operator (.!) for compiling object code to an OCaml value.

As the nesting with code brackets may be arbitrarily deep, the base program code
in MSP is called first stage and each new open bracket introduces a new stage. In terms of
meta-programming, a program fragment of stage n always acts as meta-code for object
code of stage n + 1. For an expression e of type b, the respective second stage code
.< e >. is treated like a common OCaml object of type (’a,b) code.1

Unlike other meta-programming systems, MetaOCaml does not provide a way to
inspect code objects after their creation. Code inspection is neither supported nor en-
couraged because it would breach the static type system.

1.3.2 Example

To motivate the use of staged programming consider the example of a function com-
puting the n-th power of a floating point number a.2

1The polymorphic type ’a which comes along with the type of the code is called classifier (Calcagno
et al., 2004). It is used by the type inference system for preventing the application of .! on code objects
with variables which were not linked before. As classifiers are not explicitly used in an implementation
using MetaOCaml constructs, they can be ignored by the user most of the time.
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(∗ val power : float −> int −> float ∗)
let rec power a n =

if n = 0 then 1.0
else power a (n−1) ∗. a

Now, imagine a situation in which n is constant for a large number of calls of function
power. Each invocation causes the execution of the whole recursion, though the num-
ber of recursive steps is known in advance. By using MetaOCaml, we are able to exploit
this situation: a staged function takes the number n of recursive steps and unfolds the
recursion to a closed expression forming a chain of multiplications.

(∗ val power : (’a,float) code −> int −> (’a, float) code ∗)
let rec power a n =

if n = 0 then .< 1.0 >.
else .< .~(power a (n−1)) ∗. .~a >.

Here, the staging is done by adding brackets where code fragments are to be con-
structed and by embedding recursively created code fragments with the escape op-
erator (.~). Note also the change in the type signature: both the base value a and the
return value of the power function become second-stage code objects. As it is used for
unfolding, n remains a first-stage integer.

With this staged power function we still cannot generate a code object by giving
only n as parameter. A wrapping function does the trick.

(∗ val powgen : int −> (’a, float −> float) code ∗)
let powgen n = .< fun a −> .~(power .<a>. n) >.

This function generates the complete code of the power function by embedding the
chain of multiplications in the lambda expression.

Now, in combination with the run operator, we can create a specialized power func-
tion for n = 42 at run time.

(∗ val pow_42 : float −> float ∗)
let pow_42 = .! (powgen 42)

Note what would happen if we stripped all staging annotations. The application of
powgen 42 would perform no unrolling but would simply yield a lambda expression
expecting an argument a. As this example demonstrates, in case of termination, adding
or removing staging annotations in pure functional programs affects only the order of
execution and not the semantics.

1.4 Notation and Conventions

Throughout this thesis, fragments of code, like identifiers or types, are written in tele-
type font. For mathematical formulas the following notation is used. Let n, m ∈ N,
then

2Program variables, like any fragment of code, are written in teletype font. For details on the nota-
tion see Section 1.4.
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R denotes a commutative ring (R, +, ·) with neutral multiplicative
element 1.

n div m denotes the integer division bn/mc.
n mod m denotes the remainder of the division of n and m, i.e.

a mod b = a− b · (a div b).

n is an abbreviation3 for the range {0, 1, . . . , n− 1} ⊂N.
BA as well as notation A→ B denote the set of mappings from set A

to set B.
f−1 ∈ AB denotes the inverse of a bijective mapping f ∈ BA, i.e.,

f−1(y) = x ⇔ f (x) = y for all x ∈ A, y ∈ B.

f |S ∈ BS denotes the function obtained by restricting the domain of f ∈ BA

to S ⊆ A.
n×m abbreviates the Cartesian product

{0, . . . , n− 1} × {0, . . . , m− 1}

= {(i, j)|i ∈ {0, . . . , n− 1}, j ∈ {0, . . . , m− 1}}.

a ∈ An denotes a finite mapping of natural numbers in {0, . . . , n− 1} to
elements of set A. Mapping a is isomorphic to an n-tuple with
the i-th element given by a(i). The subscript notation ai := a(i)
acknowledges this fact. Tuple a is an appropriate modeling of an
array of size n consisting of type A entries.

M ∈ An×m denotes a mapping of elements in {0, . . . , n− 1} × {0, . . . , m− 1}
to elements in set A. Mapping M is isomorphic to a matrix of
size n×m containing values of M. The subscript notation Mi,j :=
M(i, j) acknowledges this fact.

w(M) and h(M) denote the width and height of matrix M ∈ Ah(M)×w(M).
b ∈ {0, 1}n denotes a mapping of elements in {0, . . . , n− 1} to 0 or 1. Map-

ping b is an appropriate modeling of a bitmap of length n. To
describe all entries of b, the notation 〈bn−1 . . . b1b0〉 is used.

aˆb denotes the concatenation of bitmaps a and b.
#b denotes the length of bitmap b

Bn(k) denotes the bitmap representation of k ∈N using n bits, i.e.,

Bn(k)i := (k div 2i) mod 2 for all i ∈ n.
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B−1(b) denotes the natural number by interpreting b ∈ {0, 1}n as binary
number, i.e.,

B−1(b) :=
n−1

∑
i=0

bi · 2i.

Note that for all n > 0

B−1
n = B−1|{0,1}n

a on b denotes the bitwise interleaving, i.e., for a and b ∈ {0, 1}n,

(a on b)i :=
{

ai div 2 if i is odd
bi div 2 if i is even

∀i ∈ 2 · n.

In order to simplify the notation of mathematical expressions, the following order
of precedence applies to operations if parentheses are omitted. The precedences are
given as list from highest to lowest. For non-associative infix operations the respective
associativity is given in parentheses.

• power ab (right).

• logarithm loga b.

• division a/b (left) and multiplication a · b.

• subtraction a− b (left) and summation a + b.

• fraction a
b

Furthermore, concatenation aˆb has a higher precedence than interleaving aonb.

1.5 Overview

In the course of this thesis we examine the impact of MetaOCaml as tool for writing
speed-optimized programs.

For this purpose, Chapter 2 starts with the introduction of basic optimization tech-
niques and tools which are universally applicable in many contexts. We show how to
tune the garbage collector and what precautions have to be taken in order to access
arrays or float values efficiently. We also give some advice on what coding style to
be used for a given problem. Benchmarks of exemplary implementations provide a
means of rating the applicability of these optimizations in a given context. We give

3This notation resembles the definition of natural numbers in set theory (Hrbacek and Jech, 1999, Chap-
ter 3), where 0 := {} and n := {0, . . . , n− 1} for n 6= 0.
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a demonstration of staged programming for generating optimized code at run time
and a short introduction to offshoring, which provides the automatic transformation
of typed OCaml code fragments to C or Fortran. The latter technique is very powerful
because it can keep up with pure C in terms of execution speed and definitely beats C
in terms of comfort and safety. The chapter concludes with a short assessment of the
current implementation of JIT compilation, which turned out not to be competitive in
a high-performance context.

The main part of the thesis concentrates on three case studies demonstrating the
wide-ranging applicability of optimizations in MetaOCaml. Benchmarks conclude
these case studies, exhibiting the speedups for each implementation.

Chapter 3 demonstrates a number of alternative implementations of a matrix mul-
tiplication and compares them with exemplary implementations in C. Chapter 4 con-
centrates on a key feature of MetaOCaml, the generation of code guided by run-time
information. The example presented shows that MetaOCaml is a useful tool for im-
plementing an optimizing compiler for an abstract specification language. Finally, in
Chapter 5 we see a demonstration how MetaOCaml simplifies the implementation of
an embedded domain-specific language, which provides the description of static par-
allel computation structures.

Some practical details on the development environment are given in Chapter 6,
which present the compilers and tools as well as the interfacing mechanism for inte-
grating C modules in OCaml.

Chapter 7 concludes the thesis with an overview of all discussed optimizations. A
table gives a concise survey of these techniques and advice on the applicability of each
of them.



Chapter 2

Optimization Approaches

A number of coding guidelines for writing execution-efficient OCaml code are given
by experienced OCaml programmers and compiler implementers (Leroy, 2002). This
chapter summarize these guidelines and elaborate on their relevance by discussing the
benchmarks of exemplary implementations. As OCaml is the basis of MetaOCaml,
these guidelines are directly applicable to both languages. A demonstration of using
MetaOCaml for loop optimization, a short discussion on the offshoring optimization
and an assessment of JIT compilation conclude this survey of optimization techniques.

2.1 Tuning the Garbage Collection

Due to the observation that memory allocated longer ago is less likely to be freed than
memory allocated recently, OCaml comes with a generational garbage collection (Chail-
loux et al., 2000, Chap. 9). As Grune et al. (2000) pointed out, generational garbage
collectors are the fastest and most efficient garbage collections known. In the case of
OCaml, it works in two stages: a frequent minor collection of memory chunks tagged
to be new and an infrequent but complete and time-consuming major collection of all
allocations. If new memory survives the first phase it is tagged to be old.

Because the major garbage collection is rather time-consuming, it is not initiated
until a certain amount of memory is wasted. The space overhead variable in the con-
trol record of the garbage collector defines this amount relative to the amount of live
memory on the heap. Therefore, the smaller this value the more CPU time is required to
clean up the heap. In the current release 3.08 of OCaml the default value is set to 80 %,
but in some cases it may be reasonable to set it to 100 % or even 200 %, depending on
the program behavior and the amount of memory available.

2.2 Optimizing OCaml Arrays

OCaml provides the polymorphic data type ’a array as the standard data type for
arrays. Like most languages with arrays as basic linear data type, OCaml has a pleas-
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operation construct description

create Array.make n i creates an array of length n and initializes all entries
with i

[| v1 ; v2; ...|] creates an array with fixed size and entries given by
values v1,v2, . . .

read a.(i) reads entry i of array a
Array.get a i equivalent to a.(i)
Array.unsafe_get a i equivalent to a.(i) without bound checks

write a.(i) <- v writes value v to entry i of array a
Array.set a i v equivalent to a.(i) <- v
Array.unsafe_set a i v equivalent to a.(i) <- v without bound checks

Table 2.1: Important constructs and functions for OCaml arrays.

ing syntax for creating them and for reading and writing array entries. Additionally,
the Array module in the OCaml standard library offers high-level functions for creat-
ing and manipulating arrays, some of which, like Array.map or Array.fold_left,
resemble the high-level combinators on recursive lists. Table 2.1 shows the most im-
portant operations needed to create and access arrays in OCaml.

2.2.1 Effect of Boundary Checks

Like for JAVA arrays or C++ collections, the semantics of OCaml specifies that each ar-
ray access is preceded by a boundary check. For any access a.(i) which does not sat-
isfy the restriction (i < Array.length a && i >= 0), a corresponding exception is
raised.

To illustrate the effect of boundary checks, consider the following example.
for i = 1 to Array.length a − 2 do

a.(i) <− a.(i−1) +. a.(i) +. a.(i+1) /. 3.0
3 done

For each of w iterations for the loop 4 bound checks are required, which makes a total
of 4 ·w. At a closer look, actually, most of these checks seem superfluous as a sufficient
check merely needs to evaluate the array accesses for both loop bound values. Unfor-
tunately, OCaml does not perform an optimization by omitting any of these checks.

The simplest ways to eliminate boundary checks are either to use the command line
option -unsafe of the OCaml bytecode or native code compiler or to use the functions
Array.unsafe_get or Array.unsafe_set. As the name already suggests, the im-
plementer is highly discouraged from using these options. Out-of-range indexing gets
obscured, as there is no guarantee that the program stops or crashes in such a situation.

2.2.2 Optimizing Numerical Computations

One of the most profitable optimizations on arrays can be performed by eliminating
polymorphism. Accessing arrays of polymorphic type always involves the determi-
nation of the actual type at run time. For monomorphic arrays, the type is known at
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compile time, so the OCaml compiler can inline the respective read or write access in
the calling code fragment or can choose an efficient data layout.

Furthermore, concerning numerical applications, both the bytecode and the native-
code OCaml compiler offer a special treatment for expressions containing int and float
values and a special internal representation for int and float arrays. Almost all other
values have a boxed representation, i.e., they are kept within an allocated chunk of
memory on the heap. As a consequence, they are subject to the garbage collection and
accessing them always involves a dereferencing operation. Int values are never boxed,
and float values are unboxed in certain situations.

If float values were always boxed, the costs for evaluating complex floating point
expressions would be unacceptable for numerical computations. Therefore, the OCaml
compilers suspends the boxing of float values in the following situations:

• The float value is the result of an arithmetic operation (+., -., *., /., **, sin,
cos, exp, log, . . . ) that is used immediately by another arithmetic operation.

• The float value is a let bound of an unboxed value, which is exclusively used
within arithmetic expressions. E.g.,

let a = b ∗. c in a ∗. a (∗ a unboxed ∗)
let a = b ∗. c in a ∗. a ∗. f a (∗ a boxed ∗)

• The float value is an element of an array or a component of a record which has
only float components. In this case, all values are stored consecutively like in C
arrays.

• The access of float arrays if it is done in the context of an arithmetic float opera-
tion. E.g., a.(i) <- 4.5 *. a.(i) performs one float read and one float store.

Note that in all other cases float values are treated as boxed. As a consequence, iter-
ation should be preferred over recursion because function parameters of type float are
passed boxed. Also records with two float entries should be preferred over tuples, e.g.,
for representing complex numbers, because the access of a tuple requires an additional
dereferencing to unbox the float value.

2.3 Speed-aware Coding Style

A number of benchmarks were run on a 1 GHz Dual-Pentium III machine with 512 MB
memory running Fedora Core 1 Linux as operating system. The results are displayed
in Table 2.2 on the following page. The MetaOCaml version used was 3.08 alpha 023.
For the timings the respective functions provided by the Trx module of MetaOCaml
were used. These functions eliminate short-term caching effects by iterating the sample
function sufficiently often to get a reliable timing. Also, the execution times displayed
in Table 2.2 on the next page are the arithmetic mean of five independent runs of each
benchmark in the benchmark suite.



22 Chapter 2. Optimization Approaches

running time in msec.
bytecode native

GC memory overhead GC memory overhead
style implementation 80 % 200 % 80 % 200 %

list reduction sumlength_rec 443.74 440.26 131.55 131.50
length 219 sumlength_fold 495.32 495.01 146.28 145.27

sumlength_loop 423.13 423.68 127.63 127.38

array reduction sumlength_array 471.43 471.92 92.64 92.23
length 219 sumlength_array∗ 467.35 466.16 91.97 91.63

parameter passing curried 4.62 4.62 0.12 0.12
30000 iter. uncurried 8.11 8.11 0.12 0.12

argument factoring no_factoring 10.74 10.74 0.84 0.84
30000 iter. factoring 9.87 9.86 1.10 1.10

∗ boundary checks disabled

Table 2.2: Benchmarks on 1GHz PIII, MetaOCaml 3.08 alpha 023, for different OCaml
coding styles

2.3.1 Recursion vs. Iteration

In most observed cases, loop iteration in OCaml is faster than recursion. However,
recursion is implemented quite efficiently and there are situations where it is as fast
or even slightly faster than an equivalent implementation by a for or while loop.
This applies especially for the traversal and construction of recursively defined data
structures. A loop iteration would have to maintain a reference to such a structure
and perform iterated de-referencings and assignments. These assignments of heap al-
located data require the generational garbage collector to take additional precautions
(Chailloux et al., 2000, chap. 9): an up-to-date table is kept to hold references from the
old to the new generation. Using a purely functional, recursive function, this table of
references need not be updated because younger memory chunks of the data structure
created always reference older ones.

Where possible, functions should be expressed by tail recursion to help the compiler
optimize the execution. In tail recursive functions the value returned by a recursive
sub-call is not used for any further calculation. Therefore, in order to avoid the repeated
allocation of memory, the recursive call can reuse all memory allocated in the previous
call. The OCaml bytecode provides a special instruction for this purpose.

The following function implements a combined counting and summation of list
entries using a tail recursion.

(∗ val sumlength_rec : float list −> float ∗ int ∗)
let sumlength_rec xs =

3 let rec r xs (s,l) = match xs with
| hd::tl −> r tl (s +. hd, l + 1)
| [] −> (s,l)
in r xs (0.0,0)

Note the technique of processing intermediate results in tail recursive functions: tuple
(s,l) is updated and passed as argument to the next recursion rather than summed
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up as return value of the recursive call.

As recursive function definitions often lack readability, in functional programming
the use of high-level combinators is highly encouraged. These combinators also pro-
vide an abstraction from the computation, so the compiler would be able to choose a
more appropriate or more optimized implementation. The functionality of the previ-
ous function can, thus, be expressed by a single fold reduction

(∗ val sumlength_fold : float list −> float ∗ int ∗)
let sumlength_fold xs =

let step (s, l) i = (s +. i, l + 1) in
4 List.fold_left step (0.0, 0) xs

The recursion is performed implicitly by List.fold_left, which keeps the inter-
mediate result in a pair of size and length.

As can be seen from the benchmark results, whether it is the bytecode or native
code compilation, the implementation using a fold reduction is about 10 % slower than
the explicit recursion.

Though a recursive implementation may be favorable in terms of readability, it may
not yield the performance one would expect from an iteration by a for loop. By using
references to point to the list and to accumulate intermediate results, the same func-
tionality can also be implemented by traversing the list with a loop.

1 (∗ val sumlength_loop : float list −> float ∗ int ∗)
let sumlength_loop xs =

let s = ref 0.0 in
let l = ref 0 in
let xsref = ref xs in

6 while !xsref != [] do
l := !l + 1;
match !xsref with
| (hd :: tl) −>

s := !s +. hd;
11 xsref := tl;

| _ −> failwith "impossible"
done;
(!s,!l)

The benchmark results in Table 2.2 on the facing page show that this implementa-
tion is only slightly faster than the previous implementations, though it is less under-
standable for a human reader.

One of the reasons why the imperative function using loops is not so easy to com-
prehend is due to the recursive nature of the list type. The “natural” type in the context
of loops would be an array, because it provides random access and need not be decon-
structed in order to access an element. An equivalent implementation would look as
follows.
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1 (∗ val sumlength_array : float array −> float ∗ int ∗)
let sumlength_array xs =

let s,l = ref 0.0, ref 0 in
for i = 0 to Array.length xs − 1 do

s := !s +. xs.(i);
6 l := !l + 1;

done;
(s,l)

Actually, counting the number of array entries is superfluous as the array length can
be looked up with Array.length, requiring a constant number of operations. Nev-
ertheless, looking at the benchmark results for the native compilation, this function
outperforms all other implementations in terms of execution time. This gain of time
should not surprise if we remember the compiler optimizations noted in the section on
OCaml arrays. Because xs is a monomorphic array of floats, the compiler uses a special
representation of unboxed array elements arranged consecutively in memory. Further-
more, all intermediate results of the floating-point operations in line 5 are unboxed
float values. Additionally, though the for loop contains only one array access, we can
notice a small speed gain if an unsafe array subscript omitting the boundary check is
used. For an implementation of a matrix multiplication this gain can be expected to be
more pronounced, as the benchmarks of the subsequent case study in Section 3.5 show.
Here, the array accesses are even more dominant compared to other computations in
the loop body.

2.3.2 Currying Functions

Curried parameters passing is usually faster than passing tuples. When arguments are
passed to a curried function, the OCaml compiler ensures that no extra memory is al-
located on the heap. Actually, in OCaml an uncurried function always has one tuple as
single argument. As a consequence, a tuple is created in almost all cases in which an
uncurried function is applied to multiple arguments. This means that, for each invo-
cation, space is allocated on the heap, which has to be freed by the garbage collection
later on. The native code compiler usually optimizes named, uncurried functions such
that parameters are passed via registers and no extra memory has to be allocated. The
only case in which the bytecode compiler does not allocate extra space is the passing of
an already constructed tuple to an uncurried function.

To demonstrate the negative effect of passing tuples, consider the following ternary
functions, which are called to perform 30000 tail-recursive calls.

(∗ val curried : float −> float −> int −> float ∗)
2 let rec curried a b n =

if n = 0 then a +. b
else curried b a (n − 1)

(∗ val uncurried : float ∗ float ∗ int −> float ∗)
7 let rec uncurried (a,b,n) =

if n = 0 then a +. b
else uncurried (b, a, (n − 1))
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The benchmark results illustrate the influence of the optimization performed by the
compiler. The bytecode run exhibits a substantial slowdown of the uncurried function
compared to its curried version. This gap closes when both functions are run as native
code. Here the argument passing via registers annihilates the negative effect of passing
tuples.

