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A B S T R A C T

General-Purpose computing on GPUs (GPGPU) provides the opportu-
nity to utilize the tremendous computational power of graphics accel-
erators for a wider set of problems. These devices leverage massive
parallelism to achieve high performance, however, creating highly par-
allelized code which is optimized for the characteristics of GPUs is no
simple task. The polyhedron model is used successfully to parallelize
code in many domains. We use polyhedral techniques to generate high
performance CUDA code for specific problems on specific architectures
and evaluate if automatically generated code is able to reach or exceed
the performance of manually optimized code.

In this thesis we focus our research on tensor contractions and
General Matrix-Matrix Multiplication (GEMM). We identify aspects
that are crucial for high performance and deduce strategies for auto-
matic code generation. These strategies are defined as transformations
on polyhedral descriptions. Our experiments suggest that polyhedral
code generators are able to generate Compute-Unified Device Archi-
tecture (CUDA) code that achieves the same level of performance as
manually optimized codes.
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1
I N T R O D U C T I O N

1.1 motivation

Driven by the continuous strong market demand for high quality
computer graphics in end user systems, enormous efforts have been
invested to enhance the graphical capabilities of computers. Since the
appearance of 3D graphics and the first graphics cards in the mass
market in the 1990s it finally became clear that a general purpose CPU

is not the tool of choice for all types of computational problems when
it comes to high performance.

Graphical processing requires a very high throughput of floating
point operations - think of a state of the art video game that renders
complex environments with over 60 frames per second. Each pixel of
each frame needs to be calculated and painted within a very short
time interval. The CPU was not able to handle this tremendous task
on an adequate level and consequently new hardware, the Graphics
Processing Unit (GPU), was developed. There is one characteristic
that is inherent to many graphical calculations: the high potential for
parallelism. GPUs are designed to exploit this characteristic and to
deliver high performance in this scenario.

The result of the arrival of GPUs in the mass market is that today’s
computers are equipped with a massive parallel computing device
which provides computing power that is orders of magnitude higher
then that of CPUs (see Figure 1). Moreover, the calculations performed
on GPUs are not limited to graphics anymore, GPGPU designates the
process of moving all sorts of computationally expensive parts which
can be parallelized to GPUs. Examples can be found in various fields,
from scientific computing, e.g., electronic structure calculations in
quantum chemistry, to multimedia applications, e.g., voice recognition
or augmented reality.

The drawback of GPGPU is, apart from the limited problem space
which can be handled efficiently, that developing parallel programs is
very complex and more difficult than developing sequential programs.
In order to achieve high performance, developers have to parallelize
problems with respect to specific hardware characteristics of different
GPU architectures, e.g., memory sizes, caches or access patterns. Efforts
have been made to relieve the developers from this complex task.
Although specialized libraries for specific problems exist and allow
the developer to use optimized codes written by experts, automatic
code generation for GPUs is needed to tackle a larger set of problems.

1



2 introduction

Figure 1: Theoretical Floating-Point Operations per Second for CPUs and
GPUs (Image from[30])

The concept of parallel programming is not new and the technol-
ogy exists to detect data dependencies in programs and to generate
parallelized codes automatically. The difficulties arise from the aim
to generate high performance code which is competitive to hand-
optimized code. Autotuning and machine learning have been used
to search the space of possible codes for optimal solutions. Another
approach is to model a problem on an abstract level, e.g. with the
polyhedron model [14], and to transform this model in a way that
allows parallel execution. The performance of the generated code
depends on the characteristics of the transformation.

1.2 objective

This thesis is concerned with performance optimization of generated
polyhedral codes on GPUs. For this purpose, we analyse the best hand-
optimized codes for specific problems and determine the aspects that
are crucial for their high performance. In a next step, we use the
results of this analysis and try to generate code that yields the same
performance using polyhedral techniques automatically.

Because high performance codes have to be optimized with respect
to architectural characteristics of the target platform, we limit our re-
search to NVIDIA GPUs and CUDA. We differentiate between hardware
of the compute capability 1.x and 2.x (see Section 2.2).



1.3 outline 3

1.3 outline

The organization of the thesis is as follows. In Chapter 2 we give
the required background information. Chapter 3 presents the hand-
optimized codes on which our research is based and shows the mea-
sures necessary for optimizing the code. Subsequently, in Chapter 4,
we use polyhedral techniques to generate code that aims for the same
performance than the hand-optimized codes. We also present Treduda,
a tool that generates CUDA code for tensor operations, which was
used to implement and evaluate different transformations. Chapter 5

concludes the thesis.





2
P R E R E Q U I S I T E S

2.1 parallel programming

In Section 2.1.1 we give a short overview of parallel computer architec-
tures and show to which category GPUs belong and which principles
are used for parallelization. In Section 2.1.2 we introduce the polyhe-
dron model to the amount needed for this thesis.

2.1.1 Parallel Computer Architectures

Flynn’s Taxonomy [15] is an established classification of computer
architectures which differentiates them according to their ability to
handle instruction or data streams sequential.

The classic von Neumann architecture, i.e., a non-parallel computer,
implements the Single Instruction Single Data (SISD) principle. A con-
trol unit fetches instructions from a single instruction stream and uses
only a single data stream as input, i.e., a control unit loads one piece
of data in one Arithmetic Logic Unit (ALU) (provided that it is an
arithmetical instruction and not an instruction that deals with control
flow) and executes the instruction.

Data parallelism can be obtained by allowing several data streams as
input, this principle is called Single Instruction Multiple Data (SIMD).
In one clock cycle a control unit loads data from several data streams
into several ALUs and executes the same instruction on each unit
synchronously. Intel’s Streaming SIMD Extensions (SSE) [33] is an
example for this principle.

Another way to obtain parallelism is by using several instruction
streams and one data stream, hence the name Multiple Instruction
Single Data (MISD). This approach is suited for pipelining, since various
instructions are executed on data from one input.

The last category Flynn describes is Multiple Instruction Multiple
Data (MIMD). This architecture implements task parallelism by pro-
viding the possibility to control explicitly which instruction stream
operates on which data stream. Multiple processors execute their own
set of instructions on allocated data and there is no implicit synchro-
nization. The input program is in charge of the parallelism, especially
of synchronization and communication.

Mixtures and specializations of the four categories described by
Flynn are possible and prevalent. Single Program Multiple Data (SPMD)
[13] refers to an architectures that executes the same program on
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many processors. Each processor is free to take a different control
path (thread) in the program and operates on possibly different data.
Like in MIMD, the parallelism has to be modeled explicitly in the
program. SPMD has proven to be very successful in the field of High
Performance Computing (HPC) and it is the principle predominant
technologies like Message Passing Interface (MPI) [16] and Open Multi-
Processing (OpenMP) [10] are based on.

The architecture GPUs are based on is Single Instruction Multiple
Threads (SIMT) [30]. Processors of this architecture are arranged in
groups called multiprocessors. Each multiprocessor consists of one
control unit, several processors and several ALUs. Like SPMD, the same
explicitly parallelized program is executed on all processors, each
taking a possibly different control path. Like SIMD, one control unit
is used per multiprocessor to fetch instructions from the instruction
stream and to forward it to all processors in the group. Only proces-
sors of a multiprocessor that require the same instruction, i.e., that
have taken the same control path in the program, are able to execute
in the same clock cycle. If a processor in the group needs another
instruction, the multiprocessor has to switch between control paths,
serially executing each of them, and parallelism is lost.

We refer to Section 2.2 for further details on NVIDIA hardware.

2.1.2 Polyhedron Model

One objective of this thesis is to generate GPU code for specific prob-
lems automatically, i.e., we want to transform a problem in a way
that it can be executed on a SIMT architecture. In order to accomplish
this task, we require a representation of the problem to work with.
In particular, we need a model of the loop structure of the problem.
We are then able to apply transformations to the model that change
the loop structure but that do not change the outcome. By choosing a
transformation that changes the structure to fit the SIMT architecture,
we are able to execute the problem on GPUs.

We use the polyhedron model [24, 14] to represent the loop structure
of a computational problem. A program can be modeled as a set of
statements. Each statement S consists of a ordered set T of instructions
which are executed in the same iterations of a loop nest. We describe
the iterations of a statement using an iteration domain D. D is a set
of points in Zn for some n ∈ N. Each point p ∈ D represents one
specific iteration of the surrounding loop nest. We use a schedule Θ
to define the order of execution for the iterations of a statement. Θ is
a relation between D and a target space O = Zm (for some m ∈ N).
The lexicographic order of O determines the order of execution. A
statement S = (T ,D,Θ) defines all instances of the instructions in T
and their order of execution.
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We describe the problems we want to execute on the SIMT architec-
ture as a set of statements. Note that the polyhedron model has certain
restrictions and that it cannot model all computational problems, e.g.,
the loop bounds have to be linear expressions. However, the model
can be used to describe a wide range of problems and it is apt for our
purpose.

The following code snippet is a very simple example of a program.
Notice that all loop iterations can be executed independently from
each other, i.e., no iteration depends on data from another iteration.

for (int i=0; i<M; i++) {

S: A[i] = i;

} �
We can express this program using the polyhedron model.

T = {A[i] = i; }

D = {(i) | 0 6 i < M}

Θ = {(i)→ (i)}

In order to execute this program efficiently on a SIMT architecture,
we need to distribute all points in T among the multiprocessors. Let
x = 16 be the number of processors in a multiprocessor. We want to
transform the program in a way that allows us to calculate x points of
T per multiprocessor. We can transform the model by modifying Θ,
i.e., we change the order of execution.

Θ ′ = {(i)→ (j,k) |(1− x) + i 6 x · j 6 i,
i = x · j+ k}

We introduce another ordering dimension by increasing the dimen-
sion of the target space from 1 to 2. Then, we map all values of i to j
and k. In this case we use a tiling that divides values of i into groups
of size x. S ′ = (T ,D,Θ ′) is a model of the following code snippet.

for (int j=0; j<bM16c; j++){

for (int k=0; k<min(16, M− 16 · j); k++) {

int i = 16 · j+ k;
S ′: A[i] = i;

}

} �
We see that we have divided the problem into equal parts of size x

(if M is a multiple of x). We can use this order of execution to divide
all points in T among different multiprocessors, each processing x
different points.

In Section 4.2 we show another example usage of the polyhedron
model and explain in detail how we use it to generate CUDA code.
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Figure 2: Different design philosphies of CPUs and GPUs (Image from [30])

2.2 cuda

We introduce Compute-Unified Device Architecture (CUDA) in this
section. At first, we explain NVIDIA’s hardware implementation of
the Single Instruction Multiple Threads (SIMT) architecture. Then we
describe the programming model that is used to control the hardware.

