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Abstract

Spark is a powerful tool for proving the partial correctness of sequential Ada pro-
grams. RavenSpark extends Spark for multi-tasking in real-time applications. We
show that RavenSpark has limitations regarding proof capabilities. We present an
alternative approach to parallel abstract data types in Spark. Our new approach
is linked more closely to the Ada 95 standard and is also applicable to other than
real-time programs. We demonstrate the workability of our approach by applying it
to the proof of a concurrent communication system.
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Chapter 1

Introduction

The language Ada has been used traditionally for high integrity software, a field in
which the absence of errors is crucial. But Ada itself provides no means to assist the
programmer in proving the correctness of a program written in Ada. One approach
to the verification of Ada programs—and presently the only one which has been
used in practice—is Spark, which is firstly a language based on a subset of Ada
with proof annotations and secondly a set of tools for the semi-automatic validation
of correctness.

In the past three years an interesting extension to Spark has been brought to market,
namely RavenSpark, featuring support for parallel programs based on the model of
processes and monitors. For parallel programs, a proof of correctness is especially
difficult, for the very reason that concurrency causes non-determinism and additional
sources of error. The main academic work on proving the correctness of parallel
processes and monitors has been done in the 1970s. This marks the state of the art
by which RavenSpark is measured in this thesis.

We evaluate RavenSpark by re-implementing a parallel program which has been
verified manually in Hoare logic in 1977. This program is a small multi-tasking
program named Coco. Originally it has been implemented in the language Con-
current Pascal, a Pascal-like language with support for processes and monitors. A
re-implementation in Ada is straightforward because Ada is partially based on Pascal
and has a task model similar to that of Concurrent Pascal.

We show that RavenSpark’s applicability to Coco proves unsatisfactory. To over-
come the deficiencies, we propose a new approach to multi-tasking in Spark. We
refer to Spark Version 7.2 of Praxis High Integrity Systems [Pra06]. Newer versions
might solve some of the issues we address in this thesis.

Readers of this thesis are not required to have any previous knowledge of Spark.
This thesis is also accessible to readers searching an insight into Spark. A modest
background in verification is assumed.
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Chapter 2

Specification of COCO

In this chapter we introduce the Coco system by specifying its requirements. We
reiterate the original specification of Coco [Len77]. The specification is still relevant
for up-to-date applications.

2.1 Hardware Configuration

Coco is the sketch of an operating system for a network switching device. The
switch is the central component in a star-wired network topology. It operates at
link layer, i. e. there are only direct connections between the switch and the nodes.
The links have full-duplex capability. The nature of the nodes linked to the switch
is unspecified. The switching device has a single processor and separate input and
output interfaces for each port.

2.2 Data Format and Data Handling

The transport unit in the network is the packet. The packet format is only sketched.
Packets consist of a header and a variable-sized but bounded-length body. The
header contains at least two pieces of information: the packet destination address
and the packet priority. Small priority values signify a high priority, zero is the
highest priority. The addressing scheme of the network is static.

The switch operates in store-and-forward mode. Packets are stored before they
are sent out. The switch is able to modify stored packets as long as the maximum
packet size is not exceeded. It could check for transmission errors and drop erroneous
packets. It could re-assign priorities. The switch itself cannot create new packets.

To avoid unnecessary and time-consuming copying of the packet data, each incoming
packet is assigned to a memory frame which it will occupy until it leaves the system.

3



2.3 System Behavior 4

The switch has to process the packets in the order of their priorities. The priority field
in the packet header is set by the sending node or modified during the data handling
by the switch. Packets with the same priority are handled in first-in first-out order.
The data handling and output is always done for the most urgent packet.

2.3 System Behavior

We describe the system behavior on the basis of a packet traveling through the
system. Figure 1 shows possible paths.

Once a packet enters the system, an empty memory frame is reserved for it and filled
with the packet data. If no empty memory frame is available, the reception of the
packet is delayed. The filled memory frame is entered into a priority queue. From
this queue, the most urgent packet is selected for data handling. After the packet has
been processed, it is put into another priority queue associated with the destination
output port. From there it leaves the system. When the output of the packet data
has been completed, the memory frame is freed.

Input
Port 3

Input
Port 2

Input
Port 1

Priority
Queue

Data
Handling

Output
Port 3

Output
Port 2

Output
Port 1

Priority
Queue

Priority
Queue

Priority
Queue

Figure 1: Packet processing



Chapter 3

Overview of SPARK

In this chapter we give an overview of the Spark language and its tools as well as
of RavenSpark. We have been using Spark Version 7.2 of Praxis High Integrity
Systems [Pra06]. We only address features required for the understanding of this
thesis and refer to the manuals distributed with the Spark tools for reference.

We elaborate especially on abstract data types and objects because the next chapter
builds on them. The understanding of the Spark tools’ interactions is important for
the proof of Coco in Chapter 6.

3.1 SPARK Annotations

The Spark language is a restricted subset of Ada with annotations. The annota-
tions are embedded in especially marked Ada comments (two dashes followed by a
diamond). Thus, each valid Spark program is a valid Ada program which can be
translated by every Ada compiler. Barnes [Bar03] describes the language subset and
the annotations in detail.

Only procedure, function and package declarations and statements can be annotated.
In general, the annotations are put immediately after a declaration or—if a defining
body follows—before the keyword is. Alternatively bodies can be hidden from the
analysis by the Spark tools with the hide annotation.

3.1.1 Statements

In general, no statements other than loop statements are annotated. After the loop
head, the assert annotation indicates a loop invariant.

5



3.1 SPARK Annotations 6

3.1.2 Procedures and Functions

Each procedure must be annotated at least with the derives annotation which speci-
fies the data flow. A global annotation must be used if a procedure accesses non-local
variables. The kind of access (read or write) is indicated by the modes in and out in the
same manner as in procedure parameter declarations. The pre and post annotations
specify conditions which must hold before and after a procedure call, respectively.
The following example illustrates their use:

Sum : Integer;

procedure Inc (X : in Integer)
−−# global in out Sum;
−−# derives Sum from Sum, X;
−−# pre X > 0;
−−# post Sum = Sum˜ + X;
is
begin

Sum := Sum + X;
end Inc;

This procedure increments the global variable Sum (read and write access) by the
value of X. The new value of Sum depends on its old value and the value of X. We
chose the pre-condition arbitrarily. The post-condition states that the value of Sum
is the previous value of Sum (expressed by an appended tilde) plus the value of X.

Functions are pure, i. e. they have no side-effects. The only valid annotations are
return and global (with mode in because global variables can only be accessed read-
only). The result of the function is specified by a return annotation rather than a
post-condition.

The proof annotations pre, post, return and assert are in the language of first-order
logic. The syntax is similar to Ada’s with a few extensions of which we only use the
universal quantifier. Its syntax is (for all X in T => P) which means: for all values of
the variable X in the range of type T the predicate P holds.

3.1.3 Packages

Packages are the largest building blocks in Ada. Packages can have child packages
and, thus, form a package hierarchy. Packages can import other packages with the
Ada with clause. The imported packages and the parent packages must be listed in
the Spark inherit annotation.

Variables declared at package level must itself appear in an own annotation. The
own annotation appears twice: in the package specification it either defines names
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of abstract variables or lists concrete variables, in the package body it associates
concrete variables with the abstract variables. When variables are initialized at
package level, they must be listed in an initializes annotation.

The state of a package consists of the configuration of its variables. These concrete
variables can be associated with one or more abstract variables in the own annota-
tions. These abstract variables, thus, also represent the state of a package. Packages
with a state are abstract data objects (in Spark terminology also called abstract
state machines).

Procedures and functions can be annotated in the package body and in the package
specification. The annotations in the package specification usually reference only for-
mal parameters and abstract variables from the own annotation. The pre-conditions
in the body must follow from the pre-conditions in the specification, and the post-
conditions in the specification must follow from the post-conditions in the body.
This is called refinement. For the sake of completeness it must be pointed out that
it is possible to write packages with no abstract variables, and consequently with no
refinement and no annotations in the body.

The function annotation declares a proof function. It is like an ordinary function
declaration in Ada but can only be referenced in other annotations. The function
annotation contains just a function signature. A semantics is associated by proof
rules which we describe in Section 3.3.

Proof functions need not always be declared explicitly. For each ordinary function
declared in the package, a corresponding proof function is declared implicitly. The
proof function’s signature is adopted from the concrete function declaration. One
parameter is added for each variable in the global annotation. The imported variables
in the global annotation are treated as further additional parameters.

The type annotation declares a proof type. Proof types can only be referenced in other
annotations. For example, the type of an abstract variable in the own annotation
might be such a proof type.

Figure 2 illustrates the use of some possible annotations in a package. The left side
of the figure is the package specification, the right side the package body. The only
variable declared at package level is the variable Sum. It is initialized to zero in
the package initialization part. The abstract variable State denotes the state of the
package. Its type is the proof type State Type (proof types bear always the attribute
abstract). Procedure Inc is the same as in the previous example. In the package
specification, all annotations reference the abstract variable State because the global
variable Sum is not visible. For this reason we require a proof function to formulate
the post-condition. The proof function Add is just a signature; its semantics is defined
in Section 3.3. The own annotation in the package body gives the abstract variable
State and the proof type State Type a semantics.
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package Calc
−−# own State : State Type;
−−# initializes State;
is

−−# type State Type is abstract;

−−# function Add (A, B : in State Type;
−−# J : in Integer) return Boolean;

procedure Inc (X : in Integer);
−−# global in out State;
−−# derives State from State, X;
−−# pre X >= 0;
−−# post Add (State, State˜, X);

end Calc;

package body Calc
−−# own State is Sum;
is

Sum : Integer;

procedure Inc (X : in Integer)
−−# global in out Sum;
−−# derives Sum from Sum, X;
−−# pre X >= 0;
−−# post Sum = Sum˜ + X;
is
begin

Sum := Sum + X;
end Inc;

begin
Sum := 0;

end Calc;

Figure 2: Example of a package

3.1.4 Classes

In object-oriented programming, classes are abstract data types. Ada realizes classes
in the following way. Class attributes are implemented in a record aggregate with
restricted visibility. An object is instantiated when a variable of this record type
is declared. Class methods are ordinary procedures and functions which have a
parameter of the class type. The explicit type parameter in the object methods is a
particular characteristic of Ada. We do not consider inheritance, as Coco does not
require it.

Figure 3 shows an exemplary class definition. It requires a proof function to formu-
late the post-condition because the class attribute Sum is not visible and, therefore,
cannot be referenced directly. The class methods in the package body are not an-
notated in Spark. It would be conceivable to specify pre- and post-conditions in
the body which directly reference the class attributes. Here Spark does not take
advantage of the abstraction offered by Ada.

In Figure 3 we name the abstract data type after the abstract data object of Figure 2.
Both provide the method Inc which in both cases has the same semantics. Both
provide the same attribute Sum. We want to show how fundamentally differently
abstract data types and abstract data objects are implemented in Ada. This becomes
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important for our discussion in Section 4.3.1. There we argue which of them has the
closest resemblance to a parallel abstract data type.

package Container is

type Calc is private;

−−# function Add (A, B : in Calc;
−−# J : in Integer) return Boolean;

procedure Inc
(C : in out Calc; X : in Integer);

−−# derives C from C, X;
−−# pre X >= 0;
−−# post Add (C, C˜, X);

private
type Calc is record

Sum : Integer;
end record;

end Container;

package body Container is

procedure Inc
(C : in out Calc; X : in Integer) is

begin
C.Sum := C.Sum + X;

end Inc;

end Container;

Figure 3: Example of a class

3.2 RavenSPARK and the Ravenscar Profile

Pure Spark is sequential. Multi-tasking has only been added recently to Spark by
RavenSpark. It uses Ada task types and protected types. Task objects (i. e. objects
of type task) are processes. Protected types are abstract data types which provide
mutually exclusive operations for tasks to access their private data.

Figure 4 shows an exemplary protected type. It provides the same procedure Inc
and has the same private variable Sum as the examples in Figures 2 and 3. The
pragmas (compiler directives) are RavenSpark-specific: Pragma Ravenscar activates
the Ravenscar Profile which we describe below. Pragma Priority specifies a priority
for the real-time scheduler.

In packages, abstract variables can be declared with an own annotation. These
abstract variables denote the state of the package. Protected types have a state, too,
but no own annotation. Instead, RavenSpark implicitly declares a state variable
which has the name of the protected type.
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RavenSpark disallows pre and post annotations in a protected type declaration. We
elaborate on this in Section 4.1.

pragma Ravenscar;
package Container is

protected type Calc is
pragma Priority (System.Default Priority);

procedure Inc (X : in Integer);
−−# global in out Calc;
−−# derives Calc from Calc, X;

private
Sum : Integer := 0;

end Calc;

end Container;

package body Container is

protected body Calc is

procedure Inc (X : in Integer)
−−# global in out Sum;
−−# derives Sum from Sum, X;
−−# pre X >= 0;
−−# post Sum = Sum˜ + X;
is
begin

Sum := Sum + X;
end Inc;

end Calc;

end Container;

Figure 4: Example of a protected type

Protected objects (i. e. objects of a protected type) are very similar to monitors
with the added advantage that the low-level wait and signal scheduling operations
are substituted by entry barriers. We describe the general Ada synchronization
mechanism first [Ada95, Sect. 9.5.2].

Entries are procedures with a barrier condition. When a task calls an entry, the
run-time system evaluates the barrier. If it is satisfied the task is allowed to execute,
otherwise the task execution is blocked and the task is put into a waiting queue
which is associated implicitly with the entry. Each time a procedure or entry call
is finished, i. e. a changed state of the protected object becomes visible, the run-
time system re-evaluates the barriers of all non-empty entry queues. The queues
are managed in first-in first-out order, the evaluation order of the barriers is non-
deterministic. When a task is re-activated, the barrier condition is guaranteed to be
true.

Figure 5 shows the syntax of an entry. The entry Get fetches some element of the
buffer array Data. The barrier is the expression Count > 0. Count is a private integer
variable of the protected type. When a task calls this entry, it will be blocked until
Count > 0 evaluates to true.
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entry Get (X : out Element) when Count > 0 is
begin

X := Data (Count);
Count := Count − 1;

end Get;

Figure 5: Example of an entry procedure

RavenSpark enforces the activation of the Ravenscar Profile.1 The Ravenscar Profile
has been incorporated into the Real-Time Annex of the Ada standard. We base our
description on the guide to the Ravenscar Profile [BDV03].

The Ravenscar Profile defines a subset of the Ada task model. It is activated with the
pragma Ravenscar which, in turn, activates a number of other pragmas to configure
the Ada compiler and the Ada run-time system.

The goals of the Ravenscar Profile are a deterministic selection of tasks, hard dead-
lines and a simple schedulability analysis. This is accomplished by several restric-
tions. The Ravenscar Profile allows only one entry per protected type. The entry
queue size is limited to one. Every entry may only be called by one distinct task. The
entry barrier is restricted to a static Boolean expression. We discuss the implications
of these restrictions in Section 4.1.

3.3 SPARK Tools

The Spark distribution contains a number of tools. We describe three of them: the
Spark Examiner, the Spade Automatic Simplifier and the Spade Proof Checker.

The Spark Examiner performs a static analysis of the annotated Ada source code.
It checks that the source code conforms to the language specification, that there are
no uninitialized or unused variables and that there are no lost variable updates. It
also checks that the use of variables matches their interdependence annotations and
that there is no unreachable code. After this analysis, the Examiner outputs files
with verification conditions, proof rules and FDL type declarations. We describe
these in turn below.

The Examiner generates the verification conditions from the proof annotations. The
Examiner also inserts automatically conditions which are directly derived from the
Ada type declarations, to check for range overflows. The verification conditions are

1The Ravenscar Profile is the result of the 8th International Real-Time Ada Workshop that was
held in Ravenscar, North Yorkshire, UK.
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conjectures consisting of hypotheses H1, . . . , Hn and conclusions C1, . . . , Cm. It has
to be proved that (H1 ∧ . . . ∧Hn ⇒ C1 ∧ . . . ∧ Cm).

The Examiner translates all constants, variables, functions and type identifiers into
FDL type declarations. FDL (abbr. for Functional Description Language)2 is a
Pascal-based language. The Spark tools use only the declarative part of FDL.
The type system of FDL is weaker than that of Ada. This is compensated for by the
generated verification conditions.

FDL identifiers are set in lowercase, all dots and single quotation marks are replaced
by two underlines. For our proof function Add of the example in Figure 2, the FDL
declarations are as follows:

type state type = record
sum: integer

end;

function add(state type, state type, integer): boolean;

The proof type State Type is translated into an FDL record and contains the variables
listed in the own annotation of the package body, in this case only the variable
Sum. The signature of the function annotation is translated into an FDL function
declaration.

As their names suggest, the Spade Automatic Simplifier and the Spade Proof
Checker depend on Spade’s language FDL, which explains why the Examiner trans-
lates the Ada declarations into FDL.

The Simplifier is an automated theorem prover with a Prolog system in the back-
ground. The Simplifier takes the verification conditions and the FDL declarations
as input and simplifies the verification conditions according to proof rules as much
as possible. The proof rules are built-in, generated by the Examiner or written
manually.3 Each proof rule has one of the following, self-explanatory formats:

X may be replaced by Y.

X may be replaced by Y if [ C1, . . ., Cn ].

X & Y are interchangeable.

X & Y are interchangeable if [ C1, . . ., Cn ].

2FDL is the language of Spade (abbr. for Southampton Program Analysis Development Environ-
ment). The Spark Examiner is the successor of the Spade Verification Condition Generator,
the acronym Spark stands for Spade Ada Kernel.

3With the upcoming Spark Version 7.3 the Simplifier should also be able to use manually written
proof rules. As we are still using Version 7.2, we help ourselves by appending our manual proof
rules to the automatically generated ones before we start the Simplifier.
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X may be deduced.

X may be deduced from [ C1, . . ., Cn ].

X, Y, C1, . . ., Cn are Prolog variables. The syntax of the verification conditions
and the proof rules has an affinity to both FDL and Prolog. Atoms starting with
a capital letter are Prolog variables. Every clause must be followed by a period. A
single underscore means “any variable”. All FDL identifiers are accessible as Prolog
predicates.

The built-in (non-trivial) predicates used in the proof rules of this thesis are:

Predicate Description
element(A, [J]) get element J of array A

update(A, [J], X) update element J of array A with value X

fld F(R) get field F of record R

upf F(R, X) update field F of record R with value X

mk R(F1 := X1, . . ., Fn := Xn) record aggregate R with fields F1, . . ., Fn

for all(VAR : TYPE, P) universal quantifier for predicate P

for some(VAR : TYPE, P) existential quantifier for predicate P

The proof rules are arbitrarily grouped into rule families. Each rule family has a
header with type declarations for each predicate used in the rules. The type system
of the proof rules is even weaker than that of FDL, consisting only of four types
(integer, real, enumeration and any). Each rule must be preceded with the rule
family name and a distinct number in parentheses.

We complete the example of Figure 2 with the definition of the proof function Add.
It has to be defined as a proof rule:

rule family calc rules:
add(A, B, J) requires [ A: any, B: any, J: i ].

calc rules(1): add(A, B, J) may be replaced by fld sum(A) = fld sum(B) + J.

The rule family name is calc rules. The type i means integer. The rule calc rules(1)
can be referenced in any proof.

The simplified verification conditions (if not simplified to true) can then be proved
manually with the Checker. The Checker is implemented as a front-end to a Prolog
system. It provides a command line interface to the user. The Checker commands
are explained during their usage in the proof sessions of Chapter 6.

The interactions between the Spark tools are summarized in Figure 6.
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Chapter 4

Alternative Version of SPARK

Before we start into the design and implementation of an alternative approach to
multi-tasking in Spark, let us address the deficiencies we observed.

4.1 Deficiencies of RavenSPARK

We focus our criticism on RavenSpark and, in particular, on protected types. The
original design of Coco requires monitors. In Ada, protected objects are similar to
monitors. We show that RavenSpark’s protected objects have only little resemblance
to monitors.

The Ravenscar Profile imposes certain restrictions on the Ada run-time system, any
violation leads to a run-time error. RavenSpark makes sure that, with the help
of language restrictions and static analysis, several potential run-time errors can-
not occur [Spa05]. Moreover, RavenSpark does support verification for sequential
code but it has, as we show, virtually no support for the verification of protected
types. Even if we changed the overall design of Coco to meet the specification of
RavenSpark, nothing would be gained because we could not verify the correctness
of our protected types.

