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Abstract

Grid computing is becoming more and more popular, but contrary to earlier
expectations the development of applications for Grid environments is still
not possible without expert knowledge in the field of parallelization. There-
fore, recent work [14, 4] has combined automatic loop parallelization (in the
polytope model) with component-based Grid programming: First, automatic
parallelization techniques are used to convert the sequential input program
into a task farming application (allowing dependences between tasks). Sec-
ond, this parallelized application is used as application-specific code for a
”master-worker with dependences” Higher-Order Component (HOC), which
can be executed together with the required Grid middleware.
In this thesis, the master-worker HOC is replaced by a new P2P-HOC that

adds peer-to-peer communication between workers, thus increasing the scal-
ability and performance of the target application. The focus of this work
will be less on code generation, but more on the extension of the Grid run-
time environment, especially on task scheduling and its consequences on the
communication between workers.
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1 Introduction

Writing efficient programs for distributed memory environments is challenging, especially
for large-scale heterogeneous clusters. In the last years, much research has been focused
on the organization of these large systems, most notably on peer-to-peer and Grid com-
puting [15, 16]. The goal is to provide a high-level programming model, which helps
the programmer to concentrate on the application logic rather than on the various low-
level aspects like efficient communication protocols, platform independence or security
services.
This approach overlaps with the field of component-based software engineering, where

the application is created by combining reusable components. Each component encap-
sulates a certain functionality. The idea goes back to the sixties [35], but it has become
increasingly popular since the nineties [41]. By now, there exist several component frame-
works for Grid computing, for example, the Globus Toolkit [18].
However, the programmer is still responsible to expose the parallelism of the applica-

tion. Since the available machines will generally differ in computing power, load balanc-
ing must also be considered. Therefore, the ultimate goal was to relieve the programmer
from this burden, and let the compiler find the parallelism automatically. Since that is
extremely difficult for general programs, it is advisable to concentrate on the parts of the
program where it spends most of its execution time. For many computationally intensive
programs, these are loop nests. This is also the reason why most of the research on au-
tomatic parallelization addresses loop nest optimization. One sophisticated technique is
known as the polytope model [32, 22], which is used by the LooPo loop parallelizer [34].
It has been recently demonstrated that LooPo can also be used to generate code for

Grid environments [4]. The generated parallel application uses the task farming paradigm
but also allows dependences between tasks. Thus, the execution of a task can be delayed
until all tasks it depends on have finished.
The transformation of the user application consists of two steps: First, automatic

parallelization techniques are used to convert the sequential input program into a par-
allel program for distributed memory [10]. Second, this parallel program is used as
application-specific code for a so-called ”master-worker with dependences” Higher-Order
Component [10, 13, 14], which can be executed together with the required Grid middle-
ware.
One advantage of task farming is that it addresses load balancing, which is especially

important in Grid environments. However, the client-server architecture with one ded-
icated master (server) that assigns tasks to its workers (clients), can have a negative
impact on scalability. Whenever a worker asks for a task, the master has to write the
data that is required into a buffer, and send it to the worker. After the task is finished,
the master receives all computed values, and updates its local data.
The goal of this diploma thesis is to eliminate this overhead: To achieve this, the data

will no longer be stored exclusively on the master but can also be distributed on the
workers. So, after a task has terminated, it is not necessary to immediately send its
results back to the master. Consequently, it becomes necessary to extend the protocol to
support peer-to-peer communication between workers, because the data that is required
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to execute a task will be generally located on multiple workers. For this purpose, the
”master-worker with dependences” Higher-Order Component (master-worker HOC) will
be replaced by a new Peer-to-Peer Higher-Order Component (P2P-HOC). Note that the
additional complexity behind these enhancements is completely hidden to the end user.
The organization of this work is as follows: The P2P-HOC and the suggested system

architecture are described in section 2. As a consequence of the P2P extensions, task
scheduling1 and task prefetching2 will become more important than in the master-worker
HOC, therefore, section 3 is dedicated to this subject. Section 4 is about of the automatic
generation of the application-specific code of the P2P-HOC. Finally, section 5 presents
experimental results and section 6 contains conclusions and ideas for future work.

1.1 Motivation: One typical example

Let us suppose the user wants to execute the following program, which we will refer to
as SOR1d (one-dimensional successive over-relaxation), on a Grid environment:

1 for ( int k = 1 ; k <= m; k++) {
2 for ( int i = 2 ; i <= n−1; i++) {
3 A[ i ] = (A[ i −1] + A[ i +1]) / 2 . 0 ;
4 }
5 }

It is a typical example of a numerical calculation on arrays using nested for loops. Note
that it is not obvious, how this program can be rewritten to take advantage of multiple
computers (e.g., it is not possible to simply execute one of the two loops in parallel,
because there are data dependences between each iteration). Instead of that, the creation
and execution of the automatically parallelized program consists of two steps:

1. LooPo parallelizes the input program to generate target code, which is used to
parameterize the master-worker Higher-Order Component (master-worker HOC).

2. The master-worker HOC can be executed with a special component-based frame-
work acting as the Grid middleware.

In summary, we obtain a task farming application with dependences between tasks,
as illustrated in the task dependence graph shown in Figure 1. Each task has an unique
task ID, but the actual values are not relevant for the framework3. In fact, the tasks
could also be renamed as 1©, . . . , n©.
It should be noted that this graph only contains 24 nodes, but real-world task de-

pendence graphs are significant larger. To create the small ”toy” graph, we reduced the
problem size (i.e., m and n) and also limited the parallelism. This was necessary for

1 The role of the task scheduler is to decide how available tasks are assigned to requesting clients.
2 Task prefetching is a technique to improve the resource utilization of the clients (computation power
and network bandwidth) by requesting multiple tasks at the same time.

3 The code generation internally uses tiling vectors as task IDs, because, as we will later see, tasks are
created by a technique called tiling. In this example, two-dimensional tiling is used.
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Figure 1: Task dependence graph for the SOR1d example.
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practical reasons, because realistic graphs will consist of thousands of tasks (e.g., the
graph that performed best in our experiments consisted of about 10,000 tasks).
However, all task dependence graphs for the SOR1d example share the same char-

acteristics: It begins with a phase of increasing parallelism and ends with decreasing
parallelism. Therefore, our example graph is reasonable, apart from the fact that it is
too small.
The execution of the parallel application is controlled by the master’s task scheduler,

which assigns the tasks to workers (without violating any dependences from the task
dependence graph). The master sends the task assignments along with the task’s input
data. After the worker has finished the task’s execution, it sends the modified data back
to the master.
One drawback is that the data flow always has to go through the master, including all

intermediate results, because all data is exclusively stored on the master. Therefore, the
master can become the bottleneck of the computation, which will harm the scalability.
In this thesis, we propose to optimize the data flow by replacing the master-worker
architecture with a centralized P2P network, where the data can also be distributed
among the workers. To take advantage of the P2P architecture, the communication
scheme needs to be modified:

• Intermediate results will be propagated by P2P communications between workers.

• All communication from and to the master will be moved to the begin and end of
the overall computation.

Thus, the indirection through the master is eliminated. Instead, the data flow of inter-
mediate results takes place along the edges of the task dependence graph.
Our experiments prove that the scalability improves as a result of the P2P approach.

In the case of the SOR1d example, the master-worker version scaled to 16 computers,
but the P2P version scaled to 48 computers. Additionally, the overhead of the parallel
computation is reduced, as there is no need for the repeated communication of the data
between master and workers.

2 Extending the framework

2.1 Terms and definitions

This section contains definition of terms that are important in the context of this work.
First, we define two general terms, namely component and framework. The following
definitions are taken from The Common Component Architecture Forum [43].

Definition 1 (Component). A component is a software object, meant to interact with
other components, encapsulating certain functionality or a set of functionalities. A com-
ponent has a clearly defined interface and conforms to a prescribed behavior common to
all components within an architecture. Multiple components may be composed to build
other components.
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Definition 2 (Framework). A framework is a specific implementation of a component
architecture.

The framework provides the glue that binds components together. It is used to com-
bine separate components from a component pool into a running application. It allows
components to be linked together and to make calls on specific component interfaces.
Additionally, the framework can provide information about the run-time environment.
The next term Higher-Order Component has been developed at the university of Mün-

ster [27]:

Definition 3 (Higher-Order Component (HOC)). Higher-Order Components (HOCs)
are reusable patterns of parallelism, available to Grid application programmers as a col-
lection of Grid Services. HOCs are used as generic components, parameterized with
application-specific units of code that exploit a novel mechanism for handling code mo-
bility in grid environments. The parameters of a HOC are application-specific codes
provided by users4 who are specialists in a specific scientific domain, for example, bio-
chemists, physicists or seismologists.

Throughout this work, we will refer to the application that is being parallelized by
using the following terms:

Definition 4 (User application, input program, and input file). The application that
the user wants to parallelize is called user application. It is the execution of the input
program, which is a synonym for the user application’s source code. If the input program
is annotated with LooPo specific tags (e.g., // loopo begin loop (...)), it is also
called input file.

Finally, we would like to address the somewhat controversial term peer-to-peer (or
P2P). Alas, there is no simple definition, which is generally accepted, but there are
several (often contradictory) opinions on this topic.
One central issue is whether the peer-to-peer structure has to be used for all pur-

poses (sometimes referred to as true peer-to-peer networks) or if it is allowed to use a
client-server structure for specific tasks (e.g., searching). Note that the former condi-
tion excludes famous ”P2P” file sharing applications like Napster, or earlier versions of
eDonkey2000.
In this work, we will use the latter more relaxed condition. This is also according to

a definition from Foster and Iamnitchi [16]. However, as our proposed architecture is
centralized, it is not a ”true peer-to-peer” architecture.

2.2 Related work

The framework that is extended in this thesis is based on the work Loop parallelization
for a GRID master-worker framework [4], which combines model-based parallelization
and task farming.

4 In the context of this diploma thesis, the application-specific code is generated automatically from a
sequential input program provided by the user.
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2.2.1 Model-based parallelization

The idea of automatic loop parallelization is to reorder the loop’s iterations to increase the
number of independent iterations that can be computed in parallel, while still preserving
all data dependences. But how can this transformation be found?
In model-based parallelization, a mathematical model is used to describe the loop. For

example, the polytope model [32, 22, 10], which is used by the model-based parallelization
framework LooPo [34], uses a polytope representation: Each loop translates to one
dimension of the polytope, and each integral point inside the polytope represents an
unique loop iteration. This source polytope is then transformed to a target polytope,
which is finally used to generate the target code.
The transformation is called space-time mapping . It consists of the schedule and the

placement (or allocation). The schedule maps each iteration to a certain time, and the
placement determines by which computer it should be computed. In other words, the
schedule decides when, and the placement where the computation takes place.
The advantage of model-based parallelization is that, because of the underlying math-

ematical theory, it is possible to prove the correctness of the transformation. It also
allows to quantify the optimality of the transformation regarding certain criteria (e.g.,
latency).
While the original polytope model is very restrictive, many parts has been extended

and generalized over the years. We will refer to the literature for an overview of these
extensions [22].

2.2.2 Task farming

Task farming is a general parallelization technique, also called Master-Worker paradigm.
The idea is to break a problem into subproblems called tasks, which can be executed
by multiple independent workers. These workers are coordinated by a dedicated master.
The task scheduler, which is part of the master, is responsible for assigning tasks to
workers.
Task farming is a natural fit for distributed heterogeneous clusters and Grid environ-

ments, especially for ”embarrassingly parallel problems” like image rendering, but it can
also be applied to a wider range of applications [1, 20].
A common extension is the generalized Master-Worker paradigm [26]: In contrast to

the simple Master-Worker paradigm, it allows not only one single set of independent
tasks, but several batches of tasks. These batches are executed sequentially, but all tasks
that are part of the batch can be executed in parallel:

1 while ( ! f i n i s h e d ( ) ) {
2 executeNextBatchOfTasks ( ) ; // d i s t r i b u t e d among workers
3 }

Tasks from newer batches can use results from the older batches, but not from the same
batch. This generalized model is well suited for many application, for example, n-body
simulations [21], genetic algorithms [7], and Monte Carlo simulations [5].
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A similar approach is also becoming increasingly popular for shared memory architec-
tures: Let the user expose the parallelism (in form of tasks), but leave the decision how
the work is scheduled on the processor’s cores to the runtime system. This abstracts
from the low-level thread synchronization and from the number of threads being used,
while still preserving sequential semantics, which is useful for debugging and testing.
It is often combined with work-stealing schedulers, like in the C language extension

Cilk [6], allowing idle processors to ”steal” tasks from busy processors. This further
improves load balancing and scalability compared to non-stealing scheduling policies.
Most implementations allow dependences between tasks in the following form:

• Each task can have multiple children tasks.

• A parent task can only be executed if all children tasks are finished.

• Each task can have at most one parent. This restricts the dependences between
tasks to tree-like graphs.

Although the idea is not new, for example, Cilk has been developed since the early
nineties, but it is only recently that multithreaded parallel programming has become
mainstream. Meanwhile, the industry has begun to use libraries (or language extensions)
for task parallelism to simplify the development of efficient applications for multi-core
processors, or to extend legacy code:

• OpenMP directly supports task parallelism since version 3.0, which added the con-
structs #pragma omp task and #pragma omp taskwait [37, 38]. However, it lacks
support for speculative tasks, which for instance makes it difficult to parallelize
nondeterministic search algorithms5.

• Intel Threading Building Blocks [42] (also known as TBB) is a C++ template li-
brary, mainly providing parallel algorithms (e.g., parallel_for, parallel_while,
parallel_sort) and data structures (e.g., concurrent_queue). The library inter-
nally uses tasks to implement the parallel algorithms, but the task interface is also
available to the user.

Recently, TBB has been released as open source.

• Cilk++ is a commercial enhancement of MIT Cilk, which among others will add
support for C++ [8].

2.2.3 Master-worker framework

As mentioned earlier, the master-worker framework combined model-based parallelization
and task farming [4]. The goal is to simplify the execution of sequential input program
on Grid environments. It also provides load balancing, thus solving one of the major
problems with statically scheduled model-based parallelization [10].

5 Cilk’s inlet and abort keywords allow the user to cancel speculative tasks.
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First, the input program is parallelized by LooPo. To abstract from the Grid environ-
ment, LooPo does not create a stand-alone executable, but describes the parallelized
application using the master-worker HOC, which is a specially designed Higher-Order
Component for task farming with dependences. The master-worker HOC is then exe-
cuted on the Grid using the master-worker framework, which acts as the Grid middleware.
To partition the parallel application into tasks, LooPo uses tiling [45, 31], a technique

that has been originally used for cache optimizations. It can be used to automatically
create blocked algorithms (e.g., for matrix multiplication), thus improving cache efficiency
by breaking the problem down into subproblems, which fit into cache.
In parallel computing, tiling is often used to reduce communication costs by combining

multiple computations into so called tiles. Thus, communication takes place between tiles
(instead of computations), which has two advantages:

1. It reduces the number of messages that are sent, because there are an order of
magnitude less tiles than computations.

2. Communication within a tile is not necessary, because all the tile’s computations
will be executed by the same processor.