2.2.1 Hardware

The reason why a GPU performs better than a traditional CPU when
it comes to parallel computing is the fundamental difference in the
processor design [30, 29, 30]. CPUs are optimized for sequential code
performance and dedicate a large portion of the chip area to the im-
plementation of control logic algorithms and data caches. In contrast,
GPUs maximize the chip area that is used for floating point operations
and, therefore, reduce the complexity of the control logic and the size
of the data caches, as illustrated in Figure 2. While a CPU typically
supports 1-2 hardware threads and uses sophisticated algorithms and
large caches to load the ALUs with the work of these few hardware
threads, the GPU takes advantage of massive multithreading to hide
latency. If one hardware thread is stalled, the processor is able to
find work within a large pool of hardware threads waiting for execu-
tion [22]. A GPU consists of hundreds of processors each supporting
hundreds of hardware threads and, in order to utilize the full poten-
tial, a computational problem needs to be parallelized to divide the
workload among this massive number of hardware threads.

2.2.1.1 Streaming Multiprocessor

The SIMT architecture, which is the basic concept behind GPUs, was
introduced in Section 2.1.1. NVIDIA implements this concept using
Streaming Multiprocessors (SM). A GPU has many SMs, each SM includ-
ing several (8 or 32 in current implementations) CUDA cores, capable
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of integer and single precision calculations, and a warp scheduler. All
threads are organized in groups of 32 threads, called a warp. The warp
scheduler is the implementation of the control unit in the SIMT architec-
ture. It loads instructions required by the threads and forwards them
to the corresponding CUDA cores. Parallelism is obtained if many
threads require the same instruction, i.e., follow the same control path
in the program.

A Streaming Multiprocessor (SM) creates, manages, schedules and
executes warps [30], each thread of which has its own instruction
address counter and register state. Even though all threads of a warp
start with the same program adress, they are free to take different
control paths and execute independently.

All 32 threads of a warp do not necessarily need to be executed in
parallel, even if they require the same instruction. Since some NVIDIA
GPUs have only 8 CUDA cores per SM, there is a further separation
in half-warps and quarter-warps which are executed serially. In ad-
dition, CUDA cores are only capable of integer and single precision
operations, if a double precision operation or a transcendental opera-
tion, like sin, needs to be calculated parallelism is lost, because a SM

includes only small number of double precision and transcendental
units. This is a result of the design which is optimized for a high
throughput of single precision operations.

An SM has a set of 32-bit registers, as well as on-chip memory at his
disposal. The registers are allocated to specific threads of a warp and
the on-chip memory is shared between all threads of a thread block.
A thread block is a group of warps, or from a different perspective,
a thread block inherits a number of threads which are organized in
warps. If the number of threads is not a multiple of the number of
threads in a block, padding is used. All threads of a block have access
to the same part of the on-chip memory. This is called the scratchpad
memory. In Section 2.2.2.2 the memory hierarchy of CUDA is explained
in detail.

2.2.1.2 Hardware Multithreading

Upon initialization, a set of warps and blocks is assigned to each SM.
The context of each warp, particularly the instruction address and
the register state of each thread, are maintained in the SM for the
entire lifetime of the warp, making switches between different warps
cost-free [30]. The warp scheduler of an SM is able to pick any warp
from a set of warps waiting for execution and to process it. A warp is
waiting for execution if it has threads waiting for the next instruction.
The warp scheduler then fetches and forwards the required instruction
to those threads.

The number of warps that can reside in one SM depends on the
available registers and the available on-chip memory. Based upon the
program, each warp requires a fixed amount of registers and each
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block requires a fixed amount of scratchpad memory to execute. An
SM can only support as many warps and blocks as memory is available.
Additionally, there are conceptional restrictions to the maximum num-
ber of warps and blocks, e.g., current architectures allow a maximum
number of 8 blocks per SM.

2.2.1.3 Architectural Differences

In this thesis we differentiate between NVIDIA devices of the compute
capability 1.x, codename Tesla, and devices of the compute capability
2.x, codename Fermi. The Tesla architecture is based on the g80 archi-
tecture, NVIDIA’s first generation GPU Computing architecture. The
Fermi architecture is the newest generation of NVIDIA’s devices and
brings several improvements.

The most important improvement in terms of performance behavior
and programmability is the introduced cache hierarchy. The Fermi
architecture provides a configurable L1 cache and an L2 cache. The
L1 cache resides in each SM and can be configured to use more or less
of the available on-chip memory. If more memory is used for caching,
less memory is available for the scratchpad memory of the blocks.
Even though caching improves the general performance in most cases,
the developer has to decide which configuration is better suited for
his application in order to achieve the highest performance.

2.2.2 Programming Model

We will now introduce the parallel programming model NVIDIA uses
to control the hardware. From the developers point of view CUDA is a
set of language extensions for C that allows to control the hierarchy of
thread groups, memory and barrier synchronization [30].

Code that is to run on a GPU is written as a C function and is called
a kernel. Upon invocation, the exact number of threads and blocks
has to be specified. The instructions of the kernel are then executed in
parallel by all threads.

2.2.2.1 Threads

When calling a kernel, the number of blocks, called the grid, and the
number of threads per block has to be specified. Figure 3 shows the
organization of the threads.

Both the blocks in a grid and the threads in a block can be arranged
in multiple dimensions. Each thread has knowledge about his exact
coordinates within the grid and the block. This information is an es-
sential part of CUDA programming, because the developer can exactly
control each thread addressing it by its coordinates. Nevertheless, it
is important that all threads in a block follow the same control path
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Figure 3: Cuda Thread organization (Image from [22])

in order do achieve parallelism. A typical CUDA program uses the
coordinates of a thread as a parameter for memory accesses.

Because GPUs are based on data parallelism, the data needs to be
distributed among all threads. Threads which require the same data or
which require data from other threads are assigned to the same block.
Parts of the data which can be processed independently from each
other are divided into different blocks. The reason behind this division
is that only threads in the same block are able to communicate with
each other. This limitation exists, because of CUDAs memory hierarchy
we describe in Section 2.2.2.2.

Each thread executes independently from all other threads. If syn-
chronization is required, the developer has to implement explicit calls
to a barrier synchronization in the program. These calls cause all
threads of a block to be stalled until every thread in the block has
reached the synchronization point. Synchronization is only possible
within a single block and not between different blocks.

2.2.2.2 Memory

A CUDA device has four types of memory: main memory, constant
memory, scratchpad memory and registers. Figure 4 shows how the
memory is organized.

Typically, before a kernel is called the host allocates memory in the
main or the constant memory and loads data to the device. After the
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Figure 4: Cuda Device Memory Model (Image from [22])

kernel call is finished, the application can fetch the result from the
main memory.

Every thread can read data from the main or the constant memory,
but write access is limited to the main memory. Additionally, every
thread has exclusive access to a set of registers and shared access to
the scratchpad memory. Only threads in the same block can access
the same scratchpad memory, a thread can not access the scratchpad
memory of other blocks.

Memory conflicts are not handled by CUDA and result in undefined
behavior. The developer is in charge of avoiding memory conflicts or
resolving them using barrier synchronization or atomic operations.

Threads in a block can communicate with each other using the
scratchpad memory. In one cycle a thread can write data into the
scratchpad and in a later cycle, i.e., after a barrier synchronization,
another thread can fetch this data. It is not possible to send data to a
specific thread.

2.2.3 Performance Considerations

Many different aspects have to be considered when a CUDA program
is developed for high performance. In fact, many different aspects are
relevant to achieve even a moderate performance on the device. Solely
parallelizing a problem, without specializing on the characteristics of
the GPU, is likely to result in an unsatisfying performance.

Finding the optimal implementation on GPUs is very complex. Even
small changes in the code can have a strong impact on the perfor-
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mance and the difference in performance between implementations is
significant. Using multi-variable optimization techniques to find the
best solution is generally not feasible, because the optimization space
on is large and discontinuous [34].

In this section we describe the aspects which are relevant for high
performance.

2.2.3.1 Device Memory

The main and the constant memory are together called device memory,
because they are not on-chip like the scratchpad memory or the
registers. Accordingly, the device memory has a higher latency then
the on-chip memory. Memory access to the device memory is to be
minimized.

Since access to the device memory is inevitable, CUDA provides a
way to achieve high throughput by coalescing memory requests. Data
from the device memory is accessed in chunks, e.g., 128-byte words. If
a thread requires only one byte from the device memory, a complete
chunk has to be transferred from the device memory to the chip. To
not leave the rest of the chunk unused, requests of threads which
require data from the same chunk are coalesced. Because all threads of
a warp are sure to execute the same instruction at a time, the hardware
is able to scan for requests to the same chunk within a warp and to
optimize the access.

Optimal coalescing would be achieved if all 32 threads of a warp
would require consecutive 4 bytes of a 128-byte word. Only one chunk
of data would be transferred from the device memory to the chip this
way. If the threads of a warp access data in a very scattered pattern,
i.e., data of different chunks, coalescing is not possible and a lot of
unused data is transferred leading to a congestion and a performance
loss.

2.2.3.2 Scratchpad Memory

The scratchpad memory is located on the chip and organized in
memory banks. Memory banks are equally-sized memory modules
that can be accessed in parallel. If all addresses contained in a memory
access fall into distinct memory banks, the request can be handled
simultaneously. If two addresses fall into the same memory bank a
conflict appears.

Conflict-free access to the scratchpad memory has a very low latency
and a very high throughput. If the required data is equally spread over
N distinct memory banks, the overall bandwidth is N times higher
than the bandwidth of a single memory module. Conflicting access
to the memory banks enforces a serial execution of the request and,
therefore, reduces the possible throughput.
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Conflicts on memory banks need to be minimized in order to opti-
mize the performance.

2.2.3.3 Latency Hiding

One of the principles of the SIMT architecture is latency hiding through
massive multithreading [30]. While some threads are stalled, e.g.,
because they have to wait for memory transfers, other threads, which
have already received data, are able to work. It is important to optimize
an application in a way that all SMs have threads, i.e., warps, waiting
for execution at all times in order to utilize the hardware [39, 34, 22]
fully. Different approaches exist to achieve this optimization goal.

workload per thread A thread needs to be stalled if it has to
wait for data dependencies or barrier synchronization calls. Instruc-
tions of a program that do not force the thread to be stalled are called
independent instructions [34, 39]. A longer sequence of consecutive
independent instructions allows threads and, therefore, warps to load
the CUDA cores with work for a longer time. Hence, the number of
consecutive independent instructions should be maximized in order
to utilize latency hiding [39, 30].

A common practice to increase the number of consecutive inde-
pendent instructions is preloading [22]. It means that a thread loads
data which will be required for future calculations into a temporary
memory, while currently processing data that has already been loaded.
After the calculation is finished, the data from the temporary memory
is prepared to be processed and the next set of data is preloaded. This
way, the load statements can be added to the independent instructions,
because only write statements enforce the use of synchronization.

sm resource allocation Warps and blocks are assigned to the
SMs when a kernel is invoked. The number of blocks and warps per
SM depends on the size of the scratchpad memory per block and the
number of registers per thread (see Section 2.2.1.2). In general, the
fewer registers and less scratchpad memory an application needs to
execute, the more warps and blocks are assigned to each SM [30]. A
higher number of warps and blocks per SM increases the possibility
that warps are available for execution at any point in time, improving
latency hiding [22].