2.3.3 Factoring out Recursion Parameters

For a recursive function which takes a parameter that is constant throughout the eval-
uation of the function, a naïve implementation could pass the actual argument un-
changed at the invocation of the next level of recursion.

1 (∗ val no_factoring : float −> float −> float −> float ∗)
let rec no_factoring a b c =
if c > 30000.0 then

a +. b +. c
else

6 no_factoring a b (c +. a +. b)

This example shows a tail recursion whose parameters a and b are passed un-
changed. Aiming at the reduction of the overhead for passing parameters, the same
functionality could be implemented by factoring out parameters a and b, i.e., by mak-
ing them variables of the the same scope which encloses the recursive function.

(∗ val factoring : float −> float −> float −> float ∗)
let factoring a b c =

let rec f c =
4 if c > 30000.0 then

a +. b +. c
else

f (c +. a +. b)
in

9 f c

Another name used for this technique is lambda dropping (Danvy and Schultz, 2000).
As the benchmarks show, in the case of the bytecode compilation the effect of this

optimization is noticeable but not big. As OCaml owes its roots to functional program-
ming, it puts much effort into minimizing the overhead of parameter passing. One of
these optimizations is to keep parameters in registers, as long as some are available.
In the native code generated for function no_factoring and f̌actoring the situation is
different. For both implementations the recursion is replaced by a loop iteration. In
the case of the simpler function without factoring the compiler is able to keep more
registers in memory. Apparently, this is not a principle problem because the compila-
tion of the same program with an earlier version of MetaOCaml basing on OCaml 3.07
resulted in a smarter use of registers.

2.3.4 Limited Automatic Optimizations

One rule of thumb for programming with OCaml is not to expect the compiler to do
high-level optimizations. For example, OCaml does not unroll loops to reduce the
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number of loop bound checks. In contrast, Section 2.4 shows that MetaOCaml con-
structs are particularly suitable to generate an unrolled loop at a high level. Unlike
automatic unrolling at compile time, the generation of code can benefit from run-time
information, like the size of the instruction cache.

Another optimization which the OCaml compiler hardly takes into account is the
inlining of small functions. Only the native code compiler performs this optimization
for non-recursive functions in a fairly conservative way. Whenever execution speed
is a key issue, a good strategy would be to perform the inlining of small functions by
hand, or to generate inlined code with MetaOCaml.

2.4 Loop Optimization with MetaOCaml

The main field of application for MetaOCaml is the generation of speed optimized
code, exploiting run-time information. An in-depth discussion on optimizing code
transformations using a multi-staged evaluation is given by Cohen et al. (2005).

As most time-consuming calculations take place in loops, they are a very promising
subject for optimizations. The technique of unfolding is especially lucrative for loops
in which boundary checks and conditional jumps dominate the actual calculation of
the loop body.

Unfortunately, a complete unfolding of loops is either impossible, because the ac-
tual loop bounds may be unknown at loop construction time, or not favorable because
a complete unrolling would lead to code explosion. The simple way to unroll the fol-
lowing loop.

1 let x = ref 1 in
for i = 1 to n do

x := !x ∗ i
done

is to transform it to the semantically equivalent loops, where step is the number of
instances of the loop body to be unrolled:

1 let x = ref 1 in
let i = ref 1 do
while !i <= n − step + 1 do

x := !x ∗ !i;
x := !x ∗ (!i+1);

6 x := !x ∗ (!i+2);
...
i := !i + step

done
while !i <= n do

11 x := !x ∗ !i;
i := !i + 1

done

The value of step has to be chosen appropriately to make the resulting code fit into
the instruction cache. The replicated body is now embedded in a while loop with ex-
actly (ndivstep) iterations. The second while loop is needed to perform the remaining
nmodstep computations.
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To implement the unfolding using MetaOCaml, we first define a combinator to du-
plicate the loop body for n iterations.

(∗ val unroll :
2 int −> ((’a, int) code −> (’b, ’c) code) −> (’a, int) code −>

(’b, ’c) code
∗)

let rec unroll n body ix =
if n = 1 then

7 body ix
else begin

let n’ = pred n in
.< ( .~(unroll n’ body ix) ;

.~(body .< .~ix + n’ >.) ) >.
12 end

in

Note that the parameter body is itself a function which takes the code for the index as
input and generates code for the loop body. As the escape operator (.~) inserts object
code into object code within the first stage of the meta-code, the enclosing expressions
are executed immediately when unroll is called. Thus, the code fragments for the
body are generated and concatenated with the sequence operator (;) at each recursive
step of unroll (lines 6 and 7).

Function genfor finally generates the partially unrolled code, exactly as outlined
before.

(∗ val genfor :
2 ((’a, int) code −> (’a, ’b) code) −> int −>

(’a, int −> int −> unit) code ∗)
let genfor body step =

.< fun lb ub −>
let i = ref lb in

7 while !i <= (ub − step) + 1 do
.~(unroll step body .< !i >.); i := !i + step

done;
while !i <= ub do

.~(body .< !i >.); i := !i + 1;
12 done >.

in

To make use of unrolling, the loop can now be written in four steps: defining the loop
body, generating the loop code, compiling the code to OCaml and running the loop by
applying the loop bounds.

let x = ref 1 in
2 let body i = .< x := !x ∗ .~i >. in
let loop_code = genfor body step in
let loop = .! loop_code in
loop 1 n

Note that the number step of body replications is information that need not be
known until the program is run. The appropriate value could be given to the executable
as command line argument, according to a cost model or depending on preceding per-
formance tests.

Several example application for MetaOCaml code generation are presented in the
case studies of the following chapters.
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2.5 Offshoring

Currently, specialized compilers exist for various application domains, like numerical
computing or embedded systems. Furthermore, there are widely used multi-purpose
compilers, like the GNU C Compiler, which benefited greatly from the sustained work
of experienced developers. Aiming at making use of the optimization technology im-
plemented in these compilers, offshoring is another multi-staged approach for gener-
ating efficient programs.

In order to describe and motivate offshoring, consider the basic idea of explicit het-
erogeneous multi-staged programming (Sheard, 2001), which aims to generate code objects
in a desired target language, to translate them with a specialized compiler and to link
them dynamically to the meta-program. The term heterogeneous denotes the fact that,
unlike MetaOCaml, the language of the first stage is different from that of the second
stage. Compared to a offshoring translation of OCaml code objects to an arbitrary target

• An increase of new constructs to suite the needs of the target language.

• The lack of generality, as these constructs correspond to constructs of the target
language.

• The need for static typing of the generated programs.

Eckhardt et al. (2005) show how these issues can be addressed by implicit heteroge-
neous multi-staged programming, which incorporates an automatic offshoring translation
of OCaml code objects to the the desired target language. Their implementation, which
is part of the MetaOCaml distribution since version 3.08.0 alpha 020, currently supports
C and Fortran as target languages. Offshoring restricts the syntax of both OCaml and
the target language to respective subsets in which each construct in one language has
an equivalent construct in the other. Thus, an OCaml code fragment restricted to this
subset can easily be translated to the target language by a one-to-one mapping of each
OCaml construct in this subset.

Note that the syntax restriction of the target code makes many optimizations impos-
sible which could be done with explicit heterogenous meta-programs or by using the
OCaml interfacing mechanism to C.1For example, the offshoring mechanism does not
allow to opt for the more cache-friendly allocation of C arrays described in the subse-
quent case study. Nevertheless, the advantage of implicit heterogeneous multi-staged
programming lies in the hidden translation, compilation and dynamic linking.

To summarize also the advantages of offshoring compared to the homogeneous
staged programming of MetaOCaml:

• Like MetaOCaml, offshoring is homogeneous in the sense that it has static typing
and introduces only few new constructs to the host language.

• Like MetaOCaml, the compilation of object code is implicitly done by a single run
operator.

1See Section 6.2 for details on the OCaml interfacing mechanism.
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• Unlike MetaOCaml, the compilation of object code is not performed by reusing
the base language but by translation to C/Fortran, compilation with a C/Fortran
compiler and by dynamic linking.

• The translation to C is a simple substitution of equivalent OCaml constructs, so
the application developer has a precise perception of the generated C code.

• The application implementer benefits from optimizations implemented in wide-
spread C and Fortran compilers, like the icc (Intel R© Compilers) or gcc.

Section 3.4.2 presents a first example in the context of the matrix multiplication
case study. There, we show the important use of offshoring in the optimization of
computation intensive loop nests, hotspots which are commonly found in numerical
computations.

2.6 Just-in-time Compilation

Just-in-time (JIT) compilation speeds up the execution of OCaml bytecode programs
by replacing the bytecode interpreter with a run-time compiler. No modification of
the bytecode executable is needed as the JIT compiler expects exactly the same virtual
machine code.

The JIT compiler developed by Starynkevitch (2004) consists of a main translation
loop containing a big switch statement whose cases match on bytecode instructions.
For each case, corresponding machine code is constructed using the C macros of the
Lightning code generation library (The Free Software Foundation, 2005a). This library
provides code generation for a number of architectures, so JIT compilation works for
platforms like i386-Linux/Windows or PowerPC-MacOSX machines.

In order to retain compatibility, the compiler has to keep the bytecode for the whole
run in order to use its addresses. For the execution of a bytecode segment, an incre-
mental compilation is invoked, translating each segment the first time of its use. The
resulting machine code gets associated with the respective bytecode via a hash table
mapping bytecode addresses to addresses of native code fragments.

The implementation of the JIT compilation was not investigated further in the sub-
sequent case studies of this thesis. On the one hand, the current release was too imma-
ture to run reliably with applications like the image processor in the second case study.
On the other hand, selected execution tests of the case study implementations could
compete neither with a native MetaOCaml compilation nor with offshoring optimiza-
tions.

Nevertheless, the development of a fast JIT compiler is a realistic option. It still
keeps the compiled code independent from the actual platform it is run. Furthermore,
the primary intention of the development was to provide a replacement for bytecode
interpreter ocamlrun of the underlying OCaml environment. So the community inter-
ested in further development can be expected to be much bigger than that of the users
of the native MetaOCaml compiler. At the same time, the current implementation of
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the JIT compilation is compatible not only with the OCaml bytecode interpreter but
also with that of MetaOCaml.



Chapter 3

Case Study: Matrix Multiplication

Matrix multiplication plays a key role in many numerical applications and optimizing
them is, therefore, an important issue. Matrix multiplication is typically defined as
follows.

3.1 Definition (Matrix Product)
For two matrices A ∈ Ru×v and B ∈ Rv×w, the matrix product C = A · B is defined by

Ci,j =
v−1

∑
k=0

Ai,k · Bk,j ∀i ∈ u, j ∈ w

�

A direct implementation of this definition yields a program which mainly consists
of three nested loops: two for iterating over rows and columns of C and one for the
inner summation, which corresponds to a dot-product of the i-th row of A and the j-th
column of B. The algorithm has a running time of Θ(uvw), or, for square matrices of
width N, a running time of Θ(N3). Other algorithms, like the matrix multiplication by
Strassen (1969), perform slightly better in terms of running time complexity but worse
in terms of memory consumption. Nevertheless, matrix multiplication often dominates
other program parts, like scalar operations or reductions, which has an execution time
that is at most linear in N.

This section discusses a number of multiplication algorithms and shows corre-
sponding implementations in MetaOCaml. Furthermore, it demonstrates how to make
use of the knowledge presented in the previous chapters in order to accelerate each of
these implementations. To compare the effect of these optimizations, a number of ma-
trix multiplications are also implemented in pure C. An extensive series of benchmarks
of the implementations presented concludes this chapter. They demonstrate in which
cases MetaOCaml can compete with C, not only in terms of running time but also in
terms of programming safety and abstraction.

31
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3.1 Implementation Considerations

In order to implement all variants in a way which makes them comparable, the follow-
ing decisions about the overall design of the benchmark suite were made.

1. All implementations use the same data type for representing the input matrices
A and B and the output matrix C.

2. Since each implementation requires a matrix representation of its own, a pre-
and post-processing stage is needed for the necessary conversions and run-time
optimizations, like the generation of optimized code.

3. The benchmarks are the same for all implementations, i.e., both the pre- and post-
processing stage as well as the actual matrix multiplication are implemented as
separate program units and are benchmarked separately.

4. Each matrix has a square shape and a width which is a power of 2. More formally:
the shape of each matrix M must satisfy the condition

∃n ∈N : h(M) = w(M) = 2n. (3.1)

Common Data Representation in C Implementations

The default matrix representation used for C implementations is a dynamic double
array, which, in effect, is a double pointer referencing consecutive memory which is
allocated dynamically. The entries of this array are stored in row-major order, i.e., for
row i and column j the value Ai,j is stored at array position i · w(A) + j.

As the dynamic allocation of memory for C arrays is done by an explicit function
call yielding a pointer to a consecutive chunk of memory, an additional optimization
can be achieved in order to reduce the number of page misses in the data cache. The
optimization is based on the internal structure of the caching mechanism: the content
of the cache is composed of cache lines, which are consecutive chunks of memory of
a machine dependent, fixed size. The main memory is also divided into consecutive
sections, which are all of the same length as a cache line. In order to accelerate the
access to the main memory, the cache lines are filled with a number of these main-
memory sections. Whenever an inquired date cannot be found in the cache (cache miss),
a cache line gets refilled completely with the section of the main memory containing
this date.

As Thiyagalingam et al. (2003) showed, the number of cache misses can be reduced
considerably by allocating each array at a start address of a cache line section in the
main memory. For this purpose, the POSIX standard (The Open Group, 2003) provides
the special C function posix_memalign(), which is guaranteed to be compatible to
free(), the standard C function for freeing previously allocated memory. The POSIX
allocation function provides a parameter for an alignment for the allocation of memory.
After a successful call, the first argument is set to a memory address which is a multiple
of this alignment.
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Common Data Representation in OCaml Implementations

The common OCaml data type chosen for representing matrices is float array ar-
ray, which is the type intended by the OCaml Standard Library, which also provides
the function Array.make_matrix to facilitate the creation and initialization of matri-
ces of this type. A separate module Std_matrix is used for our implementation, con-
taining Std_matrix.t as alias for arrays of float arrays and operations for handling
objects of this type. The type definition is given as follows.

type t = float array array

Common Interface

In order to normalize the benchmarks as described in points 2 and 3 on the facing page,
the implementations use the object-oriented features of OCaml. A common interface
for all implementations of the matrix multiplication is provided by a parameterized vir-
tual class.1

class virtual [’a] abstr_mmult (size:int) (label:string) =
object

val _size = size
4 val _label = label

method getlabel = _label
method virtual pre : Std_matrix.t −> Std_matrix.t −> ’a ∗ ’a
method virtual process : ’a −> ’a −> ’a
method virtual post : ’a −> Std_matrix.t

9 end

Listing 3.1: Common interface for benchmark suite.

Three virtual methods are intended to be implemented in corresponding subclasses
providing the following functionality.

• Method pre expects as input the input matrices A and B, and transforms them
into a representation to fit the matrix type ’a needed for the matrix multipli-
cation. Also preceding run-time optimizations are implemented here, like the
generation of partially unrolled loops or the offshoring of code fragments.

• Method process performs the actual matrix multiplication.

• Method post post-processes the result of the matrix multiplication and returns
the product matrix C.

1A virtual class in OCaml is a class which has ordinary methods as well as virtual methods. Methods of
the latter kind consist merely of a type declaration without an implementation. As shown in Listing 3.1,
these classes and the corresponding virtual methods are labeled with the keyword virtual. Virtual
classes are used to provide a common interface for methods implemented in derived subclasses. Note
that in other object-oriented languages there are different terms for this type of class. A virtual class in
OCaml corresponds to an abstract class in JAVA or a class with pure virtual methods in C++. Note that virtual
inheritance in C++ refers to a special kind of multiple inheritance and does not correspond to the concept
of virtual classes in OCaml (Lippman and Lajoie, 1998, Sect. 18.5).
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Providing this abstract class with a type parameter ’a allows the flexible usage of an
implementation-specific matrix representation. Therefore, a subclass can be endowed
with a type instantiation to set ’a to the data type needed. As a positive side effect, this
type inheritance completely eliminates polymorphism in the subclass, which enables
the compiler to do optimizations for monomorphic methods. The most important op-
timizations in this context are the inlining of array accesses and the unboxing of float
values because the type and layout of the array is known at compile time.

Inheritance Hierarchy Overview

Figure 3.1 on the next page gives an illustrating extract of the inheritance hierarchy, in
form of a UML style class diagram (Open Management Group, Chap. 7). Classes are
represented by boxes with three fields: the top field denotes the class name, the middle
field contains the member variables and the bottom field contains the methods. The
additional keyword {virtual} denotes a virtual class. The respective virtual methods
are set in italic font.

Normal inheritance is represented by a solid line starting at a triangle at the super-
class and leading to the corresponding subclass. For generic classes, the respective type
parameter ’a is noted in a dashed box at the upper right corner of the class box. The
combined type instantiation and sub-typing uses a dashed line instead of a solid one
and marks it with the stereotype <<bind>> (Open Management Group, Sec. 17.5.7).
The type instantiation of parmeter ’a with argument t is noted as <’a -> t>.

Unfortunately, UML lacks a suitable notation for higher-order function types be-
cause it separates parameter type annotations from the type annotation of the return
value. In the figure, this deficiency was solved by giving OCaml higher-order type
expressions as “return type” of methods.

Matrix Size Restriction

The restriction of matrix shapes to squares whose width is a power of 2 was chosen
with the intention to simplify the implementation and presentation, especially for the
recursive matrix multiplications. For the recursive algorithms, the relaxation to matri-
ces of arbitrary shape would necessitate a padding technique to fill each matrix with
additional zero lines and rows. As Chatterjee et al. (2002, Sect. 4) showed, an adaptive
tiling technique can be used to minimize padding and, thus, reduce the negative effect
on the execution time.

In all code examples shown below, the size of a matrix in a multiplication is deter-
mined by variable n, where the width is given by 2n. Variable width is used to bind
this value for subsequent usage.
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’a

_size: int
_label: string
get_label: unit −> string
pre: t −> t −> ’a * ’a
process: ’a −> ’a −> ’a
post: ’a −> t

abstr_mmult {virtual}

recursive implementations

pre: t −> t −> t * t
process: t −> t −> t
post: t −> t

mmult_arrayarrays

pre: t −> t −> bigarray * bigarray
process: bigarray −> bigarray −> bigarray
post: bigarray −> t

process: array −> array −> array

mmult_strassen mmult_strassen_unroll ...
process: array −> array −> array

<<bind>> iterative implementations

<’a −> bigarray>

<’a −> array>
quadtree_mmult {virtual}

post: array −> t
process: array −> array −> array

quadtree_mmult_bigarrays {virtual}

pre: t −> t −> bigarray * bigarray
process: bigarray −> bigarray −> bigarray
post: bigarray −> t

pre: t −> t −> array * array

mmult_bigarrays

<’a −> bigarray>

<’a −> t>

...

...

Figure 3.1: UML style class diagram extract of matrix multiplication implementa-
tions. Type names are abbreviated: t denotes Std_matrix.t, array denotes float
array and bigarray denotes (float, float64_elt, c_layout) Array1.t of the
Bigarray module.
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Float arrays of arrays
IterOrd OAa naïve implementation in OCaml
IterOrd CAa naïve implementation in C
Row-major order arrays
IterRow OA in OCaml using OCaml Arrays
IterRow OB1 in OCaml using 1-D bigarrays
IterRow CA in pure C
2-dimensional arrays
Iter2D OB2 in OCaml using 2-D bigarrays
Iter2D OB2+C in OCaml with calculation in external C
Transposed operand matrix B
IterTrp OAa in OCaml using arrays of arrays
IterTrp OB2 in OCaml using 2-D bigarrays
IterTrp CAa in C using arrays of arrays
IterTrp CA in C using ordinary arrays
IterTrp OAa+U in MetaOCaml using arrays of arrays and unrolling
IterTrp OB2+C in OCaml with calculations in external C
IterTrp OAa+O in MetaOCaml∗ using arrays of arrays and offshoring
∗ The offshoring implementation uses objects of the MetaOCaml code type.

Table 3.1: Iterative implementations of the matrix multiplication. A unique identifier
is assigned to each implementation. It is shaped impl lang type [+ variant], where impl
denotes the basic implementation, lang is either O, for (Meta)OCaml, or C, for C, type
denotes the data type used for matrices and variant distinguishes between implemen-
tation variants.

3.2 Low-level Optimizations of the Iterative Algorithm

This section presents implementations of the matrix multiplication which are directly
based on the declarative Definition 3.1 by implementing the summations by nested
loops. In order to distinguish them in the subsequent benchmarks, we assign identifiers
to each implementation, as shown in Table 3.1.