Tiling can be used in exactly the same way to generate tiles that represent tasks. In
fact, in the context of the automatic HOC generation, the terms task and tile can be
used interchangeably. As the tasks have to be executed with respect to the dependences
in the input program, the master-worker HOC includes a description of all dependences
between these tasks. This acyclic directed graph (DAG) is called task dependence graph,
and it is required by the task scheduler to assign tasks to workers, without violating any
data dependences.
Because of the component-based design, the master-worker HOC is reusable in other

component frameworks for Grid computing, which include important Grid related fea-
tures that are missing in the original prototype framework (e.g., security layers, authen-
tication). Recent work has integrated the master-worker HOC in the Globus Toolkit,
under the name ”LooPo HOC” [44]. It is available for download as a part of the HOC-
SA Globus incubator project [19].

2.3 Basic architecture and protocol

2.3.1 Initial situation: Master-worker HOC

The master-worker HOC provides a classical task farming architecture, where one dedi-
cated master controls multiple independent workers. There is no communication between
workers, but only between master and worker.
The role of the framework is to run the master-worker HOC, which has been generated

by LooPo from the input file. The framework is a Java application that is started on
each computer, but only one will act as the master. This master process will produce
the same output as the sequential execution of the input program. However, depending
on the success of the parallelization, the master should produce the results faster.
The overall execution can be divided into three phases:

13



Startup phase All workers register to the master, which assigns each of them a fixed
worker ID.

Additionally, the master executes the input program until it reaches the parallelized
loop (pre-loop code). At this point, all runtime parameters are known, which are
needed by the master to create the task dependence graph.

Computation phase This is the most interesting phase from the point of view of dis-
tributed computing, because finally all computers work together to compute the
selected loop, which is ”divided” into single tasks.

In principle, each worker performs the following loop:

1. Request the next task from the master.
(If the master signals that all tasks are finished, leave the loop.)

2. Execute the task.
3. Send the results back to the master.
4. Goto step 1.

(The efficiency can be improved, if the workers will request multiple tasks simulta-
neously. This important optimization is discussed later in section 3.1.1.)

Meanwhile, the master has two functions:

• Respond to task requests from workers by assigning tasks to them. If there
are no tasks available, block until new tasks become available.
• Join tasks that have been finished by workers, and update the task dependence

graph because new tasks may have become available.

(Task assigning and joining have to done in an asynchronous way. Otherwise, there
can be deadlocks, because if the assignment blocks, it can only be unblocked if old
tasks are joined.)

Finalization phase After all tasks have terminated, the master executes the remaining
part of the input program, which follows the parallelized loop (post-loop code).

Finally, all connections to the workers are closed, and the execution of the frame-
work is terminated on each computers.

Let us illustrate the computation phase with the previous SOR1d example (see sec-
tion 1.1). We will also adopt its simplified task dependence graph (Figure 1) for practical
reasons, because realistic graphs will consist of thousands of tasks.
Note that the intention of this example is to explain the communication scheme be-

tween master and workers. Because of the example’s simplicity, there is only limited
parallelism.
To avoid unnecessary repetition, we will only describe the communication for the first

five tasks. The relevant part of the task dependence graph is shown in Figure 2.

Example 1. Figure 3 shows the communication at the begin of the SOR1d example.
There are three computers in this example: One master and two workers A and B.
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Figure 2: Relevant part of the task dependence graph for the SOR1d example. The
complete dependence graph is shown in Figure 1.

The diagram also contains an actor for the scheduler, which is part of the master and is
responsible for assigning tasks to workers.
At the begin, both workers are idle and request tasks from the master, which passes

the requests to the scheduler. Considering the task dependence graph (Figure 1), only
task (3,−2) is available. So, the scheduler decides to assign (3,−2) to worker A, and
temporarily blocks the request of worker B. To complete the task assignment, all the
data that is required to execute the task must be provided to the worker, too. In case of
the master-worker HOC, the master attaches all data that will be read when the task is
executed. Finally, the task assignment, consisting of the task ID and the input data, is
sent to worker A.
When worker A receives the assignment, it starts to execute the task, which involves

three steps:

1. Unpack the input data (i.e., all data that will be read)

2. Perform the computation

3. Pack the output data (i.e., all data that has been written)

After the task has been executed, the worker sends the results back to the master, and
simultaneously requests the next task. Note that after the results have been sent, the
data are no longer used on the worker. In order words, the worker ”forgets” the results
of the computation.
When the message has arrived, the master joins the tasks, that means it unpacks its

results and informs the scheduler to update the task dependence graph. Note that at
this point, the application relevant memory on the master is exactly the same as if task
(3,−2) had been executed on the master (instead of client A).
Since task (3,−2) has been finished, task (4,−3) becomes available. This awakens

the task assignment thread of the scheduler, which decides to assign the new task to
worker B. As there is no other available task left, the second task request of worker A is
blocked.
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The assignment and execution of task (4,−3) on worker B is analog to the execution
of task (3,−2), but after task (4,−3) is finished, there are two available task: (5,−4)
and (5,−3). Thus, it is possible to assign tasks to both workers, which will execute them
independently, and send the results back to the master.

Let us summarize some observations concerning this example:

• The task assignment is blocked if there is no task available.

• There is no communication between workers.

• Every task execution forces communication between master and worker, even if
both tasks had been executed by the same workers (e.g., if the scheduler had
assigned both tasks (3,−2) and (4,−3) to worker A).

• After an executed task has been joined by the master, the application relevant
memory on the master is exactly the same as if the task had been executed on the
master. At the same time, the task’s results become invalid on the worker.

2.3.2 How to extend the task farming approach to P2P communication

In our proposed P2P-HOC, the clients, which will replace the workers, should play a
major role, while the load of the task controller, which will replace the master, should
be reduced as much as possible.
In the master-worker HOC, the possibilities of cooperation between the workers is

limited, because all data is exclusively stored on the master. Thus, the basic idea of the
P2P-HOC is to distribute the arrays among the controller and clients in the course of the
computation: Only at the begin and at the end of the computation, all data is located
on the controller, but during the computation, the intermediate results are distributed
among the clients.
After a client has executed a task, it does not send the results back to the controller

(as it would be the case in the master-worker HOC), but it only informs the controller
that the task is finished, and requests a new task. Whenever the controller assigns a
task to a client A, which requires data from tasks 1©, . . . , n© that have been finished on
clients B1, . . . ,Bn, the controller sends each client B1, . . . ,Bn a message, so they will
send the required data to client A.
As already mentioned, at the begin of the computation all data is located on the

controller. Therefore, it must also be possible to communicate data from the master
to the clients as far as it is necessary to execute a specific task. This is called soaking.
Additionally, communication from clients to the master have to be supported as well,
because after the computation all data has to be available on the controller. This is
called draining.
Figure 4 illustrates the three types of data packets that are communicated during the

computation:

Soak data packet Sent from the controller to a client (mostly at the begin of the com-
putation).
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Figure 4: Overview of the different types of data packets that are communicated during
the computation.

P2P data packet The default data packet that is sent from one client to another client.

Drain data packet Sent from a client to the controller (mostly at the end of the com-
putation).

Each data packet belongs to a specific task. The input data of a task is provided by
soak and P2P data packets and the data that is stored on the client. The output data
of a task is stored on the client that executed it. The output can be further divided into
intermediate results that are needed to execute other tasks, and final results that are
sent to the controller in the form of drain data packets.
To reduce the communication overhead, soak data packets can be attached to the task

assignment message that is sent from the controller to the client. Additionally, drain
data packets can be attached to the ”task-finished” message that is sent from the client
to the controller.
The differences between master-worker and P2P-HOC (regarding data distribution),

also affect the efficiency of task scheduling strategies. The task scheduler is part of the
master (or controller), and it reacts on task requests by assigning tasks to workers (or
clients). To decide which tasks are available, the scheduler uses the information from the
task dependence graph. Whenever a task is finished, the task dependence graph must be
updated as well, because new tasks may become available.
In the master-worker HOC, one simple and efficient task scheduling strategy is to select

one available task arbitrarily, and assign it to the client that has waited for the longest
time. If no task is available, the scheduler blocks until new tasks become available. Note
that because of the service policy (first-come, first-served), load balancing is guaranteed.
However, once peer-to-peer communication between clients is allowed, the role of the

task scheduler becomes crucial. But why is task scheduling more important for the
P2P-HOC, although it has little impact in the master-worker HOC?
One reason is that an enhanced task scheduler can avoid communication by keeping

P2P communication local (i.e., the same client is both sender and receiver). Note that in
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Figure 5: Distributed arrays without memory reduction: Each client has allocated the
complete array, even if most cells are undefined.
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Figure 6: Distributed arrays with memory reduction: Each client has only allocated mem-
ory for the array cells, which are located on this client.

the master-worker HOC, there cannot be local communications, because there are only
two types of communications: Master to worker and worker to master. In both cases,
the communication is non-local.
Another reason concerns task prefetching, which is discussed in section 3.1. This

is an optimization technique, which is both applicable to the master-worker HOC and
the P2P-HOC. It is similar to pipelining, and works by overlapping computation with
communication to utilize the maximum computation power and network capacity.

2.3.3 Outlook: Client side memory reduction

Our current implementation is not able to reduce the memory footprint of the user
application, even though the arrays are distributed among the clients. That is because
the complete arrays have to be allocated on each computer. However, at any time,
each modified array cell is valid on exactly one computer and is undefined on all other
computers, as shown in Figure 5.
An improvement would be to support real distributed arrays, as illustrated in Figure 6.

This would make it possible to efficiently execute user applications, which require more
memory than is available on the target machines (e.g., out-of-core problems).
The problem is that it cannot be predicted, on which client one given array cell will be

located for a certain time, as it changes dynamically in the course of the computation,
depending on how the tasks are assigned to the clients.
A possible solution would be to replace the arrays on the clients by more sophisticated

data structure for sparse arrays (e.g., hash tables, Judy arrays).
Due to the nature of the sequential input program, it cannot be avoided that, at the

begin and at the end of the computation, all data has to be stored on the controller.
This requires efficient data storage techniques, otherwise the controller will become the
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bottleneck of the computation.
A straightforward solution would be to replace the arrays on the controller by memory-

mapped files (or indirectly by databases), possibly in combination with tiling to increase
the locality of the disk accesses [45, 31].
Future work might examine these ideas to answer the open questions:

Is it efficient? If the overhead caused by the more complex data structure is significant,
the parallelized program may become slower than the original sequential program.
However, if the original program will run out of memory (or at least requires pag-
ing), even a high overhead may be acceptable.

When to shrink? In the course of the computation, the intermediate results stored on
the clients may become outdated. In our current implementation, outdated data
is no longer accessed, but it is still stored on the client and may eventually be
overwritten by newer results. To save memory, however, these data should be freed
as soon as possible.

Will disk accesses become the bottleneck? As long as there is only P2P communica-
tion between the clients, no disk accesses on the controller are necessary. If there
is much soaking and draining, however, the controller’s disk accesses are likely to
become the bottleneck, especially if the locality is low.

Remark. There is ongoing research outside of this thesis to use Ehrhart polynomials [12,
36, 33] to implement an efficient sparse array representation. The details of this promising
idea would go beyond the scope of this thesis, but it is expected that the results will be
superior to dictionary-based sparse arrays in terms of memory usage and access speed.
However, in order to use Ehrhart polynomials, the architecture of the clients has to be

modified. In contrast to the current approach, where the data is persistently stored on
the clients, the new approach will use a data flow architecture.
Instead of executing a task and storing the results persistently on the client, the com-

puted data will be exclusively propagated in form of P2P data packets. As a consequence,
there is no need to shrink arrays during the computation, because all the data on the
clients is stored within the P2P data packets, which can be immediately freed after
sending.

2.4 Soaking and draining

Soaking is the transfer of input data from the controller to a client, which the client
requires to execute a task. These data can be further distinguished into runtime parame-
ters and input arrays. Currently, LooPo cannot detect them without help, but requires
that the user surrounds the loop that should be parallelized with a special annotation
(for details see section 4.1).
The annotation contains the names of all parameters and arrays that are used inside

the loop. Additionally, the array sizes have to be specified. Optionally, arrays can be
declared readonly or writeonly, which can be used for optimizations.
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1 // loopo beg in loop ( cons tan t s : m, n ; arrays : A{n+1})
2 for ( int k = 1 ; k <= m; k++) {
3 for ( int i = 2 ; i <= n−1; i++) {
4 A[ i ] = (A[ i −1] + A[ i +1]) / 2 . 0 ;
5 }
6 }
7 // loopo end loop

Figure 7: Annotated loop for the SOR1d example.

Example 2. In the SOR1d example, there are two parameters m and n, and one array
A of size n + 1. The annotated loop is shown in Figure 7.
The array A is by default declared read and writeable. Thus, potential soaking data

may include two runtime parameters m and n, and one input array A (or at least parts
of it).

Note that from performance perspective, only the soaking of the input array is impor-
tant. In fact, in the master-worker HOC, the runtime parameters are part of the task
description and are transmitted for each task. But as most examples contain only few
runtime parameters, the overhead is insignificant. Nevertheless, the P2P-HOC commu-
nicates runtime parameters only once at the beginning. This is not done for performance
reasons, but it is a design decision, which shows a fundamental difference between the
two HOCs:
The master-worker HOC is stateless, that means after a task is finished, no information

is stored, because with each new task assignment, the master provides all information
that is required to execute the task. This is possible, because data is exclusively stored
on the master.
In contrast, the idea of the P2P-HOC is to store as much as possible on the client

side. In order to allocate storage for these data, the client uses the information from the
runtime parameters to determine the size of the arrays that are used in the computation.
Therefore, before the actual computation is started, there is an additional initialization
step, in which the controller creates a half-initialized UserClient object containing only
the runtime parameters. This object is broadcasted to all clients, which will finish the
initialization.
The following two sections will discuss the soaking and draining of the input arrays.

Draining is the opposite of soaking. It is the transfer of output data from the client back
to the controller. As stated earlier, the soaking of the runtime parameters is more or
less an implementation detail. Draining of the runtime parameters is also not necessary,
because runtime parameters cannot be modified by the loop. So from now on, we will
refer to the data stored in the arrays, when talking about soaking and draining.
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2.4.1 Distributing the soak data

Whenever a task that requires soaking is assigned to a client A, the controller will also
send a soak data packet along with the task assignment message. Then the communica-
tion of the soak data is as follows:

1. The controller calls the P2P-HOC method writeSoakData, which generates a soak
data packet for the task.

2. The soak data is serialized and sent to client A.

3. Client A unpacks the soak data by calling loadSoakData.

It is important to note that not every task requires soaking. In fact, the benefits of the
P2P approach can only show to advantage if the bulk of the communication comes
from P2P data packets. Therefore, the framework will skip soak communication if
writeSoakData signalizes that the task does not need soaking (by returning null in-
stead of a soak data packet).

Remark. Theoretically, the P2P-HOC could be (ab-)used in a way that is equivalent to
the master-worker-HOC by using solely soaking and draining (but without P2P commu-
nication). In other words, the P2P-HOC is backward compatible.
Although this is of no practical importance, it allows one theoretical conclusion: If

the parameters for the P2P-HOC — in our case, the automatically generated code —
are optimal, the P2P-HOC should not be slower than the master-worker HOC (assuming
that the extended framework causes no significant overhead).

