MASTER THESIS

IMPROVING THE EFFICIENCY OF
CoDE GENERATION BASED ON
CYLINDRICAL ALGEBRAIC DECOMPOSITION

Thomas Lang
Supervisor: Prof. Christian Lengauer, Ph.D.
Second reader: Prof. Dr. Martin Griebl
Tutor: Dr. Armin Grofllinger

21st March 2018

Abstract

Ever since the introduction of the Polyhedron model for loop optimiza-
tion, generalizations of the model to make it applicable to a bigger class
of programs have been developed. Prime examples for this include the
generalization to handle non-perfectly nested loop nests or permitting
WHILE loops. However, a main restriction that remained was that all
loop bounds and array subscripts had to be linear in both the iterator
variables and the runtime parameters. Previous work also showed that
this restriction can be removed and that polynomial constraints can be
handled in theory. The adoption of this extension to the model has
been hindered by the computational expensiveness of the underlying
algorithm, cylindrical algebraic decomposition (CAD).

This thesis focusses on the code generation part of this generalization
and presents an implementation in C++ which incorporates several im-
provements for cases relevant in practice.

In the first part, we give a general overview about the problem of code
generation for polynomial constraints and describe how they can be
overcome using CAD. This is followed by a description of our imple-
mentation of this method in C++ and several optimizations. The op-
timizations include both algorithmic enhancements and tuning of the
code generation for important special cases which occur in practice.
The third part of this thesis compares the code generation speed of
our implementation to an existing prototype of this method written in
Haskell. Finally, we discuss possible future work that could improve
the performance of our code generation procedure even more.

iii

Acknowledgements
This thesis has only been made possibly through the support of many people.

First of all, I want to thank Prof. Christian Lengauer, Ph.D., who gave me the opportunity of
writing my master thesis in the field of code generation and code optimization.

Next, I want to thank my tutor Dr. Armin Groéfilinger, who worked out the theoretical back-
ground of this thesis in his dissertation and provided me hints about some optimizations as well
as runtime comparisons of his prototypical implementation. He was a valuable dialogue partner
who always offered me insight in optimization techniques and the mathematical background of
this thesis.

Lastly, I appreciate the remaining team of the chair of programming for giving me various hints
on tools that supported me during the development of this work.

iv

Contents

1. Introduction

2. Prerequisites

2.1. The Code Generation Problem
2.2, Tiling . . . o L
2.3. Cylindrical Algebraic Decomposition

3. Implementation and Optimizations

3.1. Basic Code Generation
3.2. A code generationexample Lo o
3.3. Influence of variable orderings and projection operators.
3.4. Reducing memory consumption 0oL
3.5. Pruning theliftingtree L o oL
3.6. Avoiding unnecessary exact arithmetic 0oL,
3.7. Parallelization
3.8. Overapproximation for Tiled Systems
3.9. Eliminating Section Code Generation
3.10. Affine Projection.

4. Experiments
4.1. Experimental Setup

4.2. Improvements over the basic implementation.

4.3. Evaluation against a Haskell prototype

4.4. Final Program Analysis oL
5. Conclusion and Further Work

5.1, Conclusion e e

5.2. Future Work
Appendices

A. Inverse matrices of triagonal matrices Lo L.

B. Convex Polyhedra
Statement of Authorship

o NWw W

17
17
20
22
24
25
26
26
28
38
41

45
45
46
50
51

53

53
54

57

57

57
61

List of Figures

2.1.
2.2.

3.1
3.2.
3.3

4.1.
4.2.
4.3.

Non-convexdomain D3 o i i e
Rectangular tiling of a triangular index space

Index set D5 including most test points oL
Concept where code generation for x; can be omitted
Sketch for the proof of Lemma 3.2 onpage4o

Total speedup over basic implementation (polyhedral tests)
Total speedup over basic implementation (non-polyhedral tests)
Perf performance analysis L L.

List of Algorithms

Code generation procedure basedon CAD
Extreme value algorithmo
Overapproximation 1 o ittt
Overapproximation 2

Listings

2.1.
2.2.

2.3.

3.1.

3.2.
3.3.
3-4.

4.1.

Lexicographically incorrect code for two overlapping iteration domains
Decomposition of a one-dimensional index space
Code generated for thedomain D5

Code generated for scanning domain D3,
Generated code with fused loops scanning domain D3
AST used in our implementation Lo L.
Excerpt of the parallelization using C++ futures

Analysisusing perf L

List of Tables

3.1

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

Number of projected polynomials using projections of Brown and McCallum . .

Test cases involving tiling L
Execution times including optimizations (seconds, polyhedral tests)
Execution times including optimizations (milliseconds, non-polyhedral tests) . .
Execution times using our affine projection
Execution times with only one optimization active atatime
Comparison of execution times of the Haskell prototype to our implementation

20
38
40

47
48
51

18
29
29
34

(&)1

21
22
24
27

52

24

46
47
47
49
50
50

vii

Chapter 1

Introduction

Decades years ago, scientists started to express automated code optimization problems like paral-
lelization in a mathematically sound model known as the Polytope model. This model had several
restrictions like that all loops had to be perfectly nested or that WHILE loops were not permitted
due to the boundedness of polytopes. But the most obvious restriction was that all recurrence
equations (i.e. equations on array index functions) had to be affine expressions in loop iterators
using only constant factors and effectively constant offset [].

Since its beginnings much work was invested in order to generalize the Polytope model as far
as possible. For example, the model was generalized to allow imperfectly nested loops []
and even WHILE loops can be handled now [], giving the model a new name of Polyhedron
model.

However, the restriction of affine expressions remained for a long time, until [] showed
that all phases of polyhedral optimization can be generalized to allow arbitrary polynomial ex-
pressions.

Naturally, this generalization makes all phases more complicated, especially the phase of code
generation on which we focus.

Firstly, we describe the problems of code generation in this generalized context and how these
problems can be solved theoretically using the method of Cylindrical Algebraic Decomposition.

Then we will provide a description of our implementation of such a code generation in the gen-
eralized polyhedron model in C++ based on the freely available library SMT-RAT *.

This chapter also includes a detailed description of several optimizations we applied to this ba-
sic implementation in order to enhance its performance. These optimizations include both al-
gorithmic improvements applicable to every input problem, as well as optimizations tuned spe-
cifically for handling certain special cases which occur often in practice.

In Chapter 4, we evaluate the performance of our implementation by comparing our basic im-
plementation with an existing prototype in Haskell. Furthermore, we compare our basic imple-
mentation against itself with optimizations applied one after another.

Finally, we conclude our work by stating how we improved the performance of the described
more general code generation and what further improvements might speed it up even more.

'https://github.com/smtrat/smtrat

https://github.com/smtrat/smtrat

Chapter 2

Prerequisites

In this first chapter, we want to introduce the reader to the concepts of code generation as well
as to the problems occuring if non-linearities are introduced.

2.1. The Code Generation Problem

As stated, the Polyhedron model takes a source program and transforms it into a model-based
representation, on which several optimizations like parallelization, vectorization or cache locality
optimization are performed, resulting in a transformed model.

But clearly, such a model is not executable. Therefore, we need to output the transformed model
as source code which can be compiled and executed afterwards.

2.1.1. Basic Code Generation

Before we step into code generation, let us define some basic terminology.

Definition 2.1 (Domain). A set D C Z",n € N which enumerates all iteration points of a program,
is called a Domain or Index set.

Definition 2.2 (Statement). A Statement is a set of instructions which are executed at each point of
a domain. We will abbreviate statements with T; wherei € N marks the domain to which T belongs.
If T depends on loop iterators x1, . .., x, we write T(x1,. . .,Xp).

In practice, statements often depend on each other. Other transformations in the polyhedron
model manipulate the structure of the program to become more efficient while maintaining de-
pendencies. We will not cover these optimizations here as they can be found in related literature,
but we need to respect the lexicographic order which plays a key role in the stated optimizations.

Definition 2.3. Letn € N and let i, j € Z" be two vectors representing the loop iterators in certain
iterations. We define the lexicographic order <., recursively as follows:

() <lex ()

(i1, 02, -« in) <tex G1sJ2s - - -5 Jn) © (i1 <Jj1) V ((i1 = j1) A (i - - - in) <iex U2, - - -5 Jn))

As the name Polyhedron model suggests, many iteration domains can be expressed mathematic-
ally as a polyhedron or as finite union of polyhedra.

Definition 2.4 (Polyhedron). Let M € R™" be a matrix and let ¢ € Z™ denote an offset vector.
Then the set

P={xeZ"|Mx > q}

is called a Polyhedron.

2. Prerequisites

We see that such a polyhedron consists of expressions involving polynomials. Polynomials are
commonly defined as follows:

Definition 2.5 (Polynomial). LetK € {Q,R} be a field and let d € N.
A function is called a n-variate polynomial over K if and only if it is of the form

p: K" - K
d
T aj
(x1,...,xp)" Zajx 4
=1
. o aj1 Xj2 Qjn
with x% = x"x,”" -+ - x,’" being a multi-index expression where ay1, ..., g, € No.

The set of all n-variate polynomials with rational coefficients is denoted by Q[x1, . .., X,].

Throughout this thesis, we will also consider n-variate polynomials as univariate polynomials whose
coefficients are multivariate polynomials i.e. Q[xy, ..., xn] = (Q[x1,. .., xn—1])[xn].

The polynomials acting as constraints encompassing the polyhedral domain are so-called affine-
linear polynomials, which are a special subclass of the set of polynomials.

Definition 2.6. A polynomialp € Q[x1,...,xy] is called affine-linear if it has the shape

p=ax,+p,

wherea, f € Q[x1,...,%Xp-1]-
Such a polynomial is called linear if f = 0.
In this thesis, we will use the terms affine-linear, affine and linear interchangeably.

Visually, such a polyhedron is a description of a set of polynomials which encompass the points
of execution. As a speciality, such a polyhedron does not need to be bounded in all directions.

In the more general context of our code generation we can lift the idea of contraints defined by
polynomials to any dimension.

Definition 2.7. Letp € Q[xy,...,x,] be a polynomial. We call an (in-)equality of the form

a polynomial constraint.

Let us now consider an example of two domains which are overlapping in a certain area. Consider
the domains D1 = {x € Z|0 < x <4}and D, = {x € Z | p < x < 2} with p € Z being a runtime
parameter and let T; be some statement executed in domain i,i = 1, 2.

