
Bachelor thesis

An Intel®Xeon Phi™Backend for the
ExaStencils Code Generator

Thomas Lang

Supervisor: Prof. Christian Lengauer, Ph.D.
Tutor: Dr. Armin Größlinger

27th April 2016

Abstract

Stencil computations are an essential part of scienti�c calculations es-
pecially for numerical solving of partial di�erential equations and are
a �eld of ongoing research. The ExaStencils project provides a high-
level way to describe such calculations by de�ning a domain speci�c
langugage. This abstract way includes a code generator that is able
to transform an input written in the domain speci�c language into a
general-purpose language like C++ which can be executed on a target
hardware. However, the performance of the generated code varies for
di�erent platforms.
In this thesis, we focus on a speci�c target hardware, the Intel®Xeon
Phi™ coprocessor, a many-core coprocessor card for executing highly
parallel code. Firstly, we give an overview about this speci�c hardware.
Next, we describe high-level optimizations for enhancing performance,
like vectorization, that were added to the code generator and the cor-
responding implementation details. Empirical experiments measured
on this coprocessor show the signi�cant impact on performance of our
optimizations compared to the original generated code.

iii

Acknowledgements
This thesis has only been made possibly through the support of many people.
First of all, I want to thank Prof. Christian Lengauer, Ph.D., who gave me the opportunity of
working on a part of the ExaStencils project. So I could gain some insights in real-life high
performance computing and in the state-of-the-art of these �elds.
Next, I want to thank my tutor Dr. Armin Größlinger, who supported me in many points like
gaining me access to the cluster network used by the chair of programming, setting up the work-
ing environment and answering numerous questions about the project.
Furthermore, I am grateful for support from Stefan Kronawitter MSc., who introduced me into
the current code generator and answered several questions about existing features or where
potential for optimizations lies.
Lastly, I appreciate the remaining team of the chair of programming for giving me various hints
on code optimization.

iv

Contents

1 Introduction 1
2 Background 3

2.1 ExaStencils . 3
2.1.1 Project Overview . 3
2.1.2 The ExaSlang DSL . 5
2.1.3 Code Generator . 7

2.2 Intel®Xeon Phi™ . 8
2.2.1 Architecture . 8
2.2.2 Execution Models . 9

3 An Intel®Xeon Phi™Backend 13
3.1 Vectorization . 13

3.1.1 Introduction . 13
3.1.2 Manual Vectorization . 14
3.1.3 Auto-vectorization . 15
3.1.4 Loop Vectorization . 15

3.2 Data Alignment . 15
3.2.1 Data Alignment on the Intel®Xeon Phi™ 15
3.2.2 Data Alignment on loops . 16
3.2.3 Loop Unrolling . 17

3.3 Pragmas . 18
3.3.1 Vector Dependencies . 18
3.3.2 #pragma ivdep . 19
3.3.3 #pragma vector . 20
3.3.4 #pragma simd . 20
3.3.5 Aliasing and restrict . 20

3.4 Intel®Cilk™Plus Array Notation . 21
3.5 Elemental Functions . 23
3.6 Implementation Details . 24

3.6.1 Data Alignment . 24
3.6.2 Loop Vectorization through Pragmas . 24
3.6.3 Loop Iteration Counting . 26
3.6.4 Target Compiler Switches . 27
3.6.5 Other Modi�cations . 27

4 Runtime Analysis 29
4.1 Setup . 29
4.2 Experimental Results . 30
4.3 Analysis with perf . 33
4.4 Summary . 33

5 Conclusion and Further Work 35

v

Contents

Appendices 39
A Knowledge �le for multi-grid cycles . 39
B Knowledge �le for single-grid cycles . 40
C Platform �le for Intel®Xeon Phi™ . 40
D Layer 4 �le for measuring LUPs . 41
E Script for automatic tests . 43
Statement of Authorship . 48

vi

List of Figures

2.1 A three-dimensional six-point stencil . 3
2.2 Work�ow in the project . 4
2.3 ExaSlang software stack . 5
2.4 An Intel®Xeon Phi™coprocessor . 8
2.5 Intel®Xeon Phi™core architecture . 8

3.1 Illustration of a SIMD instruction and a scalar instruction 13
3.2 IMCI instruction . 13
3.3 Schematic split up loop . 16
3.4 The three types of thread a�nity . 28

4.1 Average runtime per VCycle . 30
4.2 Detail plot from Figure 4.1 . 31
4.3 Absolute solving time . 31
4.4 Speedup in runtime . 32
4.5 Average MLUPS . 33

Listings

2.1 Single Jacobi smoother in the Layer 4 DSL . 6
2.2 Single Jacobi smoother transformed into C++ code 6
2.3 O�oading using pragmas . 10

3.1 8 × 8 matrix multiplication using intrinsics . 14
3.2 Data alignment on Intel®MIC . 16
3.3 Loop that will be split up . 17
3.4 Non-interleaving loop unrolling . 18
3.5 Interleaving loop unrolling . 18
3.6 Usage of #pragma ivdep . 19
3.7 Usage of #pragma simd . 20
3.8 Using restrict for anti-aliasing . 21
3.9 Original loop . 22
3.10 Altered using Intel®Cilk™Plus . 22
3.11 Operations on arrays using Intel®Cilk™Plus Array Notation 22
3.12 Elemental function in combination with Intel®Cilk™Plus Array Notation 23
3.13 Excerpt of the implemented strategy . 25
3.14 Before adding the pragmas . 26
3.15 After adding the pragmas . 26
3.16 Previous example with loop count pragmas added 26

vii

Chapter 1

Introduction

The ExaStencils project is a new approach in reaching exascale performance for multigrid stencil
computations. This goal is reached by focussing on a speci�c domain and optimize applications
using domain speci�c expert knowledge.
The chosen domain for this project are stencil computations, which are very important for a wide
range of scienti�c computations, especially for solving partial di�erential equations (PDEs).
The main challenge here lies in generating e�cient code that can solve such PDEs. To make the
program usable for non-experts in programming and still ensure accuracy and e�ciency, it was
decided to create a domain speci�c langugage (DSL) named ExaSlang to gain the needed level of
abstraction. To get executable code that can really solve the given problem, a code generator was
written in Scala. This program generates a C++ output that can be compiled and run. During the
individual compilation phases, it performs many optimizations either given as input from the
user or implied from previous steps to gain a maximum of performance [LGK+14].
In this thesis, we provide a measurement of the runtime of the currently generated code and a
way and additions to the code generator to gain a better performance when using the Intel®Xeon
Phi™coprocessor.
The next chapter gives a general overview over the architecture and work�ow of both the
ExaStencils project and the current code generator.
In chapter 3, we describe performance enhancing methods and implementation details for that.
This is succeeded by an analysis of the runtime of the generated code before and after adding
the implementation discussed in this thesis.
Finally, it is concluded how performance can be gained through several adaptions and what
further features not added yet may be useful to improve the runtime on the coprocessor.

1

Chapter 2

Background

2.1 ExaStencils
The ExaStencils project aims for exascale performance when solving partial di�erential equations
numerically. In the following sections, we take a look at the work�ow of the project and the code
generator itself.

2.1.1 Project Overview
An essential part of scienti�c calculations is the solving of partial di�erential equations, like a
heat equation which describes the changement of temperatures in a given region over time. In a
general coordinate system such an equation has a form of:

∂U

∂t
= κ∇2U

where κ is the thermal di�usivity and U is the temperature [Wei16]. A numerical approach
to solve this is to represent the region in a multi-dimensional discrete grid and to use stencil
computations to compute the solution point-per-point.
A stencil is a point in a multi-dimensional grid whose value can be computed by combining arith-
metically itself, its neighboured values and weights. This is schematically shown in Figure 2.1. A
stencil computation is the act of applying this calculation to every point in the entire grid [Fre14].

Figure 2.1: A three-dimensional six-point stencil (taken from [Gen13])

3

2 Background

Depending on the equation, the grid used for iterative solving can have more than one dimen-
sion, e.g. a three-dimensional stencil computation as shown in Figure 2.1 can be realized in a
single grid with each point having three-dimensional coordinates. In order to enhance perform-
ance, this computations can be done on multiple grids of di�erent cell sizes to reduce memory
consumption. This is done by executing VCycles which consist of smoothing, coarsening and
prolongation. Smoothing is the approximation of the solution of the system of linear equations
which reduces the di�erence between the exact and the calculated solution. To achieve this, dif-
ferent numerical algorithms can be used for smoothing. After smoothing, the remaining system
can be represented on a grid of same size but with fewer points what is called coarsening. This
process is used recursively until the coarsest level is reached. On this level the equation system
can be solved directly. After this, the solution is prolongated to �ner levels using interpolation,
with smoothing taking place on each level until the �nest level is reached [RBK15].
The purpose of this project is the e�cient and highly parallel execution of stencil computations.
To achieve that, the project runs through several steps with each of them uses its own optimiz-
ations on their speci�c domain using expert knowledge.
In detail, these steps are [exa16]:

1. Adaption of the mathematical problem
2. Formulation in a DSL
3. Domain-speci�c optimizations customized for stencil codes
4. Loop optimization in the polyhedral model
5. Platform-speci�c adaptions

In the very �rst step the mathematical problem is transformed into a numerically stable, scalable
and e�cient way. In the second step, this very abstract form is translated into a domain speci�c
language. The resulting program then walks through an entire four layer software stack and is
further optimized using expert knowledge on the computability of stencil codes and paralleliza-
tion. Finally, the generated code is tuned towards the target hardware [exa16].
This work�ow can be visualized as in Figure 2.2.

Figure 2.2: Work�ow in the project (taken from [LGK+14])

4

2.1 ExaStencils

Today, these computations are implemented in any general-purpose language like C/C++ or Fortran
and derivates that exploit parallelism, mainly by using OpenMP or MPI.
However, this implementation can be complicated and di�erent for di�erent domains and plat-
forms and it needs experts in programming to do that. To avoid that, ExaStencils provides the
above already mentioned domain speci�c approach to reduce this complexity [LGK+14].

2.1.2 The ExaSlang DSL
This abstraction ultimately resulted in the creation of the ExaSlang (ExaStencils language) do-
main speci�c language, used for solving partial di�erential equations using stencil computations.
All together, a four layer language stack is planned, as shown in Figure 2.3.