When an application is designed, register and scratchpad memory
usage have to be considered carefully. If certain thresholds to memory
sizes are exceeded, the number of warps or blocks per SM decreases.
NVIDIA provides a tool called Occupancy Calculator [28] that shows
these thresholds.

The number of threads per block should always be a multiple of
the architecture’s warp size. If it is no multiple, some warps are not
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completely filled with threads and not all CUDA cores can be fully
utilized.

optimizing latency hiding In order to maximize latency hid-
ing, the number of independent instruction and the number of warps
and blocks per SM have to be maximized. Unfortunately, increasing the
number of independent instructions typically requires more memory,
e.g., for storing intermediate results or for data preloading. As a result,
the number of warps or blocks per thread that can be allocated to a
SM decreases. Finding the optimal solution is the task of the developer
and requires experimentation [22, 34].

2.2.3.4 Memory Usage

The different types of memory on CUDA devices have different charac-
teristics. While main and constant memory have a low latency, on-chip
memory has a very high latency. It is important to note that registers
are at least 3 times faster then the scratchpad memory and, because of
that, we have to “use registers to run close to the peak” performance
[39].

A CUDA application usually uses the scratchpad memory as a kind
of custom implemented cache. Since all threads of a block have access
to the scratchpad memory, each thread copies a small portion of data
from the device to the chip in parallel, yielding a high throughput.
After a synchronization, all threads have access to the full amount of
the copied data. This technique can be used to minimize the number
of data accesses to the device memory.
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2.3 tensors

Tensor contractions are very important operations in the field of mul-
tilinear algebra [21]. Many problems in scientific computing can be
expressed as operations on tensors, e.g., in fluid and solid mechanics,
general relativity and quantum chemistry [20, 8]. They have a high
potential for massive data-parallelism and are very compute intensive,
making them apt for the execution on parallel architectures [8]. We
will give a brief introduction to tensors based on a book by Nadir
Jeevanjee [20].

A tensor of type (r,s) on a vector space V is defined as a multilinear
function T on

V × · · · × V︸ ︷︷ ︸
r times

×V∗ × · · · × V∗︸ ︷︷ ︸
s times

A multilinear function is linear in each argument, i.e.,

T(v1 + cw, v2, . . . , vr, f1, . . . , fs)

= T(v1, . . . , vr, f1, . . . , fs) + cT(w, v2, . . . , f1, . . . , fs)

and similar for all the other arguments. Let {ei}i=1,...,n be a basis
for V and {ei}i=1,...,n be the corresponding dual basis. We call

T
j1...js
i1...ir

≡ T(ei1 , . . . , eir , ej1 , . . . , ejr)

the components of T in the basis {ei}i=1,...,n. By choosing the basis ac-
cordingly, we can express tensors as multidimensional arrays. Scalars
are defined as (0,0) tensors, vectors as (0,1) tensors and linear operators
as (1,1) tensors.
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In this chapter we try to find specific aspects and implementation
strategies that are crucial for high performance. We create different
implementations of a computational problem, each focusing on one
or more different performance considerations we introduced in Sec-
tion 2.2.3. By analyzing each implementation and comparing them to
each other, we derive promising implementations strategies and use
those results to create further optimized implementations. At the end
of this process, we want to have two results, a set of good implemen-
tation strategies and a highly optimized implementation that yields
a very high performance. Both results are needed for our approach
to generate high performance CUDA code automatically for specific
applications in Chapter 4.

We started our experiments with the well-known GEMM. Our re-
search showed that finding an optimized implementation is no trivial
task, even for seemingly simple problems. In order to find a high
performance solution, more then 20 different implementations were
necessary. Table 2 shows a list of these implementations. Additionally,
our experiments showed that there is still potential for optimiza-
tions, even in well researched and very common applications. Our
implementations of GEMM yield a higher performance than other state-
of-the-art implementations. MAGMA [1] and NVIDIA’s CUBLAS [31],
two popular CUDA implementations of Basic Linear Algebra Subpro-
grams (BLAS), were used for comparison.

Because of the intensive work on GEMM, it was not possible to
analyze other computational problems at the same level of detail
within the context of this thesis. The study of other problems is future
work. However, the knowledge gained by optimizing GEMM can be
used to optimize similar problems. In Chapter 4 we apply the same
optimization strategies to tensor contractions, a general form of GEMM.

Our experiments were conducted with the hardware specified in
Table 1. Because the same code may yield a vastly different perfor-
mance on different hardware architectures, we used two different
hardware architectures, namely Tesla and Fermi (see Section 2.2.1.3).
We optimized the code for both architectures. CUDA Version 4.1 was
used in the experiments.

17
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9800 GTX SSC GTX 560 Ti

Codename Tesla Fermi

Clock (shader) 1944MHz 1645MHz

Memory 768MB 1024MB

Multiprocessors (SMs) 16 8

Scratchpad per SM 16kB 16kB/48kB

L1 data cache per SM 0kB 48kB/16kB

Peak performance 746 GFLOPS 1263 GFLOPS

Table 1: NVIDIA GPUs used in experiments

3.1 gemm

The General Matrix-Matrix Multiplication (GEMM) is a fundamental
routine in the field of dense linear algebra, which is used in many
numerical algorithms [3]. Because of the importance of GEMM, a lot
of highly optimized hardware specific implementations exist. Major
hardware vendors offer BLAS libraries specialized for their products,
for example Intel’s MKL [19], AMD’s ACML [4] or NVIDIA’s CUBLAS
[31]. There are also open source implementations like ATLAS [2], Go-
toBLAS [12] or MAGMA [1]. In this section, we explain how GEMM

works and show a possibility for its parallelization.

Figure 5: GEMM
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GEMM is given by C← α ·A ·B+β ·C, where A is a matrix of size
MxP, B is a matrix of size PxN, C is a matrix of size MxN and α

and β are scalar parameters. The calculation of the new value of each
element of the matrix C is based on its old value and the original
content is overwritten. For each element Ci,j of C, we have to compute

Ci,j = α ·
P−1∑
k=0

Ai,k ·Bk,j +β ·Ci,j

The calculation of each element of C requires 2+ P multiplications
and 1+ P additions, giving a complexity of O(N3) for quadratic matri-
ces with M = N = P. Figure 5 illustrates GEMM. To calculate one value
of C, the current value of C, one row of A and one column of B are
required.

Elements of C have no dependencies on other values of C, i.e.,
elements of C can be calculated independently from each other. There-
fore, we are able to parallelize GEMM by assigning all elements of C
to different threads. Threads are able to calculate their values of C
independently from other threads and can be executed in parallel.
This is called data parallelism, because all threads perform the same
instructions on different data, i.e., values of A and B. Although the
values of C are independent from each other, there are synergies be-
tween threads we want to exploit to improve the performance. For
example, all elements in a row of C require the same values from the
same row of A for their calculations. Since load operations from the
device memory to the on-chip memory are expensive, finding a way
to reduce load instructions has a positive effect on the performance.
One possibility is to load values of A only once within a block and
store them in the scratchpad memory. This way, all threads within a
block can reuse the values of A.

Figure 6 shows a schematic draft of a possible parallelization of
GEMM that focuses on such synergies. Each value of C is assigned
to a specific thread. In CUDA, threads are identified by their coordi-
nates in the grid (see Section 2.2.2.1). In our example we use a two-
dimensional grid which contains gridSize = gridDim.x · gridDim.y
two-dimensional blocks. Each block can be identified using the coordi-
nates blockIdx.x (bX) and blockIdx.y (bY) and contains blockSize =
blockDim.x · blockDim.y threads. Threads within a block are identi-
fied using the threadIdx.x (tX) and threadIdx.y (tY) coordinates.

We apply a tiling to C and split it into blockDim.x · blockDim.y
equally sized pairwise disjoint subsets of adjacent elements. We use
these subsets TC as our blocks.

TCbX,bY = {Ci,j |bX · blockDim.x 6 i < (bX+ 1) · tX,

bY · blockDim.y 6 j < (bY + 1) · blockDim.y}
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Figure 6: Parallelized GEMM

In the example in Figure 6 we define blockDim.x = M/4 and
blockDim.y = N/4, giving us a tiling of C into 4x4 blocks. The ele-
ments of C in each block are then distributed between all threads in
a block. Since all threads should follow the same control path, the
number of elements of C per block should be a multiple of the number
of threads per block. If this is the case, we can use the thread coordi-
nates as parameters within the same instructions. If it is no multiple,
we need to use branching, which results in a slower performance on
SIMT architectures. Hence, we will only consider cases in which it is
a multiple, especially because we are free to choose a fitting tiling to
avoid branching. It is also arithmetical possible that the host which
calls the kernel extends the dimensions of the matrices to the next
multiple using zero values. The kernel would then carry out more
work, but might still be faster because branching is avoided.

Several ways exist to assign values of C to threads. VT contains
the elements of C that are assigned to a thread. If the number of
elements of C per thread equals the number of threads per block, we
can directly use the thread coordinates as mapping.

VTTBbX,bY ,tX,tY = {(TCbX,bY)x,y | x = tX,y = tY}

If the number of threads per block does not equal the number of
elements of C per block, we need to calculate multiple elements of
C per thread. We designate lX and lY as the number of multiple
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calculations a thread has to perform in the according dimensions. We
can then assign adjacent elements to the thread.

VT ′TBbX,bY ,tX,tY = {(TCbX,bY)x,y |tX 6 x < lX+ tX,

ty 6 y < lY + tY}

Another possibility is to use a cyclic assignment of elements to a
threads within a block.

VT ′′TBbX,bY ,tX,tY = {(TCbX,bY)(tX+lX·x),(tY+lY·y) |

0 6 x <
blockDim.x

lX
,

0 6 y <
blockDim.y

lY
}

It is also possible to assign statements cyclic in one dimension and
adjacent in the other dimension.

After assigning all elements of C to specific threads, we can use
the scratchpad memory to reduce the number of load instructions.
Thereby, each thread in a block loads distinct values of A and B
from the device memory and stores them in the scratchpad. After
a synchronization, all threads of the block have access to all loaded
values. This technique greatly reduces the number of overall load
instructions, because values can be reused within a block.

Scratchpad memory is limited, so we cannot load all required values
of A and B at once for big matrices. We need to split the calculations
into steps. The number of calculations per step equals the stepsize.
Again, we can use zero values if the stepsize is no multiple of P. We
load data from A and B required for one step, calculate and store the
intermediate value in a register. We also need to synchronize before
and after the write accesses to the scratchpad memory.

