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Abstract

Performance portability is a huge problem when parallelizing an
application. Practically, the source codes for parallel systems are
strongly adapted to the available hardware and therefore the per-
formance of the application is tightly coupled to a single machine.
This dependency can be weakened by transferring the necessity for
strong adaptions from the application code to a framework, which
acts as an additional layer between the user application and the
hardware. Moving to a new system then only requires the adaption
of a single framework and leave all other source code untouched.

For application codes fitting the polyhedron model, this thesis
introduces a new way to generate automatically the program code
specific for a parallelization framework. A generator was devel-
oped, which only requires a sequential version of the application
code to create architecture independent methods required by the
framework in order to execute the application in parallel. The gen-
erated code is also able to exploit the communication required on
distributed memory systems in order to apply layout optimiza-
tions, which leads to an additional speedup on top of the paral-
lelization itself.
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1 Introduction

One of the first decisions when parallelizing an application is to choose a program-
ming language. If the target hardware uses shared memory, OpenMP can be a good
choice. But OpenMP is not able to handle communication between different nodes
on a cluster. So, for best performance on varying hardware, the algorithm must be
ported to different parallel languages and, in practice, it is also closely adapted to
a single target machine. In this case, the so-called performance portability problem
appears every time the hardware changes.

One solution for this dilemma would be to use an automatic parallelization tool
and/or a parallelizing compiler. But such a tool or compiler will be very complex,
if it has to generate code suitable to the large number of architectures available.

Another approach is to use a framework as an additional layer between the appli-
cation code and the parallel hardware, which encapsulates the choice of the used
parallel languages and paradigms that fits best to the used machine. Based on
this, the programmer has to provide a more abstract and architecture independent
code using a special pattern, whereas the framework is the only part which is com-
pletely adapted to the actual hardware. When moving to another machine, none of
the application codes need to be touched, only the framework must be ported and
optimized again.

Given such a framework, a next possible step is to generate the application code
for the framework automatically, starting with a simple sequential version. This
part – the code generation for the framework based on the polyhedron model –
is the main task of this thesis. Such a parallelization framework requires specific
methods for, e.g., preparing the input to communicate all required data to the
nodes, or to divide the computation in order to execute it in parallel. This infor-
mation can be computed completely automatically, if the application code can be
represented using the polyhedron model.

Therefore, a generator was developed, which only takes a sequential version or
a polyhedron description of the application code and automatically generates all
required methods for a parallelization framework. Chapter 2 provides a brief intro-
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duction into the used libraries, the DKU pattern for the parallelization framework
and the polyhedron model, which is used by the generator to perform all transfor-
mations and optimizations in. An overview over the usage of both the generator
and the DKU framework is given in Chapter 3, while Chapters 4 and 5 describe
the internals of both in more detail. Chapter 6 presents and explains some strange
effects that appeared during the implementation and testing of the generator. The
performance achieved, when using the automatically generated application code
with the DKU framework, is also discussed in this chapter. Finally, Chapter 7 sum-
marizes the results and discusses future work.

8



2 Background

2.1 Polyhedron Model

Many techniques used to optimize and parallelize loop nests modify the source
code of the loop structure. Different and more powerful approaches are based on
mathematical models and therefore, they do not need the textual structure of the
source code. The polyhedron model [FL11] serves as an abstract representation of
a loop program. The first usage of this model in a loop parallelization context was
presented by Lengauer in 1993 [Len93]. In contrast to previous loop parallelization
techniques, it is based on a mathematical model using polyhedra. This allows more
powerful transformations than text-based approaches and it has evolved even fur-
ther since then.

Unlike other models, such as abstract syntax trees, its basic component is a state-
ment instance, i.e., one specific execution of a statement. Each instance is repre-
sented by a node in the computation graph, which is associated with a point~i ∈ Zd.
The components of this so-called iteration vector correspond to the values of the it-
erator variables of the d loops surrounding the statement this instance belongs to.
The vector~i is also the position of the statement instance in the computation graph.

In addition to the loop variables, the model also contains structure parameters,
which typically correspond to the problem size. For example the numbers of rows
and columns for both input arrays of a matrix multiplication are denoted by struc-
ture parameters. They are unknown at compile time, as the size typically varies for
different invocations, but they are constant at run time.

If each loop bound of a loop nest is an affine inequation in the surrounding loop
variables and structure parameters, the set of instances depicts a Z-polyhedron, the
so called iteration domain of the loop program. A Z-polyhedron is the intersection
of a (rational) polyhedron with Zd or a lattice, so it contains only integral points.
This enables a compact representation, which is independent from the number of
loop iterations or the runtime values for the structure parameters.

9



1 for (int i = 0; i < n; ++i) {
2 for (int j = 0; j <= i; ++j) {
3 S: A[i] = .5 * A[i] + B[j];
4 }
5 }

(a) Simple input code

i

j

(b) Iteration domain and depen-
dences of the input code

Figure 2.1: Polyhedron model of a simple loop nest

Consider the source code of Figure 2.1a. The loop program consists of a single
statement S which is enclosed by two loops and its iteration vector is therefore
~i = (i,j)>. According to the loop bounds the iteration domain of this statement
is defined by the constraints

0 ≤ i < n, 0 ≤ j ≤ i,

where n is a constant structure parameter. The computation graph of this iteration
domain for n = 5 is depicted in Figure 2.1b.

In addition to the iteration domain, the execution order of the statement instances
must also be specified for a complete and well-defined model of the input program.
As a statement instance cannot be executed before itself, the ordering must be strict
and it is represented as directed edges in the computation graph. In the case of a
sequential program, every pair of different instances can be ordered, which leads
to a total ordering. If the loop nest should be executed in parallel, the total ordering
must be replaced by a partial one, as two parallel instructions can be executed in an
arbitrary ordering, or completely simultaneously.

This leads to the new problem of finding an appropriate ordering, which has
enough parallelism to utilize as much parallel execution units as possible without
changing the result of the loop nest. A common approach to deal with this is to
use the dependences between the instances which was first formulated by Bern-
stein [Ber66].
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Definition 1 (Dependence) Two different instances u and v are said to be in dependence
iff both access the same memory cell and at least one of them modifies it.

Therefore, if u and v are executed in the same sequence as given by the initial total
ordering, their result is guaranteed to be identical with the sequential version. Uti-
lizing this, the orderding deduced by the dependencies of the statement instances
along with the original iteration domain describe a parallel program that leads to
the same result as the sequential version.

Consider again the loop code of Figure 2.1a. The array elements A[i] are up-
dateded for each value of j, i.e. they depend on the old value and therefore all
modifications of one sepcific array cell must not be interchanged. In particular, all
instances with the same value for i are in dependence. According to the original,
sequential version, every instance (i,j)> depends on and must be executed after
the instance (i,j-1)>, if it exists. Although the elements of the array B are also
accessed multiple times, this need not be considered here as there is no write access
to B. The dependences are also shown in Figure 2.1b.

As long as both loop bounds and array subscripts are affine relations in the loop
variables and additional structure parameters, all dependencies can be efficiently
computed using integer linear programming tools [Fea91].

In contrast to work directly with a relation representing the ordering for the pro-
gram, it is more handy to use a mapping from the iteration domain to a multidimen-
sional virtual time Zt for an arbitrary t. The idea of this mapping is to transform
the iteration domain in a way such that the resulting virtual time is totally ordered
using the lexicographical ordering <lex. For all~a,~b ∈ Zt the following equivalence
holds:

~a <lex ~b ⇔ ∃m ≥ 0 : ∀i < m : ai = bi ∧ am < bm.

Such a mapping is called a schedule for a given statement. A valid parallel schedule
for the example of Figure 2.1 is (i,j)> → j, as all values for i can be executed
simultaneously and the j-loop must remain sequential.

2.2 Integer Set Library

The Integer Set Library (isl) [Ver10] is today one of the most frequently used C
libraries when working with the polyhedron model. It can efficiently handle inte-
ger sets and relations bounded by affine inequalities. Operations for manipulating
them are for example set/map union, intersection, or coalescing.
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The library is also able to deal with unknown but constant parameters and ex-
istentially quantified variables. The latter are e.g. used to model holes in a Z-
polyhedron. Consider for example the simple loop:

for (int i = 0; i < n; i += 2)
T: A[i] = 0;

A first attempt to model the iteration domain of statement T is with the constraint
0 ≤ i < n, but this covers odd values for i, too. Actually it is not possible to
describe the iteration domain of this example without any extensions to the model.
To deal with this, isl uses existentially quantified variables, which do not modify the
shape of the polyhedron, but the integral points inside it. A valid iteration domain
can then be represented by the constraints: 0 ≤ i < n ∧ ∃a ∈ Z : 2 · a = i.

Back to the example of Figure 2.1, the iteration domain of statement S can be
written in isl syntax as follows:

[n] -> { S[i, j] : 0 <= i and i < n and 0 <= j and j <= i }

In this example, n is a structure parameter which denotes the size of both arrays.
In isl syntax, structure parameters of a set are placed in front of it. Sets can also
be named, which is done by adding a label before the domain vector. In the given
example, the tuple is named “S”.

Relations are denoted very similiar in isl. The only difference is that there is
not only a domain vector, but also a range vector in front of the constraints. Both
vectors may be labeled and they are connected by an ASCII arrow. The schedule
for the given code of Figure 2.1a can be denoted in isl syntax as follows:

[n] -> { S[i, j] -> [i, j] }

In addition to some basic methods to inspect and manipulate sets or maps, isl also
offers higher level functions used in loop/compiler optimization like performing a
dependence analysis or computing an optimal schedule for the given constraints.
As all computations are performed with GMP [Gt12], the library can deal with ar-
bitrary sized integers.

isl provides access to extended functionality through the use of other libraries,
e.g. barvinok, a library for counting the number of integer points in a polyhedron,
or the iscc calculator, which provides an easy to use interface due to its very high
abstraction level.
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1 [n] -> { S[i, j] : j <= i and i <= -1 + n and j >= 0 }
2 [n] -> { S[i, j] -> [0, i, 0, j, 0] }
3 =
4 [n] -> { S[i, j] -> A[i] }
5 read: 0
6 write: 1
7 +
8 *
9 0.5

10 [n] -> { S[i, j] -> A[i] }
11 read: 1
12 write: 0
13 [n] -> { S[i, j] -> B[j] }
14 read: 1
15 write: 0

Figure 2.2: Model of statement S from Figure 2.1a, extracted with pet.

2.3 Polyhedral Extraction Tool

The Polyhedral Extraction Tool (pet) [VG12] is designed to extract a polyhedral rep-
resentation from C source code. In contrast to other tools, pet does not have its own
C parser. It uses LLVM’s C frontend clang instead and the polyhedral description
is extracted directly from the high-level abstract syntax tree. This grants pet full
support of C99 and, therefore, it can deal with, e.g., variable-length arrays. The
user can also benefit from the very nice warnings and error messages that clang
generates.

The extracted polyhedral representation is stored by the isl (cf. Section 2.2). For
each statement, pet returns an abstract syntax tree of the statement’s code along
with the corresponding iteration domain and schedule. Additionally all array ac-
cesses are represented by a mapping from the iteration domain to the actual index
and the type of the access, which denotes if it as a read or write access (or both).
Therefore, transformations of the access relations are also possible, which reduces
the effort of, e.g., memory layout optimizations.

Consider again the sample code of Figure 2.1a, the extracted representation of
statement S is shown in Figure 2.2. The first line shows the iteration domain and is
identical to the representation shown in Section 2.2. (The missing constraint 0 < i

can be deduced from 0 < j and j <= i and is therefore not needed.) Line 2
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S[i, j] -> [0, i, j];
T[i, j] -> [1, i, j];

1 for (int i = ...)
2 for (int j = ...)
3 S(i, j);
4 for (int i = ...)
5 for (int j = ...)
6 T(i, j);

(a) Constant output dimension in first position.

S[i, j] -> [i, 0, j];
T[i, j] -> [i, 1, j];

1 for (int i = ...) {
2 for (int j = ...)
3 S(i, j);
4 for (int j = ...)
5 T(i, j);
6 }

(b) Constant output dimension between others.

S[i, j] -> [i, j, 0];
T[i, j] -> [i, j, 1];

1 for (int i = ...) {
2 for (int j = ...) {
3 S(i, j);
4 T(i, j);
5 }
6 }

(c) Constant output dimension in last position.

Figure 2.3: Effect of additional constant output dimensions for the schedule.

contains the schedule for statement S. As the surrounding loops scan the iteration
domain in a lexicographic order, the schedule can be an identity map.

In a general situation of more than one statement, the schedule must not only
specify the ordering of the instances for each statement separately but also between
all statements. An easy way to achieve this is to add additional output dimensions
to the schedule mapping. Consider the examples of Figure 2.3, as the instances
are scanned in a lexicographic ordering after applying the schedule map to the
iteration domain, different values of an additional constant dimension can be seen
as different loop nests for the following inner loops.

The last lines of Figure 2.2 define the structure of the statement using an abstract
syntax tree and, as already mentioned, array accesses are represented by an isl map.
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1 #define S(i,j) A[i] = .5 * A[i] + B[j]
2

3 for (c2=0;c2<=n-1;c2++) {
4 for (c4=0;c4<=c2;c4++) {
5 S(c2,c4);
6 }
7 }

Figure 2.4: Loop code generated by CLooG using the model from Figure 2.2.

2.4 Chunky Loop Generator

CLooG is a tool to generate loop code for scanning integer polyhedra [Bas04]. Orig-
inally it was designed to resolve the loop generation problem, which was one of
the main challenges for compilers when using the polyhedron model. That is, pre-
viously known algorithms for generating target code either require severe restric-
tions on the schedule, which limits the possibility for optimizations, or they are
simply too expensive to be included in real-life compilers. Beside preventing these
problems, the generated code is also trimmed for efficiency, i.e., control overhead
is avoided wherever possible. Therefore, CLooG does not create a loop with only
one iteration (if this can be determined statically) and, in general, it can completely
unroll loops with only few iterations. The resulting code is also valid C code, as-
suming methods or preprocessor definitions for min, max, floord, and ceild are
available.