If we want to generate code for these two domains, we must take the lexicographic order on x
into account i.e. we must not produce independent loops like

for (x = @; x <= 4; ++x)
T

for (x = p; x <= 2; ++x)
T

Listing 2.1: Lexicographically incorrect code for two overlapping iteration domains

2.1. The Code Generation Problem

That is because for x = 2 (if p = 2), both T; and T; have to be executed in the same iteration in
the model, but not after all iterations of the first loop as shown in the code. This would be easily
decidable if the value for p was known at compile-time, but since p is a runtime parameter, the
generated code has to perform correctly for any possible integral value p can take.

Such complications when introducing runtime parameters make code generation a hard problem.
But as already [, pg- 478] pointed out, this problem can be solved by considering the
union of all domains active (in our example D; and D;) and partitioning this union into disjoint
subsets. Then, for each such subset an individual loop is generated.

The perhaps easiest way of doing so is by performing a case distinction on the values of p and
generate loop nests enumerating the respective points and statements.

Applied to the above example, this would yield

if (p<=0){
for (x = p; x < 0; ++x) { Tp; 3
for (x = 0; x <=2; ++x) { T;T»; 1}
for (x = 3; x <= 4; ++x) { Ty; }
} else if (p > 0 && p <= 2) {
for (x = 0; x < p; +x) { Ty; 3
for (x = p; x <=2; ++) { T;;Tz; 2
for (x = 3; x <= 4; ++x) { Ty; ¥
} else {
for (x = 0; x <= 4; ++x) { Ty; }
¥

Listing 2.2: Decomposition of a one-dimensional index space

As a remark please note that in this case distinction the else branch does not have a loop ex-
ecuting the statement T, as for p > 2 the iteration domain is empty. This speciality can be used
in this generation by not generating that loop, whereas in common polyhedral code generation
this would not be done as the emptiness of a loop nest cannot be decided for such parameterized
loops in general.

2.1.2. Code Generation for Non-linear domains

Slightly more complicated is the code generation for the domain * D3 = {(x,y) € Z?|1 < x <
7A1 <y <9A(y-4)?-3x+12 > 0}, which clearly contains non-linearities. This domain
cannot be treated by common polyhedral code generation. Figure 2.1 on the next page shows this
domain graphically and Listing 2.3 on the following page shows the code that was generated for
this domain, executing some statement T dependent on x and y.

We clearly see the lexicographic order on the variables in the generated code and the top level
loop distribution at x = 4. On closer inspection, we notice that the loop bounds are roots of
multivariate polynomials describing the index space: We can rewrite the constraints of the do-
main into the form p > 0 with p being the rewritten polynomial. The following table shows the
rewritten constraints and their roots i.e. the solutions of p = 0.

Constraint Polynomial constraint Roots
1<x & x—-120 ~wox=1
x <7 © —x+720 ~m o x =7
1<y S y-120 ~wooy=1
y<9 S —y+920 ~wooy=9
(y—-4)2-3x+1220 & (y—-4)2-3x+1220 ~w Yy =4+3x 12

'Example taken from [1.

2. Prerequisites

for (x = 1; x <= 4; ++x) {
for (y = 1; y <= 9; +y) {

o T(x.y);
|)
3
6 for (x = 5; x <= 7; ++x) {
~st for (y = 1; y <= [4—V3x—12]; ++y) {
ol T(x,y);
}
3 for (y = [4+V3x—12]; y <= 9; ++y) {
2f T(x,y);
; }
° 1)
Figure 2.1.: Non-convex domain D; Listing 2.3: Code generated for the domain Dj

As one can see, the roots directly describe the loop bound expressions. This insight hints that we
should find algorithms for code generation that extract those loop bounds in a lexicographically
correct order. As it turns out, this problem can be solved using Cylindrical Algebraic Decompos-
ition, a technique we will explain in Section 2.3.

2.1.3. Occurence of non-linearities in practice

By now one might suggest that these non-linearities occur very rarely.

However, this is not true, since most often such non-linearities occur when a non-linear schedule
is applied as the space-time mapping during the optimizing transformations in the Polyhedron
model. Applying such non-linear schedules is especially common in the case of automated sched-
ule exploration which aims to find the best schedule.

Sometimes, loops also contain non-constant strides depending on outer loop iterators, i.e. a loop
header might be of the form for (x = @; x <= n; x += i) where i is a surrounding loop iterator. One
possible application scenario for this case might be general implementations of convolutions in
image processing. During normalization of the loop header (what is essential for further optim-
izations) this loop would be transformed into one of the form for (j = @; j*i <= n; ++j) where
each x in the original loop body is replaced with the non-linear expression j * i.

A further source of non-linearities we want to focus on especially is the parametric tiling which
we will describe in detail in the next section. In this case, the runtime parameters will generate
non-linearities in the loop body to reconstruct the original loop variable value out of a combin-
ation of two loop iterators in the tiled system.

2.2. Tiling

Tiling is an often used optimization to coarsen the grain of parallelism, improve cache utilization,
exploit NUMA architectures or minimize communication in distributed computations [].

In this optimization, the iteration domain is partitioned into multiple tiles of a specific size, ef-
fectively doubling the number of variables. In case of cache utilization this may be beneficial for
memory prefetching, or in case of distributed systems it narrows the amount of communication
which is no longer performed from point to point, but rather from tile to tile.

2.2. Tiling

Figure 2.2 shows an example of tiling applied onto a triangular index space using tiles of a rect-
angular shape. In this picture, each dot represents a single execution of the loop body. Note that
this image does not take dependencies into account which will commonly result in a skewing of
the index space.

vt

H#N

X

Figure 2.2.: Rectangular tiling of a triangular index space

In this case, each tile (depicted blue) has a width of 4 points and a height of 3 points. The red dots
at the lower-left corner of each tile show the local origins of the tiles i.e. the first points that will
be executed of the respective tile and these are also the points where communication happens.

Due to the lexicographic ordering, the iteration process in this example would start with the
tile on the lower-left in the point (0, 0). After this tile is completely processed, the tile directly
above it will be executed and so on, until the vertical tiles are all processed. Then the execution
continues at the second-left tile on the bottom.

Besides, a tile does not always need to be executed fully. The example also shows five tiles of
which only a part of the tile points are executed. But note that there is no empty tile which would
represent empty loop nests.

2.2.1. General definition

As|] introduced, the tiling of an iteration domain can be expressed by stating a lattice matrix
defining the translation from one tile to another, a matrix defining the shape of a single tile and
equations that define how the original loop iterators shall be replaced with a combination of the
new tile and loop iterators.

We follow the refined definition of this system given in [].

Definition 2.8 (Tiling). Let M be a matrix and q be a vector describing the index set polyhedron P
according to Definition 2.4 on page 3. Furthermore, let T be a matrix describing the shape of a single
tile and let A be the lattice.

Then for points x = (x1,...,x,)T € P the tiled system can be expressed in terms of tile coordinates
t=(ty,....,tn)T and point coordinates o = (oy, . . ., on)T as follows:
Mx > q, To+t >0, x=At+o

2. Prerequisites

Remark: The tile coordinatest enumerate the tiles themselves and the point coordinates o enumerate
the points inside a single tile.

As we see, tiling effectively doubles the number of variables of the original system of inequalities.

2.2.2. Parametric Tiling

A severe limitation in the common polyhedral model is that the lattice could not contain runtime
parameters. More explicitly, all tile sizes have to be known at compile-time.

This has multiple disadvantages. One of the most prominent disadvantages is that tiling is often
used in load balancing, and fixed tile sizes require that a user of a tiling library specifies these
parameters explicitly and compiles the entire code again.

Another disadvantage is that non-parametric tilings cannot efficiently be evaluated using auto-
tuning compilers for the same reason.

These problems can be solved when allowing parameters in the lattice, but this comes at the price
of computational expensive machinery like a generalied Fourier-Motzkin method, or the usage
of Cylindrical Algebraic Decomposition on which we focus.

2.2.3. Parallelepiped Tiling

A special subclass of tiles are those whose opposite sides are parallel. Common tile shapes that
belong to this class are rectangular and parallelogram-shaped tiles in a two-dimensional tiling.

These tile shapes share the nice property that they can be expressed even easier.

Let K = (v1]...|v,) € Q™" be a matrix whose column vectors are the spanning vectors of a tile.
Assuch, all v;,i = 1,...,nare linearly independent and therefore we know that in this case K is
always invertible.

As another nice property, we can easily describe that and how tile sizes depend on parameters
p = (p1,...,pn)T. Then the tiled system can be defined similarly to above by the new system of
inequalities

p1—1
Mx > q, 0<Klo< : , x=At+o (2.1)
pn—1
where the lattice is given through
p1

A =Kdiag(py,....pn) =K
Pn

The middle part of the system (2.1) also forces that 1 < p;,i = 1,...,ni.e. that all parameters are
greater than zero. This makes all tiles non-empty.

As a remark, the above definition of the system of inequalities was inspired by []. How-
ever, in the definition given there, the lattice matrix A was computed by the matrix-vector product
K-(p1,...,pn)T whatis incorrect as A has to be a quadratic matrix rather than a vector. Further-
more, the middle part of the system (2.1) differed from our definition, as the original definition
in [] produced a wrong result.

2.3. Cylindrical Algebraic Decomposition

2.2.4. A parametric parallelepiped tiling example

Let us reconsider the example shown in Figure 2.2 on page 7.

The original triangular index set is described by the inequalities

10 [0
0 1 Hz 0
-1 - W

for a parameter p € Z which is set to 12 in the picture.

Just as depicted, we use tiles of a rectangular shape depending on parameters w, h € Z. In the
picture we have w = 4and h = 3.

The spanning vectors of a rectangle are v; = (1,0)” and v, = (0,1)7.

This defines our matrices

1 0 . _|w 0
K—[O 1], A—Kdlag(w,h)—[o h]'

All together, our tiled system is given through

R [KA R | 4 S Py o g P R W

or equivalently through

0 < wh+o0;

0 < hty+0, < p—wh—o0
0 < o < w-1

0 < o < h-1

2.3. Cylindrical Algebraic Decomposition

In the previous sections, we described problems which do occur in practice but cannot be treated
with polyhedral code generation.

Since these cases cannot be handled by polyhedral code generation, other techniques have to
be developed. A solution to this problem was found by [] and this solution is based on
Cylindrical Algebraic Decomposition (CAD), allowing arbitrary polynomial expressions to occur.

In this section, we will introduce the reader to the realm of this type of decomposition and illus-
trate how this can be used for code generation in the generalized polyhedron model.

2.3.1. Introduction

In the generalized polyhedron model, we have a description of index sets 7 C Z" based on
a system of inequalities # with each having the form p ~ 0 where p € Q[xy,...,x,] can be
arbitrary polynomials and ~ is any of the binary relations {<, <, =, #, >, >}.