Figure 2.3: ExaSlang software stack (taken from [LGK+14])

This DSL is used for formulating a problem on a very abstract and mathematical oriented level.
This is the Layer 1 DSL. All models and domains in this layer are assumed continuous just like in
the mathematical de�nition.
Next comes the Layer 2 language that discretizes the domain and the problem to make it comput-
able programmatically. This includes the choice of data types and the �rst problem transforma-
tion.
This is followed by Layer 3. This layer speci�es mathematical operators, several mathematical
techniques for solving (like smoothers) and also the conversion from �elds to arrays.
Finally, Layer 4 describes the complete program speci�cation in a Scala-like syntax and the last
level in this DSL stack. An example Layer 4 �le is shown in Appendix D. This further speci�es the
operations depending on the several levels of the multigrid computation and the communication
between that levels. Also, third-party libraries can be included here and other optimizations can
be made.
All these layers are sharing a target hardware description that enables the generator to do dif-
ferent optimizations for several target machines on each layer [KSK+15].
It also should be noted that only the Layer 4 level exists currently. But for our optimizations
for the Intel®Xeon Phi™this is su�cient because this optimizations tune the code towards this
speci�c hardware and do not rely on the above DSL layers.

Because we manipulate the Layer 4 level only, we take a closer look at this DSL. A simple and
very important code example in this DSL is a simple smoother like shown in Listing 2.1.

5

2 Background

1 Function SmootherT(): Unit {

loop over fragments {

repeat 2 times with contraction [1,1,1] {

loop over SolutionT@finest {

5 SolutionT[nextSlot]@finest = SolutionT[active]@finest

+ (0.8 / diag(Laplace@finest)

* (RHST@finest - Laplace@finest * SolutionT[active]@finest))

}

advance SolutionT@finest

10 }

}

}

Listing 2.1: Single Jacobi smoother in the Layer 4 DSL

In this example, we see a single Jacobi smoother in the Scala-like syntax of the Layer 4DSL. It uses
nested loops and speci�cations on which grids which code must be executed, e.g. SolutionT[active]@finest
means that the current �eld of SolutionT on the �nest grid is accessed. The remaining parts of the
code are communication and computational details we will not explain here.
The ExaStencils code generator can process this program and converts it into C++ code. Listing 2.2
shows a simpli�ed excerpt of the generated code.

1 void SmootherT() {

for (int fragmentIdx = 0; fragmentIdx < 1; ++fragmentIdx) {

for (int z = 1; z < 577; ++z) {

for (int y = 1; y < 577; ++y) {

5 double* const p1 = &fieldData_RHST[1][346912*z+592*y];

double* const p2 =

&slottedFieldData_SolutionT[currentSlot_SolutionT[1]%2][1][348096*z+592*y];

double* const p3 =

&slottedFieldData_SolutionT[(currentSlot_SolutionT[1]+1)%2][1][348096*z+592*y];

10
for (int x = 1; x < 577; ++x) {

p3[x+1743448] =

(0.19999999999999996*p2[x+1743448])

+(0.16666666666666669*p1[x+1390024])

15 +(0.13333333333333336*(p2[x+1395352]

+p2[x+1742856]+p2[x+1743447]

+p2[x+1743449]+p2[x+1744040]+p2[x+2091544]));

}

}

20 }

...

}

}

Listing 2.2: Single Jacobi smoother transformed into C++ code

As we can see that the constants and �eld accesses as well as the di�erent dimensions of the
generated code are created entirely by the code generator which gives even more abstraction on
the Layer 4 level. We also can observe several optimizations already made by the code generator
like the address precalculation.

6

2.1 ExaStencils

2.1.3 Code Generator
To manage the four layers of the ExaSlang DSL, a code generator was implemented in Scala.
This generator reads the input in the domain speci�c language (currently Layer 4). The input
is then lexed and parsed into an tree-like intermediate representation. On this intermediate
representation, several optimizations are made, e.g. function inlining or dead code elimination.
After all these steps, the generated code will �nally be transformed into C++ code1 and pretty-
printed into corresponding �les.
There are two possible usages of this generator planned.
On the one hand, one can generate code in individual levels and then manually optimize that
code for the speci�c domain. On the other hand, the code generator does all optimizations. For
that, it uses expert knowledge from several domains like software specialists in loop optimization
or hardware specialists in tuning towards a speci�c hardware.
All optimizations done by the code generator are implemented using strategies. Each such strategy
iterates over the whole program in a Visitor-like pattern and a�ects the desired parts of it. These
are replaced with a new state resulted by applying one or more transformations on the old state.
This new state replaces the entire sub-tree from the manipulated node, including itself.
We want to discuss a few optimizations relevant for this thesis in more detail: A high-level op-
timization is the loop optimization using the polyhedral model. As said, this strategy computes
the loop and access dependencies, eliminates dead code, searches an optimal schedule, tiles the
dimensions and recreates the abstract syntax tree. This aims for loops with a very high potential
for parallelism.
Furthermore, the low-level approach of address precalculation can be used. This computes base
pointers of array accesses used in the loop and with this, it prevents expensive calculations in the
innermost loops that could be done before [KSK+15]. In advance, this leads to simpli�ed inner
loops which then have a higher potential for Vectorization.
Later on, we will implement such a strategy for pushing further vectorization speci�cally for the
Intel®Xeon Phi™.

1The currently supported C++ standard is C++11.

7

2 Background

2.2 Intel®Xeon Phi™

Figure 2.4: An Intel®Xeon Phi™coprocessor

In 2013 [Cor13a], Intel®announced a new manycore
system called Intel®Xeon Phi™. As stated before,
the generated code does not perform as well on this
machine as it would be possible. In this section, we
will look at the structure of such a machine and its
unique advantages over other existing systems.

2.2.1 Architecture
The Intel®Xeon Phi™(aka Many Integrated Core or MIC card) is a coprocessor, which means it is a
card that can be physically installed on an existing Intel®computer. It di�ers from other systems
in that it was not designed to execute serial code, but highly parallel code instead.
In this thesis we use an Intel®Xeon Phi™3120P coprocessor card that has 57 CPU cores with each
supporting four threads simultaneously, which makes a maximum of 228 threads at a time. The
cores are connected in a bi-directional 512 bit wide ring BUS that interconnects the coherent
512kB L2 caches of the cores. These hardware features are shown schematically in Figure 2.5.

Figure 2.5: Intel®Xeon Phi™core architecture(taken from [Cor12c])

In contrast to other Intel®products, this hardware does not support out-of-order execution. This
principle enables processors to execute statements in another order than speci�ed by the pro-
gram. As the Intel®Xeon Phi™does not support that, every instruction is executed like in the
program. This may lead to a waste of cycles caused by CPU stalls and should be compensated
by using techniques improving instruction throughput like hyperthreading [CD13].
Additionally, there are two pipelines: One for executing scalar and one for executing vectorized
code. The vector processing unit supports Single Instruction Multiple Data operations. With that
more than one data item at a time can be processed in a single instruction [Cor13d].

8

2.2 Intel®Xeon Phi™

With knowledge gained from above, we expect a huge improvement in the theoretical peak per-
formance. The coprocessor used for this thesis can process 8 double precision data items on
2 sockets, totalling 16 �oating point operations per clock cycle. In total, the theoretical peak
performance can be computed as [Cor13c]:

PEAK = 16
FLOPs
clock

× 57cores × 1.1GHz = 1003.2
GFLOPs

sec

So at maximum about one TFLOP per second is possible when using double precision. In case
of using single precision, twice the amount of data items can be processed, so then about two
TFLOPS are possible.

2.2.2 Execution Models
As stated earlier, the Intel®Xeon Phi™is just a card that is physically installed on a machine in
addition to the main CPU. In total, there are three di�erent execution models usable:

1. Native execution
2. O�oad execution
3. Symmetric execution

In the following sections, we take a closer look at these three models.

Native execution
The coprocessor is able to run its own operating system. This enables users to connect to the
coprocessor directly using ssh and execute applications. It must be noted, that the Intel®Xeon
Phi™is not binary compatible with other Intel®processors, so cross-compilation is needed for
using this model.
This model provides the easiest way for porting applications to this hardware. This is as easy by
simply adding the switch -mmic to the compile and link commands [Rah13].
With this technique, we can easily execute our program on the coprocessor without changing any
code. However, this does not mean that the code gets faster by itself. Empirical tests show that
the code executed can even get slower! In order to compensate this and improve performance,
we can apply several techniques like vectorization or parallelization.
These topics will be discussed in Chapter 3.

O�load Execution
We know that the coprocessor is designed for executing highly parallel and vectorized codes.
But in reality, every application code has sequential parts like environmental setup or memory
management, that are not very performant on this card. This problem can be solved by using the
o�oading execution model.
This model uses both the host and the coprocessor. The main work�ow takes place on the host
while suitable calculations are executed on the MIC card.
This is basically the act of copying data from the master node (the host) to the coprocessor,
executing a massively parallel algorithm and re-copying the result back to the host [Rah13].
We can realize that by adding o�oading pragmas. Consider the following example of a matrix
multiplication that uses o�oading:

9

2 Background

1 void doMult(unsigned int size, double* restrict A, double* restrict B, double* restrict C)

{

#pragma offload target(mic:0) in(A:length(size*size)) \

in(B:length(size*size)) out(C:length(size*size))

5 {

#pragma omp parallel for shared(A, B, C, size)

for (int i = 0; i < size; ++i)

for (int j = 0; j < size; ++j)

for (int k = 0; k < size; ++k)

10 C[i + j*size] += A[i + k*size] * B[k + j*size];

}

}

Listing 2.3: O�oading using pragmas

As we can see, the only di�erence to a non-o�oaded variant is the additional pragma. This
pragma tells the compiler the o�oading target (a MIC device) and what and how many data
items to copy to the device (A and B) and what to copy back from it (C). In a working example,
the memory for the three pointers is allocated and free’d on the host processor.
While this would be the most useful model for the ExaStencils project, this is not usable at all.
This is caused by the fact that this project uses multi-dimensional arrays to represent the multi-
dimensional grid. These arrays can be expressed in C/C++ as multiple pointers (like double ***p;)
or multi-dimensional arrays of pointers (like double* p[2][10];). And the current Intel®C compiler
does neither support the �rst nor the second type [Cor13e].

Symmetric Execution
As its name suggests, this execution model makes the application run both on the host and the
coprocessor. These two programs are communicating with each other using message passing,
e.g. with MPI. So there is no explicit master node like when using o�oading, but each hardware
is treated as a single node in a cluster environment [Rah13].

Intel®Cilk™Plus O�loading

Besides the above mentioned models, the Intel®Cilk™Plus language extension also can make use
of o�oading.
This can happen on global variables only that have to be allocated and free’d as shared memory.
We will explain this process in detail on the following simple example.