Listing 1 shows a simple implementation of GEMM that follows the
described concept. It uses a block containing 32x8 threads (blockDim.x
= 32, blockDim.y = 8), each thread calculating 4 elements of C (lX =
4, lY = 1) and calculates 8 intermediate values per step (stepsize = 8).
The parameters lda, ldb and ldc determine the leading dimension, i.e.
the layout, of the arrays.
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Listing 1: Simple CUDA implementation of GEMM. 32x8 blocksize, 32x32

tilesize, 8 stepsize, 4 calculations per thread, load A and B

/* threads(32,8), grid(M/32,N/32) */

extern "C" __global__ void

sgemm_custom_kernel(float *C, const float *A, const float *B,

int M, int N, int P, int lda, int ldb,

int ldc, float alpha, float beta)

{

/* Allocate scratchpad memory */
__shared__ float A_shared[32][8];
__shared__ float B_shared[32][8];

/* Allocate regsiters for calculations per thread */

float C_thread[4] = {0,0,0,0};

/* Adjust the starting position of the data arrays */

A += blockIdx.x * 32;

B += blockIdx.y * 32 * ldb;

C += (blockIdx.x * 32 + threadIdx.x) +

(blockIdx.y * 32 + threadIdx.y * 4) * ldc;

/* Calculate steps */

for(int step=0;step<P/8;step++) {

/* Load data from the device memory to the scratchpad

memory*/
__syncthreads();

A_shared[threadIdx.x][threadIdx.y] =

A[(threadIdx.x) + (threadIdx.y + 8 * step) * lda];

B_shared[threadIdx.x][threadIdx.y] =

B[(threadIdx.y + step * 8) + (threadIdx.x)*ldb];
__syncthreads();

/* Calculate 8 intermediate values for each of the

calculations per thread */

for(int k=0;k<8;++k) {

float a = A_shared[threadIdx.x][k];

for(int j=0;j<4;++j) {

float b = B_shared[threadIdx.y * 4 + j][k];

C_thread[j] += a * b;

}

}

}

/* Write the results from the register to the device memory*/

for(int j=0;j<4;++j){

C[j * ldc] = beta * C[j * ldc] + alpha * C_thread[j];

}

} �
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Table 2 shows a list of GEMM implementations that are based on the
same principle illustrated in Figure 6. At a conceptional level, each
implementation differs in the parameters used for the assignment of
elements of C to specific threads and the stepsize. The table shows
those parameters for each implementation. Additionally, “scratchpad
size” denotes the number of bytes used as scratchpad memory for each
block and “min regs” denotes the minimal number of registers which
are required by each thread. The minimal number of registers depends
on the number of elements of C that are assigned to each thread, i.e.
lX · lY, on required pointers to the memory and on the number of loops
with parametric bounds that can not be fully unrolled at compile time.
Since the compiler is in charge of the register management, “min regs”
can only be used as an indicator for the actual number of registers the
compiler uses for each thread.

In Listing 1 we assume that the minimal number of registers is 10.
It requires 4 registers to store C_thread, 5 registers to store the the
pointers to the memory (A, B, C, A_shared, B_shared) and one register
for the iteration variable step. This is of course a very rough estimate.

Table 2 also shows the percentage of the peak performance an
implementation achieves on our test hardware. On the Tesla device
some implementations could not be executed, because the resource
requirements of a kernel could not be met.

Some implementations, i.e., implementations 1-10, are parameter-
ized and allow us to search a wider space of codes for possible high
performance candidates. The peak performance in the table for those
implementations is the best performance achieved. Implementations
with fixed parameters are optimized implementations of a possible
high performance candidate.

We see a large difference in the performance of the implementations.
On Tesla the lowest achieved performance is 4.4% of the theoretical
peak performance and the highest performance is 38.23%, making a
difference of 33.83 percentage points. On Fermi the best performance
is 35.94% with a difference of 32.43 percentage points to the lowest per-
formance. We also see that the best implementation for Tesla achieves
only average results on Fermi.

Although all implementations are based on the same concept, select-
ing the optimal parameters, i.e., the optimal assignment of elements
of C to threads is crucial for high performance. In order to find the
optimal assignment we have to consider all aspects described in Sec-
tion 2.2.3. One aspect which makes the optimization difficult is latency
hiding. We can either increase the workload per thread, which results
in an increased register and scratchpad memory usage, or we can
optimize the distribution of warps among SMs, which restricts the
available registers and scratchpad memory per thread. Finding an
optimal balance between those opposing factors is crucial. Addition-
ally, other aspects like memory access patterns, e.g., for coalesced
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memory access or for memory banks, lay further restrictions on the
implementations.

In order to find an optimized implementation of GEMM, we need to
search the space of all possible codes in a target-oriented manner and
identify configuration with a potential for high performance. We are
then able to implement an optimized version of those configurations.

3.2 exploration of the code space

The first step in this process is to implement parameterized versions
of GEMM that allow us to easily change crucial characteristics. We can
then use this parameterized versions to test the performance of differ-
ent configurations automatically. The most promising configurations
found by the parameterized implementations are the candidates for
optimization in Section 3.3.

3.2.1 Tesla Architecture

Implementation 3, called sgemm-16-alt.cu, from Table 2 is a param-
eterized version of GEMM. It has two parameters, pY and pL. Each
thread calculates 16 vertical elements of C, i.e., lY = 16 and lX = 1.
This non-quadratic pattern is the consequence of the matrices being
in column-major order. For each element of C we need to load all
values of a row of A and a column of B. Since B is in column-major
order we can read consecutive values of B and leverage coalesced
data accesses to the device memory. To maintain the generic approach
of this implementation, we store only values of B in the scratchpad
memory. Values of A are read by each thread directly from the device
memory.

The number of threads in a block can be changed with the parameter
pY. In this implementation threadDim.x is fixed to 16 and threadDim.y
is set to pY upon execution. If pY is increased, more threads are al-
located to a block and more elements of C are calculated within a
block, resulting in a higher amount of required scratchpad memory.
The second parameter pL can be used to change the stepsize, i.e. the
number of values of B each thread loads from the device memory to
the scratchpad memory per step. The more intermediate values are
calculated in a step, the more independent instructions exist within a
thread. Increasing the stepsize also requires more scratchpad memory.
With the parameters pY and pL we can change the work per thread
and the required amount of scratchpad memory. Hence, we can con-
duct experiments on latency hiding.

Figure 7 shows the performance of implementation 3 on quadratic
matrices of the size 2048 using different configurations. On the x-axis
we see the blocksize which was used in the configuration. Parameter
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Figure 7: Experiment: Tesla, sgemm-16-alt.cu, threadDim.x=16, M=N=P=2048

pY has a direct influence on the blocksize, because in this implementa-
tion threadDim.y equals pY. Parameter pL is illustrated by points of
different shapes. In this experiment, we tested 0 < pY 6 32, because
on Tesla devices the maximum blocksize is 512, and 0 < pL < 16 due
to memory restrictions. Not every combination of pY and pL is valid
or can be executed on the Tesla device, those combinations are not
shown in the graph.

At first, we see that we achieve the best performance with a blocksize
of 256 threads, i.e., pY = 16, and pL = 15. We mark this configuration
for later optimization. We also see that parameter pY has a stronger
effect on the performance then pL. This indicates that, for this imple-
mentation, finding a suitable distribution of warps on the SMs is more
important then increasing the number of independent instructions.
There are other local maxima at 64, 128 and 208 threads per block.
These configurations might also be interesting candidates for further
optimization, since some optimization techniques might not be appli-
cable on the best configuration we found.

We conducted many similar experiments with parameterized ver-
sions of GEMM, see Figures 18, 19 and 20 in Appendix A. The result of
these experiments is a list of characteristics we want to implement in
an optimized version of GEMM for Tesla.

Blocksizes of 256, 128 and 64 threads showed the best performance
in many experiments. For Tesla, we narrowed down the space of
possible codes to those blocksizes, with the priority on 256 threads.
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Figure 8: Experiment: Fermi, sgemm-32-alt.cu, threadDim.x=32,
M=N=P=4096

Using all threads in a block to load a long sequence of consecutive
values of B into the scratchpad memory turned out to be a successful
strategy on Tesla. As a result, we want to implement a non-quadratic
assignment of elements of C to threads and the usage of all available
scratchpad memory for values of B. Hence, we maximise the stepsize.
In Section 3.3.2 we evaluate an implementation of GEMM which is
based on this result.

3.2.2 Fermi Architecture

On the Fermi architecture we follow the same principle to find char-
acteristics of possible high performance implementations as on Tesla
(see Section 3.2.1) and we conduct the same experiments.

Figure 8 shows the result of Implementation 3. We see that the
best performance is achieved with 512 threads per block, each thread
loading either 2 or 4 values from the device memory to the scratchpad
memory. We also see similar peaks at a blocksize of 128 and 256

threads. Again, those blocksizes seem to achieve high performance.
Figures 24, 25 and 26 in Appendix A show the results of additional
experiments.

The most important difference between the Tesla and the Fermi
architecture is the introduced cache hierarchy (see Section 2.2.1.3).
Implementation 15 was created to leverage the cache by loading values
of A and B into the scratchpad and by using a quadratic assignment
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of elements of C to the threads. This technique proved to be successful
for Fermi devices. Table 2 shows that the best performance of a non-
quadratic implementation is 23.43 percent of the peak performance
and Implementation 15 achieves 29.96 percent. It is clear that focusing
on the cache is crucial for the performance.

Our experiments showed that implementations of GEMM that use
512, 256, 128 or 64 threads per block and fully utilize the cache hierar-
chy using a quadratic assignment of elements of C to threads seem to
have the highest potential for high performance on Fermi.

3.3 optimization

We identified specific characteristics for GEMM which have a strong
potential for high performance in Section 3.2. In this section, we
present the optimized implementations of GEMM and evaluate if our
assumptions were correct.

3.3.1 Tesla Architecture

Implementation 11 in Table 2 achieves the highest performance on the
Tesla architecture, reaching a higher performance than the state of the
art implementations of CUBLAS and MAGMA. Detailed graphs of
its performance are shown in Figures 21, 22 and 23 in Appendix A.
Listing 3 in Appendix B shows the kernel.

The number of threads per block in Implementation 11 is 256. Each
thread calculates 16 consecutive horizontal values of C, therefore, each
block calculates 256x16 values of C. The stepsize is 128 and each thread
loads 8 values of B from the device memory to the scratchpad memory
per step. The threads are divided into two groups, the first 128 threads
and the last 128 threads. Each group loads 128 consecutive values of
B, resulting in an optimized coalesced memory access. Conflicts on
memory banks are minimized in this implementation. Each step can
execute a sequence of at least 64 independent instructions per step.
Each block requires 2048 bytes of scratchpad memory and each thread
requires a minimum of 22 registers. Because this kernel fully utilizes
the hardware of the Tesla device, we have to ensure that the compiler
does not use more then 32 registers per thread using the compiler
flag -maxrregcount=32. If it used more than 32 registers, the device
can not allocate enough resources to execute the kernel. Additionally,
unrolling the loops significantly improves the performance.

