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Abstract
The increasing availability of parallel systems leads to an increasing demand
for automatic parallelization. The polytope model can be used for analyzing
input programs and performing transformations on the obtained model, in
order to increase the amount of parallelism in the resulting target program.
In contrast to shared memory systems, a compiler for distributed memory ar-
chitectures has to generate additional code for the necessary communication
between processors. The goal of this thesis is to provide a method for auto-
matic generation of efficient, parallel target code for distributed memory ar-
chitectures, that uses the polytope model for the parallelization process and
the generation of efficient communication code.
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Chapter 1

Introduction

1.1 Motivation
Recently, parallel computing has gained increased significance. From hyper-
threading or dual-core technologies in modern CPUs to clusters of affordable
desktop computers or high performance computing clusters, there are lots of
different areas in which hardware manufacturers try to increase computing
power by using more parallelism.

Despite of a multitude of developments on the hardware sector, there re-
mains an obvious need of improving parallel software technology. Most soft-
ware systems today provide a mechanism called explicit parallelism that en-
ables the user of those systems to add parallelism manually by using language
extensions or parallel programming libraries like OpenMP [Ope, Qui04] or
MPI [Mes94, Qui04].

Unfortunately, these methods can be very complex to understand and lead
to correctness and maintainability problems (e.g. lack of suitable debugging
techniques).

Alternatively, a mechanism called implicit parallelism could be applied.
Here, a special parallelizing compiler analyzes the source code to find as much
parallelism as possible without a need for the user to change the sequential
semantic of his code. This allows the user to concentrate on the sequential al-
gorithm and increases the development speed and maintainability of parallel
projects. Correctness can also be addressed more easily, because if the par-
allelizing compiler has been verified once, it can be used to generate correct
parallel code from any (sequentially) correct program.

The field of parallelizing compilers has been subject to a lot of research.
Automatic methods have been developed to analyze the given source program
and use a mathematical model to get a better representation to work with.
For this work, the polytope model [KMW67, Lam74, Len93] is used, which is
introduced in Section 1.2.

Various methods have been developed to find certain affine functions
(schedule and allocation), which can be applied to a polytope model represen-
tation of the input program in order to obtain as much parallelism as possible
in the transformed program. Other transformations can be used that increase
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the dimensionality of the target program in order to tune the granularity of the
parallelism to get coarser parallel programs. These so called tiling techniques
will also be dealt with in the course of this thesis in the context of communica-
tion between processors.

Finally, existing methods [QRW00, Bas03] can be used to generate exe-
cutable code from the transformed representation of the program. Augmented
by special parallel constructs, this code can be run on so-called shared memory
architectures, where all processes use a common, shared memory in order to
exchange data between them.

On the other hand, code generation for distributed memory architectures
turns out to be quite challenging, because unlike in shared memory architectures,
the generated code has also to deal with communication between processors
that work on data that is not stored in their local memory.

It was the goal of this project to develop a tool for automatic code genera-
tion for distributed memory architectures in the Polytope Model.

1.2 The polytope model
As mentioned above, it is often very useful to provide an abstraction in the
form of a mathematical model in which all analysis and transformation can be
performed much more easily (model approach), instead of working directly
on the source code of the input program.

The polytope model concentrates on parallelizing for loops, because most
programs spend most of their execution time on iterating through loops. Also,
for-loops can be very elegantly represented by a mathematical structure called
polytope. In the course of this section, some commonly used terms concerning
the polytope model will be defined.

Operation In the polytope model, for-loops are used as the only control struc-
ture. For every statement � in a loop-body, the index vector � of all
surrounding loop-indices defines the iterations of � . These iterations of
statements are called operations and each operation can be identified by
its statement � and iteration vector � .

Affine transformation, affine space An affine transformation is a linear trans-
formation followed by a translation. Similarly, an affine space is a vector
space whose origin is translated by a constant vector.

Polytope A polytope is the mathematical structure on which the polytope
model is based. It is used to represent the operations in the input pro-
gram. Mathematically, it can be defined as a bounded polyhedron. Poly-
hedra are subsets of the � -dimensional space of real numbers ��� that are
intersections of a finite number of half-spaces. A half-space can be defined
as one of the two parts of an affine space that result when dividing that
space by a hyperplane. For this work, we mostly use systems of linear
inequalities to represent a polytope. The inequalities can be derived by
using the bounding expressions of for-loops in the input program.
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Domain, index space If we define a polytope as an intersection of half-spaces,
then a polytope is necessarily convex. To get a more general subset of the� -dimensional space, we can use unions of (convex) polytopes, which in
the context of this work will be called domains. Sometimes the term index
space is also used to describe the set of of all operations for all statements.

Dependence Using domains (or unions of polytopes), we can model the set
of operations in the input program, but without a given execution order.
From the sequential order of operations in the input program, we can de-
rive a partial order which prescribes that some operations are required to
be executed before other operations. This partial order is defined by the
dependences between operations in the input program. Each dependence
is caused by two accesses to the same memory cell � . We call the first
memory access to � the source of the dependence, whereas the second
access is called the destination. If two or more operations are not compa-
rable in the partial order, it means that these operations may be executed
in arbitrary execution order, because no operation depends on the other.

Dependence types Both source and destination of a dependence involve
some kind of memory access, which can consist either of writing or of
reading of data. This leads to four types of dependences:

source
destination reads writes

reads input true
writes anti output

In this thesis, input dependences will be disregarded, because the execu-
tion order of two operations without a writing access should be arbitrary
on most modern hardware, i.e. the hardware supports multiple concur-
rent reads.
We can use domains and dependences to model all operations and their
execution order in the input program. This model is called the polytope
model.

Space-time mapping, target space Having a representation of our input pro-
gram in the polytope model, we can use affine linear functions to trans-
form the original index space (and the corresponding dependences) in
such a way, that the resulting transformed index space allows operations
to be executed in parallel. For that purpose, we define an affine linear
transformation function that we call space-time mapping. Every operation
will be assigned to a processor within an � -dimensional field of pro-
cessors (its space coordinate) and a certain execution time given as a � -
dimensional time coordinate. The index space containing all transformed
operations of all statements in the target program is called target space or
target index space (TISPC).

Schedule, allocation, placement We call a schedule an affine function that as-
signs each operation from the input program to a certain time coordinate

7



in the transformed target program while preserving the partial order de-
rived from the sequential execution order of the input program.
We call an allocation an affine function that assigns each operation from
the input program to a certain processor coordinate from the field of pro-
cessors in the target program. Another name for that function is place-
ment, because it places each operation on a virtual processor.

The search for a good schedule and allocation is an optimization problem
that has been a subject for research over the years. There are a number of well
developed techniques [Lam74, Ban92, Fea92, DV94, GFG02], that try to opti-
mize different metrices like execution time, amount of parallelism and amount
of necessary communication between processors.

It is clear that, in order to use the polytope model for practical reasons,
one has to transform the representation in the model back to actual executable
target code. This involves generating code that originates from the statements
in the input program. Furthermore, code has to be generated that enables the
program to be executed on parallel architectures. There are some approaches
for shared memory architectures, where no communication between proces-
sors is necessary, but for distributed memory architectures, the required addi-
tional code can become quite complex and there are still several problems to
solve.

The following chapters will show an implementation of an automatic code
generation tool that is also able to deal with distributed memory target archi-
tectures. This implementation is part of the LooPo project, in which a proto-
type implementation of parallelization methods has been developed.
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Chapter 2

Basic approach

This chapter briefly introduces the basic approach to the design of an auto-
matic code generation tool for the polytope model. A more detailed overview
of this subject is given by Griebl [Gri04].

2.1 Input information
This code generation tool can be understood as a back-end for a parallelizing
compiler that takes a representation of a sequential input program and gener-
ates a parallel target program.

Therefore, the first step consists of running a scanner and parser that parses
the source code and constructs an abstract syntax tree of the input program.
The polytope model is used to represent the index space of all statements as
polyhedra. After analyzing the dependence structure, an affine space-time-
mapping is applied to this polyhedra, in order to increase the amount of par-
allelism in the target program.

As we will see in Section 3.3 and later in Section 3.4.3, we have to require
this space-time mapping function to have certain other properties in order to be
usable for generating code for distributed memory architectures.

2.2 Scanning polytopes
As the result of the parallelization process, a representation of the input pro-
gram in the polytope model is available. This model representation has been
transformed using a space-time mapping function.

We now have to find a way to generate code consisting of for-loops that
enumerate the points belonging to each corresponding polytope in our model
representation. At the same time, we have to maintain the order of operations
as given by the schedule function.

This method of enumerating polytopes in the correct order is called scan-
ning. There are a number of different techniques that have been developed to
deal with it.
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Figure 2.1: scanning polytopes

2.2.1 Basic method
The basic method described here can be implemented very easily, but has cer-
tain drawbacks, because of poor run time efficiency of the generated code.

Single polytopes

In the simplest case that we have only one single polytope to be enumerated,
we can use Fourier-Motzkin elimination [DE73], a mathematical method for pro-
jecting polytopes (given as inequality systems) onto certain dimensions by suc-
cessively eliminating variables. Using this projection method, we can derive
loop bounds for our outer loop dimensions that do not contain indices of inner
loops in their expressions. In this way, we can construct all loop bounds for a
single polytope and generate the corresponding code.

Unions of polytopes

Unfortunately, if we have multiple statements with possibly overlapping poly-
topes that have to be scanned, we cannot use this simple approach separately
on each polytope. The problem that arises is that our scheduling algorithm has
defined a certain execution order between the points of the union of all poly-
topes that makes it necessary to merge loops of statements with overlapping
polytopes.

Consider the example illustrated in Figure 2.1. Here, two statements ( �	�
and ��
 ) with their corresponding polytopes are displayed. Note that both
index spaces are overlapping and there are two dependences, � � that stretches
from �	� to ��
 and the second dependence � 
 going the other way round.

If we generate the resulting loop nests separately for each statement, using
Fourier-Motzkin elimination, we obtain the following pseudo code:
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for t=1..4
for p=1..3
S1

end
end
for t=3..4

for p=1..6
S2

end
end

In this case, � 
 is violated because its destination coordinate (belonging to�	� ) is enumerated before its source. Of course, enumerating the index space of��
 first would lead to a violation of a dependence, in that case � � .
Thus, in order to deal with unions of polytopes, we have to extend our ap-

proach to treating all polytopes simultaneously. Therefore, we use a superset
of the union of all polytopes that itself must be again a polytope. We can use a
rectangular or convex hull algorithm to construct this superset of all polytopes.
Now we can use Fourier-Motzkin elimination again to construct the necessary
loop bounds for our loop nest.

Finally, we have to take care that each statement is only executed at the
specified points within the superset of all polytopes corresponding to its own
polytope. We can use if statements for the statements within the loop-body to
assure the correct points to be executed for each statement and its correspond-
ing polytope.

Advantages and drawbacks

As already mentioned, this method is quite basic and therefore easy to under-
stand and implement. The generated code is also quite small in size compared
to other methods, which can be seen as an advantage in some cases, because
the code is more likely to fit into the instruction cache. Also, the small code
size looks nicer and is more suitable for small explanatory examples than the
result of the more complex methods.

However, the drawbacks of this method make it not suitable for our pur-
poses of generating efficient target code. The main disadvantages result from
constructing the convex (or rectangular) hull of all polytopes. This can lead to
two problems:

Enumeration of empty subsets Because we constructed a convex superset of
all polytopes, there may be “holes” within the resulting convex polytope,
which leads to unnecessary loop iterations.

Control overhead Another problem results from the if guards that have to
be introduced to specify the execution of multiple statements within the
convex superset. For each iteration, there are a number of guards to be
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evaluated, no matter whether the statements have to be executed or not.
This can lead to huge control overhead and, thus, to poor efficiency of
the target program.

Extensions to this method eliminate the control overhead from guards
in the innermost loop dimensions completely, but the size of the resulting
code can increase dramatically which makes it unusable in practice, as Wet-
zel [Wet95] illustrates.

For this method, the applicable space-time-mapping functions are re-
stricted to matrices that holde the following property.

Definition. A square matrix of full rank is unimodular if its determinant is  � and
all its entries are integer values.

Non-unimodular transformation functions can lead to holes in the target
polytopes that have to be treated carefully in the code generation algorithm.
Therefore, further extensions are necessary, in order to deal with such non-
unimodular functions.

It is possible to use additional guards within the loop body to exclude these
statements, which represent holes in the polytope from execution. But this
only increases the problems mentioned before and leads to a further decrease
in efficiency.

Fortunately, there is another code generation technique for the polytope
model that allows more flexibility in choosing a relation between control over-
head and code size. For the project covered by this thesis, an implementation
of that method by Cédric Bastoul [Bas03] is used, which also can be used for
non-unimodular transformation functions.

2.2.2 Methods by Quilleré and Bastoul
We have seen some of the problems arising from our basic code generation
methods like control overhead and unnecessary enumeration of empty sub-
sets. The algorithm described by Quilleré [QRW00], implemented with some
additional extensions and improvements by Cédric Bastoul [Bas03] in the
CLooG (chunky loop generator) [Bas], was introduced to deliver a combination
of efficient target code without control overhead and with acceptable code size.

CLooG can deal with (possibly overlapping) unions of polytopes and also
introduces so called scatter functions in order to specify an execution order on
all statements.

Quilleré’s algorithm

The algorithm used for code generation in CLooG is described in detail by
Bastoul [Bas03]. The basic idea of Quilleré [QRW00] is a recursive algorithm,
which starts with the outermost loop dimensions of all polytopes, separates
them into disjoint parts and then accumulates conditions for guards while de-
scending deeper into the inner dimensions. Thus, it is possible to generate
efficient code for the innermost loop dimensions without control overhead,
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because most guards can be placed in the outer dimensions that are executed
less frequently. The main advantage is that common expressions in the guards
can be used for multiple statements, because the information about guards
of all dimensions of all statements can be exploited when returning from the
recursive descent.