1 double** _Cilk_shared dp;

_Cilk_shared void init() {

dp = (double**) _Offload_shared_malloc(5 * sizeof(double*));

5 for (int i = 0; i < 5; ++i) dp[i] = _Offload_shared_malloc(4 * sizeof(double));

}

_Cilk_shared void modifyShared()

{

10 for (int i = 0; i < 5; ++i)

for (int j = 0; j < 4; ++j)

dp[i][j] = (double)42 + i + j;

}

10

2.2 Intel®Xeon Phi™

15 _Cilk_shared void destroy()

{

for (int i = 0; i < SIZE1; ++i) _Offload_shared_free(dp[i]);

_Offload_shared_free(dp);

}

20
void modifyLocal()

{

dp[2][3] = -7;

}

25
int main(int argc, char* argv[])

{

_Cilk_offload init();

_Cilk_offload modifyShared();

30 modifyLocal();

_Cilk_offload destroy();

return 0;

}

Firstly, we notice that the global variable that should be used for o�oaded computations has the
additional attribute _Cilk_shared which marks it as a shared memory variable. As such, we have
to allocate it properly using the allocation intrinsic _Offload_shared_malloc. Of course, we have
to free it with its intrinsic counterpart _Offload_shared_free, as any mix of this intrinsics and the
standard memory allocation will result in unde�ned behaviour.
Next, we will take a look where we actually use o�oading. To do so, called functions have to
have the additional attribute _Cilk_shared. Any computation in these functions then can take
place on the coprocessor. Now, when we call these functions using _Cilk_offload, the function
will be executed on the coprocessor. But, if we call it just as usual, the function is executed on
the host [Cor12b].

Currently, the usage of this approach on the ExaStencils project runs out of memory, so it is not
implemented in the code generator.

11

Chapter 3

An Intel®Xeon Phi™Backend

3.1 Vectorization
To exploit the full potential of the Intel®Xeon Phi™, highly parallel and vectorized code must be
used. The term vectorization means the conversion of scalar into vectorized code, which can be
done either by the programmer or by a compiler.

3.1.1 Introduction
The code normally produced by a programmer or generator is scalar, which means that every
value used is a single value. As a consequence, a single instruction can compute at most one data
item.
In contrast to that, on the Intel®Xeon Phi™another technology is used: SIMD.
SIMD (Single Instruction Multiple Data) has the special ability to compute more than one data
item in the same instruction, the operations will be applied element by element [Cor13b].
These two concepts are illustrated in Figure 3.1.
A concrete example on the Intel®Xeon Phi™is shown in Figure 3.2.

Figure 3.1: Illustration of a SIMD instruction and a scalar instruction(taken from [Cor11])

Figure 3.2: IMCI instruction (taken from [Cor13d])

13

3 An Intel®Xeon Phi™Backend

As we see, two vectors of eight values can be added in one instruction and saved into a target
vector. Furthermore, it is possible to mask these operations, so in the example two vector entries
are not computed. All together, this computation can take place in one instruction, which takes
around four clock cycles [Cor13d].
As mentioned above, the coprocessor is capable of using 512 bits for each vector (eight double
precision or 16 single precision data items) at a time. This is twice as much as when using
Intel®Advanced Vector Extensions (AVX) on other architectures, which suggests that highly par-
allel code should be executed on this hardware. Later, we will verify this empirically.

3.1.2 Manual Vectorization
As stated, a programmer can actively write vectorized code or change existing code so it can be
vectorized.
The manual approach can be achieved through the usage of intrinsic functions. These are C-
style functions hand-optimized for the Intel®Xeon Phi™that provide easy access to Intel®vector
instructions without a need to write assembly code. A full list of all available intrinsic functions
can be viewed under [Cor16b]. The only supported vector instruction set on the used MIC card
is Intel®Initial Many Core Instructions (IMCI).
As a typical example, we optimize the matrix multiplication for 8 × 8 matrices using IMCI in-
trinsics:

1 void doMult(double* restrict A, double* restrict B, double* restrict C)

{

__mm512d a_line, b_line, c_line;

4 for (int i = 0; i < 64; i += 8) {

a_line = _mm512_load_pd(A);

b_line = _mm512_set1to8_pd(B[i]);

c_line = _mm512_mul_pd(a_line, b_line);

8
for (int j = 1; j < 8; ++j) {

a_line = _mm512_load_pd(&A[j*8]);

b_line = _mm512_set1to8_pd(B[i+j]);

12 c_line = _mm512_fmadd_pd(a_line, b_line, c_line);

}

_mm512_store_pd(&C[i], c_line);

16 }

}

Listing 3.1: 8 × 8 matrix multiplication using intrinsics

Here, we use the Intel®Xeon Phi™vector intrinsics to process 8 double values at once. Note that
the �rst three statements in the outer loop are the unrolled �rst step of the inner loop to avoid an
additional initialization of the accumulator c_line with zero. These instructions then load the
needed data. The real computation then is done in line 12, which just computes

c_line += a_line * b_line;

This computation can be realized using a fused multiply add, which can perform one multiplica-
tion and one addition in a single instruction. Finally, the result is stored back into matrix C.
The current code generator also supports generating code with vector intrinsics even for the
Intel®Xeon Phi™. As we will see in Section 4.2, this already leads to a good performance, but we
can push it further with other techniques we will also see shortly.

14

3.2 Data Alignment

Another approach is the usage of the Intel®Cilk™Plus Array Notation as seen in Section 3.4.

3.1.3 Auto-vectorization
As we can see in the previous section, it is an extreme e�ort to write all vectorized code without
support from tools that can do this automatically. Because of this, the Intel®C Compiler (ICC)
supports auto-vectorization. This is an attempt to automatically vectorize existing code without
interference of any programmer.
Furthermore, this compiler can report what sections have been vectorized and which have not
and can give information about estimated potential speedups [Cor12a].
In order to support auto-vectorization, a programmer can make use of several constructs:

1. Data alignment
2. Pragmas
3. Intel®Cilk™Plus Array Notation
4. Elemental functions

We will describe these points in detail later.

3.1.4 Loop Vectorization
As the most expensive parts of the execution of the genereated ExaStencils code are the loops
running the smoothing algorithms, loop vectorization is the main focus of this thesis.
The basic principles of vectorization also apply here. But for improving performance, the com-
piler checks for the following points [Cor13b]:

1. Is the loop run condition invariant of the body?
2. Are any base pointers used in the loops invariant?
3. Is there any aliasing between used pointers?
4. Are the operations used in the loop associative?
5. Will a vectorized version be faster than the scalar version?

Based on that, the compiler make its decision whether to and how to vectorize the loop, or not to
do so. If any of these conditions is not ful�lled, the loop will not be auto-vectorized. But if there
is some more information about the loop e.g. that there is no aliasing, and the compiler does not
recognize it, the programmer can give the compiler a hint what to do. This will be described in
detail later in the section on pragmas.

3.2 Data Alignment
For e�cient vectorization, it is very important how data is aligned. It is, because if the data is
aligned correctly, a compiler can maximize the amount of vectorized code.

3.2.1 Data Alignment on the Intel®Xeon Phi™

As mentioned, data alignment is important for assisting in generation of vectorized code. So, the
�rst step is to align the data correctly in the �rst place.

15

3 An Intel®Xeon Phi™Backend

The optimal data alignment di�ers from hardware to hardware, for the Intel®Xeon Phi™the op-
timal value is 64 bytes [Cor15]. So, we have to align the data on a 64 byte boundary for getting
the best performance.
In order to do so, we have to do two di�erent things:

1. Align the base pointer of the array.
2. Align the dynamically allocated memory.

In detail we demonstrate this on the following very short example1:

1 double* A[10] __attribute__((aligned(64)));

void func()

{

5 for (int i = 0; i < 10; ++i)

A[i] = (double*) _mm_malloc(2 * (i + 1) * sizeof(double), 64);

for (int i = 0; i < 10; ++i)

if (A[i]) {

10 _mm_free(A[i]);

A[i] = 0;

}

}

Listing 3.2: Data alignment on Intel®MIC

In Listing 3.2 we demonstrate how to align data on a 64 byte boundary for Intel®MIC. Firstly, the
base pointer of the array of pointers is aligned. Next, the dynamically allocated memory is also
aligned using the allocation intrinsic _mm_malloc. Of course, we have to free the dynamically
allocated memory with an appropriate method. A mix of these allocation intrinsics and regular
C/C++ allocation will result in unde�ned behaviour [Cor15].

3.2.2 Data Alignment on loops
When vectorizing loops, it is quite di�cult (or nearly impossible) to restructure it to vectorize
the whole loop. In order to vectorize most of the code, the Intel®C compiler will split up a loop
in three parts if necessary: a peel, a main and a remainder loop. This is shown in Figure 3.3.

Figure 3.3: Schematic split up loop

As the names suggest, the main loop is that part of the original loop that �ts perfectly into the
used data alignment. The peel and remainder loops are left-over iterations that can be executed
(and even vectorized) separately [Cor16f].

1Note that this alignment attribute syntax works on Linux and Mac only, on Windows use the older
__declspec(align(64)).

16

3.2 Data Alignment

The following simple example of a simple for loop will demonstrate this:

#define SIZE 500

double A[SIZE][SIZE];

double B[SIZE][SIZE];

double C[SIZE][SIZE];

void func()

{

for (int i = 0; i < SIZE; ++i)

for (int j = 0; j < SIZE; ++j) {

A[i][j] = i + j;

B[i][j] = i - j;

C[i][j] = 0.0;

}

}

Listing 3.3: Loop that will be split up

After compiling with -vec-report5, the Intel®C compiler prints a �le containing at least the
following vectorization informations:

LOOP BEGIN at file1.cpp(33,9)

<Peeled loop for vectorization>

remark #15301: PEEL LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at file1.cpp(33,9)

remark #15399: vectorization support: unroll factor set to 2

remark #15300: LOOP WAS VECTORIZED

remark #15451: unmasked unaligned unit stride stores: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 13

remark #15477: vector loop cost: 0.810

remark #15478: estimated potential speedup: 12.500

remark #15487: type converts: 2

remark #15488: --- end vector loop cost summary ---

LOOP END

LOOP BEGIN at file1.cpp(33,9)

<Remainder loop for vectorization>

remark #15301: REMAINDER LOOP WAS VECTORIZED

LOOP END

As one can see, three loops were generated and vectorized separately. Futhermore, this output
contains additional information about the estimated speedup because of vector arithmetic, or the
unroll factor introduced by the compiler.

3.2.3 Loop Unrolling
In the optimization output above, we see that the unroll factor was set to 2.
This means that every statement in the loop body was duplicated and the access index in the
second statement is incremented, while the loop iterator is incremented by two instead of one.
This technique may serve very well to restructure a loop in order to vectorize it. All parts of the
loop that could not be restructured like that will be executed in a separate loop as mentioned
above.