Lines 3 – 7 in Figure 2.4 show the generated C code when running CLooG with
the model from Figure 2.2. CLooG does not know the actual code for the state-
ment, so it adds a call to the statement label. The parameters for this invoka-
tion are specified by the iteration domain and any transformation given by the
schedule is revoked, i.e. if for example the schedule interchanges both loops (e.g.
with [n] -> { S[i, j] -> [0, j, 0, i, 0] }) the corresponding call in
the generated code would be S(c4,c2);.

As already mentioned the statement code must be inserted manually, which can
be easily accomplished by using a preprocessor macro as depicted in the first line of
Figure 2.4. This works fine, if the macro inserts only a single statement, but in more
complex situations, it can lead to invalid C code; encapsulating the statements in
a do { ... } while(0) block is more fail-safe and should be preferred when
automatically generating code.
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2.5 DKU Pattern

DKU is the short form for “Divider, Kernel, Undivider”, which is the the core part
of this pattern [HC09]. As the name suggests, it is a variant of a divide and con-
quer approach. The programmer has to provide equally named methods for these
routines, so the framework is able to encapsulate the code concerning parallelism
and all related constructs to deal with performance portability problem. Therefore,
the main idea of this pattern is to adapt only the framework to the actual hardware
and to keep the application code untouched. That is, when updating the hardware
or even when switching to a new architecture only the framework has to be ported
and all application code can be reused.

In DKU, computations are represented as pieces where each piece contains a user
pointer to access all required application specific data, including all information
about its computation size. All user methods provided to the framework operate
on these.

The divider’s task is to split the given piece in a set of disjoint, (ideally) equally
sized subpieces, concerning the work load of the computation. The desired number
of subpieces is passed along with the piece itself to the user method. The only con-
straint is that the generated subpieces define computations with no dependencies
in between, i.e. with no synchronization or any need for communication.

After splitting the computation using the divider, the kernel is called once for
each generated subpiece. Each of them is computed by one thread, so the user
code for the kernel should be purely sequential. Therefore, the programmer does
not need to know anything about parallel constructs like OpenMP1 or MPI2. The
parallelization part is completely hidden within the framework.

Each kernel computes one part of the result and the undivider must ensure the
root piece contains the whole result at the end. Therefore, the undivider is called
once for each subpiece and its input is the subpiece itself and its corresponding
parent. Both pieces are allowed to share the same memory area for the result, so
in this case the programmer may provide an empty undivider. (Disregarding the
memory management.)

Figure 2.5 shows a complete example of how the DKU Pattern can be used to
parallelize a matrix multiplication.

1 Open Multiprocessing (http://openmp.org/wp/)
2 Message Passing Interface (https://www.mcs.anl.gov/research/projects/mpi/)
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1 struct Matrices {
2 int acRows, bcCols, aCols_bRows;
3 int cBeginRow, cEndRow, cBeginCol, cEndCol; // cEndRow and Col exclusive
4 float *A, *B, *C;
5 };
6

7 void Divider(struct DKU_Piece *p, int n,
8 struct DKU_Piece **sub_ps, int *nr_sub_ps) {
9 // find largest m <= n such that m = 2^b for a natural b

10 int b = 0;
11 while ((n >>= 1) > 0) ++b;
12 *nr_sub_ps = 1 << b;
13

14 struct Matrices *mats = p->user;
15 int cRowLen = mats->cEndRow - mats->cBeginRow;
16 int cColLen = mats->cEndCol - mats->cBeginCol;
17

18 int x = 1 << (b/2), y = (1 << b) / x;
19 for (int i = 0; i < x; ++i)
20 for (int j = 0; j < y; ++j) {
21 *sub_ps = DKU_Piece_alloc();
22 struct Matrices *sub_mats = (*sub_ps)->user = malloc(sizeof(mats));
23 sub_ps++;
24 memcpy(sub_mats, mats, sizeof(struct Matrices));
25

26 sub_mats->cBeginRow += i * cRowLen / x;
27 sub_mats->cEndRow = sub_mats->cBeginRow + cRowLen / x;
28 sub_mats->cBeginCol += j * cColLen / y;
29 sub_mats->cEndCol = sub_mats->cBeginCol + cColLen / y;
30 }
31 }
32

33 void Kernel(struct DKU_Piece *p) {
34 struct Matrices *mats = p->user;
35 float *A = mats->A, *B = mats->B, *C = mats->C;
36 int acRows = mats->acRows, bRows = mats->aCols_bRows;
37

38 for (int i = mats->cBeginRow; i < mats->cEndRow; ++i)
39 for (int j = mats->cBeginCol; i < mats->cEndCol; ++j)
40 for (int k = 0; k < mats->aCols_bRows; ++k)
41 C[i * acRows + j] += A[i * acRows + k] * B[k * bRows + k];
42 }
43

44 void Undivider(struct DKU_Piece *p, struct DKU_Piece *sub) {
45 free(sub->user);
46 DKU_Piece_free(sub);
47 }

Figure 2.5: Simple example for the methods the user has to provide to compute the
matrix multiplication with DKU. (Assuming matrix C can be divided
without any remainder.)
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1 void schedule(struct DKU_Piece *p) {
2 struct DKU_Piece *sub_ps[nr_cpus];
3 int nr_sub_ps;
4

5 Divider(p, nr_cpus, &sub_ps, &nr_sub_ps);
6

7 #pragma omp parallel for
8 for (int i = 0; i < p->nr_sub_ps; ++i) {
9 Kernel(sub_ps[i]);

10 Undivider(p, sub_ps[i]);
11 }
12 }

Figure 2.6: Simple OpenMP scheduler for a DKU framework.

As a DKU_Piece can hold exactly one pointer for the whole user data, the first
part is the definition of a structure to encapsulate all data, which is needed by the
user methods.

The most complicated method is the divider. Its task is to divide the computation
optimally. In a standard matrix multiplication, all elements of the result matrix
can be computed independently and, therefore, both loops iterating over either the
rows or the columns of this matrix can be split. If the divider is asked to generate
n subpieces, it has to find two natural numbers x,y ∈ N such that x · y is close to
n. For the sake of convenience, the shown divider uses a quite simple heuristic to
compute these values, assuming n is a power of 2.

The next method presented is the kernel. It extracts relevant data from the piece
and then computes the result for the specified part of the computation, which is in
this example a submatrix of C. It can be easily seen that all pieces can be computed
simultaneously by invoking the kernel multiple times in parallel.

The last method needed is the undivider. As all pieces share the same memory
location for the result matrix, the undivider need not collect any data. Only memory
management is left for this method.

Figure 2.6 shows a small scheduler for a DKU framework. After dividing the
input the subpieces are executed by multiple OpenMP threads on a shared memory
architecture.

An extension to distributed memory systems is a bit more complex and requires
the programmer to provide four additional methods, namely BundleInput, Un-
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bundleInput, BundleResult, and UnbundleResult. Distributed memory ar-
chitectures require data transfer for both input and result. In case of MPI, the com-
munication must be performed explicitly by the scheduler and therefore both input
and result must be bundled before and unbundled after the transfer. As the frame-
work itself does not know anything about the actual user data, this part has to be
done by the user.

An extension to the aforementioned matrix multiplication example can be seen in
Figure 2.7. The BundleInput method first computes the space for the whole input
and copies all data to the newly allocated memory. As the kernel requires only a
part of the input matrices, an obvious optimization would be to store submatrices
of A and B in the generated bundle to reduce the communication overhead, but
for lack of space and a better comprehensibility the complete matrices are copied
here. The scheduler is then able to transfer the bundle to another node, which can
restore the input using the UnbundleInput method. After invoking the kernel,
the result must be bundled again using BundleResult and communicated back
to the master, which uses the UnbundleResult method to merge all parts of the
result. The result bundle can be optimized again by only transferring the computed
submatrix and not the whole C.
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1 void BundleInput(struct DKU_Piece *p, void **bundle, int *size) {
2 struct Matrices *mats = p->user;
3 int sizeA = mats->acRows * mats->aCols_bRows * sizeof(float);
4 int sizeB = mats->aCols_bRows * mats->bcCols * sizeof(float);
5 *size = 7 * sizeof(int) + sizeA + sizeB;
6

7 *bundle = malloc(*size); int *b_int = *bundle;
8 b_int[0] = acRows; b_int[1] = bcCols; b_int[2] = aCols_bRows;
9 b_int[3] = cBeginRow; b_int[4] = cEndRow;

10 b_int[5] = cBeginCol; b_int[6] = cEndCol;
11

12 char *b_char = (char *) (b_int + 7);
13 memcpy(b_char, mats->A, sizeA); b_char += sizeA;
14 memcpy(b_char, mats->B, sizeB);
15 }
16

17 void UnbundleInput(void *bundle, int size, struct DKU_Piece *p) {
18 struct Matrices *mats = p->user = malloc(sizeof(struct Matrices));
19 int *b_int = bundle;
20 mats->acRows = b_int[0]; mats->bcCols = b_int[1];
21 mats->aCols_bRows = b_int[2];
22 mats->cBeginRow = b_int[3]; mats->cEndRow = b_int[4];
23 mats->cBeginCol = b_int[5]; mats->cEndCol = b_int[6];
24

25 int lenA = mats->acRows * mats->aCols_bRows;
26 int lenB = mats->aCols_bRows * mats->bcCols;
27 int lenC = mats->acRows * mats->bcCols;
28

29 mats->A = (float *) (b_int + 7);
30 mats->B = mats->A + lenA;
31 mats->C = malloc(lenC * sizeof(float));
32 }
33

34 void BundleResult(struct DKU_Piece *p, void **bundle, int *size) {
35 struct Matrices *mats = p->user;
36 *size = mats->acRows * mats->bcCols * sizeof(float); // only C needed
37 *bundle = malloc(*size);
38 memcpy(*bundle, mats->C, *size);
39 free(mats->C);
40 }
41

42 void UnbundleResult(void *bundle, int size, struct DKU_Piece *p) {
43 struct Matrices *mats = p->user;
44 float *res = bundle;
45 for (int i = mats->cBeginRow; i < mats->cEndRow; ++i)
46 for (int j = mats->cBeginCol; i < mats->cEndCol; ++j)
47 mats->C[i * mats->acRows + j] = res[i * mats->acRows + j];
48 }

Figure 2.7: Bundle and unbundling methods for the matrix multiplication example
of Figure 2.5.
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3 Overview

This chapter provides a brief overview of the procedure and the data flow when
implementing a new program with the DKU framework using the generator. The
simplified process is shown in Figure 3.1.

3.1 Generator

Frontend The generator takes two input files:

• a C99 source file, containing the application kernel code,

• a desired memory layout transformations in isl syntax (optional).

The first obligatory input is a source file, which contains a sequential version of
the loop program that should be executed in parallel using the DKU framework.
As the input file is parsed by LLVM’s C-frontend clang, the input must be a valid
C99 file. Simplifications for the input, which are not specified by the standard, such
as writing only the loop nest and omitting the method signature, are not permitted.
In order to specify which part of the input code should be considered, the loop
nest must be surrounded by #pragma scop and #pragma endscop. Variables
have to be defined outside this block, apart from the loop iterator definitions in the
header of for loops.

Beside the input code for the algorithm itself, the user is allowed to pass another
file containing only an isl map in isl syntax, which represents a layout transfor-
mation for the used arrays. If no transformation is needed, the parameter for the
frontend can be omitted, or an empty map, denoted by {}, may be passed. As the
bundling methods need to copy the arrays anyway, it is easily possible to change
their layout here in order to improve the performance of the kernel code. But on
a shared memory system, it may be sufficient to simply divide the input and start
the actual computation without any communication overhead. Therefore neither
of the bundle methods is invoked and the used kernel must be able to deal with
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the original array layout. This enforces the generator to create two different kernel
methods, because a layout transformation may change the type of an input array,
e.g. when transposing a rectangular, non-squared matrix, but C requires the types
of variables to be fixed not later than at compile time.

The extracted polyhedral representation of the input code mainly consists of two
parts:

• one array, that contains all used arrays of the input code and

• another array, that holds all statements of the loop nest.

Each statement contains its iteration domain and schedule. The first is represented
by an isl set, the latter by an isl map. The actual statement code is represented by
an abstract syntax tree, which contains isl maps to represent array accesses. These
relations map from the iteration domain to the index vector, which is used to access
the memory. The extracted polyhedral description is then transformed to the input
for the generator, which is close to the data structure pet returns. A more detailed
description of the input can be found in Section 5.1.

Optimizations The next task that the generator executes contains polyhedral op-
timizations, as depicted in Figure 3.1. The generator uses isl to perform a depen-
dence analysis on the representation. The results are then used to compute an op-
timal schedule utilizing the built-in scheduler of isl. Based on this schedule, a new
iteration domain and a new schedule for the kernel code must be created, which
cover only a subset of the original iteration domain. In order to delimit the domain
of the isl set, new parameters for the loop bounds have to be introduced. Section 5.2
provides more information about the polyhedral optimizations, that are performed.

An additional part is to apply the layout transformations for all used arrays. This
implies to modify the statements itself and also to adjust the bundle methods to
ensure they perform the transformations when creating the input bundle and to
revert the layout transformation, when collecting all results. A new idea of how to
automatically compute a suitable layout transformation is presented in Section 5.3.