CLooG

In addition to an implementation of the basic Quilleré algorithm, CLooG is
also able to generate efficient target code for polytopes that result from non-
unimodular space-time mapping functions. To that effect, it again tries to gen-
erate guards in the outermost dimensions rather than within the loop body.
Thus, the innermost loops can be executed without control overhead caused
by checking guard conditions. Of course this again leads to an increase in code
size, but CLooG supports different options for fine-tuning the resulting target
program in either control optimization or code size. Further optimizations like
loop unrolling are also implemented. This results in target code with minimal
control overhead.

Another special feature of CLooG is the use of so called scatter functions.
Normally, we have a description of all statements in the target program as
polytopes, which define the corresponding index spaces for each statement.
In order to also specify the execution order given by the schedule function,
we can use a certain affine function (the scatter function) for each statement,
that specifies a number of additional dimensions (scatter-dimensions) and de-
fines equalities between those scatter-dimensions and the dimensions of our
polytope description.

Section 4.1.3 will describe, how scatter functions are used in our implemen-
tation.

2.3 Synchronous and asynchronous parallelism
In principle, we can choose between two basic schemes for loop nests in par-
allel programs, which differ in their enumeration order for time and space
dimensions:

Synchronous target program In a synchronous target program, all polytopes
are projected (sorted) in such way, that the outermost dimensions of the
resulting loop nest contain the time dimensions, with the space dimen-
sions of our program following in the inner part of our loop nest.

13



Figure 2.2: synchronous parallel target program

for t1=...
...
for tn=...

parfor p1=...
...
parfor pm=...

// loop-body
end

end
end

end

In this scheme, the execution of the target program is divided into time
steps that are indexed by a tuple ����������������� � � . At each time step, the log-
ical processor specified by the tuple ������������������� �

executes its loop body
concurrently with all other processors (as specified here by the parfor
construct).
At the end of each time step, a synchronization occurs between all pro-
cessors. Note that it is possible in this scheme that one processor has
to wait for other processors, even if there is no dependence between the
other processors and the waiting processor, as illustrated for rp3 in Fig-
ure 2.2. Similarly, all processors have to wait for the slowest processor to
finish its computation.

Asynchronous target program In an asynchronous target program, we project
our polytopes in a different order, resulting in a loop nest that contains
space dimensions in the outermost loops, with time dimensions further
within the loop nest.
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Figure 2.3: asynchronous parallel target program

parfor p1=...
...
parfor pn=...

for t1=...
...
for tm=...

// loop-body
end

end
end

end

Here, the tuple ����� �������!��� � � specifies a logical processor coordinate.
This processor then executes inner time loops (indexed by the tuple���"�������������#� �

in parallel with all other processors (as defined by the parfor
construct), without an explicit synchronization taking place at regular
time intervals.
However, if one processor has to wait for data computed by another pro-
cessor, an implicit synchronization between those processors takes place,
as illustrated in Figure 2.3. This synchronization is performed by the
communication statement.

Note that both schemes can be derived from the same polytope represen-
tation, using a different order of the space and time dimensions.

For this work, an early design decision had been made to use synchronous
parallelism as target structure for the generated programs (as described in
the next chapter), because of its very regular communication scheme for dis-
tributed memory systems, which can be implemented very efficiently by col-
lective operations. These collective operations use specialized implementa-
tions for the underlying hardware architecture to provide optimal run time
efficiency. On the other hand, asynchronous programs can theoretically result
in higher speedups than synchronous ones when used for input programs that
contain very few data dependences. In this case, each processor can execute
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in parallel, most of the time without need for synchronization between pro-
cessors and, thus, no required waiting time. However, in general, programs
may contain enough data dependences to nullify the speedup margin of asyn-
chronous programs compared to synchronous programs.

It should be noted that it is also possible to use combined forms of syn-
chronous and asynchronous programs, for example:

for t1=1..n
parfor p1=1..m
for t2=1..i

parfor p2=1..n
...

end
end

end
end

It this case, alternating time and space dimensions are used, thus constructing
a kind of hybrid synchronous/asynchronous target program. For now, this
structure is not used in our implementation.

Remark. Execution schemes like this could be useful to implement a hierarchy of
parallelism in a parallel program, as we will discuss later in Section 5.1.2.

2.4 Generating parallel target code
So far, we have used the polytope model to analyze and transform our in-
put program in order to allow it to be executed in parallel on a given target
architecture with the goal of a speedup in execution time compared to the
original program. We also have transformed our model representation of the
target program back into executable code using CLooG as an implementation
of Quilleré’s algorithm.

However, we still have to add additional code that enables our program
to be executed not only sequentially, but in parallel, because our parfor con-
struct is only an abstract notation for parallelism.

For the generation of this parallel code, we have to consider the type of the
intended parallel target architecture.

2.4.1 Code for shared memory architectures
If we decide to generate code that should be executed on a shared memory
parallel architecture, we have to to annotate our sequential code with parallel
keywords (or compiler directives).

An often applied method is to use the single-program-multiple-data (SPMD)
approach for the parallel target program. This means that all processors ex-
ecute the same program that is parameterized by a unique number for each
processor, which makes it possible to access different data on each processor.
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SPMD is an extension of SIMD (single-instruction-multiple-data), a term
Flynn [Fly66] uses in his taxonomy of parallel programs. It is also often used
for programs running on shared memory architectures. In SIMD a single in-
struction can be used to execute operations on different data for each parallel
processors, whereas the program still looks sequential.

If we want to use SPMD semantics to introduce parallelism to our gener-
ated sequential program, we have to pick these dimensions of our loop nest,
that enumerate the processor coordinates resulting from our placement func-
tion. These loops now can be annotated using some special parallel keyword
or compiler directive to indicate that each iteration of this processor loop can
be executed in parallel on different processors. An example of such a com-
piler directive is the #omp parallel for directive that is used in the OpenMP
library [Ope, Qui04] for the language C.

If OpenMP is used in a program written in C, in order to specify a for loop
to be executed in parallel on all available processors, the corresponding for-
loop is annotated with a #pragma omp for compiler directive. The resulting
code for a simple one-dimensional for-loop looks as follows:

#pragma omp for
for (i=0; i<N; i++)
{

c[i] = a[i] + b[i];
}

If the dependence structure of the target program contains dependences
between different processors, we also have to introduce some form of synchro-
nization construct in order to suspend the computation on a processor that is
the target of a data dependence until the source processor has completed the
computation of the required data.

In the case of our OpenMP example, this synchronization happens implic-
itly at the end of each iteration of the time loop.

2.4.2 Code for distributed memory architectures
If the intended target system is based on a distributed memory architecture,
there are additional requirements for our generated code. The necessary com-
munication between processors introduces additional problems that have to
be dealt with, such as choosing adequate communication operations depend-
ing on the combination of language or additional libraries that are used and
the specifics of the used network architecture. This also implies problems like
buffering data during the communication or coalescing operations in order to
achieve some kind of message-vectorization. These aspects of code generation
that are specific to distributed memory architectures will be dealt with in more
detail in the next chapter.
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Chapter 3

Code generation for distributed
memory architectures

This chapter deals with the aspects of automatic code generation that are spe-
cific to distributed memory target architectures.

3.1 Communication code
For our task of automatic code generation, we have to introduce additional
statements that carry out the necessary sending and receiving of communi-
cated data. Therefore, we have to consider all dependences that can lead
to communication of data and choose an appropriate communication struc-
ture. The following communication scheme is also described in more detail by
Griebl [Gri04].

3.1.1 Polytope representation of communication statements
Basically, we have to generate two different kinds of communication state-
ments, one for each side of a communication: statements for sending data to
the corresponding processor that requires it and statements for receiving data
from the sender and updating the local array entries respectively. We can use a
representation of dependences in the polytope model for finding correspond-
ing index spaces for send and receive statements. Therefore, we use a polytope
for each dependence, which is composed of the following information:

$ Inequalities describing the original index spaces of the corresponding
source and destination statement, before the application of the space-
time transformation.

$ Equalities between source and destination statements’ index spaces in-
dicating the common data access that causes the dependence.

$ Further inequalities that restrict the dependence to its domain, in the case
that the dependence relation only exists for a subset of the index spaces
(e.g. in the case of piecewise schedules).
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In order to obtain a description for the required communication between
processors for later code generation, we apply the space-time transformation
to the dependence polytope mentioned above, thus obtaining a communication
polytope that describes relations between source and destination coordinates of
transformed dependences in the target program.

We can use this communication polytope to create code for the sender or
receiver side of a communication corresponding to a certain dependence re-
lation. This is achieved by projecting the dimensions for sender and receiver
coordinates in a different order for each side:

$ For the sender side, we have to specify all destination processors for all
destination time steps for a given source location in space and time of
each dependence, leading to a projection order of outer dimensions for
the source of the dependence and inner dimensions for the destination
of the dependence.

$ For the receiver side, we first enumerate all receiver locations and then
enumerate nested loops for all sender locations where data has to be re-
ceived from, therefore inverting the projection order of source and desti-
nation dimensions of the dependence.

Point-to-point communication operations can be used where the state-
ments at the sender side of each dependence use operations to transmit the
data to their corresponding communication partners where the data is re-
ceived by explicit receive operations.

Remark. For distributed memory architectures, using synchronous target programs,
we can ignore anti and output dependences for the generation of communication code
because they only indicate the need for synchronization between statements, without
data transfer being necessary.

In the course of this chapter, different extensions to this simple approach
to communication code generation will be introduced.

3.1.2 Drawbacks of simple point-to-point communication
As we have seen before, we can easily derive send and receive statements
from our communication polytopes. This simple point-to-point communica-
tion scheme can lead to practical problems:

Overhead from communication startups As described earlier, we generate a
send statement and a corresponding receive-statement for each space-
time coordinate for the source and destination of each communication
polytope respectively. This means that if we have % time steps and &
logical processors, we can have '(��%*)+& �

possible destination coordinates
for each source of a dependence and each logical source processor, which
all lead to separate communications. Altogether, this can result in ',��%.-/)& - � communications and corresponding communication startups.
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Implicit network buffering Because the execution of each send statement
and its corresponding receive statement can be separated by many time
steps, the message passing system has to perform implicit message
buffering, which can lead to excessive memory usage for buffering and
an overhead of managing the increasing buffer sizes.

As a result, this simple communication scheme is obviously not well suited
for distributed-memory architectures, where the cost of a communication
startup tends to be the bottleneck of run time efficiency.

However, it is possible to reduce the number of startups. For this purpose,
the tiling technique, which will be described in the next section, can be used
to aggregate computation operations, thereby obtaining a coarser parallelism
in the target program. We will see that communication only takes place at the
end of those aggregated blocks of operations, thus reducing the startup cost.
Collective communication operations can be used for the actual transmission
of the aggregated data to achieve more efficiency. Certain restrictions to the
space-time mapping have to be applied for tiling to work, as described later in
the section about FCO placements.

It will also be necessary for this modified communication scheme to man-
ually manage buffering at both sides of the involved communication partners,
which will be covered in more detail in Section 3.4.2. The resulting communi-
cation structure is described in Section 3.4

3.2 Tiling
In this section, the tiling optimization method will be described that can be
used to transform the target program in order to reduce overhead resulting
from communication.

3.2.1 Tiling as an optimization technique
Tiling is an optimization technique that aims at increasing efficiency in the ex-
ecution of nested loops by coalescing operations. It can be defined as parti-
tioning the index space of a given statement into equal polyhedra, called tiles.
As the mathematical definition of a partition implies, these tiles have to be
non-intersecting and the tiled index space has to be covered completely by the
union of all tiles.

The parameters that can be adjusted to define a tile are its shape (the di-
rection of its spanning vectors), its form (which defines the size ratio in all
dimensions) and its size (a scaling factor in all dimensions). In this implemen-
tation, an algorithm is used that restricts the shape of tiles to parallelepipeds, i.e.
multidimensional parallelograms. Griebl [Gri04] describes in more detail the
algorithm for finding optimal parameters for shape, form and size.

For the index spaces of example input programs, we only use one-
dimensional processor dimensions in this thesis for the sake of simplicity,
which leads to rectangular tile shapes in the corresponding figures.
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However, the implementation covered by this thesis allows an arbitrary
number of spatial dimensions to be tiled, which leads to tile shapes that repre-
sent general parallelepipeds, which are not necessarily rectangular.

Tiling can be used on sequential programs in order to optimize for cache
efficiency, but the focus of this work is its use for optimizing the granularity of
parallelism in parallel programs.

3.2.2 Tiling for parallelism
If we use our methods to generate a parallelized version of our input program,
we are likely to find the speedup in execution time not satisfactory, especially
on distributed memory target architectures. One of the main reasons for this
problem usually is the amount of fine grained parallelism in the generated tar-
get program, that leads to a communication overhead that is too costly com-
pared to the small amount of computations executed on each virtual space-
time-step. Fortunately, we can use the tiling technique to coalesce operations,
thus reducing the communication overhead and gaining coarser parallelism in
our program.

For the project covered by this thesis, tiling is used as an additional op-
timization technique that is applied on the index spaces of the transformed,
parallelized program, i.e. after the space-time mapping. The reasons for this
application order are explained in detail by Griebl [Gri04], e.g. more flexibil-
ity in the parallelization methods and the possibility to use identical tiles for
all transformed statements. It also allows to extract information about com-
munication in the transformed program for the optimization algorithm of the
tile-shape.

In the course of this section, two aspects of tiling will be discussed, that can
be distinguished depending on whether operations are aggregated in space or
time.

3.2.3 Space tiling
Generally, the application domain in which tiling is applied implies a certain
way of aggregating operations. For our application domain, the code genera-
tion for distributed memory architectures, the aggregation algorithm aims at
minimizing the cost of communication between processors.

Consider the example illustrated on the left side of Figure 3.1, where a
simple index space is displayed. For simplicity reasons, assume that both di-
mensions ( &0� and & - ) are spatial dimensions.