17

3 An Intel®Xeon Phi™Backend

This is already implemented in the ExaStencils code generator. In that strategy, there can be
distinguished between two variants of loop unrolling: interleaving and non-interleaving un-
rolling [KSK+15].
Lets imagine the following simple loop:

1 for (int i = 0; i < 8; i += 1) {

a[i] = i - 4;

b[i] = i + 2;

}

Now we will show up the di�erence of both unrolling variants:

1 for (int i = 0; i < 8; i += 2) {

a[i] = i - 4;

b[i] = i - 2;

a[i+1] = (i+1) - 4;

5 b[i+1] = (i+1) + 2;

}

Listing 3.4: Non-interleaving loop unrolling

1 for (int i = 0; i < 8; i += 2) {

a[i] = i - 4;

a[i+1] = (i+1) - 4;

b[i] = i + 2;

5 b[i+1] = (i+1) + 2;

}

Listing 3.5: Interleaving loop unrolling

As we can see, in the non-interleaving variant, the whole loop body was duplicated and appen-
ded. In contrast to that, using the other variant each individual statement was duplicated and
appended before it was proceeded with the next statement, provided that no data dependency is
violated [LK15]. Especially the latter variant could bring bene�ts when used on in-order architec-
tures like the Intel®Xeon Phi™because the base pointer for each array has to be loaded once only.
In the other case of non-interleaving unrolling, for each statement an individual load instruction
will be generated instead.

3.3 Pragmas
As we noticed before, some loops will not be vectorized although it could be useful. This may
result from e�ciency heuristics done by the target compiler, so, this is a serious limitation of it.
But we can give some hints to the compiler so it should try to vectorize even these loops. These
hints come in form of pragmas.
The main pragmas usable for vectorization are ivdep, vector and simd.

3.3.1 Vector Dependencies
The main obstacle when vectorizing code are the dependencies in loops, which means that the
state of one loop iteration depends on another one. In general, there are three di�erent types of
dependencies: �ow, anti and output dependence. These three describe the possible con�icts that
can happen in code.

First, we know that two read-only operations on data do not in�uence each other, so two read
operations are independent on the Intel®Xeon Phi™.
The �rst true con�ict that can happen is a �ow dependence. This describes that data is read after
it was written in a previous statement.

18

3.3 Pragmas

Another type of dependence is the anti dependence what is the exact opposite of the �ow de-
pendence. This means, that here memory is written after it was read.
Lastly, there exists the so called output dependence. This one arises if some memory is overwrit-
ten after it was already written by another statement before [Gol08].
Now we will show up these dependencies on a small example code. Here we use the scalar case,
but the same applies for vectorized code (element per element).
a[0] = 0; // S1

b[0] = a[0]; // S2

a[0] = 42; // S3

b[0] = -1; // S4

The above example shows all three dependence types at once:

• There exists a �ow dependence between statements S1 and S2 because in the latter state-
ment the value of a[0] is read after it was written by statement S1.

• Also we see an anti dependence between statements S2 and S3. Here, the value of a[0] is
written after it was read in S2.

• Lastly, there is an output dependence between the second and the fourth statement because
in both statements the same data item is written.

As stated, data dependencies represent con�icts that must be handled.
The Intel®C compiler does an analysis of the input code and tries to detect these con�icts. It
further distinguishes between assumed and proven dependencies. In the latter case, the compiler
cannot solve this problem and does not vectorized the code, while in the �rst case it does not
have enough information to do so, and it still aborts vectorization.
So, if there is information about dependencies between data items, the programmer can tell these
to the compiler to enable vectorization where it would be denied otherwise. For the speci�c case
of this thesis, this happens by using pragmas.

3.3.2 #pragma ivdep
IVDEP stands for Ignore Vector DEPendencies, so this pragma gives the compiler a hint that there
are no vector dependencies in the following code. Normally, any assumed dependence will be
treated as proven dependence to prevent vectorization. This pragma will override that heur-
istic [Cor16c] listed as point three in Section 3.1.4.
However, if there are proven data dependencies in a loop, it will not be vectorized.
Lets suppose the following example2:
void func(int *a, int k, int c, int m)

{

#pragma ivdep

for (int i = 0; i < m; ++i)

a[i] = a[i + k] * c;

}

Listing 3.6: Usage of #pragma ivdep

As one can see, the value of k is not known at compile time. This is an assumed dependence that
prevents vectorization. But if we annotate the loop inside the function with this pragma, we give
a hint that this should be ignored, and so it will be vectorized. Of course, this is only useful, if
the array limits of a are not violated.

2Code taken from https://software.intel.com/en-us/node/514541

19

https://software.intel.com/en-us/node/514541

3 An Intel®Xeon Phi™Backend

3.3.3 #pragma vector
Similar to the above pragma, this gives the compiler a hint not to use its default optimization
heuristics. There are multiple strategies usable with this pragma. The desired strategy must be
passed as an argument, like in #pragma vector always, where always is the argument. As for
our purposes, the only useful attributes are always and nontemporal. While the �rst argument
tells the compiler to ignore any of its e�ciency heuristics like listed in Section 3.1.4, the second
one instructs the compiler to generate streaming stores, a common technique for improving
performance [Cor16e]. Streaming stores allow the program to overwrite a full cache line without
reading it before, making room for other, probably more frequently used data [Hag08].

3.3.4 #pragma simd
In contrast to just giving hints to the compiler as the above two pragmas, this one enforces the
vectorization of loops whenever possible, regardless of any compiler heuristics what means it
disables all checks listed in Section 3.1.4. As a consequence, loops that will be vectorized anyway
by the compiler are not a�ected by this.
But still, if there is absolutely no chance for vectorization like when a function call is made within
it, a warning will be produced and the loop will stay scalar [Cor16d].
Just suppose the following example3:
void add(double* a, double* b, double* c, double *d, double* e, int n)

{

#pragma simd

for (int i = 0; i < n; ++i)

a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

Listing 3.7: Usage of #pragma simd

In this example, the compiler will not auto-vectorize because there are too many unknown point-
ers. But when the simd pragma is applied, this is ignored and the loop will be vectorized.
However, if this approach is included in the ExaStencils code generator, some dependencies are
destroyed what lead to incorrect behaviour of the generated code. Because of this, this pragma
is not used, but a workaround using a combination of other pragmas was created instead. This
workaround will be described in Section 3.6.

3.3.5 Aliasing and restrict
At this time, we should mention aliasing and the restrict keyword.
Aliasing is a common problem when writing code. It means that the exact same data item can
be accessed through two or more di�erent ways.
A simple example would be the assignment int i = 0, *j = &i;

Here, the saved data can be accessed both by the variables i and j. This is especially a problem
when memory is accessed through pointers.
But if we have the information that two pointers have distinct memory address spaces, we can
apply the restrict keyword to them. This marks them with the stated behaviour for the compiler
and enables it to do more sophisticated optimizations [Cor12a] and the vectorizing unit can assert
the third point listed in Section 3.1.4. The following short example demonstrates how this is done:

3Code taken from https://software.intel.com/en-us/node/514582

20

https://software.intel.com/en-us/node/514582

3.4 Intel®Cilk™Plus Array Notation

1 void func1(double* a, double* b, double* c, int n)

{

for (int i = 0; i < n; ++i)

c[i] = a[i] + b[i];

5 }

void func2(double* restrict a, double* restrict b, double* restrict c, int n)

{

for (int i = 0; i < n; ++i)

10 c[i] = a[i] + b[i];

}

int main(int argc, char** argv)

{

15 int size = 5;

double* restrict a = (double*) malloc(size * sizeof(double));

double* restrict b = (double*) malloc(size * sizeof(double));

double* restrict c = (double*) malloc(size * sizeof(double));

20 func1(a, b, c, size);

func2(a, b, c, size);

free(a); free(b); free(c);

return 0;

25 }

Listing 3.8: Using restrict for anti-aliasing

When func1 is called, runtime checks have to be done to properly schedule load and store state-
ments, but this is not the case when we call func2 instead. Because we applied the restrict keyword
to the parameters, the compiler knows that the memory address spaces of the pointers are dis-
tinct.
It should be noted here that the Intel®C compiler does not know the restrict keyword by de-
fault. This has to be enabled by using the compile �ag -restrict. However, this may a�ect
portability. An alternative to this is to tell the compiler that there is no aliasing with the switch
-fno-alias [Cor12a].
Furthermore, it is not necessary to use the restrict keyword or the -fno-alias switch when
the #pragma simd is used, this will mark the annotated loop with hints for passing all checks
listed in Section 3.1.4.

By examining the code generated by the ExaStencils code generator, we see that we can safely
assume that there is no aliasing. Furthermore, we notice that there are quite a few loops that will
not be vectorized by the Intel®C compiler because of assumed dependencies.

3.4 Intel®Cilk™Plus Array Notation
The Intel®Cilk™Plus Array Notation is an extension to the C/C++ language and syntactic sugar
for loops, that should be vectorized and parallelized.
The syntax fully replaces a loop and is inspired by mathematical domain speci�c languages like
GNU Octave or Matlab. Just like in these languages, we can access the full array at once or

21

3 An Intel®Xeon Phi™Backend

get slices from it. If the dimension of the array is not known at compile time, the �rst and last
index has to be speci�ed in slice notation. The chosen operation will be applied element-per-
element [Cor13b].
As a simple example, we replace an unit-stride access loop over three arrays of the same size
with this notation:

for (int i = 0; i < 8; ++i)

A[i] = B[i] + C[i];

Listing 3.9: Original loop

A[:] = B[:] + C[:];

Listing 3.10: Altered using Intel®Cilk™Plus

In Listing 3.10 we can see the simpli�ed syntax, where all array elements are accessed. It should
be noted, that all accesses use the same index here, but we cannot control if e.g. the �rst element
is accessed before the last one.
Such code then can be vectorized and parallelized with more �exibility by the target compiler, as
it can determine its optimal schedule for array accesses on itself.
This language extension allows some more operations to be done on arrays. A few examples are
shown in Listing 3.11.

1 /* Generating an array slice.

*

* Syntax: array[start:length:stride]

*

5 * B[0] = A[0];

* B[1] = A[2];

* B[2] = A[4];

*/

int B[] = A[0:3:2];

10
/* Using standard operators. */

A[:] = B[:] + C[:];

/* Call a function on every element. */

15 A[:] = add_2(B[:]);

/* Sum up all array entries. */

int sum = __sec_reduce_add(A[:]);

20 /* Mask operations. */

if (A[:] < 0) {

A[:] = 0; /* For every negative value, set it to zero. */

}

Listing 3.11: Operations on arrays using Intel®Cilk™Plus Array Notation

As we cannot specify any particular order between the individual array elements, this approach
is not usable at all for our project as we need to specify indices of neighboured stencils cells.

22

3.5 Elemental Functions

3.5 Elemental Functions
Another technique for vectorizing code is the use of elemental functions.
Such a function is simply a scalar function annotated with __attribute__((vector)). The target
compiler then generates if possible both a scalar and a vectorized version. Depending on the
calling mechanism (like Intel®Cilk™Plus Array Notation) a version is chosen [Cor13b].
One common case is to implement a scalar function and then use the Intel®Cilk™Plus Array
Notation to use the vectorized version and execute it in parallel.
This case is illustrated in the next example4.