2.4.2 Collecting the drain data

From the P2P-HOC’s point of view, the transfer of drain data is almost identical to the
transfer of soaking data:

1. The client calls the P2P-HOC method writeDrainData, which generates a drain
data packet for the task.

2. The drain data is serialized and sent to the controller.

3. The controller unpacks the drain data by calling loadDrainData.

But in contrast to soaking, the framework has more options concerning the point at
which the drain data communication is initiated. Basically, there are two policies: The
client can send the task’s drain data immediately, or wait for a request from the controller.
We will see that both approaches have their advantages and disadvantages, but let us
first include a definition, which says that drain data should not overlap:

Definition 5 (Drain data consistency). For every two different tasks 1© and 2©, the set
of drain data of task 1© must be disjoint to the set of drain data of task 2©.
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This condition implies that drain data is the final output of the computation, and it
must not be overwritten by subsequent computations.

Remark. Generally, the P2P-HOC’s writeDrainData method should be implemented
in such a way that it produces consistent drain data. Otherwise, draining will be less
efficient, because draining communication will not only consist of the final output of the
computation, but it will also include intermediate results.

Policy 1: Send when finished (eager draining) The first draining strategy is simple:
Whenever a client has finished the execution of one task, it should send the task’s
drain data immediately.

This helps to reduce communication overhead in two ways:

• The controller does not have to send a special drain data request message to
the client.
• Drain data packets can be attached to the ”task-finished” message that is sent

from the client to the controller.

Another advantage is that it will also work if the drain data is not consistent, as
long as the task dependence graph is correct. Suppose there are two different tasks
1© and 2© with inconsistent drain data. Since both tasks produce overlapping drain
data, there must be a data dependence between these two tasks. Let us assume
that this dependence is 1© −→ 2©.

Thus, task 2© can only be executed if task 1© has been finished. This also means
that the controller will receive and load task 1©’s drain data first. Then, when
task 2©’s drain data is loaded, it will overwrite the outdated results of task 1©.

Policy 2: Send when requested (lazy draining) The alternative to eager draining is to
send drain data only when it is requested by the controller. The obvious disadvan-
tage is that it introduces communication overhead, because the controller has to
send a special ”request-drain-data” message. So what are the advantages?

Let us assume that one task is assigned to multiple clients simultaneously (as
discussed in section 3.4). If eager draining is used, the controller would receive
multiple drain packets for this task (because the task will be finished by multiple
clients). To avoid that case, it is best that each client only informs the controller
after it has have finished the task’s execution, without sending the drain data.
Then, the controller can request the drain data from one specific client (e.g., the
first one that has finished the task or a client that has idle bandwidth resources).

Another advantage of this method is that the drain data communication can be
processed asynchronously with a lower priority (both on the client and the controller
side). Note that it will not slow down the overall computation if drain data packets
are delayed.

Lazy draining will only work if the drain data is consistent. In the previous example
about eager draining, tasks 1© and 2© had inconsistent drain data, but the controller
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still ended up with the correct result, because task 2©’s drain data overwrote the
results from task 1©.

If lazy draining is used instead, this is no longer guaranteed. Although task 2© will
always be finished after task 1©, their drain data could still arrive in reversed order
if both tasks are finished on different clients.

In principal, this problem could be solved on the controller side by reordering the
arriving drain data packets, so they can be loaded in a legal order (e.g., using a
topological sorting of the task dependence graph). However, the buffering of the
drain data packets requires additional memory. This may negatively affect both
performance and predictability.

Summary:

• Drain data should be consistent.

• If drain data is inconsistent, always use eager draining.

• If one tasks can be assigned to multiple clients, prefer lazy draining.

2.5 Peer-to-peer communication

The previous sections were about soaking and draining. In both cases, the communication
took place between the controller and one client. In contrast, the peer-to-peer commu-
nication, which is discussed in this section, is between clients. However, the controller is
still needed to determine the communication partners. That is why we introduced the
P2P-HOC as a centralized peer-to-peer architecture.
A fundamental difference to soaking and draining is that soaking and draining involves

only one task, but peer-to-peer communication involves two tasks. The reason is that
soaking and draining describes the input and output data of a single task, while peer-
to-peer communication describes the propagation of intermediate results between two
task.

Peer-to-peer communication during the computation is triggered when a new task is
assigned to a client. Let us assume the controller assigns task m© to client A. In general,
this task depends on other tasks 1©, . . . , n©:

m

1 2 n-1 n..............

To execute task m©, data from all other tasks have to be transferred to client A. Note
that only the controller knows which clients have finished these tasks. Therefore, the
communication partners have to be chosen by the controller.
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Figure 8: Shows the messages that are sent during task assignment (left: master-worker
HOC, right: P2P-HOC). The dashed lines indicate P2P data request messages.

Let us assume that the controller has selected the clients B1, . . . ,Bn to provide the
data from task 1©, . . . , n©. Then, the controller informs each of these clients by sending
a P2P data request message. Note that one client can be selected for multiple tasks.

The client’s P2P request handler can be implemented in a straightforward way:

1. Wait for a P2P data request, which consists of the following information:

• Sender ID (client A)
• Source task ID
• Target task ID

2. Call the P2P-HOC method writeDataForPeer, which generates a P2P data packet
for the communication between source and target task.

3. Serialize the P2P data packet and send it to client A.

2.5.1 Latency considerations

Let us compare the messages that are sent during task assignment in the master-worker
HOC and the P2P-HOC, as illustrated in Figure 8. The bulk of the communication
is along the arrows (1) and (3). Although the P2P-HOC still requires communication
from the controller to the client (2), only the task assignment is transferred. Thus, this
additional message should not significantly increase the overall communication volume,
but it will increase the latency.
To counter this additional latency, the source clients B1, . . . ,Bn should be notified

as soon as possible. The ideal was that the receiver client can start to unpack the first
P2P data packets immediately, while the remaining data packets are still generated.
Therefore, our proposed task assignment sequence on the controller-side is as follows:

1. The scheduler responds to an open task request by selecting a task m© and client A,
which will execute this task.

2. The controller prepares the task for the client:

For each predecessor task i© ∈ { 1©, . . . , n©}
a) Determine one client Bi, which has finished task i©.

If client A itself has finished i©, always select Bi = A.
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b) Send a P2P data request to client Bi (that Bi will generate P2P data between
task i© and m©, and send it to client A).

If Bi = A, it is possible to skip step b) because the communication is local (i.e.,
sender and receiver client are identical). Therefore, this optimization is called local
data optimization.

3. The controller generates a soak data packet, and attaches it to the task assignment.

(If no soak data is required, this step is skipped.)

4. The controller sends the task assignment to client A.

The effects of the additional latency can be further reduced if each client requests
multiple tasks simultaneously. That allows the client to proceed with the next task
immediately, while new tasks are fetched in the background.
This powerful optimization is discussed later in section 3.1. It is applicable to both

the master-worker HOC and the P2P-HOC, but we will see that in the latter case it can
be extended because of the local data optimization.

2.6 Example

In this section, we will take a closer look at the interaction between controller and
clients during the computation phase. The initial situation remains the same as in in
the previous example 1, which described the master-worker HOC. The only difference is
that we will be using the P2P-HOC instead.
Let us briefly summarize the facts: We will use the SOR1d example from section 1.1

as the input program with the same simplified task dependence graph (its relevant part
is shown in Figure 2). Again, there are three computers: One controller and two clients.
The updated sequence diagram is shown in Figure 9.

Example 3. The first difference is that there is an additional initialization step before
the actual computation, in which the controller creates a half-initialized UserClient
object, and broadcasts it to all client. This object contains only the runtime parameters
m and n, which were listed as constants in the loop annotation.
With this information, both clients can complete the initialization of their UserClient

objects by allocating all arrays that are used inside the loop. In our example, there is
only one array A of size n + 1. Once the initialization phase is completed, both clients
send a task request to the controller.
The controller passes these task requests to the scheduler. Analog to the master-worker

example, the scheduler assigns the only available task (3,−2) to client A, and blocks the
request of client B. The preparation of the task is also similar: As it is the first task, the
soak data generated by the controller has to include the same data that would be sent
by the master (which always sends all data that is required to compute the task).
As task (3,−2) does not depend on other tasks, there is no need for peer-to-peer

communication between clients. Therefore, the task preparation is finished, and the
controller can send the task assignment to client A.
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After loading the soak data, clientA can immediately execute the task, because no P2P
data packets are required. After the task is terminated, the client sends a notification to
the controller with a request for the next task, but beside that it does not send any data6.
When the message has arrived, the controller informs the scheduler, which updates the
task dependence graph, thus unlocking task (4,−3). Note that, up to this point, there
was no substantial difference compared to the master-worker HOC.
But now, we have to depart from the last example: There are two requesting clients,

but only one available task. In the master-worker example, the scheduler decided to
assign the task to worker B, but it could as well have assigned it to worker A. Here,
in the P2P-HOC example, the scheduler is almost forced to assign the task to client A,
because the required data is already available on this client.
The assignment and execution of task (4,−3) on client A is analog to the execution

of task (3,−2).
The completion of task (4,−3) unlocks two further tasks: (5,−4) for client A and

(5,−3) for client B. Again, the task assignment for client A does not require communi-
cation, but client B needs data from task (4,−3), which has been executed by client A.
Therefore, the scheduler also sends a P2P data request to client A.
When the message is received on client A, its P2P data request handler starts to

prepare the data packet, and then sends it client B. Meanwhile, client A has received
the task assignment and starts to execute task (5,−4).
It is important to note that the simultaneous execution of the task and the generation

of the P2P data packet does not lead to race conditions. Although both operations have
access to the same memory, there is no need for synchronization, as we will see in the
next section.
Let us return to the example, where clientB has received its task assignment. However,

it cannot immediately start to execute its task (5,−3), because it has to wait for the
P2P data packet. When the packet has arrived, the client unpacks it and can start to
execute the task.
Finally, both clients finish the execution of their assigned tasks (5,−3) and (5,−4),

and request new tasks from the controller.

This example illustrated the communication in the P2P-HOC, except drain communi-
cation, which becomes more relevant at the end of the computation. Since the example
only covered the first five tasks of the computation, both clients only communicated
once. In realistic applications, however, most of the communication consists of P2P
communication between clients.
Table 1 shows a comparison between the previous master-worker example and this

example. At the begin of the computation, both approaches are very similar, but the
advantages of the P2P approach become more apparent in the course of the computation.
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HOC type P2P-HOC master-worker HOC

Client/worker
initialization

Initialization phase before the
computation

Workers allocate resources on
demand

Task assignment
includes

Soak data (data that is required
to compute the task, but which is
not available on any client)

All data required to compute
the task (all data that is read
accessed)

Next task request
includes

Drain data (final results of the
computation)

All data generated by the task
(all data that is written)

Location of the
intermediate
results

Distributed among the clients Centralized on the master

Impact of the
scheduler

Performance critical (can mini-
mize the communication costs by
maximizing local communication)

Only limited (might prefer idle
workers with more computa-
tion power or faster network
connection)

Table 1: Comparison between the master-worker HOC (example 1) and the P2P-HOC
(example 3).

1

2 3

Finished (A)

Assigned (B)Working (A)

Figure 10: Initial situation.

1

2 3

Finished (A)

Assigned (B)Working (A)

Figure 11: The updated situation, including the data
dependence from task 2© to task 3©.
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2.7 Asynchronous generation of P2P data packets

Consider the situation shown in Figure 10: There are two clients A and B, and three
tasks. Task 1© has been finished by client A, which is currently working on task 2©. At
the same time, task 3© has been assigned to client B. This task requires P2P data from
task 1©.
This it exactly the same situation as in the example from the last section. Is it possible

that client A can continue working on task 2©, and at the same time generate the P2P
data packet (without any synchronization)?
Let us assume that there are race conditions, that means the execution of task 2©

overwrites data needed to generate the P2P data between task 1© and task 3©. In other
words, task 2© overwrites data that is read by task 3©. This data dependence, however,
is missing in the task dependence graph.
There are two possible directions for the data dependence, either 2© −→ 3© or 3© −→

2©. In both cases, it contradicts with the fact that both task 2© and 3© have been assigned
simultaneously (to different clients7).
For example, Figure 11 shows the task dependence graph after adding 2© −→ 3©. A

correct task scheduler could not have assigned task 3© to client B, because this task
depends on the still unfinished task 2©. Consequently, the assumption that there are
race conditions must be wrong.
In general, there are more tasks involved, but the argument remains the same: If there

was a conflict between the execution of one task i© and the generation of P2P data for
another task j©, it implies that there is a data dependence between these two tasks.
Although this data dependence may be missing in the task dependence graph, because

it is part of the transitive hull of the existing data dependences, it still has to be respected
by the task scheduler. This contradicts with the fact that a correct task scheduler must
not assign both tasks simultaneously to different clients, as it has happened in the initial
assumption.

2.8 Interface of the P2P-HOC

This section summarizes the most important methods of the P2P-HOC, and contains
information about the code that is generated by LooPo. All methods that are not
related to topics that are discussed in this work have been skipped.
It is possible — although not intended except for debugging purposes — that the

user creates its own P2P-HOC application without LooPo, but by providing its own
implementation of the following methods. The reason why we advise against using the
P2P-HOC directly, is that it has been specifically designed for automatic code generation.
The difference between the presented P2P-HOC and a standard task farming com-

ponent is that the P2P-HOC not only requires that the problem is divided into tasks,
6 We will assume that there is no drain data for task (3,−2), because it is the first task. If there was
drain data, it would be sent along with the ”request-next-task” message.

7 We will see in section 3.1.2 that, under certain conditions, it is possible to assign both task simulta-
neously to the same client. The reason is that tasks are executed sequentially on each client, so the
data dependence is again respected.
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but these tasks must also be supplemented by communication between these tasks (P2P
data packets), as well as soaking and draining communication. Experience shows that
implementing efficient P2P communication can be error-prone for a human. However, a
more user friendly interface could be build atop of the low-level implementation.

2.8.1 Controller interface: UserMaster

void startUp (String[] args) The startup function can be divided into three phases:

1. Execute the original code from the input program, which precedes the loop
that has been selected for parallelization (pre-loop code).

2. Build the task dependence graph, and pass it to the task scheduler.
3. Remove redundant dependences. This is an optional optimization of the task

dependence graph. It is discussed in section 3.5.

(The framework provides a suitable implementation for the task scheduler and the
task dependence graph.)

void end () Execute the original code from the input program, which follows the loop
that has been selected for parallelization (post-loop code).

long joinTaskResult (int clientID, UserTask taskResult) Informs the task scheduler
that the specified client has finished the given task.

Serializable writeSoakData (int[] taskID) Generates a soak data packet that contains
data located on the controller, which is required to execute the specified task.

If the task requires no soak data, this method should return null, so the framework
can avoid sending an empty soak data packet.

void loadDrainData (int[] taskID, Serializable drainData) Updates the data stored on
the controller by loading the drain data that has been received from a client.

2.8.2 Client interface: UserClient

UserClient () The constructor of the UserClient, which is executed on the controller
process. Afterwards, the UserClient object is serialized and broadcasted to all
clients, which will finish the initialization by calling the init method.

void init () This method is executed on the client to finish the initialization of a User-
Client object received from the controller.