All identified requirements of Section 3.2.1 are met in this implemen-
tation with respect to all performance considerations of Section 2.2.3.
Table 3 shows that our implementation of GEMM achieves a higher
performance then than state-of-the-art implementations. This indicates
that we have reached a maximum. However, we can not be sure that
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we have reached a global maximum. Further optimizations might be
possible.

Table 3: Comparison between CUBLAS and our optimized GEMM for Tesla
(M = N = K)

N 256 512 1024 1536 2048 3072 3840

CUBLAS 161.17 254.94 275.52 279.35 281.03 275.17 269.17

optimized 207.94 266.3 281.25 284.56 285.76 287.02 287.43

speedup 22.49% 4.27% 2.04% 1.83% 1.66% 4.13% 6.35%

Benchmarks of Implementation 11 (Figures 21, 22 and 23) show that
the dimensions of the matrices have a strong effect on the performance.
It is natural that the peak performance can only be achieved if the
dimensions of matrix C are a multiple of the thread block, since this
is the only way we can avoid branching. But we see that the size of
the M dimension has a far stronger effect on the performance than N
and P. The reason for this behavior is the non-quadratic assignment of
elements of C to threads. If M is no multiple of blockDim.x a many
threads are idle during the whole execution of the kernel. If N is no
multiple of blockDim.y or P is no multiple of the stepsize, all threads
are still able to do some work.

3.3.2 Fermi Architecture

Finding an optimized kernel for the Fermi architecture required more
implementations of GEMM than for the Tesla architecture. Loading
values of matrices A and B into the scratchpad memory, while focus-
ing on coalesced memory access and memory banks, enforces many
restrictions to the possible implementations and limits the space of
possible codes tremendously. For example, the number of elements
in each matrix (A, B and C) needs to be a multiple of the warpsize
in order to avoid branching. Listing 5 in Appendix B shows a script
which uses these restrictions to determine possible configurations. In
Table 4 we see the result of the script for a quadratic assignment of
elements, i.e., lX equals lY.

We restrict our search space to this small number of configurations.
Previous experiments (see Section 3.2) show that 512, 256, 128 or 64

threads per block have a strong potential for high performance on
the Fermi architecture. Therefore, we selected the corresponding 5

configurations (1, 2, 4, 5, 6) for implementation.
The results from the experiments is that Configuration 6 achieves

a similar performance as CUBLAS or MAGMA (35.51% of peak).
Configurations 1 and 2 that use only 64 threads per block achieve a
surprisingly good performance (29.23% and 29.96% of peak), which
approves Volkov [39]. He stated that using less threads and putting
more work into a single thread is a good strategy to achieve high
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Table 4: Possible quadratic configurations for GEMM

id threads tileDim.x tileDim.y stepsize lX lY

1 64 32 32 8 4 4

2 64 48 48 8 6 6

3 144 48 48 12 4 4

4 256 64 64 16 4 4

5 256 80 80 16 5 5

6 256 96 96 16 6 6

7 400 80 80 20 4 4

performance. The best configuration we found is Configuration 4

(37.68% of peak) and its implementation is illustrated in Listing 4 in
Appendix B.

Each of the 16x16 threads of Implementation 19 calculates 4x4

elements of C, therefore each block calculates 64x64 values. A shared
memory size of 2048 and a minimum of 22 registers was used. Each
thread loads 4 adjacent values of A and B from the device memory to
the scratchpad memory. Within a block, loads from B are coalesced.
Loads from A leverage the cache hierarchy. In each step a sequence
of 64 independent instructions is used for the calculation. We use
preloading to increase the number of independent instructions to 74

for the cost of 8 registers. With this implementation we outperform
CUBLAS as shown in Table 5.

Table 5: Comparison between CUBLAS and our optimized GEMM for Fermi
(M = N = K)

N 256 512 1024 1536 2048 3072 3840

CUBLAS 161.95 359.09 425.32 442.63 441.46 440.85 447.97

optimized 265.24 413.15 454.55 461 464.15 466.46 467.49

speedup 38.94% 13.08% 6.43% 3.98% 4.89% 5.49% 4.18%

Implementations 23 - 25 are based on the same configuration, how-
ever, they achieve a very different performance. This is caused by
different memory access patterns to the device memory and the
scratchpad memory. Only one of three implementations is able to
leverage the cache hierarchy of the Fermi devices. We see that not only
the optimal configuration is important, access patterns to the memory
are also crucial for high performance.
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In the previous Chapter 3 we optimized GEMM for high performance.
Based on hardware specific performance considerations, we searched
the space of possible implementations in a target oriented way and
identified characteristics that are crucial for high performance. The
assignment of the elements of the result tensor C to specific threads is
a fundamental aspect for the performance of GEMM and we identified
different patterns to distribute the workload among the threads. In
this chapter we show a concept that allows us to apply these patterns
to a high-level description of GEMM in order to generate CUDA code
automatically. Moreover, we do not limit this concept to GEMM, but
we extend it to tensor contractions, a generalization of GEMM. We are
then able to apply the same patterns that yield high performance on
GEMM to other tensor contractions.

We use the polyhedron model to describe tensor operations and
express the patterns as transformations of the model. The tool Treduda
implements this concept and it is able to generate CUDA code automat-
ically for tensor contractions. The GEMM implementations generated
with Treduda achieve the same performance as the manually opti-
mized codes. On the Fermi architecture, the generated implementation
even outperforms the manually optimized implementation.

In Section 4.1 we discuss related work. Section 4.2 presents Treduda
and the concept used for code generation. The benchmarks of the
generated codes are shown in Sections 4.3 and 4.4.

4.1 related work

With the increasing distribution of multi-core CPUs arose the require-
ment to generate parallelized codes automatically. Software developers
should be able to utilize the computational power of the hardware
without having to deal with platform specific details. Polyhedral com-
pilation is being used successfully in this domain [35, 17].

With the distribution of modern GPUs that support GPGPU comes the
same requirement. Compilers should be able to utilize the additional
computational power of these devices, however, generating a kernel
that yields acceptable performance is not easy (see Section 2.2.3).
Different approaches exist to search the space of possible codes for
good solutions and to optimize the code.

Baskaran et al. [5] implemented CUDA support for PLuTo [11] focus-
ing on coalesced memory access to the device memory and conflict-
free access to the scratchpad memory. They use empirical search to

31
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find good parameters for unrolling and tiling and report reaching
up to 96% of the performance of CUBLAS for GEMM. Ryoo et al. [34]
derive metrics from static code and are able to reduce the optimiza-
tion space by up to 98%. The PoCC compiler [32] is able to explore
the space of legal polyhedral transformations in order to find good
transformations. Another approach is to analyze the program inputs.
Liu et al. [25] use this technique to find good codes. The unrolling of
inner loops [27], the management of data transfers between the device
memory and scratchpad memory [18] and dealing with multiple levels
of parallelism [6] are also crucial for high performance.

Lee et al.[23] presented a compiler framework that translates OpenMP
to CUDA code. The tool C-to-CUDA [7] is able to generate CUDA code
from sequential C code. It uses PLuTo as polyhedral framework and
ClooG to generate code. The performance of the generated code is
reported to be “quite close” to hand-optimized CUDA code.

Mint [36] is a programming model that is specialized on 3D stencil
methods. It generates CUDA code from annotated C code and achieves
80% of the performance of hand-optimized code.

Efforts are made to optimize the performance of tensor contractions.
The tensor contraction engine is able to generate parallel C or Fortran
code (OpenMP, MPI) from a high-level description of a tensor con-
traction [8, 9]. Ma et al. [26] created a framework that maps tensor
contrations to a cluster of GPUs. They focus on the management of
data movement between levels of a memory hierarchy.

The focus of our work is polyhedral code generation for specific
problems on specific architectures. We try to reach or exceed the
performance of hand-optimized code using transformations which
are optimized for these specific problems. Our work complements
previous efforts by giving examples of good transformations.

4.2 treduda

The tool Treduda automatically generates CUDA code for tensor opera-
tions, especially tensor contractions. It requires a high-level description
of a tensor operation as input and the user can choose among a pre-
defined set of generation strategies. Each strategy is parameterized
and is able to generate a set of implementations. All informations
required for the code generation can be deduced from the high level
description.

Tensor operations are expressed as operations on multidimensional
arrays and we use at least two arrays for every tensor operation. The
user defined operations of the high level description are performed
in array O. Array R is used as input and to store the final result. All
values of R are calculated in the form of

Ra1,a2,...,an = α ·Ob1,b2,...,bn
+β · Ra1,a2,...,an
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overwriting the original contents. The scalar parameters α and β are
scaling factors. In order to use Treduda all elements of R have to be
independent from each other, i.e., the calculation of one value of R
must not effect other values of R. In Section 3.1 we expressed GEMM as

Ci,j = α ·
P−1∑
k=0

Ai,k ·Bk,j +β ·Ci,j

We are able to simplify this expression by applying the definition
above. Additionally, we can eliminate the summation symbol using the
Einstein notation, a convention which states that an index is implicitly
summed if it appears in two tensors that multiply each other. GEMM

can then be expressed as

Ci,j = Ai,k ·Bk,j

All tensor contractions can be expressed in this simple form. Another
example is the Riemann-Christoffel curvature tensor which is useful
in general relativity.

Ci,j,k,l = Ai,j,k,l −Ai,l,k,j +Bm,j,k ·Bi,m,l −Bm,l,k ·Bi,m,j

From this high-level description of a tensor operation, we are able
to deduce a representation in the polyhedron model (see Section 2.1.2).
A predefined set of strategies is used to transform this model in a
structure apt for GPUs. We can then use the transformed model as
input for a polyhedron code generator. Finally, we adapt the generated
code to CUDA.

4.2.1 External Tools

Treduda uses ISL [38] and ClooG [37]. ISL is a library that is able to
handle sets and relations of integer points. We use it as implementa-
tion of the polyhedron model. The tool ClooG is a polyhedral code
generator. Based on a polyhedron model represented in ISL, it is able
to generate a corresponding loop structure.

4.2.2 Concept

Treduda uses a high-level description of a tensor operation to generate
CUDA code. We represent the high-level description as a tree structure.
Figure 9 shows the representation of GEMM. Each node of the tree
has the attributes type, name and vars. Some nodes have additional
attributes that are specific to the type, e.g., a node of the type Write
requires the name of a data array. The attribute vars specifies the
iterators which are required in each node. Only the iterators of the
leaf nodes are given, but we are able to deduce the required iterators
for the inner nodes, e.g., the node S_2 requires all iterators of its child
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Figure 9: Internal tree representation of GEMM

nodes. We identify the semantic meaning of an element by its type
and its context. For example, an element of type Multiplication could
be a scalar multiplication or a matrix multiplication. In Figure 9 we
can deduce that node S_2 is a matrix multiplication, because its parent
does not require the iterator k. Basically, we apply the Einstein nota-
tion. Notice that the root node is always of the type Operation and
that the only node of type Write is its first child node.

This representation of tensor operations can be transformed into a
polyhedron model. We use all iterators that are used in the tree as our
iteration domain D.