1 __attribute__((vector))

__attribute__((vector(uniform(b, c))))

double func(double a, double b, double c)

{

5 return a + 7 * b - 42 * c;

}

int main(int argc, char* argv[])

{

10 double a[] = {1, 2, 3, 4}, b[] = {0, 8, 3, 7};

double c[] = {-1, 9, 4, 2};

double d[];

d = func(a[:], b[:], c[:]);

15 return 0;

}

Listing 3.12: Elemental function in combination with Intel®Cilk™Plus Array Notation

Here, we wrote the function func, that executes one scalar statement, and annotated it with
the target compiler attribute __attribute__((vector)). This instructs it to generate the scalar
version as shown and a vectorized one. When we call that function on our arrays using the
Intel®Cilk™Plus Array Notation, this function will be executed for each pairs of values from the
three source arrays in a vectorized version. If there are hardware ressources existent for parallel
programming, this can be executed even in parallel.
As we can also see, we can generate multiple vectorized and optimized versions by simply adding
another attribute. With this, there will be two vectorized versions generated, one particular for
uniform values of b and c, and a second one for the other case. The second attribute can also
be omitted safely, but this may become a loss of performance, while on the other hand, if the
�rst one is removed and if it is called with non-uniform code, the scalar (!) version will be
executed [Cor13b].
As of the current project state, there are only a few actual functions which make massively use of
loops and work on multiple data, so this technique is also not useful on the ExaStencils project.

4Also here applies the rule that on Windows __declspec(vector) must be used instead of the attribute syntax.

23

3 An Intel®Xeon Phi™Backend

3.6 Implementation Details
After we discussed the theoretical background, it is time to show what parts of the above men-
tioned things were added to the compiler in order to enhance the performance of the generated
code.
This optimizations only are made for Linux and Windows target installations, as we use the
native execution model, which is not supported on OSX systems.

3.6.1 Data Alignment
We already know that correct data alignment is essential for vectorization and thus performance
when using the Intel®Xeon Phi™. We also know that the optimal data alignment for our copro-
cessor is 64 bytes, as it can handle 64 bytes in one vector instruction. Because of that, the target
compiler attribute __attribute__((aligned(64))) for Linux target systems or __declspec(align(64)) for
Windows target installations, repectively, was added for all global pointer-like data.
As mentioned in a former section, also the dynamically allocated memory should be aligned on
this 64 byte boundary. So the default memory allocation was changed from new double[size] to
(double*) _mm_malloc(size * sizeof(double) + 64, 64) for any allocation parameter size. The latter
statement utilizes the IMCI memory allocation intrinsic and ensures that it is aligned on our
desired 64 byte boundary. Also the free’ing of memory was changed from delete[] pointer to
_mm_free(pointer) to ensure predictable behaviour.
Additionally, 64 bytes in size were added to ensure safe padding which in advance helps the
target compiler vectorizing and thus improves performance [Cor14].

3.6.2 Loop Vectorization through Pragmas
The next step in enhancing performance is to push vectorization. To do so, the best way is to add
the pragmas explained in Section 3.3. Empirical tests showed that the simd pragma destroyed
some dependencies which resulted in incorrect program behaviour. This problem was solved by
using a combination of the ivdep and the vector pragmas. Summing up, a transformation like
shown in Listing 3.13 was implemented that transforms the innermost loops to new ones with
pragmas added.

24

3.6 Implementation Details

1 case class VectorIvdepPragma(loop: Option[ForLoopStatement],

omp: Option[OMP_ParallelFor]) extends Statement {

override def prettyprint(out: PpStream): Unit =

out << "#pragma vector always\n#pragma vector nontemporal\n#pragma ivdep\n"

5 << loop.getOrElse(omp.get)

}

object XeonPhiVectorization extends DefaultStrategy("Vectorizing for the Intel(R) Xeon Phi(TM)") {

override def apply(applyAtNode: Option[Node]) = {

10 this.transaction()

this.execute(new Transformation("Adding vectorization pragmas", {

case o: OMP_ParallelFor

if (isInnermost(o.body.body) && hasNoAllocationOrFree(o.body.body)) =>

15 new VectorIvdepPragma(None, Some(

new OMP_ParallelFor(o.body, o.additionalOMPClauses, o.collapse)))

case l: ForLoopStatement

if (isInnermost(l.body) && hasNoAllocationOrFree(l.body)) =>

new VectorIvdepPragma(Some(

20 new ForLoopStatement(l.begin, l.end, l.inc, l.body, l.reduction)), None)

}, false))

this.commit()

}

25
def isInnermost(loopBody: ListBuffer[Statement]): Boolean =

(true /: loopBody.map {

s =>

s match {

30 case _: ForLoopStatement => false

case _: Scope => false

case _: OMP_ParallelFor => false

case _ => true

}

35 })(_ && _)

def hasNoAllocationOrFree(loopBody: ListBuffer[Statement]): Boolean =

(true /: loopBody.map {

s =>

40 s match {

case AssignmentStatement(_, Allocation(_, _), _) => false

case ConditionStatement(_, ListBuffer(FreeStatement(_), _*), _) => false

case _ => true

}

45 })(_ && _)

}

Listing 3.13: Excerpt of the implemented strategy

Firstly, we created a case class to represent our pragmas. In the strategy we will search for
loops or parallelized loops that do not have any other loops or OpenMP statements in their bod-
ies by using the Visitor-like behaviour of transformations. As an optimiziation, we also ignore
such loops where memory is allocated or free’d. These loops can be found by using the above im-
plemented helper functions which are simply left folds which evaluate to true if they are suitable
for being annotated with our pragmas. For all of the valid loops, we do so by simply wrapping
them in our newly created case class which overrides the pretty-printing behaviour.
The following example shows how this transformation changed the loop shown in Figure 3.14
into the one shown in Figure 3.15.

25

3 An Intel®Xeon Phi™Backend

1 for (int y = 0; y <= 3; ++y) {

for (int x = 1; x <= 511; ++x) {

5
for (int i = 1; i <= 511; ++i) {

/* calculations */

}

}

10 }

Listing 3.14: Before adding the pragmas

1 for (int y = 0; y <= 3; ++y) {

for (int x = 1; x <= 511; ++x) {

#pragma vector always

#pragma vector nontemporal

5 #pragma ivdep

for (int i = 1; i <= 511; ++i) {

/* calculations */

}

}

10 }

Listing 3.15: After adding the pragmas

As explained in the previous sections, these pragmas give hints to the target compiler to vectorize
these loops even if it would not be done according to its heuristics and to generate streaming
stores.

3.6.3 Loop Iteration Counting
It was already stated that the Intel®C compiler does code analysis and tries to predict the loop trip
count in order to optimize the loops maybe by applying unrolling or other strategies. However,
the compiler is not able to do so on some loops. But, we can tell it the number of iterations by
using the loop count pragma.
So, another transformation was implemented that pre-calculates the number of iterations of the
innermost loops and applies the pragma onto it.
Applied to the example from the previous section, that loop will be transformed into:

1 for (int y = 0; y <= 3; ++y) {

for (int x = 1; x <= 511; ++x) {

#pragma loop count 511

#pragma vector always

5 #pragma vector nontemporal

#pragma ivdep

for (int i = 1; i <= 511; ++i) {

/* calculations */

}

10 }

}

Listing 3.16: Previous example with loop count pragmas added

26

3.6 Implementation Details

3.6.4 Target Compiler Switches
In addition to code manipulation strategies, we added numerous compile �ags.
In total, the added switches are listed in the below table, a detailed description for each switch
can be showed up in the Intel®C++ compiler reference that is online available under [Cor16a].
Switch Description
-mmic Cross-compile for native execution on Intel®Xeon Phi™.
-fno-alias Assume no alias in whole program.
-opt-assume-safe-padding Assume safe padding for vector instructions.
-opt-prefetch=4 Use the maximum of compiler generated prefetch instructions.
-opt-calloc Substitute calls to calloc with calls to _intel_fast_calloc.
-opt-malloc-options=2 Add additional con�gurations for memory allocations.
-fno-exceptions Disable generation of exception tables.
-restrict Enable usage of restrict keyword.
-qopt-threads-per-core Number of threads per core will be used by the application.
-qopt-streaming-cache-evict=0 Set cache eviction level to 0.
-opt-gather-scatter-unroll=2 Alternate unroll sequence for gather/scatter instructions

with an unroll factor of 2.
-ftls-model=global-dynamic Set thread local storage (TLS) model.

Because of the fact that we use native execution, we also have to apply the -mmic switch to the
linker.

3.6.5 Other Modi�cations
Besides the above mentioned adaptions, we also implemented other modi�cations.
Firstly, we enhanced parallelism by lowering the threshold for parallelizing with OpenMP. This
lower limit was set the the con�gurable number of OpenMP threads to compensate the delay for
thread creation.
In this context, we also manipulated the generation of these pragmas. In detail, the chunk size
of workload distributed among the threads was explicitly set, so we changed schedule(static)

into schedule(static,1). In other words, the scheduling algorithm remains the same, but the
chunk size was set to one to increase the cache reuse.
Finally, we also manipulated the thread distribution of the threads onto the several cores of the
Intel®Xeon Phi™, as this has quite a signi�cant impact on the performance.
Basically, there are three types [McC13]:

compact In this distribution the threads are distributed as close as possible on the �rst cores, so
the �rst four threads will be mapped to the �rst core, the next four to the second and so
on. Now, when not all possible 228 threads are in use, some cores will not actually do some
work.

scatter This is a more advanced thread mapping where the threads are evenly assigned on all
cores5. A closer look on the mapping shows that the �rst thread is mapped to the �rst
core, the second to the second core, and so on. The 58th thread then is mapped to the �rst
thread again.
A disadvantage when using this model is the fact that we have to copy memory from one

5Of course, this does only work if there are more than 57 threads in use.

27

https://software.intel.com/en-us/node/512846

3 An Intel®Xeon Phi™Backend

core to another if the latter wants to access memory that physically lies on the �rst. This
then leads to a performance loss, although minor only, as we got a high bandwidth on the
bi-directional bus.

balanced Based on the scattermapping, this slightly di�erent mapping exists for the Intel®Xeon
Phi™only. It divides the threads just like the scattered case to the cores, but now adjacent
threads lie on adjacent cores. Now imagine a total of threads of 171 (three threads per core).
Then, the �rst three are mapped to the �rst core, the next three to the second core and so
on.
We expect this type to deliver the best performance for our project because in stencil com-
putations we use adjacent memory cells very often. This is also validated by our empirical
measurements.

Figure 3.4 shows these three types schematically with four cores and eight threads.

Figure 3.4: The three types of thread a�nity

28

Chapter 4

Runtime Analysis

In the previous chapter we showed techniques for improving the performance of the generated
code. Now it is time to measure, how much performance we gained by using these methods.