4.1.1 Entry Barriers

RavenSpark forces entry barriers to be Boolean elements of the protected type
[Spa05, Sect. 3.3.3.8]. In particular, functions are not allowed to be evaluated in
entry barriers. The guide to the Ravenscar Profile justifies this with the avoidance
of side-effects [BDV03, Sect. 4.1.1]. But functions in Spark have no side-effects.

The use of a single variable as entry barrier introduces the necessity of additional
Boolean variables for book keeping. Entry barriers may only use these variables

15
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instead of dynamically evaluated functions. The dynamic evaluation must be made
static. These variables have to be updated in every procedure and entry call to reflect
the current state of the monitor.

4.1.2 Initialization

The initialization of protected objects is handled by the run-time system. Each
private variable is assigned one evaluated static expression. RavenSpark disallows
functions to be evaluated here, too. One of the implications is that the initialization
of an n-sized array with n distinct values for a reasonable large value of n becomes
tedious.

A further issue is that the Examiner does not generate any verification conditions
for the initialization part. One cannot prove that an invariant holds after the initial-
ization.

4.1.3 Task Model

The Ada 95 Rationale states that the control-oriented Ada 83 rendezvous model for
task synchronization proved to be unsatisfactory [BB+95, Sect. II.9]. The designers
of Ada 95 preferred an object-oriented approach and introduced protected types.
RavenSpark incorporates tasks and protected types but, instead of relying on the old
Ada 83 or the new Ada 95 task model, RavenSpark is based on the Ravenscar Profile.
The Ravenscar Profile restricts protected types by disallowing multiple entries. It
restricts the run-time system by limiting the size of entry queues to one and, thus,
eliminates all implicit waiting queues.

In RavenSpark, protected objects cannot be components of other data types. This
implies that one cannot construct an explicit waiting queue. RavenSpark pre-defines
a so-called suspension object with operations Suspend Until True and Set True which
can only be called at task level—a necessary restriction because otherwise there
would be a monitor hierarchy: if Suspend Until True were called during a protected
type operation, a deadlock would occur.

On the one hand the Ravenscar Profile forbids the use of the Ada 83 task synchro-
nization, on the other hand it practically re-introduces a primitive wait and signal
mechanism by suspension objects and stripped down protected types, placing the
burden of scheduling again on tasks.

We do not question the usefulness of the Ravenscar Profile for real-time applications.
But it is an annex to the Ada language standard and obviously not intended for
general purpose.
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4.1.4 Verification

RavenSpark deliberately forbids any variables of a protected type in proof annota-
tions [Spa05, 3.6.2]. This implies the absence of any proof annotations in a protected
type declaration.

Interestingly enough, sequential abstract data types can only have proof annotations
in their declarative part but not in their body (cf. Sect. 3.1.4). This is in contrast
to parallel abstract data types which must not have any proof annotations in their
declarative part.

In principle, it is possible to use proof annotations in a protected type body but
their usefulness is limited. Due to an unresolved problem in RavenSpark, no proof
functions can be declared within a protected type declaration.4 This implies that no
proof functions can be used in the proof annotations and, therefore, the expressive
power of the annotations is limited.

We speculate that this is strongly related to the fact that the state variable of the
protected type is declared implicitly by RavenSpark and bears the protected type’s
name. A proof function declaration would require the state variable as formal param-
eter. The name of this variable is the type name. But what are this variable’s type
and the name of this type? This question remains unanswered, and consequently no
proof function can be declared.

4.2 Proposed Solution

As discussed in the previous section, protected types in RavenSpark have several
deficiencies. To make our criticism constructive, we suggest some modifications to
RavenSpark. The result is a new approach to multi-tasking in Spark. We want
Spark to support protected types that are linked more closely to Ada 95. To achieve
this, we take RavenSpark as a foundation but do not rely on the Ravenscar Profile.
Without the Ravenscar Profile, the name RavenSpark does no longer apply. We
call our approach “PassauSpark“.

This section is structured as a list of changes relative to RavenSpark. Again: we
focus only on protected types. First we describe the context-free syntax, then the
altered semantics.

4We reported this issue to Praxis High Integrity Systems and it was allocated tracking number
SEPR 1807. As of the date of this printing, it remains unresolved.
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4.2.1 Syntax

The basis of our alternative protected type syntax is the Ada 95 standard [Ada95,
Sect. 9.4] because even a modified protected type must still be valid Ada.

For interested implementers we specify the context-free syntax of PassauSpark’s
protected type in Figure 7. The grammar used here is in the same simple variant of
Backus-Naur Form as used in the Ada 95 standard. All non-terminals that are not
specified here are defined in the grammar of the Spark language [Bar03].

protected type declaration ::=
protected type defining identifier
[known discriminant part]
own variable clause

[ invariant clause ]
is
{ protected declarative item }

[ private
{ protected element declaration }
| hidden part ]

end defining identifier;

invariant clause ::=
−−# invariant predicate;

protected declarative item ::=
proof function declaration

| proof type declaration
| subprogram declaration
| entry declaration

protected element declaration ::=
{ component declaration }

hidden part ::=
−−# hide defining identifier;

entry declaration ::=
entry specification;
procedure annotation

entry specification ::=
entry defining identifier [formal part]

protected body ::=
protected body defining identifier

[ invariant clause ]
is
{ protected operation item }

end defining identifier;

protected operation item ::=
subprogram body

| entry body

entry body ::=
entry specification when condition
procedure annotation
is subprogram implementation

Figure 7: BNF grammar of a protected type in PassauSpark
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4.2.2 Initialization

In RavenSpark, the protected object initialization is limited to static expressions
for which no verification conditions are generated.

We extract the initialization of the private variables into a special procedure, named
Initialize, which must not have a pre-condition other than true. This enables a more
expressive initialization. As the initialization is an ordinary procedure, the Examiner
will automatically generate appropriate verification conditions for it.

The newly introduced initialization procedure requires a change in the main program.
The initialization procedures of all protected objects must be executed by the main
task before any other task is allowed to start. We propose the following prototype
for the main program:

−− include all packages with protected types and task types here
procedure Main is
begin

−− call protected objects’ initialization procedures here
declare

−− declare all task objects here ⇒ tasks start executing here
begin

null; −− null statement as in RavenSPARK
end;

end Main;

4.2.3 Proof Annotations

In RavenSpark, the state variable of a protected type is declared implicitly. We
suggest that, similarly to a package specification, an own and a type annotation must
be used to declare an abstract state variable. With this modification, it is possible
to declare proof functions for protected types. One of their obligatory parameters is
the state variable.

In contrast to RavenSpark, we allow pre, post and return annotations in the proce-
dure and function annotations of the protected type declaration.

The invariant of a protected object describes the consistency of the private variables
and must be true before and after calls of sub-programs, in addition to the pre- and
post-conditions. In RavenSpark, the invariant must be included in every pre and
post annotation. We make the invariant explicit: a protected type invariant may be
defined with the invariant annotation. Invariant is a reserved but currently unused
keyword in Spark. Both the protected type declaration and the body may have
different invariant annotations.
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Figure 8 shows the example of Figure 4 in PassauSpark. We chose the invariant
Sum >= 0 arbitrarily. In the protected type declaration, this invariant is specified
as a proof function.

package Container is

protected type Calc
−−# own State : State Type;
−−# invariant Sum Is Positive (State);
is

−−# type State Type is abstract;

−−# function Add (A, B : in State Type;
−−# J : in Integer) return Boolean;

−−# function Sum Is Positive
−−# (S : in State Type) return Boolean;

procedure Initialize ;
−−# global out State;
−−# derives State from ;

procedure Inc (X : in Integer);
−−# global in out State;
−−# derives State from State, X;
−−# pre X >= 0;
−−# post Add (State, State˜, X);

private
Sum : Integer;

end Calc;

end Container;

package body Container is

protected body Calc
−−# invariant Sum >= 0;
is

procedure Initialize
−−# global out Sum;
−−# derives Sum from ;
is
begin

Sum := 0;
end Initialize;

procedure Inc (X : in Integer)
−−# global in out Sum;
−−# derives Sum from Sum, X;
−−# pre X >= 0;
−−# post Sum = Sum˜ + X;
is
begin

Sum := Sum + X;
end Inc;

end Calc;

end Container;

Figure 8: Example of a protected type in PassauSpark

4.2.4 Synchronization

So far we have viewed protected types as abstract data types. Now we look at
synchronization.

Without the Ravenscar Profile the default Ada run-time system is used. This im-
poses changes on the handling of entries. The waiting queue sizes become virtually
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unlimited. A protected type may have multiple entries and every task may call every
entry.

A monitor is a collection of private data and public operations shared by several tasks.
There are two levels of scheduling. Short-term scheduling is the mutual exclusion of all
executions of monitor operations. It frees us from proving the absence of interferences
introduced by concurrency. Short-term scheduling is handled by the run-time system,
so there are no proof obligations. Medium-term scheduling is the synchronization of
tasks depending on the state of the monitor, specified by the programmer. It is
normally implemented by wait and signal operations, calls of which are written into
the monitor operations by the programmer.

Hoare [Hoa74] defines the following partial correctness axioms for monitor opera-
tions:

{true} initialization {J}
{J ∧ P} each procedure {J ∧R}
{J} q.wait {J ∧B}
{J ∧B} q.signal {J}

J is the monitor invariant. For each procedure, P is a pre-condition and R a post-
condition. B is a Boolean expression that describes the queue q.

Ada implements automatic signaling. The Ada run-time system administers an im-
plicit waiting queue for each entry. It tests repeatedly the entry barrier B and re-
activates waiting tasks. Howard [How76] proposed additional predicates to prevent
tasks to be left waiting by recording the queue length in history variables, among
other signaling schemes for automatic signaling.

Ada also implements automatic waiting. The run-time system automatically queues
calling tasks when the entry barrier B evaluates to false. Consequently there are no
explicit wait and signal operations in Ada.

Eventually, there is no other proof obligation than the invariant holding before and af-
ter monitor operations because the run-time system completely takes care of medium-
term scheduling. This implies that the verification conditions are the same as those
generated for a sequential abstract data type with only one difference: B is guaran-
teed to hold when a task finally executes the entry body.

4.3 Pre-Processor

Before we can use PassauSpark for the implementation of Coco, we must imple-
ment it first. Unfortunately the source code of the Spark tools is not public. As
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a temporary solution we developed a pre-processor to the Spark tools. This pre-
processor must transform the input sources from PassauSpark to pure Spark such
that the Examiner accepts it as legal Spark and generates the correct verification
conditions. A clean solution would be to modify the Spark tools directly but, with-
out the source being public, this can only be done by the right-holders of Spark.

The output of the pre-processor is a valid Ada program with valid Spark annotations
but it should not be compiled and must not be executed. Its sole purpose is to
leverage the Examiner to generate the right verification conditions.

As shown in the previous section, the proof obligations for protected types are
strongly related to other abstract data types. Our strategy is to convert all protected
types into sequential types, so that the Examiner will generate the appropriate ver-
ification conditions. Entries are to be converted into procedures and we must force
the Examiner to incorporate the entry barrier as a hypothesis into the verification
conditions of the entry.

In the following sub-sections we firstly choose the right sequential type representation
and secondly deal with entries and entry barriers.

We do not intend to prove any properties of tasks in Coco, only of protected types.
For this reason we do not handle tasks in the pre-processor.

4.3.1 Selection of the Sequential Type

At first glance it might be tempting to transform a protected type (a parallel ab-
stract data type) into a class (a sequential abstract data type). But there are some
obstacles.

There is a fundamental syntactic difference between protected types and classes:
while the object parameter of protected object operations is prepended to the op-
eration call (i. e. it is implicit to the operation), object methods require an explicit
object parameter. This leads to a more complex transformation, especially for the
generation of appropriate global and derives annotations.

RavenSpark takes Ada’s division of a protected type into declaration and body into
account and requires annotations (at least global and derives annotations) in both
parts. Classes, on the other hand, have no annotations in the body.

A single protected object has more resemblance with a package (an abstract data
object). Operations of packages have no object parameter because every package
represents only one single object. Spark also honors the partition into package
specification and body.
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As the pre-processor does not handle tasks, it does not need to handle protected
objects. This enables us to assume one single protected object per protected type.
This again allows us to choose between abstract data types and objects. For the
reasons just given, we conclude that, in this situation, the package is more suitable
than the class.

Our pre-processor generates, for every protected type, one child package with the
name of the protected type. This approach is possible because in RavenSpark
protected types are always declared at the package level.

4.3.2 Protected Type Conversion

Every protected type is transformed into a child package. We always insert the
pragma Elaborate Body into the parent package specification because the package
body may become empty, which would otherwise trigger an error.

The inherit annotation of the child package must list its parent package name together
with the inherited packages from the parent.

The private variables of the protected type declaration are transferred into the new
package body. Spark requires the initialization of the private variables but this is
handled already by the procedure Initialize. So we pretend to initialize these variables
by outputting an initializes annotation and hiding the package initialization with a
hide annotation. An own annotation in the package body is added, which lists the
private variables.

The invariant specified in the invariant annotation is prepended to all post annotations
and to all pre annotations except for the initialization procedure.

Figure 9 shows the protected type example from Figure 8 after the pre-processing.
It can be further processed by the Examiner.

4.3.3 Entry Conversion

Entries are transformed to procedures. The entry barrier is enforced by the run-
time system. We must make sure that the Examiner knows that the entry barrier is
true before the first statement. This is accomplished by a local procedure which does
nothing, but which is declared axiomatically to satisfy the entry barrier on exit. This
procedure must be called before the first statement. Its body, i. e. the null statement,
has no effect and must of course be hidden from Spark. The post annotation of this
procedure specifies the entry barrier.
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package Container is
pragma Elaborate Body (Container);

end Container;

package body Container is
end Container;

−−# inherit Container;
package Container.Calc
−−# own State : State Type;
−−# initializes State;
is

−−# type State Type is abstract;

−−# function Add (A, B : in State Type;
−−# J : in Integer) return Boolean;

−−# function Sum Is Positive
−−# (S : in State Type) return Boolean;

procedure Initialize ;
−−# global out State;
−−# derives State from ;
−−# post Sum Is Positive (State);

procedure Inc (X : in Integer);
−−# global in out State;
−−# derives State from State, X;
−−# pre Sum Is Positive (State) and X >= 0;
−−# post Sum Is Positive (State)
−−# and Add (State, State˜, X);

end Container.Calc;

package body Container.Calc
−−# own State is Sum;
is

Sum : Integer;

procedure Initialize
−−# global out Sum;
−−# derives Sum from ;
−−# post Sum >= 0;
is
begin

Sum := 0;
end Initialize ;

procedure Inc (X : in Integer)
−−# global in out Sum;
−−# derives Sum from Sum, X;
−−# pre Sum >= 0 and X >= 0;
−−# post Sum >= 0
−−# and Sum = Sum˜ + X;
is
begin

Sum := Sum + X;
end Inc;

begin
−−# hide Container.Calc;
null;

end Container.Calc;

Figure 9: Example of a protected type after pre-processing

For all non-local variables in the entry barrier, Spark requires the pre-processor
to generate appropriate global and derives annotations. The post annotation of the
procedure must also specify that the values of the non-local variables do not change.
Otherwise the Examiner would lose track of the relations between the variables.
Actually, this is a contradiction because on the one hand the post annotation specifies
that this procedure will potentially modify variables to fulfill the entry barrier, and
on the other hand it specifies that the variables are not modified. But it works insofar
that the Examiner generates the right hypothesis for the verification conditions of
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the entry procedure.

Figure 10 shows the example of Figure 5 pre-processed. The local procedure is named
Barrier and is called before the first statement. The post-condition of procedure
Barrier is the entry barrier Count > 0. The information in the global and the derives
annotations of procedure Barrier must be repeated in the entry’s annotations. We
only hint on the pre and post annotations of the entry procedure. They are handled
as for the other procedures, i. e. the invariant is prepended.

procedure Get (X : out Element)
−−# global in out Count;
−−# derives Count from Count & X from Data, Count;
−−# pre . . .;
−−# post . . .;
is

procedure Barrier
−−# global in out Count;
−−# derives Count from Count;
−−# post Count = Count˜ and Count > 0;
is
−−# hide Barrier;
begin

null;
end Barrier;

begin
Barrier ;
X := Data (Count);
Count := Count − 1;

end Get;

Figure 10: Example of an entry procedure after pre-processing
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4.4 Implementation of the Pre-Processor

We build the pre-processor on top of the ASIS (abbr. for Ada Semantic Interface
Specification) library. ASIS is an interface to the Ada compiler that enables the pre-
processor to access the abstract syntax tree directly from the compiler. The compiler
is used at run time of the pre-processor to parse the source code of an Ada program.
The ASIS library provides a skeleton tree traversal procedure with user-supplied
operations to visit the nodes of the syntax tree in pre- and post-order.

To ease implementation and due to its temporary nature, we limit the pre-processor
to the language features used by Coco. We do not implement any error checking.
At least ASIS does check for source code errors and the Examiner will detect errors
in the Spark annotations.

For character string handling, we use unbounded-length strings. These have the
advantage of an automatic memory management which further eases the implemen-
tation.

In this section we describe the general workings of the pre-processor. The complete
source code of the pre-processor is available online (cf. Appendix A.5).

4.4.1 Software Requirements

We use the following software to compile and run the pre-processor:

• The GNU Ada Compiler (GNAT) with ASIS-for-GNAT GPL 2005 Edition
[ACT05]. The ASIS version always requires the same compiler version. Aside
from ASIS, we use the GNAT hash table implementation and the GNAT utility
gnatchop.

• The scanner generator aflex 1.4a-10 in a modified version for GNAT [ALT01].

4.4.2 Input and Output

The pre-processor expects the input file names as command line arguments in the
same order as the Examiner. Different ASIS operations have to be executed for
package specifications and bodies, the distinction is based on the file name suffix.

The pre-processor does not generate individual output files but prints all its output
on console. This output must then be redirected to the program gnatchop which
is part of the GNU Ada Compiler. It splits its input and creates individual and
appropriately named source code files.



27 4.4 Implementation of the Pre-Processor

4.4.3 Tree Traversal

The pre-processor is based on the tree traversal procedure of ASIS. The tree nodes
are called elements in ASIS terminology. For each element the action to perform is
chosen by making a case distinction on the element kind.

The tree for the package specification example of Figure 2 looks like this:

> A Declaration
> A Package Declaration
—> A Defining Name
—> A Defining Identifier . . . Calc
—> A Declaration
—> A Procedure Declaration
—> An Ordinary Trait
——> A Defining Name
——> A Defining Identifier . . . Inc
——> A Declaration
——> A Parameter Specification
——> An Ordinary Trait
——> An In Mode
———> A Defining Name
———> A Defining Identifier . . . X
———> An Expression
———> An Identifier ... Integer

This tree has been generated by the display source program included in the ASIS
distribution. When the tree is traversed the pre-processor has to save some context
information. For example, when the element kind A Defining Name for the identifier
Inc is met, then the pre-processor must know that it is a procedure name—the first
A Defining Name after the A Procedure Declaration element is always the procedure
name.

Context information is saved about the current package kind (specification head,
specification or body), protected type kind (declaration head, declaration, body or
none), declaration kind (type declaration or other), expression kind (infixed function
call or other) and procedure kind (procedure head, procedure head with parameters,
end of procedure head, end of procedure head with parameters or none). We use the
term “head” for the declarative part before the token is.

We handle entries as special procedures and save information about the entry kind
(entry head, end of entry head, entry body). Entry heads can be handled like proce-
dures, but the barrier procedure must be inserted in their bodies. Not only must the
barrier be saved verbatim, but also appropriate global, derives and post annotations
must be generated.

Detecting the end of a procedure head is a bit complex because the procedure head
ends if there are no further parameters but only if the procedure has parameters
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at all. This explains the relatively large number of different values for the context
information of procedures.

4.4.4 Source Code Retrieval

We save the line and column position of the already processed source code in the
context information.

As soon as the parser recognizes an element, a source code span (i. e. the line and
column numbers of the start and the end positions of the source code range) is
associated with it. This does in general not include comments, closing brackets,
semi-colons or tokens like is or begin.

ASIS provides an operation to retrieve the span of an element. It also provides an
operation to retrieve the source code lines (including white space and newlines) from
a given span. This span can also be enlarged. The drawback of this approach is that
there is always an element required to retrieve any source code lines and the span
of this element has to be completely in the requested (and possibly larger) span.
This is inflexible, for example, it is hard to retrieve comments because comments are
treated as white space and not as elements by ASIS. There are no other operations to
retrieve source code lines. In particular, there is no operation to retrieve the source
code lines of an arbitrary span.