Code Generation All computed information is then used to create the source
code for the DKU framework. During this process, the polyhedral code generator
CLooG is invoked multiple times. The following files are generated here:
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header The first one created is the header for the application. It contains declara-
tions for all methods of the following files and two structure definitions. One
to encapsulate all user data and another for management information added
by the generator and needed by the following files.

init The initializer introduces all user methods to the framework. Therefore, it has
to be invoked before executing the scheduler.

makeRootDKUPieces This file contains an equally named method that allocates
the first DKU piece based on the user data passed to it.

serialKernel This file contains a fall-back solution for the kernel if only one pro-
cessor is available. The loop code is generated directly with CLooG using the
input model without any transformation or optimization.

kernel Contains two kernel methods: one using the original memory layout, the
localKernel, and one using the optimized layout, the kernel. Analogous
to the serial kernel, the loop nest for the application is generated by CLooG’s
pretty printer.

divider This file contains the methods divide and undivide. The divider is or-
ganized in a way such that all pieces share the same memory for the data. The
undivider only need to free the data structure for the piece.

bundleQuad Contains four bundling methods: bundleInput, unbundleInput,
bundleResult and unbundleResult, can be found in this file. The loop
code to copy from or into the bundle memory is also generated by CLooG.

More information on how these methods are generated can be found in Section 5.4.

3.2 DKU Framework

Initialization After all DKU methods are created, the user is able to call the initial-
izer and the scheduler in order to start the computation (c.f. to edges 0 and 1 from
Figure 3.1).

A first, architecture-independent step is to create the root pieces for the frame-
work. Therefore, the user method makeDKUPieces is invoked (2), which is in gen-
eral allowed to create more then one root piece. They are used to specify and start
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several independent computations at once. But as the user code is generated auto-
matically for exactly one given loop nest by the described generator, this method
only returns a single root piece. However, an extension of the generator, that allows
building more than one root piece is possible.

For parallel systems there are two different architectures that should be discussed
here: distributed and shared memory systems.

General Procedure for Distributed Memory When using any kind of distributed
memory system, the scheduler divides the given piece into as many subpieces as
nodes are available in the network (3). Each subpiece is then bundled using the
bundleInput method (4), which performs a layout transformation to enhance the
cache utilization for the kernel. The created memory blocks are transferred to the
corresponding nodes using explicit MPI sends (5) and the receivers restore their
piece utilizing the unbundleInput method (6). Every node invokes the divider
again to generate pieces for each CPU core (7). Bundling is not necessary for dis-
tributing pieces to cores as the cores of each node have shared memory. It is also
possible to generate more subpieces than computing units are availabe to reduce
the computational effort for a single piece. This may also lead to a better utilization
of the CPU caches, as smaller blocks of the input arrays are needed at once. After
these preparations are done, all kernel invocations – one for each subpiece – are
performed in parallel using OpenMP (8). Then, every node executes the undivider
for each local subpiece (9) and bundles the local result using bundleResult (10).
Every node transferres its bundle to the master (11), which restores the encapsu-
lated result into the corresponding local piece and reverts its memory layout by
calling unbundleResult (12). At last, all received pieces must be undivided (13)
to ensure the user data corresponding to the root piece contains the whole result,
which is now equal to the original, sequential result.

Specialized Scheduler for Shared Memory For an architecture with shared
memory only, every thread is able to access the input data. Therefore, no commu-
nication and no bundling is needed. In-place access to the input data by the cores
implies that memory layout optimizations are not performed, as they are tightly
coupled with the bundling methods. However, a bundling and unbundling step
may be used anyway to integrate a layout transformation, but this may lead to a
performance degradation. In detail, on a shared memory system the scheduler first
divides the root piece in at least as many subpieces as physical or logical cores are
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available and invokes the localKernel once for each piece in multiple OpenMP
threads. The third and last step then undivides all subpiecesafter the computation
has been performed.

Fall-Back Version for Purly Sequential Systems If only one physical proces-
sor is available, the scheduler may use the purely sequential kernel to avoid any
scheduling overhead. In that case the only required method is the serialKernel.
Actually, the serial kernel does not need any DKU piece, only a pointer to the user
data structure itself is passed to it.
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4 DKU Framework

Work on the generator tool started with a prototypical implementation of a frame-
work for the DKU pattern.

Besides the seven methods described in Section 2.5, this implementation of the
DKU framework needs another one to generate all root pieces. Each root piece rep-
resents a new, independent computation, i.e., in the case of a matrix multiplication
example several different multiplications can be specified and scheduled for execu-
tion at once. On the one hand, if the user code for DKU is generated automatically
for a given loop nest, makeRootDKUPieces returns only a single root piece specif-
ing exactly the whole input code. On the other hand, if the user code is modified or
even completely written without the generator, the serialKernel may provide a
version that is optimized on computing several instances at once.

All eight methods must then be introduced to the framework which is done by
passing function pointers to a bunch of initialization methods. As this code is very
generic, the generator encapsulates it in an initializer method to facilitate the use of
the DKU framework.

The first version of the DKU framework was focused on debugging and, there-
fore, no parallel scheduler was included, i.e., all kernels were executed sequentially.
In order to measure the speedup of the generated DKU code, the framework had
to be adapted. The most important part of the modifications was to parallelize the
scheduler, i.e., to enable it to execute all kernels in parallel. There are three ways to
achieve this:

OpenMP First of all, the scheduler could be parallelized using OpenMP. This ap-
proach performs very well on a multicore shared memory architecture, as OpenMP
has quite low overhead. But as this approach is completeley focused on shared
memory, OpenMP provides no mechanism to transfer data using any kind of net-
work.
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MPI The Message Passing Interface (MPI) is a standardized approach to deal with
distributed memory systems. MPI can handle both point-to-point and collective
communication, but in the case of the DKU framework only low-level methods are
needed, as the framework itself does not know anything about the data to trans-
fer. Compared to OpenMP it has also a relatively high overhead. Combining both
OpenMP and MPI is therefore a good choice to deal with clusters consisting of sev-
eral multicore machines and to cover a large set of architectures.

MPI requires an initialization before it can be used (e.g. by calling MPI_Init).
And as the framework is designed to encapsulate even the decision which parallel
language should be used, the initializer void DKU_Init(int *, char ***)

must be invoked before parsing the program parameters and it calls MPI_Init,
if required. The framework also provides a method boolean DKU_isMaster()

to protect code that should be executed only by the master. This is required as
all MPI nodes are started simultanously when launching the program. A delayed
execution of arbitrary nodes is not possible. The presented method enables the user
for example to ensure only the master reads or writes files from disk.

GPGPU Beside traditional shared and distributed memory systems, GPGPU is a
fairly new domain in high-performance computing. The DKU framework can also
be adapted to utilize the graphics processing units, if a CUDA1 or OpenCL2 kernel
is available. Although this could lead to a higher performance, an automatic code
generation for all DKU methods would be more complex and therefore only the
composition of OpenMP and MPI was implemented.

Layout Transformations Another contribution is the extension of the DKU pat-
tern by explicitly allowing memory layout transformations. In C, arrays are stored
in row-major order, so accessing them row-wise would lead to a much smaller num-
ber of cache misses than accessing them column-wise. Consider, for example, the
basic matrix muliplication from Figure 4.1. In contrast to the arrays A and C, B is ac-
cessed column-wise, which is more complex for the prefetcher to handle effectively.
One possible solution to deal with this problem is to transpose matrix B. In general
an additional rearranging of the memory layout is expensive and may exceed the
speedup of the actual computation, but in the special case of using a distributed

1 Compute Unified Device Architecture (https://developer.nvidia.com/category/
zone/cuda-zone)

2 Open Computing Language (https://www.khronos.org/opencl/)
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1 for (i = 0; i < r; ++i) {
2 for (j = 0; j < c; ++j) {
3 sum = 0;
4 for (k = 0; k < n; ++k) {
5 sum += A[i][k] * B[k][j];
6 }
7 C[i][j] = sum;
8 }
9 }

Figure 4.1: Matrix Multiplication Kernel

memory architecture all relevant input data must be transferred to the correspond-
ing node. Therefore, the bundle method is called for each subpiece and all relevant
data must be copied anyway, so applying layout transformations here can be done
with relatively low overhead.

Beside the possible performance gain this extension also adds new constraints to
the framework. First of all, as the bundle methods are optional, they may not be
used on a shared memory system, which requires two different kernel methods –
the standard in case of the original memory layout and another for the optimized
one. The framework then chooses the appropriate version depending on the use
of the bundle methods. Another constraint is that the master thread is the only
one allowed to bundle the data and also at most once per call, because the lay-
out transformation is tightly coupled with the bundling for performance reasons as
aforementioned.

In addition to these explicit improvements the framework was cleaned up. All
currently unnecessary preparations for future features were removed in order to
reduce the overhead and enhance the readability.
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5 Generator

The generator is both a software and a library to generate all DKU methods auto-
matically, starting with a rather simple description of the input program. A brief
description of the whole process when using the generator can be found in Chapter
3 and the following sections deliver a deeper insight in all mentioned parts, as well
as the problems which came up during the development.

5.1 Input Description

An early question of the project concerns the description of the algorithm that
should be executed using the DKU framework. There are two different approches
here. First of all, a very flexible one is to read a configuration file which contains all
needed information. All parts of the polyhedral description, as for example, itera-
tion domain or schedule, may be written in isl syntax and other parts like statement
codes or variable definitions can be given as single C statements. A major disad-
vantage here is that the user must be capable of directly formulating the iteration
domain and the schedule of all statemtents in isl syntax. This approach therefore
has a high learning curce and it is rather error-prone.

Second, it is possible to parse a C source file that contains a sequential version of
the algorithm that should be parallelized utilizing DKU. On the one hand, this en-
ables the user to write a simple, sequential C code, which is easier for a programmer
than the first approach. On the other hand, extracting a polyhedral representation
is not as easy as simply parsing a complete polyhedral description, but there are
different libraries to solve this problem. The one used in the generator is the poly-
hedral extraction tool (pet), which is introduced in Section 2.3.

As pet uses a real C compiler to parse the input file, it requires valid C99 source
code. A simple input file for a matrix multiplication example is shown in Figure 5.1.
The model extracted by pet is used to build the data structure for the generator,
which is close to pet’s representation. The generator can also be used as a library
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1 void MM(int r, int c, int n,
2 float A[r][n], float B[n][c], float C[r][c]) {
3

4 float sum;
5

6 #pragma scop
7 for (int i = 0; i < r; ++i) {
8 for (int j = 0; j < c; ++j) {
9 sum = 0.0;

10 for (int k = 0; k < n; ++k)
11 sum += A[i][k] * B[k][j];
12 C[i][j] = sum;
13 }
14 }
15 #pragma endscop
16 }

Figure 5.1: Generator input for the matrix multiplication.

and its input can be created without pet. The internal data structure, which is cre-
ated by the frontend consists of the following parts:

id The DKU framework uses an id to distinguish different application codes. It is
defined in the generator by either an optional argument, or it is derived from
the filename of the sequential input code.

variables This list contains all information about the used variables, as the genera-
tor has to insert code to declare them. In case of multi-dimensional arrays, the
compiler needs – beside the element type – the extent of the outer dimensions
to create code for computing the explicit memory address.

statements Every statement is represented by an abstract syntax tree, which is
similar to the reprensentation pet uses.

output This optional parameter can be used to define which arrays contain the
result of the computation. If no output arrays are defined, the generated code
collects and returns all modified data after the computation. In case of the
matrix multiplication only the result matrix is bundled in the bundleResult
method. But, if there are temporary arrays, whose elements are not needed by
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the caller, they need not be transferred to the master and so the programmer
may use the output parameter to specify this.

In addition to the file containing the input code, the user is also allowed to pass
a second file containing a single isl map, which denotes layout transformations for
all arrays. The frontend uses isl to parse the map and stores every transformation
in the structure for the corresponding variable.

5.2 Polyhedral Optimizations

Dependence Analysis Before any optimization or transformation can be found
or applied, the generator needs to perform a dependence analysis. The dependen-
cies describe an ordering between statement instances, which must not be inter-
changed in order to ensure the result of the program is still valid. A dependence
analysis can be performed using the isl. It provides a method for computing depen-
dencies, given sink and source access relations. Dependencies are called flow
dependencies, if they denote from write accesses to a later read access of the same
memory location and they can be computed by passing write accesses as sources
and reads as sinks. Write accesses for both source and sink lead to so called out-
put dependencies and an invocation with reads for the sources and writes for the
sinks computes anti dependencies. All three types must be considered for all vari-
ables, because each of them involves a memory modification. Memory accesses can
easily be aggregated in a single pass through all statements, as they are represented
by isl relations within the abstract syntax trees.

In addition to the dependencies, this analysis also returns all sink accesses with-
out any source access before. In case of computing flow dependencies, all ele-
ments that are read, but never written before according to the given read and write
accesses, are also returned. The generator uses this information to determine which
arrays contains input values and must therefore be transferred to the corresponding
node.

Scheduling In order to use the DKU framework, at least the outermost loop of the
resulting kernel code must be parallel. Therefore, the given description of the ker-
nel code is passed to the isl scheduler in order to compute an optimal schedule. The
scheduler integrated in isl uses an algorithm which is similar to Pluto’s [BHRS08],
but Feautrier’s scheduling algorithm can be selected as well [Fea92].

33



1 void PP(int na, int nb, double A[na], double B[nb],
2 double C[na + nb - 1]) {
3

4 #pragma scop
5 for (int i = 0; i < na + nb - 1; i++)
6 S0: C[i] = 0.0;
7

8 for (int i = 0; i < na; i++)
9 for (int j = 0; j < nb; j++)

10 S1: C[i+j] += A[i] * B[j];
11 #pragma endscop
12 }

Figure 5.2: Generator input for the polynomial product.