D = {(i, j,k) | 0 6 i < M, 0 6 j < N, 0 6 k < P}

Each statement Si = (Ti,D,Θi) ∈ P uses the same iteration domain
but a different schedule Θi and executes a different set of instructions
Ti. Multiple possibilities exist to translate the semantics of the tree
to P, i.e., to the instructions Ti and their order of execution Θi. A
generation strategy specifies a specific mapping between the high-
level description in form of a tree and P.

Figure 10 shows one possible representation of GEMM in the polyhe-
dral model. Five statements are required to express the semantic of the
high-level description. S1 is used to define and initialize a temporary
variable that stores intermediate results. We need to make sure that
the instruction of S1 is executed before any other statement requires
the variable and that it is initialized only once, i.e., we need to specify
a order between the statements. A new dimension in the target space
of the schedule is introduced for that cause. The other statements cor-
respond directly to nodes in the tree. S2 corresponds to node named
S_0, S3 to S_1, S4 to S_2 and S5 to S_3. We can use the polyhedral
description in Figure 10 as input for a polyhedral code generator. In
Listing 2 we see how the code for this description looks like.
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D = {(i, j,k) | 0 6 i < M, 0 6 j < N, 0 6 k < P}

Si = (Ti,D,Θi)

T1 = {"float tmp = 0;"}

Θ1 = {(i, j,k)→ (i, j, 0, 0)}

T2 = {"float a = A[i][k];"}

Θ2 = {(i, j,k)→ (i, j, 1,k)}

T3 = {"float b = B[k][j];"}

Θ3 = {(i, j,k)→ (i, j, 1,k)}

T4 = {"tmp += a·b;"}

Θ4 = {(i, j,k)→ (i, j, 2,k)}

T5 = {"C[i][j] = α·tmp + β·C[i][j];"}

Θ5 = {(i, j,k)→ (i, j, 3, 0)}

Figure 10: Polyhedral representation of GEMM code shown in Listing 2

Listing 2: Code generated from polyhedral representation in Figure 10

for (int i=0; i<M; i++) {

for (int j=0; j<N; j++) {

S1: float tmp = 0;

for (int k=0; k<P; j++)

S2: float a = A[i][k];

S3: float b = B[k][j];

S4: tmp += a·b;
S5: C[i][j] = α·tmp + β·C[i][j];

}

} �
In order to execute a tensor operation on a GPU we need to transform

the polyhedral model in a form that allows us to assign iterations to
threads. Each thread is identified by the 4-tuple (blockIdx.x, blockIdx.y,
threadIdx.x, threadIdx.y). We want to map elements of the result ten-
sor (C) to specific threads. Because of the restriction that all elements
of the result tensor have to be independent from each other, each
thread can calculate values of the result tensor in parallel. In order to
assign elements of the result tensor to threads, we modify the target
space of the schedule. The first four dimensions of the target space are
associated with the 4-tuple that identifies a thread in CUDA. The values
of the result tensor that are mapped to these dimension are assigned
to a specific thread. We then remove the loops that correspond to
these 4 dimensions from the generated code and replace their iterators
with the corresponding variable of the 4-tuple. These values are then
executed in parallel.
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We will now describe the different generation strategies imple-
mented in Treduda.

4.2.3 Generation Strategies

Treduda currently implements 9 generation strategies which are all
based on the experiments from Chapter 3. Therefore, they all take a
similar approach to generating CUDA code, e.g., all of them use a tiling
on two loops in order to distribute the elements of the result tensor
among threads. The implementation of other approaches and genera-
tion strategies is future work. In Section 4.2.4 we see that Treduda is
designed for easy extensibility and how new generation strategies can
be added.

As mentioned, all implemented generation strategies use a tiling
on two loops, i.e., they distribute two iterators of the result tensor
among all threads. Hence, they all use a variation of schedule Θ for
lX = tileDim.x

blockDim.x and lY = tileDim.y
blockDim.y .

Θ = {[. . .l1 . . . l2 . . . ]→ [o0,o1,o2,o3,order,o5,order,o7, . . . ] |

(1− tileDim.x) + l1 6 tileDim.x · o0 6 l1,
0 6 o2 6 blockDim.x,

l1 = tileDim.x · o0+ lX · o5+ o3,
(1− tileDim.y) + l2 6 tileDim.y · o1 6 l2,
0 6 o4 6 blockDim.y,

l2 = tileDim.y · o1+ lY · o7+ o4}

The user can select the dimensions l1 and l2 which are to be par-
allelized. The other dimensions of the iteration domain are executed
serially in each thread. Notice that generation strategies have certain
constraints, e.g., the result tensor must have a rank > 2. The parame-
ters tileDim.x and tileDim.y specify the size of a tile, i.e., the number
elements of the result tensor that are assigned to a thread block. The
tileSize has to be a multiple of the blocksize, hence, lX · lY elements
of the tiled dimensions are assigned to each thread. In Θ we use the
dimensions o5 and o7 to address multiple elements within a thread.
In all strategies we use ordering dimensions to define the order of
execution between statements. One ordering dimensions is inserted
after every dimension of the target space beginning after o3.

4.2.3.1 Strategy 1

This strategy is very basic. Each thread calculates multiple elements
of the tiled dimensions and all operations are performed in a single
statement S. The generated code for GEMM that is executed by each
thread has the following form.
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loop o5 {

loop o7 {

loop k {

S(i,j,k)

}

}

} �
The indices i and j are defined by schedule of the strategy. In this

example they are defined as

i = tileDim.x · blockIdx.x+ lX · o5+ threadIdx.x

j = tileDim.y · blockIdx.y+ lY · o7+ threadIdx.y

We see that i and j depend on the coordinates of the thread, hence, all
threads access different points in the iteration domain, i.e., elements
of the result tensor.

We use the compiler’s preprocessor to insert the instructions in the
code. In this example we generate the following statements from the
tree description of GEMM.

#define S_1(i,j,k) B[(k)+(j)*P]

#define S_0(i,j,k) A[(i)+(k)*M]

#define S_2(i,j,k) S_0(i,j,k)*S_1(i, j, k)

#define S_4(i,j,k) C[(i)+(j)*M]

#define S(i,j,k) S_4(i,j,k)=alpha*S_2(i,j,k)+beta*S_4(i,j,k) �
This strategy requires β to equal 1 to be correct, so it can not be

used for tensor operations in general. Nevertheless, it can be used for
testing.

4.2.3.2 Strategy 2

Strategy 2 is an extension of strategy 1. It uses the same tiling but
it separates the final write statement from the other instructions. A
two-dimensional temporary array is needed to store the intermediate
values of the calculation. In order to forward the mapping between the
elements of the result tensor and the temporary array to the statements,
we need to extend the iteration domain by two dimensions.

For GEMM the generated code has the following form.

loop o5 {

loop o7 {

loop k {

CALC(i,j,k,reg1,reg2)

}

}

}

loop o5 {

loop o7 {

WRITE(i,j,k,reg1,reg2)
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}

} �
In addition to the definitions of Strategy 1 we add CALC and

WRITE.

#define CALC(i,j,k,reg1,reg2) (tmp[reg1][reg2] += S_2(i,k,j))

#define WRITE(i,j,k,reg1,reg2) (S_4(i,j,k) = beta*S_4(i,j,k) +

alpha*tmp[reg1][reg2]) �
4.2.3.3 Strategy 3

In strategies 1 and 2 we used a fixed amount of statements (1 and 2).
This strategy generates a dynamic amount of statements based on the
high-level description. Beginning from the innermost contraction in
the tree (if existent), it analyzes for each operation what to do with its
result. Based on the arithmetical meaning of an operation, the result
is either stored in a new temporary variable or it is merged with
an existing one. We try to reuse as many temporary variables, i.e.,
intermediate results, as possible.

The main purpose of this strategy is to implement the algorithm to
reuse intermediate values. The tiling is not focused in this strategy,
hence, we use a very general one. A single element is assigned to one
thread. Strategies 4 to 9 are based on this strategy and apply other
tilings.

The code generated for GEMM has the following form.

INIT_S_2(i,j,k,reg1,reg2)

loop k {

INIT_S_0(i,j,k,reg1,reg2)

S_0(i,j,k,reg1,reg2)

S_1(i,j,k,reg1,reg2)

S_2(i,j,k,reg1,reg2)

}

S_4(i,j,k,reg1,reg2) �
The INIT statements are used to allocate and initialize temporary
variables.

4.2.3.4 Strategy 4, 5, 6

Different possibilities exist to assign elements of a tile to threads in
a block (see Section 3.1). Strategy 4 implements a cyclic distribution,
Strategy 6 an adjacent distribution and Strategy 5 is adjacent in one of
the two tiling dimensions and cyclic in the other.

4.2.3.5 Strategy 7

Strategy 7 is based on Strategy 4 and implements scratchpad memory
usage. In order to use the scratchpad memory efficiently we have to
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apply specific memory access patterns that come with many restric-
tions, e.g., the tile and the block need to be quadratic and a multiple
of 16 in this strategy.

The contraction dimension is split into equally sized steps. Let s be
the stepsize, i.e., the number of iterations of the contraction dimension
per step. In each step we load data from the device memory to the
scratchpad memory. After all required values for the current step are
loaded, we calculate s intermediate values of the contraction.

The code generated for GEMM has the following form.

loop o5 {

SYNC(i,j,k,reg1,reg2)

loop o9 {

LOAD_S_1(i,j,k,reg1,reg2)

}

loop o11 {

LOAD_S_0(i,j,k,reg1,reg2)

}

SYNC(i,j,k,reg1,reg2)

INIT_S_2(i,j,k,reg1,reg2)

loop o7 {

loop o9 {

loop o11 {

INIT_S_0(i,j,k,reg1,reg2)

S_0(i,j,k,reg1,reg2)

S_1(i,j,k,reg1,reg2)

S_2(i,j,k,reg1,reg2)

}

}

}

}

loop o9 {

loop o11 {

S_4(i,j,k,reg1,reg2)

}

} �
In this strategy we use o5 as iterator for the steps and o7 as iter-

ator the calculations within a step, i.e., k = o5 · s+ o7. We need to
insert barrier synchronizations (SYNC) for the correct access to the
scratchpad memory.

4.2.3.6 Strategy 8

Strategy 8 extends Strategy 5 to use the scratchpad memory. It is
optimized for coalesced memory access to the device memory. This
strategy is able to generate code for GEMM which has the same struc-
ture as the best manually optimized code for the Tesla architecture.
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4.2.3.7 Strategy 9

This strategy is based on Strategy 6 and implements scratchpad mem-
ory usage. It is able to generate the best code for the Fermi architecture.
We also implement a preloading technique in this strategy. Preloading
means that we load values from the device memory into the register
before we write them into the scratchpad memory. The purpose of
this technique is to increase the number of independent instructions
(see Section 2.2.3).