Our goal is to generate code which enumerates all points in the index set. This is equivalent to
answering the question dx € R": Vp € P: p(x) ~ 0 i.e. for what points x € R" all inequalities
describing the index set are satisfied.

2. Prerequisites

To answer this questions we would like to get descriptions of what values each variable x; € R
can take. This can be achieved by quantifier elimination over the reals. More precisely, we want
to create formulae involving our variables which do not contain any quantifiers anymore and
are equivalent to the original constraints.

This method is important in many scientific applications and was originally introduced by Alfred
Tarski in 1948. He showed that quantifier elimination over real closed fields is decidable, whereas
he also stated that this procedure is not decidable for any theories that involve arithmetic over
integers or rationals [].

Over the years, improvements to his original method were made, but they all were impractical
even for simple examples. A major step in improving it was made by George Collins in 1975 with
the invention of the method of Cylindrical Algebraic Decomposition [].

In the next part, we will briefly introduce Collins’ algorithm for computing a CAD as proposed
in his work.

2.3.2. Computation of a CAD

Before we explain how a CAD is computed, we have to introduce some basic terminology used.

As we already stated in Section 2.1.2, the loop bounds we want to compute based on the index
set description using polynomial constraints are the roots of these possibly multivariate polyno-
mials. Therefore, we start by defining terms representing these roots.

Definition 2.9 (Algebraic Number). Let n € N and let Q[xy,...,x,] denote a polynomial ring
with a polynomial having rational coefficients in variables x1, . .., x, and let0 # p € Q[x1, ..., x,]
be a polynomial.

A number a is called an algebraic number if it is a root of the polynomial p i.e. if p(a) = 0. Ifa is a
real root of p, it is called a real algebraic number.

The set A = {a|p(a) = 0} is called the set of algebraic numbers of p.

As a simple conclusion, we know that every rational number is a root of a rational polynomial,
since every rational number r = a/b is a root of the polynomial b - x — a. But not every real
number is algebraic: The real number V2 is algebraic because it is a real root of the polynomial
x% — 2, but the real number s cannot be algebraic.

Since any number that cannot be a root of a polynomial with integral or rational coefficients is
transcendental, we know that every transcendental number (e.g.) is not algebraic.

Both statements together yield the set inclusion hierarchy Q ¢ A ¢ R.

Since the loop nests we want to generate somewhat divide the field R", we define notions for
that too.

Definition 2.10 (Section/Sector). Let R C R" be a so-called region i.e. a non-empty connected set.
Let f, fi, f2: R — R denote continuous functions.

Then the set

{(x, f(x)) | x € R}

is called a f-section over the cylinder R X R. Furthermore, the set

{6y 1 (ry) € RXRA fi(x) <y < fa(x)}

is called a (f1, f2)-sector over the given cylinder. Note that f; = —co or f, = 400 are possible too.

10

2.3. Cylindrical Algebraic Decomposition

We can also interpret the definitions of sections and sectors graphically: Sections define a single
connected "line" across the field R”, while the sectors denote the gap between two sections.
Definition 2.11 (Decomposition). Let R C R".

A decomposition of R is a collection of sets Ry, ...,R,,n € N for which the equations

R:UR,- and RiNRiyy =0, i=1,...,n—1
i=1

hold. So, mathematically, a decomposition is a partitioning.

This definition of a decomposition being a partitioning mathematically is pretty clear. However,
since we aim to search for the boundaries of the indiviual partitioning subsets and we stated
earlier that these boundaries are roots of polynomials, we refine our definition.

Definition 2.12 (Algebraic Decomposition). A set is called semi-algebraic if it can be described
by quantifier free polynomial (in-)equalities. A decomposition is called algebraic if each region of
it is a semi-algebraic set.

Since we want to construct a decomposition based on roots of polynomials, it is obvious that we
partition the current dimension into disjoint parts. This gives rise to the following definition.

Definition 2.13 (Stack). Let R C R" be a region and let D = fi,..., fm,m € N be a set of
continuous functions f;,i = 1,...,m such that fi(x) < ... < fi(x),x € R.
We call D a stack over R, which is defined by a decomposition of R X R consisting of
e the sector (—oo, f1), and
all sectors (fi, fi+1) fori=1,...,m—1, and
e all sections f; fori =1,...,m, and
* the sector (fy, +0).

Next, we can state when a decomposition is cylindrical.

Definition 2.14 (Cylindrical Decomposition). Let D be a decomposition of a set R ¢ R™.
D is called cylindrical if for

en=1wehavethatD = —co <1y <ry <...<rpy_1 <y < +oo,r; €R, and for

e n > 1 it holds that there exists a cylindrical decomposition D’ of R"™! such that D contains a
stack for each region of D'.

In other words, a decomposition is cylindrical if it is partitioned into stacks on every dimension.

Finally, we know all terms to define the decomposition we want to compute.

Definition 2.15 (Cylindrical Algebraic Decomposition). A Cylindrical Algebraic Decomposition
is a decomposition which is both algebraic and cylindrical.

Based on the above defined terminology, a Cylindrical Algebraic Decomposition is a cylindrical
and algebraic partitioning of the field R" into a finite number of so-called cells. The algorithm we
explain in this section creates a sign-invariant decomposition i.e. the sign of a polynomial over a
cell is constant, which is the key property for our code generation to enumerate the statements
in the correct lexicographic order. That is, because in this case the sign of a polynomial over a
CAD cell is constant and hence the polynomial cannot cross another polynomial or itself, thus
a decomposition is generated which contains at least all roots and intersections connected with
the iteration domains.

Such a partitioning is computed following three phases:

11

2. Prerequisites

1. The projection phase.
2. The base phase.
3. The lifting phase.

The projection phase

The first phase of a CAD computation is the projection phase. Its goal is to take the current
set of polynomials P < Q[xy,...,x,] in n variables and project it to a new set P*™1
Q[x1,...,xp-1] in n—1variables, which have a constant number of real roots over certain regions
i.e. which are delineable.

Definition 2.16. Letp € Q[x1, ..., X] be a polynomial. p is called delineable |] over a region
R if the real variety i.e. the set {x € Q" | p(x) = 0} consists of only finitely many disjoint sections.
A set of polynomials is called delineable if every polynomial in it either vanishes (i.e. is zero) or is
delineable over R.

The property of delineability is essential for the CAD algorithm as proposed by Collins to create
cells that are either identical or disjoint, hence resulting in a cylindrical decomposition.

For computing a Cylindrical Algebraic Decomposition of R” the projection phase is applied n—1
times.

There are multiple projection operators known, most prominently the operators of Collins, Hong,
McCallum, and Brown. These operators require polynomial math machinery like principle subres-
ultant coeflicients, reducta sets, resultants or discriminants. Their precise definitions can be
found in the literature [, , ,]

Each operator in this series improves over the previous by reducing the number of projected
polynomials. Let projB denote the set of projected polynomials by using Brown’s projection
operator, projM the projection set by McCallum, projH the projection set of Hong and projC the
projection set by Collins. Essentially the set inclusion hierarchy projB € projM C projH C projC
holds []. Since much work was invested in the past in optimizing this phase, current
implementations are rather fast.

In this thesis, we will provide an example of the computation of a Cylindrical Algebraic Decom-
position and explain our implementation of this method later. In both cases, we will assume that
Brown’s projection operator is used.

The base phase

After the projection phase, we want to compute a CAD of the field R'. This is rather easy because
we only have to compute real roots of the univariate polynomials in PV, Let ry, 7s, . . ., r; denote
the | € N real roots of these polynomials.

Then a Cylindrical Algebraic Decomposition of R is given by the stack consisting of

« the sector (—o0, ry), and

« the sectors (rj,riz1) fori=1,...,1 -1, and

« the sectionsr; withi=1,...,[, and

« the sector (r;, +00).
Like the projection phase, this part is quite fast as there are many well-known algorithms on
how to efficiently compute the real roots of univariate polynomials.

In this phase, we also create 2] + 1 test points ty,. .., ts1; € A such that

12

2.3. Cylindrical Algebraic Decomposition

—o<h<bh=rn<ia<ti=rn<il<...<bh_-<t=r <ty <-+oo.

The lifting phase

After both the projection and the base phase we encounter the computationally most expensive
phase, namely the lifting (or extension) phase. This part re-uses CADs computed on level i — 1
and constructs a CAD on level i,i = 2, ..., n. This is repeated until a CAD of R" is computed.

The following steps must be done for lifting a CAD from level i — 1 to level i:

1. For each test point t € A'"! constructed on level i — 1, insert this point into all i-variate
polynomials at this projection level, which results in a set of univariate polynomials.

2. Accumulate all real roots of these univariate polynomials.

3. Create another set of test points ¢’ € A’ from these roots similar to the base phase.

The result of this phase is a set of n-dimensional test points and descriptions of their respective
cells. These test points then are used to determine whether its surrounding cell is part of the
decomposition or not, by checking if the original constraints are fulfilled after inserting the test
point.

As one can imagine, the lifting phase represents a tree which gets very large very fast. Our
specific goal is to optimize this phase as this is the most expensive part of the computation.

2.3.3. Example

Now we want to apply the algorithm described above to a concrete example. For this, let us
reconsider the example shown in Figure 2.1 on page 6.

So, the input to the algorithm is the system of polynomial constraints given through

1<x<7 A 1<y<9 A (y—4)~>*-3x+12>0.

For this example, we choose the variable ordering y — x. Furthermore, we decide to use Brown’s
projection operator since it produces the least number of projected polynomials of all considered
projection operators.
After applying the operator, we get the following projections:

Level 2 (y): x—1,x-7,y—1Ly—9,(y—4)*—3x+12

Level1(x): x—-1,x—7,x—4,3x — 37
The next step is to apply root isolation to the polynomials on level 1 (the base phase). This yields
the real roots 1, 4, 7, %

As described earlier, we now construct test points based on these roots. These points are:

37
tl:0,t2:1,t3:2,t4:4,t5:5,t6:7,t7:S,tg:?,t9:13

Now we go into the lifting phase. In this phase, we have the set of polynomials in y with their
respective multivariate roots. In our example we have the multivariate roots (for y):

y=1, y=9, and y=4=+V3x-12.

13

2. Prerequisites

The further things of this phase are visualized via the following table. In this phase, we have
to take each test point of the base phase (first column) and substitute it into the polynomials on
level 2, resulting in a new set > of univariate polynomials in y (second column). Then, we have to
isolate the real roots of all these new polynomials again and create new test points. For brevity,
we just state the set of real roots.