We wrote a much more flexible procedure to retrieve the source code lines. This
procedure retrieves source code lines from ASIS and trims them. It can retrieve lines
up to and including the element position. It can retrieve the empty and commented
lines up to the first non-comment line. It can retrieve empty and commented lines
up to the position of the element and move the positional pointer over this element
(the skip element). It can skip the next token or it can retrieve anything up to a
specified token. The tokens mentioned are character strings and are different from
the element; they are mainly used to skip tokens like is or begin.

Comments always precede an element (in the span from the last printed element
to the current element), although we would need them succeed an element because
Spark annotations naturally succeed declarations in Ada. We solve this by calling
the above procedure twice: in the first run it searches for comments and handles
them, in the second run it handles the element itself.

Infixed function calls must be detected and skipped because the source code position
is based on the infix operator. We would overrun the left-hand side of the function if
we retrieved the source code for the operator element. When the right-hand side is
processed, the source code of the operator is output as well because we always start
our output from the last printed position.
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All type declarations in the package specification are saved into a symbol hash table.
Additionally all private variables of protected types are prefixed with the protected
type name and saved in the symbol hash table. Maybe a hash table of hash tables
would be a cleaner solution instead of the prefixing, but this is not possible with the
GNAT hash table. The GNAT hash table is an abstract data object implemented as
a package, there is no hash table type to create objects of.

When the private part of a protected type is processed, the output is saved in a
temporary buffer. The package body requires an own annotation with the private
variables and can only be output after the private part has been processed. The
same applies to the package specification, which cannot be output before the abstract
variable name of the state has been read. The temporary buffer is flushed as soon
as possible.

In every package there could be more than one protected type. For each protected
type an own output buffer is required. We use a hash table with the protected type
name as hash key to access the right buffer. When an identifier is to be output,
it is looked up in the symbol hash table and prefixed with the package name if
necessary.

4.4.5 Handling of Annotations

Comments are neither elements in the syntax tree nor is their content parsed by
the compiler. We tokenize them with a scanner generated by aflex. The end of a
multi-line annotation is detected when an annotation starts with one of the Spark
keywords.

We do not parse the annotations but only tokenize them. It is sufficient to look up
each token in the symbol hash table, if it is an identifier that needs to be prefixed
by the package name. Due to the strict naming scheme of Spark, which forbids the
overloading of identifiers, this is a safe approach.

The invariant annotation is not output but saved in the context information. The
inherit annotation is also saved. The name of the abstract state variable is extracted
from the own annotation. The invariant is prepended to the post annotations and to
the pre annotations if the procedure name is not Initialize.

4.5 Set Types in SPARK

The data types that are allowed in proof annotations exclude sets. We require set
types in the proof annotations of Coco. The Examiner does not support any set
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types, but the Simplifier and the Checker do provide set types as a legacy. We want
to revive them for PassauSpark.

First we declare a proof type for sets:

−−# type Set Type is abstract;

for which the Examiner generates the following FDL representation:

type set type = pending;

At this point the type Set Type is abstract. After the Examiner has been run, the
generated FDL files must be modified and the declaration of set type must be replaced
by a concrete definition. For Coco we need only one type of sets, namely integer
sets. The FDL replacement is:

type set type = set of integer;

The pre-processor cannot perform this replacement because it is run before the Ex-
aminer. This post-processing to the pre-processor can be performed by some simpler
tools, e. g. the stream editor sed.5

The set predicates provided by the Simplifier and the Checker are:

Predicate Description
(set [ ]) empty set

(set [E]) singleton set containing only E

A \/ B set union of set A and set B

A /\ B set intersect of set A and set B

A \ B set difference of set A and set B

E in A E is element of set A

E not in A E is not element of set A

The Examiner forbids the occurrence of these predicates in any proof annotations.
For this reason we have to declare some wrapper proof functions. We only declare
wrappers for the predicates that are required for Coco:

−−# function Set Member (S : in Set Type; E : in Integer) return Boolean;
−−# function Set Delete (S : in Set Type; E : in Integer) return Set Type;
−−# function Set Insert (S : in Set Type; E : in Integer) return Set Type;
−−# function Set Element (E : in Integer) return Set Type;
−−# function Empty Set return Set Type;

5Exemplary usage for GNU sed: sed -i “s/set type = pending/set type = set of integer/” file.fdl
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The function Set Member returns True if an element E is a member of the set S. The
function Set Delete deletes the element E from the set S and returns the resulting
set. The function Set Insert inserts the the element E into the set S and returns the
resulting set. The function Set Element returns a set which only contains the element
E. The function Empty Set returns the empty set.

In the implementation of Coco, we replace the general Integer type of E by an integer
sub-range. Thus, the range overflow check of the Examiner will be stronger.

The semantics of the proof functions is defined by proof rules. The proof functions
are just wrappers for the set predicates of the Simplifier and the Checker:

rule family setfun:
set insert(S,E) requires [ S:any, E:i ] &
set delete(S,E) requires [ S:any, E:i ] &
set member(S,E) requires [ S:any, E:i ] &
set element(E) requires [ E:i ] &
empty set requires [ ].

setfun(1): set insert(S,E) may be replaced by S \/ (set [E]).
setfun(2): set delete(S,E) may be replaced by S \ (set [E]).
setfun(3): set member(S,E) may be replaced by E in S.
setfun(4): set element(E) may be replaced by (set [E]).
setfun(5): empty set may be replaced by (set []).

A remark is due about the for all and for some predicates. Their syntax is:

for all(VAR : TYPE, P)
for some(VAR : TYPE, P)

The Checker’s user manual [Spa04b] does not specify the valid data types for TYPE.
Apparently the set type is not a valid type. But, because our set types are sets of
integers, we are able to use the following workarounds:

for all(VAR : integer, VAR in SET −> P)
for some(VAR : integer, VAR in SET −> P)

Variable VAR is an integer variable and, if it is a member of the set SET, the predicate
P must hold by an implication.





Chapter 5

Design and Implementation of COCO

This chapter discusses the design and the implementation of Coco, for which we
use PassauSpark. We explain our design decisions and show the corresponding
source code declarations. These declarations are also used as FDL identifiers in the
proof of Coco in the next chapter. The complete source code of Coco is shown in
Appendix A.1.

Our design is much simpler than the original Coco design [Len77], mainly because we
do not implement error handling, terminal handling and the administrator console.
These are not required by the Coco specification. We point out where our design
differs from the original design.

The implementation constants are adjustable in package Conf. Only when the number
of tasks is changed, must this be adjusted in the main procedure as well.

5.1 Packet Format

The packet header contains an address field with the receiver address, the priority
value and the length of the data portion.

We implement Coco as an eight-port switch. The number of ports is adjustable.
The ports and their addresses are numbered from one to eight. The packet priority
is a value between zero (highest) and 63 (lowest). The data consists of an array of
bytes. The data size is variable and is given by the data length value. It must not
exceed a maximum of 1500 bytes.

A packet can be directly mapped on a fixed-sized memory frame. As there are no
pointers or memory references in Spark, we index the memory frames from one to
the maximum frame count of 65536. We implement the memory frame format as
follows:

33
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subtype Port Adr is Positive range 1 .. Conf.Num Ports;

subtype Packet Priority is Natural range 0 .. Conf.Min Prio;

subtype Data Length is Natural range 0 .. Conf.Max Length;

subtype Data Index is Positive range 1 .. Conf.Max Length;

type Packet Data is array (Data Index) of Byte;

type Packet is record
Dest : Port Adr;
Prio : Packet Priority;
Length : Data Length;
Data : Packet Data;

end record;

5.2 Memory Access Control

The access to the shared buffer must be handled in a critical region. The protected
type Buffer Guard manages the insertion and deletion of buffer elements. It provides
the following operations:

entry Request (Element Index : out Buffer Index);

procedure Release (Element Index : in Buffer Index);

where:

subtype Buffer Index is Positive range 1 .. Conf.Buffer Size;

With the entry Request, a free memory frame can be reserved. The entry returns
the index of a memory frame which is ready to be filled. If there are currently no
empty frames, this request will be suspended until another frame becomes empty.

With the procedure Release, a used memory frame can be freed again.

The private data of the Buffer Guard consists of the array of free memory frames
Free List, which is managed as a stack, and the object Stack, which contains the
stack pointer and its operations.

Free List : Buffer Index Array;
Stack : Stacks.Stack;

where:

type Buffer Index Array is array (Buffer Index) of Buffer Index;
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The Stack class in package Stacks provides the following procedures to manipulate
the stack pointer:

procedure Push (S : in out Stack; P : out Integer);

procedure Pop (S : in out Stack; P : out Integer);

These procedures push respectively pop an element to and from the stack. Both
return the pointer position P. The object data consists of the current pointer position
and the maximum stack size:

subtype Stack Range is Positive range 1 .. Positive’Last − 1;

type Stack is record
Pointer : Positive;
Max : Stack Range;

end record;

The stack pointer is initially 1 (i. e. the stack is empty) and points always to the
successor element of the top element. Consequently, the stack is full when the pointer
has the value Max + 1.

The maximum stack size is initialized with the following procedure. After the ini-
tialization the stack is full.

procedure Initialize (S : out Stack; Max : in Stack Range);

The state of the stack can be queried with the following functions:

function Empty (S : in Stack) return Boolean;

function Full (S : in Stack) return Boolean;

5.3 Ordering

The ordering structure is implemented as a priority queue. The priority queue is
accessed simultaneously by different tasks, so we implement it as a protected type.

The priority ordering induces a problem: low priority packets could be delayed forever
in favor of more urgent packets. To prevent this starvation of packets within the
system, packets must age. When a packet is entered into a priority queue, it is
assigned a fixed system priority. The system priority is obtained by adding a dynamic
priority in form of a time-stamp to the packet priority. The dynamic priority value
is made available and periodically incremented by the system. The packet priority
can only take on a limited number of discrete values. Packets with a long residence
time are eventually forced to leave the system because their priority will supersede
the priority of any other packet residing in the system.
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This prevention of starvation is especially efficient as the aging of packets can be
implemented with the modification of a single value—the dynamic priority—without
the need to change all packets in the system. Nevertheless, we do not prove the
absence of starvation in the Coco system, as this would require to include all tasks.
Our proof—just like the original proof of Coco—focuses on protected types.

The protected type Priority List provides the following operations:

procedure Enter (Element Index : in Buffer Index; Priority : in System Priority);

entry Remove (Element Index : out Buffer Index);

With the procedure Enter a memory frame index can be inserted into the priority
queue. The parameter Priority contains the system priority, which is the sum of the
packet priority and the dynamic priority.

With the entry Remove the index of the memory frame with the highest priority can
be requested. This index is then removed from the priority queue. If the queue is
empty, this request will be suspended until there is an index available.

The private data of Priority List consists of one variable:

List : Priority Queue;

The priority queue is implemented by an array which is accessed like a linked list:

Ext : constant := 0;

subtype System Priority is Long Long Integer range 0 .. Long Long Integer’Last;

subtype List Index is Natural range Ext .. Conf.Buffer Size;

type Priority Element is record
Pri : System Priority;
Suc : List Index;

end record;

type Priority Queue is array (List Index) of Priority Element;

The elements of the linked list are the system priority values. The linked list is
extended by one element Ext. Figure 11 illustrates this. The first element of the
array is List (Ext). The upper line of Figure 11 shows the array elements.

The first element of the list is List (Ext).Suc. The successor of the first list element is
List (List (Ext).Suc).Suc and so on. The successor of the last list element is Ext.

With exception of Ext, all the indices of the list are valid indices of memory frames.

If the list is empty then List (Ext) = Ext. Because List (Ext) has the highest possible
priority value, the list is ordered, starting from the first list element.
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Figure 11: Priority queue

To enable an efficient removal operation the element with the highest priority is the
head of the list. To enable an efficient insertion operation only relevant parts of the
list are traversed. This avoids unnecessary scanning.

As an aside, in the original Coco system the ordering structure was implemented as a
single monitor with several sub-lists. This design was imposed by Concurrent Pascal
which only provides monitor objects, not monitor types. We choose to implement it
as one list and multiple protected objects (of type Priority List). This enables more
concurrency.

5.4 Transfer Tasks

We implement one data handling task and several input and output tasks. One input
and one output task speak to one port.

It would be unwise to decompose the data handling task further into several tasks.
Although the packets could be handled independently, i e. in parallel, the decomposed
tasks would only run in pseudo-parallel mode. They would compete for the same
single processor and introduce overhead with no gain.

The data handling task is of type Data Process. We only implement the basic struc-
ture of this task without any real data handling. The Data Process removes one
index from the input Priority List, handles the packet, and puts the memory index
into the output Priority List of the packet’s destination port.

The tasks of type Input Process are parametrized with a port address. Each task
listens to its port for incoming packets. When a packet arrives, the input task
reserves a memory frame at the Buffer Guard. It then copies the incoming packet
data into the memory frame. When the packet has been received completely, the
index of this memory frame is inserted into the input Priority List.
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The tasks of type Output Process are also parametrized with a port address. Each
task takes a memory frame index from the output Priority List associated with its port
and writes the packet to the network. When the packet has been sent, the memory
frame is freed at the Buffer Guard.

The real input/output handling of the Input Process and Output Process is not imple-
mented. This is beyond the scope of Spark and would be hidden in a hide annotation
anyway.

In contrast to the original Coco design, we did not displace the task logic into a
separate class. Instead, each task calls the operations of the Buffer Guard and the
Priority List directly.

The implementation differs from the specification in one point: the run-time sys-
tem chooses the output task non-deterministically and not always the output task
with the most urgent packet in the queue. The same problem arose in Concurrent
Pascal.

5.5 Memory Access

The packets are stored in memory frames. We implement the buffer with the memory
frames as shared array:

type Packet Array is array (Buffer Index) of Packet;

Shared Buffer : Packet Array;

A shared variable is potentially dangerous because the concurrent access may lead to
lost updates. In our case, there is concurrent access to the array but no concurrent
access to the same array element. Before the input and the output tasks can insert or
remove elements, they have to register the array index at the Buffer Guard. When the
data handling task accesses the array, it gets the array index from the input priority
list. The input task inserts the index into this priority list after it has finished its
access to the array element. So the access to an array element is in every case
protected by a critical region.

It would be interesting to prove that the access to the shared buffer is really safe
but we can specify proof annotations for tasks neither in RavenSpark nor in Pas-
sauSpark.

The definitions of the packet type and the packet array type are not in the private
part of the package specification because their internal structure is not private but
shared.
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There are no special operations provided to access the memory frames. The array
can be accessed directly.

In the original Coco design, the memory buffer was implemented as a monitor
because Concurrent Pascal does not allow any shared data types other than monitors.
But there is no need to implement it as a monitor. We gain more concurrency and
more performance if we implement it as a shared array.

5.6 Real-Time Control

The dynamic priority, which is used for the aging of packets, is implemented by one
protected type and a timer task.

The protected type Dyn Priority contains the dynamic priority value for the transfer
tasks and provides the following operations:

procedure Increment;

function Count return System Priority;

Procedure Increment increments the dynamic priority. Only the timer task may call
this operation.

The function Count provides the current dynamic priority value. The initial value is
zero.

The task of type Timer Process calls procedure Increment regularly. Ada provides
no unbounded integer type, so we use Long Long Integer, the largest available integer
type, for the definition of System Priority. With a frequency of 100 Hz and 263 different
priority values Coco is able to run for a long period of time.

5.7 System Structure

An access graph shows the access rights of tasks and protected objects [BH75]. Its
nodes are abstract data objects, an arrow signifies that the object at its end has the
right to access the object at its tip. The access graph of the Coco system is shown in
Figure 12. It shows the access relations between the objects (P = protected object,
T = task object, S = shared object) described in this chapter. The captions denote
the type names. The line styles of the arrows have no function other than to make
the figure more comprehensible.
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Obviously the system structure is very flat. In particular, there are no monitor
hierarchies. In a monitor hierarchy, there are nested calls to monitor operations
which would almost unavoidably lead to deadlocks [Kee79]. The access graph of the
original Coco system is more complex; it has 19 nodes and 6 levels. It also does not
contain a monitor hierarchy.

Input Process

S

Data Process Output Process Timer Process

Buffer Guard Priority List Dyn PriorityPriority List

P PP P

T T T T

Paket Array

Figure 12: System structure



Chapter 6

Verification of COCO

We ran several systematic tests with packets generated at random points in time and
with randomly generated port addresses. Consequently, we have good faith in the
correctness of Coco. Nevertheless, we want to prove certain properties of Coco
with the means of formal verification, which is based on logic and not on faith.
Spark supports us in this matter.

A proof in Spark proceeds by the following scheme:

1. Declare proof functions.

2. Specify Spark annotations.

The original Coco system has been verified manually in Hoare logic [Len77].
We adhere to the pre- and post-conditions of the original proof, even though
they differ in detail: the stronger type system of Ada and the automatically
inserted range checks of the Examiner make some assertions in the original
proof unnecessary.

When we define the proof annotations, we also show the source code of the
procedures for clarification. In general, we omit the data flow dependency
annotations global and derives in this chapter because they do not lead to
further insight. The proof rules (including rule family headers) are shown in
Appendix A.1.

3. Infer properties of proof functions.

The properties of proof functions are determined with proof rules. The formal
parameters of the proof functions are defined in Step 1. The proof rule family
headers are then of minor interest, we omit the headers in this chapter. They
are shown a second time in Appendix A.2 for reference.

All proof rules are axiomatic, i. e. Spark does not impose a proof obligation
for them.

41
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4. Run the Examiner and the Simplifier.

5. Prove verification conditions with the Checker.

Verification conditions are generated for each procedure. There is one proof
session for every verification condition not proved by the Simplifier in Step 4.

Readers not interested in the proof sessions may skip the according subsections. They
are not required for the understanding of the rest.

6.1 Stack Class

The stack is implemented as a class. There are no annotations in a class body, so we
only need to handle the declaration part. Similarly to the example in Figure 3, we
cannot directly access the class components in the annotations. The point is that we
need to reference the value of the stack pointer and the maximum stack size in the
proof of the Buffer Guard and, therefore, we need to export these values in the stack
annotations. We define the following proof functions:

−−# function Ptr (S : in Stack) return Integer;

−−# function Max Ptr (S : in Stack) return Integer;

These proof functions enable us to reference the class components Pointer and Max.
We named the functions differently from the component names because the nam-
ing convention of Spark requires it. Classes in Ada are records. As described in
the table of Section 3.3, the stack record components Pointer and Max can be ad-
dressed with the predicates fld pointer and fld max. The corresponding proof rules are
straightforward:

stacks(1): ptr(S) may be replaced by fld pointer(S).

stacks(2): max ptr(S) may be replaced by fld max(S).

The uppercase S is a Prolog variable for the stack record.

We define another proof function which is used like an invariant of the class:

−−# function Ptr In Range (S : in Stack) return Boolean;

This proof function Ptr In Range returns true if the stack pointer is in the range
between the first value and the maximum value plus one:

stacks(3): ptr in range(S) may be replaced by
fld pointer(S) >= 1 and fld pointer(S) <= fld max(S) + 1.



43 6.1 Stack Class

With these proof functions we can define the pre- and post-conditions of the stack
operations as follows:

procedure Initialize (S : out Stack; Max : in Stack Range);
−−# post Ptr In Range (S) and Max Ptr (S) = Max and Ptr (S) = Max + 1;

procedure Push (S : in out Stack; P : out Integer);
−−# pre Ptr In Range (S) and not Full (S);
−−# post Ptr In Range (S) and Max Ptr (S) = Max Ptr (S˜) and
−−# Ptr (S) = Ptr (S˜) + 1 and P = Ptr (S˜);

procedure Pop (S : in out Stack; P : out Integer);
−−# pre Ptr In Range (S) and not Empty (S);
−−# post Ptr In Range (S) and Max Ptr (S) = Max Ptr (S˜) and
−−# Ptr (S) = Ptr (S˜) − 1 and P = Ptr (S);

During the initialization the maximum value is assigned. The pointer has the maxi-
mum value plus one; in other words, the stack is full.

Before the Push operation the stack pointer has to be in range and the stack must
not be full. After the Push operation the stack pointer still has to be in range,
the maximum stack value must not have changed and the stack pointer must be
incremented. The returned value of P has the value of the new stack pointer.