3.2.1 Using Arrays of Arrays

The following implementation is the first one of the benchmark suite. It directly uses
the common data representation, i.e., arrays of float arrays.

1 method process a b =
begin

let c = Array.make_matrix width width 0.0 in
for i = 0 to width−1 do

let c_row = c.(i) in
6 let a_row = a.(i) in

for j = 0 to width−1 do
for k = 0 to width−1 do
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c_row.(j) <− c_row.(j) +. a_row.(k) ∗. b.(k).(j)
done

11 done
done;
c

end

The implementation is closely geared to the definition of the matrix product given
in Definition 3.1. Since input and output of this operation are of the type chosen as de-
fault matrix representation, no further pre- or post-processing has to be done. Though
it is a direct implementation of the definition, this implementation considers a number
of the speed issues discussed before: there are no polymorphic types, the rows of the
matrix are of type float array and, therefore, are stored in a consecutive memory
block of double precision floating point values. Furthermore, OCaml is aware of the
special form of the loop body, i.e., despite the usual representation of float values, the
intermediate results of the right hand side of the assignment will not become boxed.
Also, the two-dimensional subscript of matrix a and b is split into a less frequent ref-
erence to rows in the outermost loop and a more frequent reference to column entries
in the innermost loop. Unfortunately, the row subscript of matrix b cannot easily be
moved to an outer loop level because it is dependent on the inner loop index k.

Using arrays of arrays, the computation structure can be written in C very much
like the OCaml implementation.
1 for (i = 0; i < width; i++) {

double ∗ c_row = c[i];
double ∗ a_row = a[i];
for (j = 0; j < width; j++) {

c_row[j] = 0;
6 for (k = 0; k < width; k++) {

c_row[j] += a_row[k] ∗ b[k][j];
}

}
}

Aside from the syntax, the most obvious differences occur in the initialization of
array c with 0 within the loop of j and the special nature of C arrays as pointers to
consecutive chunks of memory, indicated by the data type double * (i.e., pointer to
double). Therefore, an array of arrays in C is actually an array of pointers with each
pointer addressing a one-dimensional array of matrix row entries.

Using arrays of arrays as matrix representation is not as easy in C as it is in OCaml.
Because C does not provide automated memory management like the OCaml garbage
collection, matrices of dynamic size have to be allocated and freed manually. This task
is complex and error-prone, especially for data structures with many pointers. There-
fore, preceding the code fragment above, a number of consecutive memory segments
has to be allocated, not only for the array of pointers but also for each matrix row.

Arrays of arrays provide a way of indexing that is quite similar to the subscript of
a matrix used in mathematical notation. Still, operations on them need special care by
the implementer due to the risk of irregular shape and aliasing. Because either rows
or columns are represented by individual arrays, an irregular shape occurs if two or
more of these arrays have different lengths. The matrix represented by the array of
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arrays would not be rectangular anymore. By using the function Array.make_matrix
a rectangular shape can be guaranteed, but nothing can be said about the layout of rows
as chunks in the memory. Notably, these chunks need not occupy a consecutive span
of memory. Aliasing is another issue since arrays are mutable objects. Array elements
with different indices i and j may be of the same value and, therefore, in an array of
arrays, a.(i) can refer to the same array as a.(j). Any modification of the first array
would affect the latter.

The next subsection uses representations which prevent the risk of both irregular
shape and aliasing.

3.2.2 Using One- and Multi-dimensional Arrays

Languages like C and Fortran provide “real” multi-dimensional arrays. In the case of
C they have to be allocated statically (i.e., on the stack) and their shape must be known
statically. An array of this kind is arranged as a consecutive chunk of memory, which
is indexed in row-major order (in C) or column-major order (in Fortran). In OCaml, the
built-in arrays are restricted to one dimension. In addition, the bigarray library offers
arrays of arbitrary length and dimensions from 1 to 16, laid out either in row-major or
column-major order.

In the case that a language does not provide multi-dimensional arrays, a simple
way of representing a multi-dimensional matrix by a one-dimensional array is to use
a mapping from two-dimensional matrix indices to the one-dimensional indices of the
array. The only prerequisite is that it corresponds to following definition.

3.2 Definition (Index Function)
Function f ∈ n×m→N is called index function of array a ∈ Rk if both

f is injective

and

{ f (p, q) | (p, q) ∈ n×m} ⊆ k,

i.e., the image of f is a subset of range k.

�

In order to save memory, the cardinality of the index space of the two-dimensional
matrix should be equal to the length of the array, i.e., nm = k.

Now we can define a 2D matrix representation by an array and an index function
as follows.
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row-major order column-major order z-Morton order

Figure 3.2: Memory layout of matrices for different index functions

3.3 Definition (2D Matrix Representation)
Consider a matrix M ∈ Rv×w and an index function f ∈ Nv×w of an array a ∈ Rv·w.
Then a and f are a 2D matrix representation of M if and only if

a f (i,j) = Mi,j ∀i ∈ v, j ∈ w

�

A one-dimensional array with a two-dimensional index function not only provides
a means of compensation for the absence of an appropriate language construct. In
addition, there is no restriction to a specific layout of the array. In order to lay out the
matrix in row-major order, the index function to be used would be f (i, j) = i · w + j.
This function allows to index matrices of width w and an arbitrary number of rows. A
column-major indexing for a matrix of height h would be f (i, j) = i + j · h. Another
layout and index function is the z-Morton index used for recursive algorithms (see
Figure 3.2).

Row-major Order Matrix Multiplication

A matrix multiplication using one-dimensional OCaml arrays is specified by the fol-
lowing code fragment.

method process a b =
begin

let c = Array.make ( width ∗ width ) 0.0 in
for i = 0 to width − 1 do

5 let i_of = width ∗ i in
for j = 0 to width − 1 do

for k = 0 to width − 1 do
c.(i_of + j) <− c.(i_of + j)

+. a.(i_of + k) ∗. b.(k ∗ width + j)
10 done;

done;
done;
c

end
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This implementation uses the row-major order index function. For optimization,
the index function was not only inlined but also optimized by moving the calculation
of the offset i_of of row i to the outermost loop.

Unfortunately, the standard arrays provided in OCaml are restricted to a maximum
length which is strongly dependent on the target architecture.2 This limit is much more
eminent for one-dimensional arrays than for arrays of arrays. On a 32-bit i386 machine,
the limit is exceeded by an array of length 222. Thus, a matrix with index space 211× 211

can not be represented by a one-dimensional array. If we keep the restriction of the
width being a power of 2, arrays of arrays can keep matrices of any size up to 221 · 221 =
242.

Two-dimensional Matrix Multiplication

OCaml bigarrays are not subject to this restriction, and the corresponding code frag-
ment can be adopted easily using bigarrays by writing the subscript operator of OCaml
arrays with the braces of the respective bigarray operator.

1 method process a b =
begin

let c =
Array1.create float64 c_layout (width ∗ width)

in
6 for i = 0 to width−1 do

let i_of = i ∗ width in
for j = 0 to width−1 do

let ij_of = i_of + j in
c.{ij_of} <− 0.0;

11 for k = 0 to width−1 do
c.{ij_of} <−

c.{ij_of} +. a.{i_of + k} ∗. b.{k ∗ width + j}
done

done;
16 done;

c
end

Again, using either standard arrays or bigarrays, the respective array type should
be monomorphic to enable OCaml to inline operations on them. While the standard
arrays are of type float array, the corresponding bigarrays are of type (float,
float64_elt,c_layout) Array1.t. This is assured by the use of the respective
create function and by explicit type constraints on the parameters of the enclosing
function.

For comparison, a matrix multiplication in C using row-major order index function,
is given by the following loop program.

2The maximum array length can be requested by the variable Sys.max_array_length.
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for (i = 0; i < width; i++) {
2 i_of = width ∗ i;

for (j = 0; j < width; j++) {
int ij_of = i_of + j;
c[ij_of] = 0;
for (k = 0; k < width; k++) {

7 c[ij_of] += a[i_of + k] ∗ b[k ∗ width + j];
}

}
}

Though C provides multi-dimensional arrays, the use of one-dimensional arrays in
C is very common due to the following reasons:

• Many compilers expect the dimensions of static arrays to be given as constant
literals. Also, two-dimensional arrays as function arguments must have at least a
constant width, so the row-major indexing is statically known at compile time.

• The access of a one-dimensional array by a user-defined index function is more
flexible because it can be chosen according to the needs of the program.

• The dynamic allocation of one-dimensional arrays is simpler than imitating two-
dimensional arrays with a complex data structure like an array of arrays.

The C99 standard (ISO/IEC JTC1/SC22/WG14, 1999) introduces variable-sized ar-
rays, which could motivate a more frequent use of real multi-dimensional arrays in C
in the future. This feature also allows the passing of variable-sized multi-dimensional
arrays as function argument, a big advantage for writing reusable code. Unfortunately,
this feature is still not implemented in all popular C compilers.

Two-dimensional arrays as a language construct help the implementer of numerical
problems to program the mathematics involved more directly. Another advantage over
other representations is the awareness of the compiler, which may perform optimiza-
tions based on the knowledge about a specific matrix shape. Still, a naïve implemen-
tation of the matrix multiplication using bigarrays and exclusively two-dimensional
indexing, did not prove to run as efficient as the following version.

for i = 0 to width−1 do
let c_row = Array2.slice_left c i in
let a_row = Array2.slice_left a i in
for j = 0 to width−1 do

5 for k = 0 to width−1 do
c_row.{j} <− c_row.{j} +. a_row.{k} ∗. b.{k, j}

done
done

done;

This nest of loops selects rows at an outer loop level, just like the example with
arrays of arrays. In this case, we make use of the function Array2.slice_left, which
provides a one-dimensional view of a single matrix row.
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Exporting OCaml Bigarrays to C

Bigarrays not only provide multi-dimensionality and huge array sizes. In fact, the
main purpose of bigarrays is to simplify the interfacing to C programs, because they
can easily be created to fit the needs of the C function to be called from OCaml. The
interfacing mechanism provided by OCaml is described in detail later on (Section 6.2).

For matrix multiplication, it is sensible to do the pre- and post-processing within
OCaml, i.e., to convert the input matrices to bigarrays and the result of the product
back to OCaml arrays of arrays. The actual time-consuming multiplication can be done
in C and made known to OCaml by the following declaration.

type flatm = (float, float64_elt, c_layout) Array2.t
external mmult :

int −> flatm −> flatm −> flatm = "mmult_stub"

Because we want to use them on the C side, the internal representation of bigarrays
is chosen accordingly. The concrete type argument float64_elt defines the array
elements to be of C type double. The type argument c_layout sets the layout of the
matrix to be ordered row major.

A C stub function implements the extractions of C arrays from the respective big-
array argument and the initialization of the result matrix. In this example, the actual
row-major matrix multiplication is embedded in the stub code at lines 15–23.

value mmult_stub (value n, value big_a, value big_b) {
2 int i, j, k, i_of;

int width = 1 << Int_val(n);
long dims[] = {width,width};

value big_c = alloc_bigarray(
7 BIGARRAY_FLOAT64|BIGARRAY_C_LAYOUT,

2, NULL, dims);

double∗ a = (double∗) Bigarray_val(big_a)−>data;
double∗ b = (double∗) Bigarray_val(big_b)−>data;

12 double∗ c = (double∗) Bigarray_val(big_c)−>data;
CAMLparam3(n, big_a, big_b);

for (i = 0; i < width ; i++) {
i_of = width ∗ i;

17 for (j = 0; j < width ; j++) {
int ij_of = i_of + j;
c[ij_of] = 0;
for (k = 0; k < width ; k++) {

c[ij_of] += a[i_of + k] ∗ b[k ∗ width + j];
22 }

}
}
CAMLreturn(big_c);

}

3.2.3 Using Transposed Matrices

As shown in the previous examples, the number of operations can be reduced signif-
icantly by moving either the extraction of rows or the calculation of row offsets to an



3.3. High-level Optimizations by Recursive Algorithms 43

outer loop. Unfortunately, this is not possible for the subscript of the right operand
matrix B because the iteration over the rows is done by the innermost loop index. Fur-
thermore, this non-local access is especially bad in terms of data-cache misses.

On the other hand, the column index of matrix B is incremented less frequently,
being the loop index of the middle loop. So, a representation of B by a column-major
matrix would not only allow the extraction of offset calculations but would also be
better in terms of locality for memory accesses. Because a matrix representation in
column-major order corresponds to a transposed matrix in row-major order, B has to
be transposed in the pre-processing phase in order to allow this kind of optimization.

method pre a b =
let tb =

Array.init width begin fun i −>
4 Array.init width begin fun j −>

b.(j).(i)
end

end in
(a,tb)

This preprocessing method combines the creation of a new array of arrays matrix
with the transposition of matrix b. Note that this pre-processing method did not un-
dergo any extra optimizations, due to the fact that the cubic number of operations of
the matrix multiplication dominates the quadratic number of operations of this trans-
position.

However, the matrix multiplication with a column-major B should be optimized
accordingly.

method process a b =
2 begin

let width = 1 lsl size in
for i = 0 to width − 1 do

let c_row = c.(i) in
let a_row = a.(i) in

7 for j = 0 to width − 1 do
let b_col = b.(j) in
for k = 0 to width − 1 do

c_row.(j) <− c_row.(j) +. a_row.(k) ∗. b_col.(k)
done

12 done
done;
c

end

Modeled on the previous examples, the benchmark suite also contains a transposed
matrix multiplication for two-dimensional bigarrays, two-dimensional bigarrays with
an external multiplication in C and a pure C implementation.

3.3 High-level Optimizations by Recursive Algorithms

3.3.1 Ordinary and Strassen’s Matrix Multiplication

Another way of calculating the matrix product C = A · B is to use an algorithm which
is based on a recursive definition. A non-trivial matrix multiplication is defined recur-
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sively in terms of the four quadrants of each participating matrix.

3.4 Definition (Ordinary Recursive Matrix Multiplication)
For any matrix M and i, j ∈ {0, 1}, let Mi,j denote a quadrant of matrix M, i.e.,(

M0,0 M0,1

M1,0 M1,1

)
= M.

Let A ∈ Ru×v and B ∈ Rv×w. The matrix multiplication C = A · B is defined by the
following equations

C0,0 = A0,0 · B0,0 + A0,1 · B1,0

C0,1 = A0,0 · B0,1 + A0,1 · B1,1

C1,0 = A1,0 · B0,0 + A1,1 · B1,0

C1,1 = A1,0 · B0,1 + A1,1 · B1,1

In order to make this definition sound, the shapes of all matrices must fit according to

w(A0,0) = w(A1,0) = h(B0,0) = h(B0,1)

w(A0,1) = w(A1,1) = h(B1,0) = h(B1,1).

Furthermore, the multiplication of matrices of size 1 corresponds to a multiplication of
both respective entries in R. Any multiplication or summation of matrices with zero
width or height, yields, again, an empty matrix.

�

So, the recursive equations reduce the problem of multiplying the whole matrices to
a number of multiplications and summations of sub-matrices. The following Lemma
states that this definition of a matrix multiplication is equivalent to the iterative one
given above.

3.5 Lemma
The equations given in Definition 3.4 hold for the iterative matrix multiplication of
Definition 3.1 on page 31.
Idea of Proof:
Let v = w(A) = h(B) and v′ = w(A0,0) = h(B0,0). For all i ∈ h(A0,0) and j ∈ w(B0,0)

(A0,0 · B0,0)i,j + (A0,1 · B1,0)i,j

=
v′−1

∑
k=0

A0,0
i,k · B

0,0
k,j +

v−v′−1

∑
k=0

A0,1
i,k · B

1,0
k,j Def. 3.1

=
v′−1

∑
k=0

Ai,k · Bk,j +
v−1

∑
k=v′

Ai,k · Bk,j sub-matrix definition

=
v−1

∑
k=0

Ai,k · Bk,j = Ci,j = C0,0
i,j Def. 3.1
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The proofs for the equations of C0,1, C1,0 and C1,1 are similar and are omitted here.

�

A direct implementation of the equations in Definition 3.4 on the facing page by
a recursive function would have 8 recursive calls and 4 summations in the recursive
case. The restriction on the matrix shape and size, given in the design decisions on
page 32, simplifies the implementation: a square matrix whose width is a power of 2
can be sectioned by cutting it into four equally sized squares. The termination case can
then be implemented as a single floating-point multiplication of scalar values. For this
algorithm, the total number of operations T(N) for square matrices of width N is given
by the following equations:

T(1) = c1

∀N > 1 : T(N) = 8 · T
(

N
2

)
︸ ︷︷ ︸

recursive
multiplications

+ 4 · c2 · N2︸ ︷︷ ︸
matrix

summations

where c1, c2 > 0 denote a constant number of operations.
To obtain a rough estimate of the number of operations in a closed form, we can use

the following special case of the Master Theorem (Cormen et al., 2001, Sec. 4.3).

3.6 Theorem
Let α ≥ 1 and β > 1. Let f : N → R be a non-negative function with f (N) ∈
O(Nlogβ α−ε) for a suitable ε > 0 . If T : N → R is a function which satisfies the
recursive equation

T(N) = α · T
(

N
β

)
+ f (N) ,

then T(N) can be determined asymptotically as

T(N) ∈ Θ(Nlogβ α).

�

According to this theorem, for α = 8, β = 2 and ε = 1, the number of operations of
the recursive matrix multiplication is in Θ(Nlog2 8) = Θ(N3). Note that this algorithm
belongs to the same complexity class as the iterative matrix multiplication.

Strassen’s version of the matrix multiplication is also defined recursively, according
to the following definition (Press et al., 1989, Sect. 2.11).

3.7 Definition (Strassen’s Matrix Multiplication)
Given the matrix decomposition of A, B, C according to Definition 3.4, a matrix multi-
plication C = A · B is defined by the following equations:
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M0 = (A0,0 + A1,1) · (B0,0 + B1,1)

M1 = (A1,0 + A1,1) · B0,0

M2 = A0,0 · (B0,1 − B1,1)

M3 = A1,1 · (B1,0 − B0,0)

M4 = (A0,0 + A0,1) · B1,1

M5 = (A1,0 − A0,0) · (B0,0 + B0,1)

M6 = (A0,1 − A1,1) · (B1,0 + B1,1)

C0,0 = M0 + M3 −M4 + M6

C0,1 = M2 + M4

C1,0 = M1 + M3

C1,1 = M0 + M2 −M1 + M5

�

This definition is equivalent to the ordinary recursive matrix multiplication, which
can be shown by inserting M0 to M6 into the last four equations. The advantage over
the ordinary multiplication is a reduction of the total number of operations. Though
Strassen uses more additions and subtractions (which are all O(N2)), the number of
recursive calls is reduced to 7. According to the Master Theorem, this yields a number
of operations which is in Θ(Nlog2 7), where log2 7 ≈ 2.81.

Unfortunately, the memory consumption of Strassen’s matrix multiplication is
higher than for the ordinary recursive algorithm because memory has to be allocated
for intermediate results, for each recursive step.

3.3.2 Data Structures for Recursive Matrix Multiplications

Another advantage of recursive matrix-multiplication is the chance of increasing the
locality of memory accesses. To achieve this, using a matrix representation which is row
or column oriented would be inappropriate. The strategy of solving the multiplication
recursively by reducing the problem to quarters of matrices is neither row- nor column-
oriented (Figure 3.3 on page 49).

An adequate data structure for a matrix M is a so called quad-tree. This tree has a
single root, representing M as a whole. Each inner node has four children, the sub-
sections M0,0, M0,1, M1,0 and M1,1 of M. The leaves, finally, consist of M’s element
entries.

For the actual implementation this abstract concept of a quad-tree was not imple-
mented by a recursive OCaml type definition. Instead, one-dimensional arrays indexed
by a z-Morton index function were used (Chatterjee et al., 2002). As the following the-
orem shows, this representation resembles quad-trees. In addition, the acquisition of
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child nodes in a quad-tree is equivalent to partitioning the array into four sub-arrays
of equal length.

3.8 Definition (z-Morton)
Let Bn(i) ∈ {0, 1}n denote the bit representation of i, let B−1(b) denote the binary
interpretation of an arbitrary sized bitmap b and let a on b be the bit-wise interleaving
of the bitmaps a, b ∈ {0, 1}n.3

Then, the z-Morton function zn : 2n × 2n → 22·n is defined by

zn(i, j) = B−1(Bn(i)onBn(j)).

zn(i, j) is called z-address of coordinates (i, j).