Test point New polynomials Real roots

=0 ly-Ly-9,@y-49°+12} {1,9)

f =1 ly-Ly-9,@y-4*+9 (1,9

ty =2 ly-1,y-9@w-4>+6} (1,9

ty=4 ly-1,y-9,(y-4°% {1,4,9}

ts =5 {y—1Ly-9(y—-4*-3} {1,47V3,9)

to =7 ly-L,y-9,@y-49*-9 {1,7,9)

t; =8 fy—1Ly-9.(y-4?-12} {1,4FV12,9)

tg = 3L ly-1,y-9@-4*-25 {-1,1,9)

to = 13 {y—1,y-9,(y—4)>*-27) {4—+27,1,9,4+ 27}

Now we have a section/sector based decomposition of the space R? and according test points.
Next, we have to decide what CAD cells actually are part of our index space. We do so by checking
if the original constraints are fulfilled for the respective test point.

To keep things short, we only show this for the point x = t, = 1.

According to the real roots for that point, we construct test points

b1 =0,f02 =1,153 =4,t54 = 9,15 = 10

for the y dimension.

We determine which test points t = (x,y) = (1,¢2;),i = 1,...,5 fulfill our original constraints.
It turns out that the points (1, 1), (1,4) and (1,9) do so. Since (1,1) and (1,9) are sections and
(1, 4) is a test point for a sector between those two, we can infer that our original constraints are
fulfilled for points (x,y) which fulfill (x =1A 1<y <9).

By applying this procedure to every constructed test point, we obtain the final, quantifier free
formula

(1<x<4A1<y<9)
V(d<x<7A(1sy<4-V3x—12v4a+V3ixr—12<y<9))

Vix=7A(y=1V7<y<9).

One can easily prove that this formula describes the same set of of points as the solution of the
original quantified formula

Ty (1Sx<TALSY<OA(Y-4)*-3x+1220).

?Note that constant polynomials can be discarded from this set as they do not have roots. The only one that does
so is the constant 0 polynomial, which has an infinite amount of roots, but this is of no use for computing a CAD,
therefore we discard it too.

14

2.3. Cylindrical Algebraic Decomposition

2.3.4. Algorithmic Complexity

In the first method of computing a CAD published by Collins in [], he stated that his method
for quantifier elimination on a formula ¢ given in prenex form 3 has an algorithmic complexity
(i.e. an upper bound for the computation time) of

2r+8 r+6
(2n)*" m* “d%a,

where r is the number of variables, m is the number of polynomials, n is the maximum degree of
any polynomial in any variable, d is the maximum length of any integer coefficient and a is the
number of atomic formulas occuring in ¢.

In terms of the big-O-notation, we see that his method lies in O (er). We say that the computa-
tion of the CAD is doubly exponential in the number of variables r.

Although several optimizations were applied over the past four decades, only some exponents
of this bound could be lowered and the doubly exponential nature of this method still applies.

A common argument in this discussion is that one could also use Fourier-Motzkin elimination.
However, even the simple elimination procedure is already doubly exponential in the number of
variables []. Additionally, to treat non-linearities one needs a generalized Fourier-Motzkin
elimination method as described in [], which includes case-distinctions in general and
hence makes the computational effort even worse.

3A prenex formula is of the form Q1x1: ...Qnxp: F where Q; are quantifiers, x; are variables bound by the
quantifiers, and F is a formula which does not contain any quantifiers.

15

Chapter 3

Implementation and Optimizations

In the previous chapter we discussed the motivation why we want to generalize code generation
to arbitrary polynomial constraints, and we introduced the well-known method of a Cylindrical
Algebraic Decomposition.

In this chapter, we want to apply this method to real code generation. In the first section, we will
state a concrete code generation algorithm which is able to generate code for index sets described
by arbitrary polynomials based on Cylindrical Algebraic Decomposition.

The following sections will deal with general algorithmic enhancements to improve the perform-
ance of code generation followed by optimizations tuned towards special cases which occur often
in practice.

3.1. Basic Code Generation

While in the previous sections we introduced the concept and computation procedure for a Cyl-
indrical Algebraic Decomposition, we now apply this to our code generation task. We do so by
embedding this computation into an algorithm capable of generating both case-distinctions on
parameters and loops for arbitrary polynomial bounds based on a CAD computation.

As already mentioned, we use the freely available library SMT-RAT. This library consists of mul-
tiple tools we can use such as the projection operators and projection phase implementations
and utilities for real root isolation of univariate and multivariate polynomials as well as utilities
for arithmetic on real algebraic numbers.

It also contains an implementation of a partial lifting phase for the Cylindrical Algebraic De-
composition. However, this implementation was specialized for a partial CAD, i.e. the lifting
stops immediately after one satisfied sample point is found. This is not useful for our purposes.
In a first attempt, we did implement a lifting strategy in the library which does the full lifting.
Unfortunately, we could not figure out how we can convert the representations of a CAD cell
in the library into our structure of loops or parameters. Because of this reasons, we decided to
implement the lifting phase by ourselves.

The code generation procedure which represents the lifting phase in pseudocode is shown in
Algorithm 1 on the next page as derived by [1.

It should be noted that this algorithm reflects the base and lifting phases of the CAD computation.
An according projection phase has to be done prior to calling this function.

As an overview, the following parameters/symbols appear in the code:

Symbol Interpretation

S The current region to construct a stack over.

domains List of index sets.

t Current test point.

n Number of variables i.e. loop iterators.

q Number of parameters.

dim Current recursion level, starts with 1 and increases up ton + g + 1.

17

3. Implementation and Optimizations

Algorithm 1 Code generation procedure based on CAD

1 function copg_GEN(S, domains, t, dim, n, q)
2 if dim=n+ g+ 1 then

3 code « ""

4 for all d € domains do

5 if t € d then

6: code « code + "Ty;"
7 end if

8 end for

9 return code

10: end if

11:

12: Let fi, ..., f be the sections defining a stack over S

13: ﬁ) «— —00

14: fori=1,...,rdo

15: code « code + SECTOR_CODE(fi_1, fi,domains, t, dim, n,)
16: code « code + SECTION_CODE(f;, domains, t, dim, n, q)

17: end for

18: code « code + SECTOR_CODE(f, +09, t, dim, n, q)

19: return code

20: end function

21:

22: function SECTOR_CODE(fi, f2, domains, t, dim, n, q)
23: t’ « (t, rational_between(f(t), f2(t))

24: inner « CODE_GEN(sector(S, fi, f2), domains, ¢, dim +1, n,)
25: if inner = "" then

26: return ""

27: end if

28: if dim < q then

29: head « "if (Pdim > fl and Pdim < fg)"

30: else

31 if fi # —co then f] « [fi] + 1 end if

32: if f; # +oo then f, « [f;] — 1 end if

33: head « "for (Xgim-q = fi: Xaim-q < f2: Xdim—q*++)"

34: end if

35: return head + "{" + inner + "}"

36: end function

37:

38: function secTION_coDE(f, domains, t, dim, n, q)

39: inner « CODE_GEN(section(S, root), domains,(t, f(t)), dim+1, n, q)
40: if inner = "" then

41 return "'

42: end if

43: if dim < q then

44: head « "if (pgim == f)"

45: else

46: head « "for (xdim—q = ff]?xdim—q < I.fJ;xdim—q++)"
47: end if

48: return head + "{" + inner + "}"

49: end function

18

3.1. Basic Code Generation

Additionally, we use the utility functions section, sector and rational_between. The first two of
them define a section or sector respectively out of the current region and the boundaries, while
rational_between computes any rational point between its two parameters.

Now we describe the indiviual functions appearing in Algorithm 1 on the facing page.
We start with the function cope_en.

The first conditional statements check if we are in the base case of the recursion, i.e. if we already
have a CAD of the entire space given. It then decides based on the constraints of the iteration
domains if statements should be emitted for that respective domain.

If we are not in the base case yet, we compute the sections defining a stack over the current
region S. Then we start the recursive calls by (possibly) creating code for each sector and section
defining that stack, and add the result to our code.

Finally, the result is returned.

The function SecTION_coDE generates code for a single section. To do so, it invokes the code gener-
ation procedure recursively with a new test point over the current region including the current
section point. If code was generated in this call, we know that the inner loops or parameters do
not carry empty executions. Then, based on the current recursion level, we create either code
for a parameter or a loop section.

Similar to this function we have the function sector_copg, which generates code for a single sector.
It basically does the same as secTIon_copE, with the difference that we must provide a new test
point somewhere between the two limits given, and that the loops and parameters now carry
more complex comparisons.

As short remarks, we will state that the algorithm actually behaves correctly.

Proposition 3.1 (Correctness). The code generation algorithm as stated in Algorithm 1 is correct
in the sense that it generates code which executes exactly the integral points of its input sets in the
correct lexicographic order.

Proof. Tt can be seen easily that this represents the base and lifting phases of the computation of
a CAD and these are correct by algorithmic proofs given in []. The lexicographic order is
given by the way we construct our stack and is therefore correct. Finally, the correct usage of
the -1 and | -] functions in the code ensure that all necessary integral points are executed. O

Proposition 3.2 (Termination). The code generation algorithm in 1 on the preceding page always
terminates.

Proof. This is a direct consequence of the fact that a CAD computation has an upper bound for
its computation time []. O

Remark 1: The algorithm proposed is able to generate code for unlimited sectors. While this
should not happen for loops, it can and will happen quite often for parameters. In this case we
have a case of a parameter being bigger than some value but not limited to an upper bound.
Remark 2: In our real implementation in the programming language C++ we do not use plain
strings as indicated in the pseudocode, but rather we manipulate our own abstract syntax tree
which carries all necessary information. As a consequence, we do not return empty strings if no
code shall be generated, but propagate this information using boolean flags.

19

3. Implementation and Optimizations

3.2. A code generation example

We can now apply this code generation algorithm to our introductory problem described in Sec-
tion 2.3.3 and show that the result is (after simplification) exactly the code depicted in Listing 2.3
on page 6.

We start our description from the base phase of the CAD computation for this example, as already
explained in Section 2.3.3. In that section we already computed test points

37
t1 :0,t2:1,t3:2.5,t4:4,t5:5.5,t6:7,t7:8,tg:?,t():l?)

for the R! decomposition. These test points are depicted as red diamonds on the x-axis in Fig-
ure 3.1. Please note that Figure 3.1 only shows relevant test points.

R o ° o .
:
i
8 : i
:
H []
:
s !]
; '
[] '
i i
6 [1 B
: "
H H
. .
=5 9 [] H H B
1] L]
"
4t ¢ g
N
.
.
3+ : -
1]
:
:
2+ H 4
:
"
1+ [® b
& L % L & L % L &
T 2 3 T 5 6 7
X

Figure 3.1.: Index set D5 including most test points

In the lifting step we have to construct stacks over each of these test points. As described earlier,
we have to isolate the roots of the newly computed univariate polynomials and create test points.
These test points in the two-dimensional plane are depicted as black circles. Note how these
points are aligned over their respective one-dimensional test point. This property gives a visual
interpretation of the phrase of constructing a stack over a test point.