Consider for example the input code from Figure 5.2. The extracted iteration
domain and schedule are:

[na, nb] -> {

S0[i]: i>=0 and i<na+nb-1;

S1[i,j]: i>=0 and i<na and j>=0 and j<nb; }

[na, nb] -> { S0[i] -> [0,i,0]; S1[i,j] -> [1,i,j]; }

The original input does not contain an asynchronous parallelism, apart from the
initialization of the result array C, because different iterations of both the i- and j-
loops in lines 8 and 9 modify the same element of C. This can also be seen, when
inspecting the computed dependencies, as there is a transition from S1 to itself for
different values of the outermost loop iterator i:

[na, nb] -> {

S0[i] -> S1[0,i]: i>=0 and i<nb and na>0;

S0[i] -> S1[i+1-nb,nb-1]: i>=nb and i<na+nb-1 and nb>0;

S1[i,j] -> S1[i+1,j-1]: i>=0 and i<na-1 and j>0 and j<nb;}

A better schedule for this representation can be computed using isl:

[na, nb] -> { S0[i] -> S0[i,0,0]; S1[i,j] -> S1[i+j,i,1]; }

The iteration domain and the optimized schedule still describe the same com-
putations, but the ordering of the statement instances may have changed. This re-
ordering may help to exploit the parallelism of the computation. This new system
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can not be used directly to create the kernel code, as for the outer parallel dimen-
sions, which now might exist, the generator must insert new structure parameters,
which restrict the computation one kernel call has to perform. In order to be able
to delimit individual dimensions, the generator creates a completely new system
for the kernel code by applying the schedule to the iteration domain. This ensures
every loop of the resulting kernel code corresponds to exactly one dimension of
its iteration domain. The new iteration domain and the according schedule for the
kernel is:

[na, nb] -> {

S0[i0,0,0]: i0>=0 and i0<na+nb-1;

S1[i0,i1,1]: i0>=0 and i0<na+nb-1

and i1>=0 and i1>i0-nb and i1<=i0 and i1<na; }

[na, nb] -> {

S0[i0,i1,i2] -> S0[i0,i1,i2];

S1[i0,i1,i2] -> S1[i0,i1,i2]; }

The dependencies for this new system can now be used to determine which dimen-
sions can be executed in parallel (which is explained in the next paragraph):

[na, nb] -> {

S0[i0,0,0] -> S1[i0,0,1]: i0>=0 and i0<nb and na>0;

S0[i0,0,0] -> S1[i0,i0+nb-1,1]:

i0>=nb and i0<na+nb-1 and nb>0;

S1[i0,i1,1] -> S1[i0,i1+1,1]:

i1>=0 and i1>i0-nb and i1<na-1 and i1<i0; }

It is now possible to insert new structure parameters, which represent the new loop
bounds in the resulting kernel code.

The final iteration domain and schedule for the kernel code are then:

[na,nb,_l0,_u0] -> {

S0[i0,0,0]: i0>=0 and i0>=_l0 and i0<na+nb+1 and i0<=_u0;

S_1[i0,i1,1]: i0>=0 and i0>=_l0 and i0<na+nb-1 and i0<=_u0

and i1>=0 and i1>i0-nb and i1<=i0 and i1<na; }

[na,nb,_l0,_u0] -> {

S0[i0, i1, i2] -> S0[i0, i1, i2]: nb+na>1;

S1[i0,i1,i2] -> S1[i0,i1,i2]: nb+na>1; }
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1 if ((na >= 1) && (nb >= 1)) {
2 for (c1=max(0,_l0);c1<=min(_u0,na+nb-2);c1++) {
3 S_0(c1,0,0);
4 for (c2=max(0,c1-nb+1);c2<=min(c1,na-1);c2++)
5 S_1(c1,c2,1);
6 }
7 }
8 if (nb <= 0)
9 for (c1=max(0,_l0);c1<=min(_u0,na+nb-2);c1++)

10 S_0(c1,0,0);
11 if (na <= 0)
12 for (c1=max(0,_l0);c1<=min(_u0,na+nb-2);c1++)
13 S_0(c1,0,0);

Figure 5.3: Generated loop nest for kernel using the input as depicted in Figure 5.2.

The resulting loop nest generated by CLooG for this system is shown in Fig-
ure 5.3.

Finding Parallelism In a next step, the generator needs to know how many of
the outer loops can be split by the divider, or in other words, the number of outer
dimensions that do not carry any dependency. But to determine this, not all depen-
dencies are relevant. Consider again the source code of Figure 5.1, the local variable
sum is only used to avoid several accesses to the same element of array C, which
may lead to a performance degradation, if the compilation updates the main mem-
ory on each access. But as it is the same variable for all iterations of the i and j

loop, there is an anti dependency from line 12 to line 9 of the subsequent iteration
for the outer loops. In a naive approach, this dependency prevents all parallelism,
but as every kernel invocation has implicitly its own copy of all non-array variables,
a shared update problem can not occur, so there is no problem if such dependencies
are violated. Therefore, when computing the number of parallel dimensions, anti
or output dependencies for non-array variables must not be considered, as only
flow dependencies carry information.

Another problem is that the optimized schedule may contain constant dimen-
sions that do not map to an explicit loop of the resulting kernel code, but only effect
the structure of the loop nest, as mentioned in Section 2.3 and depicted in Figure 2.3.
Therefore the generator categorizes each dimension as follows:
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1 Input: Dependency deps[n_dims]
2 Result: Category dims[n_dims]
3

4 for (int i = 0; i < n_dims; ++i)
5 dims[i] = parallel_scalar;
6

7 for (Dependency dep : deps) {
8 for (int i = 0; i < n_dims; ++i) {
9 if (dims[i] == parallel_scalar

10 && Is_no_scalar_dimension(dep, i))
11 dims[i] = parallel_loop;
12

13 if (Dependency_is_carried_by_dimension(dep, i))
14 dims[i] = sequential;
15 }
16 }

Figure 5.4: Computation of the category for each dimension.

parallel loop Determines that this dimension describes a loop of the resulting ker-
nel code and it can be executed in parallel. Therefore the divider is allowed to
split it.

parallel scalar These dimensions are not represented directly in the generated
code, as they refer to constant output dimensions of the computed schedule,
which are explained in Section 2.3, but they do not limit the parallelism. They
must not be considered by the divider.

sequential For sequential dimensions it does not matter if they are represented in
the resulting kernel code by a loop, as they carry a dependence. Therefore
neither these, nor any of the following dimensions are allowed to be split by
the divider.

Figure 5.4 shows an algorithm for the categorization of all dimensions, given
all dependencies. In detail, Is_no_scalar_dimension(dep, i) is true, if at
least domain or range of dimension i from the dependency dep is not a constant
value. Dependency_is_carried_by_dimension(dep, i) returns true, if di-
mension number i carries the given dependency dep.
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Definition 2 (loop-carried dependency) A loop or dimension i carries a dependency
iff the ith element of the distance vector for the dependency is non-zero and all previous
i− 1 elements are zero.

The distance vector is simply the difference between the target iteration vector and
the source iteration vector of the dependency.

The actual number of outer parallel dimensions and also the number of dimen-
sions the divider is allowed to split can now easily be determined by counting
all parallel_loop entries of the computed category array that appear before any
sequential entry.

5.3 Layout Transformation

As already mentioned in Section 4, layout transformations may increase the perfor-
mance of the application code on distributed memory systems and can be realized
with almost no overhead, as the input data must be copied anyway. But the com-
putation of an optimal transformation for a given application code is not trivial.

This section presents a new idea for computing an affine layout transformation
for a given program. The core part of this approach is to use an unmodified schedul-
ing algorithm to compute the transformation. Both scheduling algorithms imple-
mented in isl require two different types of dependencies:

validity The computed schedule is guaranteed to respect all validity dependencies.

proximity The second input consists of proximity constraints and the algorithm
tries to minimize the dependence distances over them.

If the scheduling algorithm is used to compute a layout transformation, there are
no hard constraints on the order of the elements and therefore there are no validity
dependencies, the algorithm must consider. But the minimization part for proxim-
ity dependencies of the scheduling algorithm can be used to minimize the distance
between subsequently used array elements.

As the layout transformation is used to optimize the cache utilization, the dis-
tance between subsequent accesses to an array must be minimized. A relation over
array elements that indicates for every value the element that is accessed consecu-
tively when executing the kernel can be used as a proximity dependence relation.

The computation of these proximity dependencies starts with the access relations
for a given array and a polyhedral representation of the kernel code. Consider for
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example the matrix multiplication from Figure 5.1, if the statement in line 11 is
named S, the access relation for array B can be denoted as:

[r,c,n] -> { S[i,j,k] -> B[k,j] :

0<=i<r and 0<=j<c and 0<=k<n }

In a next step, new access relations are computed by removing all array dimensions.
The resulting relation then represents accesses to the whole array. For the access to
array B, the modified relation could be:

[r,c,n] -> { S[i,j,k] -> B[] :

0<=i<r and 0<=j<c and 0<=k<n }

Then a flow dependence analysis is performed, using the newly created access re-
lation for both source and sink. For the given example, the schedule of the source
code of Figure 5.1 is simply an identity map, so the computed dependencies are:

[r,c,n] -> {

S[i,j,k] -> S[i,j,k+1] : 0<=i<r and 0<=j<c and 0<=k<n-1;

S[i,j,n-1] -> S[i,j+1,0] : 0<=i<r and 0<=j<c-1 and n>=1;

S[i,c-1,n-1] -> S[i+1,0,0] : 0<=i<r-1 and n>=1 and c>=1; }

These dependencies now denote for every statement instance that accesses the
given array, the subsequent instance under the given schedule, which also accesses
the same array. A last step is now to transfer both domain and range from the iter-
ation space to the index space of the appropriate array. This can be done by simply
applying the original access relation to both domain and range of the dependence
maps. For the matrix multiplication example this would lead to the following prox-
imity dependencies:

[r,c,n] -> {

B[k,j] -> B[k+1,j] : 0<=k<n-1 and 0<=j<c and r>=1;

B[n-1,j] -> B[0,j+1] : 0<=j<c-1 and r>=1 and n>=1;

B[n-1,c-1] -> B[0,0] : r>=2 and n>=1 and c>=1; }

It is easy to verify that the source code from Figure 5.1 accesses the elements of
array B in the same ordering as denoted by the dependencies.

In theory, the scheduler should now return an optimal layout transformation for
the appropriate array, as it minimizes the distance between subsequent array ac-
cesses. But the actual output is in most cases an identity, as the given proximity
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constraints apear to be too complex for the scheduling algorithm. There are two ap-
proaches which might solve this problem. On the one hand, a heuristic can be used
to preprocess and simplify the computed dependencies. On the other hand, the
scheduling algorithm can be adapted to this problem. The first approach was tested
in this work and the adaption of the algorithm remain as future work. Following
the example above, the first two mentioned maps contain multiple elements and
therefore they describe multiple different dependencies, depending on the value of
the structure parameters n and c. In contrast to this, the third map only contains a
single element, which leads to a single dependency, namley from the last element of
the matrix B to the first one. So the last map can be considered as less important for
the layout transformation. Removing it and invoking the isl scheduler then results
in the desired transformation:

[c,n,r] -> { B[k,j] -> B[j,k]; }

A filter for the dependencies, which removes maps, that contain only a single ele-
ment is implemented, but this is only sufficient for rather simple input codes, as e.g.
the matrix multiplication. With an increasing complexity of the input, the require-
ments for the preprocessing heuristic are also growing and a universal solution
could not be found.

In contrast to this, specializing the scheduler is more extensive, but it may lead
to more satisfactory results for a larger number of programs.

5.4 Code Generation

For the code generation part, two different approaches are possible, the templated
generation and the transformer generation.

On the one hand, the application code could be created by using a template. That
means, the application code is derived from a generalized code file, called template.
The template is then modified at previously marked positions to adapt it according
to the given model. An advantage of this apporach is that the template can be
basically read and understand without inspecting the source code of the generator,
but the use of a template needs the generator to be able to parse it in order to find
and replace all marks.

On the other hand, a more lightweight and more flexible approach is to use a
transformer. That means, the generator writes the complete application code di-
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rectly into the output file and therefore it handles a huge amount of strings. Struc-
tural modifications of the generated code also require a recompilation of the whole
generator and in contrast to a template file, the inspection of the basic structure
results in studying the source code, or the generated files for different inputs. But
as the transformer is easy to integrate and it does not need additional external li-
braries, this approach was chosen for the generator.

5.4.1 Divider / Undivider

The divider’s task is to split the input piece in as many subpieces as desired, in a
way that every subpieces leads to an almost identical amount of work for the kernel.
It is allowed to create more or fewer subpieces as requested, but to optimally exploit
the hardware, the given number should be respected.

Distribution of Subpieces accross parallel Dimensions In case of multiple
parallel loops, the computation can be split in more than one dimension. This may
lead to problems if the requested number of subpieces is prime. Using a consistent
distribution, i.e. splitting the iteration domain using hyperplanes, the only possi-
bility to respect the given number is to split only a single dimension. This could be
a waste of parallelism potential, as splitting multiple dimensions also lead to an in-
direct tiling of the computation. Consider again the matrix multiplication example
from Figure 2.1a, the outer i loop iterates over all rows and the j loop traverses the
columns of the result matrix. If only the first dimension is split by the divider, each
of the resulting subpieses tranverses the array B multiple times witht he maximum
possible reuse distance. That means, before a specific element of the matrix is ac-
cessed the second time, all others are required first. The CPU cache can now only
increase the performance if the whole matrix B can be cached at once. If the divider
now splits both the i and the j loop, each subpiece requires only a subset of the ar-
ray B. This leads to a smaller reuse distance, which may increase the performance,
if all accessed data can be cached now.

Consider an application with two parallel loops that should be split in five sub-
pieces. Figure 5.5a shows a naive partitioning of both dimensions. It can easily be
seen that all subpieces cover the same area, but this solution does not exploit the
second parallel dimension j. A better partitioning for the same problem is shown in
Figure 5.5b. This can be achieved by dropping the constraint that each dimension
has to be split evenly by using hyperplanes, for one single dimension. Furthermore
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j

(a) If all dimensions must be split evenly
by hyperplanes, the only partitioning
possible does not exploit both dimen-
sions, as the requested number only has
the trivial factorization 5 · 1.

i

j

(b) If a single dimension is allowed to be
split arbitrarily (here dimension j), a
better partitioning is possible.

Figure 5.5: Possible partitioning with five subpieces created by the divider for a two
dimensional iteration space.