In this case, we can use a very simple tiling to aggregate several virtual
processors into larger tiles, the so-called processor tiles, as displayed on the
right side of Figure 3.1. As tile shape for this example, a two-dimensional
parallelogram is used.

It is now possible to execute all virtual processor coordinates belonging to
the same processor tile locally on the same real processor and, thus, reduce the
number of communications to the number of real processors (for programs
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before space tiling after space tiling

Figure 3.1: space tiling

that contain dependences between processors). This use of tiling for aggregat-
ing virtual processors into larger processor tiles is called space tiling.

The communication polytope described in Section 3.1.1 is extended by ad-
ditional dimensions for the processor tile dimensions. Thereby, each logical
processor dimension is replaced by two dimensions: one for the processor tile
coordinate and the other for the processor coordinates within that tile coordi-
nate.

Using this modified communication polytope for tiling, it is possible to de-
rive inequality systems that specify all virtual processor coordinates belonging
to a certain processor tile. These additional processor tiles can also be enumer-
ated using CLooG, followed by loops for virtual processor dimensions. Our
parallelization method guarantees that the processor dimensions never carry
dependences and thus no care needs to be taken of a possible change in execu-
tion order when tiling processor dimensions.

3.2.4 Time tiling
In the last section, a simple point-to-point communication structure was in-
troduced, which had some drawbacks concerning high startup cost. In order
to achieve a more efficient communication scheme, tiling can be used to ag-
gregate several logical time steps into larger chunks. This so-called time tiling
technique results in a reduced number of global time steps, each global time step
consisting of several logical time steps being executed within these blocks.

Instead of communicating data at each logical time step, the data is aggre-
gated and communication of this aggregated data only takes place at the end
of each global time step. Thus, the ratio of startup costs compared to computa-
tion time is much smaller, which means that the overhead for communication
startup is reduced.

The aggregation of data within these global time steps requires additional
buffer management at the sending and receiving side of communication. This
mechanism will be explained further in Section 3.4.2.

Because time dimensions usually carry dependences, care has to be taken
in order to restore the correct execution order when using time tiling.
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Figure 3.2: time tiling: dependences causing execution order problem

Figure 3.3: time tiling: skewing

Consider Figure 3.2, where the arrows indicate dependences that lead to a
correctness problem. Without time tiling, the dependences lead to a communi-
cation between two logical time steps that is perfectly legal. However, if time
tiling is used, the communication is delayed to the end of the global time step,
which means that the destination processor will receive the data too late and
uses undefined memory content when computing its local data. In this case,
where only two processors are used, it is necessary to delay the destination
time tile by one global time step, as shown in Figure 3.3. For the general case,
the following definition is used:

Definition. For vectors ����������������� � � and �213�����������41 � � , the � -norm distance or Man-
hattan distance is defined as: 5 �687 ��9 � 6/: 1 6 9 .

It is necessary to delay each tile by its manhattan distance from the ; -
processor coordinate, i.e. by the sum of all processor dimensions in its space-
time coordinate.

This leads to a transformation of the index space that represents a skewing
of the polytope representing the tile coordinate. We also implicitly assumed
that all communications are directed towards processors with a component-
wise higher coordinate than the corresponding source processors of the de-
pendence. In the next section, we will see that this assumption is indeed very
important.
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Figure 3.4: time tiling: non-fco dependence structure before skewing

Figure 3.5: time tiling: deadlock occurs after skewing

3.3 FCO placements
In the last section, the tiling technique was presented. We have seen that its
application causes no problems when tiling space dimensions, because only
time dimensions carry dependences that could be violated by tiling. However,
in the case of tiling time dimensions, the tiled index space has to be skewed,
delaying tiles on receiving processors.

Also we implicitly assumed a certain dependence structure: all depen-
dences are directed towards processors with higher processor coordinates. To
understand the reason behind this assumption, consider the dependence struc-
ture in Figure 3.4. Here, without time tiling, the dependence structure is per-
fectly legal, as all dependences are directed forward in time. We can see the
block structure introduced by time tiling, but skewing has not been performed
yet. Figure 3.5 shows the same index space after skewing is applied. It is now
obvious that some of the dependences are directed backwards in time, thus
being illegal.

It can be easily seen that this scenario can always be avoided by using
a placement that satisfies the property of forward communications only (FCO
property), as described by Griebl, Feautrier and Größlinger [GFG02].

Definition. A placement satisfies the forward communications only property

24



(FCO property), if and only if all communication vectors are component-wise posi-
tive in their spatial components, i.e.:< �>=@?BAC�ED!F��#G2�IHE�JGLKM�N��� � : F�KMOQPSR�DT��� �VUXW; , with ? being the set of all true depen-
dences, projected on their spatial dimensions.

An existing implementation of an FCO allocator [GFG02] within the LooPo
framework can be used to generate a valid placement for the use within the
code generation tool, when time tiling is used.

In Section 3.4.3, the FCO property will be extended from true dependences
to anti and output dependences.

3.4 Block structure for communication
With the time tiling technique described in the last section, it is possible to
reduce the overhead from communication startup by aggregating blocks of
several logical time steps into larger global time steps.

In this section, the buffer management used during this communication
scheme is further explained. Some restrictions to the space-time mapping are
introduced that arise from the use of this communication scheme. Finally,
some alternatives to the approach used in this work are also discussed.

3.4.1 Buffer layout
For the block communication scheme introduced above, send and receive op-
erations have been substituted by buffer management operations that gather
data in buffers at the sender side and unpack transmitted data from buffers at
the receiver side. The layout of buffers varies from on side to the other. It is
strongly related to the use of collective operations for communication (i.e. the
MPI_Alltoall operation). For this description of buffer layout, assume that
space tiling has been applied and each processor tile is mapped directly onto
one real processor.

Buffer layout for sending processor Figure 3.6 shows the buffer layout for
one processor at the sender side. Here, each processor (i.e. each pro-
cessor tile) uses separate buffers for all receiving processors to store data
in the corresponding buffer for later communication. This makes it eas-
ily possible to manage each buffer separately. Increasing the size of each
buffer may be necessary because in this scheme, the size of each buffer
is not computed at compile time. An alternative approach, which uses a
single buffer, is described in Section 3.4.5.
All data is inserted at the end of each buffer, thus keeping the stored
elements ordered for later unpacking.
Finally, at the end of a global time step, all buffers are combined into one
single buffer that is used for transmission by the collective operation.
This communication operation is executed on each processor and trans-
mits each part of the buffer to the corresponding destination processor.
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Figure 3.6: buffer layout for one sending processor

Figure 3.7: buffer layout for one receiving processor

Buffer layout for receiving processor Figure 3.7 shows the buffer layout for
one processor at the receiver side. After the collective communication
operation takes place, the single buffer used for receiving the data con-
sists of logically separated parts for each processor (i.e. each processor
tile) at the sender side.
When unpacking the received data, separate indices are used to keep
track of the position of the next element within each of these logical parts.
Thus, each of these parts can be as easily accessed as if separate buffers
were used for each source processor.

Note that although each processor at the receiver side can access the buffers
for each source processor separately, the unpacking of data from these buffers
still has to be performed in the exact same order as the insertion of the data at
the corresponding source processor.
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3.4.2 Buffer management and communication statements
If the communication scheme described above is used for code generation,
three types of statements in addition to the transformed computation state-
ments can be distinguished from the input program.

Write-buffer statements At the source processor of a dependence, that leads
to communication, locally computed data is stored by the write-buffer
statements in the communication buffer of the corresponding target pro-
cessor.

Unpack-buffer statements At the destination processor, these unpack-buffer
statements are responsible for unpacking the received data from the
communication buffer and update the corresponding memory cell in the
local arrays with it.

Communication statement One communication statement is executed at the
end of each global time step to transmit the data aggregated in the com-
munication buffer from all source processors to all target processors (us-
ing a collective operation like MPI_Alltoall).

These statements are described separately by polytopes, which are used
by CLooG in order to generate the corresponding loop nests in the target pro-
gram. The loop nests of all statement types are merged together, in order to
realize the required order in which the write-buffer, unpack-buffer and com-
munication statements are executed at each logical time coordinate, relative to
the compute statements in the target program. For this purpose, an additional
inner schedule dimension is used to order those statements within one logical
time step.

To get a better understanding of the buffer management statements, con-
sider Figure 3.8. Here, an index space for an example program is shown, con-
taining only two dependences, � � and � 
 , which lead to communication of
the memory cells � and % respectively. Assume that there are enough pro-
cessor resources, so that each processor tile can be viewed as a real processor.
As mentioned above, each of these real processor tiles uses separate buffers for
each communication partner, including itself. This is required by the collective
operation used for communication, although no actual communication from a
processor to itself can occur.

In this example, memory cells � and % are computed in the first tile, with
a dependence indicating the later use of % and � in the last global time step.
Note that the order of the read accesses in the third global time step is inverted,
compared to the order in which the corresponding write accesses occurred. In
the first time step, directly following the computation statements, the new val-
ues of � and % are written to the communication buffer by the write-buffer
statements. After the communication at the end of the first global time step, the
unpacking of the received data takes place in the second time step at the corre-
sponding destination processor P"� 
 , with all logical coordinates being enumer-
ated exactly as in the corresponding source tile (at the first time step), so that
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Figure 3.8: buffer-management

memory cells � and % are updated with new values from the receive-buffer
in the correct order. Finally, in the last time step, these updated values of �
and % are used during local computation statements.

The corresponding loop nests for both types of buffer management state-
ments can be generated from the communication polytope described in Sec-
tion 3.1.1 as follows.

Write-buffer statements

For each space-time mapped dependence � , the inequalities describing the re-
lation between source and target tile coordinates of � are used to specify which
global tiles are communicating with each other. For the write-buffer state-
ments, this results in enumerating loop nests for the source tile coordinates
of each dependence (to specify the sender) and enumerating the destination
processor number (to specify all receivers of the computed data).

Note that, by leaving out the global time step of the corresponding receiver
tiles, we automatically get message vectorization over all following time steps,
if the sender side has to send different data to the same destination proces-
sor over multiple time steps. For the enumeration of all data that has to be
aggregated in the buffer for communication within a certain tile, additional
dimensions for logical time and logical processor loops are inserted.

In the example of Figure 3.8, the resulting loop nest for enumeration of
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all write-buffer statements looks as follows (here, only one processor is enu-
merated at the source and destination side respectively and all coordinates are
counted starting from � ):
for globalTime=1..1

parfor srcProc=1..1
for logicalTime=1..2

for logicalProc=logicalTime..logicalTime
for destProc=2..2
/*

for processor srcProc:
write data at access(logicalTime,logicalProc)
to buffer for destProc

*/
end

end
end

end
end

Here, at the global time coordinate � , for processor � , only two logical time
coordinates � � � � � and � 
 � 
 � are enumerated, representing the logical time co-
ordinates at which the data elements � and % are written into the buffer,
respectively.

For the actual access of memory cells � and % , access functions can be
used to compute the exact array index from logical space-time coordinates for
the resulting memory access.

The actual generation of the corresponding inequality systems will be
treated in more detail in Chapter 4.

Unpack-buffer statements

It is essential for both types of buffer management statements (the write-buffer
and read-buffer statements) to use exactly the same order in which the ele-
ments are stored in the communication buffer that is used during the collec-
tive send operation. This is achieved by using separate buffers for each corre-
sponding processor (as described in the section about buffer layout) and the
same order for accessing the elements within each of that buffers for both types
of buffer management statements.

For this purpose, the same polytope description for each unpack-buffer
statement is based on the inequality system that was used for the correspond-
ing write-buffer statement of the same dependence. Also, the same projection
order for this polytope is used, except for the real processor dimensions for
source and destination of the dependence, which are interchanged.

This way, for each processor at the destination of a dependence, there are
loops enumerated for all source-processors from which data is received.
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For the global time dimension, an affine function is applied to delay the
unpack-buffer statements at the receiver side by one global time step, until the
data from the last global time step has been communicated.

As illustrated by Griebl [Gri04], no dependences are violated by this im-
mediate unpacking of the buffered data at the next global time step.

Although a different projection order for processor dimensions of source
and destination of a dependence is used, the loop body of each unpack-buffer
statement still maintains the correct order in which elements are unpacked.
The reason is that the innermost dimensions for source-processors restrict the
enumerated logical space-time coordinates to the relevant space-time coordi-
nates for exactly one pair of source and destination of a dependence.

In our example (illustrated in Figure 3.8), the values of memory cells � and% are written to the buffer at the logical space-time coordinates indicated by
number � and 
 respectively. As described above, the unpacking is performed
at the next global time step (although both elements are only used at the third
global time steps) by processor PY� 
 . Also, both elements are unpacked in the
exact same order (first � , then % ) at logical space-time coordinates indicated
by number Z and [ .

The resulting loop nest looks as follows:

// next global time step:
for globalTime=2..2

// destination processor tile:
parfor destProc=2..2
// same as at sender side:
for logicalTime=1..2

for logicalProc=logicalTime..logicalTime
// now enumerate source processor of communication:
for srcProc=1..1
/*

for processor destProc:
- unpack data from buffer
- copy to memory at:

access(logicalTime,logicalProc)
*/

end
end

end
end

end

Here, at the global time coordinate 
 , for receiving processor 
 , the same
logical time coordinates � � � � � and � 
 � 
 � are enumerated in the same order as
at the sender side of the corresponding dependence, representing the logical
time coordinates, at which the data elements � and % are unpacked from the
buffer and written to local memory cells.
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Communication statement

To get a polytope representation for all operations of the communication state-
ment, the computation statements can be used. Therefore, we use the trans-
formed representation of all computation statements as polytopes in the target
space. After the application of time tiling, all polytopes are skewed to avoid
communication cycles (cf. Section 3.2.4). These polytopes now can be pro-
jected (using Fourier-Motzkin elimination) to the global time dimension, in
order to provide a representation of all global time steps that include opera-
tions for computation statements. The code generation tool CLooG, used in
this project for generating loops from polytope descriptions, can be instructed
to use these polytope representations of the projected polytopes of all com-
putation statements as the domain description of the single communication
statement. The corresponding implementation details are described in Sec-
tion 3.4.2.