Since we have already reached the last level in this example, we now have to decide what two-
dimensional test points fulfill all constraints defining our original domain.

The following table summarises this paragraph. Note we again do not show test points which
are clearly outside of our iteration domain. In the implemented code generation however there

are some more test points, for which in the base case of the recursion it can be decided that they
do not belong to the index set.

20

3.2. A code generation example

Test point ¢

Test points ¢’ over t

t’ fulfills all original constraints?

tz =1

tg =2.5
ty =4
t5 =5.5
% =7

AN N N T N N N N N N N N N N N SR NEN

And for each test point which fulfills the original constraints of the domain, we have to create
either a sector or a section code fragment as described in Algorithm 1 on page 18, depending on
the fact if the test point defines a root of a used polynomial or not.

The fully generated code executing some statement T for our example is shown in Listing 3.1.

for (x = 1; x
for (y = 1;
for (y = 2;
for (y

}

for (x = 2; x
for (y = 1;
for (y = 2;
for (y = 9;

}

for (x = 4; x
for (y =1
for (y = 2

for (y = 4;

5
9

1]
©o

for (y =
for (y =

for (x = 5; x
for (y = 1;
for (y = 2;
for (y
for (y
for (y

<= 1; ++x) {

y
y
y

<= 1; ++y)
<= 8; +ty)
<= 9; ++y)

<= 3; +x) {

y
y
y

<= 1; ++y)
<= 8; ++y)
<= 9; +ty)

<=4+ {

y

< K K <

<= 1; +ty)
<= 3; +ty)
<= 4; +ty)
<= 8; +ty)
<= 9; ++y)

<= 6; ++x) {

y

<= 1; ++y)

— = = =

T;

y <= [4-V3x—12] - 1; ++y) T;

[4—+v3x—12]; y <= [4—V3x—12]; ++y) T;
[44+V3x—12]; y <= |4+ V3x—12]; ++y) T;
[4+V3x—12] +1; y <= 8; ++y) T;

for (y =95 y <= 9; ++y) T;

21

3. Implementation and Optimizations

for (x = 7; x <=7; ++x) {
for (y =1; y <=1; ++ty) T;
for (y =7; y <= 8; ++y) T;
for (y = 9; y <=9; ++y) T;
}

Listing 3.1: Code generated for scanning domain Ds

As one can see, the generated code gets quite long. On closer inspection, we notice that many
loops can be fused to shorten the generated program. The final result of the code generation for
domain Dj; is shown in Listing 3.2.

for (x = 1; x <= 4; ++x) {
for (y = 1; y <= 9; ++y)
T;

}

for (x = 5; x <=7; ++x) {

for (y = 1; y <= [4—V3x—12]; ++y)
L

for (y = [4+4 V3x —12]; y <= 9; ++y)
L

Listing 3.2: Generated code with fused loops scanning domain D5

3.3. Influence of variable orderings and projection operators

Before we continue to state our different optimizations, let us briefly discuss the influence of the
elimination order on variables as well as the influence of the used projection operator.

3.3.1. Influence of the variable ordering

Like when using the Fourier-Motzkin elimination method, one has to specify an ordering on the
variables occuring in the system of inequalities. This ordering specifies what variables will be
eliminated in subsequent steps.

Depending on the individual form of the constraints and how different variables are connected
with each other, the elimination of a variable in a "bad" ordering can create lots of new polyno-
mials, which makes things worse, especially considering the doubly exponential nature of the
Cylindrical Algebraic Decomposition. In our experiments, we tried one of our test cases with
several different variable orderings and all of our optimizations included, and the worst ordering
resulted in elimination times being 20, 000 times slower than the best ordering.

During our experiments we observed that for the special case of parametric tiling, it is best to
eliminate the loop iterator variables of the tiled loops in increasing order.

Definition 3.1 (Custom variable ordering). Letn € N be the depth of a loop nest. Let t; denote the
loop iterator variables enumerating the tiles and let o; denote the loop iterator variables enumerating
the points inside the tile loops,i = 1,...,n.
Then we choose the variable elimination ordering 01 < t; < ... < 0o, < t,, where the ordering <
defines the succeeding variable elimination.

This variable ordering is the fastest elimination order which respects the property that all point
loops remain in their respective tile loops, although this ordering might not be of big practical
use.

22

3.3. Influence of variable orderings and projection operators

Another approach, suitable for the general case is the heuristic given by Brown [], in which
the following steps (starting with the first step and breaking ties with the next) are applied:

For x, y being variables, let x < y if

1. deg(x) < deg(y), breaking ties with
2. tdeg(x) < tdeg(y), breaking ties with
3. #{t|t contains x} < #{t|t contains y}.

In this heuristic, deg represents the overall degree of the variable, tdeg represents the highest
total degree of terms in which the passed variable occurs, and #S represents the cardinality of
the set S. One can easily verify that the third step of this heuristic matches with our heuristic in
most cases.

There is ongoing research on this topic, with other strategies mentioned in []. However,
these strategies require much more computational effort.

In our application, the basic elimination order has to be specified by the user. In case we use
parametric parallelepiped tiling, then we use our elimination strategy given in Definition 3.1 on
the facing page. For all other cases, the order provided by the user can be used, or the heuristic
given by Brown may be used, which works suitably well. It should be noted that Brown’s heur-
istic can achieve better performance even when used on tiled systems, however this depends on
the tile shape and it violates the contract that each point loop is strictly inside its corresponding
tile loop.

3.3.2. Influence of the projection operator

In Section 2.3.2 we already pointed out that there are multiple different projection operators, with
each one improving its predecessor.

We also stated that this improvement is that the set of projected polynomials is smaller than the
one of the preceeding operator.

But why is this an improvement?

The answer to this comes clear when re-considering the lifting phase of the Cylindrical Algebraic
Decomposition. In this phase, we accumulate all real roots of the projected polynomials at a
certain recursion level, and for each root we perform another chain of recursive calls which do
essentially the same.

Simply said, the larger the set of projected polynomials, the more (cascading) recursive calls we
have to make, which decrease performance.

That is why the choice of the projection operator is essential in improving the speed of code
generation. Besides the fact that McCallums projection operator must add additional polynomials
if the projected polynomials vanishes identically over zero [], we choose the projection
operator defined by Brown. This operator is not bound to this limitation and it generates much
fewer polynomials in practice.

For our test case which consists of a rectangular index space which is tiled using parallelogram
shaped tiles, we compared the number of projected polynomials between the operators of Mc-
Callum and Brown. The results are shown in Table 3.1 on the next page.

We can clearly see that McCallum produces a much bigger set of projected polynomials, at worst
it produces about 20 times more polynomials. Besides the duration of the computation of the pro-
jection taking a much longer time, the lifting phase gets even worse considering the exponential
nature of the lifting phase.

23

3. Implementation and Optimizations

Projection | Level 6 Level5 Levelq Level3 Level2 Level1
Brown 8 4 7 10 28 102
McCallum 8 6 14 31 160 1,982

Table 3.1.: Number of projected polynomials using projections of Brown and McCallum

3.4. Reducing memory consumption

Our first optimization was to reduce the memory consumption of the code generator. This en-
ables the usage of the generator for real world problems and increases performance, as less
memory has to be transferred.

This optimization basically can be divided into two parts, the loop fusion and the memory alloc-
ation part.

3.4.1. Loop Fusion

As mentioned earlier, in practice many loops can be fused together. But this does not only reduce
the size of the generated code, it further reduces memory consumption.

In our custom abstract syntax tree, we represent each such parameter conditional statement or
loop using the following structure:

enum class LOP_FLAG : unsigned char {
/* 8 bit masks */

3
using LOP_FLAG_INT = typename std::underlying_type<LOP_FLAG>::type;

class RootExpr {
typedef unsigned char RootIndex;

public:
UPoly polynomial;
RootIndex index;
carl::RealAlgebraicNumber<smtrat::Rational> ran;

VA SR Y

3

class LoP {

public:
RootExpr lower, upper;
LOP_FLAG_INT flags;
unsigned int indentation;
std::1list<SmartPtr<LoP>> lop;
std::list<std::string> stmts;
VAR V)

3

Listing 3.3: AST used in our implementation

By just considering the size of these structures using the sizeof operator, on most machines each
such LoP has a size of 296 bytes, which increases depending on how many statements (as strings)
or inner LoPs it has.

24

3.5. Pruning the lifting tree

Therefore, by fusing loops, we only need to adapt the lower bounds (or upper bounds, respect-
ively) and some flags. Thus, the more loops we can fuse, the less memory is needed in our AST
to represent the generated program.

What remains is the criterion of when loops or parameter conditionals can be fused.

Lemma 3.1. Let Iy, 1, denote two instances of LoP and w.lo.g. assume that l; <iex Iz, where <ex
is the lexicographic ordering of the generated loops/conditionals, i.e. the order in which the current
stack is generated.

Then these two can be fused into one instance if the upper limit of I; is equal to the lower limit of I,
their bodies (i.e. their inner LoPs or statements) are equal, and if either I, represents a sector and I
represents a section, or vice-versa.

Proof. For such instances, if I, is a sector (or a section, respectively) and [; is a section (or a
sector, respectively), and if their limits match as described, we know that there cannot be any
statements to execute between these two codes. If their bodies match too, then these fragments
can be combined. O

3.4.2. Memory allocation

As we just saw, fusing loops can have quite an impact on the memory consumption and perform-
ance of our program. Another further consideration is the actual size of our objects.

We stated that each LoP consists of 296 bytes at minimum. Considering C++ memory allocation,
such objects are still considered small. It is a well-known problem that the standard memory
allocator in C++ is a thin wrapper around the pair of dated functions malloc/free in C, and that
the latter pair of functions were initially designed to allocate or free large parts of memory at
once.

Therefore, they are not best-suited for small object allocation. To cope with this, we decided to
use Google’s tcmalloc ' memory allocator.

As benchmarks show, this memory allocator is well-suited for allocating small objects and not
the worst allocator for bigger objects *. As we will see in Chapter 4, our implementation benefits
from this choice too.

3.5. Pruning the lifting tree

As one can derive from our code generation procedure given in Algorithm 1 on page 18, the
lifting phase of this CAD computation represents a tree where each node represents a function
call. Since function calls are expensive in general, we try to avoid them as much as possible.
Therefore, if we can decide that a sample point cannot lie in a cell that belongs to our executed
code, we can immediately stop the code generation for this subtree.