The pre- and post-conditions of the procedure Pop are similar to the procedure Push.
Only the stack pointer is decremented and the returned value of P is the value of the
stack pointer before the decrement.

The proof functions Empty and Full are implicitly defined by their concrete func-
tions:

function Empty (S : in Stack) return Boolean;
−−# return Empty (S);

function Full (S : in Stack) return Boolean;
−−# return Full (S);

These implicitly defined proof functions have the same semantics as the following
concrete functions:

stacks(4): empty(S) may be replaced by fld pointer(S) = 1.

stacks(5): full(S) may be replaced by fld pointer(S) = fld max(S) + 1.

When the annotated source code of the stack class is processed by the Examiner and
the resulting verification conditions and the proof rules of the rule family stacks are
run through the Simplifier, all verification conditions are simplified to true. We do
not have to invoke the Checker.
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6.2 Protected Type Buffer Guard

6.2.1 Annotations in the Body

The protected type Buffer Guard manages a list of free frames. The indices of the
frames are stored in an array. The occupied array elements are managed by a stack.
We want to abstract from the array and the stack and define the properties of the
Buffer Guard operations with the means of a set of free frames instead. Let F be this
set of free frames:

F := {j | ∃ i : 1 ≤ i < Stack.Pointer : Free List(i) = j}

The stack pointer points always to the successor element of the top of the stack, so
a less-than-equal sign is required. Unfortunately it is not possible to declare a set
like this directly in Spark. But we can declare it as proof function. The parameters
of the set are the stack pointer and the array Free List. The return type is a set of
integers:

−−# function F (Free List : in Buffer Index Array;
−−# Pointer: in Stacks.Stack Range) return Set Type;

With this proof function we are able to define the pre- and post-conditions of the
Buffer Guard operations:

entry Request (Element Index : out Buffer Index) when not Stacks.Empty (Stack)
−−# post Set Member (F (Free List, Stacks.Ptr (Stack˜)), Element Index)
−−# and F (Free List, Stacks.Ptr (Stack))
−−# = Set Delete (F (Free List , Stacks.Ptr (Stack˜)), Element Index);
is

Top : Buffer Index;
begin

Stacks.Pop (Stack, Top);
Element Index := Free List (Top);

end Request;

procedure Release (Element Index : in Buffer Index)
−−# pre not Set Member (F (Free List, Stacks.Ptr (Stack)), Element Index)
−−# and not Stacks.Full (Stack);
−−# post F (Free List, Stacks.Ptr (Stack))
−−# = Set Insert (F (Free List ˜, Stacks.Ptr (Stack˜)), Element Index);
is

Top : Buffer Index;
begin

Stacks.Push (Stack, Top);
Free List (Top) := Element Index;

end Release;
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The entry Request removes one element from the set of free frames. There is no
pre annotation because the entry barrier not Stacks.Empty (Stack) will be satisfied
when the entry body is executed. The post-condition states that the element was a
member of the set of free frames and is no more in the set.

The procedure Release adds a frame to the set of free frames. The frame must not
be in the set already. The pre-condition not Stacks.Full (Stack) is the equivalent to
the barrier of the entry Request.

The initialization procedure assigns to each element of array Free List its index value,
i. e. the array of free frames corresponds to the entire array of the shared buffer. There
is no pre-condition. The post-condition could be F = {1, . . . , Stack.Pointer − 1}. It
would be tedious to write this static list of elements down in the Spark annotations.
For the procedure Initialize we forgo F and make a direct statement about array
Free List:

procedure Initialize
−−# post (for all J in Buffer Index => (Free List (J) = J));
is
begin

for I in Buffer Index
−−# assert (for all J in Buffer Index range 1 .. I − 1 => (Free List (J) = J));
loop

Free List (I) := I;
end loop;
Stacks.Initialize (Stack, Conf.Buffer Size);

end Initialize;

The universal quantifier expresses that each element of array Free List is assigned
its index value. The loop invariant is trivial to find: for each element of the array
counted from 1 up to I−1, its index value must have been assigned.

We have to define the proof function F with the help of proof rules. We cannot do
this directly because the expressive power of the rule language is not sufficient. But
we can infer properties of F:

buffer guard(1): f(F,P) \/ (set [E]) may be replaced by f(update(F,[P],E),P+1)
if [ E not in f(F,P) ].

buffer guard(2): f(F,P) \ (set [element(F,[P−1])]) may be replaced by f(F,P−1)
if [ element(F,[P−1]) in f(F,P) ].

Of course we only infer properties we really need for the proof. In the proof rules, the
FDL identifier f is used for the proof function name F. F and P are the parameters
for the Free List and the stack pointer. These two rules define the insertion and the
removal of one element. When an element E is inserted into the set, provided that it
is not already in the set, the array is updated and the stack pointer is incremented.
The removal works conversely.
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Further on we define a rule for set membership:

buffer guard(3): element(F,[J]) in f(F,P) may be deduced from [ J>=1, J<P ].

An element of the array Free List is not necessarily an element of the set F. It is an
element of F if and only if its index is in the range between one and the stack pointer
minus one.

The invariant of the protected type Buffer Guard is dictated by the internal stack
object:

−−# invariant Stacks.Ptr In Range (Stack) and Stacks.Max Ptr (Stack) = Conf.Buffer Size;

The rule stacks(3) cannot be applied to resolve Ptr In Range, because this time it is
prefixed by the package name Stacks. We need a new rule with the same semantics
but with a package prefix:

stacks(6): stacks ptr in range(S) may be replaced by
stacks ptr(S) >= 1 and stacks ptr(S) <= stacks max ptr(S) + 1.

Rules for the identifiers stacks ptr and stacks max ptr are not required. But we do
need rules for the functions Stacks.Empty and Stacks.Full, which are used in the barrier
of entry Release and the pre annotation of procedure Request. They are prefixed by
the package name but otherwise have the same semantics as the rules stacks(4) and
stacks(5):

stacks(7): stacks empty(S) may be replaced by stacks ptr(S) = 1.

stacks(8): stacks full(S) may be replaced by stacks ptr(S) = stacks max ptr(S) + 1.

6.2.2 Annotations in the Declaration

This is the complete annotated source code of the declaration part; the explanations
follow below:

protected type Buffer Guard
−−# own State : State Type;
−−# invariant Buffer Guard Invariant (State);
is

−−# type State Type is abstract;

−−# type Set Type is abstract;
−−# function Set Member (S : in Set Type; E : in Buffer Index) return Boolean;
−−# function Set Delete (S : in Set Type; E : in Buffer Index) return Set Type;
−−# function Set Insert (S : in Set Type; E : in Buffer Index) return Set Type;
−−# function Empty Set return Set Type;
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−−# function F (Free List : in Buffer Index Array;
−−# Pointer: in Stacks.Stack Range) return Set Type;

−−# function Buffer Guard Invariant (S : in State Type) return Boolean;
−−# function Can Be Released (S : in State Type; E : in Buffer Index) return Boolean;

procedure Initialize ;
−−# global in out State;
−−# derives State from State;

entry Request (Element Index : out Buffer Index);
−−# global in out State;
−−# derives Element Index, State from State;

procedure Release (Element Index : in Buffer Index);
−−# global in out State;
−−# derives State from Element Index, State;
−−# pre Can Be Released (State, Element Index);

private
Free List : Buffer Index Array;
Stack : Stacks.Stack;

end Buffer Guard;

The state variable is simply named State and has the proof type State Type.

The invariant has the same semantics as the invariant in the protected type body. It
must be parametrized by the state variable and not by the—at this point invisible—
Free List and Stack. The pre-processor transforms the protected type into a package.
As shown in Section 3.3, the state type for packages is an FDL record. The record
components can be accessed by the prefix fld . The invariant can then be defined as
follows:

buffer guard(4): buffer guard invariant(S) may be replaced by
stacks ptr in range(fld stack(S))
and stacks max ptr(fld stack(S)) = conf buffer size.

The declaration part must also contain the declarations of all the used proof functions.
This includes the proof function F as well as the set proof functions of Section 4.5.

One note about the global and derives annotations of the procedure Initialize: they
falsely imply that the initial state, i. e. the initial values of the variables Free List
or Stack are used. The initial values are not used because all array elements are
overwritten in procedure Initialize, but the Examiner is not able to recognize this.

As we do not make any assumptions about the properties of tasks—and the tasks
are the only objects calling the protected type operations—we limit the pre- and
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post-conditions in the declaration part to the bare necessities. This means: no post-
conditions except the invariant. The pre-conditions are dictated by the refinement
of the body annotations.

Procedure Initialize has by definition no pre-condition and entry Request does not
need one because of its barrier condition. Only procedure Release requires a proof
function which has the same semantics as the pre-condition of procedure Release in
the body:

buffer guard(5): can be released(S,E) may be replaced by
E not in f(fld free list(S),stacks ptr(fld stack(S)))
and not stacks full(fld stack(S)).

6.2.3 Proof Sessions for Entry Request

The Simplifier is not able to prove all verification conditions. We have to revert to
the Checker.

In every proof session we first list the hypotheses and conclusions of the verification
condition. We omit superfluous hypotheses. On the one hand this leads to holes in
the numbering of hypotheses, on the other hand it increases clarity considerably.

The Checker produces a lot of output. We reduce the amount of information by
skipping superfluous lines. The displayed output lines of the Checker have not been
modified, even the line breaks are verbatim.

The complete output of the Checker and the input command logs are available online
(cf. Appendix A.5).

We mark the Checker input and output typographically by a vertical bar on the
left-hand side. This way, the Checker protocol and our comments are easy to distin-
guish.

The command prompt of the Checker is |: (a vertical bar followed by a colon). We
highlight the command keywords with bold face.

Proof Session from Start to Finish

We start with the proof session that spans the source code range from the pre-
condition to the post-condition of entry Request. The verification condition consists
of the following hypotheses and conclusions:
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CHECK|: list.
H4: stacks ptr(stack 2) = stacks ptr(stack) − 1
H5: stacks ptr(stack 2) >= 1
−−>

C1: element(free list, [stacks ptr(stack 2)]) in f(free list,
stacks ptr(stack))

C2: f(free list, stacks ptr(stack 2)) = f(free list, stacks ptr(stack))
\ (set [element(free list, [stacks ptr(stack 2)])])

We can infer C1 from buffer guard(3), provided that the necessary conditions to apply
buffer guard(3) are satisfied, namely

1. stacks ptr(stack 2) >= 1

2. stacks ptr(stack 2) < stacks ptr(stack)

They are indeed satisfied by the hypotheses H5 and H4.

CHECK|: infer c#1 using buffer guard(3) from [4,5].
∗∗∗ New H12: element(free list, [stacks ptr(stack 2)]) in f(free list,

stacks ptr(stack))
∗∗∗ PROVED C1: element(free list, [stacks ptr(stack 2)]) in f(free list,

stacks ptr(stack))

Hypotheses and conclusions on which the command is to be applied are referenced
by an h or c, followed by a diamond and their number.

The hypotheses which are conditions for the application of a proof rule can be refer-
enced by their numbers in squared brackets. This is not always required, especially
if the Checker is able to find the hypotheses by itself. We always state in the expla-
nations which hypotheses are used during the application of a proof rule.

The proved conclusion C1 is added as new hypothesis H12. Next we want to resolve
C2 using buffer guard(2). The necessary condition for the application of buffer guard(2)
is:

element(free list,[stacks ptr(stack)−1]) in f(free list,stacks ptr(stack))

H12 is already similar to this condition. We prepare H12 and C2 by replacing the
predicate stacks ptr(stack 2) by stacks ptr(stack) − 1.

In contrast to command infer, command replace does not get a list of used hypothesis
as parameter. The replacement of H12 is justified by the information from hypothesis
H4.
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CHECK|: replace h#12 & c#2: stacks ptr(stack 2) by stacks ptr(stack) − 1 using eq(1).
∗∗∗ New H12: element(free list, [stacks ptr(stack) − 1]) in f(free list,

stacks ptr(stack))
>>> New goal C2: f(free list, stacks ptr(stack) − 1) = f(free list,

stacks ptr(stack)) \ (set [element(free list, [stacks ptr(stack)
− 1])])

The new goal C2 replaces the existing conclusion C2 and the new hypothesis H12 the
existing hypothesis H12. The built-in rule eq(1) allows equality substitutions. We
always show the definition of the built-in rules we use. All built-in rule definitions
are copied from the Checker Rules Manual [Spa04a]. Rule eq(1) is defined with a
short-cut to the Prolog system:

eq(1): X may be replaced by Y if [ X=Y, goal(X\=Y) ].

After the modification of H12 and C2 we can apply buffer guard(2) to C2.

CHECK|: replace c#2: f(F,P) \ (set [element(F,[P−1])]) by f(F,P−1) using buffer guard(2).
NEW EXPRESSION: f(free list, stacks ptr(stack) − 1) = f(free list,

stacks ptr(stack) − 1)

The NEW EXPRESSION replaces the existing conclusion C2. The resulting equation
in C2 is trivially true. We let the inference engine of the Checker solve it.

CHECK|: done.
∗∗∗ PROVED C2: f(free list, stacks ptr(stack) − 1) = f(free list,

stacks ptr(stack) − 1)
∗∗∗ VC PROVED −− Well done!

There are no conclusions left. Therefore this verification condition (abbr. VC) is
proved.

Proof Session for Refinement Integrity

Regarding the pre-condition of entry Request, the invariant in the body part must
follow from the invariant in the declaration part. The resulting verification condition
is listed below.

CHECK|: list.
H3: stacks max ptr(fld stack(state)) = conf buffer size
−−>

C1: stacks max ptr(fld stack(state)) = 65536

Obviously the Simplifier has a problem to recognize that conf buffer size = 65536.
The rule which resolves this is automatically generated by the Examiner.



51 6.2 Protected Type Buffer Guard

request rules(3): conf buffer size may be replaced by 65536.

We apply this rule by hand.

CHECK|: replace h#3: conf buffer size by 65536 using request rules(3).
NEW EXPRESSION: stacks max ptr(fld stack(state)) = 65536

The existing hypothesis H3 is replaced by this new expression. H3 is now equal to
C1. The inference engine of the Checker is able to prove C1.

CHECK|: done.
∗∗∗ PROVED C1: stacks max ptr(fld stack(state)) = 65536
∗∗∗ VC PROVED −− Well done!

There is a second verification condition; this time the hypothesis and the conclusion
are exchanged. It stems from the refinement of the post-condition: the invariant in
the declaration part must follow from the invariant in the body part. We prove it in
the same way but do not show the proof here.

6.2.4 Proof Sessions for Procedure Release

The following proof session has some resemblance to the proof session of entry Re-
quest. It makes no difference whether a hypothesis comes from an entry barrier or
from a pre annotation.

Proof Session from Start to Finish:

The following verification condition must be proved:

CHECK|: list.
H2: not element index in f(free list, stacks ptr(stack))
H8: stacks ptr(stack 1) = stacks ptr(stack) + 1
−−>

C1: f(update(free list, [stacks ptr(stack)], element index), stacks ptr(
stack 1)) = f(free list, stacks ptr(stack)) \/ (set [element index]
)

We prove C1 with proof rule buffer guard(1). The following condition must be satisfied
before this rule can be applied:

element index not in f(free list, stacks ptr(stack))

H2 is already very similar to this condition. We prepare H2 by replacing the not . . .
in by not in. This is justified by the built-in rule sets(2) which is defined as follows:
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sets(2): (X not in A) & (not (X in A)) are interchangeable.

CHECK|: replace h#2: not (X in A) by X not in A using sets(2).
NEW EXPRESSION: element index not in f(free list, stacks ptr(stack))

The modified hypothesis H2 allows us to apply rule buffer guard(1).

CHECK|: replace c#1: f(F,P) \/ (set [E]) by f(update(F,[P],E),P+1) using buffer guard(1).
NEW EXPRESSION: f(update(free list, [stacks ptr(stack)], element index),

stacks ptr(stack 1)) = f(update(free list, [stacks ptr(stack)],
element index), stacks ptr(stack) + 1)

We make both sides of the equation equal by replacing stacks ptr(stack 1) using the
information in hypothesis H8.

CHECK|: replace c#1: stacks ptr(stack 1) by stacks ptr(stack) + 1 using eq(1).
NEW EXPRESSION: f(update(free list, [stacks ptr(stack)], element index),

stacks ptr(stack) + 1) = f(update(free list, [stacks ptr(stack)],
element index), stacks ptr(stack) + 1)

The resulting equation is trivially true.

CHECK|: done.
∗∗∗ PROVED C1: f(update(free list, [stacks ptr(stack)], element index),

stacks ptr(stack) + 1) = f(update(free list, [stacks ptr(stack)],
element index), stacks ptr(stack) + 1)

∗∗∗ VC PROVED −− Well done!

Proof Session for Refinement Integrity

CHECK|: list.
H5: stacks max ptr(fld stack(state)) = conf buffer size
H7: element index not in f(fld free list(state), stacks ptr(fld stack(state

)))
−−>

C1: stacks max ptr(fld stack(state)) = 65536
C2: not element index in f(fld free list(state), stacks ptr(fld stack(

state)))

C1 is easy to prove by replacing conf buffer size with 65536. The rule which allows
this is automatically generated by the Examiner:

release rules(3): conf buffer size may be replaced by 65536.
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CHECK|: replace h#5: conf buffer size by 65536 using release rules(3).
NEW EXPRESSION: stacks max ptr(fld stack(state)) = 65536
CHECK|: done.
∗∗∗ PROVED C1: stacks max ptr(fld stack(state)) = 65536

C2 can be proved by adjusting it to hypothesis H7. We replace the not . . . in by
not in.

CHECK|: replace c#2: not (X in A) by X not in A using sets(2).
NEW EXPRESSION: element index not in f(fld free list(state), stacks ptr(

fld stack(state)))

Conclusion C2 and hypothesis H7 are now identical.

CHECK|: done.
∗∗∗ PROVED C2: element index not in f(fld free list(state), stacks ptr(

fld stack(state)))
∗∗∗ VC PROVED −− Well done!

There is one other verification condition which is equally simple to prove as C1. We
do not show the proof here.

6.2.5 Proof Sessions for Procedure Initialize

Proof Session from Start to the Loop Invariant

The following verification condition spans the source code from the pre-condition to
the start of the loop. For the proof, we do not need any hypotheses; the conclusion
is always true.

CHECK|: list.
C1: for all(j : integer, 1 <= j and j <= 0 −> element(free list,

[j ]) = j )

Inside the quantifier, the left side of the implication is always false, the implication,
therefore, true. The universal quantifier can be eliminated with command unwrap.

CHECK|: unwrap c#1.
>>> New goal C1: 1 <= int j 1 and int j 1 <= 0 −> element(free list,

[int j 1]) = int j 1

We have difficulties to infer that the left side of the implication is false. We cannot
make a definitive statement here, but it seems that, if the Checker is able to simplify
the result of an inference to false, then it aborts with the error message “FAIL”. But
there is another way to prove C1. First we infer a hypothesis.
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CHECK|: infer 0 < int j 1 or not 0 < int j 1 using inference(1).
∗∗∗ New H2: 0 < int j 1 or not 0 < int j 1

The rule inference(1) is defined as follows:

inference(1): X may be deduced from [ X ].

Then we start a proof by cases on hypothesis H2. There are two cases: 0 < int j 1
and its negation.

CHECK|: prove c#1 by cases on h#2.
CASE 1: 0 < int j 1

∗∗∗ New H3: 0 < int j 1
>>> New goal C1: 1 <= int j 1 and int j 1 <= 0 −> element(free list,

[int j 1]) = int j 1

On command prove the Checker enters a new proof frame. The case is added as a new
hypothesis. When the proof frame is exited, this hypothesis and all other hypotheses
which were inferred within that proof frame are deleted. In the new proof frame
there is only one conclusion to prove. In this case, the conclusion is identical to the
conclusion of the outer proof frame. We mark the new proof frame typographically
with an indentation.

The hypothesis 0 < int j 1 is sufficient to prove the implication.

CHECK|: done.
∗∗∗ PROVED C1: 1 <= int j 1 and int j 1 <= 0 −> element(free list, [

int j 1]) = int j 1 FOR CASE 1

The proof frame is exited, the second case is added as a new hypothesis and the
conclusion has to be proved again.

CASE 2: not 0 < int j 1
∗∗∗ New H3: not 0 < int j 1
>>> New goal C1: 1 <= int j 1 and int j 1 <= 0 −> element(free list,

[int j 1]) = int j 1

This single hypothesis is also sufficient to prove the implication.