Its intended purpose is to allocate arrays that should not be sent from the controller
to the client (which would be the default behavior if the arrays were allocated
by the constructor, because the entire UserClient object gets serialized). If all
initialization has been already done by the constructor, the functionality provided
by this method is not needed, and it should be implemented with an empty body.
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void executeTask (int[] taskID) Executes the specified task. This method contains the
computation code, which is parameterized by the task’s ID.

void loadSoakData (Serializable soakData, int[] taskID) Updates the data stored on
the client by loading the soak data that has been received from the controller.

Serializable writeDrainData (int[] taskID) Generates a drain data packet for the spec-
ified task.

If the task generated no drain data, this method should return null, so the frame-
work can avoid sending an empty drain data packet.

void loadDataFromPeer (UserDataPacket data, int[] sourceTaskID,
int[] targetTaskID)

Unpacks the data packet that has been received from another client, which has
finished the source task on which the currently executed target task depends.

UserDataPacket writeDataForPeer (int[] sourceTaskID, int[] targetTaskID)

Generates a P2P data packet, which consists of data produced by the source task
that has been finished on the current client. The receiver of this data packet is the
client to which the target task has been assigned.

(In contrast to the writeSoakData and writeDrainData methods, it is currently
not possible to return null to avoid sending an empty P2P data packet. The reason
is that the framework will only call writeDataForPeer if the task dependence graph
contains a dependence between the source and target task. Therefore, it assumes
that data has to be communicated because of the data dependence.)

3 Task scheduling

This sections discusses task scheduling, especially in reference to the P2P-HOC. Let us
first summarize some traits of good task scheduling strategies.

Load balancing It is important to utilize the maximum computation power of all avail-
able computers. Otherwise, scalability would be severely hurt.

In general, load balancing is easy to achieve because of the task farming approach.
It can become a problem, however, if the task dependences graph is too small to
keep the available processors busy.

Locality (P2P-HOC only) P2P communication takes place between tasks. Thus, the
scheduler should increase the locality of the communication by assigning connected
tasks to the same client.

It is not relevant for the master-worker HOC, because there the communication
between master and worker is fixed (two communications per task). In contrast, in
the P2P-HOC, it is possible to eliminate local P2P communications.
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Figure 12: Sequential execution of two tasks in the master-worker framework.

Efficiency The efficiency of the task scheduler’s implementation becomes important if it
is operating on huge task dependence graphs (more than 100,000 nodes). It is less
of a concern if the graphs are small (less than 1,000 nodes).

Another factor is the average task execution duration. In general, the more the
tasks become fine-grained, the more important is efficiency.

3.1 Improved task prefetching

This section consists of two parts: First, we will briefly present task prefetching as it
is realized in the original master-worker framework. After that, we will introduce an
improved task prefetching approach for the P2P-HOC that relies on the possibility to
eliminate client-local P2P communication.

3.1.1 Task prefetching in the master-worker framework

In the master-worker HOC, the execution of a task consists of three phases:

1. The master communicates the data to the worker

2. The worker computes the results

3. The worker communicates the results back to the master

The problem is that if all tasks are fetched and executed sequentially, as shown in
Figure 12, the available resources are not used to full capacity:

• During the communication phases, the network is busy, but the processor is idle.
Thus, available computation power is wasted.

• During the computation phase, the processor is busy, but the network is idle. Thus,
available network capacity is wasted.

To use the resources more efficiently, task prefetching overlaps communication with
computation by requesting multiple tasks at the same time. This improves performance
because of the pipelining effect, as illustrated in Figure 13. However, if no tasks are
available (e.g., all other tasks depend on the task that is currently executed), prefetching
is not applicable because the task request will block. To counter this effect, the number
of tasks can be increased by using smaller tile sizes (in the code generation).
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Figure 13: Task prefetching in the master-worker framework: Overlap communication
with computation.

Another important reason for task prefetching is that it allows the parallel execution
of tasks on the worker. For example, if a worker process is running on a dual-core
computer, it may request two tasks at once, and execute them in parallel. This is better
than starting two separate worker processes on the same machine, because it halves the
memory consumption.

3.1.2 Improved task prefetching in the P2P framework

There is an important differences between task scheduling in the master-worker and in
the P2P-HOC: In the master-worker HOC, an unfinished task can either be available or
blocked. This is independent of the workers. In contrast, in the P2P-HOC, a task can
be available only to certain clients, but not to all of them. But let us define these terms
step by step:

Definition 6 (Available task). A task is available if it has not been finished, but all its
source tasks have been finished.

Note that this definition implies that tasks can be assigned to multiple clients. Al-
though, in principle, this is feasible and could even prove useful in some situations (e.g.,
to improve system stability in case of clients failures), it can also create data races if
no special care is taken. Therefore, task duplication is not supported by our current
framework implementation, but section 3.4 contains a short discussion about possible
extensions to the protocol.
However, in this current section and also in the rest of this thesis, we will assume that

each task can only be assigned and finished by one client.

Definition 7 (Blocked task). A task is blocked if at least one of its source tasks is not
finished. (In other words, an unfinished task is blocked if it is not available.)

The idea of improved prefetching is as follows: All clients together are working simul-
taneously, but each client on its own executes its assigned tasks sequentially. That means
a new task can be assigned to a client if the task is available assuming that the client
has finished all its assigned tasks.
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1 2 3 4

5 6 7 8

Finished (A) Working (B) Working (A) Available

Blocked Blocked* Blocked Blocked

Figure 14: Initial scenario: Client A requests to prefetch the next task. Tasks that are
blocked but are available to client A are labelled as blocked*.

1 2 3 4

5 6 7 8

Finished (A) Working (B) Working (A) Assigned (A)

Blocked Blocked* Blocked Blocked*

Figure 15: Updated scenario: Task 4© has been assigned to client A.

Definition 8 (Client specific available task). A task is available to client A if the task
has not been finished, but all its source tasks have been either finished or have been
assigned to client A.

Obviously, one task that is available (according to definition 6), is also available to
every client (according to definition 8). However, a task can be blocked, but at the same
time be available to one specific client. This can be used by the scheduler to improve
prefetching efficiency, as illustrated in the following example.

Example 4. Let us consider the scenario shown in Figure 14. There are two clients
called A and B. A has just finished 1© and is now executing 3©. The second client B is
working on 2©. Which task should the scheduler now assign to client A? In other words,
which task should be prefetched by client A?
The only available task is 4©. In the classical task farming paradigm, there is no other

choice. However, after the scheduler assigns 4© to client A (Figure 15), there are no
available tasks left, so client B has to wait until further tasks are finished before it can
get its next task. There are two possibilities:

1. A finishes task 3©, which unlocks task 6©

2. B finishes task 2©, which unlocks task 5©

However, until one of these conditions is met, no prefetching is possible.

Lets go back to the initial situation (Figure 14): In the P2P approach, the scheduler
has more options. Not only is task 4© available to client A, but task 6© can be assigned
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3 4

Working (A) Available

BlockedBlocked*

Figure 16: Scenario: Two clients A and B. Client A requests to prefetch the next task.
In order to minimize communication, it is best to assign task 3© to A and
leave 2© and 4© to client B. Thus, all communications are local and can be
eliminated.

as well. The reason is that all its dependences are available at the time when task 6©
will be executed. As the dependences are local, they can be optimized away. Thus, no
data packets have to be requested.
Therefore, the better strategy for the scheduler is to assign 6© to client A, and leave

4© to client B.

A slightly worse alternative that also relies on improved prefetching would be to assign
4© to client A (as shown in Figure 15), and leave task 5© to B. This is possible, because
after client A has finished task 1©, task 5© becomes available to client B.
There are two reasons why the former scheduling strategy is preferable:

Less communication The idea behind improved prefetching is to maximize local com-
munication, which can be completely eliminated. After assigning task 4© to client
A, the assignment of 5© to client B forces the communication of data from client
A to client B8.

Flexibility If we introduce a third clientC that has neither been assigned nor finished any
tasks yet, the only available task for client C is 4©. In other words, an independent
task like 4© without sources is too valuable, so it should be assigned only if there
is no other possibility.

3.1.3 Asynchronous P2P data packet generation with prefetching

This section addresses the following question: Can task prefetching, especially improved
task prefetching, interfere with the asynchronous generation of P2P data packets (see
section 2.7), or introduce other race conditions?
The short answer is that standard task prefetching cannot interfere, and improved task

prefetching can also not interfere assuming that all tasks are executed sequentially by
the client.

8 Actually, in this example, the communication cannot be completely avoided, but it is only delayed.
A better example to illustrate the idea is shown in Figure 16.
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1. Standard (non-improved) task prefetching cannot interfere, because only available
tasks will be assigned:

a) There are no data dependences between these tasks, thus the parallel execution
of the assigned tasks cannot interfere.

b) The execution of the assigned tasks cannot interfere with the generation of P2P
data for another tasks, because otherwise there would be a data dependence
between these two tasks, which would contradict the assumption that the
assigned task was available.

2. Improved task prefetching complicates the situation, because the assigned tasks
can depend on other tasks that have not been finished. Therefore, there can be
race conditions between these tasks if they are executed in parallel by the client.

However, if the clients executes the tasks sequentially (in the same order in which
they were assigned by the scheduler) the race condition is no longer possible. Since
all tasks that have been assigned were available to the specific client A, they are
available to all clients (i.e., they do not longer depend on tasks that are not finished)
after the client A has finished the execution of all its previous tasks.

It turns out the sequential execution of the assigned tasks assures correctness, but it
is more restrictive than necessary. It is sufficient to execute the assigned tasks in such
a way that the dependences between the tasks are not violated. Thus, tasks could be
executed in parallel within the clients (see section 3.3).

3.2 Scalability

Remark. This section discusses scalability aspects of the task scheduler that should
be able to efficiently operate on task dependence graphs, even if the number of tasks
increases.

Throughout this thesis, we are concerned that the overall computation scales with the
number of clients and the problem size. As the task dependence graph grows with the
problem size, an inefficient implementation of the scheduler can negatively affect overall
scalability. Therefore, we will shortly list the requirements of the scheduler, which is
performance critical, both time- and space-critical:

Time-critical: There are two implementation challenges:

• The number of task requests increases with the number of tasks and clients.
If the controller cannot handle all requests, the clients have to wait for tasks,
even if there were enough task available.
• The scheduler must be able to join finished tasks and assign new tasks simul-

taneously, because task requests can block until there are new tasks available
(in other words, until old task have been joined). Therefore, access to the
dependence graph has to be serialized, which limits the benefits of multicore
processors9.

9 In our current implementation, the controller utilizes dual processors, but it might be possible to
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Space-critical: The task scheduler’s memory consumption consists mainly of two parts:

1. The task dependence graph has to be stored. The graph grows with the
number of tasks.

2. For each client, the scheduler has to store the following information:
a) The set of tasks that has been assigned to the client
b) The set of tasks that has been finished by the client
The memory consumption grows with the number of tasks and clients.

Our experiments contained task dependences graphs with more than 300,000 tasks
(computed by 80 clients). This is about the limit that can be efficiently processed by our
current implementation.

In order to process huge graphs efficiently, the scheduler has to rely on heuristics. How-
ever, a sophisticated precomputed task assignment strategy is not reasonable, anyway,
because of the lack of information:

• No information about individual task durations is available.

• No information about the duration of an individual communication is available.

• The client’s computing power may vary unpredictably, in the course of the compu-
tation, if multiple users have access to the computer.

As a result, our task scheduler uses a greedy algorithm for task assignment:

1. Create a list of all tasks that are available to the requesting client.

2. Use a heuristic to evaluate each task with regard to the following optimization
criterions:

• Minimize remote communication (between different clients)
• Maximize local communication (between the same client)
• Always assign task chains to the same client10

3. Assign the best evaluated task to the requesting client.

We will skip the details of the optimization heuristic at this point, but the algorithm is
sketched in appendix B.

A disadvantage of the presented task assignment algorithm is that, for each task re-
quest, all available tasks have to be determined and evaluated. It is difficult to avoid
this recomputation though, because the optimization criterion depends on the client that
has requested the task, and also on the tasks that have been finished by other clients.

improve the support of multiprocessors. For example, multiple tasks can be joined simultaneously.
Another idea is to processes multiple task requests in parallel.

10 A task chain is a sequence of tasks 1©, . . . , n©, where each task (except the first and the last) has
a single incoming dependence from the previous task, and a single outgoing edge to the next task:
1©→ . . .→ n©. Consequently, task chains should be executed sequentially by the same client.
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Therefore, the evaluation score cannot be reused for requests from other clients. In case
of improved task prefetching, the list of available tasks also depends on the requesting
client.
However, if the same client asks for multiple tasks, for example, because of task

prefetching, it is not necessary to compute and evaluate the list of available tasks from
scratch. Instead, the previous results could be updated to avoid the expensive reevalua-
tion.

3.3 Outlook: Client internal parallelism

Remark. The parallel execution of tasks, as discussed in this section, is not implemented
in our prototype framework. Currently tasks are always executed sequentially within the
clients (P2P-HOC) or workers (master-worker HOC).

3.3.1 Shared memory parallelism

Although the P2P-HOC mainly targets distributed heterogeneous clusters or Grid en-
vironments, there is also a trend towards computer-architectures with more and more
processors, which should not be neglected. There are two basic possibilities to take
advantage of these multiple processors:

1. Start multiple clients on the same machine.

2. Start one client per machine, but let the clients execute multiple tasks in parallel.

The first approach is simple, but the second one is preferable for two reasons: It is more
memory efficient, and it can use shared memory to avoid explicit communication.
In case of the master-worker HOC, the parallel version is easy to realize by adjusting the

number of prefetched tasks to the number of the machine’s processors (or slightly more
to assure that communication and computation are still overlapping). Unfortunately, the
client internal sequential execution of the P2P-HOC tasks, as suggested in section 3.1.3,
eliminates all parallelism within the client:

Example 5. Consider the task dependence graph shown in Figure 17 (left). There is
only one client (or worker) A, and we will assume, in this example, that the client will
prefetch as much tasks as possible.
In the master-worker HOC, there are two available tasks 2© and 3©. These two tasks

will be assigned to worker A and could be executed in parallel. After both tasks are
finished, tasks 4© becomes available and can be also be assigned and executed.
In the P2P HOC, the controller will first assign the tasks 2© and 3©. After these two

tasks have been assigned, task 4© becomes available to client A as well, and will also
be assigned. The dependences between these three assigned tasks is shown in Figure 17
(middle). If the tasks are executed sequentially, the tasks are executed in the same order,
in which they were assigned: 2©→ 3©→ 4©.
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Figure 17: Left: The original task dependence graph: There is only one client A and two
available tasks ( 2© and 3©). (After both tasks have been assigned, task 4©
also becomes available to client A.)
Middle: The part of the dependence graph containing only the assigned tasks
2©, 3© and 4©.
Right: Shows the execution order of the assigned tasks after sequentialization
(note that this is not a task dependence graph).

This example shows that it is generally not possible to execute all tasks in parallel.
Although the dependences between the tasks force that task 4© is executed after 2© and
3©, the sequentialization is too restrictive, because it prevents the parallel execution of
2© and 3©.
The solution is simple: The client also needs a task scheduler. This scheduler operates

on a simplified task dependence graph that only contains the client’s assigned tasks with
their dependences. Its purpose is to assign the tasks that it requests from the controller to
the processors, without violating any of their dependences. Figure 18 illustrates this idea
assuming that both clients run on quad-core machines. Note that no explicit communi-
cation between the tasks is required because of the shared memory. The synchronization
is done by the client’s task controller.