Of course, we must do so only if we can really ensure that this is fulfilled. This can be done

if either every necessary information is known for a constraint to decide it, or if the partial
information inserted into a constraint contradicts another constraint.

'https://github.com/gperftools/gperftools
2See http://goog-perftools.sourceforge.net/doc/tcmalloc.html

25

https://github.com/gperftools/gperftools
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

3. Implementation and Optimizations

We further distinguish between two types of such early return checks: If the sample point cannot
belong to any domain, i.e. if it violates at least one (conjunctive) constraint of any domain, we can
safely abort further code generation. If we have additional constraints which do not belong to the
original domain constraints (e.g. if we have tiled our system), we can again stop our procedure
for the current subtree if any of these constraints is violated for sure.

Furthermore, these checks can be done at multiple points during our code generation, pruning
the lifting tree as soon and as often as possible.

3.6. Avoiding unnecessary exact arithmetic

Throughout the code generation we have to use real algebraic numbers in general. Although
they are necessary for the computation of the roots, we do not need them for deciding whether
a constraint is fulfilled or not.

Here, we can distinguish between checking against 0 for (in-) equality and checking against 0
using one of the relational operators <, <, >, >.

In the latter case, we can avoid real algebraic number arithmetic since we only need to determine
the sign of the polynomial p evaluated at a test point . This implies that in the case that we want
to check p(t) ~ 0 with ~€ {<, <, >, >}, it suffices to use a rational approximation of ¢ and
since arithmetic involving rational numbers is more efficient in general than dealing with real
algebraic numbers, we can speed up our code generation further. For computing these rational
approximations, we rely on functionality implemented in the library CArL which utilizes the GNU
Multiple Precision Library to compute a very close approximation of the processed real algebraic
number.

In the remaining case of p(t) = 0 or p(t) # 0, we explicitly need real algebraic arithmetic. As an
example, if we want to check if p(x) = x? — 2 is exactly 0 at a test point V2, real algebraic number
arithmetic indeed yields that this is the case, while a rational approximation would most likely
return a result indicating the the constraint is not fulfilled, what is wrong.

In order to decrease the computation time further, many authors like Strzebonski describe vari-
ants of the Cylindrical Algebraic Decomposition which do not use real algebraic numbers for root
computations, but rather root isolation using rational numbers and interval arithmetic. However,
this only an approximation which has its own caveats. Because we want to ensure correctness
in any case, we do not follow their approach. Their work is explained in detail in [1.

3.7. Parallelization

We already examined that the lifting phase resembles the construction of a tree whose nodes are
either parameter cases or loops, and whose leaves are statements.

Because of its tree-like nature, it might be beneficial to parallelize the computation of the gen-
erated code. The idea is that each thread (limited to hardware ressources available) executes a
branch of the computation. This parallelism can be nested too, if enough ressources are available.

Conceptually, only the back-writing of generated inner LoPs or statements must be protected
by mutual exclusion, and all other parts can be done in parallel. However, due to excessive
use of pooling datastructures in the library SMT-RAT and the fact that these datastructures are
not protected against parallel access although SMT-RAT provides a thread-safe build, we have to
ensure that these pools are accessed by one thread at a time, hence making all accesses to these
pools mutually exclusive. Since the affected parts have to be called very often, we essentially
reach the same performance as sequential. Our experiments in Chapter 4 confirm this.

26

3.7. Parallelization

During the implementation of our code generation, we tried two different parallel processing
frameworks: OpenMP and the C++11 async method.

3.7.1. Parallelization using OpenMP

The first implementation used OpenMP 3 and its common parallelizing pragmas (like #pragma omp
parallel for) among others. However, this implementation performed less well than our se-
quentiel implementation, mainly due to two reasons.

The first reason was that the parallelization of the code generation in its subtrees takes place in
a loop which iterates over the accumulated roots of the currently projected polynomials. Since
the number of these roots is not known at compile-time, OpenMP is unable to generate the most
efficient code.

Secondly, OpenMP parallelized loops are known to not perform well when using nested parallel-
ism [], which is the case as the loop we want to parallelize calls its surrounding function
recursively.

To overcome the poor performance of nested parallelism in parallel for loops, we switched
to the OpenMP tasking model 4, which was explicitly designed to handle nested parallelism in
recursive algorithms. Using this, we explicitly marked statements in our implementation which
should execute in parallel and let OpenMP do the thread scheduling.

This method turned out to perform better than our first draft, but due to the mentioned syn-
chronization points we essentially reached the same speed as when executing our program se-
quentially.

3.7.2. Parallelization using C++ Futures

The second framework we used for parallelization instead of OpenMP is the async mechanism
native to C++11, giving thread-based parallelism using futures.

We derived a special type of lock which uses atomic flags for keeping track of its state and which
yields CPU ressources to other threads if it is already locked. This turned out to be the most
efficient type of lock for our application.

Listing 3.4 shows the most important parts of this implementation.

using LockT = Lock<LockingType: :SPINLOCK>;
const int MAX_THREADS = std::thread: :hardware_concurrency();
std::atomic<int> threadsActive = ATOMIC_VAR_INIT(Q);

template<typename F, typename... Ts>

auto Async(F&& f, Ts&&... params) {
using Policy = std::launch;
auto launchPolicy = (threadsActive++ < MAX_THREADS ? Policy::async : Policy::deferred);
return std::async(launchPolicy, std::forward<F>(f), std::forward<Ts>(params)...);

Listing 3.4: Excerpt of the parallelization using C++ futures

As one can see, based on hardware ressources available we either start a new thread or not. In the
lifting functionality, a thread can be started if the user wishes to execute the program in parallel.
After that functionality, we have to wait for the results of these futures, followed by decreasing
our counter of active threads.

Shttp://www.openmp.org/
4http://www.openmp.org/specifications/

27

http://www.openmp.org/
http://www.openmp.org/specifications/

3. Implementation and Optimizations

The intention of this method is to start new threads in early phases of the code generation which
resemble high levels of the execution tree. This prevents the overhead of thread creation at lower
levels and it simplifies the execution of lower levels. The disadvantage of this method is that we
can only start a new thread when another thread terminates i.e. that the subtree executed by this
thread was fully processed.

However, as stated neither method increased performance because of the limitations in the lib-
rary SMT-RAT. Based on our experiments, we expect the best performance when using the async
mechanism and we are looking forward that future work will reduce the amount of pooling data-
structures in SMT-RAT and thus reduce the sychronization points, what is likely to result in better
parallelization and actual runtime improvements.

3.8. Overapproximation for Tiled Systems

We already presented simple means for pruning the lifting tree by constraint contradition check-
ing in Section 3.5. In that section, we also mentioned that we might have additional constraints
which must be fulfilled.

One possibility is of course that the user explicitly specifies such constraints.

However, for the special case of parametric parallelepiped tiling we can actually calculate ad-
ditional constraints. We already gave a definition for parametric parallelepiped tiling in Sec-
tion 2.2.3, depending on a matrix K € Q™" and a parameter vector p = (py,...,pn) .

Based on that definition, we can immediately infer that 1 < p;,i = 1,...,n holds for every
parameter. Taking this constraints into account, the lifting tree can be pruned instantly if a
sample point component representing a parameter is non-positive.

What remains is the case of the tiled loop iterator combinations t;,0;,i = 1, ..., n. For this case,
we can compute an overapproximation of the geometry of a single tile, i.e. a bounding box around
it, which we want to describe in the following section.

3.8.1. Extreme Value Algorithm

The mentioned bounding box around a single tile does only depend on parameters and no longer
on other loop iterators. Now by substituting these extreme values for the iterators in all con-
straints involving t;, we get a new set of constraints where the constraints on variables t; can be
decided without the need of samples of the point loop iterators o;.

This Extreme Value Algorithm is shown in Algorithm 2 on the facing page.

By replacing every point loop variable with their respective maximum intervals they can reach,
we get a set of constraints on the tile loop iterators t;,i = 1,...,n which depend only on pos-
sibly other tile loop iterators and on parameters. And by first computing a Cylindrical Algebraic
Decomposition on the lower-dimensional system, we achieve maximum separation of tile loop
variables too, making the resulting constraints easier to decide with partial information.

3.8.2. First overapproximation

We still need to provide the overapproximation of a single tile. We tried two approaches to solve
this. As a first overapproximation, we designed Algorithm 3 on the next page.

Of course, we have to show that this algorithm does no harm.

28

3.8. Overapproximation for Tiled Systems

Algorithm 2 Extreme value algorithm
Input:

« n - Number of index sets
+ g - Number of parameters
+ K - Tile shape matrix

 p - Parameter vector

1 procedure EXTREMEVALUEALGORITHM(constraints, n, q, K, p)
2: Let o be the vector of point loop variables.

pe—(p1—1,....pn— 17

3:
4 (04, mins 07, max)i=1,....n < OVERAPPROXTILE(0, K, p")
5: cad < copi_GEN(0), constraints, (), 1, n, q) > Compute CAD for untiled system.
6: Let r ~ 0,~ € {>, >} be the constraints bounding the index space, calculated from cad
7: for all cons € r do
8: fori=1:ndo
9: Let ¢ be the tiled version of cons.
10: Let u be the subterm of ¢ including o;.
1 if sgn(u) > 0 then
12: replace 0; by 0; max
13: else
14: replace 0; by 0; min
15: end if
16: end for
17: end for

18: end procedure

Algorithm 3 Overapproximation 1

Input: K, p, 0 - matrices and vectors according to Equation 2.1

Output: Overapproximation of the tile described by the input parameters
1 function ovERAPPROXTILE(0, K, p)

o' <10

3 for all 0; € 0 do

4 while o; depends on some oj,j > i do

o e ((o-Ke) (oK o ep))

6: end while

7

8

9

N

end for
return o’
: end function

29

3. Implementation and Optimizations

Theorem 3.1. The Extreme Value Algorithm in Algorithm z on the preceding page using the overap-
proximation shown in Algorithm 3 on the previous page is correct i.e. it computes a superset of the
original index set.

Proof. Let P be the polyhedron describing the original tiled index set, and let P’ be the polyhedron
after applying our algorithm to P. Then these polyhedra can be expressed via

P={xeR"|lx=Lt+oAM(Lt+0)>q}, P ={xeR"|lx=Lt+0 AM(Lt+0)=>q},

where M, g follow Definition 2.4 on page 3, L, t, 0 follow the definition of parallelepiped para-
metric tiling given in Section 2.2.3 and o’ is the result of our overapproximation.

In order to show the correctness of our algorithm, it suffices to show P C P’.