�

Figure 3.4 on page 50 sketches this computation of a z-address. To give an example
for actual values, consider Figure 3.3 on page 49. For the coordinate (2, 6), we calculate
the z-Morton index by interleaving the three-bit representations of 2 and 6.

z3(2, 6) = B−1(B3(2)onB3(6)) = B−1(〈010〉on 〈110〉) = B−1(〈011100〉) = 28

The use of an array with a z-Morton index for representing a matrix has a number
of characteristics, which are important for the implementation of a recursive matrix
multiplication.

3.9 Theorem
Let array a ∈ R22·n and z-Morton function zn be a 2D matrix representation of M ∈
R2n×2n . Then the following propositions are true.

1. zn is bijective. Proof: bijectivity of Bn andon.

2. For n > 0, M can be split recursively into four quadrants M0,0, M0,1, M1,0 and
M1,1 of size 2n−1 × 2n−1, where(

M0,0 M0,1

M1,0 M1,1

)
= M

where
Mk,l

i,j := Mi+k·2n−1,j+l·2n−1 ∀k, l ∈ {0, 1} and i, j ∈ 2n−1

Proof: We express the mapping of the index of a sub-matrix to the index of M by
function

fk,l(i, j) := (i + k · 2n−1, j + l · 2n−1).

3This corresponds to the notation defined in Section 1.1. Note that using B−1 instead of the real inverse
of B2n is motivated by the fact that B−1

2n (b) = B−1(b) for all b ∈ {0, 1}2·n.
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We have to show that the images fk,l(2n−1 × 2n−1), for all k, l ∈ {0, 1}, describe
a partition of 2n × 2n, which is the index space of M. This can be achieved by
evaluating each fk,l with the respective range bounds:

f0,0(2n−1 × 2n−1) = {0, . . . , 2n−1 − 1} × {0, . . . , 2n−1 − 1}
f0,1(2n−1 × 2n−1) = {0, . . . , 2n−1 − 1} × {2n−1, . . . , 2n − 1}
f1,0(2n−1 × 2n−1) = {2n−1, . . . , 2n − 1} × {0, . . . , 2n−1 − 1}
f1,1(2n−1 × 2n−1) = {2n−1, . . . , 2n − 1} × {2n−1, . . . , 2n − 1}

3. Let arrays a0,0, a0,1, a1,0 and a1,1 be obtained by splitting a in four equally sized
sub-arrays, i.e.,

ak,l
i := a(2·k+l)·2n−2+i ∀k, l ∈ {0, 1}, i ∈ 22·n−2.

Then ak,l and zn−1 are a 2D matrix representation of Mk,l for all k, l ∈ {0, 1}.
Proof:

Mk,l
i,j =Mi+k·2n−1,j+l·2n−1 definition of Mk,l

=azn(i+k·2n−1,j+l·2n−1) a and zn represent M

=aB−1(Bn(i+k·2n−1)onBn(j+l·2n−1)) Def. 3.8

=aB−1(〈k〉ˆBn−1(i)on〈l〉ˆBn−1(j)) extraction of most significant digits

=aB−1(〈kl〉ˆ(Bn−1(i)onBn−1(j))) 〈k〉ˆaon 〈l〉ˆb = 〈kl〉ˆ(aonb)

=a(2·k+l)·2n−2+B−1(Bn−1(i)onBn−1(j)) B−1(aˆb) = B−1(a) · 2#b + B−1(b)

=ak,l
B−1(Bn−1(i)onBn−1(j)) definition of ak,l

=ak,l
zn−1(i,j) Def. 3.8

4. Matrix M forms a quad-tree in the following sense. Each node corresponds to a
sub-matrix. A leaf corresponds to a matrix with only one entry. The children of
an inner node N are the corresponding sub-matrices N0,0, N0,1, N1,0 and N1,1.

5. Let i, j ∈ 2n, which have the bit representation

Bn(i) = 〈in−1 . . . i0〉
Bn(j) = 〈jn−1 . . . j0〉.

Also, let

M〈in−1 jn−1...i0 j0〉 :=
(

. . .
((

Min−1,jn−1
)in−2,jn−2

)
. . .

)i0,j0

be a leaf in the quad-tree of M. Then the following equation is true:
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Figure 3.3: z-Morton index and quad-tree analogy

MB2·n(zn(i,j))
0,0 = Mi,j

In other words, the bit-representation of the z-Morton index of (i, j) is the quad-
tree path to Mi,j.

Proof by induction on n: For the base case n = 1, we can use point 2 of this theorem:

M〈i0 j0〉
0,0 = Mi0,j0

0,0 = M0+i0·21−1,0+j0·21−1 = Mi0,j0

As hypothesis for the inductive case, the proposition is true for all i, j ∈ 2n′ with
n′ < n. Then,

M〈in−1 jn−1in−2 jn−2 ...i0 j0〉
0,0

= (Min−1,jn−1)〈in−2 jn−2 ...i0 j0〉
0,0

= Min−1,jn−1
B−1〈in−2 ...i0〉,B−1〈jn−2...j0〉

induction hypothesis

= MB−1〈in−2 ...i0〉+in−1·2n−1,B−1〈jn−2 ...j0〉+jn−1·2n−1 point 2 of this theorem

= MB−1〈in−1in−2...i0〉,B−1〈jn−1 jn−2...j0〉 definition of B−1 in Section 1.4

= Mi,j

�

Figure 3.3 demonstrates the quad-tree analogy by showing how we can obtain the z-
address of (2, 6) by splitting M recursively and writing down the quad-tree path. First,
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n n

t
n

t
n

tile offset row−major index

Figure 3.4: Computation of untiled and tiled z-Morton index by bit interleaving for
matrix width 2n and tile width 2t with n = 5 and t = 2

we extract sub-matrix M〈01〉, then sub-matrix M〈0111〉 and finally sub-matrix M〈011100〉.
According to Theorem 3.9, we get the z-address by interpreting this quad-tree path:

z3(2, 6) = B−1(〈011100〉) = 28

Due to the fact that a z-Morton indexed array is an actual implementation of a quad-
tree and that it is the only implementation presented in this thesis, both terms are used
interchangeably in the rest of this thesis.

3.3.3 Recursive Matrix Multiplication with Tiling

As each input matrix, as well as each matrix used as intermediate result, reduces to
1/4 in size for each recursive step, there is a predefined depth, at which it completely
fits in the cache. At this point, it is more and more unlikely to gain further from the
recursive computation and memory layout. Though we may still benefit from the re-
duced complexity of Strassen’s algorithm, the risk of cache misses disappears, even for
a row-order or column-order layout. Furthermore, as Chatterjee et al. (2002) showed,
pruning the recursion well before the element level and multiplying iteratively reduces
the execution time distinctively. The main reason for this effect is the absence of the re-
cursion overhead. A linearization of the cascading recursion is not performed by the
OCaml compiler, so the run-time stack still has to be maintained. For the Strassen im-
plementation, there is additional overhead in the allocation of temporary memory for
intermediate results.

In order to decrease the overhead of addressing, the modified version of the z-
Morton index function given by Chatterjee et al. (2002, Sec. 3.2) was used, which coin-
cides with a row-major indexing for sub-matrices smaller than a given tile size.

3.10 Definition (Tiled z-Morton Index)
The tiled z-Morton index function zn,t : 2n × 2n → 22n for square tiles of width 2t is
defined as follows:
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Figure 3.5: Tiled z-Morton index with tile width 22 = 4.

zn,t(i, j) = 22t · zn−t(ihigh, jhigh)︸ ︷︷ ︸
offset of tile

+ 2t · ilow + jlow︸ ︷︷ ︸
row-major index

where

(ihigh, ilow) = (i div 2t, i mod 2t)

(jhigh, jlow) = (j div 2t, j mod 2t)

�

The calculation of this index function is illustrated in Figure 3.4 on the preceding
page and the effect on the layout can be seen in Figure 3.5. In this example, the matrix
width is 23 = 8 and the tile width is 22 = 4. Therefore, the recursive layout implied by
z3,2 is pruned after only one sectioning step. For each sub-matrix, the entries are laid
out in row-major order, while the four matrices themselves are sequenced in z-order.
Note that, for a tile width of 20, the tiled z-Morton function is equal to its non-tiled
version, i.e.,

zn,0 = zn ∀n ≥ 0.

3.3.4 Implementation Issues

Table 3.2 on the next page summarizes all recursive matrix multiplications which were
included in the benchmark suite. As stated before, for all of these implementations
quad-trees were used, i.e., one-dimensional arrays with tiled z-Morton layout. The
conversion of a two-dimensional float array array to a one-dimensional quad-tree
array is performed by the two functions zmorton and unzmorton, which do all index
calculations. These functions resemble the function zn,t and its inverse z−1

n,t . Because



52 Chapter 3. Case Study: Matrix Multiplication

Ordinary matrix multiplication
RecOrd OA using standard arrays
RecOrd OB1 using 1-D bigarrays
Strassen’s matrix multiplication
RecStr OA using standard arrays
RecStr OB1 using 1-D bigarrays
RecStr OA+U using standard arrays and unrolling
RecStr OB1+C using 1-D bigarrays and tile multiplication in C
RecStr OA+O using standard arrays and offshoring

Table 3.2: Recursive implementations of the matrix multiplication.

they do not dominate the overall matrix multiplication, no further optimization of these
functions was considered. Therefore, only the OCaml type signatures are given here.

type tile_layout = RowMajor | ColumnMajor
val zmorton : ?tile_n:int −> ?tile_order:tile_layout −>

int −> int ∗ int −> int
val unzmorton : ?tile_n:int −> ?tile_order:tile_layout −>

5 int −> int −> int ∗ int

For a matrix with index space 2n × 2n, zmorton n (i,j) returns the z-address
zn(i,j) by interleaving the bit representations of i and j: the bits of i make up the odd
bits of the z-address returned, the bits of j make up the even bits. In order to compute
the z-address taking account of tiling, function zmorton provides the two optional
parameters4 tile_n, to allow the specification of a tile width, and tile_order, to set
the order of elements within a tile to either row-major or column-major. The application
of

zmorton ~tile_n:t ~tile_order:ord n (i,j)

returns the z-address zn,t(i,j) with tiles laid out according to ord. Actually, this com-
putation is done by restricting the interleaving of i and j to their n− t high bits corre-
sponding to non-tile dimensions. The t low bits of i and j identify a row- or column-
order position within a tile and are, therefore, returned merely concatenated.

As its name may already suggest, function unzmorton implements the inverse of
zmorton. The application of unzmorton ~tile_n:t ~tile_order:ord n z com-
putes the two-dimensional coordinates corresponding to a z-address z, with the lower
2 · t bits corresponding to a row- or column-order address within a tile. If the respec-
tive arguments are omitted, both zmorton and un_zmorton use a tile size of 0 and a
row-major tile order as defaults.

4 OCaml allows the specification of functions with labeled, optional parameters. In the type signature
of these functions, optional parameters are tagged by a question mark and a unique label, e.g., ?la-
bel:int. Actual arguments for these parameters can be omitted in a function call or given by referring
to the respective label, (e.g., ~label:42).
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Because the input and output data type common to all examples is an array of float
arrays, all recursive matrix multiplications using quad-trees need an implementation
of an appropriate conversion. To reduce redundant code, this is done by implementing
the methods pre and post in a virtual subclass of class abstr_mmult.

class virtual quadtree_mmult
(tilesize:int) (size:int) (label:string) =
object

4 inherit [float array] Common.abstr_mmult size label

val width = 1 lsl size
method pre a b =

begin
9 let qa = Array.create (width∗width) 0.0 in

let qb = Array.create (width∗width) 0.0 in
List.iter begin fun (q,a,o) −>

for i = 0 to width ∗ width − 1 do
let (hij,loj) =

14 unzmorton ~tile_n:tilesize ~tile_order:o size i
in
q.(i) <− a.(hij).(loj)

done
end [qa,a,RowMajor;qb,b,ColumnMajor];

19 (qa,qb)
end

method post rc =
begin

24 let c = Array.make_matrix width width 0.0 in
for row = 0 to width−1 do

let c_row = c.(row) in
for col = 0 to width−1 do

let j = zmorton ~tile_n:tilesize size (row, col) in
29 c_row.(col) <− rc.(j)

done;
done;
c

end
34 end

Unlike its parent, class quadtree_mmult is monomorphic because it is instantiated
with the concrete type float array. Though, class quadtree_mmult provides imple-
mentations for the two conversion methods pre, which converts the input matrices to a
quad-tree, and post, which performs the conversion in the opposite direction, method
process still remains unimplemented, i.e., virtual. Therefore, each matrix multiplica-
tion based on a quad-tree data representation can be realized by an implementation of
this method in a subclass.

As OCaml provides this alternative to standard arrays, quad-trees can also be
implemented by one-dimensional bigarrays. Again, the need for bigarrays arises
from the limitations of standard arrays, which have a maximal length restric-
tion and are difficult to be accessed by an external C module. An additional
class quadtree_bigarray_mmult implements the conversion from and to bigarray
quadtrees, making it available to recursive implementations using this data type.
Its implementation is not given here as it resembles the implementation of class
quadtree_mmult.
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3.4 Optimizations by Multi-staged Programming

3.4.1 Loop Unrolling

Section 2.4 on page 26 already shows how MetaOCaml can be used to unroll loops
partially at run time. This was done by reconstructing the original loop with larger
strides and by replicating the code of the loop body a certain number of iterations. So,
for an original loop of m iterations, an unrolling of s loop body instances produces a
new loop of m div s iterations. Nevertheless, an additional loop for the residual m mod s
iterations has to be added after the first loop.

In the case of matrix multiplication, the domain-specific knowledge allows a sim-
pler and more optimized unrolling. Subject of the optimization is the innermost loop
of the iterative matrix multiplication, which can be seen as a dot product of a matrix
row of A and a matrix column of B. As the body of this loop consists merely of the
accumulation of products, we can unroll these summands to a bigger summation ex-
pression instead of reproducing the body as a whole. Furthermore, if we restrict the
partial unrolling to s = 2t, the reconstruction of the residual loop can be omitted. This
is a consequence of the size restriction (3.1), which says that for any matrix M there is
an n such that M has width 2n. Because the number of iterations of the innermost loop
is also 2n, for t ≤ n, 2t is a divisor of 2n and the number of iterations of the residual
loop is

m mod s = 2n mod 2t = 0.

Unlike the loop optimizations applied implicitly by optimizing compilers, like gcc
or icc, our explicit generation of loops using MetaOCaml can be controlled by run-time
information. So the maximally reasonable stride width s can be set depending on the
size of the instruction cache of the machine it is run on. There are several ways to
determine the value of s:

• Setting s according to a command line option or configuration file.

• Preceding the actual calculation with minor run-time tests to get a reasonable
value for s.

• Calculating s according to a cost model of the machine.

Generic Unrolling Function

For the implementation of this loop unrolling, a function gensum generates the partially
unrolled inner loop.
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1 (∗ val gensum :
((’a, int) code −> (’b, float) code) −>
((’b, float) code −> (’a, unit) code) −>
(’a, int) code −> (’a, unit) code

∗)
6 let gensum exp assign ub =
.< let ub_k = ((.~ub + 1) / step) − 1 in

for k = 0 to ub_k do
let k_of = k ∗ step in
.~(

11 let build_summand e i = .< .~e +. .~(exp .< k_of + i>. ) >. in
let base_summand = exp .< k_of >. in
let sum = iter_up build_summand base_summand 1 (step−1) in
assign sum
)

16 done >.

Function gensum takes three arguments:

• A function exp of type (’a, int) code -> (’b, float) to generate sum-
mand code for a given index code. This summand should consist of code to
compute the product Ai,k · Bk,j, as given in Definition 3.1 on page 31.

• A function assign of type (’b, float) code -> (’a, unit) code to gen-
erate code which adds the result of the partial sum to the accumulator.

• A value ub of type (’a,int) code, the code to be used as upper bound of the
innermost loop.

In lines 10–15, the unrolled loop body is constructed. For generating the summation
expression, function iter_up offers a side-effect-free, tail-recursive abstraction of an
iteration. To point out the analogy to a for loop, the first argument of iter_up can
be viewed as description of a state transformer for a given iteration, while the second
argument serves as initial state. The remaining arguments specify the lower and upper
bounds.

The arguments for the application of iter_up in line 13 are the function
build_summand and variable base_summand. The former describes, for an iteration
i, how to build a new code expression given the code expression e of the previous it-
eration. The second argument base_summand carries the code of the initial summand.
In the construction of these two parameters, exp is used to create the actual summand
code. Finally, the application of assign sum generates code for the accumulation of
the summation result.

Generating the Loop Nest

Since a matrix multiplication using a transposed operand matrix B seems to be most
promising with respect to execution time, this is the only iterative implementation in
the series of benchmarks to be subject of unrolling. In order to do the loop unrolling
only once, the complete loop nest gets generated as object code.
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.< fun n a b −> begin
let width = 1 lsl n in
let c = Array.make_matrix width width 0.0 in

4 for i = 0 to width − 1 do
let c_row = c.(i) in
let a_row = a.(i) in
for j = 0 to width − 1 do

let b_col = b.(j) in
9 .~( let assign rhs = .< c_row.(j) <− c_row.(j) +. .~rhs >. in

let exp k = .< a_row.(.~k) ∗. b_col.(.~k) >. in
gensum exp assign .< width − 1 >. )

done
done;

14 c
end >.

Note the construction of the inner loop in lines 9–11. It is the application of gensum
in line 11 which generates the partially unrolled loop, using the previously defined
functions exp for generating summand code and assign for generating assignment
code.

To demonstrate the effect of calling gensum, the following code is produced for the
innermost loop for step = 4. The code generation inserts this fragment, replacing lines
9–11 of the previous code fragment.

let ub_k = (((width − 1) + 1) / 4) − 1 in
for k = 0 to ub_k do
let k_of = k ∗ 4 in
c_row.(j) <− c_row.(j) +.

5 (a_row.(k_of) ∗. b_col.(k_of) +.
a_row.(k_of + 1) ∗. b_col.(k_of + 1) +.
a_row.(k_of + 2) ∗. b_col.(k_of + 2) +.
a_row.(k_of + 3) ∗. b_col.(k_of + 3))

done

As OCaml offers two kinds of arrays, it may seem interesting to compare the im-
plementation which uses bigarrays to that using standard arrays. Unfortunately the
generated object code using bigarrays turned out to be much slower than the original
code without unrolling. Apparently, run-time generated native code currently does not
undergo the same optimizations as meta-code: function calls in second-stage code to
the bigarray library are not inlined, so each array access is performed by an invocation
of the respective external C routine. As this lack of implicit optimization foils the ef-
fect of unrolling, an implementation has been considered irrelevant for the benchmark
suite.

3.4.2 Offshoring

The environment for offshoring OCaml code to C or Fortran reuses some features of the
MetaOCaml implementation. Object code is constructed using the same code brackets
(.< >.) and the escape operator (.~). Like in MetaOCaml, this code generation is
performed at run time. Unlike MetaOCaml, the language of the object code is reduced
to those OCaml syntax elements which have an equivalent counterpart in C or Fortran.
Nevertheless, offshoring code is typed by a static two-stage type system, integrating
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the second-stage object code into the first stage meta-code.
To give a simple illustration of this mechanism, consider the following object code,

which consists of the loop nest for the iterative matrix multiplication with a transposed
operand matrix B.

1 let loop_code = .< fun (a,b,c, width) −> begin
for i = 0 to width − 1 do

for j = 0 to width − 1 do
for k = 0 to width − 1 do

c.(i).(j) <− c.(i).(j) +. a.(i).(k) ∗. b.(j).(k)
6 done

done
done; 4

end >.

This implementation uses a dummy return value of 4 because the current implementa-
tion of offshoring expects int as return type of code objects. Also, note that no compile-
time check is performed whether a code conforms to the reduced syntax. Due to the
common execution environment which offshoring shares with MetaOCaml, it is not
clear at this point whether our object code is going to be offshored or run with Meta-
OCaml. MetaOCaml does not imply any restriction to the OCaml syntax.

Like MetaOCaml, offshoring provides a special operator .!{Trx....} for running
second-stage code. The application of this operator initiates the actual offshoring pro-
cess, which consists of the following tasks.

• Checking the OCaml object code for syntactic compliance and transforming it to
C/Fortran code.

• Extending this code with additional marshalling code to perform the translation
of OCaml values to C/Fortran and vice versa.

• Compiling the offshored code as separate module by a C or Fortran compiler.

• Dynamically linking the module to the initiating OCaml program.