CHECK|: done.
∗∗∗ PROVED C1: 1 <= int j 1 and int j 1 <= 0 −> element(free list, [

int j 1]) = int j 1 FOR CASE 2
∗∗∗ VC PROVED −− Well done!

The verification condition has been proved. Without the case distinction, the infer-
ence engine would not be able to prove the implication.
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Proof Session for the Loop Invariant

This verification condition handles the transition from one loop step to the next.

CHECK|: list.
H1: for all(j : integer, 1 <= j and j <= loop 1 i − 1 −> element(

free list, [j ]) = j )
−−>

C1: for all(j : integer, 1 <= j and j <= loop 1 i −> element(update(
free list, [loop 1 i], loop 1 i), [j ]) = j )

First we get rid of the universal quantifier in conclusion C1.

CHECK|: unwrap c#1.
>>> New goal C1: 1 <= int j 1 and int j 1 <= loop 1 i −> element(update(

free list, [loop 1 i], loop 1 i), [int j 1]) = int j 1

We start a proof by implication. The left-hand side of C1 is assumed to be true and
added as hypotheses H5 and H6. Similarly to a proof by cases, a new proof frame is
entered.

CHECK|: prove c#1 by implication.
∗∗∗ New H5: 1 <= int j 1
∗∗∗ New H6: int j 1 <= loop 1 i
>>> New goal C1: element(update(free list, [loop 1 i], loop 1 i),

[int j 1]) = int j 1

We make a case distinction on loop 1 i because, if loop 1 i were the same as int j 1,
the array update would vanish. To this effect, we infer a new hypothesis.

CHECK|: infer loop 1 i = int j 1 or not loop 1 i = int j 1 using inference(1).
CHECK|: simplify.
∗∗∗ New H7: loop 1 i = int j 1 or loop 1 i <> int j 1

We let the Checker normalize the negation to an inequality sign. This extra step is
necessary because the Checker cannot infer H7 directly if it contains an inequality
sign. With H7 we start the prove by cases on C1.

CHECK|: prove c#1 by cases on h#7.
CASE 1: loop 1 i = int j 1

∗∗∗ New H8: loop 1 i = int j 1
>>> New goal C1: loop 1 i = int j 1

The inference engine of the Checker automatically simplifies conclusion C1, but it
does not simplify it enough. Hypothesis H8 is identical to C1. When we manually
start the inference engine of the Checker, it is able to recognize this equality.
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CHECK|: done.
∗∗∗ PROVED C1: loop 1 i = int j 1 FOR CASE 1

The next case is more challenging.

CASE 2: loop 1 i <> int j 1
∗∗∗ New H8: loop 1 i <> int j 1
>>> New goal C1: element(free list, [int j 1]) = int j 1

We revert to hypothesis H1 by eliminating its quantifier.

CHECK|: unwrap h#1.
∗∗∗ New H9: 1 <= int J 1 and int J 1 <= loop 1 i − 1 −> element(

free list, [int J 1]) = int J 1

This time the quantifier of a hypothesis is eliminated. There is a capital letter in
atom int J 1. This is not a Prolog variable but a so-called universal variable. The
Checker requires us to instantiate it by another atom before we do anything else. We
instantiate int J 1 by int j 1 because this is the predicate used in C1.

CHECK|: instantiate int J 1 with int j 1.
∗∗∗ New H9: 1 <= int j 1 and int j 1 <= loop 1 i − 1 −> element(

free list, [int j 1]) = int j 1

Our strategy is to show that the left-hand side of this implication is true. Hypothesis
H5 states that 1 <= int j 1. We just need to infer that int j 1 <= loop 1 i − 1.

CHECK|: infer loop 1 i >= int j 1 using inequals(6).
∗∗∗ New H10: loop 1 i >= int j 1
CHECK|: infer loop 1 i > int j 1 using strengthen(1) from [8,10].
∗∗∗ New H11: loop 1 i > int j 1
CHECK|: infer int j 1 + 1 <= loop 1 i using inequals(102) from [11].
∗∗∗ New H12: int j 1 + 1 <= loop 1 i
CHECK|: infer int j 1 + 1 − 1 <= loop 1 i − 1 using inequals(74) from [12].
∗∗∗ New H13: int j 1 + 1 − 1 <= loop 1 i − 1
CHECK|: infer int j 1 <= loop 1 i − 1 using inequals(3) from [13].
∗∗∗ New H14: int j 1 <= loop 1 i − 1

Maybe there is an easier way to infer H14 from H8—we just did not find one. For
completeness, these are the built-in rules we used:
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strengthen(1): I>J may be deduced from [ I>=J, I<>J ]

inequals(3): I−N<=J may be deduced from [ I<=J, N>=0 ].

inequals(6): J>=I−N may be deduced from [ I<=J, N>=0 ].

inequals(74): I−N<=J−N may be deduced from [ I<=J ].

inequals(102): Y+1<=X may be deduced from [ X>Y ].

With H5 and H14, the left-hand side of H9’s implication becomes true and we can
finally deduce C1.

CHECK|: deduce c#1 from [5,9,14].
∗∗∗ PROVED C1: element(free list, [int j 1]) = int j 1 FOR CASE 2

∗∗∗ VC PROVED −− Well done!

Proof Session for Refinement Integrity

Similarly to the refinement integrity proofs for entry Request and procedure Release,
we have to replace the predicate conf buffer size by 65536. We do not show the proof
here.

6.3 Protected Type Priority List

6.3.1 Annotations in the Body

The protected type Priority List manages a list of memory frame indices, which are
stored in an array. This array is logically a linked list. In analogy to the Buffer Guard,
we abstract from the array and define the properties of the Priority List operations by
means of a set. Let L be this set of indices:

L := {Ext} ∪ {j | ∃ i : i ∈ L : List(i).Suc = j}

In contrast to the original Coco proof, we include the list extension Ext in the set.
This way, we save several cases in the proof.

In analogy to the Buffer Guard, we declare a proof function for set L. The only
parameter is the array List. The return type is a set of integers:

−−# function L (List : in Priority Queue) return Set Type;
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Again we cannot define proof function L directly as proof rule. But we can infer
properties of set L. The first property is that the list extension is always a set
member.

priority list(1): buf ext in l(L) may be deduced.

The name of the list extension is Ext. After the pre-processor has transferred the
protected type into a child package, Ext is declared in the (parent) package Buf. This
leads to the FDL identifier buf ext. Another property of set L is that the value of
the successor field of an element is also a set member. This stems from the linked
list nature of the array.

priority list(2): fld suc(element(L,[I])) in l(L) may be deduced from [ I in l(L) ].

The next proof rule builds on the array property. Every element in the array has a
unique index. Every element is either in set L or not. In particular, no element in
the set has the same array index as an element outside the set. We use the quantifier
for sets as described in Section 4.5.

priority list(3): for all(x : integer, x in l(L) −> I <> x) may be deduced from [ I not in l(L) ].

In analogy to the rules buffer guard(1) and buffer guard(2), we define rules for insertion
into and removal from the set.

priority list(4): l(L) \/ (set [E]) & l(update(L,[I],upf suc(element(L,[I]),E)))
are interchangeable
if [ I in l(L), E not in l(L), fld suc(element(L,[E])) = fld suc(element(L,[I])) ].

priority list(5): l(L) \ (set [E]) & l(update(L,[I],upf suc(element(L,[I]),fld suc(element(L,[E])))))
are interchangeable
if [ I in l(L), E in l(L), fld suc(element(L,[I])) = E ].

When an element E is inserted into the set, the successor of some other element I
must be E, provided that I is in the set, E is not already in the set, and the successor
of E points to the previous successor of I. The removal works the opposite way.

We require a special rule for the list extension element. If the successor of the list
extension is updated to be the list extension itself, then the set consists only of a
single element, namely the list extension.

priority list(6): l(update( , [buf ext], upf suc( , buf ext))) & (set [buf ext])
are interchangeable.

When an array element is modified that is not in the set, then this has no effect on
the set.

priority list(7): l(update(L,[I], )) & l(L) are interchangeable if [ I not in l(L) ].
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The set is best suited to control the number of elements but it says nothing about
the ordering of these elements. To accomplish the latter, we define the proof function
Sorted which returns true if those elements of the array List, which are also members
of the set L, are sorted in ascending order:

−−# function Sorted (List : in Priority Queue) return Boolean;

In the following descriptions, we mix the terms array and list because it depends on
the view which applies best to the array variable List.

Again we specify proof rules for the insertion and the removal of elements to and
from the sorted list.

priority list(8): sorted(update(L,[I],upf suc(element(L,[I]),E))) & sorted(L)
are interchangeable
if [ I in l(L), E not in l(L),

fld suc(element(L,[E])) = fld suc(element(L,[I])),
(I = buf ext or fld pri(element(L, [I])) <= fld pri(element(L,[E]))),
fld pri(element(L,[E])) <= fld pri(element(L,[fld suc(element(L,[I]))]))

].

priority list(9): sorted(update(L,[I],upf suc(element(L,[I]),fld suc(element(L,[E])))))
may be replaced by sorted(L)
if [ I in l(L), E in l(L), fld suc(element(L,[I])) = E ].

When an element E is inserted by modifying an existing element I, the same conditions
must be satisfied as for rule priority list(4). Additionally the priority of I must be lower
than the priority of E except when I is the list extension. The priority of E must be
lower than the priority of its successor which is the former successor of I.

When an element E is removed, only the conditions from priority list(5) must be sat-
isfied. A list remains sorted when a single element is removed.

A list that consists of only one element is always sorted. This single element can
only be the list extension:

priority list(10): sorted(update( ,[buf ext],upf suc( ,buf ext))) may be deduced.

In analogy to priority list(7), the update of an array element that is not in set L has
no effect.

priority list(11): sorted(update(L,[I], )) & sorted(L) are interchangeable if [ I not in l(L) ].

The last proof rule of the proof function Sorted specifies the ordering property di-
rectly. For every element in the set (except for the list extension), its successor has
a higher priority value.

priority list(12): for all(x : integer, x in l(L) and x <> buf ext −>
fld pri(element(L,[x])) <= fld pri(element(L,[fld suc(element(L,[x]))])))

may be deduced from [ sorted(L) ].
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In correspondence with the proof function Sorted, we define a proof function which
returns the element with the minimum priority value, i. e. the highest priority:

−−# function Min (List : in Priority Queue) return System Priority;

The element with the highest priority is the successor of the list extension, provided
the list is sorted.

priority list(13): min(L) may be replaced by
fld pri(element(L,[fld suc(element(L,[buf ext]))])) if [ sorted(L) ].

With the proof functions L, Sorted and Min, we can finally specify the proof annota-
tions. The invariant of the protected type is:

−−# invariant Sorted (List) and List (Ext).Pri = System Priority’Last;

The list is always sorted and the priority of the list extension element Ext, which is
always in the list, does not change.

We define the following pre- and post-conditions for the Priority List operations:

procedure Initialize
−−# post L (List) = Set Element (Ext);
is
begin

List (Ext). Pri := System Priority’ Last;
List (Ext). Suc := Ext;

end Initialize ;

procedure Enter (Element Index : in Buffer Index; Priority : in System Priority)
−−# pre not Set Member (L (List), Element Index);
−−# post L (List) = Set Insert (L (List ˜), Element Index);
is

I : List Index ;
begin

I := Ext;
while (List (List ( I ). Suc).Pri < Priority )
−−# assert Set Member (L (List), I) and Loop Condition (List, List ( I ). Suc)
−−# and List˜ = List ;
loop

I := List ( I ). Suc;
end loop;
List (Element Index) := Priority Element’( Pri => Priority, Suc => List (I ). Suc);
List ( I ). Suc := Element Index;

end Enter;
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entry Remove (Element Index : out Buffer Index) when List (Ext).Suc /= Ext
−−# post L (List) = Set Delete (L (List ˜), Element Index)
−−# and List (Element Index).Pri = Min (List ˜) and Min (List) >= Min (List˜);
is
begin

Element Index := List (Ext). Suc;
List (Ext). Suc := List (List (Ext). Suc).Suc;

end Remove;

The initialization procedure initializes the list extension element. The set consists
only of this single element.

Procedure Enter inserts an element into the list. The element must not be in the
list already. This pre-condition has been erroneously omitted in the original proof
of Coco. It is an essential condition because the linked list could contain inner
loops otherwise. Without this pre-condition, we were not able to finish the proof
successfully with the Checker.

Entry Remove removes an element from the list. There is no pre annotation because
the entry barrier condition will be satisfied when the entry body is executed. The
barrier states that the list must contain other elements than just Ext. The returned
element Element Index is no longer a member of the list and had the lowest priority
of the list. Consequently the minimum priority value of the new list is higher than
the minimum priority value of the unmodified list.

The loop invariant of procedure Enter specifies that element I is always a member of
the list and that the list is not modified during the loop step. Otherwise the Examiner
misses this piece of information. We declare the proof function Loop Condition as
follows:

−−# function Loop Condition (List : in Priority Queue; Index : in List Index) return Boolean;

Its semantics is defined by the loop condition List (List (I).Suc).Pri < Priority. The
loop traverses the list elements until it finds one with a higher priority value. This
leads us to an inductive definition. For the base case List (Ext).Suc, the function
Loop Condition returns true.

priority list(14): loop condition(L,fld suc(element(L,[buf ext]))) may be deduced.

The inductive step is valid if the priority value of the current element is smaller than
variable Priority and the induction hypothesis is satisfied.

priority list(15): loop condition(L,fld suc(element(L,[I]))) may be deduced from
[ loop condition(L,I), fld pri(element(L,[I])) < priority, I <> buf ext ].

We require another proof rule which gives us the information that the priority value
of an element is smaller than variable Priority in the loop condition.
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priority list(16): fld pri(element(L,[I])) < priority may be deduced from
[ loop condition(L,fld suc(element(L,[I]))), I <> buf ext ].

Spark does not support proofs of termination, so we do not prove the termination
of the loop. Nevertheless we point out that the original Coco implementation uses
a less-than-equal sign instead of a less-than sign in the loop condition. For very large
dynamic priority values this could lead to a non-terminating loop.

6.3.2 Annotations in the Declaration

The content of this section is analogous to the declaration part of the protected type
Buffer Guard in Section 6.2.2.

The complete annotated source code of the declaration part is:

protected type Priority List
−−# own State : State Type;
−−# invariant Priority List Invariant (State);
is

−−# type State Type is abstract;

−−# type Set Type is abstract;
−−# function Set Member (S : in Set Type; E : in List Index) return Boolean;
−−# function Set Delete (S : in Set Type; E : in List Index ) return Set Type;
−−# function Set Insert (S : in Set Type; E : in List Index ) return Set Type;
−−# function Set Element (E : in List Index) return Set Type;
−−# function Empty Set return Set Type;

−−# function L (List : in Priority Queue) return Set Type;
−−# function Sorted (List : in Priority Queue) return Boolean;
−−# function Min (List : in Priority Queue) return System Priority;
−−# function Loop Condition (List : in Priority Queue;
−−# Index : in List Index ) return Boolean;

−−# function Priority List Invariant (S : in State Type) return Boolean;
−−# function Can Be Removed (S : in State Type; E : in Buffer Index) return Boolean;

procedure Initialize ;
−−# global in out State;
−−# derives State from State;

procedure Enter (Element Index : in Buffer Index; Priority : in System Priority);
−−# global in out State;
−−# derives State from Element Index, Priority, State;
−−# pre Can Be Removed (State, Element Index);
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entry Remove (Element Index : out Buffer Index);
−−# global in out State;
−−# derives Element Index from State & State from State;

private
List : Priority Queue;

end Priority List ;

As for the protected type Buffer Guard, we name the state variable simply State.
The invariant of the declaration part of the protected type Priority List has the same
semantics as in the protected type body.

priority list(17): priority list invariant(S) may be replaced by
sorted(fld list(S))
and fld pri(element(fld list(S), [buf ext])) = buf system priority last.

The declaration part also contains the declarations of the proof functions L, Sorted,
Min and Loop Condition, in addition to the set proof functions of Section 4.5.

As for the protected type Buffer Guard, we limit the pre- and post-conditions to
the bare necessities. Therefore only procedure Enter requires a pre-condition due to
refinement. It has the same semantics as the pre-condition of procedure Enter in the
body:

priority list(18): can be removed(S,E) may be replaced by E not in l(fld list(S)).

6.3.3 Proof Sessions for Procedure Initialize

Proof Session from Start to Finish:

No hypotheses are required for this verification condition; The conclusions are always
true.

CHECK|: list.
C1: sorted(update(list, [0], upf pri(upf suc(element(list, [0]), 0),

9223372036854775807)))
C2: l(update(list, [0], upf pri(upf suc(element(list, [0]), 0), 9223372036

The Simplifier replaced every occurrence of the list extension buf ext by its value 0.
The proof rule which enables this is automatically generated by the Examiner:

initialize rules(3): buf ext may be replaced by 0.

Our proof rules reference buf ext. We need to replace every 0 in the verification
condition by buf ext first because otherwise we could not apply a single one of our
proof rules.



6.3 Protected Type Priority List 64

CHECK|: infer 0 = buf ext using initialize rules(3).
∗∗∗ New H3: 0 = buf ext
CHECK|: replace c#1−2: 0 by buf ext using eq(1).
>>> New goal C1: sorted(update(list, [buf ext], upf pri(upf suc(element(

list, [buf ext]), buf ext), 9223372036854775807)))
>>> New goal C2: l(update(list, [buf ext], upf pri(upf suc(element(list,

[buf ext]), buf ext), 9223372036854775807))) = (set [buf ext])

We exchange the occurrences of upf pri and upf suc. The built-in proof rule

record(3): upf F(upf G(R,VG),VF) may be replaced by upf G(upf F(R,VF),VG)
if [ ”F” <> ”G” ].

enables this. We should point out that this definition of record(3) is taken verbatim
from the manual [Spa04a] but in reality, the Checker uses another, more complicated,
definition. The atoms upf F and upf G are not Prolog variables, so this definition
would not work in practice.

CHECK|: replace c#1−2: upf pri(upf suc(A,B),C) by upf suc(upf pri(A,C),B) using record(3).
>>> New goal C1: sorted(update(list, [buf ext], upf suc(upf pri(element(

list, [buf ext]), 9223372036854775807), buf ext)))
>>> New goal C2: l(update(list, [buf ext], upf suc(upf pri(element(list,

[buf ext]), 9223372036854775807), buf ext))) = (set [buf ext])

C1 can be inferred from priority list(10) because it updates the successor of element
Ext to point to Ext. The update of the priority value is irrelevant.

CHECK|: infer c#1 using priority list(10).
∗∗∗ PROVED C1: sorted(update(list, [buf ext], upf suc(upf pri(element(list,

[buf ext]), 9223372036854775807), buf ext)))

The left-hand side of C2 can be replaced by the set element Ext with rule priority list(6).
The resulting conclusion is trivially true.

CHECK|: replace c#2: l(update( ,[buf ext],upf suc( ,buf ext))) by (set [buf ext]) using
priority list(6).

NEW EXPRESSION: (set [buf ext]) = (set [buf ext])
CHECK|: done.
∗∗∗ PROVED C2: (set [buf ext]) = (set [buf ext])
∗∗∗ VC PROVED −− Well done!

Proof Session for Refinement Integrity

CHECK|: list.
H7: fld pri(element(fld list(state), [0])) = 9223372036854775807
−−>
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C1: fld pri(element(fld list(state), [buf ext])) =
buf system priority last

The Simplifier is not able to replace the values of System Priority’Last and Ext. So
we infer both constants from the rules which are automatically generated by the
Examiner:

initialize rules(3): buf ext may be replaced by 0.

initialize rules(17): buf system priority last may be replaced by 9223372036854775807.

CHECK|: infer 0 = buf ext using initialize rules(3).
∗∗∗ New H9: 0 = buf ext
CHECK|: infer 9223372036854775807 = buf system priority last using initialize rules(17).
∗∗∗ New H10: 9223372036854775807 = buf system priority last

We replace these constants in the verification condition.

CHECK|: replace h#7: 0 by buf ext using eq(1).
NEW EXPRESSION: fld pri(element(fld list(state), [buf ext])) = 9223372036854

775807
CHECK|: replace h#7: 9223372036854775807 by buf system priority last using eq(1).
NEW EXPRESSION: fld pri(element(fld list(state), [buf ext])) =

buf system priority last

After this replacement the inference engine of the Checker is able to prove this
verification condition.