Let x € P be any arbitrary point in the polyhedron P and let ¢, o be points such that x = Lt + o.
For convenience, let x” = Lt + o’ be the point x after applying our overapproximation. Further,
let j =1,...,nDbe arbitrary.

Then we know

gj < (Mx); = (M(Lt +0)); = (MLE); + (Mo); = (MLt); + Z MOk
k=1

Now, according to our algorithm we distinguish between two cases forany k = 1,...,n:
Case 1: mj. > 0:
By our algorithm, we substitute ox by o := (o -K o+ p) I Using this, we get

n

(Mx'); = Z (mjx (Lo +mjxor)
k=1

= > (mue Lty + myo — mj (K™ o) + mjip)
k=1

= (Mx); + Z mji (pk — (K~"o)x)
k=1

Through the definition of parametric parallelepiped tiling, we know that K~'o < p ie. that
(pk - (K‘lo)k) > 0. This implies that 3}}'_ (pk - (K‘lo)k) > 0.

Using this knowledge, we get that q; < (Mx); < (Mx’);, hence we know that x € P’.

Case 2: mj < 0:

By our algorithm, we substitute ox by o := (o -K ‘lo) e Using this, we get

30

3.8. Overapproximation for Tiled Systems

n

(Mx'); = Z (mjk(Lf)k + mjko;c)
k=1

(mji (L) + mjgor — mye(K~ o))
k=1

= (Mx); + Z(— mje) (K o)k

k=1 <0

= (Mx); +) Imjel (Ko

k=1

Since |mji| > 0 always holds and since (K~ 'o)x > 0 holds through the definition of our tiling,
this implies that Y,7_ [m;x|(K™"0)r > 0 holds.
This means that ¢; < (Mx); < (Mx’);, hence we have that x € P’.

Concluding, we showed that for all dimensions j and any arbitrary x in any polyhedron P, our
overapproximation yields a superset P’ over the original P, therefore our algorithm is correct. O

As a caveat, this algorithm will only terminate if K is triagonal. This problem occurs if we allow
arbitrary parallelepipeds as tile shapes, e.g. in tiles whose shape is defined by

The vectors defining the shape are clearly linearly independent. If one computes the tiled system
using this matrix, each variable 01, 0, will depend on the other one in both the lower and upper
limits. In such cases, our algorithm will not terminate.

But we still can prove that it does terminate under the stated condition.

Theorem 3.2. Letn € N. Let K € Q™" denote the matrix defining the shape of the tile.

Then the Extreme Value Algorithm in Algorithm 2 on page 29 using the overapproximation shown
in Algorithm 3 on page 29 terminates if K is triangular.

Proof. W.lo.g. assume that K is an upper triangular matrix. Then by Lemma A.1 on page 57 we
know that K™! is an upper triangular matrix again, i.e. it has the shape

kL kT
’ 4

0 K, ... k.,
K'=|: o ° '
0 0 0 k]

Letj=1,...,nbe arbitrary.

Since K~! is upper triangular, we know that the equality

Z -3k, (32

i=j+1
Vﬂ

31

3. Implementation and Optimizations

holds. By the definition of parametric parallelepiped tiling we know that the equivalences

0< (K_lo)j <pj—-1
n
0 < ij'.io,- <pj—1

(:)0<k'o]+2k'-,-0i <pj—1

li]

(
<5310<k O]+Z oiSpj—l

i=j+1
n
’
@—Zkﬂ <]] Z 0i+pj_1
i=j+1 i=j+1
hold for tile size parameters py, . . ., pp.
This means that every point loop iterator o; only depends (possibly) on the iterators 0,1, ..., n.

Therefore, after n elimination steps, all variables o; only depend on tile size parameters, and
the elimination process stops, hence Algorithm 3 on page 29 terminates. Thus, Algorithm 2 on
page 29 terminates too, since each polynomial can only contain a finite number of point loop
variables, which are replaced without introducing other point loop variables. O

Remark: In case this overapproximation can be applied, it yields the exact same result as if
a Fourier-Motzkin elimination would be applied followed by simplification. But compared to
Fourier-Motzkin, this method is more efficient in general (cf. Section 3.8.6).

3.8.3. Example

In this section we provide a simple example where the overapproximation we just introduced
can be applied and show its results.

Consider a parametric parallelepiped tiled system consisting of a triangular index space and
parallelogram shaped tiles of width w and height h. Before calculating the new constraints,
we use the algorithm for computing a Cylindrical Algebraic Decomposition for computing the
projections of the variables and hence eliminating the dependency of y on x, resulting in

0<x<n 0<y<n

The tiled system based on this result can be described by the system (3.2)

1 0 0

0 1] [x 0 0 01 —0 w-—1 X w h||t 0

S 1 5 A R S o o R o S MO | W R K R
0 -1 -n

or, equivalently, through the inequalities

32

3.8. Overapproximation for Tiled Systems

OSwt1+ht2+01Sn

0Sht2+02 <n
02 < 01 <og+w-—1
0< o0 <h-1

As the shape defining matrix K is triangular, we can apply our algorithm here. For simplicity,
we already gave the lower and upper limits of each point loop variable 0;,i = 1,2 in the above
system of inequalities.

As stated, we replace every occurence of such a point loop variable o; in the inequalities involving
t; by its maximum value 0; may if it occurs positively in its left-hand side, or by its minimum
value 0; min otherwise. For example, consider the inequation 0 < wt; + ht; + 0;. According
to our algorithm, since 0; occurs positively in this constraint, we replace it by its upper limit
01,max = 02 + W — 1. The result is 1 — w < wt; + ht; + 0,. Now we replace o, by its upper limit
(02,max = h — 1) yielding the final result 2 — w — h < wt; + ht;.

The result of applying Algorithm 2 on page 29 to the entire system results in the following new
system of inequatlities:

wii + htg

2—w-—nh <
htz < n

<
1-h <
As we see, the constraints do not longer contain any point loop iterators, so they are easier to
check for violation with partial information. Please note that the overapproximation of a single
tile is not included in the additional constraints, as the constraints on loop point variables only
depend on other o; and on parameters. So, constraint checking on loop point iterators is rather
easy with partial information and will be done by our other checks if the test point can lie in any
domain.

3.8.4. Refined overapproximation

As shown our overapproximation of a single tile is correct. But it only terminates if the defining
matrix K is at triagonal. In order to overcome this limitation we derived our second overapprox-
imation algorithm shown in Algorithm 4 on the next page.

Again, we have to prove that this algorithm behaves correct.

Theorem 3.3. Letn € N. Let K € Q" andp = (p; — 1,...,pn — 1) € Z" be the matrix
and parameter vector defining our tiling system. Then the Extreme Value Algorithm depicted in
Algorithm z on page 29 using the overapproximation shown in Algorithm 4 on the following page is
correct i.e. it generates a superset of the original index set.

Proof. Leti = 1,...,n denote any arbitrary row of the matrix K. It suffices to show that Al-
gorithm 4 on the next page generates an overapproximation for a tile described by K and p in
every dimension. The correctness of the combination of both algorithms then follows immedi-
ately from the correctness of the overapproximation of a single tile and our elimination procedure
similar to the previous theorem.

Let

33

3. Implementation and Optimizations

Algorithm 4 Overapproximation 2

1 function ovERAPPROXTILE(0, K, p) >0, K, p - See Algorithm 3 on page 29
2: o« 0

3: K' < K- p

4 M « K - diag(ps, .- .,pn)

5: forrow=1:ndo

6: if s1GN(Kow,1) = . . . = SIGN(K}ow,) then

7 if SIGN(K;ow,1 < 0) then

8: Or,ow — (KI{OW’ 0)

o: else
10: O;OW — (0’ Kr,ow)

1 end if

12: else

13: Opow ¢ SEPARATELIMITS(K, M,row)

14 end if

15: end for

16: end function

17:

18: function SIGN(x)

19: if x < 0 then return —1 else return 1 end if

20: end function

22: function SEPARATELIMITS(K, M, row)

23: lower « 0 > 0 - polynomial
24: upper < 0

25: forcol=1:ndo

26: if Kiowcol < 0 then

27: lower += M;ow col

28: else

29: upper += Miow,col

30: end if

31 end for

32: return (lower, upper)

33: end function

34

3.8. Overapproximation for Tiled Systems

-1 ,ifx<0

1 , otherwise

sign: Q = {-1,1}, x — {

be our function determining the sign of a number. Note that the case sign(x) = 0 cannot happen
for all elements in a single row of K, because K then would be singular.

As forced by our algorithm, we distinguish between two cases.

Case 1:

For this case, we assume that the signs of all elements in this row are equal i.e. that sign(K;;) =
... = sign(K;,). W.lLo.g. assume that sign(K;;) = 1.

Now let 0 = (0y,...,0,)T € Z" be any arbitrary point in the tile defined by K and p. As such, it
obeys

0< (K_lo)i < pi.
Following our algorithm, we compute
n
Ki = Z Kijpj-
j=1

To prove our claim, we need to show that the range [0, K}] is a superset of the range defined by
the tile, i.e. we have to show that 0 < 0 and p; < K] hold. The first part holds trivially.

By our assumption, we know that K;; > 0,j = 1,...,n, and thus
n n
K| = ZKiij = Kiipi + Z Kij pj = Kipi. (3-3)
= = —— ——
o200 20

Now, if K;; = 0, then only the origin of the tile in this dimension is included in the tile, what
is fulfilled by (3.3). If we would have K;; € (0,1), then again only the origin would be included
because of the integrality, and the previous case applies.

Therefore, we now may assume that K;; > 1. This yields

which is exactly our claim.

A similar argumentation can be made for the other case, where the roles of K and 0 swap.

Case 2:
In this second case, we assume that not all signs according to our sign function are equal. Fol-
lowing our algorithm, we compute each entry of the matrix M using

Mij:Kijpj’ j=1,...,n.

After the algorithm SePARATELIMITS finishes, we get the results

35

3. Implementation and Optimizations

IOWCIi: Z Mij= Z Kijpj

Jj€J (n) jeJ (n)
1<j<n 1<j<n
upper; = Z M,’j = Z Kijpj
j¢J (n) jeT (n)
1<j<n 1<j<n
for some index set J (n) C {1,...,n} selecting all the negative entries in the i-th row of K. In

other words, we have K;; < 0 forall j € J(n) and K;; > 0forallj € ({1,...,n}\J (n)).

As above, let 0 = (01, ...,0,)T € Z" be any arbitrary point included in the tile, as which it obeys

0 < (Ko); < pi.