For our matrix multiplication code

let f = .!{Trx.run_gcc} loop_code

generates a C module containing the following code.

int procedure(double ∗∗ a_1, double ∗∗ b_2,
double ∗∗ c_3, int width_4 )

{
4 int i_5 ;

for(i_5 = 0; i_5 <= width_4 − 1; i_5++)
{

int j_6 ;
for(j_6 = 0; j_6 <= width_4 − 1; j_6++)

9 {
int k_7 ;
for(k_7 = 0; k_7 <= width_4 − 1; k_7++)
{

(c_3[i_5])[j_6] = (c_3[i_5])[j_6]
14 + (a_1[i_5])[k_7] ∗ (b_2[j_6])[k_7];
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}
}

}
return 4;

19 }

As can be seen in the function head, the OCaml parameters of type float array
array now appear as C parameters of type double **. The structure of this code
fragment resembles that of the original OCaml code. The only difference is the enu-
meration of variables which is a relict of the disambiguation of variables during code
generation.

Two implementations using offshoring were added to the benchmark suite. Both
are variants of matrix multiplication implementations presented before: one performs
an iterative multiplication with a transposed operand matrix B (IterTrp OAa+O), the
other one is a derivation of the recursive, tiled Strassen algorithm (RecStr OA+O). In
the latter implementation, the complete iterative tile-level matrix multiplication is ex-
tracted as separate code object, which gets offshored in the pre-processing stage.

3.5 Benchmarks

The issues discussed in the previous sections yield a big variety of matrix multiplica-
tion implementations, which are summarized in Table 3.1 on page 36 and Table 3.2 on
page 52. In order to evaluate the effect of our optimizations, all implementations were
rated by an intensive series of benchmarks.

The benchmarks were run on the uniform environment of our hpcLine Linux clus-
ter. Each node of this cluster consist of a 1 GHz Dual-Pentium III with 512 MB of mem-
ory. Each processor is equipped with a cache of 256KB. The operating system running
on each node is Fedora Core 1 Linux.

Except for the programs using offshoring, the programs were compiled with the
native compiler of a developer version based on MetaOCaml 3.07, because the native
code compiler of the latest official release, 3.08 alpha 026, contained a deficient array
allocation. Only the examples using offshoring were compiled with this release, as the
older release did not provide offshoring, yet. For all benchmarks, the timing functions
of the MetaOCaml module Trx were used. They provide a reliable measuring of exe-
cution times by iterating sufficiently often to eliminate short-time effects.

All C code, including the offshored code, was compiled with gcc using the opti-
mization flag -O3.

3.5.1 Unsafe Array Access

The negative effect of boundary checks on the overall running time can be seen in
Table 3.3. The running times of all implementations using OCaml arrays show a con-
siderable speedup if boundary checks are disabled. In the case of an ordinary iterative
matrix-multiplication, arrays of arrays gain most from the use of unsafe array opera-
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time in msec.
with without

implementation bound check bound check speedup
IterOrd OAa 265.255 98.990 2.68
IterRow OA 215.092 194.454 1.11
IterTrp OAa 54.217 44.698 1.21
IterTrp OAa+U 52.453 37.290 1.41
RecOrd OA 47.344 32.172 1.47
RecStr OA 25.078 17.690 1.42
RecStr OA+U 19.581 13.718 1.43

Table 3.3: Effect of unsafe access on OCaml Arrays for matrix width of 210

tions (IterOrd OAa). this implementation, which was given in Section 3.2.1 on page 37,
performs the following array accesses for matrices of width w:

• 2 · w accesses for extracting rows of matrix A and C.

• w · w executions of the innermost loop body, each consisting of

– 2 reading accesses on a row of A and C,

– 2 reading accesses on B,

– 1 writing access on C.

This makes a total of 2 · w + 5 · w2 individual boundary checks.
All subsequent benchmarks were run with disabled boundary checks. This unsafe

use of arrays is usually not recommended, but we can argue with the demand for high
performance and the clear computation structure of the matrix multiplication.

3.5.2 Optimal Tile Size

The first series of benchmarks concentrated exclusively on recursive matrix multipli-
cations, as these implementations can be parameterized with a tile width at which the
recursion ends and the computation switches to an iteration. The intention of this series
was to get an optimal tiling to be used in subsequent benchmarks.

Table 3.6 on the next page displays the execution times of the recursive implementa-
tions for tile widths of 24 up to 28. The two graphs, one for matrices of width 29 and one
for width 210, exhibited similarities in the relative execution times: all implementations
perform best running with a tile width of 27.

3.5.3 Comparison of all Implementations

The main series of benchmarks was run on the complete set of implementations. Since
the width of a matrix is always given as the n-th power of 2, values of n = 7 up to 11
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Figure 3.6: Execution times for different tile widths

were used. As a consequence of the size restriction of OCaml arrays, no benchmarks
using the type float array as data representation could be run for n = 11 on the 32
bit i386 architecture.

The tile width was set according to the outcome of the initial benchmarks, i.e., 27 =
128. For the implementations performing unrolling an extent of 25 = 32 replications
of the loop body was used. This number is big enough to minimize the overhead of
loop bound checks and small enough to make the generated loop body fit into the
instruction cache.

The complete benchmark results can be found in Appendix A on page 103. Times
are given for the pre- and post-processing as well as for the actual matrix multiplication
in the processing phase.

One observation is that the overall execution time of each implementation is dom-
inated by the processing phase. This is within the scope of our expectations because
the pre- and post-processing phases have a running time of O(N2) for matrix width
N. This is well below that of the processing phase of Θ(N3) or Θ(Nlog2 7). The only
exceptions are the implementations using offshoring and unrolling. Here, the gener-
ation of code plays a role because it is part of the preprocessing phase. In both the
iterative implementations and the recursive implementations this overhead dominates
the execution for matrix width of up to 28 but it breaks even at about 29.

To be able to value the presented optimizations, the charts in Figure 3.7 on page 63
compare the various implementations for matrix width of 210 and 211. The illustrations
collocate the relations between the following three aspects:

• The six algorithmic solutions which make up the benchmark suite (horizontal
blocks).

• The six implementations, varying in the use of languages and language features
(column colors).

• The execution times (vertical axis).
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A missing column indicates either a missing implementation due to a useless con-
figuration, or a missing run due to the range restriction of OCaml arrays.

Results of Iterative Implementations

Comparing both implementations based on arrays of arrays, the C implementation
beats the OCaml implementation by a factor of more than 3. The greatest contribu-
tion to the good result of the C implementation can be attributed to the cache-aware
memory allocation using posix_memalign(). Not shown in the diagram here, the ex-
change of the memory allocation using malloc with this function caused a reduction
of the execution time by nearly 50 percent (from 29 to 53.5 seconds). Unfortunately,
this kind of optimization is not easily adoptable in OCaml unless we would modify the
run-time environment used by the compiler.

Surprisingly, all implementations using row-major ordered arrays performed worse
than their counterparts using arrays of arrays. For C arrays, the use of cache line
aligned allocation hardly had any effect on the overall running time. Both OCaml im-
plementations, one with standard arrays and the other with bigarrays, have a similar
execution time. This is due to the fact that the OCaml compiler applies the same op-
timizations on them, namely the inlining of array accesses and the unboxing of float
values. Still, both OCaml implementations are about three times slower than the C
implementation.

Two-dimensional bigarrays do not perform any better than one-dimensional ones.
Nevertheless, they are a good choice if they are used as interface to an external C pro-
gram. As the overall execution time of this implementation is not worse than that of
a pure C program, the combination of OCaml, bigarrays and external C seems quite
attractive.

Changing the implementation to the use of a transposed operand matrix B (which
is dual to saying B is column ordered) had a most positive impact on almost all im-
plementations. The only exception is the pure C implementation, which did not gain
enough to beat the implementation using arrays of arrays. Nevertheless, in this imple-
mentation, unrolling with MetaOCaml as well as offshoring show their potential. In
terms of execution time, both are on par with the C implementation.

Results of Recursive Implementations

The ordinary recursive matrix multiplication for both OCaml arrays and bigarrays
shows little speedup compared to the fastest iterative implementation. Because of the
error-prone implementation, which uses complicated index arithmetics to access sub-
matrices, it is questionable whether the efford is justified at all. These arithmetics are
needed to avoid both the allocation of memory for intermediate results and the combi-
nation of sub-matrices by a copying process.

Strassen’s matrix multiplication achieved the best benchmark results. Especially
the use of OCaml arrays, with or without unrolling, had a shorter running time than
any iterative implementation. Offshoring seems to provide the best from both worlds.
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For arrays of width 210, it beats all other implementations though it contains not a
single line of C code. For n = 11, where OCaml arrays are no more applicable, the
combination of bigarrays and the external tile multiplication in C pays off.

Note that the problem of the length limitation for OCaml arrays is alleviated for 64
bit Intel architectures, where the length of arrays is limited by 254− 1. This limit would
allow arrays with a size of up to several petabytes.
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Figure 3.7: Execution times of matrix multiplication.





Chapter 4

Case Study: Image Processing

In contrast to general-purpose languages, like C++ or JAVA, domain-specific languages
(DSLs) are tailored to the needs of a special application domain. Well known examples
are SQL, the database query language, or XSLT for processing and transforming XML
documents. The need for domain-specific languages arises where a general-purpose
language fails to meet the demands of the respective domain. For SQL it is the abstrac-
tion of the relational database model, for an XSLT program the ability to get parsed
by a validating XML-parser. As was the case for SQL standards prior to SQL:1999, a
domain-specific language need not necessarily be Turing complete.

For SQL or XSLT, a variety of efficient implementations exist. Other domain-specific
languages have only a small community of application programmers which cannot af-
ford the development of highly optimized compilers. Lex and Yacc help to reduce the
effort of implementing an efficient compiler front end. For the back end, an interpreta-
tion of the abstract syntax tree (AST) often obviates the need for the implementation of
a complex code generator. Still, this approach is insufficient for many domains because
the interpretation is slower than the direct execution of native code.

Staging an Interpreter Using MetaOCaml

Multi-staged programming is a useful tool for bridging the gap between the ease of
implementing an interpreter and the need for compilation. Taha (2004) illustrates this
technique with MetaOCaml for a simple example language. Given a program as an
AST, the code generator combines recursively OCaml code objects which correspond
to nodes in the syntax tree. A special environment is passed to recursive calls of the
interpreter in order to map local bindings of variable names to code objects containing
the corresponding variables.

The code generation function is also called a staged interpreter. This is due to the fact
that stripping all staging annotations from this function yields an interpreter for the
subject language, which has the same semantics as its staged counterpart. Starting from
an interpretation function of a domain-specific language, this implies a natural strategy
for writing the code generator by adorning the interpreter with staging annotations.

65
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1 let m = [ 0.25 1.0 0.25
| 1.0 3.0 1.0
| 0.25 1.0 0.25]

in
[ 3 channels:

6 0.125 ∗ sum i from 0 to 2 of
sum j from 0 to 2 of

m[i,j] ∗ image(row+i−1, col+j−1, current)
]

Listing 4.1: Specification of a blur filter.

As a staged interpreter returns an OCaml code object, running this residual program
can be expected to be considerably faster than the original interpretation. Still, the
generation of code and the subsequent compilation with the run operator .! require
a certain amount of time, too. Only an iterated call of the residual function object can
amortize these run-time costs. An indicator for the profitability of staging is the number
of iterations at which the staged version breaks even with the iterated interpretation: it
should be as small as possible.

4.1 A Domain-Specific Language for Image Processing

Herrmann and Langhammer (2005) present a domain-specific language for the domain
of image filtering and show how a staged interpreter, combined with a preceding sim-
plification phase, can speed up the execution of the image processing. This optimiza-
tion technique will be subject of this case study.

We call the domain-specific specification language to be implemented subject lan-
guage. MetaOCaml, the language chosen for implementation, is called base language.
Accordingly, the implementation of the subject language is called base program.

The subject language presented is not Turing complete as it lacks the concept of
general recursion. Nevertheless, it provides constructs for summation, local and non-
local pixel access and matrices of float constants.

An expression in the subject language defines each output pixel by referring to a
number of pixels of the input image. As main target application, this language provides
also a convenient way of specifying image filtering tasks based on convolution. To give
an impression, consider the example specification of a blurring filter in Listing 4.1 and
the effect on input images shown in Figure 4.1 on the next page.

Like all filter specifications, this blurring filter describes how to compute the output
pixel at coordinate (row,col) by an expression which refers to a number of pixels in
the input image. The filtering process iterates the application of this filter for each
coordinate of the output image.

In this example, the let binding defines variable m to be a convolution matrix of
float values. The summations in lines 6–8 specify the intensity of the output pixel by
referring to pixels in the neighborhood of the respective coordinate in the input image.
The head of the block [ 3 channels: exp ] indicates that the same expression is
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Figure 4.1: Sample image before and after applying blur filter

used for each of the three color channels red = 0, green = 1 and blue = 2 of the
output image. Variable current gets bound to the number of the respective output
channel in order to provide a comfortable way to refer to the corresponding channel
of the input image. If the filter specifications for the channels differ substantially, the
alternative syntax of a semicolon-separated list [ exp; exp; exp ] can be used in-
stead.

4.2 Optimization Using Staged Programming

The potential for optimization is evident if we consider the filter given above to be
executed by an interpreter. As the filter specification refers to a single pixel, for an
input image of size 1024× 768 it would have to be interpreted 786432 times. For each
pixel, the interpreter would create a convolution matrix and reproduce the summations
by 9 iterations accumulating the result.

The following two conceptually independent optimization techniques are intro-
duced in order to reduce this effort.

1. By adding staging annotations to the interpreter we can build a simple compiler.
Figure 4.2 on the following page without the shaded elements shows the origi-
nal interpretation, which yields a residual filter function by the residual function
generator. No simplification is done at this point, as this corresponds to a sim-
ple partial application. Adding staging annotations makes the residual function
generator produce object code. Now, the AST is analyzed to generate object code,
postponing the actual execution. This code generation yields residual object code,
which is transformed into a OCaml function by calling the run operator.

2. Certain expressions in the subject program depend exclusively on information
known before the actual filter execution, like the number of summands in List-
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ing 4.1. These expressions can be reduced in advance, reducing their repeated
evaluation during the filter application later on. This optimization technique in-
corporates a binding time analysis in order to determine which code fragments
depend entirely on static input, i.e., the part of the input known at the time of the
program specialization. All other input, which is unknown until run time, and all
expressions depending thereon are called dynamic. The binding time analysis is
combined with an immediate simplification of static expression, a technique for
the automated specialization of programs which is known as online partial evalua-
tion (Jones et al., 1993, Chapter 7).
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Figure 4.2: Design of the DSL implementation. The shaded components substitute a
pure partial application with the optimization by a partial evaluation and the staging
of the interpreter

4.3 Language Design

Because we describe the design of the image filtering language in detail elsewhere
(Herrmann and Langhammer, 2005), only a brief overview is given here.

4.3.1 Syntax

A filter specification consists of a top-level expression (toplevelExpr), which is composed
of a series of local bindings common for all color channels and a list of sub-expressions
(channelSpecs) for specifying the intensity for the each color channel.

toplevelExpr← (let var = expr in toplevelExpr) channelSpecs (4.1)
channelSpecs← [ expr (; expr)∗ ] (4.2)

| [ constInt channels : expr ] (4.3)
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The standard form (4.2) of the channel specification is enclosed in brackets and ad-
jacent entities are separated with a semicolon. As stated before, using the alternative
(4.3) with a single expression expr is a convenient abbreviation. It is expanded dur-
ing an initial desugaring process: constInt copies of expr are enclosed in a let expres-
sion binding variable current to the respective channel number and sequenced in a
semicolon-separated channel list.

The right hand side of the common let bindings and the elements of the channel
specification list are expressions (expr) of the same kind.

expr← const (4.4)
| var (4.5)
| image ( expr , expr , expr ) (4.6)
| ( expr ) (4.7)
| prefix1 expr (4.8)
| prefix2 ( expr , expr ) (4.9)
| expr infix expr (4.10)
| if expr then expr else expr (4.11)
| let var = expr in expr (4.12)
| sum var from expr to expr of expr (4.13)
| matrix (4.14)
| index (4.15)

Some of these production rules are similar to the grammars of other languages, like
constants, variables, infix and prefix operators.

const← constBool| . . . (4.16)
var← letter(letter|digit)∗ (4.17)

prefix1← - 1|not |floor |sin |... (4.18)
prefix2← min |max (4.19)

infix← + |- 2|* |< |&& |... (4.20)
constBool← false |true (4.21)

Also, prefix operators have a higher precedence than infix operators and the prece-
dence among infix operators is defined according to the common convention in math-
ematics. Note that there are two minus operators: a unary prefix - 1 and a binary
infix - 2.

The only non-standard expressions are summation (4.13) and matrix expressions,
which are restricted to two dimensions and float constants as matrix elements.

matrix← [ constFloat+ (| constFloat+)∗ ] (4.22)
index← var [ expr , expr ] (4.23)
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4.3.2 Typing

The specification language provides the types int, float and bool, which are inferred by
semantic actions of the parser, according to the typing rules given by Herrmann and
Langhammer (2005).

4.3.3 Semantics

Only a few characteristics of the denotational semantics are given here. An environ-
ment ε is used to manage the binding of variables to values, where ε(v) denotes the
value assigned to variable v.

No Turing completeness. In favor of a higher degree of optimization, the language
does not feature general recursion. Therefore, fixed-point semantics is not re-
quired.

Operator overloading. The same arithmetic operators are used for float and int values.
If for a binary operator both operands are of the same type, the respective opera-
tion for that type will be used. If both int and float appear in the same operation,
the int value will be automatically coerced to the respective float value. The co-
ercion of int values is also done for operations on float values. For conversions
in the opposite direction, operator floor must be used to make the programmer
aware of the loss of precision.

Image indexing. For a pair of coordinates row and col and a color channel ch, given
as integer expressions, the expression image(row,col,ch) returns the color in-
tensity of the respective pixel as a float value in the range of [0.0, 1.0[. For the
convenience of the programmer, the channel numbers are named by meaningful,
predefined variables (ε(red) = 0, ε(green) = 1, ε(blue) = 2 and ε(gray) = 0).
Of course, the coordinates must be within the dimensions of the input image, i.e.,

(row, col) ∈ ε(height)× ε(width)

Summations. The summation expression (sum k = lo to hi of body) has the se-
mantics of the summation symbol in mathematics. For each integral point i in the
range of {lo, . . . , hi}, the environment is extended with a binding ε(k) := i and
used to evaluate body. The results are accumulated and returned as result of the
complete summation.

4.4 Language Implementation

4.4.1 Data types

For the front end of the compiler/interpreter, the tools ocamllex and ocamlyacc were
used to scan and parse an image processing specification. As result and for the inter-
nal representation of the subject program, record data types are used to represent the
abstract syntax.
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type exp = { dtype:dtype; op:op; args:exp list; expand:int }
type top_exp = { common_bind: (string ∗ exp) list; channels: exp list }

The root node of an AST is of type top_exp, which is a record containing a list
of common bindings and a list of specifications for each color channel. This record
resembles the common let bindings of the production rule for toplevelExpr (4.1) and
the channel list of the first production rule of channelSpecs (4.2). As stated before, the
alternative, abbreviated form (4.3) gets expanded to a channel list by the desugarer.

A base expression exp consists of a record with the following fields:

• a data type dtype, which is set by the type inference system implemented in the
semantic actions of the parser,

• an operation op, which corresponds to one of the production alternatives, (4.4) to
(4.15) of expr,

type op =
C of value | V of string | Image | Int2Float | Floor

| UnOp of unOp | BinOp of binOp | If | Let of string
| IndexMatrix of string | Sum of string

• a list args of sub-expressions and

• an expand value expand, which is used to guide the loop unrolling optimization.

OCaml sum types are used for the representation of both data types and values of
these data types.

type dtype = Bool | Int | Float | Matrix
type value = VInt of int | VFloat of float | VBool of bool

| VMatrix of float array array

In order to reduce the need for additional pattern matching, the data types for unary
and binary operators use alternatives for each type of the subject language.

type unOp = NegI | NegF | Not | AbsI | AbsF ...
type binOp = AddI | SubI | MulI | DivI | PowI | MinI | MaxI | ModI ...

E.g., AddI is used for an int summation, AddF a float summation.

4.4.2 Expression Simplification

For simplicity, the program specialization performed on image filter expressions is an
online partial evaluation, which indicates that binding time analysis (BTA) and simplifi-
cation are not separate phases but are intertwined to a single simplifying function. The
advantage over a separate BTA and simplification phases is a much simpler special-
ization, as static expressions get instantly simplified to a single value and, thus, can be
used to guide the subsequent analysis. The typical problem of non-termination is not
an issue for this online partial evaluation because the subject language has no general
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concept of recursion. Also the code explosion by “over-specializing” a sum expression
is prevented by a partial loop unrolling.