<< load values from device memory to register >>

loop step {

<< load values from register to scratchpad >>

<< load values from device memory to register >>

<< calculate >>

}

<< load values from register to scratchpad >>

<< calculate >>

<< write result to device memory >> �
Preloading can be achieved easily in the polyhedral model. We just

need to shift the step dimension ([. . . , step, . . . ]→ [. . . , step+ 1, . . . ])
for the statements that load values from the devide memory.

4.2.4 Structure

Treduda is designed as a C++ library. The user defines the high-level
description of a tensor operation using a tree of TensorStatement
objects. The root of the tree has to be a object of the class Tensor-
Root. Subclasses of TensorStatement are used to specify the type of
each node. The iterators of a tensor operation are represented with
the TensorVariable class and data arrays with the TensorData class.
We use TensorParameter objects to define the upper bound of itera-
tors and the size of the data arrays. A set of iterators is assigned to
each node. Nodes of the type TensorDataAccess can either be read
(TensorDataRead) or write (TensorDataWrite) statements and a single
TensorData object is assigned to them. Each node in a tree knows the
complete context using a reference to a TensorContext object. Nodes of
the type TensorOperation are used to represent operations on tensors.
Currently, addition, subtraction and multiplication are implemented.

Figure 11 illustrates a class diagram of Treduda. The high-level
description of a tensor operation is passed to a CodeGenerator object
which generates the CUDA code. CodeGenerator and CodeGenerator-
CudaIsl are abstract classes and all generation strategies are imple-
mented as a subclass of CodeGenerator. This way, we can reuse large
portions of the code and extend existing strategies.
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Figure 11: Class diagram Treduda
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4.3 gemm

In the previous Section 4.2 we were introduced to Treduda. The tool
implements 9 (see Section 4.2.3) strategies for code generation. Strate-
gies 1 to 6 do not use the scratchpad memory and have less restrictions.
Therefore, these strategies can be used for a wider range of tensor
operations. The specific strategies 7 to 9 use the scratchpad memory
and can only be used to generate code for a limited number of tensor
operations. In this section we evaluate the performance of all strategies
on the Tesla and Fermi architecture.

The graph in Figure 12 shows the performance of implementations
of GEMM that were automatically generated with Treduda using the
general strategies 1 to 6. We see that Strategy 4 is able to achieve about
250 GFLOPS, i.e., about 20% of the peak performance of the Fermi
device. This strategy uses a cyclic distribution of elements to threads.
In contrast, strategies 5 and 6 use a adjacent distribution (in at least
one dimension). We also see that strategies that are based on Strategy 3

show a better performance then strategies 1 and 2. Strategies that are
based on it try to reuse intermediate values and use another algorithm
to generate instructions for statements.

Figure 13 shows a graph of specific strategies on Fermi that use the
scratchpad memory. We see that the best strategy in this graph achieves
about 450 GFLOPS which is about 35% of the peak performance. This
performance equals the performance of MAGMA and CUBLAS (see
Table 2). Strategy 8 shows the lowest performance with about 340

GFLOPS. This is still about 100 GFLOPS higher then the best of the
general strategies. We also see that the best specific strategy is an
extension of the best general strategy. Strategies 7 and 9 both use
a quadratic tile and load values from A and B into the scratchpad
memory. Strategy 8 uses a non-quadratic tile and loads only values of
B into the scratchpad.

The performance of the general strategies on the Tesla device was
very low, i.e., about 1% of the peak performance. Figure 14 shows the
performance of the strategies that use scratchpad memory. The best
strategy in this graph achieves about 25%, the second best Strategy
10% and the worst Strategy 1% of the peak performance. We see that
only one of the 9 strategies achieves a good performance. The Tesla
device seems to require code with higher degree of specialization. The
best strategy uses a non-quadratic tiling and loads only values of array
B into the scratchpad memory.

In Figure 15 we compare the best manually optimized codes to the
best automatically generated codes for GEMM on the Tesla device. We
see that the best implementation is the manually optimized version.
MAGMA and CUBLAS reach the second best performance. Both show
a very similar curve and it seems that MAGMA uses the implemen-
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Figure 12: Application of general strategies on Fermi (M = N = K)

tation of CUBLAS. Also, the performance of MAGMA and CUBLAS
decreases at a N = 2048. The performance of the generated code shows
the lowest performance. It is not able to compete with the other im-
plementations. However, we were able to identify the reason for the
lower performance. The generated code has the same loop structure
as the manually optimized code, the difference lies in a seemingly
superfluous if-clause in the manually optimized code. Listing 3 in
Appendix B shows the code of the manually optimized version. The
if-clause that has influence on the performance is marked in the code
and looks like “if(K % 128 > 0) {”. We were not able to produce exactly
the same code using polyhedral techniques. Seemingly, the compiler
does not use the same optimization for both versions.

Figure 16 shows the best codes on the Fermi device. We have tested
the generated code for Fermi in two versions, with and without the
usage of the texture memory. We see that the highest performance
is achieved by the generated code that uses the texture memory. The
manually optimized version is slightly behind. Again, MAGMA and
CUBLAS show a similar performance. The codes optimized for the
Tesla architecture are not able to compete with the performance of
the other codes. However, on the Fermi architecture the manually
optimized and the generated code for Tesla show the exactly same
performance. Seemingly, the compiler uses the same optimizations
here. We see that the usage of the texture memory can have a influence
on the performance. But our experiments showed that the texture
memory can also decrease the performance.
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Figure 13: Application of specific strategies on Fermi (M = N = K)
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Figure 14: Application of specific strategies on Tesla (M = N = K)
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Figure 15: SGEMM benchmark on Tesla (M = N = K)
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Figure 17: General strategies applied on S(i,k) = A(i, j) +B(l, j) ·C(l,k) on
Fermi

4.4 tensoroperations

We have also tested the performance of other tensor operations gen-
erated by Treduda. One example is S(i, j) = A(i,k) + B(l,k) ·C(l, j).
Figure 17 shows the performance we achieved with the general strate-
gies on Fermi. We see that the performance achieved is not trivial,
but we are not able to achieve high performance. As with GEMM, we
need to leverage the scratchpad memory to achieve a competitive
performance. Unfortunately, our specific strategies can only be used
for a limited set of tensor operations.



5
C O N C L U S I O N

The objective of this thesis was to investigate whether it is possible
to generate competitive high-performance GPU code using polyhedral
techniques.

In a first step, we optimized GEMM manually in order to find the
aspects that are crucial for high performance. We wanted to find an
implementation that achieves the same performance as state-of-the-art
implementations like NVIDIA’s CUBLAS or MAGMA. Devices of the
Tesla (compute capability 1.x) and the Fermi (compute capability 2.x)
architecture were used as the target platforms for our optimizations.
We were able to find competitive implementations of GEMM for both
architectures. In fact, our implementations of GEMM achieve a 4%
higher performance than state-of-the-art implementations.

The next step was to generate GEMM code automatically using poly-
hedral techniques. We developed the tool Treduda for this purpose.
Treduda is able to transform a high-level description of tensor con-
tractions (a generalization of GEMM) into a polyhedral representation.
The tool is then able to generate CUDA code from this representation
using generation strategies. A generation strategy defines a transfor-
mation on a polyhedral model. Based on the results of the manual
optimization of GEMM, we developed different generation strategies.
Finally, we were able to generate GEMM code that achieves the same
performance as manually optimized code. On the Fermi architecture
the generated code is even slightly faster then the manually optimized
code and outperforms CUBLAS by about 5%.
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Figure 18: Experiment: Tesla, sgemm-8-alt.cu, threadDim.x=8, M=N=P=2048

Figure 19: Experiment: Tesla, sgemm-24-alt.cu, threadDim.x=24,
M=N=P=2048
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Figure 20: Experiment: Tesla, sgemm-32-alt.cu, threadDim.x=32,
M=N=P=2048

Figure 21: Experiment: Tesla, sgemm-16x16.cu, step=1, N=1024, K=1024
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Figure 22: Experiment: Tesla, sgemm-16x16.cu, step=1, M=1024, K=1024

Figure 23: Experiment: Tesla, sgemm-16x16.cu, step=1, M=1024, N=1024
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Figure 24: Experiment: Fermi, sgemm-8-alt.cu, threadDim.x=8, M=N=P=4096

Figure 25: Experiment: Fermi, sgemm-16-alt.cu, threadDim.x=16,
M=N=P=4096



56 plots

Figure 26: Experiment: Fermi, sgemm-64-alt.cu, threadDim.x=64,
M=N=P=4096



B
C O D E S

Listing 3: Optimized CUDA implementation of GEMM for Tesla. 16x16 block-
size, 256x16 tilesize, 128 stepsize, 16 calculations per thread, load
only B

static __device__ void calc16(float a,float *b, float *c) {

c[0] += a * b[0];

c[1] += a * b[1];

c[2] += a * b[2];

c[3] += a * b[3];

c[4] += a * b[4];

c[5] += a * b[5];

c[6] += a * b[6];

c[7] += a * b[7];

c[8] += a * b[8];

c[9] += a * b[9];

c[10] += a * b[10];

c[11] += a * b[11];

c[12] += a * b[12];

c[13] += a * b[13];

c[14] += a * b[14];

c[15] += a * b[15];

}

/* threads(16,16), grid(ceild(M,256),ceild(N,16)) */

extern "C" __global__ void

sgemm_custom_kernel(float *C, const float *A, const float *B,

int M, int N, int K,

int lda, int ldb, int ldc,

float alpha, float beta)

{

//16x16 threads, each thread loading 8 floats into shared mem

__shared__ float B_shared[2048];

float C_thread[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int thread_id = threadIdx.x + threadIdx.y * 16;

int thread_id_adj = thread_id % 128;

bool adj_flag = (thread_id >= 128);

//fix B and C to starting n

int n_start = blockIdx.y * 16;

B += (n_start + adj_flag) * ldb;

C += n_start * ldc;
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//fix C and A to m

int m = 256 * blockIdx.x + thread_id;

if (m >= M) {

//recalculate value if m is out of bounds

C += m - thread_id;

A += m - thread_id;

} else {

C += m;

A += m;

}

//Calculate divideable k’s

int steps = K / 128 + (K%128 != 0); //128 calculations per

step

while(steps > 0) {

//handle rest in last step

if(steps <= 1) {

int rest = K % 128;

if(rest > 0) {

if(thread_id_adj < rest) {

#pragma unroll

for(int i=0;i<8;++i){

B_shared[(adj_flag+(2*i)) + thread_id_adj

*16] =

B[thread_id_adj + (2*i) * ldb];

}

} else {

#pragma unroll

for(int i=0;i<8;++i){

B_shared[(adj_flag+(2*i)) + thread_id_adj

*16] = 0;

}

}

} else {

//load B into shared memory

B_shared[(adj_flag) + thread_id_adj*16] =

B[thread_id_adj];

B_shared[(adj_flag+2) + thread_id_adj*16] =

B[thread_id_adj + 2 * ldb];