Although only one communication takes place in our example of Fig-
ure 3.8, the current implementation generates one communication statement
at the end of each global time step, that aggregates at least one computation
operation, even if no actual data is to be transmitted. In this case, all separate
buffers for corresponding source or target processors are empty, so the combi-
nation into one communication buffer is not costly.

The implementation of the code generation could be extended to avoid
communication statements at global time steps where no communication is
needed, but at the cost of far more complex domain descriptions for each
communication statement. Because the current implementation already shows
problems because of long run time of the involved CLooG code generator for
creating loop nests, this extension is not implemented.

3.4.3 Placements with strict FCO restriction
In the communication scheme described above, the communicated data is
written to local array cells immediately at the next global time step, instead
of delaying the reception of the data until the actual destination time step of
the corresponding dependence.

As described by Griebl [Gri04, GFG02], no dependences are violated, as
long as tiling is only used for space dimensions, as all dependences must be
carried by time dimensions. However, the skewing of the index space required
for time tiling can potentially lead to correctness issues, if no further restric-
tions are made to our placement function.

Consider Figure 3.9. Here, we see an index space with time tiling applied to
aggregate three logical time steps into one global time step, but before skewing
is applied. Processor tiling can be ignored here (assume a processor tile size
of � ). Three tiles are indicated by numbers for explanatory reasons. We also
see two true dependences and one anti dependence (indicated by a dotted
line). For this example, all dependences can be assumed to be resulting from
accesses to the same memory cell � . Thus, � is first overwritten in tile ; , then
again in tile 
 with a value computed in tile � .
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Figure 3.9: before skewing

Figure 3.10: after skewing

Note that no skewing has yet been performed. So far, all dependences are
directed forward in time, with the true dependences even satisfying the FCO
property by also being directed forward in the processor dimension.

Figure 3.10 shows the same example, this time after skewing has been ap-
plied. All true dependences are still directed forward in time (and in processor
dimensions), but we see the anti dependence now pointing backward in time.
This indicates a violation of the correct execution order, in the case that the
immediate unpacking of the communication data is used here.

In tile � , the computed value is written to the communication buffer and
communicated at the end of its global time step, immediately followed by un-
packing the received data in tile ; . The problem now becomes obvious, be-
cause in tile ; the received data is overwritten by a locally computed value,
which is then placed in the communication buffer. Thus, tile 
 receives the
value from tile ; instead of the correct value from tile � .

This example shows that our restriction to placements that satisfy the FCO
property (for true dependences only!) is not sufficient for guaranteeing cor-
rectness in our communication scheme, when time tiling is used. In this case,
the FCO property must be extended to include also anti and output depen-
dences, thus ensuring that all dependences are directed forward in time after
a skewing transformation (needed for time tiling).
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Figure 3.11: alternative buffer management for non-strict FCO placements

Definition. A placement satisfies the strict FCO property, if and only if all depen-
dence direction vectors are component-wise positive in their spatial components, i.e.:< �\=]?^A_�`D�F��JGL�IHT�#GLKM�N��� � : F!KMOQPSR�DT��� �aUbW; , with ? being the set of all dependences
in the transformed program, projected on their spatial dimensions.

In the case of the communication structure described in Section 3.4, this
strict FCO property guarantees that no read access is allowed to a memory
cell � between the source and destination time of a dependence that has �
as destination, because the direction vector of the resulting anti dependence
would not be component-wise positive.

This allows the communication scheme to communicate all aggregated
data in the next global time step and immediately write the received data to
local memory cell, because each local memory cell may only be accessed for
reading after the destination of the dependence. Thus, the amount of startup
overhead is reduced, because for each global source time coordinate, data is
aggregated for all global destination time coordinates.

3.4.4 Coping with non-strict-FCO placements
As mentioned earlier in this section, the buffer management described in Sec-
tion 3.4.2 is only guaranteed to be correct for placements that satisfy the strict
FCO property. However, in some cases, space-time transformations that com-
ply with this demand lead to load balance problems.

For an alternative buffer management scheme, consider Figure 3.11. Here,
we can see the same example as displayed in Figure 3.10 in Section 3.4.3. All
dependences result from accesses to the same memory cell � .

It is possible to use an alternative buffer management scheme for such non-
strict FCO placements, where the receiving processor delays the unpacking of
data by the manhattan distance ( � -norm distance) of both communication partner
processors.

In order to implement the delayed unpacking in this modified commu-
nication structure, a circular buffer can be used during the communication.
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Figure 3.12: buffer layout using circular buffers

After communicated by the collective operation, the data is not immediately
unpacked and written into local memory cells. Instead, it is copied from the
communication buffer to a circular buffer, in order to delay the actual unpack-
ing of data by the required time interval.

Each entry of this circular buffer represents a corresponding global time
interval by which the reception of the corresponding data is delayed. Each
processor keeps a counter that indicates the current position in the circular
buffer that represents the minimum delay (delay by � global time step). The
resulting location in the circular buffer for a receiving processor c for data
received from sending processor � could be accessed as follows:

circularBuffer[( i + distance(S,P) - 1) % d]

Here, G is the local index kept by � indicating the current position within
the circular buffer and � is the maximum possible delay, i.e. the size of the
circular buffer. Because dependences with Manhattan distance ; do not lead
to communication and, thus, are ignored for code generation, the minimum
delay interval is � global time step. Because the copying from the communi-
cation buffer to the circular buffer at the receiving processor takes place at the
following global time step after the source time step of each dependence, the
location has to be adjusted by subtracting one global time step. At each global
time step, G is incremented.

Note that the maximum communication distance � between any pair of
processors has to be known to specify the size of the circular buffer.

For each of these entries, the same buffer layout, as described in Sec-
tion 3.4.1 can be used. The resulting buffer layout for the new communica-
tion buffer at each processor is illustrated in Figure 3.12. Here, the situation
is illustrated for G,deZ , which means that the entry Z holds a pointer to the
communication buffer for the shortest delay interval.

For the unpacking of data, each receiving processor has to follow the
pointer in the circular buffer at the current position (indicated by GfdgZ in
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the above example) to the corresponding buffer, where the data is stored for
each processor at the sender side of the corresponding dependence. Thus, the
data stored in the buffer that is pointed to by the current entry in the circular
buffer is guaranteed to be delayed sufficiently and can be unpacked.

3.4.5 Using a single communication buffer
As mentioned in Section 3.4.1, the use of multiple buffers for gathering the
data for each destination processor involves a certain overhead for copying
the buffers into one buffer required for the MPI_Alltoall send operation.

In order to avoid this overhead, it is possible to restrict buffer management
to the use of only one buffer for gathering the data for all communication part-
ners of a processor. The same buffer can then also be used for communication.
However, to keep the gathered data ordered for later unpacking, it is still nec-
essary to divide this single buffer into multiple logical blocks for each desti-
nation processor. As the number of communicated data for every destination
processor can vary for each source processor and also for each time step, it is
required to precompute the size of these blocks at compile time, in order to be
able to manage the insertion of the gathered data at the correct position in the
corresponding buffer.

For this precomputation of the amount of communicated data for each pair
of source and destination processor at each global time step, it is possible to
count the points within the corresponding communication polytopes. How-
ever, these polytopes may contain parameters that are only known at run time,
so a mathematical method has to be used that makes it possible to count points
within parameterized polytopes. For this purpose, so called Ehrhart Polynomi-
als [Cla96] can be used to find a function of the parameters that represents the
number of integer solutions to a system of parameterized linear constraints
from the corresponding polytope.

For the implementation covered by this thesis, this single-buffer approach
has been discarded, because of the overhead caused by the resulting complex
functions used in indexing the buffer. Instead, the above mentioned buffer
management is applied, using separate buffers for each communication part-
ner of a given processor tile.

3.5 Mapping on real processors
In the communication schemes described in Section 3.4, each logical processor
(or processor tile in case that space tiling is used) was assumed to represent ex-
actly one real processor, on which the corresponding operations are executed.
However, in order for this scheme to work, the number of available processors
would either be sufficiently high for any number of processor tiles or space
tiling would have to be applied to produce the exact number of processor tiles
for available real processors. As the number of real processors is obviously re-
stricted, only the second solution is practicable. However, for this approach to
work, space tiling has to be extended to the case that parameters can be used

35



block distribution cyclic distribution

Figure 3.13: mapping to real processors: distribution strategies

for specifying the tile size of processor tiles (cf. Section 5.1), thus specifying
the resulting number of processor tiles. This approach was not used in our im-
plementation, because of the already high complexity of the loop generation
algorithm.

3.5.1 Distribution strategies
Alternatively, space tiling can still be used to coalesce operations in order to
increase the granularity of parallelism, but for the actual mapping to real pro-
cessors an additional mapping mechanism is introduced that decides for each
real processor, which processor tiles are to be executed on it.

Thus, the result is a mapping scheme split into two stages:

1. logical processor coordinate :�h processor tile coordinate

2. processor tile coordinate :�h real processor number

As mentioned above, the first stage is realized by the space tiling technique.
For the second stage, different mapping strategies can be chosen:

Block distribution As illustrated in the left part of Figure 3.13, in a block dis-
tribution strategy adjacent processor tiles are mapped to the same phys-
ical processor. This may reduce communication between processors, if
communication takes place within those blocks of processor tiles, how-
ever, space tiling already has been applied for this purpose, so the ad-
ditional amount of reduced communication is expected to be negligible.
Moreover, block distribution can lead to problems with load balancing,
i.e. in the example of Figure 3.13, real processor number [ has only Z
operations to execute, whereas the first real processor executes ��i opera-
tions.
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Cyclic distribution Alternatively, processor tiles can be mapped to real pro-
cessors using a cyclic distribution, as illustrated in the right part of Fig-
ure 3.13. Here, each processor tile is assigned to a real processor number
that is increased in turn, using modulo arithmetic to limit the range of
the counter to the available number of real processors. Cyclic distribu-
tion may lead to more communication of data compared to a block dis-
tribution strategy, because for adjacent processor tiles communication is
necessary. However, cyclic distribution results often times in a better
load balance than block distribution, as can be observed in Figure 3.13.

Both mechanisms allow a mapping to an arbitrary number of available real
processors that has to be known only as late as run time, without the need to
specify the exact number of processors already at compile time, as is necessary
when space tiling is used exclusively for distribution of logical processors on
real processors.

Because space tiling already provides a good instrument for reducing com-
munication between processors for local communications, and because of the
load balancing advantage, it is often sensible to implement cyclic distribution
of processor tiles.

In some cases, however, especially when space tiling is not applied or cyclic
distribution is not desired because of a dependence structure that leads to local
communication, block distribution is better suited as a mapping strategy.

In this implementation, both strategies are implemented, allowing the user
to choose one distribution strategy at compile time.

Remark. The combination of space tiling with cyclic distribution is known as a
block-cyclic tiling. By experimenting with different values for the size of processor
tiles, it is possible to fine-tune the distribution structure for different target architec-
tures and input programs.

3.5.2 Generating a processor mapping
For the actual code generation, there are different ways to implement the map-
ping of logical processors (or processor tiles) onto real processors.

Using the rectangular hull

One approach is to use symbolic expressions to compute the corresponding
real processor number directly from a given multi-dimensional processor tile
coordinate, using a rectangular hull algorithm for determining the size in each
processor dimension.

Therefore, in a first step, the possibly multidimensional logical processor
(processor tile) coordinates have to be transformed into a one-dimensional co-
ordinate.

Let F 6 be the size of processor dimension & 6 for G0= � �8�j� , where � is the total
number of processor dimensions, then the one-dimensional coordinate &Vk�l�m
can be computed from the entries ��&	�����������4& � � of the � -dimensional logical
processor coordinate & using a lexicographic order as follows:
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Figure 3.14: load balance problem with rectangular hull

& k�l�m dX������& � )�F �Tn � �Io & �En � � )�F �En - o & �Tn - � �����T)MF � o & �
This one-dimensional number is then mapped to a real processor coordi-

nate, using a modulo-expression in the case that a cyclic distribution strategy
is applied ( &0p�q rJm being the number of available real processors):

&ts m�u4v dw&Nk4l�m�xzyC{(&Np�q rJm
In order to obtain the size of each processor dimension, a rectangular hull of

all polytopes of all computation statements can be used, after projecting these
polytope representations onto the processor dimensions. From the resulting
rectangular polytope, the lower and upper bounds in each dimension can be
derived easily and, thus, the size of each dimension can be computed symbol-
ically.

However, this processor mapping algorithm can lead to poor load balance,
because holes between polytopes are implicitly enumerated when using a rect-
angular hull algorithm. Consider the example illustrated in Figure 3.14, as-
suming two available real processors ( PY� � and PY� 
 ). Here, the index space of all
computation statements is not contiguous, because every other logical proces-
sor coordinate is not executing any computations. However, the rectangular
hull ignores these holes in the index space, which leads to a mapping, where
all operations are mapped to P"� � . Similar problems with load balance can also
occur, when a block distribution strategy is used. In order to avoid these prob-
lems, the enumeration of occurring processor tile coordinates is performed
dynamically at run time.

Using a dynamically computed processor map

If it is necessary to avoid holes in the index space when enumerating all proces-
sor tile coordinates, an alternative to the above described symbolical approach
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Figure 3.15: exact processor mapping using a precomputed processor map

has to be found. The implementation treated by this thesis uses CLooG again,
to enumerate all processor tile coordinates at run time. The spoken constructs
a map at run time, when the exact number of real processors is available. This
map contains entries for each multidimensional processor tile coordinate that
specify a corresponding real processor coordinate. During execution of the
target program, this map can be used to lookup corresponding real processor
coordinates.