3.3.2 Maximize parallel execution within clients

The option to execute tasks in parallel yields new challenges for the task scheduler. In this
section, we will describe how the task assignment strategy, discussed in section 3.2, can
prevent parallel execution within clients. The reason is that its sole optimization criterion
is to avoid communication by keeping P2P communications local whenever possible. To
solve this issue, a new optimization criterion will be introduced at the end of this section.

Example 6. The task dependence graph, shown in Figure 20, consists of four inde-
pendent task chains. We will assume that there are two clients A and B, running on
identical machines. We further assume that each task is identical in terms of computa-
tion time and communication volume. So, is there an optimal task assignment strategy
to distribute the tasks among the clients? Obviously, each client should compute two (of
the four) task chains, but is it relevant in which order the task are executed?
Without client internal task execution, each client can only execute one task at the

same time. To improve the cache performance, it is best to execute all tasks from the
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Figure 18: Illustration of two-stage task scheduling: First, the controller’s task scheduler
assigns tasks to clients. These tasks will then be assigned to the available
processors by the client’s task scheduler.
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Figure 19: Task scheduling with support for subnets: Tasks are not directly assigned
from the controller’s task scheduler to the clients. Instead, a task assignment
passes through the network hierarchy, where each subnet has its own task
scheduler.
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Figure 20: Four independent task chains.

first chain before continuing with tasks from the second chain. This is also according to
our statement that the task scheduler should always prefer task chains (see section 3.2).
However, with client internal task execution, it depends on the number of processor

that are available on each client. If both clients are running on dual processor machines,
it is best to assign each client tasks from both chains simultaneously. Otherwise, each
client could only utilize one processor, while the other processor remains idle. It is
important to note that increasing the number of prefetched tasks will not help to avoid
that problem.

Let us summarize the observations from the example:

• Task chains should always be preferred if clients will not execute multiple task in
parallel, because task chains are optimal for sequential execution.

• Preferring task chains can limit the parallelism within a client, because task chains
are unsuited for parallel execution.

Since the task scheduler should performance well in both cases — with and without
client internal parallelism — a solution has to be found.
One idea is to ”cut” long task chains by adding a new optimization criterion to the task

scheduler, which penalizes tasks that depend on other tasks that are not finished. This
penalty should increase with the resulting delay. Tasks that can be executed immediately
are not concerned. Therefore, these tasks will be preferred, thus increasing the number
of tasks that can be executed in parallel.
Let us take a closer look at the idea:

What are the preconditions? Only a task, which cannot be immediately executed by
the requesting client, will be penalized. Thus, at least one of its predecessor tasks
has to be assigned but not finished by the requesting client. Additionally, it is
only sensible to penalize tasks if the requesting client has more than one processor.
Otherwise, the optimization will be counterproductive.

In theory, the optimization should be turned off if the requesting client still has
enough assigned but not finished task to utilize all of its processors. In example 6,
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we concluded that a client with two processors should not be assigned exclusively
tasks from a single chain. Instead, it is optimal to take tasks from two chains, one
for each processor, but it is slightly worse to take tasks from three chains.

However, at the time when the task request is processed, the task scheduler —
running on the controller — cannot determine exactly how many of the assigned
tasks have been already finished by client. Therefore, it is difficult to decide whether
there are enough assigned task left to utilize all processors of the client.

What does it mean to ”cut” a task chain? If the delay of a task (from a task chain)
exceeds a certain limit, the penalty will effectively prevent that the next task from
the chain will be chosen, since all other available tasks will be preferred. As a result,
the task chain is temporarily cut at this point until enough of its predecessor tasks
will be finished, thus reducing the penalty caused by the delay.

What length is best? The optimal length of the chains depends on the number of avail-
able processors on the requesting client and on its already assigned tasks. In gen-
eral, having more processors will favor shorter chains. However, if the client has
only one available processor, chains should be infinitely long.

Can it be generalized beyond chains? Yes, the idea is not limited to task chains, al-
though task chains are the most urgent targets. However, determining the delay
becomes more expensive. In the case of task chains, the delay is equal to the
number of unfinished predecessor tasks, because task chains have to be executed
sequentially. In general, however, the parallel execution of tasks within the client
has to be considered, too.

3.3.3 Support for hierarchical networks

The idea of parallelism within clients can be extended to improve performance in hier-
archical networks where the communication costs between clients from different subnets
are not uniform. But first, let us motivate the need for subnet support with an example:

Example 7. The user has access to two separate LAN networks, each consisting of 100
computers. The communication between computers from the same network is fast, but
the communication between computers from different networks is slow.
To increase the performance, the tasks should be distributed among the two local

networks, so that most of the P2P communication takes place between computers from
the same network. In other words, the communication should be as local as possible if
we use a wider definition of locality (i.e., not on the same computer, but on the same
network).

In our current framework, it is not possible for the task scheduler to support subnets,
because no information about them is available. Thus, the first step is to describe the
network hierarchy to the task scheduler. Therefore, we will use the following model:

• The network consists of multiple subnets.
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client 1   .... client 100

network

LAN 1 LAN 2 (top-level subnets)

client 101 .... client 200

Figure 21: Shows the network in example 7, which consists of 200 clients that are orga-
nized in two independent subnets.

client 1 client 200

(single) task request

(single) task assignmentcontroller

Figure 22: Original task assignment scheme: All clients directly request and receive tasks
from the controller.

• Each client is a subnet, and a subnet can again consist of multiple subnets.

As a consequence, the network is described as a tree of subnets, where the clients represent
the leaves. Figure 21 shows the resulting tree for example 7.

In principle, the task scheduler could use the information from the subnet tree to
optimize the task assignment. The realization is difficult, however, because the sched-
uler would have to solve a complex optimization problem under strict time constraints.
Therefore, the complexity has to be reduced, even at the cost of precision.
Our proposal is to add an intermediate layer, representing the subnets, between the

task controller and the clients. Instead of directly assigning tasks to clients, we will use
multi-stage task scheduling :

1. The task controller assigns tasks to the top-level subnets.

2. The subnets assign tasks to their associated subnets until the task is finally assigned
to a client.

It is called multi-stage because the second step can be repeated multiple times, depending
on the height of the tree. Figure 23 illustrates this modified task assignment scheme for
example 7.
The advantage to the original task assignment scheme (shown in Figure 22) is as

follows: Since there are multiple schedulers — as each subnet has its own scheduler —
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Figure 23: Simplified task assignment scheme with support for hierarchical networks:
Both subnets LAN 1 and LAN 2 only forward task requests from its children
subnets to the parent subnet.

a single task scheduler does not have to consider all clients that are part of its network.
Instead, only its associated subnets have to be considered, thus significantly simplifying
the complexity of the optimization problem. Let us illustrate the differences with an
example:

Example 8. We will again use the scenario from the last example, as it is shown in
Figure 21. Let us assume that client 1 (which is part of LAN 1) requests a task from the
controller.
In the original approach (Figure 22), the task request is directly sent to the controller’s

task scheduler, which will respond by assigning the best suited task to client 1. To
determine the optimal task, information about all clients have to be considered, especially
the following information:

• The set of tasks that are finished by the client

• The set of tasks that are assigned to the client (but not finished)

• The set of clients that belong to the same subnet

In the new scheme (Figure 23), client 1 requests a task not directly from the controller’s
scheduler but from the task scheduler of LAN 1. To respond to a task request, the
controller’s scheduler only has to consider its children subnets (LAN 1 and LAN 2). For
example, as LAN 1 requested the task, the controller’s scheduler has to determine a task
that is optimal for LAN 1 (but less suited for LAN 2). It is important to note that no
clients are considered.
However, the scheduler of LAN 1 can only assign tasks to its children subnets (in

this case, client 1) if it has requested these tasks from the task scheduler of its parent
network (in this case, the controller’s scheduler). As we will see after this example,
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it is therefore essential that task prefetching is used by all subnets (LAN 1, LAN 2,
client 1, . . . , client 200). Otherwise, the quality of the task assignment will be significantly
reduced.
To respond to the task request from client 1, the scheduler of LAN 1 selects the best-

suited task from its set of prefetched tasks. Note that only tasks can be assigned, which
are available to client 1. If all tasks are blocked, the client’s task request must be blocked
as well.

Let us summarize the important differences:

• In the original task assignment scheme, the task request has been processed by the
controller. Therefore, one optimization problem (controller → client 1 ) has to be
solved.

• In the new task task assignment scheme, the task request has been split into two
phases. Therefore, two optimization problems have to be solved:

1. Coarse-grained distribution of tasks to subnets (controller → LAN 1 )
2. Fine-grained distribution of tasks to clients (LAN 1 → client 1 )

Why is task prefetching essential? In the middle of the example, we noted that each
subnet has to use task prefetching to improve the quality of task assignment. In-
deed, otherwise, the whole idea of reducing the controller’s load by first delegating
the task assignment to the subnets, and then solving a less complex optimization
problem, would fail.

Let us first examine the situation when subnet schedulers do not use task prefetch-
ing but only request tasks on demand. In that case, whenever a client requests a
task from its subnet scheduler, the request will be relayed from subnet scheduler to
parent subnet scheduler until the request finally arrives at the topmost controller.
In other words, the original task request from the client will be processed by the
topmost controller, which is responsible for the whole network.

Effectively, the assignment process is equivalent to the original task assignment
scheme without support for subnets (Figure 22). However, the quality of task
assignment will even be reduced, as the topmost controller has to respond to a
task request from an unknown client (the controller only knows which subnet has
requested the task).

How can prefetching fix these shortcomings? First, the initial situation is different,
because each subnet scheduler has already requested several tasks from its parent
subnet, even before the client sends its task request. This updated task assignment
scheme is illustrated in Figure 24. As a result, there are two immediate benefits:

1. The task assignments made by the scheduler of the topmost controller are less
binding. The responsibility to distribute tasks among the clients shifts to the
subnet schedulers.
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multiple task requests
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LAN 2

controller
(both including task prefetching)

Figure 24: Updated task assignment scheme: In contrast to Figure 23, where all subnets
only request tasks on demand, both LAN 1 and LAN 2 will prefetch multiple
tasks to improve the quality of the task assignment of their children subnets.

2. When the first task request from the client arrives, the subnet scheduler has
a pool of several tasks from which it can select the best one for the requesting
client.

Comparison with two-stage task scheduling Note that there is a great similarity to
two-stage task scheduling, discussed in section 3.3.1, where the controller assigned
tasks to clients that again distributed the tasks among their available processors.
For a visual comparison, consider Figure 18 and Figure 19 (both on page 41).

In fact, the idea of this section is to create an abstraction of the client internal shared
memory parallelism, while the subnets are the abstraction of multiple processors
within the clients. Thus, the requirements for the task scheduler remain the same.
It still has to optimize task assignments with regard to locality and parallelism (as
discussed in the previous section). In particular, it is not necessary to distinguish
between task schedulers from different layers (i.e., the same scheduling algorithm
can be used).

Nevertheless, there is one difference between client internal parallelism and support
for hierarchical networks that has to be considered when using both concepts: In-
stead of dealing with clients that internally use several CPUs (of the same machine),
the generalized concept deals with subnets consisting of several clients running on
different machines. As a consequence, communication cannot be implicitly done
via shared memory, but messages have to be sent. To efficiently support client
internal parallelism, the final layer of task schedulers (connecting the clients and
their CPUs) should therefore be specialized.
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Figure 25: Scenario: Two idle clients A and B, but only one available task. If task
duplication is allowed, task 1© can be assigned to both clients.

3.4 Outlook: Task duplication

The idea of task duplication (or redundant task assignment) is to allow that one single
task can be assigned not only to one client but to multiple clients. If there are enough
idle clients available, task duplication might improve the performance by reducing the
number of P2P communications.

Example 9. Let us consider the scenario shown in Figure 25. There are two clients A
and B, which are both idle, but there is only one task available. With task duplication,
both clients can execute task 1© simultaneously. Let us assume that client A finishes
task 1© and continues with task 2©. Meanwhile, client B has also finished task 1©, and
starts to execute task 3©. Note that all three tasks could be executed without P2P
communication between both clients.
In contrast, if task duplication is not allowed, P2P communication is required. For

example, if task 1© is assigned to client A, client B has to wait. After task 1© is finished,
both clients can execute the remaining two tasks in parallel, but client A has to send
P2P data to client B (containing the results of the execution of task 1©).

However, there is a tradeoff between P2P and soaking communication that should not
be neglected. In the last example, we only considered P2P communication, but ignored
soaking communication. Although task duplication saved one P2P communication, it
also increased soaking communication, because the controller had to send the soaking
data of task 1© to both clients.

3.4.1 Avoiding race conditions

Although task duplication is a promising extension, the realization is not trivial. If a
task is executed more than once, it can create race conditions between the task execution
and the generation of P2P data, as illustrated in the following example:

Example 10. The scenario, shown in Figure 26, consists of two tasks and two clients
A and B. There is only one variable X, which is undefined at first. Task 1© initializes
X to 0. The value of X is required by task 2©, which increases X to 1.
We will stop the execution, after clientA has finished task 1©. To demonstrate the race

condition, we will assume that each of the following actions will be executed atomically:
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1 2

Available

{ P2P data: X = 0 }

Finished (A)

X = 0 X = X + 1

Figure 26: Scenario: Two clientsA andB. ClientA has finished task 1©, which initialized
the variable X with 0.

1. The controller assigns task 2© to client A.

2. The controller assigns task 2© to client B (using task duplication). During the
assignment, the controller sends client A a P2P data request.

3. Client A executes task 2© (thus, overwriting X with 1).

4. ClientA receives the P2P data request to send client B a P2P data packet (between
task 1© and 2©). This data packet contains the current value of X, which is 1.

5. Client B receives the P2P data packet, unpacks it, and executes task 2©, therefore
increasing X to 2.

(In order words, the computation within task 2© has been executed twice.)

To solve this problem, the protocol has to be changed. Unfortunately, it is difficult to
support task duplication efficiently without completely redesigning the protocol. How-
ever, as a redesign goes beyond the scope of this discussion, we will only point out two
solutions to avoid the race condition in a straightforward way:

Solution 1: Delay the execution of all tasks that could overwrite important data until it
is safe because all concerned P2P data packets have been created:

– Add a synchronization phase to assure that a specific task has been finished:
If a client has finished the execution of a task, it informs the task scheduler
and blocks the execution of all tasks that could overwrite the results. These
are all tasks that are directly reachable by the finished task’s outgoing edges.

– Meanwhile, the task scheduler will wait until all clients to whom the task has
been assigned, have also send the task termination message. Only then, it can
send the unblock message.

However, solution 1 has major disadvantages, which renders it impractical:

• The extended protocol adds significant overhead. Especially, all clients have to
wait for the slowest.

• The synchronization phase severely limits scalability.
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Solution 2: Create all P2P packets immediately after the task’s execution, before an-
other task can overwrite the data:

– After a client has finished the execution of a task, it has to generate all P2P
data packets for all outgoing edges (i.e., all tasks that directly depend on the
finished task).

– When the task scheduler decides that a task will not be assigned any more,
the P2P data packets for all of the task’s incoming edges can be freed11. That
means each of these P2P data packets has to be stored on the client until the
task scheduler informs the client by sending a message.