CHECK|: done.
∗∗∗ PROVED C1: fld pri(element(fld list(state), [buf ext])) =

buf system priority last
∗∗∗ VC PROVED −− Well done!

6.3.4 Proof Sessions for Entry Remove

Proof Session from Start to Finish:

Before we show the hypotheses and the conclusions of the verification condition, we
replace the 0 in all rules by buf ext in analogy to the proof of procedure Initialize.

CHECK|: infer 0 = buf ext using remove rules(3).
CHECK|: replace all: 0 by buf ext using eq(1).
CHECK|: list.
H1: sorted(list)
H2: fld pri(element(list, [buf ext])) = 9223372036854775807
H5: buf ext < fld suc(element(list, [buf ext]))
H7: for all(i 1 : integer, buf ext <= i 1 and i 1 <= 65536 −> buf ext
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<= fld pri(element(list, [i 1])) and fld pri(element(list, [i 1])
) <= 9223372036854775807)

H8: fld suc(element(list, [buf ext])) <= 65536
−−>

C1: sorted(update(list, [buf ext], upf suc(element(list, [buf ext]),
fld suc(element(list, [fld suc(element(list, [buf ext]))])))))

C2: l(update(list, [buf ext], upf suc(element(list, [buf ext]), fld suc(
element(list, [fld suc(element(list, [buf ext]))]))))) = l(list)
\ (set [fld suc(element(list, [buf ext]))])

C3: fld pri(element(list, [fld suc(element(list, [buf ext]))])) = min(
list)

C4: min(update(list, [buf ext], upf suc(element(list, [buf ext]),
fld suc(element(list, [fld suc(element(list, [buf ext]))])))))
>= min(list)

There are four conclusions. In contrast to the previous proofs, we take a more bottom-
up approach. We must occasionally enter a different prove frame. All hypotheses
inferred in one proof frame get lost on exit of that frame. We aim to infer as many
hypotheses as possible before a proof frame is entered, so we can re-use them for the
remaining conclusions.

We start with C1. First we infer that buf ext and its successor are in the list:

CHECK|: infer buf ext in l(list) using priority list(1).
∗∗∗ New H12: buf ext in l(list)
CHECK|: infer fld suc(element(list,[buf ext])) in l(list) using priority list(2) from [12].
∗∗∗ New H13: fld suc(element(list, [buf ext])) in l(list)

Our strategy is to craft a hypothesis with the same content as C1.

CHECK|: standardise sorted(update(list,[buf ext],
upf suc(element(list,[buf ext]),fld suc(element(list,[fld suc(element(list,[buf ext]))]))))).

∗∗∗ New H14: sorted(update(list, [buf ext], upf suc(element(list, [buf ext
]), fld suc(element(list, [fld suc(element(list, [buf ext]))])))))
<−> sorted(update(list, [buf ext], upf suc(element(list, [buf ext]),
fld suc(element(list, [fld suc(element(list, [buf ext]))])))))

H12 and H13 provide the necessary conditions that must be satisfied before we can
apply priority list(9):

1. buf ext in l(list)

2. fld suc(element(list, [buf ext])) in l(list)

3. fld suc(element(list, [buf ext])) = fld suc(element(list, [buf ext]))

The third condition of priority list(9) is in this configuration trivially true.
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CHECK|: replace h#14: sorted(update(L,[I],upf suc(element(L,[I]),fld suc(element(L,[E])))))
by sorted(L) using priority list(9).

Change which occurrence (number/none/all)? |: 1.
NEW EXPRESSION: sorted(list) <−> sorted(update(list, [buf ext], upf suc(

element(list, [buf ext]), fld suc(element(list, [fld suc(element(
list, [buf ext]))])))))

The left-hand side of the equivalence in H14 is the same as H1. Thus, we can eliminate
the left-hand side.

CHECK|: forwardchain h#14.
∗∗ New H14: sorted(update(list, [buf ext], upf suc(element(list, [buf ext

]), fld suc(element(list, [fld suc(element(list, [buf ext]))])))))

Hypothesis H14 is now identical to C1.

CHECK|: done.
∗∗∗ PROVED C1: sorted(update(list, [buf ext], upf suc(element(list, [

buf ext]), fld suc(element(list, [fld suc(element(list, [buf ext]))
])))))

In a top-down approach, we would apply rule priority list(9) directly on C1. This would
simplify C1 to sorted(list) which is already stated by hypothesis H1 and, therefore,
true. But with the bottom-up approach we have won the new hypothesis H14, which
we can re-use for C4.

To eliminate C2 we apply priority list(5). The necessary conditions are the same as
for the application of priority list(9) and the Checker satisfies them by using H12 and
H13.

CHECK|: replace c#2: l(update(L,[I],upf suc(element(L,[I]),fld suc(element(L,[E]))))) by
l(L) \ (set [E]) using priority list(5).

NEW EXPRESSION: l(list) \ (set [fld suc(element(list, [buf ext]))]) =
l(list) \ (set [fld suc(element(list, [buf ext]))])

The resulting equation is true.

CHECK|: done.
∗∗∗ PROVED C2: l(list) \ (set [fld suc(element(list, [buf ext]))]) = l(list)

\ (set [fld suc(element(list, [buf ext]))])

For C3 and C4 we first resolve the predicate min with priority list(13). This rule can
be applied because the list is sorted as stated by H1.

CHECK|: replace c#3−4: min(L) by fld pri(element(L,[fld suc(element(L,[buf ext]))])) using
priority list(13).

Change which subexpression (number/none)? |: 1.
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>>> New goal C3: fld pri(element(list, [fld suc(element(list, [buf ext]))])
) = fld pri(element(list, [fld suc(element(list, [buf ext]))]))

>>> New goal C4: min(update(list, [buf ext], upf suc(element(list, [
buf ext]), fld suc(element(list, [fld suc(element(list, [buf ext]))
]))))) >= fld pri(element(list, [fld suc(element(list, [buf ext]))])
)

The resulting equation of C3 is trivially true.

CHECK|: done.
∗∗∗ PROVED C3: fld pri(element(list, [fld suc(element(list, [buf ext]))]))

= fld pri(element(list, [fld suc(element(list, [buf ext]))]))

C4 contains the predicate min a second time. The condition for the application of
priority list(13) is now:

update(list, [buf ext], upf suc(element(list, [buf ext]),
fld suc(element(list, [fld suc(element(list, [buf ext]))]))))

which is satisfied by the previously inferred hypothesis H14.

CHECK|: replace c#4: min(L) by fld pri(element(L,[fld suc(element(L,[buf ext]))])) using
priority list(13).

NEW EXPRESSION: fld pri(element(update(list, [buf ext], upf suc(element(list,
[buf ext]), fld suc(element(list, [fld suc(element(list, [buf ext])
)])))), [fld suc(element(update(list, [buf ext], upf suc(element(
list, [buf ext]), fld suc(element(list, [fld suc(element(list,
[buf ext]))])))), [buf ext]))])) >= fld pri(element(list, [fld suc(
element(list, [buf ext]))]))

We simplify the resulting conclusion C4 by eliminating a redundant array update
and a redundant record update. The build-in proof rules which we use here are:

array(1): element(update(A,I,X),I) may be replaced by X.

record(1): fld F(upf F( , VALUE)) may be replaced by VALUE.

CHECK|: replace c#4: element(update(A,I,X),I) by X using array(1).
NEW EXPRESSION: fld pri(element(update(list, [buf ext], upf suc(element(list,

[buf ext]), fld suc(element(list, [fld suc(element(list, [buf ext])
)])))), [fld suc(upf suc(element(list, [buf ext]), fld suc(element(
list, [fld suc(element(list, [buf ext]))]))))])) >= fld pri(element(
list, [fld suc(element(list, [buf ext]))]))

CHECK|: replace c#4: fld suc(upf suc( ,X)) by X using record(1).
NEW EXPRESSION: fld pri(element(update(list, [buf ext], upf suc(element(list,

[buf ext]), fld suc(element(list, [fld suc(element(list, [buf ext])
)])))), [fld suc(element(list, [fld suc(element(list, [buf ext]))]))
])) >= fld pri(element(list, [fld suc(element(list, [buf ext]))]))
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Before we can proceed we must make a case distinction on the list extension buf ext.
First we infer the cases as new hypothesis.

CHECK|: infer fld suc(element(list,[fld suc(element(list,[buf ext]))])) = buf ext or
not fld suc(element(list,[fld suc(element(list,[buf ext]))])) = buf ext using inference(1).

∗∗∗ New H15: fld suc(element(list, [fld suc(element(list, [buf ext]))]))
= buf ext or not fld suc(element(list, [fld suc(element(list,
[buf ext]))])) = buf ext

Then we start the proof of C4 by cases.

prove c#4 by cases on h#15.
CASE 1: fld suc(element(list, [fld suc(element(list, [buf ext]))])) =

buf ext
∗∗∗ New H16: fld suc(element(list, [fld suc(element(list, [buf ext]))]))

= buf ext
>>> New goal C1: fld pri(element(update(list, [buf ext], upf suc(element(

list, [buf ext]), fld suc(element(list, [fld suc(element(list,
[buf ext]))])))), [fld suc(element(list, [fld suc(element(list,
[buf ext]))]))])) >= fld pri(element(list, [fld suc(element(list,
[buf ext]))]))

C4 becomes C1 in this new proof frame. We simplify C1 with H16.

CHECK|: replace c#1: fld suc(element(list,[fld suc(element(list,[buf ext]))])) by buf ext
using eq(1).

Change which occurrence (number/none/all)? |: all.
NEW EXPRESSION: fld pri(element(update(list, [buf ext], upf suc(element(list,

[buf ext]), buf ext)), [buf ext])) >= fld pri(element(list,
[fld suc(element(list, [buf ext]))]))

We simplify C1 further by removing a redundant array update and a redundant
record update. The built-in rule record(4) is defined as follows:

record(4): fld F(upf G(R, V)) may be replaced by fld F(R) if [ ”F” <> ”G” ].

CHECK|: replace c#1: element(update(A,I,X),I) by X using array(1).
NEW EXPRESSION: fld pri(upf suc(element(list, [buf ext]), buf ext)) >=

fld pri(element(list, [fld suc(element(list, [buf ext]))]))
CHECK|: replace c#1: fld pri(upf suc(R,V)) by fld pri(R) using record(4).
NEW EXPRESSION: fld pri(element(list, [buf ext])) >= fld pri(element(list,

[fld suc(element(list, [buf ext]))]))

H2 permits a further simplification of C1.

CHECK|: replace c#1: fld pri(element(list,[buf ext])) by 9223372036854775807 using
eq(1).

NEW EXPRESSION: 9223372036854775807 >= fld pri(element(list, [fld suc(element(
list, [buf ext]))]))
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We instantiate the universal quantifier of H7 with the successor element of buf ext.

CHECK|: unwrap h#7.
∗∗∗ New H17: buf ext <= int I 1 1 and int I 1 1 <= 65536 −> buf ext

<= fld pri(element(list, [int I 1 1])) and fld pri(element(list,
[int I 1 1])) <= 9223372036854775807

CHECK|: instantiate int I 1 1 with fld suc(element(list,[buf ext])).
∗∗∗ New H17: buf ext <= fld suc(element(list, [buf ext])) and fld suc(

element(list, [buf ext])) <= 65536 −> buf ext <= fld pri(element(list,
[fld suc(element(list, [buf ext]))])) and fld pri(element(list,
[fld suc(element(list, [buf ext]))])) <= 9223372036854775807

The left-hand side of this implication is satisfied by H5 and H8; therefore we can
eliminate it.

CHECK|: forwardchain h#17.
∗∗∗ New H17: buf ext <= fld pri(element(list, [fld suc(element(list,

[buf ext]))])) and fld pri(element(list, [fld suc(element(list,
[buf ext]))])) <= 9223372036854775807

We separate the conjunction of H17 into H17 and H18. The command simplify nor-
malizes hypotheses and conclusions. As documented in the Checker on-line help,
this command ignores its optional arguments, on which hypotheses or conclusions it
should be applied, so the result can sometimes be a surprise.

CHECK|: simplify.
∗∗∗ New H17: buf ext <= fld pri(element(list, [fld suc(element(list,

[buf ext]))]))
∗∗∗ New H18: fld pri(element(list, [fld suc(element(list, [buf ext]))]))

<= 9223372036854775807

This new hypothesis H18 satisfies C1.

CHECK|: done.
∗∗∗ PROVED C1: 9223372036854775807 >= fld pri(element(list, [fld suc(element(

list, [buf ext]))])) FOR CASE 1

In the second case C4 becomes C1 again.

CASE 2: not fld suc(element(list, [fld suc(element(list, [buf ext]))]))
= buf ext

∗∗∗ New H16: not fld suc(element(list, [fld suc(element(list, [buf ext]))])
) = buf ext

>>> New goal C1: fld pri(element(update(list, [buf ext], upf suc(element(
list, [buf ext]), fld suc(element(list, [fld suc(element(list,
[buf ext]))])))), [fld suc(element(list, [fld suc(element(list,
[buf ext]))]))])) >= fld pri(element(list, [fld suc(element(list,
[buf ext]))]))
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We eliminate the superfluous array update with the built-in rule array(3):

array(3): element(update(A,J,X),K) & element(A,K) are interchangeable if [ J<>K ].

CHECK|: replace c#1: element(update(A,J,X),K) by element(A,K) using array(3).
NEW EXPRESSION: fld pri(element(list, [fld suc(element(list, [fld suc(element(

list, [buf ext]))]))])) >= fld pri(element(list, [fld suc(element(
list, [buf ext]))]))

H1 states that the list is sorted. With this information and rule priority list(12) we
infer a new hypothesis. We are interested in the successor element of buf ext.

CHECK|: infer for all(x : integer,x in l(list) and x <> buf ext −>
fld pri(element(list,[x])) <= fld pri(element(list,[fld suc(element(list,[x]))])))
using priority list(12).

∗∗∗ New H17: for all(x : integer, x in l(list) and x <> buf ext −> fld pri(
element(list, [x])) <= fld pri(element(list, [fld suc(element(list,
[x]))])))

We instantiate the universal quantifier with the successor element of buf ext.

CHECK|: unwrap h#17.
∗∗∗ New H18: int X 1 in l(list) and int X 1 <> buf ext −> fld pri(element(

list, [int X 1])) <= fld pri(element(list, [fld suc(element(list,
[int X 1]))]))

CHECK|: instantiate int X 1 with fld suc(element(list,[buf ext])).
∗∗∗ New H18: fld suc(element(list, [buf ext])) in l(list) and fld suc(

element(list, [buf ext])) <> buf ext −> fld pri(element(list,
[fld suc(element(list, [buf ext]))])) <= fld pri(element(list,
[fld suc(element(list, [fld suc(element(list, [buf ext]))]))]))

The left-hand side of the implication is satisfied by H13 and H16. We can eliminate
it.

CHECK|: forwardchain h#18.
∗∗∗ New H18: fld pri(element(list, [fld suc(element(list, [buf ext]))]))

<= fld pri(element(list, [fld suc(element(list, [fld suc(element(list,
[buf ext]))]))]))

The resulting inequality in hypothesis H18 is similar to the inequality in conclusion
C1. The inference engine of the Checker is able to recognize this.

CHECK|: done.
∗∗∗ PROVED C1: fld pri(element(list, [fld suc(element(list, [fld suc(element(

list, [buf ext]))]))])) >= fld pri(element(list, [fld suc(element(
list, [buf ext]))])) FOR CASE 2

∗∗∗ VC PROVED −− Well done!
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Proof Session for Refinement Integrity

There are two verification conditions to prove. In analogy to the refinement integrity
proof of procedure Initialize, only the constants buf system priority last and buf ext
must be replaced. We do not show this here.

6.3.5 Proof Sessions for Procedure Enter

Proof Session from Start to Loop Invariant

As in the proof of procedure Remove we must replace 0 by buf ext before we can
apply any of our proof rules.

CHECK|: infer 0 = buf ext using enter rules(3).
CHECK|: replace all: 0 by buf ext using eq(1).
CHECK|: list.
C1: buf ext in l(list)
C2: loop condition(list, fld suc(element(list, [buf ext])))

C1 and C2 can be inferred directly; no hypotheses are required. Both are the base
cases of an induction.

CHECK|: infer c#1 using priority list(1).
∗∗∗ PROVED C1: buf ext in l(list)
CHECK|: infer c#2 using priority list(14).
∗∗∗ PROVED C2: loop condition(list, fld suc(element(list, [buf ext])))
∗∗∗ VC PROVED −− Well done!

Proof Session for Loop Invariant

This verification condition is the inductive step of the loop.

CHECK|: infer 0 = buf ext using enter rules(3).
CHECK|: replace all: 0 by buf ext using eq(1).
CHECK|: list.
H1: i in l(list OLD)
H2: loop condition(list OLD, fld suc(element(list OLD, [i])))
H16: fld pri(element(list OLD, [fld suc(element(list OLD, [i]))])) <

priority
−−>

C1: fld suc(element(list OLD, [i])) in l(list OLD)
C2: loop condition(list OLD, fld suc(element(list OLD, [fld suc(element(

list OLD, [i]))])))
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In the verification condition file, generated by the Examiner, the predicate list˜ is
used instead of list OLD. Obviously the Checker replaces all tildes by the the suffix

OLD.

The successor of the list extension is always a member of the set. We can infer this
using priority list(2).

CHECK|: infer c#1 using priority list(2).
∗∗∗ PROVED C1: fld suc(element(list OLD, [i])) in l(list OLD)

Before we start a case distinction on the list extension, we create the cases as a new
hypothesis.

CHECK|: infer fld suc(element(list OLD,[i])) = buf ext or
not fld suc(element(list OLD,[i])) = buf ext using inference(1).

CHECK|: simplify.
∗∗∗ New H19: fld suc(element(list OLD, [i])) = buf ext or fld suc(element(

list OLD, [i])) <> buf ext

We start a proof by cases; a new proof frame is entered and C2 becomes C1.

CHECK|: prove c#2 by cases on h#19.
CASE 1: fld suc(element(list OLD, [i])) = buf ext

∗∗∗ New H20: fld suc(element(list OLD, [i])) = buf ext
>>> New goal C1: loop condition(list OLD, fld suc(element(list OLD,

[fld suc(element(list OLD, [i]))])))

In the case of H20 we can replace the successor element and get again the base case
of loop condition.

CHECK|: replace c#1: fld suc(element(list OLD,[i])) by buf ext using eq(1).
NEW EXPRESSION: loop condition(list OLD, fld suc(element(list OLD, [

buf ext])))
CHECK|: infer c#1 using priority list(14).
∗∗∗ PROVED C1: loop condition(list OLD, fld suc(element(list OLD, [buf ext

]))) FOR CASE 1

In Case 2 we have to deal with the inductive step of loop condition.

CASE 2: fld suc(element(list OLD, [i])) <> buf ext
∗∗∗ New H20: fld suc(element(list OLD, [i])) <> buf ext
>>> New goal C1: loop condition(list OLD, fld suc(element(list OLD,

[fld suc(element(list OLD, [i]))])))

The application of priority list(15) is justified by case H20, the inductive hypothesis
H2 and the the less-than-equal relation of H16.
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CHECK|: infer c#1 using priority list(15) from [2,16,20].
∗∗∗ PROVED C1: loop condition(list OLD, fld suc(element(list OLD, [fld suc(

element(list OLD, [i]))]))) FOR CASE 2
∗∗∗ VC PROVED −− Well done!

Proof Session from Loop Invariant to Finish

CHECK|: infer 0 = buf ext using enter rules(3).
CHECK|: replace all: 0 by buf ext using eq(1).
CHECK|: list.
H1: i in l(list OLD)
H2: loop condition(list OLD, fld suc(element(list OLD, [i])))
H11: not element index in l(list OLD)
H16: priority <= fld pri(element(list OLD, [fld suc(element(list OLD,

[i]))]))
−−>

C1: sorted(update(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i], upf suc(element(update(list OLD, [
element index], mk buf priority element(pri := priority, suc
:= fld suc(element(list OLD, [i])))), [i]), element index)))

C2: l(update(update(list OLD, [element index], mk buf priority element(
pri := priority, suc := fld suc(element(list OLD, [i])))), [i],
upf suc(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i]), element index))) = l(list OLD) \/ (set
[element index])

The central proof rules we want to apply to C1 and C2 are the insertion rules prior-
ity list(8) and priority list(4). Both share some conditions that must be satisfied before
their application. Therefore we try to infer as many hypotheses as possible before
we enter any proof frame, so we can re-use hypotheses.