For constructing the input description used by CLooG, the polytope repre-
sentations of all computation statements are used. Therefore, each polytope is
projected onto its processor tile dimensions. The union of these polytopes then
is used as domain description in the input file, from which CLooG generates
the resulting loop nests. Finally, code is inserted into the generated loop nest,
that creates an entry in the processor map for each iteration of the processor
tile loop. Here, the user can choose between cyclic and block distribution for
the mapping of processor tile coordinates to real processor numbers.

As mentioned in Section 2.2.2, CLooG is able to generate code for unions
of polytopes, while also handling non-unimodular transformations on these
polytopes. Thus, CLooG is perfectly suitable for enumerating the required
processor tiles and avoiding enumeration of holes in the index space. In the
example illustrated in Figure 3.15, the resulting mapping is displayed.

Compared to the mechanism of using a rectangular hull described above,
this mapping distributes a real processors onto a certain processor tiles, if and
only if there is at least one computation statement operation executed on that
processor tile in the target program. However, as this mechanism requires the
construction of the map at run time, along with the lookup operations that are
required additionally (also at run time), a certain amount of run time overhead
is introduced.
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Figure 3.16: modified buffer-management

3.5.3 Modifications for buffer management statements
With the availability of a processor map for dealing with the distribution of
processor tiles (or logical processors) onto the available real processors, it is
now necessary to revisit the above described buffer management.

As described in Section 3.4.2, two types of statements are generated for
managing the aggregation of data in the communication buffer at the sender
side and unpacking the corresponding data at the receiver side respectively:

$ write-buffer statements
$ unpack-buffer statements

Using the processor-mapping mechanism described above, it is now possi-
ble for each buffer management statement to determine the exact real proces-
sor for both the corresponding processor tile used as communication partner
and the processor tile used for the statement itself, thus allowing to distinguish
between local and non-local communication at run time. This is done by per-
forming a lookup in the processor-map, using the � -dimensional processor tile
coordinate for both involved buffer management statements.

The information about the executing real processors allows the statements
to restrict operations on the buffer to the cases of non-local communication,
where an actual transmission of data is necessary. This way, no locally avail-
able data is transmitted.

For a better understanding, consider Figure 3.16, where the left depen-
dence is between two processor tile coordinates, that are mapped to the same
real processor. This dependence does not lead to communication, because the
involved memory cell can be accessed locally. However, the destination of the
second dependence has a different real processor number assigned to it than
the source, thus leading to communication of the value from the correspond-
ing memory cell.
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3.5.4 Using processor mapping in SPMD programs
Without processor mapping, the target program generated until this point im-
plicitly assumes that the loops corresponding to processor tile dimensions will
be executed, with each iteration of these loops running on a separate real pro-
cessor. In this thesis, these parallel dimensions have been indicated by using a
parfor construct instead of the sequential for construct.

Now that the processor mapping mentioned above allows the logical map-
ping from processor tiles to real processors, it is possible to specify the ex-
ecuting real processor (by inserting an if statement), instead of the parfor
construct, in order to create target code that could be executed in parallel on a
distributed memory system.

As the next section will deal in more detail with the actual combination of
target language and communication library that is used in this project, the next
example uses pseudo code to describe the principle:

const myRank = initRank()
[...]
for globalTime=..

for srcProc1=1..n
for srcProc2=1..m

if (lookup(srcProc1,srcProc2) == myRank)
for logicalTime=..
for logicalProc=..

for destProc1=..
for destProc2=...
if(lookup(destProc1,destProc2) != myRank)

writeBuffer()
[..]
end if

end
end

end
end
[..]

end if
end

end
communicateData()

end

This simplified extract from a parallel target program only shows a small
part of a write-buffer statement and indicates a communication statement, that
is executed at the end of each global time step. Here, the parfor construct
is substituted by a sequential for loop. Moreover, there is an additional if
statement inserted that performs a lookup of the two-dimensional processor
tile coordinate.
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The resulting real processor number is then compared with a constant that
is initialized at the begin of program execution with the real processor number
of the current executing process. Together with the SPMD principle, that im-
plies the execution of the same program code for all processes, each processor
initializes this constant with its specific number. The write-buffer statement
is only executed on the current processor, if the corresponding processor tile
coordinate is found.

Note also that another lookup of the destination processor tile coordinate
is performed for assuring the case of non-local communication.

At the end of the global time step, the communication is performed, here
indicated in the pseudo code by the function call communicateData(). Be-
cause a collective operation is used for the communication of data, this state-
ment is not guarded by the if condition as in the case of the write-buffer state-
ment. This allows the code to be executed without restriction to any real pro-
cessor number and, thus, the collective operation is executed in parallel on all
available processors, as required.

Because CLooG was not designed primarily for use with SPMD programs,
the insertion of the guarding if statement mentioned above requires an addi-
tional post-processing of the generated loop nest. For this purpose, a simple
scanner/parser is used that recognizes the parallel processor loops and inserts
the if statement at the corresponding location in the target code.

3.6 Target language
In the previous sections, the principles of code generation for distributed mem-
ory architectures have been described, but so far only pseudo code has been
used in the target program examples. This section introduces combinations of
target languages and communication libraries that could possibly be used for
code generation. The design choice to use the MPI communication library for
the target language C will also be explained.

3.6.1 Languages using message passing semantics
The approach the is used for the required communication of data between
processors in distributed memory architectures is called message passing. In
this field, several programming languages, libraries or language extensions
exist, each providing different abstraction levels and different concepts. For
this project, the main options as target languages were:

HPF Based on Fortran 90, High Performance Fortran (HPF) extends the language
with parallel constructs in order to allow parallel computing of arrays.
The user can specify the distribution of data on processors (using sev-
eral specialized compiler directives), using SIMD semantics for comput-
ing separate parts of this data in parallel on different processors. The
compiler uses the annotations to compute the required communication
between processors.
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The main advantage of HPF from a user’s point of view is the high ab-
straction level, because the basic sequential program code can be reused.
However, the programmer has to specify, how the computed data is dis-
tributed onto the available processors. This is done by inserting addi-
tional compiler directives, whereas the difficult task of generating code
for message passing is left to the compiler. However, in the context of
automatic code generation, this abstraction level is problematic, because
for more complex data distributions, available HPF compilers often fail
to generate efficient communication code. These problems are dealt with
by Faber [Fab97, FGL01], who adapts HPF to be used as a target language
for code generation in the polytope model.

C+MPI The message passing interface (MPI) [Mes94, Qui04] is available as a
library for several programming languages, but is mostly used in com-
bination with C or Fortran programs. This is an advantage over HPF,
because using C as base language, C+MPI allows to generate target code
for most available platforms. Compared to HPF, the abstraction level
of C+MPI is considerably lower, because the user has to deal explicitly
with all communication between processors, although the concept of col-
lective operations provides abstractions for certain specialized communi-
cation structures. On the other side, this lower abstraction level provides
a more powerful method to deal with complex communications result-
ing from irregular dependency structures.

Java Although it is possible to use Java for parallel computing, its remote
method invocation (RMI) approach is designed primarily for use in large
distributed software systems (e.g. distributed data base systems), pro-
viding a high abstraction level compared to both HPF and C+MPI. As a
target language in the context of high performance computing, however,
it lacks the necessary amount of control over how the processors com-
municate with each other. There are attempts to extend the language for
the use in high performance computing, resulting in several Java dialects
[PL01]. Nevertheless, these languages (e.g. JavaParty [PZ97] or High Per-
formance Java [YSP | 98]) still require complex adjustments to the gener-
ated code in order to achieve a comparable efficiency as, e.g. C+MPI.

The experience with both Faber’s results [Fab97, FGL01] and experiments
with Java Party, together with some positive experiments with C+MPI, lead
us to the decision to use C+MPI as target language for this implementation of
automatic code generation in the polytope model.

3.6.2 C+MPI as target language
As target language for this implementation of automatic code generation,
C+MPI provides a very powerful means for expressing different kinds of com-
munication between processors. From the enormous number of available op-
erations (129 in the MPI 1.1 standard!) there are two groups of communication
operations that are of interest for the code generation in our project:
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Figure 3.17: collective operations: processor P"� 
 performs broadcast

Point-to-point operations The basic functions for sending and receiving mes-
sages between single processors in MPI are the MPI_Send and MPI_Recv
operations.
These point-to-point operations can be used in different forms, e.g.
blocking or non-blocking, buffered or not buffered. Other functions al-
low the probing of messages for their availability or type. There are also
extensions in the MPI 2.0 standard [MPI96] to access remote memory
directly using one-sided communication operations.

Collective operations In order to provide a higher abstraction level, collective
operations are available for certain communication structures. These op-
erations range from the often used broadcast of single data elements onto
all other processors (MPI_Broadcast, described in Figure 3.17) to the most
general collective operation MPI_Alltoall, illustrated in Figure 3.18. Here,
each processor keeps a separate buffer for each communication partner
at the receiver side and likewise uses separate buffers for each commu-
nication partner to receive data, when the actual exchange of data by
all processors takes place. As the methods used for parallelizing in the
polytope model often create quite complex communication structures,
requiring many processors to communicate with each other, MPI_Alltoall
provides a very convenient tool for implementation. Moreover, the MPI
library can in theory use more specialized constructs for implementing
the MPI_Alltoall operation, as it would be the case if a sequence of point-
to-point communication operations were used instead. For the hardware
used for testing this implementation, benchmarks have indeed shown a
performance advantage of collective operations compared to point-to-
point operations, when used for equal purposes in synchronous parallel
target programs, as illustrated by Ellmenreich [Ell04]. There exist fur-
ther generalizations of the basic all-to-all operation, differing in the kind
of data that is transmitted. For sending single data elements only (e.g.
single integer values), the basic MPI_Alltoall can be used, whereas the
more general MPI_Alltoallv extends the transmission to arrays (vectors)
of (same-typed) data elements. The size of each of these arrays can be
specified by an argument to the function call in the form of an array of
integers.
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Figure 3.18: collective operations: all-to-all

In the implementation covered by this thesis, the array variant
MPI_Alltoallv has been used for transmitting the separate communication
buffers described in section 3.4.1. Because the receiving processors have to
know the exact buffer-size of each buffer (for each communication partner) in
which the transmitted values are stored, an additional basic MPI_Alltoall op-
eration is used prior to the actual communication of the buffers, in order to
propagate the information about buffer-sizes to each involved processor.

3.7 Soaking and draining
Using the methods described in the earlier sections of this chapter, the result-
ing target program consists of different types of statements that perform the
actual computation of values and also the communication of updated data to
destination processors, where the data is used during further computations.

However, in order to start computation, each processor implicitly requires
the input data to be available in its local memory. Similarly, all data computed
has to be gathered at the end of computation. Here, all processors that are
owners of a most recent updated memory cell have to send the value to a
single processor that holds all computed values.

This section briefly discusses the problem of generating the required code
for performing this initial distribution of input data across processors (the so-
called soaking of the processor array), as well as the draining of the final values
after completed computation from the processor array.

3.7.1 Soaking
Different approaches can be used to implement the initial distribution of input
data across all processors, that require this data for computation.

Additional soaking statement

In order to generate the necessary communication of data for soaking, addi-
tional statements can be inserted in the original input program. These soaking
statements consist of assignments of all data cells to themselves. Assume the
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Figure 3.19: communication for additional soaking statement

following loop nest, belonging to an input program that uses only a single
two-dimensional array } :

for i=1..n
for j=1..m

... = A(i-1,j-1) // computation operations
A(i,j) = ...

end
end

This program is augmented by an additional soaking statement � that con-
sists of an assignment of all array cells in } onto themselves:

for i=1..n
for j=1..m

A(i,j) = A(i,j) // additional soaking statement S!
end

end
for i=1..n
for j=1..m

... = A(i-1,j-1) // computation operations
A(i,j) = ...

end
end

This additional statement � is now placed explicitly onto the first proces-
sor &N� (or onto any other processor that holds the initial data for } ), thereby
overriding the placement generated by the allocator and leading to depen-
dences from &0� to any other processor that uses data from } . Likewise, � is
scheduled explicitly to be executed at the global time step right before the first
time step for which any other computation is scheduled. Figure 3.19 illus-
trates the resulting communication scheme in a simplified index space. Note
that no computation overhead results from this inserted statement, because it

46



is only used for generating the necessary communications and no actual as-
signment operations have to be executed during the computation in the gen-
erated target program. Also, using this dependence-driven approach, data is
only computed when it is actually used in the later computations on the cor-
responding processor. Currently, this soaking statement is inserted manually
before the start of the usual parallelization process, which is then completed
automatically. Extending the implementation to insert the soaking statement
fully automatically is possible, but for our project, we used the following al-
ternative.

Distributed reading of input data

As an alternative to the insertion of an additional soaking statement, it is also
possible to replicate all arrays on all real processors. This can be achieved by
copying explicitly the required files on each target processor or, more elegantly,
using distributed file systems (e.g. the network file system, NFS). Every proces-
sor then proceeds to read the required input data from its local file, before the
start of any computation.

Using this approach, no modifications to the original input file have to
be made, but the overall amount of communicated data can be considerably
higher.

3.7.2 Draining
At the end of computation, all final values are typically scattered throughout
the processor array, which complicates the task of collecting these values from
their last location (the so called draining) and gather it at one destination pro-
cessor. However, it is possible to use an approach that is very similar to the
one used for soaking.

Here, an additional statement is again inserted, containing assignments
from each array cell to itself. Whereas the soaking statement is inserted before
the computation statements, the draining statement ? is appended at the end
of the original input program:

for i=1..n
for j=1..m

... = A(i-1,j-1) // computation operations
A(i,j) = ...

end
end
for i=1..n
for j=1..m

A(i,j) = A(i,j) // additional draining statement D!
end

end

47



Figure 3.20: communication for additional draining statement

Again, a modified placement is used to place ? at the designated desti-
nation processor (normally the first processor & � again). Also, a modified
schedule is used, in order for ? to be executed at the end of the target pro-
gram. The resulting communication scheme is displayed in simplified form
in Figure 3.20. As it is the case for the soaking statement, this draining state-
ment produces no computation overhead, because the assignment code can be
omitted for code generation for the target program.
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Chapter 4

Implementation

This chapter will describe in detail how the CLooG loop generator tool is used
for generating the target code. It illustrates the layout of CLooG’s input file
format and how the code for the different statements in the loop bodies of the
target code is constructed.