Evaluation of solution 2:

• No explicit synchronization is necessary.

• Although this solution is more efficient than solution 1, there is still a time- and
space overhead:

– P2P packets have to be generated, even if they are never sent (time overhead).
– P2P packets have to be buffered for unspecified time (space overhead and

reduced predictability).

(In contrast, without task duplication, P2P packets are generated on demand. After
generation, the data packets are immediately sent. After sending, the memory can
be immediately freed.)

Remark. Our current prototype does not support task duplication, only the task sched-
uler provides experimental support. More precisely, it is possible to assign a task to
multiple clients, but the protocol modifications, as discussed in this section, are not im-
plemented. Unfortunately, the expected overhead of both solutions seems to exceed the
expected performance gain, but further experiments are required to substantiate this
claim.

3.4.2 Conclusions and outlook

Depending on the test example and the test environment, the task duplication based
version (without synchronization) performed slightly better or slightly worse, both in the
range of about 20 percent. The significance of these first results is low, however, as the
overhead of the synchronization techniques discussed in the last section is not considered.
Nevertheless, there are two main reasons why task duplication might be of interest for
future developments (both topics will be discussed in the course of this section):

• The scheduling heuristic that we used to decide whether a task should be duplicated
can be further optimized.

• The overhead of the synchronization techniques can be significantly reduced if we
allow greater modifications of the protocol.

11 As finished tasks cannot be assigned, eventually, all P2P data packets will be freed.
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When to duplicate? Task duplication is a dangerous optimization, as it can hurt the per-
formance if used carelessly. It also adds complexity to the task scheduler, because
there are several interacting factors, which have to be considered while deciding to
duplicate a task, for example:

• How many idle tasks are available (to the requesting client)?
• How long will it take to execute a task on a specific client12?
• How long will it take to communicate the required data?
• How many other clients are idle (at the time of the task assignment)?

As not all of these information are available, even at runtime, new heuristics are
essential. Most related work focuses on static task scheduling for multiproces-
sors [30, 28], where most of the relevant information are available at compile time.
However, recent work also addressed dynamic task scheduling for Grid computa-
tion [17, 29, 39, 3], but without considering dependences between tasks nor task
duplication.

In our experiments, we used a simple task duplication strategy: Whenever an idle
client requests a tasks, task duplication is used if there are no idle tasks lefts (i.e.,
all available tasks are assigned to other clients). In other words, task requests will
never block, but instead an already assigned task will be duplicated. The same
scheduling algorithm that is used to select the next task among the set of available
tasks (as described in appendix B) can be used to select the task that will be
duplicated.

The advantage of this simple strategy is that it minimizes the client’s CPU idle
time. However, it is not optimal, as the execution of future tasks can be delayed
because of the resulting lack of idle clients, as shown in the next example:

Example 11. Let us again consider the task graph shown in Figure 25 (on page 48).
In this example, we will assume that there are two clients A and B. Let us further
assume that it takes two periods to compute one task, independent of the specific
task and the client. At the start of the example, only client A is idle, while client B
will become idle after one period.

Without task duplication, client B will wait for one period until task 1© has termi-
nated. Then, both clients can compute tasks 2© and 3© simultaneously. Thus, the
overall execution will take four periods (Figure 27(a)).

The alternative is to use task duplication (Figure 27(b)). Instead of waiting for one
period, client B can immediately start computing task 1©. The drawback is that
after task 1© terminated on client A, client B is still busy, so it is not possible to
start the computation of both available tasks 2© and 3© immediately. As a result,
the overall computation time increases from four to five periods.

In this simplified example, communication costs were neglected. However, under
the assumption that the communication between client A and B takes one period,

12 Note that in desktop Grids environments the task processing times on a specific client may increase
unpredictably because of other user’s processes running on the client’s machine.
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Figure 27: Task scheduling in example 11.

31 5 ......
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Chain 1:

Chain 2:

Figure 28: Two long, independent task chains.

the overall computation will take five periods in both cases (Figure 27(c) shows
the version without task duplication). If the communication costs are increased
to two periods, the task duplication version will outperform the classical version
(five periods instead of six periods, as shown in Figure 27(d)). Note that using
task duplication eliminates all communication in this example. Therefore, the task
duplication based version does not suffer from an increasing penalty for communi-
cations.

Limited task stealing Another advantage of task duplication is that it allows techniques
similar to task stealing, which we will call limited task stealing , as the task is
not really stolen but only duplicated13. However, even in its limited form, task
duplication can help to improve dynamic load balancing of already assigned tasks.
A simplified application is illustrated in the next example:

Example 12. Figure 28 shows a task graph with two long, independent task
chains. From computational perspective, both chains are equivalent. If there are
two clients A and B, the task scheduler will assign each client one task chain to

13 Supporting true task stealing would require to cancel ”stolen” tasks, which is not possible without
extending the protocol.
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maximize local communications. Let us assume that client A will be assigned tasks
with odd task IDs, and B will compute tasks with an even task ID.

Let us further assume that client A is running on a fast machine, but client B is
running on a extremely slow machine (possibly overloaded by processes from other
users). The faster client A will finish the computation of all its tasks while B is still
busy. In this situation, the overall computation is delayed as the faster client has
to wait for the slower client. By using task duplication, this worst case scenario can
be avoided. Note that the overall computation is finished as soon as the controller
has received all outstanding drain data. In particular, it is not required to wait for
the termination of all duplicated tasks.

Although the last example might seem unrealistic, comparable situations are quite
common at the begin and end of the computation. The reason is that many par-
allelized applications start with a phase of increasing parallelism and end with
decreasing parallelism, similar to the graph task for the SOR1d example (see Fig-
ure 1 on page 8).

Compatibility with future developments In the last section, we stated that because of
possible race conditions it is difficult to support task duplication without redesign-
ing the protocol. So, how could a successful redesign look like?

Section 2.3.3 briefly discussed an alternative data flow architecture that is being
developed outside this thesis to support client side memory reduction using Ehrhart
polynomials. Based on this client architecture, solution 2 (page 50) can be imple-
mented without significant overhead, because the data flow architecture already
demands that all P2P data packets are generated immediately. Therefore, task
duplication could be supported efficiently (at least in the data flow architecture).

3.5 Eliminating redundant dependences without communication

The task dependence graph consists of all relevant data dependences between the tasks.
If there is additional information available about these dependences, it can be used to
optimize the graph. In this section, we will distinguish between data dependences that
are relevant for communication and others that are only needed to avoid data corruption.
Finally, we will present a safe optimization to eliminate redundant dependences without
communication.
Exact definitions of data dependences between array accesses can be found in the

literature [22], but in the context of this thesis, we are more interested in dependences
between tasks14. We will use the following informal definitions:

Definition 9 (Data dependence between two tasks). There is a data dependence between
two tasks if data written by one task is accessed by the other task.

14 As tasks are executed sequentially, the framework can ignore all data dependences inside one task.
However, the code generation still has to consider data dependences on the level of array accesses.
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Figure 29: Dependences without communication are displayed by dashed arrows, where
solid arrows denote dependences with communication. In this example, the
dependence from task 1© to 3© is redundant.

Data dependences in the original input program determine the order in which two
conflicting tasks have to be executed. The first task be called source task, and it has to
be executed before the target task.

Definition 10 (True dependence). A data dependence is called true dependence if values
written by the source task (but possibly overwritten by other tasks) are read by the target
task.

If possible, we are more interested in a certain class of true dependence:

Definition 11 (Flow dependence). A data dependence is called flow dependence if values
written by the source task are directly needed by the target task.

Flow dependences are the most important type of dependence, in this context, because
they describe how the intermediate results of the computation are propagated between
tasks.
In contrast, the other types of data dependences only have to be respected for task

scheduling, but they do not lead to communication:

Definition 12 (Output dependence). A data dependence is called output dependence if
values written by the source task are overwritten by the target task.

Definition 13 (Anti dependence). A data dependence is called anti dependence if values
needed by the source task are overwritten by the target task.

The only purpose of anti and output dependences is to delay the assignment of con-
flicting tasks. Thus, we can safely remove anti and output dependences if the remaining
dependences already force the correct task execution order (as illustrated in Figure 29).

Remark. Removing redundant dependences is very similar to finding the transitive re-
duction of a graph [2], but with the addition that not all edges are equal, since edges
representing true or flow dependences cannot be removed. Consequently, the problem of
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removing redundant dependences is at least as hard as computing the transitive reduction
of an acyclic graph15.

Example 13. Figure 30 shows the original task dependence graph for the SOR1d ex-
ample. Most of its tasks have three incoming dependences.
The elimination of all redundant dependences yields the optimized task dependence

graph shown in Figure 31. The maximum number of incoming dependences dropped
from three to two, thus reducing the number of sent messages per task.
To understand why these dependences are redundant, we have to consider the detailed

task dependence graph with all dependences (Figure 32).
Note that the detailed graph can contain multiple edges between the same two tasks

(e.g., there is a flow and an anti dependence from task (3,−2) to (4,−3)). This is no
problem, because these edges can be unified into a single ”merged” dependence, which
causes communication if at least one of the unmerged dependences causes communication
(e.g., the merged dependence from (3,−2) to (4,−3) causes communication because of
the flow dependence).
Let us now take a closer look at the dependences in this example:

flow The flow dependences are drawn as solid lines. They cannot be removed from the
graph, because they represent the communication between the tasks.

anti The set of anti dependences is identical to the set of flow dependences. Thus, they
are virtually superfluous, because they will be merged with the flow dependences.

output These are all redundant dependences, because they do not force communication,
and the execution order will not be changed if they are removed. For example, the
output dependence from task (4,−3) to (6,−4) is redundant because of two flow
dependences: The first from task (4,−3) to (5,−4), and the second from (5,−4)
to (6,−4), thus (4,−3) has to be executed before (6,−4).

Although the saved messages are small, in fact, they are all empty, they introduce
additional latency that cannot be avoided, even if task prefetching is used. According
to our experiments, the overall execution time of the SOR1d decreased about 20 percent
when all redundant dependences were eliminated.
Although removing the redundant dependences can increase the performance, there is

a tradeoff: Computing the reduction takes time, thus if this time is not saved by a faster
overall computation, the optimization is not effective.
Space efficiency is also important, especially for huge graphs with more than 100,000

nodes. Therefore, we used a heuristic to compute the reduced graph. We will skip the
details, but the algorithm is described in appendix C.

Remark. The optimization discussed in this section is not enabled by default, but must
be enabled with the HOC runtime option --remove-transitive-dependences. There
are two reasons for this decision:
15 The reduction is simple: Convert the acyclic graph to a task dependence graph where all edges are

output dependences. Removing all redundant dependences yields the transitive reduction of the
original graph.

55



(3,-2)

(4,-3)

(5,-3)(5,-4)

(6,-4)(6,-5)

(7,-5) (7,-4)(7,-6)

(8,-6) (8,-5)(8,-7)

(9,-7) (9,-6) (9,-5)

(10,-8) (10,-7) (10,-6)

(11,-8) (11,-7)

(12,-9) (12,-8)

(13,-9)

(14,-10)

Figure 30: Original task dependence graph
for the SOR1d example.
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Figure 31: Optimized version of the task
dependence graph shown in
Figure 30.
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Figure 32: Detailed task dependence graph for the SOR1d example. Each dependence
is labelled with its type (f=flow, a=anti, o=output). Dependences without
communication are displayed by dashed arrows.
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• Depending on the user application and the quality of the dependence analysis, it
is possible that there are no redundant dependences.

• The heuristic is potentially expensive, for example, its space complexity is O(n2),
where n is the number of tasks.

Note that there is a simple alternative: The framework may skip the communication
between two tasks if there are only anti or output dependences between these tasks. This
effectively avoids the problem that empty messages are sent, but the task scheduler has
to operate on a larger graph because the redundant dependences will not be removed.

4 Automatic generation of the HOC code

Although the subject of this thesis is not code generation, but rather the development of
the P2P-HOC and the extension of the existing runtime framework, the topic is impor-
tant, as the success of the P2P-HOC depends significantly on the quality of the parallel
code. Thus, the P2P-HOC has been designed to support the automatic code generation
as far as possible.
However, we will not discuss parts of the code generation that are neither related to

the P2P-HOC nor to the extended framework. Instead we will refer to the literature,
which describes both P2P-HOC generation [9] and master-worker HOC generation [4],
because some parts of the master-worker HOC’s code generator have been reused for
the P2P-HOC. Internally, the code generator is based on automatic code generation for
distributed memory architectures in the polytope model [10, 32, 22].

4.1 Format of the input file

Figure 33 shows the input file for the SOR1d example. It is standard Java code, which
has to be runnable on its own when embedded in a simple wrapper class with a main
function, as shown in Figure 34. Each input file consists of four parts, which are identified
by special annotations (// loopo . . .):

1. Variable and array declarations (lines 1–4)

2. Initialization code (lines 6–12)

3. Parallelizable loop (lines 14–20)

4. Finalization code (lines 22–23)

4.1.1 Loop annotation

The loop annotation contains declarations of all constants and array variables that are
used inside the loop nest. Multiple declarations have to be separated by semicolons.
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1 i n t m;
2 i n t n ;
3 double [ ] A;
4 // loopo end declarations
5
6 // Al l o ca t e memory f o r the ar rays
7 M = 500000;
8 N = 1000000;
9 A = new double [N+1] ;
10
11 // I n i t i a l i z e input array A
12 // . . .
13
14 // loopo begin loop (constants : m, n; arrays : A{n+1})
15 f o r ( i n t k = 1 ; k <= m; k++) {
16 f o r ( i n t i = 2 ; i <= n−1; i++) {
17 A[ i ] = (A[ i −1] + A[ i +1]) / 2 . 0 ;
18 }
19 }
20 // loopo end loop
21
22 // Pr int r e s u l t s
23 // . . .

Figure 33: Input file for the SOR1d example. The commentaries beginning with loopo
begin and loopo end are parsed as special annotations.

1 public class SeqWrapperClass {
2 public stat ic void main ( St r ing [ ] a rgs ) {
3
4 // i n s e r t input f i l e here
5 // . . .
6
7 }
8 }

Figure 34: Simple wrapper class to execute input files sequentially.
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1 // loopo beg in loop ( . . . )
2 for ( . . . ) {
3 for ( . . . ) { S1 ; S2 ; }
4 for ( . . . ) { S3 ; }
5 }
6 S4 ;
7 for ( . . . ) { S5 ; }
8 // loopo end loop

Figure 35: An example of a non-perfect loop nest with five statements.

• The constants declaration declares the loop’s parameters. It is assumed that all
parameters are of type int.

Why are runtime parameters listed as constants? Because they are required to be
constant during the execution of the loop, but they are not compile-time constants
(e.g., the user application can read them from a file, or ask the user to enter them).

• The arrays declaration declares the loop’s array variables, along with their sizes:
arrays [IN/OUT/IN-OUT]: name {dim1, ..., dimN}

The array sizes can be arbitrary Java expressions, as long as only variables and
arrays are used that are defined in the loop annotation. It is assumed that all
arrays are rectangular.

Optionally, arrays can be declared as readonly (IN) or writeonly (OUT). Note that
this attribute refers only to the usage of the array inside the loop. If no attribute
is given, it is assumed that the array is both readable and writeable (IN–OUT).