We start with C1. Our strategy is to apply rule priority list(8). This proof rule can
only be applied if certain conditions are met. These are:

1. i in l(L)

2. element index not in l(L)

3. fld suc(element(L,[element index])) = fld suc(element(L,[i]))

4. i = buf ext or
fld pri(element(L, [i])) <= fld pri(element(L,[element index]))

5. fld pri(element(L,[element index])) <= fld pri(element(L,[fld suc(element(L,[i]))]))
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where:

L = l(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(list OLD, [i])))))

For Condition 4 we require a case distinction.

Firstly we infer Condition 1 as hypothesis.

CHECK|: infer l(list OLD) = l(list OLD) using inference(1).
∗∗∗ New H18: l(list OLD) = l(list OLD)

We modify H11 such that the application of priority list(7) to H18 is justified.

CHECK|: replace h#11: not (X in A) by X not in A using sets(2).
NEW EXPRESSION: element index not in l(list OLD)
CHECK|: replace h#18: l(L) by l(update(L,[element index], mk buf priority element(

pri := priority,suc := fld suc(element(list OLD,[i]))))) using priority list(7).
Change which occurrence (number/none/all)? |: 2.
NEW EXPRESSION: l(list OLD) = l(update(list OLD, [element index],

mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))))

This hypothesis H18 and hypothesis H1 satisfy the necessary conditions to apply
sets(12). With this rule we infer Condition 1 for the application of priority list(8).

CHECK|: infer i in l(update(list OLD,[element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD,[i]))))) using sets(12) from [1,18].

∗∗∗ New H19: i in l(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))))

The choice of sets(12) might come as a surprise. We found this rule by letting the
inference engine do a wildcard search. It is possible to specify the expression WILD
instead of a rule name to the command infer. The Checker then searches its rule
database for suitable rules and asks the user to choose one.

Rule sets(12) is defined as follows:

sets(12): X in (A /\ B) may be deduced from [ X in A, X in B ].

We re-use H18 from above together with H11 to infer the hypothesis of Condition 2
with the built-in rule sets(6), which we found with a wildcard search, too. It is
defined as follows:

sets(6): X not in (A \/ B) may be deduced from [ X not in A, X not in B ].
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CHECK|: infer element index not in l(update(list OLD,[element index], mk buf priority element(
pri := priority,suc := fld suc(element(list OLD,[i]))))) using sets(6) from [11,18].

∗∗∗ New H20: element index not in l(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))))

We start the inference of Condition 3 by crafting a new hypothesis.

CHECK|: standardise fld suc(element(update(list OLD,[element index],mk buf priority element(
pri := priority,suc := fld suc(element(list OLD,[i])))),[element index])).

∗∗∗ New H21: fld suc(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index])) = fld suc(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [element index]))

We simplify the left-hand side of H21.

CHECK|: replace h#21: element(update(A,I,X),I) by X using array(1).
NEW EXPRESSION: fld suc(mk buf priority element(pri := priority, suc

:= fld suc(element(list OLD, [i])))) = fld suc(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [element index]))

CHECK|: replace h#21: fld suc(mk buf priority element(pri := ,suc := S)) by S using
mk record(3).

NEW EXPRESSION: fld suc(element(list OLD, [i])) = fld suc(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [element index]))

The built-in proof rule mk record(3) is defined as follows:

mk record(3): fld FIELD(mk RECORDTYPE(LARGS...(FIELD := VALUE)...))
may be replaced by VALUE
if [ not ((FIELD := ...) is in LARGS), not ((FIELD := ...) is in RARGS) ]

We require the information that element Element Index is not already in the list, i. e.
element index <> i. We infer this from priority list(3) whose conditions are satisfied by
H11.

CHECK|: infer for all(x : integer,x in l(list OLD) −> element index <> x) using priority list(3)
from [11].

∗∗∗ New H22: for all(x : integer, x in l(list OLD) −> element index <>
x)

We instantiate the universal quantifier with element i.

CHECK|: unwrap h#22.
∗∗∗ New H23: int X 1 in l(list OLD) −> element index <> int X 1
CHECK|: instantiate int X 1 with i.
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∗∗∗ New H23: i in l(list OLD) −> element index <> i

The left-hand side is true because of H1. We eliminate it.

CHECK|: forwardchain h#23.
∗∗∗ New H23: element index <> i

Due to H23 we can expand H21 further which yields Condition 3 for the application
of priority list(8).

CHECK|: replace h#21: element(list OLD,[i]) by element(update(list OLD,[element index],
mk buf priority element(pri := priority,suc := fld suc(element(list OLD,[i])))),[i])
using eq(1).

Change which occurrence (number/none/all)? |: 1.
NEW EXPRESSION: fld suc(element(update(list OLD, [element index],

mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i])) = fld suc(element(update(list OLD, [
element index], mk buf priority element(pri := priority, suc
:= fld suc(element(list OLD, [i])))), [element index]))

We defer Condition 4 because it requires a proof by cases and, therefore, a new proof
frame.

Hypothesis H16 should become the basis for Condition 5. We make preparations to
replace predicate priority in H16.

CHECK|: standardise fld pri(element(update(list OLD,[element index],mk buf priority element(
pri := priority,suc := fld suc(element(list OLD,[i])))),[element index])).

∗∗∗ New H24: fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index])) = fld pri(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [element index]))

We simplify the left-hand side of the new hypothesis H24.

CHECK|: replace h#24: element(update(A,I,X),I) by X using array(1).
Change which occurrence (number/none/all)? |: 1.
NEW EXPRESSION: fld pri(mk buf priority element(pri := priority, suc

:= fld suc(element(list OLD, [i])))) = fld pri(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [element index]))

CHECK|: replace h#24: fld pri(mk buf priority element(pri := P,suc := )) by P using
mk record(3).

NEW EXPRESSION: priority = fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index]))
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We use H24 to replace predicate priority in H16.

CHECK|: replace h#16: priority by fld pri(element(update(list OLD,[element index],
mk buf priority element(pri := priority,suc := fld suc(element(list OLD,[i])))),
[element index])) using eq(1).

NEW EXPRESSION: fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index])) <= fld pri(element(list OLD,
[fld suc(element(list OLD, [i]))]))

Before we can adjust H16 further we need to infer another hypothesis.

CHECK|: standardise fld pri(element(update(list OLD,[element index],
mk buf priority element(pri := priority,suc := X)),[X])) where
X = fld suc(element(list OLD,[i])).

∗∗∗ New H25: fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [fld suc(element(list OLD, [i]))])) = fld pri(
element(update(list OLD, [element index], mk buf priority element(
pri := priority, suc := fld suc(element(list OLD, [i])))), [fld suc(
element(list OLD, [i]))]))

The syntax with where allows us to use Prolog variables. We use this variant because
firstly it saves typing and secondly the Checker seems to cut off everything that is
longer than the size of its input buffer. In this case, the Checker prints the misleading
error message “!!! Command not recognized. Please retype.”

We require the information element index <> fld suc(element(list OLD, [i])) for the
application of rule array(3). That is why we instantiate H22 a second time, this time
with fld suc(element(list OLD,[i])).

CHECK|: unwrap h#22.
∗∗∗ New H26: int X 2 in l(list OLD) −> element index <> int X 2
CHECK|: instantiate int X 2 with fld suc(element(list OLD,[i])).
∗∗∗ New H26: fld suc(element(list OLD, [i])) in l(list OLD) −>

element index <> fld suc(element(list OLD, [i]))

We eliminate the left-hand side of the implication using priority list(2).

CHECK|: infer fld suc(element(list OLD,[i])) in l(list OLD) using priority list(2) from [1].
∗∗∗ New H27: fld suc(element(list OLD, [i])) in l(list OLD)
CHECK|: forwardchain h#26.
∗∗∗ New H26: element index <> fld suc(element(list OLD, [i]))

Hypothesis H26 justifies the application of array(3).

CHECK|: replace h#25: element(update(A,J,X),K) by element(A,K) using array(3).
NEW EXPRESSION: fld pri(element(list OLD, [fld suc(element(list OLD,
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[i]))])) = fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [fld suc(element(list OLD, [i]))]))

Now we can adjust H16 further. We expand it with the help of H25.

CHECK|: replace h#16: fld pri(element(list OLD,[X])) by fld pri(element(update(list OLD,
[element index],mk buf priority element(pri := priority,suc := X)),[X])) where
X = fld suc(element(list OLD,[i])) using eq(1).

NEW EXPRESSION: fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index])) <= fld pri(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [fld suc(element(list OLD,
[i]))]))

Now we only need to replace fld suc(element(list OLD,[i])) in H16. We craft another
hypothesis for it.

CHECK|: standardise fld suc(element(update(list OLD,[element index],mk buf priority element(
pri := priority,suc := fld suc(element(list OLD,[i])))),[i])).

∗∗∗ New H28: fld suc(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i])) = fld suc(element(update(list OLD, [
element index], mk buf priority element(pri := priority, suc
:= fld suc(element(list OLD, [i])))), [i]))

Because H23 states that element index <> i, we can apply array(3).

CHECK|: replace h#28: element(update(A,J,X),K) by element(A,K) using array(3).
Change which occurrence (number/none/all)? |: 1.
NEW EXPRESSION: fld suc(element(list OLD, [i])) = fld suc(element(update(

list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [i]))

The last modification of H16 results in Condition 5 for the application of prior-
ity list(8).

CHECK|: replace h#16: fld suc(element(list OLD,[i])) by fld suc(element(update(list OLD,
[element index],mk buf priority element(pri := priority,
suc := fld suc(element(list OLD,[i])))),[i])) using eq(1).

Change which occurrence (number/none/all)? |: 3.
NEW EXPRESSION: fld pri(element(update(list OLD, [element index],

mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index])) <= fld pri(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [fld suc(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [i]))]))
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We prepare the case distinction for C1.

CHECK|: infer i = buf ext or not i = buf ext using inference(1).
∗∗∗ New H29: i = buf ext or not i = buf ext

We start the prove by cases for C1.

CHECK|: prove c#1 by cases on h#29.
CASE 1: i = buf ext

∗∗∗ New H30: i = buf ext
>>> New goal C1: sorted(update(update(list OLD, [element index],

mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i], upf suc(element(update(list OLD, [
element index], mk buf priority element(pri := priority, suc
:= fld suc(element(list OLD, [i])))), [i]), element index)))

Case H30 is Condition 4 for the application of priority list(8).

We have collected the necessary conditions H16, H19, H20, H21 and H30 to apply
priority list(8) to C1.

CHECK|: replace c#1: sorted(update(L,[I],upf suc(element(L,[I]),E))) by sorted(L) using
priority list(8).

NEW EXPRESSION: sorted(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))))

C1 has now a much simpler form and can be simplified further by priority list(11),
which is justified by H11.

CHECK|: replace c#1: sorted(update(L,[element index], )) by sorted(L) using
priority list(11).

Possible replacements for sorted(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i]))))) are:

1. sorted(list OLD)
2. sorted(update(update(list OLD, [element index],

mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index], 6))

Select (number/none): |: 1.
NEW EXPRESSION: sorted(list OLD)

The Checker asks us which of these two possible replacements we want to use. Only
the first option makes sense and is our intended result. The second option con-
tains the atom 6. If we choose number two the Checker prints the error message
“!!! ERROR: New expression does not type-check properly.”

Nevertheless, the new conclusion C1 is satisfied by H1.
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CHECK|: done.
∗∗∗ PROVED C1: sorted(list OLD) FOR CASE 1

We start the second case. We re-use H16, H19, H20 and H21 for the second application
of priority list(8). We must infer the hypothesis for Condition 4 of priority list(8).

CASE 2: not i = buf ext
∗∗∗ New H29: not i = buf ext
>>> New goal C1: sorted(update(update(list OLD, [element index],

mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i], upf suc(element(update(list OLD, [
element index], mk buf priority element(pri := priority, suc
:= fld suc(element(list OLD, [i])))), [i]), element index)))

We make use of the existence of predicate loop condition in hypothesis H2 by applying
priority list(16).

CHECK|: infer fld pri(element(list OLD,[i])) < priority using priority list(16) from [2,30].
∗∗∗ New H31: fld pri(element(list OLD, [i])) < priority

Hypothesis H31 is the basis for Condition 4 of priority list(8). The replacement of the
predicate priority is justified by H24.

CHECK|: replace h#31: priority by fld pri(element(update(list OLD,[element index],
mk buf priority element(pri := priority,
suc := fld suc(element(list OLD,[i])))),[element index])) using eq(1).

NEW EXPRESSION: fld pri(element(list OLD, [i])) < fld pri(element(update(
list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [element index]))

Before we can modify H31 further, we must infer another hypothesis.

CHECK|: standardise fld pri(element(update(list OLD,[element index],
mk buf priority element(pri := priority,suc := fld suc(element(list OLD,[i])))),[i])).

∗∗∗ New H32: fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i])) = fld pri(element(update(list OLD, [
element index], mk buf priority element(pri := priority, suc
:= fld suc(element(list OLD, [i])))), [i]))

CHECK|: replace h#32: element(update(A,J,X),K) by element(A,K) using array(3).
Change which occurrence (number/none/all)? |: 1.
NEW EXPRESSION: fld pri(element(list OLD, [i])) = fld pri(element(update(

list OLD, [element index], mk buf priority element(pri := priority,
suc := fld suc(element(list OLD, [i])))), [i]))

The application of array(3) is justified by the information element index <> i from
hypothesis H23. With H23 we can modify H31 further, which is then Condition 4 of
priority list(8).
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CHECK|: replace h#31: fld pri(element(list OLD,[i])) by fld pri(element(update(list OLD,
[element index],mk buf priority element(pri := priority,
suc := fld suc(element(list OLD,[i])))),[i])) using eq(1).

NEW EXPRESSION: fld pri(element(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [i])) < fld pri(element(update(list OLD, [
element index], mk buf priority element(pri := priority, suc
:= fld suc(element(list OLD, [i])))), [element index]))

The necessary conditions to apply priority list(8) are H16, H19, H20, H21 and H31.

CHECK|: replace c#1: sorted(update(L,[I],upf suc(element(L,[I]),E))) by sorted(L) using
priority list(8).

NEW EXPRESSION: sorted(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))))

C1 can be simplified further with priority list(11). This is justified by H11. We are
nearly done with C1.

CHECK|: replace c#1: sorted(update(L,[element index], )) by sorted(L) using
priority list(11).

Possible replacements for sorted(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i]))))) are:

1. sorted(list OLD)
according to rule priority list(11)

2. sorted(update(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index], 10))

according to rule priority list(11)
Select (number/none): |: 1.
NEW EXPRESSION: sorted(list OLD)
CHECK|: done.
∗∗∗ PROVED C1: sorted(list OLD) FOR CASE 2

Again the second option of the question makes no sense and would lead to an error
message by the Checker.

We eliminated C1 and go on to C2. We can re-use hypotheses H16, H19 and H20 to
apply priority list(4) to C2.

CHECK|: replace c#2: l(update(L,[I],upf suc(element(L,[I]),E))) by l(L) \/ (set [E]) using
priority list(4).

NEW EXPRESSION: l(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i]))))) \/ (set [element index]) = l(list OLD) \/
(set [element index])
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We apply priority list(11), which is justified by H11, and finish the proof of this verifi-
cation condition.

CHECK|: replace c#2: l(update(L,[element index], )) by l(L) using priority list(7).
Possible replacements for l(update(list OLD, [element index],

mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i]))))) are:

1. l(list OLD)
according to rule priority list(7)

2. l(update(update(list OLD, [element index],
mk buf priority element(pri := priority, suc := fld suc(element(
list OLD, [i])))), [element index], 12))

according to rule priority list(7)
Select (number/none): |: 1.
NEW EXPRESSION: l(list OLD) \/ (set [element index]) = l(list OLD) \/

(set [element index])
CHECK|: done.
∗∗∗ PROVED C2: l(list OLD) \/ (set [element index]) = l(list OLD) \/

(set [element index])
∗∗∗ VC PROVED −− Well done!

Proof Session For Refinement Integrity

CHECK|: list.
H1: element index not in l(fld list(state))
H9: fld pri(element(fld list(state), [buf ext])) =

buf system priority last
−−>

C1: fld pri(element(fld list(state), [0])) = 9223372036854775807
C2: not element index in l(fld list(state))

We eliminate C1 by replacing the constants buf system priority last and buf ext.

CHECK|: infer 0 = buf ext using enter rules(3).
∗∗∗ New H10: 0 = buf ext
CHECK|: replace c#1: 0 by buf ext using eq(1).
NEW EXPRESSION: fld pri(element(fld list(state), [buf ext])) = 9223372036854

775807
CHECK|: infer 9223372036854775807 = buf system priority last using enter rules(21).
∗∗∗ New H11: 9223372036854775807 = buf system priority last
CHECK|: replace c#1: 9223372036854775807 by buf system priority last using eq(1).
NEW EXPRESSION: fld pri(element(fld list(state), [buf ext])) =

buf system priority last
CHECK|: done.
∗∗∗ PROVED C1: fld pri(element(fld list(state), [buf ext])) =

buf system priority last



6.4 Protected Type Dynamic Priority 84

We rewrite C2 such that the Checker recognizes the correlation between H1 and C2.

CHECK|: replace c#2: not (X in A) by X not in A using sets(2).
NEW EXPRESSION: element index not in l(fld list(state))
CHECK|: done.
∗∗∗ PROVED C2: element index not in l(fld list(state))
∗∗∗ VC PROVED −− Well done!

There is one other verification condition to prove. The constants have to be replaced
in analogy to C1. We do not show this here.

6.4 Protected Type Dynamic Priority

Procedure Increment is the main operation of the protected type Dynamic Priority. It
increments the dynamic priority. Ideally, the dynamic priority value would be of
an unbounded integer type. But Ada provides no unbounded integer type, so the
priority value will definitely overflow after more than 231 years of run time. Ada does
provide circular integer types but these would destroy the semantics of the priority
values.

Spark has no support for an unbounded integer type in its annotations, either. The
Examiner would automatically generate verification conditions to prevent an overflow
of the dynamic priority value. But the priority value will definitely overflow. We have
no other choice but to hide the incrementation from Spark with the hide annotation.
Hiding the main operation leaves us with nothing to do, so we choose to omit the
proof annotations for the protected type Dynamic Priority in the first place.



Chapter 7

Conclusion

The specification, design and implementation of Coco turned out to be mostly
straightforward (Chapters 2 and 5). Concurrent Pascal and Ada have a very similar
semantics. Ada allowed us to lift some design restrictions which were imposed by
Concurrent Pascal.

We gave an overview of the Spark tools Examiner, Simplifier and Checker (Sec-
tion 3.3). We laid the foundations for the understanding of the subsequent chapters
by introducing the Spark annotations, the FDL language and the proof rule lan-
guage (Chapter 3).

We discussed why RavenSpark lags behind sequential Spark (Section 4.1). The
main obstacles are the missing proof annotations in protected types and the restricted
task model.

We proposed a different approach to protected types in Spark that is not based on
the Ravenscar Profile (Section 4.2). We call it PassauSpark.

To be able to apply our approach to the proof of Coco, we implemented a pre-
processor for the Spark tools (Section 4.3).

Spark does not support abstract data structures like sets, lists, trees or unbounded
integers in the annotations. To a certain degree it is possible to work around this
with proof functions. We did this for set types (Section 4.5).

We specified pre- and post-conditions for the operations of the protected types
Buffer Guard and Priority List. We declared proof functions and defined proof rules
for them (Chapter 6).

We proved in proof sessions with the Checker that the Buffer Guard manages the list
of free frames as intended. Frames cannot be occupied and free at the same time. The
Buffer Guard always knows the state of all frames. We proved that the Priority List
works as a priority queue: the queue is always ordered and the element with the
highest priority is always at the top. We also proved that the linked-list structure of
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the queue is really a linked list and does not contain inner loops. Moreover, Spark
enabled us to find a missing pre-condition in the original manual proof of Coco.