Two functions form the main entry points of the simplification process.

val simplify_top_exp : top_exp −> value environment −> top_exp
val simplify_exp : exp −> value environment −> exp

Function simplify_top_exp takes the root of an AST and an environment of static
values. The initial environment is preset with bindings for all static parameters, like
width, height, red, green, . . . . For sub-expressions, the simplification is delegated to
simplify_exp. The general principle of simplifying an expression can be summarized
as follows:

• Simplify sub-expressions recursively.

• Depending on which sub-expressions could be reduced, i.e., which of them are
merely constant values, a simplification step is performed for the current node.
In the best case the respective operation of the current AST node is instantly per-
formed, in the worst the AST node has to be reconstructed.

Function unC, which is of type exp -> value option, provides a convenient
checking mechanism: if the AST node e contains only a constant value c, it returns
Some c. Otherwise, None is returned, which indicates that e is a non-constant expres-
sion. So, if e is a sub-expression which is a result of a recursive simplification call, a
pattern match on unC e tests whether e is completely reduced or an expression which
contains irreducible expressions. In terms of binding time, e is static in the former case
and dynamic in the latter.

To give an example, in the case of a multiplication operator the following code
fragment performs the simplification.

| MulI | MulF −>
begin match unC a, unC b with

3 | Some av, Some bv −> exp_of_value (binopfun op av bv)
| Some av, _ when is_zero av −> zero_of dtype
| _, Some bv when is_zero bv −> zero_of dtype
| Some av, _ when is_one av −> b
| _, Some bv when is_one bv −> a

8 | _ −> combine a b
end

Here, the matching is done on the expressions of the two simplified operands. The
most successful case is in line 3, as a new constant value expression can be generated
by multiplying both constant operands. The cases in lines 4–7 perform minor optimiza-
tions, namely 0 · a → 0 and 1 · a → a. If only the last case matches, the current node
is reconstructed by calling combine because this operation cannot be simplified any
further.

Simplifying let expressions is a slightly more tricky issue, but follows the same
principle. First, the right hand side expression is simplified recursively. In the case of a
complete reduction, the constant returned is added to the static environment and used
to simplify the body. If the right hand side is dynamic, the body is simplified with the
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old environment. If the simplified body is a constant, it is returned, otherwise the let
expression is reconstructed.

The simplification of a variable amounts to a lookup in the environment. If the
lookup is successful, the constant value is returned. Otherwise, the variable is returned
unchanged.

Partial loop unrolling is done for summation expressions if the size of the resulting
code does not exceed a certain limit M, given as command line argument. The size of
an expression is given by the extent value in its AST node, which, in fact, indicates
the number of leaves in the respective subtree. For a partial unrolling of a sum which
has a body with an extent of e, the number of replications N of the body is limited by

N · e < M.

As a consequence, N is set to dM/ee − 1 and loop unrolling is performed only in the
case that N > 1.

The degree of simplification performed on a sum also depends on the binding times
of its sub-expressions. E.g., in the case of static bounds and a static body, the whole sum
expression is completely reduced. For static bounds with less then N iterations and a
dynamic body the loop unrolling is complete rather than partial. This situation is met
for the nested summation of the blur filter in Listing 4.1 on page 66.

4.4.3 Code Generation

As mentioned before, the generation of code is done by a staged interpreter. All re-
spective operations are protected against evaluation by code brackets and, as results of
recursive interpretation are now returned as code objects, the escape operator is used
to combine sub-expressions to a new code fragment. As the type of the returned code
depends on the type of the respective AST node, a sum type is introduced.

type ’a codevalue = CInt of (’a,int) code
| CFloat of (’a,float) code
| CBool of (’a,bool) code
| CMatrix of (’a,float array array) code

Function lift, which is of type value -> ’a codevalue, transforms a value into the
respective codevalue.

Entry point for the code generation is function codegen_top_exp which takes a
top-level expression and an initial environment of static variables, as well as the input
image.

val codegen_top_exp :
top_exp −> ’a codevalue environment −>
image −> (’a, int list) code

Note that no simplification or evaluation of expressions is done during code gen-
eration. All optimizations have already been performed in the partial evaluation
phase before. Consequently, the values managed in the environment consist exclu-
sively of code containing a variable. This is due to the fact that let nodes, like
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let i = ... in e, are transformed directly into the corresponding OCaml let ex-
pression .< let k = ... in ... >. by adding the binding "i"→ .< k >. to the
environment before generating the body code.

To demonstrate the effect of staging annotations in the interpreter, consider the gen-
eration of loop code for a summation expression.

| Sum s −>
2 let (lb,ub,body) = head3 args in

let lb’ = unCInt (codegen_exp lb env source)
and ub’ = unCInt (codegen_exp ub env source) in
let bodycode i =

let env’ = extEnv (s,CInt i) env in
7 codegen_exp body env’ source

in
let dynFor low high init step =

.< let s = ref .~init in
for i = .~low to .~high do

12 s := .~(step .<i>. .<!s>.)
done;
!s

>.
in

17 begin match dtype with
| Int −>

let step i s = .< .~s + .~(unCInt (bodycode i)) >. in
CInt (dynFor lb’ ub’ .<0>. step)

| Float −> ...

In lines 2–4, the sub-expressions are extracted from the body list and code for both
summation bounds is generated recursively. The definition of a local function body-
code follows in lines 5–8, which generates code for the body using the iteration variable
set in parameter i. Function dynFor in lines 9–16 is a polymorphic function used to
construct the loop nest. The actual code generation is performed depending on a pat-
tern match in line 17 on the data type of the node. Function step defined in line 19
generates code for a single addition and is used as parameter to create the body of the
loop.

To motivate the notion of a staged interpretation, if we stripped all MetaOCaml syn-
tax from the code above, i.e., if we substituted .~with the empty string and .< ... >.
with ( ... ), the remaining code would form an interpretation of the summation ex-
pression. All code that was staged before would now be executed immediately, includ-
ing the iteration to evaluate and accumulate the summands.

4.5 Optimization by Example

After scanning and parsing of the expression in Listing 4.1 on page 66, a type-annotated
AST is the subject of all subsequent optimizations. To give an impression, consider the
following fragments of this data structure.
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Defs.top_exp =
{common_bind =

[("m", {dtype = Matrix;
4 op = C (VMatrix [|[|0.25; 1.; 0.25|];

[|1.; 3.; 1.|];
[|0.25; 1.; 0.25|]|]);

args = []; expand = 1})];
channels =

9 [{dtype = Float; op = Let "current";
args =
[{dtype = Int; op = C (VInt 0); args = []; expand = 1};
{dtype = Float; op = BinOp MulF;
args =

14 [{dtype = Float; op = C (VFloat 0.125); args = []; expand = 1};
{dtype = Float; op = Sum "i";
args =

...
{dtype = Float; op = IndexMatrix "m";

19 args =
[{dtype = Int; op = V "i"; args = []; expand = 1};
{dtype = Int; op = V "j"; args = []; expand = 1}];

expand = 2}
...

The AST is a direct equivalent of the input program, as each node has a corresponding
syntactic element. For example, the static matrix entries have not been inlined, yet. The
matrix is bound to m in the section of common bindings and used later by indexing this
variable.

The application of the simplification changes this expression dramatically.

Defs.top_exp =
2 {common_bind = [];

channels =
[{dtype = Float; op = BinOp MulF;

args =
[{dtype = Float; op = C (VFloat 0.125); args = []; expand = 1};

7 {dtype = Float; op = BinOp AddF;
args =
[{dtype = Float; op = BinOp AddF;

args =
[{dtype = Float; op = BinOp AddF;

12 args =
[{dtype = Float; op = BinOp AddF;
...

Now, the two summations have been unrolled completely by the replication of the
body, substituting both index variables i,j with the respective iteration and concate-
nating the resulting expressions with additions. Also each matrix indexing operation
has been replaced by the corresponding matrix entry. The construction of the matrix in
the head is omitted.

To get a better impression of the optimizations performed, consider the result of the
code generation for the simplified AST.
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.<fun (row, col) −> Array.of_list [
let c =

int_of_float (0.125 ∗.
(0.25 ∗. (float_of_int rast.(row−1).(col−1).(0) /. 255.) +.

float_of_int rast.(row−1).(col+1−1).(0) /. 255. +.
0.25 ∗. (float_of_int rast.(row−1).(col+2−1).(0) /. 255.) +.

float_of_int rast.(row+1−1).(col−1).(0) /. 255. +.
3. ∗. (float_of_int rast.(row+1−1).(col+1−1).(0) /. 255.) +.

float_of_int rast.(row+1−1).(col+2−1).(0) /. 255. +.
0.25 ∗. (float_of_int rast.(row+2−1).(col−1).(0) /. 255.) +.

float_of_int rast.(row+2−1).(col+1−1).(0) /. 255. +.
0.25 ∗. (float_of_int rast.(row+2−1).(col+2−1).(0) /. 255.)) ∗.

255.)
in
if (c < 0) then 0 else if (c > 255) then 255 else c;

...;...] >.

Only the expression for the red channel is shown here; the expressions for the other
channels are similar. Note that, aside form unrolling and inlining, further minor op-
timizations have been performed, like 1 · a → a. Because the subject language works
with floating-point color intensities and the image format uses integer intensities in the
range of 0 to 255, both appropriate conversions and the handling of range violations
have been added to the code.

4.6 Benchmarks

Herrmann and Langhammer (2005) give more examples as well as benchmarks com-
paring filter execution done by pure interpretation with those using simplification and
staged interpretation.

For the blur filter, a number of additional benchmarks determine both the overhead
of the run-time optimizations and the break-even point, i.e., the number of iterations
needed to outperform the unstaged interpretation. The benchmark platform was the
same as that of the previous chapters, i.e., a 1 GHz Dual Pentium III with 512 MB
of memory running Fedora Core 1 Linux. The implementations were compiled with
metaocamlopt of our developer version based on OCaml 3.07. Unsafe array access
was activated. For all runs, the timing functions from the Trx module of MetaOCaml
were used. By iterating the probe sufficiently often, these timing functions enable the
system to give a reliable timing.

The first series of benchmarks investigates how much time is needed to perform
the optimizations introduced to the base program. Simplification on the one hand and
staged interpretation (i.e., code generation and compilation by .!) on the other are
independent optimizations. Therefore, they can be activated or omitted by a command
line flag when running the image filtering tool. Nevertheless, the running time of the
code generation is largely dependent on the outcome of the simplification. Especially
the loop unrolling of the blur filter expression inflates the size of the intermediate AST
distinctly. For each color channel the loop body is replicated 9 times. This increases the
work for generating a code object as well as for compiling it with the run operator.
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The execution times given in Table 4.1 demonstrate this effect. Deactivating the
simplification reduces the time for the remaining optimizations to about 60 % for the
native program and to about 44 % for the bytecode program.

A conspicuous effect can be noted, when comparing the native code compilation of
the base program with the corresponding bytecode version. The time for executing the
simplification and the code generation in native code is faster than the time for these
optimizations in bytecode. As bytecode is interpreted by a virtual machine, this result
is what can be expected. The surprise is that the application of the .! operator takes
noticeably more time if performed for native code. Code compilation and dynamic
binding is more complex for native code as it is for bytecode.

base program native bytecode
simplification simplification

optimization active inactive active inactive

simplify 1.110 – 4.030 –
code gen. 2.282 0.468 5.747 1.417

run (.!) 80.303 49.843 33.637 15.821

Table 4.1: Execution time of optimization in msec.

Table 4.2 shows the execution times of the blur filter for a square input image of
width 1000. Results are given for both the native and the bytecode compilation of the
base program. The base program was run for all four configurations which are possible
by activating or deactivating the two optimizations. As result of the 1000× 1000 = 106

applications of the filter expression, the overhead spent for the optimizations turned
out to be marginal compared to the overall execution time, and the speedups compared
to the respective unoptimized run are enormous. The activation of both optimizations
yielded the best speedups.

The good speedups for input images of size 1000× 1000 imply that the image di-
mensions, where the constant overhead equals the gains of the optimized executions
must be much smaller than 1000. This break-even point is important in order to value
the applicability of the optimizations performed.

The result of a series of test runs for various image sizes is shown in Figure 4.3
on the next page. Again, all four configurations were benchmarked and the resulting

native base program bytecode base program
configuration t in sec. speedup t in sec. speedup

none 259.96 1.00× 1 032.33 1.00×
simplify 135.32 1.92× 640.04 1.61×
staged∗ 3.98 65.24× 29.90 34.52×

simplify + staged∗ 2.75 94.68× 15.83 65.21×
∗ Staged run comprises code generation and .! application.

Table 4.2: Overall execution times for input image of size 1000× 1000.
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Native base program:,/imagefilter --bench -bb 1,3 -bf 2 -bs 0 -bw 0 -bi 20 -f ,,/filters/blurr,filt -ml 3 -mt 3 -te                                                                                                   
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Figure 4.3: Overall execution times for square images of different sizes.

execution times were recorded in the diagram.

Due to the more expensive application of the .! operator, the native code base pro-
gram has to perform more iterations than its bytecode counterpart in order to outper-
form the image filtering without any optimization. Not until the image width exceeds
21 pixels, all implementations using optimizations are faster than the unoptimized one.
Examining the effect of simplification, the break-even point for an unstaged run is be-
low 9× 9 pixels. For a staged execution, no positive effect appears until the image size
exceeds about 173× 173 pixels. This gap is caused mainly by the additional computa-
tions the run operator has to perform for the larger, simplified code object.

For the bytecode compilation, the overall break-even point is much smaller due to a
reduced optimization overhead. For any combination of optimizations the overhead is
amortized for an image width of about 9. Again, the simplification amortizes for much
bigger values if it was combined with staging. Though, this break-even point of about
40× 40 pixels is smaller than that of the native code compilation, caused by the less
expensive run operation for bytecode.
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4.7 Conclusions

MetaOCaml provides a high-level tool for optimizing the interpretation of a domain-
specific language implementation. For our language, which does not have a concept
for general recursion or iteration, an online partial evaluation was quite easy to imple-
ment. It is combined with a preceding simplification of the AST, generating additional
speedup. As the benchmarks revealed, these optimizations entail a notable overhead
of computations, which grows in the size of the AST. In the native compilation, which
is the only relevant in terms of high-performance computing, this overhead is bigger
compared to the respective bytecode. Fortunately, a repeated execution amortizes the
overhead, compared to an unstaged run without code simplification. Because, for our
implementation, the number of interpretations grows fast enough with the problem
size, the optimizations pay off already for images of GUI icon size.





Chapter 5

Case Study: Parallel Karatsuba
Polynomial Product

5.1 Introduction

Parallel computing forms a self-contained special-purpose domain within the field of
high-performance computing. The main idea of parallelization is to reduce the overall
computation time by separating the number of computation into independent parts,
which can be distributing on a sufficiently large number of processors. Lengauer (2004)
gives a concise overview of this domain.

For a parallel environment with distributed memory, communications are needed
to pass messages between cooperating processes. The need for communication arises
from data dependences between computations of different processes. In the devel-
opment of parallel programs, currently, these communications are often described by
point-to-point communications. These communications allow a fine-grained specifica-
tion of the exchange of data between a pair of processes; one acting as sender, the other
as receiver.

As complex communication structures often derive from complex dependencies
between computations, the tuning of send-receive communications by hand tends to
become unmanageable and error-prone. There are several approaches to overcome
this problem. Gorlatch (2004) compares state-of-the-art parallel programming with the
unstructured imperative programming style of 25 years ago. Just like unstructured
jumps are frowned upon by software engineers because they compromise any high
level abstraction of the program flow, send-receive operations should be banned in
favor of high-level collective operations. These operations provide a description of the
underlying communication pattern, comprehensible for both the implementer and an
optimizing compiler. Gorlatch argues that the gain in predictability is at the expense of
neither expressiveness nor performance.

This chapter discusses how MetaOCaml can be used for parallel computing. OCaml
bindings to the C interface specification of the MPI standard (MPI Forum, 1997) pro-
vide machine-independent point-to-point and collective communications. A further

81
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discussion presents another approach by Herrmann (2005), which reduces the dan-
gers of hand-written send-receive communications by introducing layers of abstraction
to separate domain concerns. Finally, the example implementation of the polynomial
product given by Karatsuba and Ofman (1962) is inspected for further optimization
potential.

5.2 Parallel Computing for High-Performance

Amdahl (1967) pointed out, that the degree of parallelism is limited by inherently se-
quential fragments of the algorithm, which arise from dependencies between compu-
tations determining an order of execution in time. Fortunately, there are many appli-
cations for which Amdahl’s law does not apply. Gustafson (1988) argues, that in many
real-life applications, the number of parallel computations is not constant but grows
with the resources available. Thus, the amount of time spent on the sequential part
of a program becomes less important when the number of processors grows. Also, it
is reasonable to consider the execution time as constant and value how the number of
parallel computations grows with the number of processes.

In real world implementations the parallel execution is also diminished by factors
emerging from the underlying architecture. On machines providing shared memory par-
allelism (SMP) several processes use a common region of memory. In order to prevent
update anomalies, exclusive memory access has to be granted for conflicting operations
of several processes on the same memory location. Each process wishing to access a da-
tum shared by many is granted exclusive access. In fact, accesses of several processes
on the same exclusive memory location result in a sequential execution, whose order is
undetermined.

On distributed memory machines, like Linux clusters, a parallel program consists of
processes, each of which holds its own memory. For the exchange of information, these
processes have to communicate with one or a number of other processes. Depending on
the architecture, communication is performed via a bus or an interconnecting network.
Whatever hardware is used, communications are accountable for a certain overhead in
the overall execution time of parallel programs.

In order to create an abstraction from low-level communication protocols, a number
of paradigms and frameworks have been developed. The intention of these abstrac-
tions is to make programming safer and more predictable as well as to increase the
portability of programs. In terms of the application domain, they aim to provide tools
to enable the developer to concentrate on solving the problem rather than on taming
the machine.

5.3 Message Passing Interface (MPI)

The MPI standard defines an API of communication primitives for implementing mes-
sage passing parallel programs. The intended programming style, which is commonly
used on parallel machines with distributed memory, is also called SPMD, for “single
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program, multiple data” (Foster, 1995). Each process in a parallel environment runs the
same program but encapsulates its own data. By referring to the identifier of another
process (called rank in MPI), messages can be sent or received.

The popularity of MPI in the domain of parallel computing is mainly based on the
abstraction from underlying, hardware dependent communication protocols (TCP/IP,
Myrinet, . . . ), on the one hand, and on the fine-grained tuning options by single point-
to-point communications, on the other.

For exchanging data between processes, MPI provides two kinds of communication
abstractions

Point-to-point communication by a set of mid-level functions. These primitives are
independent from underlying, hardware-specific communication protocols, like
TCP/IP or even shared memory. Which role a process takes in a communication
is defined by the application programmer by a case distinction on the process
rank.

Collective communications by a set of high-level functions. Each of them provides a
certain communication structure, e.g., distributing data from one process to all
others or combining distributed data with a given operation in a parallel fashion
and providing the result to a single process or all processes.

The advantage of point-to-point communications is the chance to perform a fine-
grained tuning of the parallel application. One of the two processes performing a com-
munication acts as sender and the other acts as receiver. Such a send-receive operation
can be either blocking or non-blocking. In blocking mode, the sending process does not
return until the send buffer has been stored away safely and the receiver waits until the
receive buffer has been filled successfully. In non-blocking mode, sender and receiver
both return immediately to resume their computation. For further adjustments, MPI
provides special communication modes, like buffered, synchronous and ready point-to-
point communication (see MPI Forum (1997) for details).

By using collective operations, the application programmer relies on the communi-
cation patterns implemented in the MPI library he is using. These libraries often come
with efficient implementations which are tailored to the architecture of the respective
target machine.

Further features of the MPI 1.1 standard are the definition of communication con-
texts, process groups and topologies and bindings for both C and Fortran77. MPI 2.0
extends the standard by features like one-sided communications, remote memory ac-
cess, process management, parallel I/O and new language bindings.

Currently there are a number of implementations, like LAM (Burns et al., 1994) or
MPICH (Gropp et al., 1996), which covers the MPI 1.1 API and big parts of MPI 2.0.
Custom-built implementations for special high-performance hardware are available,
like MP-MPICH (Pöppe et al., 2005), which is used on our SCI interconnected hpcLine
cluster.
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5.4 OCaml and MPI

5.4.1 OCamlMPI – a Binding to the C Interface.

As most frequently used languages in the domain of parallel computing, only the MPI
bindings to C/C++ and Fortran are defined in the standard. Therefore, the OCaml
binding OCamlMPI (Leroy, 2001) is closely geared to and uses that of C.