1 Inputs: n, d
2 Results: ci, b
3

4 remaining = n;
5 prod = 1;
6

7 for i = 0...d-2 {

8 root = round( d−i
√
remaining+ 1

4 );

9 remaining = remaining
root ;

10 ci = root;
11 prod = prod · root;
12 }
13

14 cd−1 = remaining;
15 prod = prod · remaining;
16 b = n - prod;

Figure 5.6: Algorithm used to compute the number of bars ci per dimension.
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j

(a) subpieces created independently from
the structure of the iteration domain

i

j

(b) optimal loop bounds for the subpieces
according to the iteration domain

Figure 5.7: Illustration of five subpieces for the code from Figure 2.1a.

it is possible for an arbitrary dimensionality d ∈N to find a k ∈N and a partition-
ing of the iteration domain into n ∈N subpieces such that all except one dimension
are divided into either k or k+ 1 blocks and for the last dimension all blocks are also
divided into either k or k + 1 pieces. This can be formulated as follows:

Conjecture 1
∀n, d ∈N : ∃k ∈N : ∃c0, . . . , cd−2 ∈ {k, k + 1} : k ·∏d−2

i=0 ci ≤ n ≤ (k + 1) ·∏d−2
i=0 ci

The procedure used to compute such a partitioning is shown in Figure 5.6. Its
correctness is not proven mathematically, but was tested empirically for all com-
binations of n ∈ {1, . . . , 1.000.000} and d ∈ {1, . . . , 100}. The summand 1

4 inside
the root in line 8 is required to ensure the computed ci have the desired form. The
results c0, . . . , cd−2 determine the number of blocks the first d − 2 dimensions are
split into. All these blocks are then divided into k or k + 1 pieces, such that overall
n pieces are available.

Shape and Size of the Subpieces Another problem appears at the explicit sub-
piece creation. The given code only computes the layout of the subpieces, but their
explicit shape and size must be determined in a second step. Consider again the
source code from Figure 2.1a, a naive creation of the subpieces is shown in Fig-
ure 5.7a. It can easily be seen that this does not lead to an appropriate load balance,
as for example the upper left subpiece does not contain any computation. There-
fore, it is advisable to shift the subpiece boundaries in order to balance the number
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of statement instances inside them. Figure 5.7b shows an optimal partitioning of
the given iteration domain. It can be determined by performing a binary search
and the generator is able to create code for this part. In detail, let ρ(p) be the num-
ber of integral points inside the iteration domain of the kernel description, which
is encapsulated in the subpiece p. The generator uses barvinok [VSB+07], a library
which extends isl, to compute a C expression for ρ. The subpieces p1, ..., pn then de-
note an optimal partitioning of the parent piece p, if ρ(p1) ≈ ... ≈ ρ(pn) ≈ ρ(p)

n . The
best loop bounds for a subpiece pi can be computed by evaluating ρ(pi) and com-
paring it to the desired ρ(p)

n . If the number of iterations matches, an optimal piece
was found, if its too small or too large, the size must be adapted accordingly and
tested again. As Figure 5.7b shows, it is in general not possible to find a perfect so-
lution, for which all subpieces are exactly equally sized, because the subpieces are
restricted to a rectangular shape. But in practice, if the overall number of iterations
is large enough, its impact is quite low.

In contrast to the rather complex divider code, the undivider only has to free the
subpiece structure. As the divider does not copy the user data for the subpiece
creation, but only references the same structure the original piece contains, the un-
divider does not need to collect any data for the result.

5.4.2 Bundle / Unbundle

General Specification The main specification for the bundle code is to create
a single memory block that contains all data which must be transferred to other
nodes. But, as communication and memory transfers produce a huge overhead,
another important part for the bundle methods is to limit it as good as possible.

Communication Reduction A fist obvious improvement is to transfer not all ar-
rays entirely to every node, but only the part the corresponding node requires in
order to compute its subpiece. The information which array and even what specific
elements a single node requires to compute its part can be extracted from the results
of the dependence analysis, as suggested in Section 5.2. The flow dependence anal-
ysis isl provides, requires in general three different relations, a schedule, which
indicates at which specific virtual point in time the statement instance is executed
and two maps that indicates source and sink access relations to an arbitrary do-
main. In addition to the dependencies, the used algorithm computes a relation
no_source, which maps each point p of the given domain to the according target
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t, which is specified by the sink access, if no chronological previous – according
to the given schedule – point q exists, that reads the same target t, as indicated
by the source relation. Applying this mapping to the iteration domain of the ker-
nel description results in a set, describing only the array elements that has to be
transferred.

The most aggressive reduction of the communication volume can then be realized
by simply using the created set as an iteration domain for a new loop nest, which
can easily be generated utilizing CLooG. The loop nest now scans only the needed
array elements and therefore the body of this loops must simply copy the element
at the index denoted by the iteration vector to the next empty slot of the bundle.
In order to allocate enough memory for the bundle, the number of elements for all
arrays can be computed by counting all integral points inside the corresponding isl
set using barvinok. The same code may also be used to extract the bundle inside
the unbundleInput method.

A similar optimization can also be performed for the results bundle. As the
unbundleResults method only has to extract the computed results in order to
ensure data from other nodes is not overwritten, all information needed to optimize
the communication volume has to be computed anyway. This information can eas-
ily be determined by collecting all access relations that represent only array mod-
ifications, and applying them to the iteration domain of the kernel representation.
The resulting set now represents all array elements, computed for a given subpiece
description. The loop code for both bundleResults and unbundleResults can
then be generated analogous to bundleInput and unbundleInput respectively.

Memory Reuse Another rather simple possibility to reduce the overhead of the
memory transfers is to reuse the bundle memory. Therefore, the unbundleInput
method neither need to allocate new memory for the input data nor extract the bun-
dle explicitly. The only task left is to compute the positions of all input arrays inside
the bundle memory and to store the corresponding pointer in the piece structure.

If the whole input is transmitted to the nodes, the offset calculation is quite sim-
ple, as only the complete size of every input array must be known and this infor-
mation is part of the input description.

But if the communication overhead should be minimized as mentioned above,
the code generation is a bit more complex. The presented aggressive reduction
of the bundle size may lead to an arbitrary new layout of the input arrays, as it
is possible that only every second element of an array is needed, or for a two di-
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mensional matrix only elements in the lower triangle are used. Therefore, if the
resulting structure from the bundle memory should be used in the kernel code, the
access pattern may become arbitrarily complex. In order to prevent this, the gener-
ated input and result bundle contain the rectangular hull of all array elements that
have to be communicated. Therefore, the index vector for the array accesses in the
kernel code must only be shifted according to the position of the computed rectan-
gular hull inside the original array. The amount of memory a single array requires
in the bundle is computed by the product of the array extent for each dimension
separately, which is defined by the difference between the maximum and the mini-
mum index, the array is accessed with. The extent for each array dimension is also
used to define the complete type of the variable which is needed in the kernel code
to access the arrays.

If the bundle memory for the results bundle should also be reused, it has to be
allocated in the unbundleInput method before calling the kernel method. At this
point, if a single array is used for both input and output, its content must be copied
from the input bundle to the results bundle.

Another important issue when reusing the bundle memory is the alignment of
each array. If the base address for the array accesses is no multiple of at least eight,
the performance of the resulting code may be worse depending on the processor it
executes. Therefore, it is reasonable to align all arrays to a multiple of the word size
of the used architecture, which must then also be considered when computing the
offsets inside the bundle memory.

5.4.3 Kernel

The generator provides three kernel methods, one for a sequential version to min-
imize the overhead if only a single processor is available on the target hardware
and two versions in the context of DKU for both distributed and shared memory
architectures (with and without layout optimizations respectively). The main part
of all kernel methods, the loop nest, which contains the actual application code, is
generated by CLooG using either directly the extracted polyhedral reprensentation
of the input code for the serial kernel, or the optimized one for both DKU kernel
methods. As suggested in Section 2.4, the source code for the statements is inserted
using preprocessor macros.

Consider again the matrix multiplication input from Figure 5.1, the initialization
part of the generated kernel for distributed memory systems is shown in Figure 5.8.
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1 // restore all user data from DKUPiece
2 struct data_DKU_GEN_MM *_d = _piece->appSpecificPiece;
3

4 // initialize primitive user variables
5 int c = _d->c;
6 int n = _d->n;
7 int r = _d->r;
8 float sum = _d->sum;
9

10 // initialize variables for loop bounds
11 const int _l0 = _d->_internal._l[0];
12 const int _u0 = _d->_internal._u[0];
13 const int _l1 = _d->_internal._l[1];
14 const int _u1 = _d->_internal._u[1];
15

16 // initialize variables for memory access bounds
17 const int __l0 = _d->_memory->_l[0];
18 const int __u0 = _d->_memory->_u[0];
19 const int __l1 = _d->_memory->_l[1];
20 const int __u1 = _d->_memory->_u[1];
21

22 // initialize user arrays
23 float (*restrict A)[n] = _d->A;
24 float (*restrict B)[n] = _d->B;
25 float (*restrict C)[(-__l1 >= 0 && -2 + c - __u1 >= 0) ? (__u1 + 1) :
26 (-1 + __l1 >= 0 && -2 + c - __u1 >= 0) ? (-__l1 + __u1 + 1) :
27 (-__l1 >= 0 && 1 - c + __u1 >= 0) ? (c) : c - __l1]
28 = _d->C;

Figure 5.8: Initialization part of the generated kernel code for a distributed memory
architecture.

The kernel has to declare and extract all needed variables from the DKU piece first.
The primitive variables can easily be copied, but the declaration of the arrays is
more complex, as for multi-dimensional ones the compiler needs the extent of the
inner dimensions in order to generate code to compute the exact memory location
for a given index. As explained in Section 5.4.2, the arrays are not transferred com-
pletely if not necessary and as they are still stored in the bundle memory, their
extent may differ from the original one. This leads to the rather complex definition
for array C in lines 25 – 28.

The additional scalars declared in lines 11 – 20 represent the loop and memory
bounds for this subpiece. The latter ones are needed as DKU pieces are allowed
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to be divided several times subsequently and the array extent may depend on the
bounds of a super piece.

Figure 5.9 shows the second part of the kernel code following the example from
Figure 5.8. The actual code for the computation of the result is generated by CLooG
using the newly created iteration domain as explained in Section 5.2. But as the
statements depend on the original iteration domain, it is rebuilt using an additional
preprocessing level, as depicted in lines 22, 24 and 26.

The statement code must also be modified slightly, as the extent and even the
layout of the used arrays might have changed when transferring them to another
node in a distributed memory system. In case of the matrix multiplication example,
the array B is transposed in order to enable a row-wise access. The elements of all
access vectors are also adapted in order to compensate the smaller extent of the
arrays. The generated offsets are computed before executing the loop nest and they
are stored in separate variables in order to ensure they are computed only once and
not for each memory access over and over again.

For shared memory systems, the generated kernel method, the localKernel is
very similar to the presented one. The only difference is that it uses the original ar-
rays passed to the framework by the caller. That means, no layout transformations
or modifications of the array sizes must be considered and the access relations must
not be adapted.
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1 // calculate array offset only once
2 // (compiler does not recognize it is always the same value)
3 const int _offset_A0 = (-__l0 >= 0) ? (0) : __l0;
4 const int _offset_A1 = 0;
5 const int _offset_B0 = (-1 + __l1 >= 0) ? (__l1) : 0;
6 const int _offset_B1 = 0;
7 const int _offset_C0 = (-__l0 >= 0) ? (0) : __l0;
8 const int _offset_C1 = (-__l1 >= 0) ? (0) : __l1;
9

10 // add user statements via cpp
11 #undef _S_0
12 #define _S_0(i, j) do { (sum = 0); } while(0)
13 #undef _S_1
14 #define _S_1(i, j, k) do { (sum += \
15 (A[-_offset_A0 + i][-_offset_A1 + k] * \
16 B[-_offset_B0 + j][-_offset_B1 + k])); } while(0)
17 #undef _S_2
18 #define _S_2(i, j) do { \
19 (C[-_offset_C0 + i][-_offset_C1 + j] = sum); } while(0)
20

21 #undef S_1
22 #define S_1(c1, c2, c3, c4, c5) _S_1(c1, c2, c4)
23 #undef S_2
24 #define S_2(c1, c2, c3, c4, c5) _S_2(c1, c2)
25 #undef S_0
26 #define S_0(c1, c2, c3, c4, c5) _S_0(c1, c2)
27

28 // declare loop variables
29 int c1, c2, c3, c4, c5;
30

31 // loop code, generated by cloog with clast_pprint(..)
32 if (n >= 1) {
33 for (c1=max(0,_l0);c1<=min(_u0,r-1);c1++) {
34 for (c2=max(0,_l1);c2<=min(_u1,c-1);c2++) {
35 S_0(c1,c2,0,0,0);
36 for (c4=0;c4<=n-1;c4++)
37 S_1(c1,c2,1,c4,1);
38 S_2(c1,c2,1,n,0);
39 }
40 }
41 }
42 if (n <= 0) {
43 for (c1=max(0,_l0);c1<=min(_u0,r-1);c1++) {
44 for (c2=max(0,_l1);c2<=min(_u1,c-1);c2++) {
45 S_0(c1,c2,0,0,0);
46 S_2(c1,c2,1,n,0);
47 }
48 }
49 }

Figure 5.9: Computational part of the generated kernel code for a distributed mem-
ory architecture. (Continuation of Figure 5.8.)
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6 Experiments

6.1 Available Hardware

The major part of all benchmarks and experiments run on a non-uniform memory
access (NUMA) system, equipped with eight QuadCore AMD Opteron 8356 pro-
cessors. Non-uniform memory access means, that each one of the eight processors
has its own memory and therefore its own link to it, which must not be shared with
other sockets. But accessing the memory of another processor is therefore slower
than working with the own memory, as all transferes must be routed through an-
other socket. For this machine, each CPU uses 8 GB main memory, which leads to
a total amount of 64 GB RAM.

Other computers available for experiments and tests were normal workstations
equipped with various processors from AMD and Intel, starting with an Intel Pen-
tium SU4100, up to a Core i5-2400, or a Phenom II X6 1045T.