4.1 Setup
For our experimental tests, we use an Intel®Xeon Phi™just like stated in Section 2.2.1. So it is a
coprocessor with 57 cores, where each is clocked at 1.1 GHz and supports up to 4 hyper-threads.
As calculated further above, the maximum aggregated peak performance lies at 1.003 TFLOPs.
As for our tests, the software revision is the XeonPhiBackend branch at the commit status
c9eb5c7ebcbc12c7af320debd6f6e0a3e590dc5a. The used target compiler is the Intel®C compiler,
version 16.0.1.150.
In total, we test a variety of con�gurations:

Mnemonic Description
ICC, novec No vectorization.
ICC, autovec Auto-vectorization only.
ICC, pragmas Additional pragmas.
ICC, pragmas, �ags Additional pragmas and compile �ags.
ICC, intrinsics Usage of intrinsic functions.
ICC, intrinsics, pragmas Usage of intrinsic functions, additional pragmas and compile �ags.

The �rst con�guration is our performance baseline. It describes the generated multi-grid code
without any vectorization, only with the basic optimizations done already by the compiler.
The next test feature is the same as above but with the basic auto-vectorization done by the
Intel®C compiler.
Then we add our optimization strategies for adding the pragmas stated before.
This is followed by the addition of optimizing compile �ags mentioned in Section 3.6.4.
While these four con�gurations benchmark the auto-vectorization variants, the last two rows
in the above table test the manual vectorization using intrinsic functions. There we distinguish
between the pure intrinsics and these functions with the additional pragmas and compile �ags.
For each of these two variants, the con�guration property opt_vectorize=true was added to the
knowledge �le shown in Appendix A.

For every of these alternatives, we test it with 1,2,4,8,16,32,57,114,171 and 228 threads and no
loop unrolling as this results in the best vectorization and thus performance. Additionally, we
test the same con�gurations for the single-grid cycle using the appended Layer 4 �le. Finally, we
calculate the mean values over 20 runs, totalling 2400 runs.

29

4 Runtime Analysis

4.2 Experimental Results
In our experiments, for each of the 120 con�gurations de�ned above four metrics are measured:

1. Average runtime per VCycle
2. Absolute runtime
3. Speedup
4. LUPS/FLOPS

The �rst metric describes the average time spent in a VCycle which includes the full cycle of
coarsening, solving and smoothing. This is probably the most su�cient metric because the sev-
eral VCycles are the most time consuming parts of the program.
Advantageously, the timers to measure this are generated automatically by the ExaStencils code
generator.
A plot for this metric is shown in Figure 4.1, a detail plot showing the measurements of the
optimized code only is shown in Figure 4.2.

16 32 57 114 171 228

400

600

800

1,000

1,200

OMP threads

av
er
ag

e
ru
n
ti
m
e
[m

s]

ICC, novec
ICC, autovec
ICC, pragmas
ICC, Flags, pragmas
ICC, intrinsics
ICC, intrinsics, pragmas

Figure 4.1: Average runtime per VCycle

30

4.2 Experimental Results

57 114 171 228
260

280

300

320

340

360

OMP threads

av
er
a
ge

ru
n
ti
m
e
[m

s]

ICC, pragmas
ICC, Flags, pragmas
ICC, intrinsics, pragmas

Figure 4.2: Detail plot from Figure 4.1

In these plots we see that our optimizations using pragmas bring some serious speedup. Espe-
cially interesting is the fact, the our vectorizing pragmas even improve the code using intrinsic
functions. This may be due to the fact that there are still loops remaining in the generated code
that do not use intrinsics, but are auto-vectorized because of our pragmas.
Summing up, our added optimizations enhance the performance of the generated code, even
beyond the performance of low-level intrinsic code.
A similar behaviour can be observed when measuring the absolute time for solving the system.
This is quite logical, as the lower bound for the whole runtime are the VCycles we saw already.
Similarly to the �rst metric, the timers necessary for this measurements are also automatically
generated.
A plot of these measured absolute runtimes can be viewed in Figure 4.3.

816 32 57 114 171 228
2

4

6

8

10

OMP threads

ab
so
lu
te

ru
n
ti
m
e
[s
]

ICC, novec
ICC, autovec
ICC, pragmas
ICC, Flags, pragmas
ICC, intrinsics
ICC, intrinsics, pragmas

Figure 4.3: Absolute solving time

31

4 Runtime Analysis

Based on the above measurement of the absolute solving time, we calculated the actual speedup
achieved. The baseline for this speedup was the generated code without any vectorization (with
mnemonic novec).
The calculated values are visualized in Figure 4.4.

1 16 32 57 114 171 228
1

2

3

4

OMP threads

S
p
ee
d
u
p

ICC, autovec
ICC, pragmas
ICC, Flags, pragmas
ICC, intrinsics
ICC, intrinsics, pragmas

Figure 4.4: Speedup in runtime

The results shown in this plot are not surprising as we know how the program behaves already
from the �rst two metrics. Interestingly, when 57 or 114 threads are used, the non-vectorized and
auto-vectorized variants have the lowest runtime, and so does the speedup, while the optimized
variants get two times faster with a doubled number of OpenMP threads.
In the best cases, we reach a speedup of over four times, while the worst optimized runs still
provide a speedup of at least 2.5.
Finally, we take a look at the throughput achieved by the program. The desired metric here are
Lattice Updates per second (LUPS). This is measured by using the adapted knowledge �le shown
in Appendix B in combination with a custom Layer 4 �le shown in Appendix D. Using this single-
grid cycle, this metric is identical to the number of loop iterations divided by the runtime needed.
The measured results are shown in Figure 4.5.
As one can easily see, our optimizing strategy provides up to four times the amount of lattice
updates per second as reached without the added pragmas. And just like expected from the
previous measurements, these pragmas even enhance the performance of the generated code
using intrinsics.
Another common performance metric are �oating point operations per second (FLOPS). This met-
ric can be easily calculated out of the measured LUPS by multiplying them with the amount of
�oating point operations per loop iteration. In our speci�c single-grid cycle, a three-dimensional
(or six-point) stencil is calculated, which needs the values of its six neighbours and its own value
and three weights, totalling ten �oating point operations per iteration.
By applying this calculation on our measurements, we see that we get a practical peak perform-
ance of 27.3 GFLOPS.

32

4.3 Analysis with perf

1 16 32 57 114 171 228

500

1,000

1,500

2,000

2,500

OMP threads

av
er

a
g
e

M
L

U
P

S

ICC no-vec
ICC autovec
ICC, pragmas
ICC, pragmas, flags
ICC, intrinsics
ICC, pragmas, intrinsics

Figure 4.5: Average MLUPS

4.3 Analysis with perf
In addition to our extensive measurements on the runtime, we also analyzed the code using the
Linux speci�c tool perf. This tool is a lightweight pro�ler included in the Linux kernel capable of
reading hardware performance counters. The most useful information we get with this method is
that about 57% of the whole execution time is spent in the OpenMP library. This indicates that the
synchronization of the OpenMP threads takes much time, which is plausible as we use a massive
amount of parallel for pragmas with a high amount of threads which all have to synchronize after
the loop. However, we cannot reduce the amount of synchronization to ensure the correctness
of the generated code.

4.4 Summary
As we saw in the previous section, our high-level optimizations using vectorization pragmas and
compile �ags result in quite a speedup, up to over four times compared to the non-vectorized
variant.
However, considering a calculated theoretical peak performance of 1003.2 GFLOPS, we barely
reach three percent of this peak. One possible explanation for this is the fact, that in our native
execution model every single part of the code is executed on the coprocessor only. This includes
memory management and a quite high amount of serial code which performs less well on the
Intel®Xeon Phi™as on other processors. This may be caused by the fact that the clock speed of
each Intel®Xeon Phi™core is 1.1 GHz what is only about a third of a modern Xeon processor.

33

Chapter 5

Conclusion and Further Work

In this thesis, we gave an overview over Intel®’s many integrated core system named Intel®Xeon
Phi™. This is succeeded by a proposal of performance enhancing methods speci�cally for this
coprocessor. Most notably, we explained how vectorization works. In detail, we saw that we
can use both manual vectorization or auto-vectorization to process multiple data in a single
instruction. Manual vectorization can be used by either using a high-level approach called
Intel®Cilk™Plus Array Notation, where the special notation represents a data vector, or the
low-level approach using intrinsic functions which represent assembly instructions on a more
typesafe level. In contrast to that, we also use auto-vectorization using pragmas. The target
compiler then can automatically vectorize this annotated code if possible. Furthermore, we also
discussed the impact of correct data alignment on the performance of the generated code.
We implemented this optimizations as an individual strategy in the ExaStencils code generator.
This strategy consists of code transformations which a�ect the desired parts of the code on
the project’s intermediate representation. Additionally, we also manipulated already present
strategies e.g. the generation of target compiler switches.
Finally, we measured the impact of our optimizations on the target code using four metrics.
All measurements are consistent and show a signi�cant performance increase compared to the
original generated code. By applying our custom optimizations, a peak speedup of over 4× can
be observed, while the worst optimized variant still provides a speedup of at least 2.5×.
Summing up, we showed techniques for enhancing performance speci�cally when using the
Intel®Xeon Phi™. However, we also explained that there are technical restrictions which limit
the usability of techniques that can increase the performance even more. Further work is ne-
cessary to bypass these limitations. Especially, more research should be done on using the
Intel®Cilk™Plus shared memory programming model, so serial code like environmental setup
is executed on a host processor while heavy parallel and vectorized parts are executed on the
coprocessor. Another starting point for further optimizations is the reduction of the overhead
done by OpenMP barriers, to improve the alignment of array accesses or to optimize cache re-
usage.