In principle, it is possible to select more than one loop nest, but it would complicate
the implementation considerably without much gain for experiments. Therefore, our
prototype supports only one parallelizable loop nest at the moment. However, the loop
nest is not restricted to a perfect loop as in the SOR1d example, for instance, Figure 35
shows a more complicated but legal example with multiple loops and statements.

4.1.2 Implementation dependent limitations

During the code generation, the initialization and finalization code is inserted directly
into the intended position of the output file. More precisely, the initialization code is
inserted at the begin of the controller’s startUp function, whereas the finalization code
fills the end function (see section 2.8.1). Consequently, the initialization and finalization
code can be any legal Java code.
The declarations and the loop, however, will be further processed during the paral-

lelization. Because of that, there are some implementation specific restrictions:
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controller side client side
soaking writeSoakData loadDrainData
draining loadDrainData writeDrainData

Table 2: Overview of all P2P-HOC specific soaking and draining functions (for a reference
of the P2P-HOC interface, see section 2.8).

• Declarations have to be in the following format:

– Exactly one declaration per line
– No declarations with initialization (e.g., not ”int n = 1;”)
– All arrays that are used inside the loop have to be of type double16

• The loop is parsed by LooPo, which introduces some minor restrictions because
of LooPo’s parser (e.g., no support for some operators like += or ++)

4.2 Soak/drain statements

In the original master-worker HOC, all data is stored centralized on the master. In
contrast, the P2P-HOC requires soaking and draining. In this section, we will discuss
some aspects of the generation of soaking and draining code, but only as far as it concerns
the framework or the annotations of the input file.
To generate the soaking and draining code, special statements, called soak and drain

statements, are added to the input file before the data dependence analysis is started.
Their only purpose is to force additional data dependences, which will be used to generate
the soaking and draining code. As the additional statements are self-assignments, they
can be safely removed from the target code at the end of the code generation. Finally,
the generated code is used to implement the P2P-HOC functions shown in Table 2.
There are two simple optimizations, which will improve the performance of the gener-

ated code that is responsible for soaking and draining:

• Soaking can safely ignore all arrays that are marked as output-only (OUT), because
the initial values of these arrays are not needed for the computation.

• Draining can safely ignore all arrays that are marked as input-only (IN), because
these arrays will not be modified during the computation.

Note that all arrays marked as IN–OUT, which is the default, must be considered for
both soaking and draining. That is why it will improve performance if the user provides
this information, because our prototype implementation cannot detect it automatically.
Future work might examine possibilities to deduce the information from the results of
the dependence analysis.

16 The limitation to multidimensional double arrays has nothing to do with the parser of the input
file, but with the communication code’s internal buffer management. It should be unproblematic
to extend the implementation to support other primitive types as well. Note that the P2P-HOC’s
interface does not contain assumptions about the array type (see section 2.8).
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1 // loopo beg in loop ( cons tan t s : n ;
arrays [ IN ] : A{n , n} , B{n , n} ; arrays [OUT] : C{n , n})

2 for ( int i = 0 ; i < n ; i++) {
3 for ( int j = 0 ; j < n ; j++) {
4 for ( int k = 0 ; k < n ; k++) {
5 C[ i ] [ j ] = C[ i ] [ j ] + A[ i ] [ k ] ∗ B[ k ] [ j ] ;
6 }
7 }
8 }
9 // loopo end loop

Figure 36: Annotated loop for the matrix multiplication example. The complete input
file is shown in Figure 44 in appendix A.

Example 14. Figure 36 shows the annotated loop for a matrix multiplication algo-
rithm17. There are two input arrays A and B, and one output array C. The input arrays
are initialized on the controller during the execution of the user’s initialization code, but
are not available on the clients at the begin of the computation. Thus, the soaking data
consists of the arrays A and B, and the draining data consists of array C, which is the
result of the computation.
Figure 37 shows the modified input file with soak and drain statements. The array

sizes given in the loop annotation define the surrounding loops of the inserted statements.
In this example, all arrays are two-dimensional and of size n× n.
In the target code, the self assignments will be removed, but the additional dependences

define the soaking and draining communication:

• Soak communication is defined by the dependences from both soak statements (for
the arrays A and B) to the loop statement.

• Drain communication is defined by the dependences from the loop statement to
the drain statement (for the array C).

4.2.1 Problem: Repeated soaking communication

It is possible that the same soak data will be communicated repeatedly, as illustrated in
the following example.

Example 15. Consider the code from Figure 38. It is a simplified example, as it shows
only the soaking statement for array A, which contains only one constant value. This
value A[0] is used to scale the second array B, but it is not modified.

17 The input program relies on the Java property that all allocated arrays, which are of type double,
are automatically initialized with 0.
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1 // soak s ta tement f o r inpu t array A
2 for ( int i = 0 ; i < n ; i++) {
3 for ( int j = 0 ; j < n ; i++) {
4 A[ i ] [ j ] = A[ i ] [ j ] ;
5 }
6 }
7 // soak s ta tement f o r inpu t array B
8 for ( int i = 0 ; i < n ; i++) {
9 for ( int j = 0 ; j < n ; i++) {
10 B[ i ] [ j ] = B[ i ] [ j ] ;
11 }
12 }
13 // o r i g i n a l l oop
14 for ( int i = 0 ; i < n ; i++) {
15 for ( int j = 0 ; j < n ; j++) {
16 for ( int k = 0 ; k < n ; k++) {
17 C[ i ] [ j ] = C[ i ] [ j ] + A[ i ] [ k ] ∗ B[ k ] [ j ] ;
18 }
19 }
20 }
21 // drain s ta tement f o r output array C
22 for ( int i = 0 ; i < n ; i++) {
23 for ( int j = 0 ; j < n ; i++) {
24 C[ i ] [ j ] = C[ i ] [ j ] ;
25 }
26 }

Figure 37: Modified input file with soak and drain statements.

1 // ( s imp l i f i e d ) soak s ta tement S ( f o r array A)
2 A[ 0 ] = A[ 0 ] ;
3
4 // s c a l e array B with A[ 0 ]
5 for ( int i = 0 ; i < n ; i++) {
6 B[ i ] = B[ i ] ∗ A[ 0 ] ; // computation s ta tement T
7 }

Figure 38: Example with a soak statement S and a computation statement T.
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There is a flow dependence from the soak statement S to the computation statement
T for each instance of the loop18:

〈(), S〉 −→ 〈(i), T 〉 for 1 ≤ i ≤ n

Even though A[0] is never modified, it will be communicated multiple times, because
these flow dependences will be mapped directly to soak communication.

Although this problem does not harm correctness, it may create significant communi-
cation overhead. Note that if tasks are assigned to different clients, it is necessary to send
A[0] once per client, but subsequent communications to the same client are superfluous.

One drastic workaround is to simply broadcast all soaking data before the computation.
This approach is discussed in the next section, which deals with a similar problem that
is caused by an imprecise dependence analysis.

4.3 Dealing with an imprecise dependence analysis

The task of the dependence analysis is to find all data dependences that are in the input
program. It is allowed that the analysis returns additional dependences, that means it
can be pessimistic, but it must never miss existing dependences. In the context of this
section, we call a dependence analysis imprecise if it returns indirect true dependences,
which are true dependences but not flow dependences.
It is important to note at this point that imprecision does not imply that the anal-

ysis is incorrect. In fact, if the input program contains conditional constructs (e.g.,
if-then-else), it is generally unavoidable that the analysis will be imprecise. In other
words, it is only possible to offer a analysis with full precision for static control programs.
In contrast to flow dependences, indirect true dependences are problematic, because

there is an in-between write operation, which overwrites the data that has been written
by the original source. Therefore, the communication, which is represented by this non-
optimized dependence, will transfer old data. Beside the communication overhead, this
can even lead to an incorrect execution if the receiver client overwrites new data located
on its computer, as illustrated in the following example:

Example 16. In our simplified scenario, shown in Figure 39, there is only one client,
and only one array A of size one, which is initialized (on the controller) with 0. There
are three simple tasks: 1© → 2© → 3©. Each task increments A[0] by one. Thus, the
final value of A[0] should be 3.
The intended execution of this example is shown in Table 3. Each line describes the

execution of one task:

1. At the begin, A[0] is undefined on the client, therefore the controller sends a soak
packet, which sets A[0] to 0.

18 Statement S is not surrounded by a loop, therefore its iteration vector is empty.
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1 // input : A[ 0 ] = 0
2 // loopo begin loop ( ar rays : A{1})
3 A[ 0 ] = A[ 0 ] + 1 ; // task 1
4 A[ 0 ] = A[ 0 ] + 1 ; // task 2
5 A[ 0 ] = A[ 0 ] + 1 ; // task 3
6 // loopo end loop
7 // output : A[ 0 ] = 3

Figure 39: Simplified input file to illustrate the problems that are caused by an imprecise
dependence analysis.

Task A[0] soak data A[0] (soak P2P data A[0] (P2P A[0] (after
ID (initial) data loaded) data loaded) execution)

1© ⊥ 0 0 – 0 1
2© 1 – 1 optimized 1 2
3© 2 – 2 optimized 2 3

Table 3: Optimum situation: Only soak data at the begin.

As task 1© does not depend on other tasks, no P2P data packets are required, so
A[0] remains 0.

After the execution of the computation code, A[0] is incremented to 1.

2. No soak data is required, so A[0] remains 1.

The P2P data packet that communicates data from task 1© to 2© can be eliminated,
because the communication is local (both tasks are executed on the same client).

After the execution of the computation code, A[0] is incremented to 2.

3. Analog to task 2©: No soak or P2P data. A[0] is incremented to 3.

Note that the only communication is the soak communication at the begin.
Now let us consider the problematic situation, where — as a result of the imprecise

dependence analysis — soak communication is attached to all tasks. Figure 40 shows the
loop code after soak and drain statements were added. There is one flow dependence d1

from the soak statement S to the first task T1. This dependence is used to generate the
soaking code for the first task.
In contrast, the other two dependences d2 and d3 are not flow dependences but in-

direct true dependences. Therefore, d2 and d3 should be optimized away by a precise
dependence analysis. Otherwise, in case of an imprecise analysis, soaking code will be
generated for all three tasks. This results in the execution shown in Table 4:
The execution of task 1© is unchanged, but when task 2© is executed, the controller

sends an obsolete soak data packet (containing the old value of A[0] on the controller).
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S : A[0] = A[0]

T1 : A[0] = A[0] + 1
T2 : A[0] = A[0] + 1
T3 : A[0] = A[0] + 1

D : A[0] = A[0]

d1 : 〈(), S〉 −→ 〈(), T1〉
d2 : 〈(), S〉 −→ 〈(), T2〉
d3 : 〈(), S〉 −→ 〈(), T3〉

Figure 40: Left: Loop code with soak statement S and drain statement D.
Right: Dependences from the soak statement to the computation statements
T1, T2 and T3. Only d1 is of type flow, but d2 and d3 are indirect true depen-
dences.

Task A[0] soak data A[0] (soak P2P data A[0] (P2P A[0] (after
ID (initial) data loaded) data loaded) execution)

1© ⊥ 0 0 – 0 1
2© 1 0 0 optimized 0 1
3© 1 0 0 optimized 0 1

Table 4: Problematic situation: Soak data overwrites local data. P2P local data opti-
mization is no longer possible.

When this soak packets is unpacked, it overwrites the current value of A[0] on the client
with 0. After the task 2©’s computation code, A[0] is 1, but it should be 2 instead. The
same problem occurs when task 3© is executed. Consequently, A[0] remains 1.

Though the ideal solution is to use a precise dependence analysis, but if that is not
possible, alternatives have to be found. The first solution repairs the damage at the
framework level:

Solution 1. Disable local data optimization, but always send P2P packets, even if sender
and receiver are identical. Thus, soaking will still overwrite existing data, but after
unpacking the P2P packets, the lost data will be restored.

The modified execution is shown in Table 5. The soaking communication in task 2© and
3© still overwrites A[0], but after unpacking the P2P data, the value of A[0] is restored.

Task A[0] soak data A[0] (soak P2P data A[0] (P2P A[0] (after
ID (initial) data loaded) data loaded) execution)

1© ⊥ 0 0 – 0 1
2© 1 0 0 1 1 2
3© 2 0 0 2 2 3

Table 5: Solution 1: Disable P2P local data optimization.
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Task A[0] soak data A[0] (soak P2P data A[0] (P2P A[0] (after
ID (initial) data loaded) data loaded) execution)

1© 0 – 0 – 0 1
2© 1 – 1 optimized 1 2
3© 2 – 2 optimized 2 3

Table 6: Solution 2: The broadcasted UserClient contains all arrays, which are not
marked as writeonly (OUT). Therefore, no soak data packets are needed.

Note that the P2P data would not have been sent if the local data optimization had been
enabled.
In contrast, the second solution radically changes the soaking strategy of the generated

code by moving all potential soaking communication before the computation phase, thus
eliminating all soaking communication during the computation.

Solution 2. Attach all arrays that are relevant for soaking (i.e., which are used inside
the loop nest, but are not marked as writeonly) to the UserClient object that is broad-
casted by the controller to all clients19. Therefore, no soaking communication during the
computation phase is required.

The modified execution is shown in Table 6. As all soaking communication has been
moved to the begin, the array A is fully initialized on the client. Before the first task
is executed, A[0] is 0, whereas in the other examples it is still undefined. Note that no
data is overwritten, because of the lack of soak communication during the computation.
Although the second solution does not require changes to the framework, it assumes

that the broadcasting of the client is implemented in an efficient, scalable way. In our
implementation, we used a binary tree algorithm, but more sophisticated algorithms can
be found in the literature [40].
Let us compare the advantages and disadvantages of both solutions:

• Solution 1: Turn off local data optimization

+ Faster startup times.
± Potentially less communication than in solution 2, but only if the overhead

created by the additional dependences does not exceed the communication
costs of the initial broadcast.

– Local communication is inexpensive, as it does not require that data is sent
over the network, but there is still a significant overhead because of the gener-
ation and unpacking of the P2P data packet. Note that this overhead would
have been eliminated by the local data optimization.

– It is incompatible with improved task prefetching, as described in section 3.1.2.
19 Normally, a half-initialized UserClient object is broadcasted, which only contains the values of the

runtime parameters. The arrays are later allocated by a call to the init method (see section 2.8.2),
but soaking communication is required to send the content of the arrays.
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Test example Input file Problem sizes

SOR1d Figure 33 (see section 4.1) M = 500, 000, N = 1, 000, 000
Matrix multiplication Figure 44 (see appendix A) n = 4, 000
Polynomial product Figure 45 (see appendix A) n = 500, 000

Table 7: Overview of the test examples.

• Solution 2: Broadcast soak data before the computation

+ During the computation, no soak communication is necessary, which speeds
up the computation phase. It also reduces the controller’s workload, thus
improving scalability (at least during the computation phase).

+ Guarantees that soak data is only send once, thus avoiding the problem
with repeated soak communication, which is discussed in example 15 in sec-
tion 4.2.1.

– Expensive startup phase. Especially, it is not suited for low-bandwidth net-
works.

– It is incompatible with client side memory reduction (see section 2.3.3), which
is an important future goal. The reason is that solution 2 forces each client
to allocate enough memory to hold all broadcasted arrays.