6.2 Problems and Paradox Behavior

During the evaluation of the results for the initial experiments some strange and at
first sight paradoxical results appeared. These are discussed in this section in order
to demonstrate different effects, which can invalidate benchmarks.

Influence of Cache Associativity One of the benchmarks tested, was the gemm
kernel from the PolyBench/C benchmark suite. For 1024 times 1024 matrices the
results from the original PolyBench kernel were surprisingly poor compared to a
simple one thread DKU version, which additionally copies all input arrays to a
new memory location (but without any layout transformation). The original kernel
took about two to three times more time to compute the result matrix, although
the instructions for the actual loop nests, the processor executes, were completely
identical.
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Further investigations had shown, that the allocation method of the PolyBench
code enforces a memory alignment to at least 32 byte for all three matrices, in con-
trast to only 8 byte alignment, the generated DKU code uses. The hard alignment
in conjunction with the row size for the second input matrix results in a quite dis-
advantageous situation for the CPU cache.

To understand this problem, the functionality of the cache must be described a
bit more detailed first. As the main memory of a computer is extremly slow com-
pared to the CPU, directly accessing all data from the main memory would lead
to a poor performance. To prevent this, a small but fast cache is available to store
most frequently used main memory locations. This memory location can not be
accessed directly by the program, it is completely managed in hardware. When the
processor needs to access the main memory, it first searches the cache for the corre-
sponding data by comparing the memory address of the access with all addresses
hold by the cache. But for larger cache sizes, this would lead to a high amount of
comparisons, which should be performed in parallel in order to retain a fast access.
To reduce the overhead for a large amount of comparison units, a given memory
address is only allowed to be stored in a subset of the whole cache. AMD Athlon
CPUs have for example a 2-way associative (level-1) cache, which means that each
memory location can be stored in only two different cache locations. Therefore,
only two cache entries have to be checked for a given memory access. To search the
cache for a single access, the address is split into three different parts:

1. If one cache entry, which is called cache line, consists of i byte, the least sig-
nificant i bits of the address are used as an index for the entry and must not
be considered when searching for the appropriate cache line.

2. The next n bits of the remaining address are then used to determine which
section of the cache must be checked. For a N-way associative cache, the
relation between the total number of cache lines L and the number of lines N
inside a section can be formulated as L = 2n · N.

3. The remaining bits are then compared to the tag of the N cache lines of the cor-
responding section in order to check if the needed memory location is avail-
able (cache hit), or if the main memory must be accessed (cache miss).

Back to the matrix multiplication example, as the second input matrix B (c.f. Fig-
ure 5.1) is accessed row-wise in the inner loop with a row size of 1024 double val-
ues, the 13 least significant bits of the memory accesses are identical. Therefore,
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only few sections of the cache are possible to store the elements of this matrix. In
addition to this, each cache line can store only two different locations, as the used
AMD machine has a 2-way associative level-1 cache. In conjunction with the strong
alignment restrictions from polybench, the result matrix C is also cached in the same
sections as the according column of B, which overloads the cache even further.

In contrast to this, the generated bundle methods for the DKU version only en-
force an 8 byte alignment, which lead at runtime to slighlty different bits in the
lower part of the addresses for B and C. Therefore, both arrays do not collide ac-
cording to the cache sections and a larger part of the cache can be used, which
results in a higher performance for the DKU code.

The first mentioned problem, the accesses to the array B itself, can be avoided by
using a slightly different row size, which lead to different sections used to cache the
elements of the input array. 1025 rows, instead of only 1024, increases the perfor-
mance by roughly factor five to seven on AMD CPUs.

Another interesting part is that both demonstrated effects only appear on AMD
processors. On an Intel Core i5-2400 neither of these occurs in a comparable way.
One explanation might be, that Intel uses an 8-way associative level-1 cache, so for
every memory address there are eight different cache locations possible, not only
two.

AMDs Prefetcher Other strange results appeared for one of the first experiments
during the implementation of the generator. A simple matrix multiplication exam-
ple as shown in Figure 5.1 was used in a first version to test the speed up of the
DKU pattern. The scheduler used for this experiment copies all data to a newly al-
located memory location, regardless if it is useful or needed. In this situation, parts
of the input data should be available in cache, when invoking the kernel.

Running this test on an AMD processor with a matrix size of 1000 times 1000 and
a complete number of 25 subpieces is significantly faster, then the same experiment
with only 24 or 26 subpieces. For the fast version of 25 subpieces, each subpiece
describes a mtrix multiplication of size 200 times 200. Therefore, the second input
matrix is traversed row-wise, which leads to memory accesses of stride 200 times
4 Byte. Further investigations had shown, that for AMD CPUs a stride of 200 single
precision floating point values results in a much smaller number of level-1 data
cache misses for this example than a stride of 199, or 201 values. This effect occurred
on both available AMD processors, the previously mentioned AMD Opteron 8356,
as well as an AMD Phenom II X6 1045T. But in contrast to AMD, neither of the Intel
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matrix size 600 700 800 900 1000 1100 1200 1300
one socket 0.127 0.203 0.319 0.519 0.672 0.875 1.133 1.325
four sockets 0.127 0.201 0.314 0.516 0.663 0.846 1.068 1.286

matrix size 1400 1500 1600 1700 1800 1900 2000 2500
one socket 2.096 3.508 5.549 7.811 9.652 12.037 14.129 27.621
four sockets 1.592 2.112 3.649 7.601 9.851 12.280 14.829 28.911

Figure 6.1: Comparison of the gemm execution time for a different thread allocation
on a NUMA architecture. (Lower values are highlighted.)

CPUs available, starting from a Pentium SU4100 up to a Core i5-2400, preferred a
stride of 200 values.

Thread Allocations on a NUMA Architecture When benchmarking the Poly-
Bench/C gemm kernel, the situation of a single MPI node and four OpenMP threads
computing 16 subpieces each showed an unexpected behaviour according to the
thread allocation. For this experiment, all threads accesses the same memory to
compute the result of the matrix multiplication. Binding all four threads to the
four cores of a processor should lead to a better performance, than spreading them
among different ones. In the former case, all threads can access the main memory
directly, whereas in the latter situation three threads require more time to read the
input data, as they must access the main memory located at another socket.

But for special input sizes, the more spreaded version run faster, as depicted in
Figure 6.1. One explanation for these results is the increased cache size, because
every processor has its own cache hierarchy. For matrix sizes of 700 times 700, one
subpiece requires to traverse one submatrix of the second input with size 700 times
88 multiple times, which results in almost 500 KB data. For four threads running in
parallel, all data fit in the 2 MB level 3 cache.

If the matrix sizes increase, the required data can not be cached on a single pro-
cessor at once, but if all four threads run on different CPUs, each with its own 2 MB
of level 3 cache, the number of accesses to the main memory can still be held low.

For larger matrices, if the required data does not fit into the level 3 caches any-
more, the single socket version is gaining on and even passes the four socket ver-
sion, as it has a lower latency when accessing the memory. For a matrix size of
1600 times 1600, the required submatrix, which is traversed at a stretch, consumes
about 2.4 MB, which exceeds the level 3 cache, but it may fit into the combined
level 2 (512 KB) and level 3 (2 MB) caches. For 1700 times 1700, the distance be-
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tween both versions is quite low again and for the 1800 times 1800 and above, the
one socket version is faster.

6.3 Preparations

Experiment Selection During the development of the generator, its correctness
was tested using three simple input files containing a matrix multiplication, a poly-
nomial product and a n-body simulation. All three input files are shown in Fig-
ures 6.2, 6.3 and 6.4. Their results are discussed first in this section.

In addition to these three examples, for the evaluation of the generator all 30
benchmarks from the PolyBench/C1 benchmark suite version 3.2 were tested if the
generator is able to deal with them. As DKU requires asynchronous parallelism in
its current state, only nine benchmarks can be processed directly. One of them, the
reg_detect benchmark contains only a single parallel loop which consists of at most
twelve iterations for the largest suggested input data. Therefore, this benchmark
was left out and it will not be discussed in this work.

For synchronous parallelism it would be possible to invoke the DKU scheduler
multiple times within a loop, which carries all previous dependencies, but on a dis-
tributed memory system, all data are then transferred quite often, which may re-
duce the performance noticable. However, this approach was chosen for the n-body
simulation in order to test if it is a usefull method to handle this type of application.

Setup The PolyBench/C code already provides a mechanism for measuring the
walltime of the kernel invocation by querying the system time directly before call-
ing the kernel method and straight after returning from it. The same mechanism is
also used for measuring the execution time of a DKU call. Therefore, the measured
times contain all memory transfers and also the overhead caused by the DKU-
pattern, as, for example, the time needed to compute the subpieces, to start and
terminate all OpenMP threads or to manage the MPI nodes. For the non-PolyBench
examples, the same strategy was chosen to measure the time of both the sequential
and the DKU version.

For the DKU framework, four different behaviours were tested on the previously
described 32-core machine:

1 http://www.cse.ohio-state.edu/~pouchet/software/polybench/
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1 void MM(int r, int c, int n,
2 float A[r][n], float B[n][c], float C[r][c]) {
3

4 float sum;
5

6 #pragma scop
7 for (int i = 0; i < r; ++i) {
8 for (int j = 0; j < c; ++j) {
9 sum = 0.0;

10 for (int k = 0; k < n; ++k)
11 sum += A[i][k] * B[k][j];
12 C[i][j] = sum;
13 }
14 }
15 #pragma endscop
16 }

Figure 6.2: Input file for the matrix multiplication example.

1 void PP(int na, int nb, double *A, double *B, double *C) {
2

3 double sum;
4

5 #pragma scop
6 for (int i = 0; i < na+nb-1; i++) {
7 sum = 0.0;
8 for (int j = max(0, i-nb+1); j <= min(i, na-1); j++)
9 sum += A[i-j] * B[j];

10 C[i] = sum;
11 }
12 #pragma endscop
13 }

Figure 6.3: Input file for the polynomial product example.
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1 void NB(int n, double dt, double G, double mass[n],
2 double posOld[n][2], double posNew[n][2],
3 double velOld[n][2], double velNew[n][2]) {
4

5 double accX, accY;
6 double dX, dY;
7 double tmp;
8

9 #pragma scop
10 for (int i = 0; i < n; ++i) {
11

12 accX = accY = 0.0;
13

14 for (int j = 0; j < n; ++j) {
15 if (i != j) {
16

17 dX = posOld[j][0] - posOld[i][0];
18 dY = posOld[j][1] - posOld[i][1];
19

20 tmp = dX * dX + dY * dY;
21 tmp = mass[j] / (tmp * sqrt(tmp));
22

23 accX += dX * tmp;
24 accY += dY * tmp;
25 }
26 }
27

28 tmp = dt * G;
29 accX *= tmp;
30 accY *= tmp;
31

32 posNew[i][0] = posOld[i][0] + dt
33 * (velOld[i][0] + .5 * accX);
34 posNew[i][1] = posOld[i][1] + dt
35 * (velOld[i][1] + .5 * accY);
36

37 velNew[i][0] = velOld[i][0] + accX;
38 velNew[i][1] = velOld[i][1] + accY;
39 }
40 #pragma endscop
41 }

Figure 6.4: Input file for the n-body simulation example.
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OpenMP local In this scenario, only OpenMP threads are used to parallelize the
algorithm. No bundling is performed and therefore only the DKU methods
divide, localKernel and undivide are called.

OpenMP bundle As for the local version, only OpenMP threads are used, but this
time, the bundle methods are used as well. That means, input and result
data are copied one single time and all layout transformations are performed.

MPI In this version, only MPI nodes are used to parallelize the application. There-
fore, the input and result data is bundled and copied once for every node.
That means, each node uses only the part of the input it needs to compute
the result, which is also transferred to the physical memory associated to the
CPU, it is executed by.

OpenMP + MPI The last one is a combination of the two previous described ver-
sions. On the first level, the input data is divided for all MPI nodes and each
node receives the input data for its subpiece. On a second level, every node re-
divides its subpiece and computes them in a loop, which is parallelized using
OpenMP. As the used machine consists of eight quadcore processors, every
node uses four OpenMP threads to compute its subpieces. Every node and all
associated OpenMP threads are bound to a single processor, which ensures
every physical processor core accesses only its own main memory during the
execution.

If the input code allows dividing a DKU piece in more than one dimension,
the framework performs an implicit loop tiling for a larger number of subpieces.
Therefore, the number of subpieces requested from the divider is increased by the
factor 16, which results in 16 smaller subpieces a single thread has to compute, in
contrast to only a single one for the other versions. For future work it would be
possible to determine the optimal number of subpieces and therefore tiles, instead
of using a fixed factor here, to increase the performance even further.

In order to ensure comparable and stable execution times, all tests were executed
21 times and their median was chosen as the final result. As the generator works
almost completely automatically, all DKU versions are compared to the unmodified
sequential version. Therefore, for the visualization, only the speedup compared to
the original version compiled with gcc is shown. The speedup is defined as the
ratio of the sequential execution time to the time, the parallelized DKU code needs
to compute the same result.
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Figure 6.5: Matrix Multiplication using a scalar temporary. 2 parallel dimensions,
16 subpieces per thread.

In order to improve the readability of the graphs, all data points associated to
the same version are connected and the identity is also shown as a gray line. For a
better comparability of the different graphs among each other, each version has its
own unique color, line type and point type.

6.4 Evaluation

Matrix Multiplication The first experiment is a matrix multiplication which com-
putes C = A ∗B as shown in Figure 6.2. This code uses a primitive variable to reduce
the number of array accesses, in order to enhance the performance of the compu-
tation if the compiler is not able to optimize this by itself. This also demonstrates,
that the generator is able to deal with primitive, non-array variables.

Two different optimizations are performed here:

• On the one hand, both outer loops of the matrix multiplication do not carry
any dependency (except the anti-dependency for the scalar variable sum, but
this must not be considered here, as explained in Section 5.2), which enables
the generated divider to split the iteration domain two-dimensionally. There-
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fore, the DKU pattern implicitly performs a kind of loop tiling, so the number
of subpieces created and computed is increased by the factor 16. That means
each OpenMP thread computes 16 smaller subpieces instead of one larger
piece.