35

Appendices

37

A Knowledge �le for multi-grid cycles

A Knowledge�le formulti-grid cycles
1 simd_avoidUnaligned = true

dimensionality = 3

minLevel = 0

maxLevel = 9

5 omp_enabled = true

omp_numThreads = 228

omp_useCollapse = true

10 omp_parallelizeLoopOverFragments = false

omp_parallelizeLoopOverDimensions = true

experimental_useStefanOffsets = true

mpi_enabled = false

15 mpi_numThreads = 1

l3tmp_generateL4 = true

l3tmp_smoother = "Jac"

l3tmp_numPre = 2

20 l3tmp_numPost = 2

poly_optLevel_fine = 3

poly_tileSize_x = 0

poly_tileSize_y = 128

25 poly_tileSize_z = 0

opt_useAddressPrecalc = true

data_alignFieldPointers = true

data_alignTmpBufferPointers = true

30
opt_unroll = 1

l3tmp_genTemporalBlocking = false

39

B Knowledge�le for single-grid cycles
1 simd_avoidUnaligned = true

dimensionality = 3

minLevel = 8

maxLevel = 9

5 omp_enabled = true

omp_numThreads = 1

omp_useCollapse = true

10 omp_parallelizeLoopOverFragments = false

omp_parallelizeLoopOverDimensions = true

experimental_useStefanOffsets = true

mpi_enabled = false

15 mpi_numThreads = 1

l3tmp_generateL4 = false

l3tmp_smoother = "Jac"

20 poly_optLevel_fine=0

poly_tileSize_x = 0

poly_tileSize_y = 128

poly_tileSize_z = 0

25 opt_useAddressPrecalc = true

data_alignFieldPointers = true

data_alignTmpBufferPointers = true

opt_unroll = 1

30 l3tmp_genTemporalBlocking = true

C Platform �le for Intel®Xeon Phi™
1
targetOS = "Linux"

targetCompiler = "ICPC"

targetCompilerVersion = 16

5 targetCompilerVersionMinor = 0

targetHardware = "CPU"

simd_instructionSet = "IMCI"

hw_cpu_numCoresPerCPU = 57

10 hw_cpu_name = "Intel(R) Xeon Phi(TM)"

40

D Layer 4 �le for measuring LUPs

D Layer 4 �le for measuring LUPs
1 Domain global< [0, 0, 0] to [1, 1, 1] >

Layout FullTempBlockable< Real, Node >@all {

innerPoints = [576, 576, 576]

5 ghostLayers = [5, 5, 5]

duplicateLayers = [1, 1, 1]

}

Layout PartTempBlockable< Real, Node >@all {

10 innerPoints = [576, 576, 576]

ghostLayers = [4, 4, 4]

duplicateLayers = [1, 1, 1]

}

15 Field SolutionT< global, FullTempBlockable, 0.0 >[2]@finest

Field RHST< global, PartTempBlockable, None >@finest

Stencil Laplace@finest {

[0, 0, 0] => 4.8

20 [1, 0, 0] => -0.8

[-1, 0, 0] => -0.8

[0, 1, 0] => -0.8

[0, -1, 0] => -0.8

[0, 0, 1] => -0.8

25 [0, 0, -1] => -0.8

}

Globals {

}

30
Function LUPs() : Real {

Variable dimSize : Integer = 576

return(dimSize * dimSize * dimSize)

}

35
Function SmootherT() : Unit {

loop over fragments {

repeat 2 times with contraction [1,1,1] {

loop over SolutionT@finest {

40 SolutionT[nextSlot]@finest =

SolutionT[active]@finest + (0.8 / diag(Laplace@finest)

* (RHST@finest - Laplace@finest * SolutionT[active]@finest))

}

advance SolutionT@finest

45 }

}

}

Function InitFields () : Unit {

50 loop over SolutionT@finest sequentially {

SolutionT[active]@finest = native('((double)std::rand()/RAND_MAX)')

}

loop over RHST@finest sequentially {

RHST@finest = 0

55 }

}

41

Function BenchmarkT() : Unit {

print('Cache warmup')

60 repeat 1 times {

SmootherT()

}

print('Starting benchmark (temporal blocking)')

startTimer(benchTTimer)

65 repeat 5 times {

SmootherT()

}

stopTimer(benchTTimer)

Variable time : Real = getTotalFromTimer(benchTTimer)

70 print('Runtime: ', time)

print('MLUPs: ', (LUPs() * 10) / time / 1e3)

}

Function Application() : Unit {

75 startTimer(setupWatch)

initGlobals()

initDomain()

InitFields()

stopTimer(setupWatch)

80 print('Total time to setup: ', getTotalFromTimer(setupWatch))

BenchmarkT()

destroyGlobals()

}

42

E Script for automatic tests

E Script for automatic tests
1 #!/bin/bash

##

Simple bash script for computing average runtimes.

##

5 ## Author: Thomas Lang ##

Version: 1.4, 2016-03-24

##

Settings

10 TOTAL_LINES_PER_RUN_EXA=11 # Number of lines written by the multigird in each run.

TOTAL_LINES_PER_RUN_LUPS=5 # Number of lines written by the single grid in each run.

NUMBER_OF_RUNS=20 # Total number of runs per configuration.

OUTPUT_FILE_EXA='count_exa.txt' # File where the output of the multigrid was written into.

OUTPUT_FILE_LUP='count_lup.txt' # File where the output of the single grid was written into.

15 MEASURES_EXA='measurements_exa.txt' # File where multigrid results come.

MEASURES_LUP='measurements_lup.txt' # File where LUPs results come.

WHERE='EXES' # Directory where executables lie.

LUPS="$WHERE/lups" # Prefix for lups applications.

20 ## helper variables

offset_exa=1

offset_lup=1

Doing some file checks ...

25 [-f "$OUTPUT_FILE_EXA"] && >$OUTPUT_FILE_EXA || touch $OUTPUT_FILE_EXA

[-f "$OUTPUT_FILE_LUP"] && >$OUTPUT_FILE_LUP || touch $OUTPUT_FILE_LUP

[-f "$MEASURES_EXA"] && >$MEASURES_EXA || touch $MEASURES_EXA

[-f "$MEASURES_LUP"] && >$MEASURES_LUP || touch $MEASURES_LUP

30 echo "Starting measurements ..." >> $MEASURES_EXA

echo "Starting measurements ..." >> $MEASURES_LUP

for ex in $(find $WHERE -type f)

do

35 absolute_runtime=0

average_runtime=0

num_lups=0

for ((i=1; i<=$NUMBER_OF_RUNS; i++));

40 do

if [[$ex = $LUPS*]]; then

./$ex >> $OUTPUT_FILE_LUP

else

./$ex >> $OUTPUT_FILE_EXA

45 fi

done

Magical counting starts here ...

for ((i=1; i<=$NUMBER_OF_RUNS; i++))

50 do

if [[$ex = $LUPS*]];

then

get as string

head_lines=$(expr $offset_lup * $TOTAL_LINES_PER_RUN_LUPS)

55 str=$(head -n $head_lines $OUTPUT_FILE_LUP | tail -n 1)

parse and add

43

arr=($str)

num_lups=$(echo "scale=4; ${arr[1]} + $num_lups" | bc)

60 offset_lup=$(expr $offset_lup + 1)

else

get as string

head_lines=$(expr $offset_exa * $TOTAL_LINES_PER_RUN_EXA)

str=$(head -n $head_lines $OUTPUT_FILE_EXA | tail -n 2)

65
parse and add

arr=($str)

absolute_runtime=$(echo "scale=4; ${arr[8]} + $absolute_runtime" | bc)

average_runtime=$(echo "scale=4; ${arr[13]} + $average_runtime" | bc)

70 offset_exa=$(expr $offset_exa + 1)

fi

done

if [[$ex = $LUPS*]];

75 then

lll=$(echo "scale=4; ($num_lups / $NUMBER_OF_RUNS)" | bc)

echo "---" >> $MEASURES_LUP

echo "Configuration: "$ex >> $MEASURES_LUP

echo "Average number of LUPs over "$NUMBER_OF_RUNS" runs: "$lll" [MLUPs]" >> $MEASURES_LUP

80 echo "---" >> $MEASURES_LUP

else

abs=$(echo "scale=4; ($absolute_runtime / $NUMBER_OF_RUNS)" | bc)

avg=$(echo "scale=4; ($average_runtime / $NUMBER_OF_RUNS)" | bc)

echo "--" >> $MEASURES_EXA

85 echo "Configuration: "$ex >> $MEASURES_EXA

echo "Absolute runtime over "$NUMBER_OF_RUNS" runs: "$abs" [ms]" >> $MEASURES_EXA

echo "Average runtime per VCycle over "$NUMBER_OF_RUNS" runs: "$avg" [ms]" >> $MEASURES_EXA

echo "--" >> $MEASURES_EXA

fi

90
>$OUTPUT_FILE_EXA

>$OUTPUT_FILE_LUP

offset_exa=1

offset_lup=1

95 done

echo "Finished measurements!" >> $MEASURES_EXA

echo "Finished measurements!" >> $MEASURES_LUP

44

Bibliography

[CD13] C-DAC: hyPACK 2013 Intel®Xeon Phi™: Tuning and Performance. Web-
site, 2013. – Available online under http://cdac.in/index.aspx?id=pdf_

xeon-phi-tips-tun-perf-hypack; looked up on 22nd March 2016
[Cor11] Corporation, Intel®: Introduction to Intel®Advanced Vector Extensions. Web-

site, 2011. – Available online under https://software.intel.com/en-us/articles/

introduction-to-intel-advanced-vector-extensions; looked up on 5th April 2016
[Cor12a] Corporation, Intel®: A Guide to Vectorization with Intel®C++ Compilers. Website,

2012. – Available online under https://software.intel.com/sites/default/files/
8c/a9/CompilerAutovectorizationGuide.pdf; looked up on 18th February 2016

[Cor12b] Corporation, Intel®: Intel®Xeon Phi™: O�oad Compilation. Website, 2012. – Avail-
able online under https://software.intel.com/sites/default/files/Beginning%

20Intel%20Xeon%20Phi%20Coprocessor%20Workshop%20Offload%20Compiling%

20Part%202.pdf; looked up on 5th April 2016
[Cor12c] Corporation, Intel®: Intel®Xeon Phi™X100 Family Coprocessor - the Architec-

ture. Website, 2012. – Available online under https://software.intel.com/en-us/

articles/intel-xeon-phi-coprocessor-codename-knights-corner; looked up on
5th April 2016

[Cor13a] Corporation, Intel®: Intel®Xeon Phi™Coprocessor 3100 series. Website, 2013. –
Available online under http://ark.intel.com/de/products/series/75808?_ga=1.

10100469.1719564821.1453408114; looked up on 26th April 2016
[Cor13b] Corporation, Intel®: Intel®Xeon Phi™Coprocessor Advanced Topics in Vectorization.

Website, 2013. – Available online under https://software.intel.com/sites/

default/files/Intel%C2%AE_Xeon_Phi%E2%84%A2_Coprocessor_Advanced_Topics_

in_Vectorization.pdf; looked up on 1st March 2016
[Cor13c] Corporation, Intel®: Intel®Xeon Phi™Product Family - Peak Theoretical Performance.