4.1 Generating the CLooG input data
As mentioned in Section 3.4.2, different types of statements are used in the
target code, beside the statements resulting from the input program, which
perform the actual computation task. Instead of using single send and re-
ceive statements for point-to-point communication, this implementation uses
buffers to aggregate the data in global time steps and communicates the con-
tent of these buffers at the end of each global time step using a single collective
operation (in this case, a combination of MPI_Alltoall and MPI_Alltoallv
is used). For this purpose, two different kinds of statements are used, which
perform the aggregation of data at the sender side (write-buffer statements)
and the unpacking of received data at the corresponding destination processor
(unpack-buffer statements). Including the communication statement and the
original computation statements, there are four different types of statements
to be generated for the target program. This section describes how CLooG is
used for generating the corresponding loop nests.

Therefore, a simple input program (illustrated in Figure 4.1) is used as an
example for the generation of target code.

for i=1,m-1
for j=1,i
A(i,j)=A(i-1,j)+A(i,j-1)

end
end

Figure 4.1: Example input program
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Figure 4.2: Original index space for the example input program

This code example contains a perfectly nested, two-dimensional loop nest,
with a corresponding index space as displayed in Figure 4.2 (assuming the
value � ; for parameter � ). The corresponding dependences are also included
in Figure 4.2, as obtained by the dependence analysis method.

4.1.1 CLooG input file format
The required input information for CLooG can be passed via ASCII data files
(or directly by reading from standard input stream), using a defined structure
for the input file to describe the loop nests for the statements in the target
program.

This input file is structured into three parts:

Context information In the first part of the input file, the context for the target
code can be specified, using linear inequality systems to restrict all occur-
ring parameters to their corresponding domains (in our case, all parame-
ters are always restricted to be positive). Also, the parameter names can
be given optionally user-defined names and the target language can be
set to either C or Fortran (although at the moment, only C is used for the
implementation covered by this thesis).

Statement domain description The next part of the input file contains a de-
scription of the polytopes for all statements in the target programs in the
form of linear inequality systems, that may also include equations. In
order to describe non-convex index spaces, it is possible to use multiple
polytopes for each statement. CLooG uses this description to enumer-
ate all integral points in the union of all polytopes for each statement
in lexicographical order but, so far, no ordering between the different
statements is assumed. Also, the names of iterator variables for the cor-
responding loop nests can be specified optionally here.

Scatter functions The last section of the input file contains a description of
so called scatter functions. These functions allow to specify additional
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dimensions for the target code in order to specify further the execution
order on all statements. To this end, equations in the dimensions from
the domain description of each statement and the additional scatter di-
mensions can be defined by a linear system of equations, whereas the
number of scatter dimensions has to be equal for all target statements.
Using this description, CLooG generates a loop nest, which consists of� scatter dimensions in the outermost loop dimensions, using the lex-
icographic order on all statements for enumerating the corresponding
integral points, whereas the following ? innermost dimensions result
from the separate domain description mentioned above for each state-
ment. Thus, the resulting loop nest consists of a total number of � o ?
dimensions.
Furthermore, the additional scatter dimensions can optionally be named
by the user.

In the course of this section, the domain descriptions and corresponding scat-
ter functions will be described for all types of statements in the target program
respectively.

4.1.2 Domain descriptions
The domain description in CLooG’s input file specifies the index space for
each statement in the target program. Although a lexicographical order is
implicitly assumed for enumerating each domain, scatter functions (see Sec-
tion 4.1.3) can be used to rearrange the order in which each dimension is enu-
merated in the generated corresponding loop nest. Thus, the inequality sys-
tems describing the domain for each statement can in theory be represented
in arbitrary order of their variables, if desired. The following domain descrip-
tions are based on the communication scheme described in Section 3.4.

Each domain description can be expressed in CLooG in the form of a num-
ber of matrices, where each matrix � describes the inequality system

�~)
�������� W� W� �

�j������� U W;��
in which � is multiplied by the index vector consisting of surrounding loop
indices W� , structure parameters W� and the constant � . All entries in � have to be
integral numbers. Thus, each row in � represents an inequality. By extending� by the columns for parameters and a column for the constant � , affine linear
inequalities can be expressed.

For each statement type, the corresponding domain description is com-
posed of different inequality systems in the course of this section. These in-
equality systems are first illustrated seperatetly and later combined in the final
matrix that defines the corresponding domain.
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Computation statement description

For the domain description of each computation statement in the transformed
target program, the matrix representation of the inequality system belonging
to the corresponding original index space (ISPC) of the statement ( ��q�p��Y� ) is
used as the basic inequality system:

��q�p��"�0)
�������� W� q�p��Y�W� �

� ������� U W; (4.1)

In the case of our input program of Figure 4.1, which contains only one
statement, the corresponding original index space is described by the follow-
ing inequality system:������������

; � ; : �� : � ; ;� ; ; : �
: � ; � : �

� ����������� )
������������

G�
� �

� �����������
U

������������
;;;;

� ����������� (4.2)

In order to transform this inequality system into the corresponding de-
scription for the inequality system in the transformed index space (TISPC), the
space-time transformation (trafo) function is included in the form of a matrix����s u���k , that contains equations in coordinates in the original and the trans-
formed index space (TISPC). The TISPC coordinates are given as a function of
the ISPC coordinates:

����s u���k )
�������� W� q�p��"�W� �

�j������� d
�������� W� � q�p��"�W� �

�j������� � (4.3)

In the case of our input program of Figure 4.1, the corresponding space-
time mapping obtained by the applied parallelization methods leads to fol-
lowing equation system:������������

� � ; : 

; � ; ;; ; � ;; ; ; �

� ����������� )
������������

G�
� �

� ����������� d
������������

��� �
� ����������� � (4.4)

Here, the dimensions of the target index space are named � and � denoting
time and processor dimensions respectively. This space-time mapping leads
to a skewed target index space, as displayed in Figure 4.3.

Thus, the inequalities for enumerating coordinates in the transformed in-
dex space is implicitly defined by the combination of inequalities from the
original index space (Inequality 4.1) and the equations from the space-time
transformation function (Equation 4.3).

For some statements, the space-time mapping is only valid for a certain
subset of the original index space. For this purpose, additional inequalities
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Figure 4.3: Target index space after space-time mapping

(trafo constraints, trc) are included in the form of the matrix � ��s � to restrict the
ISPC inequality system to the valid coordinates:

� ��s �t)
�������� W� q�p��Y�W� �

� ������� U W;C� (4.5)

In the case of our example input program, the only restriction that is de-
fined by the inequality system corresponding to matrix � ��s � , is for parameter� : � U 
 � (4.6)

For the implementation of the tiling technique, the corresponding inequal-
ities for describing the relation between space-time coordinates in the trans-
formed target space and their corresponding tile coordinates are included as
the tiling matrix ��� q�v m :

��� q�v m )
������������

W� � q�v mW� � q�p��Y�W� �
�j�����������

UbW;�� (4.7)

In our example, we use tiling for both dimensions of the transformed index
space, thus, implementing time tiling as well as space tiling. We choose a
rectangular tile shape and a tile size of Z in both dimensions.

The resulting inequality system between tile coordinates and absolute co-
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ordinates in the transformed index space looks as follows:

������������
; : Z ; � ; ;; Z ; : � ; 


: Z ; � ; ; ;Z ; : � ; ; 

�j����������� )

��������������������

�����(�E��������2���_� �E�������
��� �

� �������������������
UbW;C� (4.8)

These separate matrices are combined to one matrix that describes the do-
main of one computation statement in the target index space. Therefore, each
matrix � is partitioned into three sub-matrices ( � , & , � ), containing entries
for the corresponding description of variables, parameters and constants, re-
spectively. The resulting matrix �¡ Tk4¢�� for one computation statement is con-
structed as follows:

�  Tk4¢�� A�d
����������������

�/q�p��"� ; &Nq�p��"� �£q�p��Y��/��s u���k ; : � &N��s u���k �£��s u��2k: �/��s u��2k ; � : &N��s u���k : �£��s u��2k; �¤� q�v m &t� q�v m �£� q�v m� ��s � ; & ��s � � ��s �

� ���������������
�

Here, the first line can be obtained from matrix �wq�p��Y� , defined in Inequal-
ity 4.1. The second and third line are used to represent Equation 4.3. Here,
in the second line, the entries ; and : � in the second and third column rep-
resent a zero matrix and a negated unit matrix of the same dimension as the
total number of tiled dimensions and the target index space, respectively. This
inequality is negated for the third line, in order to define Equation 4.3.

In the fourth line, the tiling inequalities from Inequality 4.7 are used, where�/� q�v m consists of dimensions for tile coordinates and transformed index space
coordinates, between which the inequality is defined. The last line represents
the inequalities from Inequality 4.5.

The resulting inequality system defined, by matrix �¥ Tk�¢¦� , looks as fol-
lows:

�§ Ek�¢��¨)
����������������

W� q�p��Y�W� � q�v mW� � q�p��"�W� �

� ���������������
UbW;C� (4.9)

The dimensionality of the index space defined by Inequality 4.9 is © ��� q�p��"� o© ��� � q�p��Y� o © ��� � q�v m , where © ��� q�p��"� and © ��� � q�p��"� are the dimensions of the corre-
sponding index spaces and © ��� � q�v m is the total number of tiled dimensions.

In the case that tiling is not applied, the corresponding rows and columns
of matrix �� Tk�¢¦� that are defined by matrix �ª� q�v m are omitted, leading to an
index space of dimensionality © ��� q�p��"� o © ��� � q�p��"� .
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Figure 4.4: Communication-producing dependences

Buffer management statement description

As described in Section 3.4.2, two kinds of buffer management statements are
generated for the target program. At the sender side, the write-buffer statement
manages the aggregation of data in a buffer whereas, at the receiver side, the
communicated data is read from another buffer and written to local memory
by the unpack-buffer statement.

For the domain description of write-buffer and unpack-buffer statements,
we can use the same inequality system for both statements. The reason is that
the same relation between source and destination coordinates of a dependence
is described. A distinction between buffer management at the sender and re-
ceiver side is only made in the scatter functions (see Section 4.1.3), were two
different projection orders are applied that invert the enumeration of dimen-
sions belonging to the source and destination of a dependence.

Each domain description is based on the information corresponding to one
transformed dependence in the target program. However, as mentioned in
Section 3.1, anti, input and output dependences are not used during this code
generation step, because only true dependences can lead to communication
between processors. Furthermore, it is possible that, for a true dependence,
the corresponding source and destination are located on the same processor
tile. In that case, no communication is required, because both processor tiles
are always mapped to the same real processor and these dependences can be
omitted for code generation as well. This leaves only one dependence in our
input program from Figure 4.1 for code generation, as illustrated in Figure 4.4.

As briefly introduced in Section 3.4.2, the dependence polytope from Sec-
tion 3.1.1 is used as a base for the domain description inequality system. For
this purpose, polytope representations of the source ( �*« s ��¬�« /  ) and corre-
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sponding destination index spaces ( ��®¯mJp � ¬�« /  ) are used:

�.« s ��¬�« I f)
�������� W� q�p��"�W� �

�j������� U W; (4.10)

and

�°®¯mLp � ¬�« I ])
�������� W� q�p��Y�W� �

� ������� U W;C� (4.11)

For our input program, the resulting inequality for the source index space
of the relevant dependence is:������������

: � ; � : �� ; ; : �� : � ; : �
; � ; : �

�j����������� )
������������

G�
� �

�j�����������
U±W;�� (4.12)

The corresponding index space for all coordinates that are destinations of
the relevant dependence is defined by the following inequalities:������������

: � ; � : �� ; ; : �� : � ; ;; � ; : 

�j����������� )

������������
G�
� �

�j�����������
U±W;�� (4.13)

The inequalities for source and destination ISPC of a dependence are com-
bined into one inequality system, along with an equation that defines the cor-
responding source coordinate for a given destination coordinate (the so-called
h-transformation (hT) form of the dependence):

������������
� « s ��¬�« I  ;; �°®¯mLp � ¬�« I : � �°²M³� : �.²M³

� ����������� )
��������������������

W� p s �W� �W�C´ mJp �W� �

� �������������������
U W;C� (4.14)

In the case of our input program, ��²M³ defines following equation (given
in our inequality system as two inverse inequalities) between variables at the
source of a dependence ( W�µ´ mJp � ) and corresponding destination variables ( W��´ mJp � ):������������

� ; ; ;; � ; : �
; ; � ;; ; ; �

� ����������� )
�������� W�C´ mJp �� �

� ������� d
�������� W� p s �� �

� ������� � (4.15)

This polytope is combined with separate �*��s u���k space-time transforma-
tion matrices from the corresponding source ( � « s � ³�s u��2k ) and destination
( � ®ImJp ��³�s u��2k ) statements (cf. Equation 4.3), in order to obtain a representation
of the dependence in the transformed index space, the communication polytope
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described in Section 3.1.1. Also, additional restrictions to the space-time trans-
formation are included (as described by Inequality 4.5).