Appendix A

Source Code

A.1 The COCO System

package Conf is
Buffer Size : constant := 65536; −− number of buffer cells
Num Ports : constant := 8; −− number of hardware I/O ports (also needs to be

−− adjusted in file main.adb)
Min Prio : constant := 63; −− lowest packet priority
Max Length : constant := 1500; −− maximum size of packet in bytes
Timer Delay : constant := 0.01; −− tick frequency (100 Hz)

end Conf;

package Stacks is

type Stack is private;

subtype Stack Range is Positive range 1 .. Positive’Last − 1;

−−# function Ptr (S : in Stack) return Integer;
−−# function Max Ptr (S : in Stack) return Integer;
−−# function Ptr In Range (S : in Stack) return Boolean;

function Empty (S : in Stack) return Boolean;
−−# return Empty (S);

function Full (S : in Stack) return Boolean;
−−# return Full (S);

procedure Initialize (S : out Stack; Max : in Stack Range);
−−# derives S from Max;
−−# post Ptr In Range (S) and Max Ptr (S) = Max and Ptr (S) = Max + 1;

procedure Push (S : in out Stack; P : out Integer);
−−# derives P, S from S;
−−# pre Ptr In Range (S) and not Full (S);
−−# post Ptr In Range (S) and Max Ptr (S) = Max Ptr (S˜) and
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−−# Ptr (S) = Ptr (S˜) + 1 and P = Ptr (S˜);

procedure Pop (S : in out Stack; P : out Integer);
−−# derives P, S from S;
−−# pre Ptr In Range (S) and not Empty (S);
−−# post Ptr In Range (S) and Max Ptr (S) = Max Ptr (S˜) and
−−# Ptr (S) = Ptr (S˜) − 1 and P = Ptr (S);

private
type Stack is record

Pointer : Positive ;
Max : Stack Range;

end record;
end Stacks;

package body Stacks is

function Empty (S : in Stack) return Boolean is
begin

return (S.Pointer = 1);
end Empty;

function Full (S : in Stack) return Boolean is
begin

return (S.Pointer = S.Max + 1);
end Full;

procedure Initialize (S : out Stack; Max : in Stack Range) is
begin

S := Stack’(Max + 1, Max);
end Initialize ;

procedure Push (S : in out Stack; P : out Integer) is
begin

P := S.Pointer;
S.Pointer := S.Pointer + 1;

end Push;

procedure Pop (S : in out Stack; P : out Integer) is
begin

S.Pointer := S.Pointer − 1;
P := S.Pointer;

end Pop;

end Stacks;

with Conf, Stacks;
−−# inherit Conf, Stacks;
package Buf
−−# own Shared Buffer;
−−# initializes Shared Buffer;
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is
subtype Port Adr is Positive range 1 .. Conf.Num Ports;

subtype Packet Priority is Natural range 0 .. Conf.Min Prio;

subtype Data Length is Natural range 0 .. Conf.Max Length;

subtype Data Index is Positive range 1 .. Conf.Max Length;

type Byte is range 0 .. 255;
for Byte’Size use 8;

type Packet Data is array (Data Index) of Byte;

type Packet is record
Dest : Port Adr;
Prio : Packet Priority ;
Length : Data Length;
Data : Packet Data;

end record;

subtype Buffer Index is Positive range 1 .. Conf.Buffer Size;

type Packet Array is array (Buffer Index) of Packet;

Shared Buffer : Packet Array;

type Buffer Index Array is array (Buffer Index) of Buffer Index;

protected type Buffer Guard
−−# own State : State Type;
−−# invariant Buffer Guard Invariant (State);
is

−−# type State Type is abstract;

−−# type Set Type is abstract;
−−# function Set Member (S : in Set Type; E : in Buffer Index) return Boolean;
−−# function Set Delete (S : in Set Type; E : in Buffer Index) return Set Type;
−−# function Set Insert (S : in Set Type; E : in Buffer Index) return Set Type;
−−# function Empty Set return Set Type;

−−# function F (Free List : in Buffer Index Array;
−−# Pointer: in Stacks.Stack Range) return Set Type;

−−# function Buffer Guard Invariant (S : in State Type) return Boolean;
−−# function Can Be Released (S : in State Type; E : in Buffer Index) return Boolean;

procedure Initialize ;
−−# global in out State;
−−# derives State from State;
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entry Request (Element Index : out Buffer Index);
−−# global in out State;
−−# derives Element Index, State from State;
procedure Release (Element Index : in Buffer Index);
−−# global in out State;
−−# derives State from Element Index, State;
−−# pre Can Be Released (State, Element Index);

private
Free List : Buffer Index Array;
Stack : Stacks.Stack;

end Buffer Guard;

Ext : constant := 0;

subtype List Index is Natural range Ext .. Conf.Buffer Size;

type Priority Element is private;

type Priority Queue is array (List Index ) of Priority Element;

subtype System Priority is Long Long Integer range 0 .. Long Long Integer’Last;

protected type Priority List
−−# own State : State Type;
−−# invariant Priority List Invariant (State);
is

−−# type State Type is abstract;

−−# type Set Type is abstract;
−−# function Set Member (S : in Set Type; E : in List Index) return Boolean;
−−# function Set Delete (S : in Set Type; E : in List Index ) return Set Type;
−−# function Set Insert (S : in Set Type; E : in List Index ) return Set Type;
−−# function Set Element (E : in List Index) return Set Type;
−−# function Empty Set return Set Type;

−−# function L (List : in Priority Queue) return Set Type;
−−# function Sorted (List : in Priority Queue) return Boolean;
−−# function Min (List : in Priority Queue) return System Priority;
−−# function Loop Condition (List : in Priority Queue;
−−# Index : in List Index ) return Boolean;

−−# function Priority List Invariant (S : in State Type) return Boolean;
−−# function Can Be Removed (S : in State Type; E : in Buffer Index) return Boolean;

procedure Initialize ;
−−# global in out State;
−−# derives State from State;
procedure Enter (Element Index : in Buffer Index; Priority : in System Priority);
−−# global in out State;
−−# derives State from Element Index, Priority, State;
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−−# pre Can Be Removed (State, Element Index);
entry Remove (Element Index : out Buffer Index);
−−# global in out State;
−−# derives Element Index from State & State from State;

private
List : Priority Queue;

end Priority List ;

private
type Priority Element is record

Pri : System Priority;
Suc : List Index ;

end record;
end Buf;

package body Buf is

protected body Buffer Guard
−−# invariant Stacks.Ptr In Range (Stack) and Stacks.Max Ptr (Stack) = Conf.Buffer Size;
is

procedure Initialize
−−# global in out Free List; out Stack;
−−# derives Free List from Free List & Stack from ;
−−# post (for all J in Buffer Index => (Free List (J) = J));
is
begin

for I in Buffer Index
−−# assert (for all J in Buffer Index range 1 .. I − 1 => (Free List (J) = J));
loop

Free List ( I ) := I ;
end loop;
Stacks.Initialize (Stack, Conf.Buffer Size);

end Initialize ;

entry Request (Element Index : out Buffer Index) when not Stacks.Empty (Stack)
−−# global in out Stack; in Free List;
−−# derives Element Index from Free List, Stack & Stack from Stack;
−−# post Set Member (F (Free List, Stacks.Ptr (Stack˜)), Element Index)
−−# and F (Free List, Stacks.Ptr (Stack))
−−# = Set Delete (F (Free List , Stacks.Ptr (Stack˜)), Element Index);
is

Top : Buffer Index;
begin

Stacks.Pop (Stack, Top);
Element Index := Free List (Top);

end Request;

procedure Release (Element Index : in Buffer Index)
−−# global in out Free List, Stack;
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−−# derives Free List from Element Index, Free List, Stack & Stack from Stack;
−−# pre not Set Member (F (Free List, Stacks.Ptr (Stack)), Element Index)
−−# and not Stacks.Full (Stack);
−−# post F (Free List, Stacks.Ptr (Stack))
−−# = Set Insert (F (Free List ˜, Stacks.Ptr (Stack˜)), Element Index);
is

Top : Buffer Index;
begin

Stacks.Push (Stack, Top);
Free List (Top) := Element Index;

end Release;

end Buffer Guard;

protected body Priority List
−−# invariant Sorted (List) and List (Ext). Pri = System Priority’ Last;
is

procedure Initialize
−−# global in out List;
−−# derives List from List;
−−# post L (List) = Set Element (Ext);
is
begin

List (Ext). Pri := System Priority’ Last;
List (Ext). Suc := Ext;

end Initialize ;

procedure Enter (Element Index : in Buffer Index; Priority : in System Priority)
−−# global in out List;
−−# derives List from List, Element Index, Priority;
−−# pre not Set Member (L (List), Element Index);
−−# post L (List) = Set Insert (L (List ˜), Element Index);
is

I : List Index ;
begin

I := Ext;
while (List (List ( I ). Suc).Pri < Priority )
−−# assert Set Member (L (List), I) and Loop Condition (List, List ( I ). Suc)
−−# and List˜ = List ;
loop

I := List ( I ). Suc;
end loop;
List (Element Index) := Priority Element’( Pri => Priority, Suc => List (I ). Suc);
List ( I ). Suc := Element Index;

end Enter;

entry Remove (Element Index : out Buffer Index) when List (Ext).Suc /= Ext
−−# global in out List;
−−# derives Element Index from List & List from List;
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−−# post L (List) = Set Delete (L (List ˜), Element Index)
−−# and List (Element Index).Pri = Min (List ˜) and Min (List) >= Min (List˜);
is
begin

Element Index := List (Ext). Suc;
List (Ext). Suc := List (List (Ext). Suc).Suc;

end Remove;

end Priority List ;

begin
−−# hide Buf;
null;

end Buf;

with Conf, Buf;
package Timer is

protected type Dyn Priority is
procedure Initialize ;
function Count return Buf.System Priority;
procedure Increment;

private
Dyn Count : Buf.System Priority;

end Dyn Priority;

Dyn Priority Monitor : Dyn Priority ;

task type Timer Process is
end Timer Process;

end Timer;

package body Timer is

protected body Dyn Priority is

procedure Initialize is
begin

Dyn Count := 0;
end Initialize ;

function Count return Buf.System Priority is
begin

return Dyn Count;
end Count;

procedure Increment is
begin

Dyn Count := Dyn Count + 1;
end Increment;
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end Dyn Priority;

task body Timer Process is
begin

loop
delay Conf.Timer Delay;
Dyn Priority Monitor. Increment;

end loop;
end Timer Process;

end Timer;

with Buf, Timer;
package Tasks is

Buffer Guard Monitor : Buf.Buffer Guard;
In Priority List Monitor : Buf.Priority List;
Out Priority List Monitor : array (Buf.Port Adr) of Buf.Priority List;

task type Input Process (Port : Buf.Port Adr) is
end Input Process;

task type Data Process is
end Data Process;

task type Output Process (Port : Buf.Port Adr) is
end Output Process;

end Tasks;

package body Tasks is

task body Input Process is
Element Index : Buf.Buffer Index;
Priority : Buf.System Priority;

begin
loop

−− listen at port specified by variable Port for incoming packet here
Buffer Guard Monitor.Request (Element Index);
−− receive incoming packet into Buf.Shared Buffer (Element Index) here
Priority := Buf.System Priority (Buf.Shared Buffer (Element Index).Prio)

+ Timer.Dyn Priority Monitor.Count;
In Priority List Monitor.Enter (Element Index, Priority);

end loop;
end Input Process;

task body Data Process is
Element Index : Buf.Buffer Index;
Priority : Buf.System Priority;
Destination : Buf.Port Adr;
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begin
loop

In Priority List Monitor.Remove (Element Index);
−− process element Buf.Shared Buffer (Element Index) here
Destination := Buf.Shared Buffer (Element Index).Dest;
Priority := Buf.System Priority (Buf.Shared Buffer (Element Index).Prio)

+ Timer.Dyn Priority Monitor.Count;
Out Priority List Monitor (Destination).Enter (Element Index, Priority);

end loop;
end Data Process;

task body Output Process is
Element Index : Buf.Buffer Index;

begin
loop

Out Priority List Monitor (Port).Remove (Element Index);
−− send Buf.Shared Buffer (Element Index) as packet to port specified by variable Port here
Buffer Guard Monitor.Release (Element Index);

end loop;
end Output Process;

end Tasks;

with Buf, Tasks, Timer;
procedure Main is
begin

−− initialize protected types:
Tasks.Buffer Guard Monitor.Initialize;
Tasks.In Priority List Monitor.Initialize;
for I in Buf.Port Adr loop

Tasks.Out Priority List Monitor (I).Initialize;
end loop;
Timer.Dyn Priority Monitor.Initialize;
−− start tasks:
declare

Input Process 1 : Tasks.Input Process (1);
Input Process 2 : Tasks.Input Process (2);
Input Process 3 : Tasks.Input Process (3);
Input Process 4 : Tasks.Input Process (4);
Input Process 5 : Tasks.Input Process (5);
Input Process 6 : Tasks.Input Process (6);
Input Process 7 : Tasks.Input Process (7);
Input Process 8 : Tasks.Input Process (8);

Output Process 1 : Tasks.Output Process (1);
Output Process 2 : Tasks.Output Process (2);
Output Process 3 : Tasks.Output Process (3);
Output Process 4 : Tasks.Output Process (4);
Output Process 5 : Tasks.Output Process (5);
Output Process 6 : Tasks.Output Process (6);
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Output Process 7 : Tasks.Output Process (7);
Output Process 8 : Tasks.Output Process (8);

Data Process : Tasks.Data Process;
Timer Process : Timer.Timer Process;

begin
null; −− null statement as in RavenSPARK

end;
end Main;

A.2 Proof Rules

rule family setfun:
set insert(S,E) requires [ S:any, E:i ] &
set delete(S,E) requires [ S:any, E:i ] &
set member(S,E) requires [ S:any, E:i ] &
set element(E) requires [ E:i ] &
empty set requires [ ].

setfun(1): set insert(S,E) may be replaced by S \/ (set [E]).
setfun(2): set delete(S,E) may be replaced by S \ (set [E]).
setfun(3): set member(S,E) may be replaced by E in S.
setfun(4): set element(E) may be replaced by (set [E]).
setfun(5): empty set may be replaced by (set []).

rule family stacks:
ptr(S) requires [ S:any ] &
max ptr(S) requires [ S:any ] &
ptr in range (S) requires [ S:any ] &
empty(S) requires [ S:any ] &
full(S) requires [ S:any ] &
stacks ptr in range(S) requires [ S:any ] &
stacks empty(S) requires [ S:any ] &
stacks full(S) requires [ S:any ].

stacks(1): ptr(S) may be replaced by fld pointer(S).
stacks(2): max ptr(S) may be replaced by fld max(S).
stacks(3): ptr in range(S) may be replaced by

fld pointer(S) >= 1 and fld pointer(S) <= fld max(S) + 1.
stacks(4): empty(S) may be replaced by fld pointer(S) = 1.
stacks(5): full(S) may be replaced by fld pointer(S) = fld max(S) + 1.

stacks(6): stacks ptr in range(S) may be replaced by
stacks ptr(S) >= 1 and stacks ptr(S) <= stacks max ptr(S) + 1.

stacks(7): stacks empty(S) may be replaced by stacks ptr(S) = 1.
stacks(8): stacks full(S) may be replaced by stacks ptr(S) = stacks max ptr(S) + 1.

rule family buffer guard:
f(F,P) requires [ F:any, P:i ] &
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buffer guard invariant(S) requires [ S:any ] &
can be released(S,E) requires [ S:any, E:i ] &
A \/ B requires [ A:any, B:any ] &
A \ B requires [ A:any, B:any ] &
A in B requires [ A:any, B:any ] &
element(A,B) requires [ A:any, B:any ] &
A < B requires [ A:ire, B:ire ].

buffer guard(1): f(F,P) \/ (set [E]) may be replaced by f(update(F,[P],E),P+1)
if [ E not in f(F,P) ].

buffer guard(2): f(F,P) \ (set [element(F,[P−1])]) may be replaced by f(F,P−1)
if [ element(F,[P−1]) in f(F,P) ].

buffer guard(3): element(F,[J]) in f(F,P) may be deduced from [ J>=1, J<P ].

buffer guard(4): buffer guard invariant(S) may be replaced by
stacks ptr in range(fld stack(S))
and stacks max ptr(fld stack(S)) = conf buffer size.

buffer guard(5): can be released(S,E) may be replaced by
E not in f(fld free list(S),stacks ptr(fld stack(S)))
and not stacks full(fld stack(S)).

rule family priority list:
l(L) requires [ L:any ] &
sorted(L) requires [ L:any ] &
loop condition(L,I) requires [ L:any, I:any ] &
min(X) requires [ X:any ] &
priority list invariant(S) requires [ S:any ] &
can be removed(S,E) requires [ S:any, E:i ] &
A \/ B requires [ A:any, B:any ] &
A \ B requires [ A:any, B:any ] &
A in B requires [ A:any, B:any ] &
set A requires [ A:any ] &
element(A,B) requires [ A:any, B:any ] &
update(A,B,C) requires [ A:any, B:any, C:any ] &
A < B requires [ A:ire, B:ire ] &
for all(A,B) requires [ A:any, B:any ].

priority list(1): buf ext in l(L) may be deduced.
priority list(2): fld suc(element(L,[I])) in l(L) may be deduced from [ I in l(L) ].
priority list(3): for all(x : integer, x in l(L) −> I <> x) may be deduced from [ I not in l(L) ].
priority list(4): l(L) \/ (set [E]) & l(update(L,[I],upf suc(element(L,[I]),E)))

are interchangeable
if [ I in l(L), E not in l(L), fld suc(element(L,[E])) = fld suc(element(L,[I])) ].

priority list(5): l(L) \ (set [E]) & l(update(L,[I],upf suc(element(L,[I]),fld suc(element(L,[E])))))
are interchangeable
if [ I in l(L), E in l(L), fld suc(element(L,[I])) = E ].

priority list(6): l(update( , [buf ext], upf suc( , buf ext))) & (set [buf ext])
are interchangeable.
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priority list(7): l(update(L,[I], )) & l(L) are interchangeable if [ I not in l(L) ].

priority list(8): sorted(update(L,[I],upf suc(element(L,[I]),E))) & sorted(L)
are interchangeable
if [ I in l(L), E not in l(L),

fld suc(element(L,[E])) = fld suc(element(L,[I])),
(I = buf ext or fld pri(element(L, [I])) <= fld pri(element(L,[E]))),
fld pri(element(L,[E])) <= fld pri(element(L,[fld suc(element(L,[I]))]))

].
priority list(9): sorted(update(L,[I],upf suc(element(L,[I]),fld suc(element(L,[E])))))

may be replaced by sorted(L)
if [ I in l(L), E in l(L), fld suc(element(L,[I])) = E ].

priority list(10): sorted(update( ,[buf ext],upf suc( ,buf ext))) may be deduced.
priority list(11): sorted(update(L,[I], )) & sorted(L) are interchangeable if [ I not in l(L) ].
priority list(12): for all(x : integer, x in l(L) and x <> buf ext −>

fld pri(element(L,[x])) <= fld pri(element(L,[fld suc(element(L,[x]))])))
may be deduced from [ sorted(L) ].

priority list(13): min(L) may be replaced by
fld pri(element(L,[fld suc(element(L,[buf ext]))])) if [ sorted(L) ].

priority list(14): loop condition(L,fld suc(element(L,[buf ext]))) may be deduced.
priority list(15): loop condition(L,fld suc(element(L,[I]))) may be deduced from

[ loop condition(L,I), fld pri(element(L,[I])) < priority, I <> buf ext ].
priority list(16): fld pri(element(L,[I])) < priority may be deduced from

[ loop condition(L,fld suc(element(L,[I]))), I <> buf ext ].

priority list(17): priority list invariant(S) may be replaced by
sorted(fld list(S))
and fld pri(element(fld list(S), [buf ext])) = buf system priority last.

priority list(18): can be removed(S,E) may be replaced by E not in l(fld list(S)).

A.3 Examiner Configuration

package Standard is
type Integer is range −2147483648 .. 2147483647;
type Long Long Integer is range −9223372036854775808 .. 9223372036854775807;

end Standard;

A.4 Checker Configuration

set auto done to on.
set simplify in infer to on.
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A.5 Additional Material

Additional material of this work can be downloaded from the following World Wide
Web address:

http://www.fmi.uni-passau.de/∼haller/coco.tar.gz

The archive contains

• the source code of Coco,

• the source code of the pre-processor with pre-generated scanner source code,

• the pre-processed source code of Coco,

• the output and log files generated by the Examiner,

• the output and log files generated by the Simplifier,

• the proof command logs for the Checker,

• the output and log files generated by the Checker and

• the environment configuration files.

http://www.fmi.uni-passau.de/~haller/coco.tar.gz
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