• On the other hand, as the input code accesses the two-dimensional array B

row-wise, the bundleInputs method transposes this matrix in order to en-
hance the memory accesses, as explained in Section 5.3.

The speedups of the DKU versions compared to the sequential code are shown in
Figure 6.5. First of all, as the OpenMP local version does not take advantage of the
layout transformation, it performs quite bad compared to the others. However this
version also shows a super-linear speedup, which is caused by the implicit tiling of
the two-dimensional distribution. If the layout optimization is also performed, as
for the OpenMP bundle version, the performance dramatically increases. The over-
head caused by rearranging the memory layout can be neglected here. Both MPI
and OpenMP + MPI versions benefit from the layout transformation, but compared
to the OpenMP bundle version, the input data must be copied multiple times, as
multiple different nodes require the same part of the data, which leads to a slightly
worse speedup.

Polynomial Product The second experiment, the polynomial product, computes
a vector~c, such that~c~xn+m = (~a~xn) · (~b~xm), where ~xi = (x0, x1, . . . , xi)>. The input
C code is shown in Figure 6.3. It also demonstrates that the generator is able to
work with more complex loop bounds, as long as they are defined as a union or an
intersection of affine inequations.

In this experiment there is neither a layout transformation possible, as all three
arrays are accessed linearly, nor is any kind of implicit tiling performed, as only the
outer loop is divided.

The speedups compared to the serial version are shown in Figure 6.6. Except for
the MPI version, the performance increases linearly and it almost reaches a perfect
speedup, as depicted by the gray line. The MPI-only simulation is limited to a
speedup of about 14 to 15, due to the overhead for copying large parts of the input
data for every node.

N-Body Simulation The last of the non-PolyBench examples is one step of a two
dimensional n-body simulation, shown in Figure 6.4, without algorithmic opti-
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Figure 6.6: Polynomial Product. 1 parallel dimension.
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Figure 6.7: N-body simulation. 1 parallel dimension.
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mizations, as e.g. using Newton’s third law. The DKU scheduler is executed mul-
tiple times in a loop to test if it is possible to use the DKU pattern also for syn-
chronous parallelism, which requires a barrier and communication. In the frame-
work there is an implicit synchronization after each invocation of the scheduler,
as the framework guarantees all computed data is aggregated on the master node
when the method returns. But in most cases, this also leads to a much stricter
synchronization as required, because the computed result is collected on one node
after each execution and all other nodes loose their data, which must then be copied
again for the next step.

For this test, there is also neither a layout transformation, nor an implicit tiling
performed.

The results for the n-body simulation are shown in Figure 6.7. The computation
for this test is much less data intense then for example for the polynomial product.
The input data consists of 4010 planets, where each needs only five double values,
compared to the two double arrays with 100.000 elements each for the polynomial
product. Therefore, the communication overhead is quite low and an almost perfect
linear speedup is possible for all except the MPI version, even if the scheduler is
invoked 50 times subsequently. For the MPI-only runs, each node requires at least
the position and the mass of all bodies, so the communication overhead increases
linearly with the number of nodes, which limits the maximum speedup here.

PolyBench/C linear-algebra/kernels/2mm In the 2mm benchmark, two matrix
multiplications are performed subsequently. Therefore, in contrast to a single
multiplication only one asynchronous parallel loop remains, which restricts the
divider to split more than one dimension. For the generated kernel code, trans-
posing one of the three input matrices enhences the overall memory layout and
therefore leads to a better performance.

The speedup values for this experiment are shown in Figure 6.8. The results
show that the memory bandwidth is the limiting factor here. Both OpenMP versions
accesses the same memory locations in the main memory and as the used hardware
is a NUMA architecture, they even share the same link to the RAM. The OpenMP
bundle version benefits from the memory layout optimization for up to 8 threads
here, but when starting more, the overhead for rearranging the layout worsens the
maximum performance more than for dealing with a row-wise access instead of
a column-wise. For the MPI version, the maximum speedup can be achieved by
using 16 nodes, which corresponds to the used hardware. The machine consists of

62



●
●

●

●

●

● ●
● ● ●

●

Threads

S
pe

ed
up

1 4 8 12 16 20 24 28 30 32
0

5

10

15

20

25

30
● OpenMP local

OpenMP bundle
MPI
OpenMP + MPI

Figure 6.8: PolyBench/C linear-algebra/kernels/2mm. 1 parallel dimension.

eight sockets, each connected with its own memory through a dual channel link.
Therefore, the complete computer has 16 channel. For each additional node, the
communication amount increases, but the memory bandwidth is already at its limit,
which results in a degradation of the performance. The OpenMP + MPI simulation
can take advantage of both factors. First, the memory layout is optimized, which
enables a super-linear speedup and second, the restriction of each MPI node and
the corresponding OpenMP threads to a single socket ensures each thread only
accesses the main memory according to the socket it is executed on. That means,
the available bandwidth is utilized as good as possible, while the communication
is reduced to a minimum.

PolyBench/C linear-algebra/kernels/bicg Another PolyBench benchmark tested
is the bicg kernel. It contains only one asynchronous parallel dimension after trans-
forming the iteration domain and there is no layout transformation possible.

The results of the experiments are shown in Figure 6.9. In order to understand
these extremly bad speedups, consider the original and the parallel version of the
bicg kernel, which are depicted in Figure 6.10. The original code cannot be par-
allelized directly, as the inner loop from line 8 to 11 updates all elements of the
array q, so executing this or the loop starting in line 6 in parallel would cause a
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Figure 6.9: PolyBench/C linear-algebra/kernels/bicg. 1 parallel dimension.

1 int i, j;
2

3 #pragma scop
4 for (i = 0; i < ny; i++)
5 s[i] = 0;
6 for (i = 0; i < nx; i++) {
7 q[i] = 0;
8 for (j = 0; j < ny; j++) {
9 s[j] = s[j] + r[i] * A[i][j];

10 q[i] = q[i] + A[i][j] * p[j];
11 }
12 }
13 #pragma endscop

1 int i, j;
2

3 for (i = 0; i < nx; i++) {
4 q[i] = 0;
5 for (j = 0; j < ny; j++)
6 q[i] = q[i] + A[i][j] * p[j];
7 }
8

9 for (i = 0; i < ny; i++) {
10 s[i] = 0;
11 for (j = 0; j < nx; j++)
12 s[i] = s[i] + r[j] * A[j][i];
13 }

Figure 6.10: Original (left) and parallel (right) version of PolyBench/C linear-
algebra/kernels/bicg.
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Figure 6.11: PolyBench/C linear-algebra/kernels/doitgen. 2 parallel dimensions,
16 subpieces per thread.

shared-update problem. But as both arrays q and s can be computed completely
independent, the second version depicted in Figure 6.10 can be executed in parallel,
or split for the DKU framework. But as for the computation of s both surrounding
loops are interchanged to allow a parallel execution, the original column-wise ac-
cess to the array A is transformed to a slower row-wise access. Transposing the two-
dimensional array is not possible, as the computation of q still accesses it column-
wise. The DKU version also needs to traverse A two times, which increases the total
number of accesses to the main memory. Finally, both disadvantages significantly
reduce the performance to a level beneath the unmodified sequential version.

PolyBench/C linear-algebra/kernels/doitgen The doitgen benchmark is a linear-
algebra kernel included in the PolyBench/C benchmark suite. It offers two asyn-
chronous parallel dimensions, which allows tiling, that can be controlled by gen-
erating more than one subpiece per thread. It also allows optimizations for the
memory layout, but both effects are very limited and they do not influnce the per-
formance in a noticable way for a larger number of threads.

The speedup values for this experiment are shown in Figure 6.11. The innermost
loop of the kernel accesses three arrays with only 260 subsequent double values.
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Figure 6.12: PolyBench/C linear-algebra/kernels/gemm. 2 parallel dimensions, 16
subpieces per thread.

Therefore, the computation is able to exploit the cache very well. This leads to
the good speedup for the OpenMP local version, which reaches a speedup of 64 for
32 threads, resulting in an efficiency of 200%. All other versions need to copy all
input and result data, which are about 270 MB, so the execution time converges to
the time needed to distribute all data. As the OpenMP + MPI version utilizes the
hardware best, so that all threads accesses the local part of the memory, this version
dominates MPI and OpenMP bundle here.

PolyBench/C linear-algebra/kernels/gemm The PolyBench/C benchmark suite
also contains a matrix multiplication version. In this case, the gemm is included,
which performs the computation C = α · A ∗ B+ β · C, where A, B and C are matrices
and α and β are scalars. This computation can be parallelized very efficiently, as
each element of the result matrix C can be computed independently, which leads
to two asynchronous parallel dimensions. This also implies, that the DKU frame-
work performs an implicit tiling and therefore for this experiment 16 subpieces are
created for each thread. It is also possible to further optimize the computation by
transposing the input matrix B, which leads to a column-wise access.
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Consider the results of this benchmark from Figure 6.12, the implicit tiling allows
a perfect speedup for the OpenMP local version with an efficiency of about 110%.
Creating only one subpiece for each thread would have lead to an efficiency of only
50%. If the memory layout transformation is performed, the performance increases
dramatically. Even the MPI only version, which has a quite high overhead due to
the communication and the node management performs good here, but its speedup
does not increase for more than 16 nodes. This corresponds to the number of chan-
nels the used hardware utilizes when accessing the main memory. Remember that
each MPI node accesses its own private copy of the input data, so the accesses of
different nodes running on a single socket must be cached separately, even if the
same data of the input is needed. Both OpenMP bundle and OpenMP + MPI are
not affected, they are able to use the cache more efficient, which leads to a better
performance.

In theory, the four thread runs of the experiments OpenMP bundle and OpenMP
+ MPI should be identical, as both uses one MPI node and four OpenMP threads,
but the first versions spreads the threads to four different CPUs, whereas the latter
binds all to a single processor. A more detailed explanation of this is given in Sec-
tion 6.2. A similar effect can be seen for two MPI nodes and four OpenMP threads
each for the OpenMP + MPI version, versus one MPI node and eight OpenMP
threads of the OpenMP bundle run.

PolyBench/C linear-algebra/kernels/gesummv The gesummv kernel computes
~y = α · A ∗ ~x + β · B ∗ ~x, where A and B denote two matrices, ~x and ~y are vectors
and α and β denote scalars. Therefore, the computation is quite simple and it is
mainly limited by the main memory. It also consists of only a single asynchronous
parallel loop, therefore no implicit tiling effect occurs. As a matrix-vector multipli-
cation accesses all memory linearly and column-wise, the memory layout is already
optimal.

The results of this benchmark are shown in Figure 6.13. In order to get a suitable
runtime for the computation, the sizes of both matrices and the vector must be high.
Both matrices have 8000 times 8000 elements and therefore the vector has also 8000
entries. This leads a memory consumption of almost 980 MB, whose transfer times
exceed the computation time. Therefore, all three experiments, which require to
copy all input data perform extremly worse here. Only the OpenMP local version,
which uses the input data is able to speed up the computation. But this speedup
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Figure 6.13: PolyBench/C linear-algebra/kernels/gesummv. 1 parallel dimension.

is limited to a factor of about 2.7 to 3.2, because the link to the main memory is
exhausted here.

PolyBench/C linear-algebra/kernels/syr2k Another benchmark tested here is
the syr2k kernel. It computes C = α · A ∗ B> + α · B ∗ A> + β · C, where A, B and C
denote matrices, whereas α and β are scalars. As both matrix multiplications access
the second input transposed, the memory layout can not be optimized any further.
The kernel code consists of two asynchronous parallel dimensions, so an implicit
tiling is possible here and therefore the number generated subpieces per thread was
set to 16.

The benchmark results are visualized in Figure 6.14. The OpenMP local version
performs best here, as there is no memory layout optimization possible and the in-
put is small enough to benefit from the large level 3 cache. The efficiency of this
version ranges from 170% to 240%. All other versions result in a lower speedup, as
the communication overhead for copying all input data reduces the overall perfor-
mance. In case of the MPI only version, the worst variant for this benchmark, each
used thread increases the amount of communication needed to distribute all data.
Therefore, the maximum possible speedup here is limited to about 15, which is still
a good value.
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Figure 6.14: PolyBench/C linear-algebra/kernels/syr2k. 2 parallel dimensions, 16
subpieces per thread.

PolyBench/C linear-algebra/kernels/syrk The linear-algebra kernel syrk from
the PolyBench/C benchmark suite is quite similar to the previous described syr2k.
This one computes C = α · A ∗ A> + β · C, so it can be seen as a specialization of
syr2k. The general properties of this code are the same, so there is also no reason-
able layout transformation and an implicit tiling is performed by creating 16 times
more subpieces than threads are started.

The speedups for this experiment are shown in Figure 6.15. The general evolu-
tion of the results is similar to the previous experiment, but as only two matrices
are needed, the overall speedup is higher. So for the OpenMP local run, a maxi-
mum speedup of 93 can be achieved. This corresponds to an efficiency of 310%.
The performance degradation for this version with 32 threads cannot be explained
satisfactorily. Some tests showed, its effect for smaller input sizes is much higher
and it disappears for a larger dataset.

PolyBench/C stencils/fdtd-apml The last benchmark from the suite the genera-
tor can currently deal with is the stencil fdtd-apml. This code performs only a single
step of the stencil and for this reason, the loop nest starts with a single asynchronous
parallel loop. That means, no implicit tiling is performed. The code is also orga-
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Figure 6.15: PolyBench/C linear-algebra/kernels/syrk. 2 parallel dimensions, 16
subpieces per thread.
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Figure 6.16: PolyBench/C stencils/fdtd-apml. 1 parallel dimension.
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nized in a way, such that all arrays are accessed column-wise and due to this, no
suitable layout transformation is possible.