If the user chooses to use tiling, the corresponding inequalities from In-
equality system 4.7 are used for both transformed source and destination in-
dex spaces of the dependence. This results in following matrix �w¶Q·�¸ m s�¶ u�p�m ,
with each matrix � , � , & and � representing the corresponding sub-matrices
for variables, parameters and constants, respectively:

�°¶Q·2¸ m s�¶ u�p�m A�d

�������������������������������������

�¦« s ��¬�« I  ; ; & �; �¦®¯mLp � ¬�« I  ; & �: � �.²3³ ; & �� : �°²M³ ; & �� « s � ³�s u���k ; ; : � ; & �; � ®ImJp ��³�s u��2k ; ; : � & �; � « s � ³ q�v m ; & �; ; � ®¯mLp ��³ q�v m & ��¦« s � ³�s � ; ; & �; �¦®¯mLp ��³�s � ; & �

� ������������������������������������

�

Again, : � and � « s � ³ q�v m ( � ®ImJp ��³ q�v m ) represent the same sub-matrices as in matrix�� Tk�¢¦� for computation statements.
The corresponding inequality system provides more information than

needed for the domain description of the buffer management statements.
The communication structure described in Section 3.4 requires no informa-
tion about the destination time coordinate of the corresponding dependency,
because the unpacking of buffers is always performed on the global time step
that follows the communication. Thus, the global time dimensions for the des-
tination of a dependence can be projected away. In the case that time tiling is
used, the corresponding time tile dimensions of the � ®¯mLp ��³ q�v m matrix are pro-
jected away, whereas in the other case, where no time tiling is applied, the
corresponding time dimensions of the destination TISPC are projected away.

The resulting inequality system for the destination side leaves only spacial
coodinates that describe the destination processor. In the case that no space
tiling is used, these spacial coordinates consist of transformed index space co-
ordinates:

�°¶Q·�¸ m s�¶ u�p�m A�d

�����������������������������

�¦« s ��¬�« /  ; ; & �; �¦®ImJp � ¬�« I  ; & �: � �.²M³ ; & �� : �.²M³ ; & �� « s � ³�s u��2k ; : � ; & �; � ®¯mJp ��³�s u���k ; : �Y� s kL� & ���« s � ³�s � ; ; & �; � ®¯mJp ��³�s � ; & �

� ����������������������������
�

where : � � s kJ� is a negated unit matrix with the size of the number of pro-
cessor dimensions in the target index space.
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For the case that space tiling is used, logical transformed index space coor-
dinates are only needed for the source inequality system variables of the de-
pendence, because they can be reused at both sides of the communication for
enumeration of data elements that are accessed in the same order. However,
we can project away all logical space-time coordinates of the TISPC for the
destination of the dependence, thus leaving only a description of processor tile
coordinates for the destination processors of the corresponding dependence.

Also, the destination ISPC dimensions ��®¯mJp � ¬�« /  , the corresponding
space-time transformation � ®¯mJp ��³�s u���k and restrictions from �¹®¯mJp ��³�s � can be
projected away, if no transformed destination coordinates are needed in the
domain description.

The resulting matrix ��¶Q·�¸ m s for the case that tiling is applied for time and
space dimensions, looks as follows:

�.¶Q·2¸ m s£A�d
����������������

�¦« s ��¬�« I  ; & �� « s � ³�s u���k ; : � ; & �; � « s � ³ q�v m ; & �; � ®ImJp �  s kJ� ³ q�v m & ��¦« s � ³�s � ; & �

� ���������������
�

defining the corresponding inequality system

�°¶Q·�¸ m sN)
��������������������

W� p s ��¬�p��Y�W� p s � ³ q�v mW� p s � ³ q�p��"�W�C´ mJp �  s kJ�W� �

�j�������������������
UbW;C� (4.16)

Here, the corresponding inequalities for the h-transformation equation are
not shown explicitly, because they are implicitly given in the remaining rela-
tion between source ISPC coordinates and destination tile coordinates.

Note that the inequalities for ISPC coordinates are only needed for the case
that non-unimodular space-time transformations are used. In this case, in-
equalities for the original index space are used in combination with the equa-
tions from the space-time transformation to obtain an exact definition of the
transformed index space, that can be used by CLooG.

The dimensionality of the index space defined by Inequality system 4.16
is © ��� q�p��Y� o © ��� � q�v m o © ��� � q�p��"� o © ��� ´ mLp �  s kL� , where © ��� q�p��"� and © ��� � q�p��Y� are the
number of dimensions of the corresponding index spaces, © ��� � q�v m is the total
number of tiled dimensions (if tiling is used) and © ��� ´ mJp �  s kJ� is the number
of processor tile dimensions (or logical processor dimensions, if tiling is not
used).

Communication statement description

For the domain description of the communication statement, it is possible to
reuse the corresponding domain descriptions for all computation statements.
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The resulting domain description leads to the execution of a communication
statement at each global time step that contains computation statements, as
described in Section 3.4.2.

For that purpose, the inequality system from Inequality 4.9 is used for each
corresponding computation statement. In order to obtain a description of all
global time coordinates that contain computation operations, this inequality
system is projected to the global time coordinate.

However, if time tiling is applied, the required skewing of the index space
leads to complications in this simple approach. So far, skewing has been ig-
nored for the domain description of computation and buffer management
statements, because it can easily be implemented by the scatter dimensions
described in Section 4.1.3. However, if we project away all processor dimen-
sions for the domain description of the communication statement, the skewing
function cannot be realized, because it requires the time tile dimension to be
skewed by the sum of all entries in the corresponding processor tile dimen-
sions, as described in Section 3.2.4.

In order to avoid this problem, skewing is implemented directly in the do-
main description by applying an affine function for the skewing transforma-
tion on the inequality system for each computation statement, before projecting
onto the global time coordinates.

The affine skewing function uses only global time and processor tile coor-
dinates (logical TISPC processor coordinates in the case that space tiling is not
used). In the case that tiling of time and space dimensions is used, it is defined
by the following matrix � «�º�mJ» :

� «�º4mJ» A�d
������������

� � q�¢¼m � s � ; ;; � s � ; ;; ; � ;; ; ; �
�j����������� �

where � � q�¢¼m is an � -dimensional unit matrix and � s � is an �¹½¾� -matrix,
with � and � being the number of time and processor dimensions respectively.
Likewise, � s � is a � -dimensional unit matrix. Therefore, � s � is constructed as
follows:

� s �(A�d

���������������������������

; ����� ;
... . . . ...; ����� ;: � ����� : �
; ����� ;
... . . . ...; ����� ;

� ��������������������������
�

The non-zero entries in row � of � s � indicate that the corresponding time
dimension � is skewed by the sum of all processor dimension entries.

In the case of the input program of Figure 4.1, tiling of both space and time
dimensions results in an one-dimensional global time coordinate and an one-
dimensional processor tile coordinate. This leads to following skewing matrix:
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� «�º�mJ» d
������������

� : � ; ;; � ; ;; ; � ;; ; ; �
�j����������� �

The inequality system for which this skewing function is later used, is gen-
erated for each computation statement from Inequality 4.9 and projected to the
global time ( �����,�T������� ) and processor coordinate (�¦¿ÁÀ�� ������� ):���� �/� q�¢�m ³ q�v m ; &t� q�¢¼m ³ q�v m �£� q�¢¼m ³ q�v m; � � s kL� ³ q�v m & � s kJ� ³ q�v m � � s kL� ³ q�v m

�j��� U W;C� (4.17)

The final index space Â"ÃV Tk4¢�¢ corresponding to the inequality system for
the communication statement domain description is then derived by applying
the skewing function Ä «�º4mL» (defined by matrix � «�º4mJ» ) on each index vectorWG that satisfies Inequality 4.17, thus obtaining the image of the index space
defined by the same inequality under Ä «�º4mJ» .

Because the communication statement is implemented using collective
MPI operations (MPI_Alltoall, MPI_Alltoallv), this statement is implic-
itly executed on all available real processors in parallel, thus the processor di-
mension is redundant for the domain description and can be safely projected
away.

In the case of our input program of Figure 4.1, the domain description forÂ"Ã  Ek�¢�¢ is defined by following inequality system for the global time dimen-
sion �����,�T������� :

���� � ; �
: Z Z : i � ��� )

�������� �����,�T�����8�
� �

� ������� U W;�� (4.18)

4.1.3 Scatter functions
Using domain descriptions, the index spaces for each type of statement in the
target program are specified separately. In order to guarantee that all state-
ment types will intertwine correctly in the target program, additional schedule
information is given by the means of CLooG’s scatter functions.

It is also necessary to reorder dimensions from the domain description, in
order to specify a correct enumeration order of the loop nests for each state-
ment type. Furthermore, scatter functions can be used to implement affine
transformations on the corresponding index space defined by each domain
description, in order to realize the skewing transformation for time tiling and
to implement array access functions for the buffer management statements.

Each scatter function defines an equation � ) W��d WF , where
W� is the in-

dex vector for all dimensions from the domain description of the correspond-
ing statement and WF is a vector of additional index variables that define loop
dimensions outside the loop nest that is defined by the domain description.
These additional dimensions are called scatter dimensions in CLooG.
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If scatter functions are used in CLooG, all statements have to use the same
number of scatter dimensions, because they define a common order on all
statements.

For this project, the communication structure from Section 3.4 requires the
following order in which statements are executed relative to each other:

1. For each logical time step within a global time step, the dependence
structure can lead to at most three different types of statements being
executed in the following order:

(a) Unpack-buffer statement (reads the received value from the receive-
buffer)

(b) Compute statement (computes the new value)
(c) Write-buffer statement (writes the new value to the send-buffer)

2. At the end of each global time step, the communication statement is exe-
cuted on each processor.

This execution order can be implemented by the use of two additional scat-
ter dimensions, that are inserted after the scatter dimensions that represent
the global time and logical time dimension, respectively. The following cor-
responding scatter dimensions for the input program from Figure 4.1 that are
given to CLooG:

glT describing the global time dimension.

bl an additional scatter dimension bl for the distinction of the “block” of com-
putation and buffer management statements from the single communi-
cation statement.

rp describing the processor tile dimension.

vT describing the logical time dimension.

stmtType scheduling the three types of compute and buffer management
statements in the correct order ((a) . . . (b)), as mentioned above.

local1, local1, local1 remaining scatter dimensions that are used differ-
ently by each statement type, but are necessary for the scheduling of the
separate domain descriptions.

The resulting order of scatter dimensions is:
glT bl rp vT stmtType otherP local1 local2 local3
The corresponding scatter functions for each statement type are used as

follows.
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Computation statements

For each computation statement, the bl dimension is always set to ; , thus
scheduling it in the first “block” of statements, and before the communication
statement.

The global time dimensions (glT in our example) are given by the time tile
dimensions from the domain description, but in order to implement skewing,
the corresponding processor tile dimensions are added to the global time as
well, which leads to following simple equation in the case of our input pro-
gram: Å �2� d �����,�T������� o ��¿�À�� �����8� .

The next scatter dimensions (rp and vT) are given by a direct equation
from the corresponding dimensions for processor tiles and logical time in the
domain description.

In order to schedule the computation statement between the other buffer
management statement types, the stmtType dimension is set to a value of � .

The last relevant dimension of the domain description, the logical proces-
sor dimension, is given next by the otherP dimensions. Finally, the remaining
scatter dimensions are only needed to achieve a common number of scatter
dimensions for all scatter functions and are thus set to ; .

In the case that no tiling is used, the ÆEÇ�È and PY� dimensions are given di-
rectly by the logical time and logical processor dimensions from the domain
description.

Buffer management statements

Because the same domain description is used for both types of buffer manage-
ment statements, it is necessary to implement the differences in the ordering
of loop indices in the corresponding scatter functions for unpack-buffer and
write-buffer statements.

For the global time dimensions (glT), both statements use the time tile co-
ordinates of the source of the corresponding dependence, skewed by the pro-
cessor tile coordinate, also of the source of the dependence. For the unpack-
buffer statements, an additional constant value of � is added to the global time
coordinate, thus scheduling the unpacking for the next global time step that
follows the write-buffer statement of the corresponding dependence.

Again, bl is set to ; , in order to schedule both buffer management state-
ments before the communication statement.

In order to realize the different processor locations on which the unpack-
buffer and write-buffer are executed, the rp dimensions are set to the proces-
sor tile dimensions of the corresponding processor tile dimensions from the
domain description. Here, unpack-buffer statements are placed on the desti-
nation processor tile coordinates, whereas write-buffer statements are placed
on the source processor tile coordinate. The corresponding logical processor
equivalents are used instead of tile coordinates, if no space tiling is applied.

For the next logical time dimensions (vT), both buffer management state-
ments use the corresponding logical time coordinate of the source of the de-
pendence, in order to guarantee a correct order of the unpacking and writing
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of buffer elements.
The stmtType is used to schedule unpack-buffer statements before compu-

tation statements, by using the constant value of ; , whereas write-buffer state-
ments are scheduled after computation statements, by using a greater value
of 
 .

In the next dimension (otherP), the corresponding communication part-
ner processor is described, which is the source processor tile coordinate for
the unpack-buffer statement and the destination processor tile coordinate for
the write-buffer statement, respectively. Again, if no space tiling is used, the
corresponding logical processor coordinates from the domain description are
used.

The next dimensions are used for defining the scatter dimensions for ac-
cesses to array elements in the target program. These are realized by an affine
function that takes transformed, logical space-time coordinates from the do-
main description and returns the coordinates for array accesses. Thus, the
logical coordinates at the source side of the dependence can be taken for both
types of buffer management statements, because the the dependence implies
a common access to the same array index for both involved communication
partners. In the example of the input program from Figure 4.1, the identity
function is used as array access function: � � À��"� �8É � � À��Ê� ��Ë � d :3:µ:�:Q:�Ì�Y¿Á� ��� �L�C� .

Finally, all occurring arrays in the target program are enumerated by the
last scatter dimension in order to again maintain a correct order, in which the
buffer elements are accessed.

Communication statements

For the communication statement, the only relevant dimensions are the glT
dimensions and the bl dimension, because the statement is only executed once
for each global time step on each processor. Thus, no further dimensions for
logical space-time or processor tile coordinates needs to be specified.

The global time coordinate is again specified via the corresponding time
tile coordinate from the domain description, whereas the bl dimension is al-
ways set to � , in order to schedule the communication statement after the block
of computation and buffer management statements, at the end of each global
time step.