OCamlMPI covers a large subset of MPI, including point-to-point and collective
communications. It uses the interfacing mechanism of OCaml to C, which is further
discussed in Section 6.2 on page 95. According to this, the organization of the distribu-
tion is divided into an interface given in mpi.mli, a shallow implementation mpi.ml
consisting mainly of external declarations, and C stub functions calling the respective
primitives of the MPI interface. The comments in the interface file give a brief descrip-
tion of the semantics for each of the functions provided.

In order to minimize the loss of performance, most communication functions come
in five flavors.

• a polymorphic function taking any data type (like MPI.send)

• four monomorphic functions, specialized for the following types

– int (MPI.send_int)

– float (MPI.send_float)

– int array (MPI.send_int_array)

– float array (MPI.send_float_array)

The polymorphic functions are simpler and more flexible to use, e.g., lambda ex-
pressions can be subject to such a communication. As a drawback, the respective data
is serialized (marshalled) in order to be sent and is de-serialized by the receiver. Se-
rialization is omitted by the specialized functions, so using them for sending int and
float values is almost always recommended.

5.4.2 C Interfacing for MPI

To give an impression of the C interfacing of OCamlMPI, consider the OCaml binding
of the MPI function for a blocking send operation, which has a signature given by the
following C declaration.

int MPI_Send(void∗ buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Parameter buf points to a buffer containing count consecutive entries of type
datatype to be sent. As the process invoking the function is defined as sender, the
target process is given by its rank dest within a communicator comm. A communicator
is a set of processes to which the scope of a communication can be restricted. To enable
the receiver to identify a particular communication, a tag can be given.

The signature for the OCaml function to perform a blocking send is given by
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val send_int: int −> rank −> tag −> communicator −> unit

For performing the conversions needed, a stub function connects the OCaml decla-
ration to the call of the MPI function.

value caml_mpi_send_intarray(value data, value dest,
value tag, value comm)

{
MPI_Send(&Field(data, 0), Wosize_val(data), MPI_LONG,

Int_val(dest), Int_val(tag), Comm_val(comm));
return Val_unit;

}

5.4.3 Installation and Usage of OCamlMPI

The installation of OCamlMPI for UNIX is straight forward. In order to build the re-
spective OCaml module, three environment variables have to be set in the GNU make-
file (The Free Software Foundation, 2005b):

• DESTDIR – the target installation directory to contain the module and interface
files

• MPIINCDIR – the directory containing the MPI header files

• MPILIBDIR – the directory containing the MPI libraries

For initiating the compilation of the module and for installing the result in the target
directory, make is called at the command line with the respective targets as options.

make all
make install

Unfortunately, the MPI standard does not define precisely how MPI source code is
compiled or called. For some distributions it is sufficient to give the library as argument
for the compiler. In this case, setting the above makefile variables appropriately is
sufficient to build the OCaml binding. Other MPI implementations, like MP-MPICH,
are shipped with dedicated front ends for C and Fortran compilers. In this case, the
OCamlMPI makefile has to be modified:

• The compiler variable must be set to the respective compiler front end executable,
like CC=mpicc.

• Each call of the OCaml compiler ($(OCAMLC) or $(OCAMLOPT)) needs an extra
option giving the compiler front end -cc $(CC).

After a successful installation, the binding can be used by specifying the installation
path at the OCaml compiler command line (-Idirectory). Each binding provided by
OCamlMPI has a brief description in the respective interface file mpi.mli.
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5.4.4 OCamlMPI – the Starfish Implementation

An alternative implementation of MPI in OCaml is given by Agbaria and Friedman
(1999), who implemented core functionality of the MPI 1 standard. This implementa-
tion, coincidently named OCamlMPI, too, is part of the Starfish environment, which
aims at providing a fault-tolerant and dynamic execution of MPI programs on a clus-
ter of workstations. Currently, the communication hardware supported is (high-speed)
Ethernet, for convenience, and Myrinet, for performance.

Fault-tolerant MPI is especially an issue for Grid computing (Gabriel et al., 2003),
which aims at coordinated resource sharing, combining computation resources dynam-
ically depending on the needs of the application.

The architecture of Starfish consists of application processes, running MPI programs,
and monitoring Starfish daemons. A group of cooperating daemons forms the paral-
lel environment and is responsible for spawning application processes, asserting fault
tolerance and managing the cluster setting. Especially for the latter the Starfish envi-
ronment handles dynamic changes in the cluster configuration.

The subsequent example of the Karatsuba polynomial product was not developed
for Starfish but for the MPI binding by Leroy (2001) described before. Unlike the
Starfish implementation, its shallow interface uses only the specified C interface of
MPI. Therefore, it can be used in combination with an arbitrary C implementation of
MPI1.

5.5 Parallel Meta-programming

5.5.1 A Three-tier Design

The three-tier design Herrmann (2005) uses for implementing a parallel Karatsuba
polynomial product is illustrated in Figure 5.1 on the next page. The contents of each
layer is chosen according to the respective domain. Each layer uses functionality of the
respective layer below and provides its own functionality by an interface to the layer
above.

1. The lowest layer implements a specification language for parallelism. This lan-
guage is an embedded DSL composing parallel and sequential operations in or-
der to describe a static communication structure. Guided by a cost model, this
structure is analysed by a staged interpreter on each process for generating the
respective process specific code.

2. The middle layer is a parallel implementation of a static computation structure.
It uses the specification language of the lowest layer as an abstraction from the
actual parallel environment as well as high-level features of the host language
MetaOCaml, like recursion and higher-order functions.

1The cluster of workstations available for the benchmarks uses an SCI interconnection, which is not
supported by the latest Starfish version 0.2.
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Figure 5.1: Three-tier architecture for implementing parallel applications.

3. The highest layer uses a skeleton interface of the computation structure in the
layer below. The application implements computation fragments and provides
them as arguments for the call of the skeleton.

5.5.2 Implementation of the Layers

Herrmann (2005) implemented the Karatsuba polynomial product in the highest layer,
making use of a divide-and-conquer skeleton. At this layer, the skeleton appears as
higher-order function dc. Application implementers who want to make use of the com-
putational structure of this skeleton have to implement three functions to be passed as
arguments: a function describing the basic case (basic), a function describing how to
split the problem into subproblems (divide) and a function describing how to com-
bine partial solutions to a common solution (combine). Furthermore, two int values
specify the depth (depth) and number (degree) of recursive descents per step of the
recursion. The skeleton function is used by calling

dc degree basic divide combine depth

The underlying implementation of the divide-and-conquer computation is invisible
to the program part using the skeleton interface. Though it is implemented by a parallel
specification in this example, it could as well be a sequential recursive descent.

Similar to Herrmann (2005), we give the parallel specification language as Meta-
OCaml data structure. This language is used to implement the the skeleton.

type ’a exp =
Atom of (’a −> ’a)

| Seq of (int ∗ (int −> ’a exp))
4 | Par of (int ∗ (int array −> int −> ’a exp))

This embedded language concentrates exclusively on aspects of defining a static
parallel task structure since MetaOCaml as host language provides all other features
needed. Constructor Atom f declared a host language program f to be part of the
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parallel program. Seq (n, e) sequences n steps of e, where e is parameterized with the
current step index. Par (n, e) defines parallel execution of e, where e is parameterized
with the communication context in terms of an array of partner identifiers, and its own
task identifier.

As a consequence of the implementation of the divide-and-conquer skeleton func-
tion, the code is generated and executed in two steps, as the following example call in
the interactive environment demonstrates.

# let parprog = dc 3 karat_basic karat_divide karat_combine 2;;
val parprog : (’_a, int array) code exp = Par (3, <fun>)

Constructor Par holds its sub-expressions as function, which is evaluated in a
first step during the interpretation of the embedded language. As the type argument
(’_a, int array) code indicates, the result of the interpretation is staged code,
which implies staged code in the host language fragments of the parallel program. As
second step, the resulting code object is compiled with the MetaOCaml run operator
and run on each process

The interpretation implemented in the lowest layer is a partial evaluation peval
of the input program with respect to the communication context for a single process.
For 9 processes, as Figure 5.2 on the facing page shows, the only work to be done by
process 5 is to receive data from process 3, to perform the basic computation and to
send back the result to complete the operation. Thus, peval generates code for process
5 which performs exactly these operations.2

.<let y_3 =
let y_2 =

3 begin
x;
let y_1 = receive 3 1 in
divide 2 y_1

end in
8 basic y_2 in

send y_3 3 1;
y_3>.

5.6 Further Optimizations

Preceding experiments by Herrmann (2005) revealed significant speedups. Neverthe-
less, the implementation still leaves many options of further optimization. Especially
the computation-intensive parts of the basic solution are a lucrative target – they can
be tackled independently from the parallel code.

The basic solution passed to the divide-and-conquer skeleton essentially consists
of a sequential implementation of the application. In the case of the Karatsuba poly-
nomial product, this solution consists of a sequential recursion. Because the overhead

2 The pretty printer of MetaOCaml would also annotate receive, send, basic and divide as cross-
stage persistent variables, i.e., variables which are defined in a lower stage than their use. These annota-
tions have been removed in order to improve the readability.
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Figure 5.2: Divide-and-conquer with degree 3 and depth 2

of a recursive descent would dominate the computation for small operands, the recur-
sive solution is switched to a sequential solution for input of a length below a given
threshold.

let rec karat_seq xs ys =
let n = Array.length xs in
if n<=16
then (∗ solution for small problem sizes ∗)

5 let zs = Array.make (2∗n) 0 in
let _ = karat_small_seq (n, xs,ys,zs) in
zs

else (∗ solution for large problem sizes ∗)
let low = karat_seq (lowpart xs) (lowpart ys)

10 and high = karat_seq (highpart xs) (highpart ys)
and mixed = karat_seq (mixedparts xs) (mixedparts ys) in
let zs = Array.append low high in
for i=0 to n−1 do

zs.(i+n/2) <− zs.(i+n/2) + mixed.(i) − low.(i)−high.(i)
15 done;

zs

The original sequential implementation by Herrmann (2005) is lambda lifted to a
new function karat_small_seq, which makes the local bindings explicit as function
parameters.
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let karat_small_seq = begin fun (n,xs,ys,zs) −>
for i=0 to n−1 do

for j=0 to n−1 do
4 zs.(i+j) <− zs.(i+j) + xs.(i) ∗ ys.(j)

done
done; 0

end

This function offers a very promising optimization by offshoring due to the follow-
ing reasons:

• It is repeatedly called as base case of the Karatsuba polynomial product. In fact,
the major portion of the computational work is done in this function.

• The MetaOCaml constructs used in this function are elements of the language re-
strictions imposed by the offshoring mechanism: each of them has a correspond-
ing construct in the target language C.

• The lambda lifted form reduces the overhead of offshoring to a minimum be-
cause compilation and linking has to be done once only at the beginning of the
execution.

The offshoring optimization requires minimal changes to the code.

let karat_small_seq_code = .< begin fun (n,xs,ys,zs) −>
for i=0 to n−1 do

3 for j=0 to n−1 do
zs.(i+j) <− zs.(i+j) + xs.(i) ∗ ys.(j)

done
done; 0

end >.
8

let karat_small_seq = .!{Trx.run_gcc} karat_small_seq_code

Now, the function is surrounded with code brackets and run with the respective off-
shoring run operator.

5.7 Experimental Results

As for all benchmarks before, the experiments for Karatsuba were run on a cluster of 1
GHz Dual Pentium III machines with 512 MB of memory running Fedora Core 1 Linux.
The nodes of this cluster are linked with an SCI interconnect. The MPI implementation
used was MP-MPICH, which provides both an implementation of the C library and a
run-time environment for running compilations on the cluster.

The parallel implementation was compiled with two different versions of Meta-
OCaml: For both the plain bytecode compilation and the version using offshoring the
latest MetaOCaml release available was used (3.08 alpha 023). For the native code com-
pilation an unofficial development version based on OCaml 3.07 was used because the
latest native code compiler revealed bugs in the allocation of arrays.
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compilation #procs 16 17 18 19
bytecode 1 126, 91 382, 45 1154, 02 3493, 54

3 42, 59 127, 89 384, 86 1164, 29
9 14, 56 43, 28 129, 39 389, 58

native 1 10, 16 30, 95 97, 71 326, 82
3 3, 72 10, 56 32, 77 105, 59
9 1, 62 4, 11 11, 58 35, 92

bytecode 1 50, 45 152, 46 462, 84 1416, 76
+ offshoring 3 17, 09 51, 32 154, 86 471, 15

9 6, 04 17, 71 53, 01 159, 17

Table 5.2: Benchmark results on Fedora Core 1, Dual PIII, 512 MB, SCI interconnect.

Timings were done for operand arrays of sizes from 216 to 219 and process num-
bers of 1, 3 and 9.The powers of 3 result from the division degree 3 of the Karatsuba
algorithm. Though the use of both processors on each node of the cluster would have
reduced the need for communication, each participating process had to be run on a
separate node because of faults in the parallel runtime environment.

Though the absolute results shown in Table 5.2 do not resemble directly the experi-
ments made by Herrmann (2005), the relative speedups are more or less the same. Ad-
ditionally, native execution shows enormous speedups of more than one order of mag-
nitude compared to bytecode execution. The offshoring optimization, which required
minimal changes of the original code, is almost three times faster than the correspond-
ing bytecode run. Unfortunately, the combination of offshoring and native compilation
resulted in run-time failures in the shared memory interface of MP-MPICH.





Chapter 6

Development Environment

6.1 The MetaOCaml Distribution

Current releases of the MetaOCaml distribution are branches of the official Objective
Caml releases. To refer to the respective release, each MetaOCaml release adds its num-
ber to that of the underlying OCaml version. E.g., the current release of MetaOCaml
3.08 alpha 023 is based on OCaml 3.08.

OCaml

The language implementation provided by the basic OCaml installation consists of
compilers for generating machine-independent bytecode (ocamlc) and native code for
widespread platforms (ocamlopt). A standard library complements the core library of
OCaml. Modules of these libraries are available in the run-time environment of exe-
cutables. Additional libraries provide implementations of selected aspects, like access
to Unix system routines or basic graphics routines.

The development environment of OCaml provides a number of useful tools helping
to gear up the development process:

• A top-level system (ocaml) providing a loop-style interactive session. Code
phrases given at the prompt are parsed, type-checked and compiled by the sys-
tem. After a successful execution, the corresponding data type and returned
value are printed on the display.

• Lexer and Parser generators (ocamllex and ocamlyacc). The design and usage
of these tools are closely related to the lex and yacc commands known from many
C environments.

• A debugger (ocamldebug) and a profiler (ocamlprof).

• An interfacing mechanism for calling external C functions.

• A syntax-aware pre-processor (camlp4).
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MetaOCaml

As MetaOCaml introduces only few new constructs to the OCaml language, the
changes to the OCaml distribution seem to be minimal from a user’s point of view.
Still, internal adaptations affect many parts of the system. The following are the most
prominent of them:

• The scanner and the parser were extended to support the new language exten-
sions.

• The type checker was adapted to support the extended type system using a type
constructor to distinguish explicit code from internal values.

• A new top-level environment provides run-time code generation.

• A new compiler front end (metaocamlc) uses the new top-level environment.

• The interactive top-level environment provides additional pretty prints of code
objects.

Also part of the MetaOCaml distribution are a native code compiler and the off-
shoring mechanism.

The interactive environment, which can be started with the command metaocaml,
provides a good development testbed. Started with the command line argument -
dinstr, the execution of a phrase produces an extra print-out of the generated byte-
code. A simple MetaOCaml phrase defining a lambda expression in the second stage
is compiled to the following code.

# let c = .< fun () −> 42 >. in .! c ;;

const
[0:
[3:

4 "" 0a
[0:
[7:
[0:
[4: [0: "()"] 0a 0a] [0: [0: "" 1 0 11] [0: "" 1 0 23] 0a]

9 [0: CSP_value]]
[0:
[1: [0: 42]] [0: [0: "" 1 0 21] [0: "" 1 0 23] 0a]
[0: CSP_value]]]

0a]]
14 [0: [0: "" 1 0 11] [0: "" 1 0 23] 0a] [0: CSP_value]]

push
acc 0
push
getglobal Toploop!

19 getfield 34
appterm 1, 3

Without going much into the details, we can see that the lambda expression is repre-
sented by a constant data structure (lines 1–15) instead of being translated to bytecode
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instructions. As the code for the let binding was omitted by the compiler, this data
structure is pushed directly onto the operand stack of the Caml virtual machine (line
16). In lines 18–20 the run operator is retrieved from the global environment and ap-
plied to the code object on the stack.

The application of the run operator transforms the code object to the following byte-
code, which comprises the creation of a closure for the function code fragment at label
L1. This code fragment is then linked dynamically to the running program.

closure L1, 0
return 1

L1: const 42
return 1

From version 3.08 alpha 023 on MetaOCaml supports native code compilation for
i386 machines. The new command, metaocamlopt, provides a front end with the
same look and feel as the OCaml native compiler. The development of this compiler
is still not as mature as that of the bytecode compiler. The creation, compilation and
dynamic linking of staged code is highly dependent on the underlying hardware and
software architecture. As ocamlopt does not support dynamic linking, OCaml had to
be patched (Karpov, 2005) providing the generation and dynamic loading of position
independent OCaml objects.

6.2 Interfacing to C

The OCaml system provides a straight-forward facility for interfacing OCaml with C.
This interface works in both directions, i.e., C modules may call OCaml functions and
vice versa. A set of C macros supports the handling of the C representations of OCaml
data objects. Since interfacing to C is described in-depth in the respective documenta-
tion by Leroy et al. (2004), this section gives only an introductory overview using the
example of a power function.

6.2.1 Calling C from OCaml

Commonly, the interface to C consists of three parts, which have to be provided by the
implementer.

A declaration to introduce an external function into the scope of the OCaml program.

A C stub function to mediate between OCaml and C, i.e., to convert OCaml values to
C values and vice versa.

A C implementation providing the actual functionality.

External functions are declared in the implementation section of an OCaml pro-
gram, i.e., an .ml file or a struct...end block. This declaration consists of the key-
word external, the function name to be used in OCaml, the OCaml data type of this
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function and the name of the stub function. The following line specifies an association
of the function power to the stub function power_stub.

external power : float −> int −> float = "power_stub"

Optionally, this declaration can also be put into an interface section. This makes the
implementation of power as a C function visible to clients of the module and enables
them to inline the external call into their code.

An adequate implementation of the stub function can be as follows.

#include<caml/mlvalues.h>
#include<caml/memory.h>
...

4 value power_stub(value b, value e)
{

CAMLparam2(b,e);
CAMLreturn(copy_double( power(Double_val(b), Long_val(e))));

}

The name of this function, power_stub, is the one stated in the declaration, and the
number of arguments is equal to the number of arrows in the corresponding OCaml
type.

On the C side, all OCaml values are represented as objects of type value. All argu-
ments and the return value of the stub function are of this type. Therefore, the principle
task of a stub function should be the adequate conversion of these arguments to C data
types: passing them to a C function which performs the actual operation (power() in
our example) and creating a value object from the result of the operation. The included
header file mlvalues.h provides macros to be used for these transformations.

Creating int values with the macros Val_long() or Val_int() is as simple as read-
ing them with Long_val() or Int_val() because integers are represented as unboxed
values. All other values, like arrays, closures or variant types, are boxed values, i.e.,
they consist merely of a pointer referencing a block on the run-time heap or stack.
There are special macros for accessing these blocks and for creating new ones, like
copy_double() used in the example.

To make the garbage collector aware of the values given as parameters, there are
macros CAMLparamn() for each number n of parameters from 0 to 5 and a macro CAM-
Lxparam for each additional parameter. Also, as replacement for the C keyword re-
turn, one should use the macro CAMLreturn (or CAMLreturn0 for a function without
a return value).

Special care is needed for functions with a number n > 5 of parameters. While the
native compiler expects the stub function to receive n arguments of type value, the
bytecode interpreter needs the stub function to have two parameters: a C array of type
value* and an int argument specifying the arity n. Both types of stubs have to be
implemented and noted in the respective declaration on the OCaml side (details are
given by Leroy et al. (2004)).

Having implemented a stub function, the C function implementing the power func-
tion need not be aware of the fact that it is called from OCaml.
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double power(double b, int e) {
2 double acc = 1.0;

while (e > 0)
{

acc ∗= b; e−−;
}

7 return acc;
}

The approach of separating the actual operation from the type conversions is especially
favorable if a C implementation exists in advance, e.g., as a third-party library.