5 Experiments

Our test environment consists of about 100 desktop PCs (ranging from AMD Athlon XP
3000+ to Intel Core 2 Duo 6400), connected by a 100 MBit Ethernet network. However,
we could not use more than 80 of them, at the same time, because not all computers are
online all the time. Since the computers that we used are part of the CIP-Pool of the
university of Passau, they were not exclusively reserved for our tests but were available
to all students and members of staff. Therefore, dynamic load balancing could be tested
under realistic conditions.
Table 7 contains the test examples with references to their input files. Our experiments

show that the P2P version (Figure 41) is faster than the master-worker version (Figure 42)
in all examples we have tested.

Remark. The diagrams contain super linear speedups, for example, in the P2P-HOC,
the parallel SOR1d running on 16 computers is more than 20 times faster than the
sequential version running on a single computer. How is this possible?
Although it may seem surprising at first, it has to do with cache effects: Tiling is

applied on the input program during the parallelization, thus the cache efficiency of the
target code is also improved. We compared the speedup against the original sequential
input programs, but not against a hand-optimized cache-optimal version20. However, it
is important to note that our conclusions about scalability are not concerned.
20 For example, a blocked algorithm could be used to implement the matrix multiplication.
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Figure 41: Absolute speedups in the P2P framework.
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Figure 42: Absolute speedups in the master-worker framework.
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Figure 43: Speedup for the polynomial product example for two different tiling vectors
(both using the P2P-HOC). The problem size n has been increased from
500, 000 to 3, 000, 000.

The scalability also improves with increasing problem sizes. Unfortunately, as the
memory requirements also scale with the problem size, we could not increase the problem
sizes for the SOR1d and matrix multiplication example without running out of memory.
However, Figure 43 shows the improved scalability for the polynomial product example,
where the problem size n was increased from 500, 000 to 3, 000, 000. Depending on the
choices for the tiling vectors, the example scales almost linearly to 80 computers, which
is also the maximum number of computers that we could use for our tests.
Our experiments also proved that the communication volume is reduced because of

the the P2P extensions: The total network traffic on the controller (P2P-HOC) is about
3–10 times less than on the master (master-worker HOC). Therefore, we expect that the
P2P version performs better than the master-worker version if the bandwidth is limited
(i.e., if the available bandwidth is lower than the communication volume of the user
application). As the communication volume increases with the problem size as well as
with the number of processors, this also affects scalability in environments with limited
bandwidth.
Our original framework suffered from latency problems, which disappeared when we

replaced the code responsible for message passing with a more efficient implementation
using non-blocking synchronization. Not surprisingly, the performance did improve, but
more interesting is the observation that it helped the P2P-HOC significantly more than
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the master-worker HOC.
One plausible explanation is that in the master-worker HOC it is always possible to

send data immediately from the source to the target, whereas in the P2P-HOC the
P2P data communication requires one indirection, because the controller has to send one
additional message to inform the client that should sent the data. Therefore, we conclude
that the master-worker approach is more robust regarding high latency (assuming that
the bandwidth is unlimited). Note that task prefetching helps to reduce latency problems,
but it cannot completely eliminate them.

6 Conclusions and future work

In this thesis, we replaced the existing master-worker HOC by the new P2P-HOC, which
allows communications between workers and lifts the performance bottleneck that all data
has to be stored on the master, even during the computation. Thus, the central differences
between the master-worker HOC and the P2P-HOC concern the communication scheme:

• In the master-worker HOC, the communication scheme is invariant:

– Before the task execution, the master sends all data that will be read by the
worker.

– After the task execution, the worker sends back all data that has been written.

• In contrast, the P2P-HOC uses soak and drain communication between controller
and clients, but most of the data is transferred via P2P communication (between
clients).

As a consequence, the P2P-HOC’s communication scheme has more potential for opti-
mizations, because local P2P communications can be eliminated (local data optimiza-
tion). Therefore, the task scheduler can reduce the amount of sent data by maximizing
local communications. Additionally, the P2P-HOC turns out to be more flexible re-
garding task prefetching, which is an important optimization on its own, also used by
the master-worker HOC. Based on local data optimization, we introduced the concept
of improved task prefetching, which improves both prefetching and task scheduling by
increasing the number of available tasks (for the requesting client).
The original claim that a centralized peer-to-peer architecture (as used by the P2P-

HOC) is superior to the existing master-worker architecture with regard to performance
and scalability was proved by the benchmarks. In all tested examples, the P2P-HOC
outperformed the master-worker HOC.

Let us end with an outlook of future goals:

• In section 3, we briefly discussed some powerful task scheduling optimizations
(client internal parallelism, support for hierarchical networks, and task duplica-
tion), but could not support the theory with experiments, so there is much space
for further research.
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• Section 4 deals with runtime workarounds for compile time problems closely related
to dependence analysis. As both workarounds are painful, fixing the issues at
compile time would be a major improvement.

• Currently, both the controller and the clients are single points of failure. Solving
this problem for the controller seems difficult (because of the centralized architec-
ture), but checkpointing should be sufficient (i.e., regularly storing the state of the
application’s memory and the task graph to recover from failures).

On the client side, redundancy could be added by using task duplication to improve
the system stability. Additionally, the restriction that all clients have to register
at the controller before the computation could be lifted, thus supporting CPU
scavenging .

Naturally, it is a matter of taste to decide which goals are most valuable, but let us
point out two topics that are most urgent from the aspect of a typical end user.

Automatic tile size determination Currently, the tiling vectors have to be determined
by the user, which is not trivial, because of the following reasons:

1. The dimension of the tiling vectors have to respect the loop dimensions of the
input programs. Otherwise, the code generation will fail.

2. The size (scaling factor) of the tiling vectors: Smaller tiling vectors will in-
crease the number of tasks, thus leading to more (fine grained) parallelism,
but at the cost of more communication.

3. The form (direction) and the shape (ratio of the vector’s lengths) of the tiling
vectors affect the communication volume. Ideally, the tiling vectors should be
chosen with respect to the direction of the dependences.

While the user might find a tiling vector that meets the first demand by trial and
error, the other demands are highly problematic. Especially, determining the form
and shape is difficult, because it requires insights into automatic parallelization
techniques and knowledge about the dependences in the user application. This is
contradictory to the original goal that the typical end user should be able to use the
parallelization framework without expert knowledge. Unfortunately, at the current
state, we cannot even provide simple guidelines to find good tiling vectors.

Note that dynamic techniques are not applicable yet, that means the tiling vectors
have to be determined at compile time, before the computation. Recent work,
however, has shown that, in principle, this restriction can be lifted using a technique
called quantifier elimination [23, 24, 25, 11], which would allow us to postpone the
determine of the tile size until runtime (using parametric tiling). The advantage
would be that, at this stage, there is more information available (e.g., the number
of processors, the values of the runtime parameters).

Meanwhile, a valuable interim goal might be to support the user with a good
heuristic, for example, where the user has only to estimate the number of available
processors and the expected problem sizes (i.e., the values of the runtime parame-
ters).
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Client side memory reduction It is difficult to achieve scalability with small problem
sizes. For example, according to our experiments, the matrix multiplication exam-
ple scaled only to about six computers. Does that imply that matrix multiplication
is not parallelizable? Of course not, but we could only test 4, 000×4, 000 matrices,
otherwise we would ran out of memory. These are relatively small matrices that can
be multiplied on a single computer in reasonable time. However, to justify the in-
creased complexity when switching from a single computer to a Grid environment,
the application has to be extremely challenging. For example, it more likely that
a typical Grid user will want to multiply matrices of size 1, 000, 000× 1, 000, 000.

In these settings, efficient memory management is crucial, which additionally com-
plicates the development of the parallelized application, but at the same time in-
creases the need for automated code generation. Thus, future work might focus on
the support of out-of-core algorithms by reducing the amount of memory that has
to be allocated on the clients (as discussed in section 2.3.3).
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1 int n ;
2 double [ ] [ ] A;
3 double [ ] [ ] B;
4 double [ ] [ ] C;
5 // loopo end d e c l a r a t i o n s
6
7 // A l l o ca t e memory f o r the arrays
8 n = 4000 ;
9 A = new double [ n ] [ n ] ;
10 B = new double [ n ] [ n ] ;
11 C = new double [ n ] [ n ] ;
12
13 // I n i t i a l i z e input arrays A and B
14 // . . .
15
16 // loopo beg in loop ( cons tan t s : n ; arrays [ IN ] : A{n , n} ,

B{n , n} ; arrays [OUT] : C{n , n})
17 for ( int i = 0 ; i < n ; i++) {
18 for ( int j = 0 ; j < n ; j++) {
19 for ( int k = 0 ; k < n ; k++) {
20 C[ i ] [ j ] = C[ i ] [ j ] + A[ i ] [ k ] ∗ B[ k ] [ j ] ;
21 }
22 }
23 }
24 // loopo end loop
25
26 // Print r e s u l t s
27 // . . .

Figure 44: Input file for the matrix multiplication example.

A Input files for the examples

The two missing examples are shown in Figure 44 (matrix multiplication) and Figure 45
(polynomial product). The input file for the SOR1d example will not be replicated here,
as it already occurred in Figure 33 in section 4.1.

B Algorithm: Task scheduling

Remark. Although our task scheduler supports task duplication, we will skip it in this
section, because it is not supported by the rest of the framework.
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1 int N;
2 double [ ] A;
3 double [ ] B;
4 double [ ] C;
5 // loopo end d e c l a r a t i o n s
6
7 // A l l o ca t e memory f o r the arrays
8 n = 500000;
9 A = new double [ n+1] ;
10 B = new double [ n+1] ;
11 C = new double [ 2∗n+1] ;
12
13 // Array i n i t i a l i z a t i o n
14 // . . .
15
16 // loopo beg in loop ( cons tan t s : n ; arrays [ IN ] : A{n+1},

B{n+1}; arrays [OUT] : C{2∗n+1})
17 for ( int i = 0 ; i <= n ; i++) {
18 for ( int j = 0 ; j <= n ; j++) {
19 C[ i+j ] = C[ i+j ] + A[ i ] ∗ B[ j ] ;
20 }
21 }
22 // loopo end loop
23
24 // Print r e s u l t s
25 // . . .

Figure 45: Input file for the polynomial product example.
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Algorithm sketch: List all tasks that are available to the requesting clientA. Assuming
that redundant task assignment is not allowed, we can discard all assigned tasks. The
remaining tasks are each evaluated with regard to the following criterions:

Primary goal: Minimize communication by preferring local communication:

• Slightly penalize tasks without incoming dependences.
(Note: This sounds counterintuitive, but these tasks are too valuable because
they are optimal for all clients, not only for client A.)
• If there are incoming dependences, however, minimize the number of remote

communications:
– Communication is local if the source task has been finished by client A

or has been assigned to it. Otherwise, it is remote.
– Local communication is slightly good, remote communication is bad.

(If all communications are local, the task should be preferred to another
task without incoming dependences. However, if at least one communica-
tion is not local, a task without incoming dependences is still preferable.)

– Always prefer a task chain, which is a task that matches the following
conditions:
1. Exactly one incoming dependence (i.e., there is only a single source

task).
2. The source task has been finished by client A, or has been at least

assigned to it. (We will call the latter a future task chain, as it can
only be reached by improved task prefetching.)

Secondary goal: These criterions are only important to choose between tasks that scored
equal on the primary goals:

• Prefer tasks with many outgoing dependences (to unlock as much future tasks
as possible).
• Otherwise, choose the task randomly (among the best tasks).

The goal is not only to find a task that is communication optimal for the requesting
client, but future task assignments have to be considered, too. Some tasks can be more
expensive to some client than to another, for example, task chains should almost never
be taken away from the client that has finished the source task. Thus, they are ideal
targets for task prefetching.
In our implementation, we preferred standard task chains (over future task chains),

because they may unlock further tasks, thus increasing the parallelism. Future task
chains, however, can improve the cache performance, especially if they are executed
sequentially.

C Algorithm: RemoveRedundantEdges

Remark. This section describes the heuristic mentioned in section 3.5. We do not claim
that the presented algorithms are new, at least the basic algorithm is based on some
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existing transitive reduction algorithm, but unfortunately we could not find any traces
of its origin. To the best of our knowledge, the modification resulting in the second
algorithm is new.

Our heuristic assumes that the task dependence graph has the following properties:

• The graph is acyclic (this is guaranteed).

• In general, the graph will be sparse (this is very likely).

• In general, there will be no long dependences21 (this is likely assuming that the
example is well parallelizable and the quality of the dependence analysis is high).

The basic algorithm 1 traverses the graph’s nodes in reverse topological order, and
incrementally computes the set of reachable nodes R for each node, starting with empty
sets. In line 5 the reachable nodes from node N is initialized as {N}, which is incremen-
tally extended by the loop in line 6 where all outgoing edges from node N are traversed
in ascending topological order.
All edges from N to some other node M , which have been already marked as reachable

from node N , can be removed if the represented dependences do not require communica-
tion. Otherwise, the edge cannot be removed, and therefore all nodes that are reachable
through M are also marked as reachable from N .

Algorithm 1 Basic algorithm: O(n2) space usage, where n is the number of nodes.
1: function RemoveRedundantEdges
2: Compute topological order
3: R← {} . mapping: node to set of reachable nodes
4: for all nodes N in descending topological order do
5: R[N ]← {N} . init reachable nodes from node N
6: for all outgoing edges to node M in ascending topological order do
7: if M ∈ R[N ] and edge (N, M) causes no communication then
8: Remove redundant edge (N, M)
9: else
10: R[N ]← R[N ] ∪R[M ] . add all nodes that are reachable through M
11: end if
12: end for
13: end for
14: end function

Algorithm 1 cannot be used on huge graphs, because its memory consumption is O(n2),
where n is the number of nodes (or tasks). This is because the set of reachable nodes for
each nodes is stored, even if the nodes are no longer relevant.

21 In this context, the length of a dependence 1© −→ 2© is defined as the length of the longest path
between 1© and 2©. For example, all task dependence graphs shown in this thesis contained only very
short dependences (of length one or two).
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Algorithm 2 tries to reduce this problem by detecting non-relevant nodes, where all
incoming edges have already been examined. These nodes can be safely removed from
all sets of reachable nodes. Although the space complexity remains O(n2) for arbitrary
acyclic graphs, it significantly reduces time and memory consumption if the graph is
sparse and contains no long dependences (or at least not many).

Algorithm 2 Improved version for graphs without long dependences.
1: function RemoveRedundantEdges
2: Compute topological order
3: Mark all edges as not finished
4: R← {} . mapping: node to set of reachable nodes
5: for all nodes N in descending topological order do
6: R[N ]← {N} . init reachable nodes from node N
7: for all outgoing edges to node M in ascending topological order do
8: if M ∈ R[N ] and edge (N, M) causes no communication then
9: Remove redundant edge (N, M)

10: else
11: R[N ]← R[N ] ∪R[M ] . add all nodes that are reachable through M
12: end if
13: Mark edge (N, M) as finished
14: if all incoming edges of node N are finished then
15: Remove N from all (non-empty) sets in R
16: end if
17: end for
18: end for
19: end function

In line 15, the algorithm assumes that only non-empty sets are stored in R, while
empty sets are represented by non-existing mappings. That allows the implementation
to remove N only from non-empty sets. Without this optimization, all sets have to be
tested whenever a node is detected as irrelevant, resulting in a quadratic number of tests.
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