Website, 2013. – Available online under http://www.intel.com/content/www/us/en/
benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html; looked up on
21st March 2016

[Cor13d] Corporation, Intel®: Intel®Xeon Phi™Coprocessor Architecture Overview. Web-
site, 2013. – Available online under http://www.training.prace-ri.eu/uploads/tx_
pracetmo/MIC_Intro_Architecture.pdf; looked up on 17th February 2016

[Cor13e] Corporation, Intel®: Restrictions on o�oaded code using a pragma. Website, 2013. –
Available online under https://software.intel.com/en-us/node/522493; looked up
on 21st March 2016

[Cor14] Corporation, Intel®: Utilizing Full Vectors and Use of Option -qopt-assume-safe-
padding. Website, 2014. – Available online under https://software.intel.com/

en-us/articles/utilizing-full-vectors; looked up on 26th March 2016
[Cor15] Corporation, Intel®: Data Alignment to Assist Vectorization. Website,

2015. – Available online under https://software.intel.com/en-us/articles/

data-alignment-to-assist-vectorization; looked up on 29th February 2016
[Cor16a] Corporation, Intel®: Compiler Reference. Website, 2016. – Available online under

https://software.intel.com/en-us/node/512846; looked up on 4th April 2016

45

http://cdac.in/index.aspx?id=pdf_xeon-phi-tips-tun-perf-hypack
http://cdac.in/index.aspx?id=pdf_xeon-phi-tips-tun-perf-hypack
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
https://software.intel.com/sites/default/files/Beginning%20Intel%20Xeon%20Phi%20Coprocessor%20Workshop%20Offload%20Compiling%20Part%202.pdf
https://software.intel.com/sites/default/files/Beginning%20Intel%20Xeon%20Phi%20Coprocessor%20Workshop%20Offload%20Compiling%20Part%202.pdf
https://software.intel.com/sites/default/files/Beginning%20Intel%20Xeon%20Phi%20Coprocessor%20Workshop%20Offload%20Compiling%20Part%202.pdf
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://ark.intel.com/de/products/series/75808?_ga=1.10100469.1719564821.1453408114
http://ark.intel.com/de/products/series/75808?_ga=1.10100469.1719564821.1453408114
https://software.intel.com/sites/default/files/Intel%C2%AE_Xeon_Phi%E2%84%A2_Coprocessor_Advanced_Topics_in_Vectorization.pdf
https://software.intel.com/sites/default/files/Intel%C2%AE_Xeon_Phi%E2%84%A2_Coprocessor_Advanced_Topics_in_Vectorization.pdf
https://software.intel.com/sites/default/files/Intel%C2%AE_Xeon_Phi%E2%84%A2_Coprocessor_Advanced_Topics_in_Vectorization.pdf
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html
http://www.training.prace-ri.eu/uploads/tx_pracetmo/MIC_Intro_Architecture.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/MIC_Intro_Architecture.pdf
https://software.intel.com/en-us/node/522493
https://software.intel.com/en-us/articles/utilizing-full-vectors
https://software.intel.com/en-us/articles/utilizing-full-vectors
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
https://software.intel.com/en-us/node/512846

Bibliography

[Cor16b] Corporation, Intel®: Intel®Intrinsics Guide. Website, 2016. – Available online
under https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=
KNC; looked up on 22nd March 2016

[Cor16c] Corporation, Intel®: ivdep. Website, 2016. – Available online under https:

//software.intel.com/en-us/node/514541; looked up on 28th February 2016
[Cor16d] Corporation, Intel®: simd. Website, 2016. – Available online under https:

//software.intel.com/en-us/node/514582; looked up on 28th February 2016
[Cor16e] Corporation, Intel®: vector. Website, 2016. – Available online under https://

software.intel.com/en-us/node/514586; looked up on 28th February 2016
[Cor16f] Corporation, Intel®: What are PEEL and REMAINDER loops?

(Fortran and C vectorization support). Website, 2016. – Avail-
able online under https://software.intel.com/en-us/articles/

what-are-peel-and-remainder-loops-fortran-vectorization-support; looked up
on 29th February 2016

[exa16] Advanced Stencil-Code Egineering (ExaStencils). Website, 2016. – Available online
under http://www.exastencils.org/; looked up on 23rd March 2016

[Fre14] Freitag, Michael: Analysis and Extension of Existing Tiling Algorithms for Sten-
cil computations. Online, 2014. – Bachelor thesis, available online under http:

//www.infosun.fim.uni-passau.de/cl/arbeiten/freitag-b.pdf; looked up on 4th
April 2016

[Gen13] Gentryx, User:: A three-dimensional six-point stencil. Website, 2013. – Available on-
line under https://en.wikipedia.org/wiki/File:3D_von_Neumann_Stencil_Model.

svg; looked up on 26th April 2016
[Gol08] Goldstein, Seth: Data Dependence in Loops. Website, 2008. – Avail-

able online under http://www.cs.cmu.edu/afs/cs/academic/class/15745-s09/www/
lectures/lect6-deps.pdf; looked up on 29th February 2016

[Hag08] Hager, Georg: A case for the non-temporal store. Website, 2008. – Available online
under https://blogs.fau.de/hager/archives/2103; looked up on 4th April 2016

[KSK+15] Kronawitter, Stefan ; Schmitt, Christian ; Kuckuk, Sebastian ; Hannig, Frank
; Teich, Jürgen ; Lengauer, Christian ; Köstler, Harald ; Rüde, Ulrich: Ex-
aSlang and the ExaStencils code generator. Online, 2015. – Presentation at
PASC’15 in Zurich, Switzerland. Available online under https://www10.cs.fau.de/

publications/talks/2015/Kuckuk_Zuerich_PASC15_2015-06-02.pdf; looked up on
25th February 2016

[LGK+14] Lengauer, Christian ; Grösslinger, Armin ; Kronawitter, Stefan ; Grebhan, Al-
exander ; Apel, Sven ; Bolten, Matthias ; Hannig, Frank ; Köstler, Harald ; Rüde,
Ulrich ; Teich, Jürgen ; Kuckuk, Sebastian ; Rittich, Hannah ; Schmitt, Christian:
ExaStencils: Advanced Stencil-Code Engineering. In: Euro-Par 2014 Workshops, Part
II (2014), S. 553 – 564

[LK15] Lengauer, Christian ; Kronawitter, Stefan: Optimizations Applied by the ExaStencils
Code Generator. Website, 2015. – Available online under http://www.infosun.fim.

uni-passau.de/publications/docs/KroLe2015tr.pdf; looked up on 4th April 2016
[McC13] McCalpin, John D.: Native Computing and Optimization on the Intel®Xeon

Phi™Coprocessor. Online, 2013. – Available online under https://portal.

tacc.utexas.edu/documents/13601/933270/MIC_Native_2013-11-16.pdf/

56b4a5c9-be24-4c41-8625-eee21879ca8b; looked up on 29th March 2016

46

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=KNC
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=KNC
https://software.intel.com/en-us/node/514541
https://software.intel.com/en-us/node/514541
https://software.intel.com/en-us/node/514582
https://software.intel.com/en-us/node/514582
https://software.intel.com/en-us/node/514586
https://software.intel.com/en-us/node/514586
https://software.intel.com/en-us/articles/what-are-peel-and-remainder-loops-fortran-vectorization-support
https://software.intel.com/en-us/articles/what-are-peel-and-remainder-loops-fortran-vectorization-support
http://www.exastencils.org/
http://www.infosun.fim.uni-passau.de/cl/arbeiten/freitag-b.pdf
http://www.infosun.fim.uni-passau.de/cl/arbeiten/freitag-b.pdf
https://en.wikipedia.org/wiki/File:3D_von_Neumann_Stencil_Model.svg
https://en.wikipedia.org/wiki/File:3D_von_Neumann_Stencil_Model.svg
http://www.cs.cmu.edu/afs/cs/academic/class/15745-s09/www/lectures/lect6-deps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15745-s09/www/lectures/lect6-deps.pdf
https://blogs.fau.de/hager/archives/2103
https://www10.cs.fau.de/publications/talks/2015/Kuckuk_Zuerich_PASC15_2015-06-02.pdf
https://www10.cs.fau.de/publications/talks/2015/Kuckuk_Zuerich_PASC15_2015-06-02.pdf
http://www.infosun.fim.uni-passau.de/publications/docs/KroLe2015tr.pdf
http://www.infosun.fim.uni-passau.de/publications/docs/KroLe2015tr.pdf
https://portal.tacc.utexas.edu/documents/13601/933270/MIC_Native_2013-11-16.pdf/56b4a5c9-be24-4c41-8625-eee21879ca8b
https://portal.tacc.utexas.edu/documents/13601/933270/MIC_Native_2013-11-16.pdf/56b4a5c9-be24-4c41-8625-eee21879ca8b
https://portal.tacc.utexas.edu/documents/13601/933270/MIC_Native_2013-11-16.pdf/56b4a5c9-be24-4c41-8625-eee21879ca8b

Bibliography

[Rah13] Rahman, Rezaur: Intel®Xeon Phi™Coprocessor Architecture and Tools - The Guide for
Application Developers. Apress Open, 2013. – ISBN 978–1–4302–5926–8

[RBK15] Rittich, Hannah ; Bolten, Matthias ; Kahl, Karsten: The Mathematics of ExaStencils.
Website, 2015. – Available online under http://materials.dagstuhl.de/files/15/

15161/15161.HannahRittich.Slides.pdf; looked up on 16th February 2016
[Wei16] Weisstein, Eric W.: Heat Conduction Equation. Website, 2016. – Available online

under http://mathworld.wolfram.com/HeatConductionEquation.html; looked up on
26th April 2016

47

http://materials.dagstuhl.de/files/15/15161/15161.HannahRittich.Slides.pdf
http://materials.dagstuhl.de/files/15/15161/15161.HannahRittich.Slides.pdf
http://mathworld.wolfram.com/HeatConductionEquation.html

Bibliography

Statement of Authorship
I, Thomas Lang, hereby certify that this bachelor thesis has been composed by myself and de-
scribes my own work unless otherwise stated. All references and verbatim extracts have been
quoted and all sources of information have been speci�cally acknowledged. In addition, this
thesis has not been accepted in any previous application for a degree.

Passau, 27th April 2016

(Thomas Lang)

48

	Introduction
	Background
	ExaStencils
	Project Overview
	The ExaSlang DSL
	Code Generator

	Intel®Xeon Phi™
	Architecture
	Execution Models

	An Intel®Xeon Phi™Backend
	Vectorization
	Introduction
	Manual Vectorization
	Auto-vectorization
	Loop Vectorization

	Data Alignment
	Data Alignment on the Intel®Xeon Phi™
	Data Alignment on loops
	Loop Unrolling

	Pragmas
	Vector Dependencies
	#pragma ivdep
	#pragma vector
	#pragma simd
	Aliasing and restrict

	Intel®Cilk™Plus Array Notation
	Elemental Functions
	Implementation Details
	Data Alignment
	Loop Vectorization through Pragmas
	Loop Iteration Counting
	Target Compiler Switches
	Other Modifications

	Runtime Analysis
	Setup
	Experimental Results
	Analysis with perf
	Summary

	Conclusion and Further Work
	Appendices
	Knowledge file for multi-grid cycles
	Knowledge file for single-grid cycles
	Platform file for Intel®Xeon Phi™
	Layer 4 file for measuring LUPs
	Script for automatic tests
	Statement of Authorship