6.2.2 Calling OCaml from C

The most common way of calling OCaml functions from C is by using callbacks. Call-
back macros are defined in the header file caml/callback.h and provide the mecha-
nism to execute a closure given as an OCaml value. These macros are named call-
back(f), callback2(f,a), callback3(f,a,b), etc., depending on the arity of the
function represented by closure f.

OCaml functions given as parameters to the C function can be called directly using
these functions. If a function is not given as parameter but only in the top-level envi-
ronment of the calling OCaml program, its closure has to be obtained using a simple
registering mechanism. To give an example, consider the following code fragments,
which displays a C stub function power_callback_stub calling an OCaml function
power. First, the stub function is made available by the respective external declara-
tion in OCaml.

external power_stub: float −> int −> float = "power_callback_stub"

The stub function is now known to the OCaml program by the name power_stub.
Then, the OCaml function to be called from the C function is registered by using the
respective function from the Callback module.

Callback.register "power" power

To be used in C, the closure of function power must be retrieved by calling function
caml_named_value(). It takes the same label as argument "power" which was given
to the register function on the OCaml side.

value power_callback_stub(value b, value e)
{

static value ∗closure_f = NULL;
4 CAMLparam2(b, e);

if (closure_f == NULL)
{

closure_f = caml_named_value("power"); /∗ retrieval of closure ∗/
9 }

CAMLreturn (callback2(∗closure_f, b, e)); /∗ call of closure ∗/
}
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Note the solution to look up the function power only once, at the first time of its
usage. The keyword static makes the variable pointing to this function survive the
exit and re-entry of the stub function.

6.2.3 Linking to OCaml Code

For the use of external C libraries with OCaml programs, there are two principle op-
tions provided by the compiler front end: static or dynamic linking. For plain OCaml
programs, the OCaml compiler ocamlc produces executables which consist solely of
the object files and rely on the standard run-time environment providing the core func-
tionality. In order to use static linking of external C code, a custom run-time environ-
ment has to be built using the command line argument -custom. In custom mode, the
compiler scans the object files for the required primitives and builds a suitable run-
time system. Given an external module c_module.c and an OCaml module main.ml
using this C module, the following steps would have to be carried out for building a
stand-alone executable.

gcc −I $OCAML/lib/ocaml −c c_module.c
ocamlc −c main.ml

3 ocamlc −o main −custom c_module.o main.cmo

If ocamlopt is used for the compilation, argument -custom is not needed at the com-
mand line because the native code compiler always builds a custom run-time environ-
ment.

For dynamic linking, the respective C code has to be compiled as dynamic C mod-
ule (.so in UNIX, .dll in Windows). For a dynamic C module dllmylib.so, e.g.,
arguments -dlib -lmylib provided at the command line of ocamlc would yield an
executable using dynamic linking.



Chapter 7

Conclusions and Perspectives

Looking at the case studies in this thesis, MetaOCaml shows a promising potential
for an application in the domain of high-performance computing. On the one hand, a
source of the significant speed gains lies in the core implementation of OCaml, which
generates faster executables than many other compilers of functional languages. On
the other hand, the language extensions introduced by MetaOCaml offer multi-staged
programming in OCaml, which allows high-level code optimizations at run time.

We demonstrated the combination of MetaOCaml with different tools and tech-
niques, which allow optimizations that are far more time-consuming, difficult and
error-prone to implement in pure C or Fortran. Table 7.1 provides a summary of these
techniques.

General Optimization Techniques

The basis of all optimizations is knowledge about which software tools to choose and
how they influence the running time of an executable. This concerns issues like the tun-
ing of the run-time system or guidelines for speed-aware coding. Especially floating-
point operations and values need extra care in order to enable OCaml to use an al-
ternative unboxed implementation. Unboxed floating-point operations make OCaml
a recommendable choice for numerical computing. Additionally, the efficient imple-
mentation of function applications in OCaml allows the use of recursion without heavy
speed losses.

Using the few new constructs introduced by MetaOCaml, the implementer can gen-
erate optimized code while being guided by a type system which guarantees the type
correctness of generated code statically. Furthermore, code is generated at run time,
which allows the application of optimizations depending on run-time information.

The current implementation of MetaOCaml provides bytecode and native compila-
tion for i386 platforms. Nevertheless, the native-code compiler, which is more relevant
for high-performance computing, is still in an unstable development state.

OCaml, as basis of the MetaOCaml distribution, provides a simple interfacing
mechanism to access C primitives like OCaml function. This allows to integrate hand-
optimized C code or external C libraries into (Meta)OCaml programs. This mechanism
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holds the implementer accountable for type-correct handling of OCaml values in C
code. Still, for high-performance computing, interfacing to C is a good choice in or-
der to benefit from low-level, machine-dependent optimizations hard to reproduce in
MetaOCaml.

Implicitly heterogeneous multi-stage programming provides a restricted but type
safe means of exporting OCaml computations to C or Fortran. Code fragments con-
sisting of constructs which have a counterpart in C or Fortran are transformed to the
respective target language by a lightweight translation process, called offshoring. The
source code is then compiled by an optimizing C or Fortran compiler and linked to
the running OCaml program. As this process is implicit, offshoring is hygienic in the
sense that the application programmer has no need to leave the host language. At the
same time, he benefits from all optimizations applied by the external compiler. The
offshoring mechanism is part of the official MetaOCaml release but is still in a state of
infancy. Nevertheless, it provided the best results in terms of speedup, abstraction and
type safety.

The current implementation of just-in-time compilation for OCaml bytecode turned
out to be a bad choice for high-performance computing. Though bytecode programs
run significantly faster, they cannot compete with a native compilation.

Matrix Multiplication as Testbed for Optimization Techniques

We presented three case studies, each demonstrating a certain aspect in order to value
MetaOCaml as tool for program optimizations.

The example matrix multiplication implementations show that C allows low-level
optimizations which cannot be applied directly in OCaml without modifying the com-
piler. Especially the use of a cache-friendly memory allocation made an iterative matrix
multiplication in C run more than three times faster than the respective implementation
in OCaml.

Still, MetaOCaml simplifies the implementation of high-level optimizations which
would be complex and error-prone to reproduce in C. For the multiplication of n× n
matrices, the fastest program ran about 2.5 times faster than the fastest implementation
of an iterative matrix multiplication in C. This OCaml implementation uses a varia-
tion of Strassen’s (1969) algorithm, which switches to an offshored iteration for sub-
problems below a certain threshold. As offshoring provides code generation at run
time, an optimal threshold could be approximated by preceding minor benchmarks.
Furthermore, this implementation uses exclusively the high-level language of Meta-
OCaml and, still, benefits from the implicit low-level optimizations performed by the
C compiler. Therefore, offshoring is highly recommended for all situations where the
restricted syntax of the object language is expressive enough. Unfortunately, the cur-
rent official release of offshoring is rather unstable and still needs time to reach a certain
level of maturity.

MetaOCaml turned out to be a good choice for implementing a loop unrolling. By
using run-time code generation it can be adjusted to perform well with the cache size of
the target machine. Respective benchmarks of a Strassen implementation were among
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the best of all results. Unfortunately, the latest native-code implementation of Meta-
OCaml still is in a state of infancy as tests revealed a defective allocation of arrays.

A rather simple optimization in MetaOCaml is the deactivation of boundary checks
in array indexing operations. One of our implementations using arrays of arrays prof-
ited by this optimization showing a speedup of 2.68. Still, the implementer should be
aware of the risks of using these unsafe operations, which may obscure invalid array
accesses.

Domain-specific Optimizations

Another aspect of multi-staged programming is presented in a case study on image
processing. Using MetaOCaml for the implementation of a domain-specific language
can simplify the development of an optimizing compiler back end. After scanning and
parsing an image processing specification, an online partial evaluater constructs a sim-
plified AST. The subsequent code generation phase combines second stage code frag-
ments to produce an optimized code object. This residual function is then applied on
each pixel of an input image in order to produce a processed output image. Compared
to an implementation using pure interpretation, our optimizations pay off already for
input images of the size of GUI icons.

For parallel programming, the combination of the Message Passing Interface (MPI)
with MetaOCaml allows separate optimizations within each processes of a parallel
run-time environment. In this thesis, we also presented a design by Herrmann (2005),
which has three layers of abstraction: in the middle layer, an embedded parallel speci-
fication language is used to implement the computational structure of a skeleton func-
tion. In the layer above, an application developer can use such a skeleton without the
need for expert knowledge in the domain of parallel computing. In the layer below,
parallel specifications are specialized for each target process. This is accomplished by
a function which generates code at run time, depending on the process identifier in a
distributed parallel environment.

Complementing the parallelization with MPI, the offshoring of a small but compu-
tation intensive fragment of code can generate additional speedup. In the benchmark
shown, this optimization produced a speedup of more than 2 for the implementation
of a parallel Karatsuba multiplication.

Final Conclusions

To put it in a nutshell, we showed that MetaOCaml can be combined with different
tools and techniques to write optimizations at any implementation level. Each solution
can be tailored to the needs of the respective application domain. Though some of
the tools we used were still rather unstable, we were able to narrow significantly the
gap between efficient but error-prone, hand-optimized C code and high-level software
design using functional and object oriented abstractions.



Appendix A

Matrix Multiplication Benchmark
Results

• Architecture: 1 GHz Dual Pentium III, 512 MB memory.

• Operating System: Fedora Core 1 Linux.

• GCC 3.3.2 for all C programs and external C modules

• Native compiler of

– MetaOCaml version 3.07+2[+Shared] for all programs not using offshoring.

– MetaOCaml version 3.08.0 alpha 023 for all programs using offshoring.

• Configuration:

– Optimization option -O3 for all C implementations.

– Tile width 128 (= 27) for recursive implementations.

– Unrolling width 32 (= 25) for all +U implementations.

– Boundary checks disabled for all implementations.1

The identifiers used for the implementations are given in Table 3.1 on page 36 and
Table 3.2 on page 52. The entries of column n give the logarithmic input matrix width
of each respective run. An asterisk (∗) marks the fastest runs for both n = 10 and
n = 11.

1 In the case of offshoring, the compiler option for unsafe array operations makes the executable fail at
run-time. Apparently, the implementation of offshoring coming with MetaOCaml 3.08 alpha 023 does not
generate code for functions Array.unsafe_get and Array.unsafe_set. Nonetheless, ordinary array
accesses, which have a bound-check semantics in OCaml, are mapped directly to unsafe array accesses in
C.
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Implementation n pre proc post total
IterOrd OAa 7 0, 000 0, 039 0, 000 0, 039
IterOrd OAa 8 0, 000 0, 869 0, 000 0, 869
IterOrd OAa 9 0, 000 10, 781 0, 000 10, 781
IterOrd OAa 10 0, 000 98, 990 0, 000 98, 990
IterOrd OAa 11 0, 000 800, 102 0, 000 800, 102
IterOrd CAa 7 0, 002 0, 020 0, 001 0, 022
IterOrd CAa 8 0, 008 0, 377 0, 003 0, 388
IterOrd CAa 9 0, 031 3, 518 0, 013 3, 562
IterOrd CAa 10 0, 114 29, 074 0, 049 29, 238
IterOrd CAa 11 0, 423 363, 876 0, 208 364, 507
IterRow OA 7 0, 004 0, 064 0, 002 0, 069
IterRow OA 8 0, 014 2, 605 0, 006 2, 625
IterRow OA 9 0, 047 24, 335 0, 025 24, 407
IterRow OA 10 0, 185 194, 167 0, 102 194, 454
IterRow OA 11 RangeLimitExceeded
IterRow OB1 7 0, 002 0, 210 0, 001 0, 213
IterRow OB1 8 0, 008 3, 108 0, 007 3, 123
IterRow OB1 9 0, 034 28, 341 0, 022 28, 398
IterRow OB1 10 0, 132 225, 029 0, 099 225, 259
IterRow OB1 11 0, 524 1812, 737 0, 444 1813, 704
IterRow CA 7 0, 000 0, 025 0, 000 0, 025
IterRow CA 8 0, 000 0, 796 0, 000 0, 796
IterRow CA 9 0, 000 8, 533 0, 000 8, 533
IterRow CA 10 0, 000 74, 277 0, 000 74, 277
IterRow CA 11 0, 000 613, 138 0, 000 613, 138
Iter2D OB2 7 0, 002 0, 257 0, 001 0, 261
Iter2D OB2 8 0, 010 2, 856 0, 008 2, 874
Iter2D OB2 9 0, 041 27, 763 0, 026 27, 830
Iter2D OB2 10 0, 157 221, 194 0, 104 221, 455
Iter2D OB2 11 0, 620 1791, 628 0, 476 1792, 724
Iter2D OB2+C 7 0, 002 0, 037 0, 001 0, 041
Iter2D OB2+C 8 0, 010 0, 796 0, 007 0, 813
Iter2D OB2+C 9 0, 038 9, 209 0, 025 9, 273
Iter2D OB2+C 10 0, 155 74, 193 0, 106 74, 454
Iter2D OB2+C 11 0, 620 588, 413 0, 480 589, 513
IterTrp OAa 7 0, 003 0, 037 0, 000 0, 040
IterTrp OAa 8 0, 008 0, 700 0, 000 0, 709
IterTrp OAa 9 0, 053 5, 576 0, 000 5, 629
IterTrp OAa 10 0, 262 44, 436 0, 000 44, 698
IterTrp OAa 11 1, 167 350, 046 0, 000 351, 212
IterTrp OB2 7 0, 004 0, 085 0, 003 0, 093
IterTrp OB2 8 0, 022 1, 073 0, 013 1, 108
IterTrp OB2 9 0, 095 8, 374 0, 033 8, 502
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IterTrp OB2 10 0, 383 67, 368 0, 282 68, 034
IterTrp OB2 11 1, 540 529, 940 0, 653 532, 133
IterTrp CAa 7 0, 002 0, 018 0, 001 0, 021
IterTrp CAa 8 0, 009 0, 528 0, 003 0, 540
IterTrp CAa 9 0, 042 4, 203 0, 012 4, 256
IterTrp CAa 10 0, 163 33, 711 0, 050 33, 923
IterTrp CAa 11 0, 696 268, 958 0, 205 269, 859
IterTrp CA 7 0, 001 0, 019 0, 000 0, 020
IterTrp CA 8 0, 005 0, 547 0, 000 0, 551
IterTrp CA 9 0, 023 4, 357 0, 000 4, 380
IterTrp CA 10 0, 097 34, 912 0, 000 35, 009
IterTrp CA 11 0, 453 278, 716 0, 000 279, 169
IterTrp OAa+U 7 1, 017 0, 021 0, 000 1, 037
IterTrp OAa+U 8 0, 764 0, 572 0, 000 1, 336
IterTrp OAa+U 9 0, 833 4, 559 0, 000 5, 392
IterTrp OAa+U 10 1, 001 36, 289 0, 000 37, 290
IterTrp OAa+U 11 2, 240 286, 750 0, 000 288, 990
IterTrp OB2+C 7 0, 002 0, 033 0, 001 0, 037
IterTrp OB2+C 8 0, 010 0, 548 0, 007 0, 565
IterTrp OB2+C 9 0, 039 4, 377 0, 024 4, 439
IterTrp OB2+C 10 0, 154 34, 991 0, 108 35, 252
IterTrp OB2+C 11 0, 625 279, 111 0, 482 280, 219
IterTrp OAa+O 7 0, 873 0, 035 0, 000 0, 908
IterTrp OAa+O 8 0, 809 0, 588 0, 000 1, 396
IterTrp OAa+O 9 0, 865 4, 750 0, 000 5, 615
IterTrp OAa+O 10 1, 124 37, 459 0, 000 38, 583
IterTrp OAa+O 11 2, 314 296, 909 0, 000 299, 223

RecOrd OA 7 0, 006 0, 064 0, 003 0, 073
RecOrd OA 8 0, 031 0, 499 0, 014 0, 544
RecOrd OA 9 0, 117 3, 935 0, 050 4, 102
RecOrd OA 10 0, 512 31, 449 0, 211 32, 172
RecOrd OA 11 RangeLimitExceeded
RecOrd OB1 7 0, 004 0, 109 0, 004 0, 118
RecOrd OB1 8 0, 026 1, 073 0, 014 1, 113
RecOrd OB1 9 0, 110 7, 037 0, 049 7, 197
RecOrd OB1 10 0, 490 55, 228 0, 223 55, 941
RecOrd OB1 11 2, 339 443, 985 1, 008 447, 332
RecStr OA 7 0, 006 0, 041 0, 003 0, 050
RecStr OA 8 0, 029 0, 317 0, 012 0, 358
RecStr OA 9 0, 122 2, 523 0, 051 2, 696
RecStr OA 10 0, 526 16, 945 0, 219 17, 690
RecStr OA 11 RangeLimitExceeded
RecStr OB1 7 0, 004 0, 090 0, 004 0, 098
RecStr OB1 8 0, 024 0, 755 0, 013 0, 792
RecStr OB1 9 0, 110 5, 373 0, 049 5, 532
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RecStr OB1 10 0, 499 39, 045 0, 231 39, 776
RecStr OB1 11 2, 304 320, 361 15, 698 338, 363
RecStr OA+U 7 1, 116 0, 045 0, 007 1, 168
RecStr OA+U 8 0, 816 0, 259 0, 017 1, 091
RecStr OA+U 9 1, 186 1, 737 0, 049 2, 972
RecStr OA+U 10 1, 382 12, 135 0, 201 13, 718
RecStr OA+U 11 RangeLimitExceeded
RecStr OB1+C 7 0, 004 0, 020 0, 004 0, 028
RecStr OB1+C 8 0, 026 0, 226 0, 013 0, 264
RecStr OB1+C 9 0, 110 1, 892 0, 049 2, 051
RecStr OB1+C 10 0, 575 15, 098 0, 240 15, 913
RecStr OB1+C 11 2, 359 150, 010 14, 237 166, 606 *
RecStr OA+O 7 0, 731 0, 024 0, 006 0, 760
RecStr OA+O 8 0, 753 0, 207 0, 012 0, 973
RecStr OA+O 9 1, 109 1, 479 0, 054 2, 642
RecStr OA+O 10 1, 250 10, 728 0, 217 12, 194 *
RecStr OA+O 11 RangeLimitExceeded



Bibliography

Adnan M. Agbaria and Roy Friedman. Starfish: Fault-tolerant dynamic MPI programs
on clusters of workstations. In Proceedings of the IEEE Symposium on High Performance
Distributed Computing, pages 167–176, 1999.

Gene Myron Amdahl. Validity of the single-processor approach to achieving large
scale computing capabilities. In AFIPS Conference Proceedings, Vol. 30, pages 483–485.
AFIPS Press, Reston, Va., 1967.

Greg Burns, Raja Daoud and James Vaigl. LAM: An Open Cluster Environment for
MPI. In Proceedings of the Supercomputing Symposium, pages 379–386, 1994. http:
//www.lam-mpi.org/.

Cristiano Calcagno, Eugenio Moggi and Walid Taha. ML-like inference for classifiers.
In Proceedings of the European Symposium on Programming (ESOP’04), Lecture Notes in
Computer Science 2986, pages 79–93. Springer-Verlag, 2004.

The Caml Consortium. The Caml language, 2005. http://caml.inria.fr/.

Emmanuel Chailloux, Pascal Manoury and Bruno Pagano. Développement d’Application
avec Objective CAML. O’Reilly France, 2000. Preliminary English translation: http:
//caml.inria.fr/oreilly-book/.

Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala and Mithuna Thottethodi.
Recursive array layouts and fast parallel matrix multiplication. IEEE Transaction on
Parallel and Distributed Systems, 13(11):1105–1123, November 2002.

Albert Cohen, Sébastien Donadio, Maria-Jesus Garzaran, Christoph Herrmann and
David Padua. In search of a program generator to implement generic transforma-
tions for high-performance computing. Science of Computer Programming, 2005. Ac-
cepted for publication.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Intro-
duction to Algorithms. MIT Press, 2001.

Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz and Walid Taha. DSL imple-
mentation in MetaOCaml, Template Haskell and C++. In Christian Lengauer, Don
Batory, Charles Consel and Martin Odersky, editors, Domain-Specific Program Genera-
tion, Lecture Notes in Computer Science 3016, pages 51–72. Springer-Verlag, 2004.

107

http://www.lam-mpi.org/
http://www.lam-mpi.org/
http://caml.inria.fr/
http://caml.inria.fr/oreilly-book/
http://caml.inria.fr/oreilly-book/


108 BIBLIOGRAPHY

Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: transforming recursive equa-
tions into programs with block structure. Theoretical Computer Science, 248(1–2):243–
287, 2000.

Jason Eckhardt, Roumen Kaiabachev, Emir Pašalić, Kedar Swadi and Walid Taha. Im-
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