4.2 Post-processing the generated target program
The loop nest that is generated by running CLooG with the constructed do-
main descriptions and scatter functions consists of loop bodies that contain
placeholders for each statement of the domain description in the input file.
Each placeholder represents a statement number, for which the corresponding
code has to be inserted.

For each computation statement, the original statement code from the in-
put program is inserted without any changes.
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For each write-buffer statement, code is inserted that performs a lookup
in the generated processor map in order to prevent data elements to be com-
municated unnecessarily, if the source and destination processor tile number
are both mapped to the same real processor. Otherwise, the required data is
written into the local buffer for the corresponding target processor.

The corresponding code for each unpack-buffer statement also checks the
processor map to assure that the corresponding source processor tile coordi-
nate is mapped to a remote real processor. In case that non-local data is re-
quired, the next buffer element is read from the communication buffer and
written to the corresponding local memory cell.

In the case that no space tiling is used, this lookup operation is performed
for each logical processor destination coordinate, instead of each processor tile
coordinate, which results in a larger overhead for time spent in managing the
buffers.

Finally, the code for the communication statement is inserted. Here, the
communication buffer is constructed by merging the separate buffers for each
destination processor. In this way, the size of the resulting communication
buffer is determined, which is then communicated among all processors by a
collective MPI_Alltoall operation.

Note that this merging operation can be costly, when no space tiling is used,
because in that case, the number of seperate buffers (for each logical processor
coordinate) is significantly larger than in the case that only one seperate buffer
for each processor tile is used.

Each processor then readjusts the size for the receive buffer to the required
size. Finally, the collective MPI_Alltoallv operation is called in order to com-
municate the actual data and each processor receives the corresponding data
elements in its receive buffer.

As mentioned in Section 3.5.4, a separate post-processing step is also nec-
essary to insert an additional if statement that restricts the execution of each
iteration of the processor tile loop nest to the processor with the corresponding
real processor number.
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Chapter 5

Conclusions

5.1 Future work
This section briefly introduces some extensions to the approach that is de-
scribed in this thesis.

5.1.1 Fine-tuning
Although this implementation of code generation works automatically, there
are some optional settings that can be fine-tuned manually by the user, mostly
concerning various aspects of tiling:

$ Tiling can be adjusted to be used for time or space dimensions.
$ It is also possible to switch off tiling completely, generating only logical

space-time dimensions, as obtained from the scheduler/allocator.
$ It is possible to choose different tile shapes in order to reduce communi-

cation cost between processor tiles. These tile shapes can also be gener-
ated automatically, using a heuristics to minimize communication over-
head.

$ Choosing an arbitrary tile size (in combination with the cyclic processor
mapping) allows to fine-tune the distribution of logical processors onto
physical processors, using various forms of block, cyclic or even block-
cyclic distributions.

In order to find a reasonable configuration, it will be necessary to compare
the execution time of several generated target programs for a corresponding
input program. However, this process tends to be extremely time-consuming.
Most of the tools involved for the parallelization and code generation use
mathematical methods (e.g. Fourier-Motzkin elimination) that are very com-
plex (e.g. double-exponential complexity: ',� 
 -�Í � ).

A solution to this optimization problem could be to develop a cost model
for the desired target architecture and use mathematical tools for analyzing
the expected run time efficiency of the target program. This way, some of
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the more time-consuming processes in the later code generation stages could
be avoided by rather analyzing the polytope descriptions of the parallelized
program instead.

As an example, methods for counting integral points within polytopes
could be used, as described by Rabl [Rab], in order to evaluate the communi-
cation overhead, when applied to the polytope representations of buffer man-
agement or communication statements.

5.1.2 Implementing hierarchical parallelism
The implementation realized for this thesis automatically generates parallel
target code for distributed memory architectures, using C+MPI as target lan-
guage. The resulting target program consists of a number of parallel processes,
running on several processors, usually connected by a high-speed network.

Although this architecture is very common in the field of high performance
computing, today many (if not most) modern CPUs also feature multiple pro-
cessor cores, integrated in one physical unit (e.g. dual-core architecture), us-
ing a shared memory model for accessing memory. These architectures pro-
vide different levels of parallelism, forming a hierarchical structure. Normally,
this hierarchy includes local, fine-grained parallelism (in the form of parallel
threads on shared memory multiprocessor CPUs) and coarse-grained paral-
lelism between distributed memory cluster nodes. Other levels of parallelism
are possible, e.g. processors using Internet connections for communication
(the GRID [TL03]).

As indicated in Section 2.3, target program based on a combination of syn-
chronous and asynchronous parallelism could be used for this hierarchical tar-
get architecture, e.g.:

for t1=1..n
parfor p1=1..m
for t2=1..i

parfor p2=1..n
...

end
end

end
end

Here, the first spatial dimension � � could be implemented by communicating
distributed memory processors, whereas each of these processors uses local
shared memory parallelism for executing the � 
 dimension on multiple, paral-
lel running threads (cf. the approach described by Quinn [Qui04]). This way,� 
 and � 
 can be viewed as a local, synchronous, parallel shared memory pro-
gram.

For this purpose, the implementation covered by this thesis could be ex-
tended to generate parallel target code that uses a combination of communi-
cating MPI processes and shared memory parallelism using OpenMP. Space
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tiling can be used to implement these two levels of parallelism, whereas pro-
cessor tiles are executed by parallel MPI processes, with each of these pro-
cesses executing a number of parallel threads for each logical processor co-
ordinate within its corresponding processor tile. Thus, the logical processor
loop is executed as a number of separate threads, using the OpenMP compiler
directive (#omp parallel for) to distribute the iterations across all available
threads, as illustrated figuratively in this code example:

for globalTime=..
for procTile=..
if (lookup(procTile) == rank)

// iterations executed as MPI processes
...
for logicalTime=..

#omp parallel for
for logicalProc=..
// iterations executed as OpenMP threads
...

end
end

end if
end

end

The buffer management from Section 3.4.2 can be used with one modifi-
cation: in order to keep the buffer elements ordered, the number of separate
buffers is extended from one buffer per processor tile to one buffer per logical
processor coordinate. This could theoretically introduce some additional over-
head, when the separate buffers are combined into one contiguous communi-
cation buffer (as used by the MPI_Alltoallv command). Because the number
of logical processor coordinates usually exceeds the number of processor tiles
significantly, this combination process can be time-consuming. However, the
overall amount of data that is copied into the buffer remains the same, so the
actual amount of additional overhead for using more separate buffers can only
be demonstrated by execution time results.

Remark. Note that this approach could theoretically also be used to generate pure
shared memory target programs as a byproduct, when no space tiling is used and all
logical processor coordinates are executed using OpenMP threads.

5.1.3 An alternative approach to processor mapping
As described in Section 3.5, this implementation uses a map created at run
time, that can be used to lookup the real processor number of each processor
tile coordinate used in the target program. In theory, this run time mapping
should not be required, because space tiling already aggregates several logi-
cal processors into processor tiles at compile time, which in theory should be
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constructed choosing an appropriate tile size (at compile time!) to adapt the
number of resulting processor tiles to the number of available real processors.

However, because the number of real processors is only known as a run
time parameter, this approach leads to mathematical problems, because the
resulting system of inequalities and equalities includes a multiplication of a
parameter (determining the tile size) with a variable (for the processor tile co-
ordinate). This occurrence of so called non-linear parameters can be avoided
by using only constants for tile size and tile shape.

Great efforts have been made to implement mathematical tools [LW93,
Grö03] that can solve non-linearly parameterized inequality systems. These
tools use real quantifier elimination methods [Wei88] to extend existing meth-
ods and have been used successfully in the LooPo project for different tasks.
For example, Fourier-Motzkin elimination and tiling can now be applied to
systems with non-linear parameters.

For the project covered by this thesis, however, the already high run time
complexity of the code generation tool lead to the decision to restrict to in-
equality systems with linear parameters only, because the more powerful non-
linear tools may introduce additional overhead for the generation of the input
data that is used by CLooG.

Also, the processing of the input data by CLooG is already very time con-
suming in some of the larger examples and is expected to be even worse in the
non-linear case. Furthermore, CLooG would have to be extended to handle
the occuring case differentiations.

5.1.4 Adaptive Tiling
Even the extended tiling approach, briefly discussed in Section 5.1.3, still can
yield suboptimal load balance between involved real processors. Consider
Figure 5.1, which illustrates the result of a space tiling, that is performed at
compile time (statically). In this example, poor processor utilization results,
because tiling considers only the total number of logical processors, viewing
the index space as a whole.

Obviously, a better mapping strategy for the logical processors in this in-
dex space can be found theoretically, e.g. illustrated in Figure 5.2. However,
so far this adaptive tiling approach, as described by Seidel [Sei04], is imple-
mented only for simple examples, using manual methods for finding optimal
tile sizes and determining the intervals where a re-adaptation of space tiling
is reasonable. Also, integrating time tiling into this approach is also a quite
complex task.

5.2 Related work
There are other projects that also address automatic code generation for
distributed memory architectures. As mentioned briefly in Section 3.6.1,
Faber [Fab97, FGL01] describes an approach that is also based on the poly-
tope model, by which HPF target code is generated that includes specifications
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Figure 5.1: load balance problem with static tiling

Figure 5.2: better load balance using adaptive tiling
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of how data is distributed among processors. The HPF compiler then gener-
ates the required communication from this distribution annotations. However,
common HPF compilers often fail to generate the corresponding communica-
tion code for cases that require very irregular communications.

Ferner [Fer] also describes a method of automatically deriving communi-
cation code for distributed memory architectures. This method is based on a
parallelization technique of Lim and Lam [LL97] that generates so-called par-
titions of the index space from an input program. These partitions can be exe-
cuted in parallel on logical processors. Ferner proposes a mapping algorithm
that uses affine mappings from logical processors (partitions) to real proces-
sors and illustrates how the corresponding communication code loop nests
can be obtained.

However, as opposed to the original parallelization technique described by
Lim and Lam, he restricts the partitions to be one-dimensional, which limits
the degree of parallelism obtained in the target program, but simplifies the
code generation.

He also restricts the target programs to asynchronous parallel programs,
whereas Lim and Lam’s method often results in synchronous parallel target
programs that feature an outer sequential loop for time steps.

In the approach described, the target program uses separate loop nests for
sending, computing and receiving data, where for each partition, all required
data has to be received first, then all computations of the entire partition are ex-
ecuted, followed by the sending of updated data to the depending partitions.
The execution of overlapped polytopes for sending and receiving of data is
not possible during the execution of computation operations within a parti-
tion (no overlapping of communication with computation). This leads to target
programs that are sequential even in relatively simple examples. It also pre-
vents the type of target programs that use pipelined parallelism as described
by Lim and Lam.

5.3 Summary
The code generation method described in this thesis uses CLooG to generate
automatically efficient target code for programs that are analyzed and trans-
formed in the polytope model, with the goal of efficient parallel target pro-
grams for distributed memory architectures.

As described in Section 3.2, the tiling method can be used to aggregate op-
erations into larger chunks in order to achieve a coarser grained parallelism in
the target program. The described communication structure uses time tiling
to obtain a block structure of global time steps, during which data is aggre-
gated in communication buffers and only communicated at the end of each
global time step, thus implementing message vectorization as opposed to the
communication of data at each logical time step. Because the number of global
time steps can be adjusted to be significantly lower than the number of logical
time steps, the overhead from startup costs can be reduced.

This communication structure makes it necessary to restrict the space-time
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transformation that is used for the target program, as described in Section 3.3
and Section 3.4.3.

The implementation uses collective operations in the synchronous parallel
target program for synchronization and communication of the buffered data.
A combination of C and MPI is used as target language, especially the collec-
tive operations MPI_Alltoall and MPI_Alltoallv.

For the generation of the target loop nest of computation and communica-
tion statements, a polytope model representation of the input program is used,
in order to construct the domain descriptions required by CLooG, where scat-
ter dimensions are used to implement additional scheduling and transforma-
tion tasks.

This approach has been successful for the automatical generation of target
programs for small input programs, which can be executed correctly. How-
ever, when using larger sized input programs, CLooG fails to produce the
corresponding target code, because of too much consumed memory, although
newer versions of CLooG, which are still in development, may solve that prob-
lem.

Currently, the scanning algorithm used in CLooG leads to integer over-
flows for large tile sizes, which restricts the use of space tiling in the tested ex-
ample programs. This restriction leads to a large overhead for buffer manage-
ment, because, without space tiling, the destination processor (without later
mapping to real processors) is given as logical processor coordinates, instead
of processor tile coordinates.

Because space tiling is not used to aggregate the large number of logical
processor coordinates into fewer, larger processor tile coordinates, the larger
number of logical processor coordinates leads to two problems:$ In the statements for writing and unpacking of buffers, a check is per-

formed for each destination processor coordinate, whether the corre-
sponding real processor number is equal to the local real processor num-
ber, in order to prevent unnecessary copying of data to and from buffers.
Normally, this check is only performed for each processor tile num-
ber, but without space tiling, every single logical processor coordinate
is tested, thus increasing the computation overhead, because of the far
larger number of logical processor coordinates.
Although this check can be omitted, this would result in copying of ev-
ery data element for every logical processor coordinate that leads to a
memory access, regardless, whether the corresponding data element is
locally available or not.$ In the communication statement, all seperate buffers are combined in
one contiguous communication buffer that is used in the collective send
operation. This merging of buffers also introduces a large overhead, if
the number of seperate buffers is increased to the number of logical pro-
cessor coordinates.

In order to deal with these efficiency problems, Cédric Bastoul has devel-
oped a testing version of CLooG that uses multiple precision integers to avoid
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the integer overflows caused by large space tile sizes. However, correctness
and complexity problems with this version of CLooG (when used for the com-
paratively large input files generated during code generation) prevented the
use for the examples that were tested for this thesis.

At the moment, great efforts are made by the developer of CLooG to im-
prove its run time and memory efficiency and to avoid correctness problems
when using multiple precision integer computations.
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