The performance measurements for this stencil are shown in Figure 6.16. As the
kernel code works with four three-dimensional arrays of size 4013 each, its memory
consumption of almost 2 GB is quite high. Due to the overhead for copying all
input data at least once, the execution times for all three OpenMP bundle, MPI and
OpenMP + MPI versions converge to the time required to distribute all data. In
contrast to this, the OpenMP local version need not copy anything, which leads to
better performance. But a linear speedup cannot be achieved here, as the memory
bandwidth is limiting for a larger number of threads.

6.5 Comparison with Pluto

In this section, the generated DKU code is compared with an optimized version
created by Pluto [BHRS08]. Pluto is an automatic parallelization tool based on the
polyhedron model. Plutos advantage is its ability in automatically tiling the given
loop nest to enhance the cache usage. On the one hand, it can process more gen-
eral codes as the DKU generator, because Pluto is not restricted to asynchronous
parallelism. On the other hand, the DKU framework utilizes distributed memory
architectures, whereas Pluto is only able to parallelize the loop nest using OpenMP,
which is restricted to shared memory.

The usage of Pluto is quite simple. First, embrace the loop nest, that should be
optimzed with both #pragma scop and #pragma endscop, pass the source code
to the polycc tool and translate it with suitable C compiler.

By default, Pluto uses a built-in heuristic to determine the tile size, but the user is
also allowed to pass explicit tiling information, in order to utilize both level 1 and
level 2 caches best. But as the DKU generator does not require any user optimiza-
tion, the default behaviour of Pluto was used for the following experiments and all
previously mentioned PolyBench/C benchmarks were optimized using only the
parameters --tile --parallel for polycc. That means, a fixed tile size of 32 for
all loops was used by the current version of Pluto and as only one single loop is
parallelized, the remaining number of iterations is quite low for most experiments.
This results in a stagnancy of the speedup if the number of threads is higher than
the number of remaining iterations for the parallel loop. The DKU framework is
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Figure 6.17: PolyBench/C linear-algebra/kernels/2mm. 1 parallel dimension.

not affected by this, as it does not perform explicit tiling and it also uses multiple
loops to create exactly the requested number of pieces.

For the following paragraphs, the results of Pluto are compared with at most two
versions of DKU. First of all, the best DKU version is shown, as it demonstrates the
potentiality of the DKU framework best. In addition to this, the version, which can
be chosen by a simple heuristic without knowing the exact baviour of the others
is also opposed to Pluto. If the kernel requires much data and the computational
effort is comparatively low, the heuristic chooses the OpenMP local version, in order
to avoid a slowdown due to a high communication overhead. If this does not hold,
the OpenMP + MPI is chosen, as this one fits best to the actual hardware.

PolyBench/C linear-algebra/kernels/2mm The first benchmark compared with
Pluto is the 2mm kernel. The fastest DKU version for this code uses an OpenMP
+ MPI combination, which is also the preferred version for this code, as the ma-
trix multiplication requires relatively few data, compared to the required computa-
tional effort.

The results for the code optimized by Pluto are shown in Figure 6.17. The first
interesing point here is the performance stagnancy for 16 to 31 threads. This is
caused by the tiling, as all loops are tiled in blocks of 32 iterations. Therefore, the
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Figure 6.18: PolyBench/C linear-algebra/kernels/bicg. 1 parallel dimension.

outer loop, which is parallelized using OpenMP, iterates over all 32-element blocks
and as the original number of iterations were 1000, only 32 iterations remain for the
parallelized loop. That means, for each thread number between 16 and 31, at least
one single thread has to compute two different blocks, independently of all others
and therefore this thread slows the complete execution down.

If the input is large enough, the speedup raises continuously until reaching
the maximum speedup for 32 threads. As this code provides only a single asyn-
chronous parallel loop, the DKU framework does not perform an implicit tiling, so
Pluto generates faster code here.

PolyBench/C linear-algebra/kernels/bicg The next benchmark used to compare
the DKU framework with Pluto is the bicg kernel.

Consider Figure 6.9, which shows the results for both the Pluto version and the
DKU OpenMP local one. As already mentioned in the previous section, due to the
structure of the input code, the DKU framework performs bad here. The code opti-
mized by Pluto performs better, but is nevertheless far from a satisfactory speedup,
as it runs into the same problems as the DKU generator does.
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Figure 6.19: PolyBench/C linear-algebra/kernels/doitgen. 2 parallel dimensions,
16 subpieces per thread.

PolyBench/C linear-algebra/kernels/doitgen Another benchmark used to com-
pare DKU and Pluto is the doitgen kernel.

As shown in Figure 6.19, the DKU version OpenMP local provides good results,
and it has an efficiency of about 200%. The stagnancy of the speedup for the Pluto
version is caused by a too small number of iterations for the parallelized loop. In
this experiment, the original computation consists of three nested loops with 260
iterations each, which results in only d260

32 e = 9 iterations of the outermost loop,
because Pluto always generates tiles of size 32 by default. And as this one is the
only loop, which is parallelized, the speedup is limited to the value for using 9
threads. Therefore, the parameters for Pluto were adapated by hand in order to test,
how the resulting code behaves for a larger number of threads if it is not limited.
The two additional experiments Pluto-8 and Pluto-1 were tiled less aggressive,
using a tilesize of 8, or 1 respectively for the outermost loop. Both inner loops
are treated identically to the default version, which means a tilesize of 32 was used
again. Pluto-1 performs best for this code and it provides also a linear speedup, as
the number of iterations executed in parallel is large enough, but it was necessary
to manually adapt the optimizations, whereas DKU works automatically. A tile
size of 1 practically results in not tiling the associated loop, which may be worse
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Figure 6.20: PolyBench/C linear-algebra/kernels/gemm. 2 parallel dimensions, 16
subpieces per thread.

for other loop nests. So each application requires its own, individual tiling for an
optimal performance.

Combining all information, the best speedup for the default Pluto version is ap-
proximately 13.7 for 9 threads used. This leads to an efficiency of 150% - 160%,
compared to the roughly 200% for the DKU code.

Note that Pluto is able to perform better for optimized tiling parameters, as inidi-
cated by the results from the Pluto-1 runs, but this requires tuning the compiler
parameters by hand.

Due to the idea of the DKU framework, the implicit tiling performed by splitting
the computation in more than one dimension does not result in a statically fixed
tile size. That means, the extent of each subpiece depends on the size of the original
piece for the whole computation. Therefore, the DKU framework leads to a better
work balance in some cases, than a simple tiling into statically fixed chunks is able
to.

PolyBench/C linear-algebra/kernels/gemm Figure 6.20 shows the results, when
comparing Pluto to DKU using the gemm kernel.
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Figure 6.21: PolyBench/C linear-algebra/kernels/gesummv. 1 parallel dimension.

The overall best results for DKU are provided by the OpenMP bundle version, but
as the combination OpenMP + MPI maps best to the used hardware, its speedup
values are also shown. For a lower number of threads, the OpenMP bundle setup
leads to the best results, due to the better utilization of the cache, as explained
in Section 6.2. Because of the low number of iterations for the parallel loop, the
Pluto optimized versions does not profit from more than 24 threads on the tested
hardware. For larger input matrices, the speedup would be linearily increasing
until 32 threads.

PolyBench/C linear-algebra/kernels/gesummv The results for the linear alge-
bra kernel gesummv from the PolyBench/C benchmark suite are shown in Fig-
ure 6.21.

Its kernel code has a quite disadvantageous loop nest, as it requires a compara-
tively large amount of input data for the actual computation performed. There is
also no reuse of the input, so tiling in general has no effect, as the input data is read
linearily by the original code. Therefore, the Pluto code performs even worse than
DKU.
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Figure 6.22: PolyBench/C linear-algebra/kernels/syr2k. 2 parallel dimensions, 16
subpieces per thread.

PolyBench/C linear-algebra/kernels/syr2k The results for the next benchmark,
the syr2k kernel are depicted in Figure 6.22.

The kernel code for this benchmark computes two matrix multiplications. The
scheduler used in DKU is able to merge all computations into a single loop nest.
Therefore, all accesses to the same elements of the result array are as close as pos-
sible. In contrast to this, Pluto splits the whole computation into two subsequent
loop nests, which are parallelized independently. This also results in two separate
passes through the output array, which leads to a worse performance compared to
the DKU versions.

The input size for these experiments is also not large enough to ensure, the work
load can be balanced for any number of threads. This results in a stagnancy of the
speedup for 16 up to 31 threads. For sufficiently large inputs, the speedup should
be more or less linear here.

The OpenMP local version performs better than the OpenMP + MPI combination
here, due to the already optimal memory layout of the unmodified code and the
communication overhead for using multiple MPI nodes. But without that knowl-
edge, one would use the latter verson, as it fits better to the hardware. Therefore,
the OpenMP + MPI version is plotted alongside the OpenMP local and Pluto code.

77



●
●

●

●

●

●

●

●

● ●

●

Threads

S
pe

ed
up

1 4 8 12 16 20 24 28 30 32

0

20

40

60

80

●

Pluto
OpenMP local
OpenMP + MPI

Figure 6.23: PolyBench/C linear-algebra/kernels/syrk. 2 parallel dimensions, 16
subpieces per thread.

PolyBench/C linear-algebra/kernels/syrk The results for a specialized version
of the syr2k kernel, the syrk benchmark are depicted in Figure 6.23.

The general discussion for the results is identical to the one for the previous
benchmark. The DKU generator was able to merge all computations into a sin-
gle loop nest, whereas Pluto creates two parallel loops, which are executed subse-
quently.

The stagnancy for more than 20 threads can also be explained by the tiling and the
resulting low number of iterations for the outermoust loop, which is parallelized
using OpenMP.

PolyBench/C stencils/fdtd-apml The results for the last benchmark using the
fdtd-apml stencil are shown in Figure 6.24.

As the corresponding code computes a three dimensional stencil, the extent of
the outermost loop is relatively small. Regardless of that, Pluto tiles this dimen-
sion into chunks of 32 iterations, before parallelizing the code. That means, the
outermost loop, which was annoted with #pragma omp parallel for consists
of only few iterations, which enumerates the creates tiles. Therefore, the benefit
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Figure 6.24: PolyBench/C stencils/fdtd-apml. 1 parallel dimension.

from parallelizing this loop is very limited, as the performance does not increase
for more than 16 threads.

In addition to this, Pluto also splits the single loop nest from the original code
into four different, subsequent loop nests and parallelizes all of them separately.
The DKU generator conserves the single loop nest, which results in an improved
data locality and a better speedup compared to Plutos version.
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7 Conclusion

Summary Multicore systems are widely spreaded today, almost every available
personal computer and even most smartphones are equipped with at least a dual-
core processor. The wide range of different parallel systems require more advanced
tools to parallelize applications and to enhance the portability to a new system.

One technique to deal with this, is to introduce a new layer between the hard-
ware and the application code, which encapsulates all parallelization related code
and all further target optimizations. Following this approach, all application codes
are architecture independent, but the programmer also need to figure out a way, to
adapt the source code for the framework. But if the application can be represented
in the polyhedron model, it is possible to extract all required information from the
abstract description and generate the source code using the framework automati-
cally. For this purpose, the DKU generator was designed and implemented.

The DKU framework in combination with the generator introduced in this work
is a suitable method to automatically parallelize programms, fitting in the polyhe-
dron model, for both distributed and shared memory architectures.

In its current state, the generator requires input code, or a polyhedral descrip-
tion, that can be transformed in a way, such that at least the outermost loop can be
executed in parallel. If this holds, the generator is able to create architecture inde-
pendent code, which can be executed in parallel, if the DKU framework is available
and adapted to the hardware. That means, the actual work to adapt the program
to a specific hardware is transferred from the application to a more general frame-
work.

As described in Chapter 6, this approach can compete with other tools, such as
Pluto, as long as the tile size is not optimzed by hand, but the generator has more
restrictions for the input. If the application code can be split in more than one di-
mension, the framework also performs an implicit tiling. But in contrast to classical
tiling methods, the tile size depends on the size of the input and the requested
number of pieces. Therefore, it is computed dynamically and not statically fixed,
which allows creating as many tiles as required, that also define almost equally
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sized computations, even if the iteration domain is not rectangular. And as the
DKU framework divides the computation in more than one dimension, if possible,
the computational effort can be balanced very efficiently. In contrast to this, Pluto
parallelizes only the outermost parallel loop. In conjunction with the tiling, this
may lead to only few iterations which can be spreaded to the available cores.

Future Work Although the presented results are quite good, the generator and
the used version of the DKU framework suffer from some limitations.

First of all, the current version of the generator is not able to automatically com-
pute sufficient layout transformations for the input data. It requires the user to
find an optimization here, and pass it to the generator. And as the loop nest may
be transformed during the generation, the access pattern of the original input code
may also change. So for the current version, the user needs to create the kernel code
for the framework once without any layout optimizations, inspect it manually and
extract an optimal layout. If the original layout should be changed, the program-
mer has to formulate a transformation in isl syntax and pass it to a second call of
the generator.

Another useful feature would be to support not only conventional architectures,
but also graphics processing units for example. As modern GPUs are massively
parallel computing units, a single GeForce GTX Titan for example can provide up
to 4.5 TFLOPS, while consuming only 250 Watts. But adding support for GPGPU
is not as easy as it sounds first. The kernel code for GPUs must be structured in a
different way, then for CPUs, as, e.g. the former require cyclic access to the memory,
whereas the latter prefer block-wise accesses. Therefore also another kernel method
must be provided and the framework must be able in setting up and managing the
graphics processing unit. In addition to this, it may be sufficient, if multiple GPUs,
or also both CPU and GPU work on the same computation in order to reduce the
execution time even further.

A third, major improvement would be to remove the limitation to asynchronous
parallelism. In order to implement this, the framework requires more constructs
to define synchronization points and to allow communication between different
nodes. Currently it is possible to invoke the DKU scheduler multiple times, as al-
ready tested for the n-body simulation explained in Chapter 6. But this apporach
leads to a much higher synchronization overhead than required, as for each invoca-
tion of the scheduler all nodes start from scratch and therefore all input data must
be transferred again, no matter if it was modified or not.
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