B_shared[(adj_flag+4) + thread_id_adj*16] =

B[thread_id_adj + 4 * ldb];

B_shared[(adj_flag+6) + thread_id_adj*16] =

B[thread_id_adj + 6 * ldb];

B_shared[(adj_flag+8) + thread_id_adj*16] =

B[thread_id_adj + 8 * ldb];

B_shared[(adj_flag+10) + thread_id_adj*16] =

B[thread_id_adj+10 * ldb];

B_shared[(adj_flag+12) + thread_id_adj*16] =

B[thread_id_adj+12 * ldb];

B_shared[(adj_flag+14) + thread_id_adj*16] =
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B[thread_id_adj+14 * ldb];

}

} else {

//load B into shared memory

B_shared[(adj_flag) + thread_id_adj*16] =

B[thread_id_adj];

B_shared[(adj_flag+2) + thread_id_adj*16] =

B[thread_id_adj + 2 * ldb];

B_shared[(adj_flag+4) + thread_id_adj*16] =

B[thread_id_adj + 4 * ldb];

B_shared[(adj_flag+6) + thread_id_adj*16] =

B[thread_id_adj + 6 * ldb];

B_shared[(adj_flag+8) + thread_id_adj*16] =

B[thread_id_adj + 8 * ldb];

B_shared[(adj_flag+10) + thread_id_adj*16] =

B[thread_id_adj+10 * ldb];

B_shared[(adj_flag+12) + thread_id_adj*16] =

B[thread_id_adj+12 * ldb];

B_shared[(adj_flag+14) + thread_id_adj*16] =

B[thread_id_adj+14 * ldb];

}

B += 128;
__syncthreads();

//calculate C

if(steps <= 1) {

/************* Important If-clause *********************/

if(K % 128 > 0) {

/*******************************************************/

int ub = ((K % 128)/4)+1;

#pragma unroll

for(int i=0;i<ub;++i) {

float a[4] = {A[0], A[lda], A[2*lda], A[3*lda

]};

calc16(a[0], &B_shared[i*64], C_thread);

calc16(a[1], &B_shared[16+i*64], C_thread);

calc16(a[2], &B_shared[32+i*64], C_thread);

calc16(a[3], &B_shared[48+i*64], C_thread);

A += 4 * lda;

}

} else {

#pragma unroll

for(int i=0;i<32;++i) {
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float a[4] = {A[0], A[lda], A[2*lda], A[3*lda

]};

calc16(a[0], &B_shared[i*64], C_thread);

calc16(a[1], &B_shared[16+i*64], C_thread);

calc16(a[2], &B_shared[32+i*64], C_thread);

calc16(a[3], &B_shared[48+i*64], C_thread);

A += 4 * lda;

}

}

} else {

#pragma unroll

for(int i=0;i<32;++i) {

float a[4] = {A[0], A[lda], A[2*lda], A[3*lda]};

calc16(a[0], &B_shared[i*64], C_thread);

calc16(a[1], &B_shared[16+i*64], C_thread);

calc16(a[2], &B_shared[32+i*64], C_thread);

calc16(a[3], &B_shared[48+i*64], C_thread);

A += 4 * lda;

}

}

--steps;
__syncthreads();

}

//write result to gobal memory

if((blockIdx.y+1) * 16 <= N & m < M) {

#pragma unroll

for(int i=0;i<16;++i){

C[i*ldc] = beta * C[i*ldc] + alpha * C_thread[i];

}

} else {

if(m < M) {

int n_rest = N - (blockIdx.y * 16);

switch(n_rest){

case 16:

C[15*ldc] = beta * C[15*ldc] + alpha *
C_thread[15];

case 15:

C[14*ldc] = beta * C[14*ldc] + alpha *
C_thread[14];

case 14:

C[13*ldc] = beta * C[13*ldc] + alpha *
C_thread[13];

case 13:

C[12*ldc] = beta * C[12*ldc] + alpha *
C_thread[12];

case 12:

C[11*ldc] = beta * C[11*ldc] + alpha *
C_thread[11];

case 11:
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C[10*ldc] = beta * C[10*ldc] + alpha *
C_thread[10];

case 10:

C[9*ldc] = beta * C[9*ldc] + alpha * C_thread

[9];

case 9:

C[8*ldc] = beta * C[8*ldc] + alpha * C_thread

[8];

case 8:

C[7*ldc] = beta * C[7*ldc] + alpha * C_thread

[7];

case 7:

C[6*ldc] = beta * C[6*ldc] + alpha * C_thread

[6];

case 6:

C[5*ldc] = beta * C[5*ldc] + alpha * C_thread

[5];

case 5:

C[4*ldc] = beta * C[4*ldc] + alpha * C_thread

[4];

case 4:

C[3*ldc] = beta * C[3*ldc] + alpha * C_thread

[3];

case 3:

C[2*ldc] = beta * C[2*ldc] + alpha * C_thread

[2];

case 2:

C[1*ldc] = beta * C[1*ldc] + alpha * C_thread

[1];

case 1:

C[0] = beta * C[0] + alpha * C_thread[0];

break;

}

}

}

} �
Listing 4: Optimized CUDA implementation of GEMM for Fermi. 16x16

blocksize, 64x64 tilesize, 16 stepsize, 16 calculations per thread,
load A and B, no rest calculation

texture<float,1> texture_A;

texture<float,1> texture_B;

static __device__ void calc(float* a_reg, float* b_reg,

float* c_reg, float* A_shared,

float* B_shared, int idx_a_shared,

int idx_b_shared, int l){

#pragma unroll

for(int k=0;k<4;++k){

#pragma unroll

for(int i=0;i<4;++i){
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a_reg[i+k*4] = A_shared[idx_a_shared + i + (k+l*4)

*64];

}

}

#pragma unroll

for(int i=0;i<4;++i){

#pragma unroll

for(int k=0;k<4;++k){

b_reg[k+i*4] = B_shared[idx_b_shared + k + l*4 + i

*16];

}

}

#pragma unroll

for(int n=0;n<4;++n){

#pragma unroll

for(int m=0;m<4;++m) {

#pragma unroll

for(int k=0;k<4;++k) {

c_reg[m+n*4] += a_reg[m+k*4] * b_reg[k+n*4];

}

}

}

}

/* threads(16,16), grid(M/64,N/64) */

extern "C" __global__ void

sgemm_64_opt_kernel(float *C, const float *A, const float *B,

int M, int N, int K,

int lda, int ldb, int ldc,

float alpha, float beta,

int off_A, int off_B)

{
__shared__ float A_shared[1024]; //64x16
__shared__ float B_shared[1024]; //16x64

float c_reg[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int idx = threadIdx.x + threadIdx.y*16;

int threadIdx_16_x = idx%16;

int threadIdx_16_y = idx/16;

int threadIdx_64_x = idx%64;

int threadIdx_64_y = idx/64;

int m_start = blockIdx.x * 64;

int idx_A = off_A + m_start + threadIdx_64_x +

threadIdx_64_y * lda;

C += m_start + threadIdx_16_x*4;

int n_start = blockIdx.y * 64;

int idx_B = off_B + threadIdx_16_x +

(threadIdx_16_y + n_start) * ldb;
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C += (n_start + threadIdx_16_y*4) * ldc;

int idx_a_shared = threadIdx_16_x * 4;

int idx_b_shared = (threadIdx_16_y * 4) * 16;

float a_reg[16];

float b_reg[16];

float a_load[4];

float b_load[4];

#pragma unroll

for(int i=0;i<4;++i) {

a_load[i] = tex1Dfetch(texture_A, idx_A + i*4 * lda);

}

#pragma unroll

for(int i=0;i<4;++i) {

b_load[i] = tex1Dfetch(texture_B, idx_B + i*16 * ldb);

}

idx_B += 16;

idx_A += 16*lda;

int step = K / 16;

while(step > 0) {

__syncthreads();

#pragma unroll

for(int i=0;i<4;++i) {

A_shared[idx + i*256] = a_load[i];

}

#pragma unroll

for(int i=0;i<4;++i) {

B_shared[idx + i*256] = b_load[i];

}
__syncthreads();

#pragma unroll

for(int i=0;i<4;++i) {

a_load[i] = tex1Dfetch(texture_A, idx_A + i*4*lda);

}

#pragma unroll

for(int i=0;i<4;++i) {

b_load[i] = tex1Dfetch(texture_B, idx_B + i*16*ldb);

}

calc(a_reg, b_reg, c_reg, A_shared, B_shared,

idx_a_shared, idx_b_shared, 0);

calc(a_reg, b_reg, c_reg, A_shared, B_shared,

idx_a_shared, idx_b_shared, 1);

calc(a_reg, b_reg, c_reg, A_shared, B_shared,

idx_a_shared, idx_b_shared, 2);
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calc(a_reg, b_reg, c_reg, A_shared, B_shared,

idx_a_shared, idx_b_shared, 3);

idx_B += 16;

idx_A += 16*lda;

--step;

}

#pragma unroll

for(int n=0;n<4;++n){

#pragma unroll

for(int m=0;m<4;++m) {

C[m+n*ldc] = beta * C[m+n*ldc] + alpha * c_reg[m+n

*4];

}

}

} �
Listing 5: Script to find possible configurations

module Main where

import System.Environment

block :: Int -> Int -> Int -> Int -> [Int]

block maxX maxY maxThread warp = [warp*y | y <-[2..maxY*maxX],

warp*y <= maxThread]

sharedMem :: Int -> Int -> Int -> Int -> Int -> Int -> [(Int,Int,

Int)]

sharedMem maxM maxN maxK blockSize maxMem warp = [(m,n,k) |

m <- [1..maxM],

m ‘mod‘ warp == 0,

n <- [1..maxK],

n ‘mod‘ warp == 0,

k <- [1..maxK],

(m*k) ‘mod‘ blockSize == 0,

(n*k) ‘mod‘ blockSize == 0,

(m*n) ‘mod‘ blockSize == 0,

(m*k+k*m) <= maxMem]

registers :: Int -> Int -> Int -> Int -> Int -> [(Int,Int,Int)]

registers registerCount m n k threads = [(f,t1,t2) |

f <- [15..registerCount],

f == (m*n) ‘div‘ threads,

t1 <- [1..32],

t2 <- [1..32],

t1 == (m*k) ‘div‘ threads,

t2 == (k*n) ‘div‘ threads,

f == t1*t2,

f <= registerCount]
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gen :: Int -> Int -> Int -> Int -> Int -> Int

-> Int -> Int -> Int -> [(Int,Int,Int,Int,Int,Int,Int)]

gen maxX maxY maxThread warp maxM maxN maxK memSize registerCount

=

[(s,m,n,k,r,t1,t2) |

s <- block maxX maxY maxThread warp,

(m,n,k)<- sharedMem maxM maxN maxK s memSize

warp,

(r,t1,t2) <- registers registerCount m n k s]

main :: IO ()

main = print l where

l = gen 512 512 1024 32 512 512 512 5000 63 �
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