Now we have to show that lower; < 0 and p; < upper;.
We know that

lower; = Z Kij pj=- Z IKijl pj <0,
€T Y I N
1<j<n 1<j<n = -
>0

which proves the first part. For the second claim, we may assume that i ¢ J (n), since otherwise
the other case applies. Then we get

all K;;>0

upper; = K;;p; + Z Kijpi = Kiipi-
j¢J (n)

1<j<n
J#i

Similar to the previous case, we finally get

upper; > Kiip; 2 pi,
what proves our second claim.

Summing up, for any arbitrary dimension i = 1,...,n our overapproximation algorithm gener-
ates a superset including our tile fully, hence our algorithm is indeed correct. O

And now we prove the main advantage, namely that this algorithm will always terminate.

Theorem 3.4. Then the Extreme Value Algorithm in Algorithm 2 on page 29 using the overapprox-
imation shown in Algorithm 4 on page 34 always terminates.

Proof. 1t is easy to see in Algorithm 4 on page 34 that it terminates always. This overapproxim-
ation yields constraints for each variable 0;,i = 1,...,n only dependent on tile size paramters.
Therefore, if we eliminate such a variable in Algorithm 2 on page 29, no other point loop variables
are generated. Therefore, after at most n steps the latter algorithm terminates too. O

36

3.8. Overapproximation for Tiled Systems

3.8.5. Example

Similar to above, let us examine how our refined overapproximation algorithm applies to the
same example given in Equation (3.2). In this example, our shape defining matrix has the form

As stated, we compute the vector

K' =

w+h-2
h—-1 |’

Following our algorithm, we get the overapproximation system

0<o;<w+h-2

0<0,<h-1

IA

After substituting every occurence of a point loop variable o; by its maximum (or minimum,
respectively) similar to the example in Equation (3.2), we get the resulting set of additional con-
straints:

2—w-—nh
1-h

wiy + htz
hty

IA A
IAIA

In this triangular case, we obtain the same results as with our specialized overapproximation.

Having this overapproximation algorithms, we can effectively substitute a set of new constraints
only using tile loop iterators and parameters. Hence, many sample points can be discarded and
thus the lifting tree can be pruned early, increasing the performance of our code generation.

This would be also possible with an application of the Fourier-Motzkin algorithm. However,
Fourier-Motzkin generates a possibly huge amount of new constraints, with most of them being
consequences of others. If | denotes the amount of constraints containing tile loop iterators ¢;,
our algorithms do produce exactly I new constraints with none of them being redundant 3.

The benefit of our method comes clear on a concrete example. For a three-dimensional paramet-
ric parallelepiped tiled system having 6 constraints which include tile loop variables, Fourier-
Motzkin generated over 160 constraints, while our algorithms resulted in 6 constraints.

3.8.6. Algorithmic complexity

As already stated, our algorithms bring a big advantage over the common Fourier-Motzkin method.
Now we want to briefly state what the computational complexity of our algorithms are.

For this, let m denote the number of constraints generated by computing a Cylindrical Algeb-
raic Decomposition for the much smaller, untiled system and selecting the projections for each
variable. Further, let n be the dimensionality of K.

Then we distinguish between our two overapproximation methods.

5If some would be redundant, they would have been already redundant before applying our algorithm.

37

3. Implementation and Optimizations

Case 1: Overapproximation method 1 is used.

The computation of the overapproximation of a single tile based on parameters is done efficiently
in O(n(n+1)/2). The elimination algorithm in 2 on page 29 itself performs at most n variable elim-
inations for m constraints. Overall, the worst-case computational complexity of this algorithm
combination is O(@ + mn).

Case 2: Overapproximation method 2 is used.

The computation of the overapproximation of a single tile now takes O(2n® + n?) operations
(including all matrix-vector multiplications and the SEPARATELIMITS case). As above, the elimination
algorithm itself takes O (mn) operations. So, overall this method requires O(3n? + mn) operations
in the worst-case.

Regardless of the method used, their respective computational complexities are much lower
then the doubly exponential complexity of the Fourier-Motzkin method. Since our experiments
showed that both algorithms can be computed quite efficiently in practice, we implemented the
more general approach using method 2.

3.9. Eliminating Section Code Generation

As we learned in previous sections, function calls are expensive and we try to avoid them as
often as possible. In the general case not much optimization is possible except for the lifting tree
pruning techniques we described in Section 3.5.

3.9.1. Eliminating Intermediate Section Code Generation

However, we can improve this further for special cases which occur often in practice. One such
common case is depicted in Figure 3.2. As this case shows, we have two neighboured sectors
delimited by a section. In the general case, one needs to invoke the recursive computation for
this section too. But, if we are in the situtation as depicted in the picture and certain properties
hold, we can simply include the section in the boundaries of one of the sectors, thus eliminating
the need for recursively generating code for that section.

P1

P2 P4

(Xi-1.%)) Xj (XjXj4+1)

Figure 3.2.: Concept where code generation for x; can be omitted

Many different approaches might work for describing this simplification, we choose for the fol-
lowing one. Informally, if multiple index sets are present, we cannot ensure a general criterion
for this simplification. If we have exactly one index set, it is very hard to argue over this if the

38

3.9. Eliminating Section Code Generation

index set has "holes" in it. But, if this one index set does not have holes and the functions de-
scribing the set (evaluated at the section point) are equal, then we know that we can safely just
include the section into the boundaries.

First, let us recall what a simply connected set is.

Definition 3.2. Let S C R" be any non-empty set.
S is called simply connected if there do not exist open sets U,V C R" such that

e ScUUYV, and
* SNU and SNV are disjoint and non-empty.

Using this we are now able to formalize our idea from above.

Theorem 3.5. Let x; € A be any section of the only iteration domain I such that both sec-
tors (xj—1,x;) and (x;, x;j+1) include points which satisfy the constraints passed to the CAD, and
let M(x,y) denote the set of projected polynomials not vanishing over a sector (x,y). Further, let
pi,i =1,...,4 be polynomials such that

p1 = argmax p(x;), p,= argmin p(x;), p3= argmax p(x;), ps= argmin p(x;)
PEM(xi-1,%;) PEM(x;-1,%;) PEM(xi,%i11) PEM(x;,%it1)

Then the code for the section x; can be generated by including x; into the boundary of either sur-
rounding sector if

1. the iteration domain I is simply connected according to Definition 3.2, and
2. p1,ps exist and p1(x;) = p3(x;), and
3. P2, Pa exist and pa(x;) = pa(x;).

Proof. Let x; € A denote any such section and let the constraints 1, 2, 3 hold.

Because the iteration domain is simply connected, we know that it cannot have holes in it, there-
fore if the sectors (x;_1,x;) and (x;, x;+1) participate in the decomposition, code has to be gener-
ated for the section x; too.

Furthermore, if py, p3 exist and if p; (x;) = ps(x;), then we know that all points (x;, y;) over that
section with y; < p;(x;) are part of the decomposition. That is, because the polynomials p;, ps
define an upper bound for both sectors and if they meet in the section, there cannot be points
which belong exclusively to one sector but not to the other one.

Similarly, if p,, ps exist and if py(x;) = ps(x;) holds, all (x;,y;) with y; > pa(x;) participate in the
decomposition.

In conclusion, under the given conditions all iteration points (x;, p2(x;)) < (xi,y;) < (x5, p1(x3))
must be executed, which are exactly all iteration points possible over section x; under our as-
sumptions. Then it suffices to include the section x; into the boundary of either sector to do
sO. O

Theorem 3.5 requires a simply connected set. This is a strong requirement, which cannot be in-
ferred from the set of input polynomials. We therefore require the user to specify if this property
holds. Even if this information is given, we have to evaluate polynomials at the section point,
what increases the computation time. Therefore, we search for criteria which also imply that no
check at the section is required.

One criterion we found is the convexity of index sets. The following lemma proves that convex
sets fulfill the above criterion.

39

3. Implementation and Optimizations

Figure 3.3.: Sketch for the proof of Lemma 3.2

Lemma 3.2. Let I be a convex iteration domain.

Then I supports the simplification described in Theorem 3.5 on the preceding page.

Proof. Suppose any section x; € A like in the previous theorem and let py, ps (or p,, ps4 respect-
ively) be the upper bounds (if existing) of the surrounding sectors. We show that p;(x;) = ps(x;)
in this case.

We assume for contradiction that p;(x;) # ps(x;) and w.l.o.g. we assume that p3(x;) > p1(x;).
Further, define x; = x; — ¢ for a small enough ¢ > 0. In this small environment we may as-
sume that p; is monotone. Figure 3.3 illustrates this. Additionally, define O = (O.x,0.y) =
(ax; + (1 — a)x;, api(x;) + (1 — a)ps (x;))T to be the convex combination between the two de-
picted points with a € (0, 1).

Now we distinguish between two cases.

Case 1: p; is monotone rising in [x; — ¢, x;].

Since p3(x;) > p1(x;) we are able to find a value for « close enough to 1 such that 0.y > p;(0.x)
i.e. O ¢ 7, what contradicts the convexity property.

Case 2: p; is monotone falling in [x; — &, x;].

In this case, we know that O.y > pi(x; — €) > p1(0.x) for all a, hence O ¢ 7, what contradicts
the convexity property.

So in all cases we have O ¢ 7, but this contradicts the convexity of the index set. Hence our
assumption was false and p;(x;) = p3(x;) holds.

A very similar argument can be made to show p,(x;) = ps(x;) if these polynomials exist, and since
it is a well-known fact that every convex set is simply connected all preconditions of Theorem 3.5
on the preceding page are fulfilled. O

However, as it turns out this cannot be inferred from the set of input polynomials either.

To cope with this problem, we focussed on the problem of polyhedral constraints, as they occur
very often. Lemma B.1 on page 57 in Appendix B proves that in fact all polyhedra are convex sets.
And since each polyhedron is described by a set of affine-linear polynomials, we now gained an
inferrable criterion when our optimization holds.

Note that in general the set inclusion hierarchy

polyhedral ¢ convex C simply connected

holds.

40

3.10. Affine Projection

3.9.2. Elimination of bounding sections code generation

Similarly to above, we can define a criterion for when code has to be generated explicitly for the
first and last sections in a certain dimension i.e. for the sections x;, x,, such that their predecessor
(successor) is the sector (—oo, x1) (or (x,, +00) respectively).

As such, if we have a simply connected set and if all constraints use only > or <, we can include
the sections into the upper (or lower, respectively) boundary of the generated code without re-
cursively generating it for these sections.

3.9.3. Implementation

In our implementation, we decided to follow the described principles as follows.

« Our simplification is guaranteed to work only if exactly one index set is in play.

+ The user has to specify whether the index set can be assumed to be simply connected.
Furthermore, the user can specify whether the set can be assumed to be convex. If the
input is polyhedral, we can infer both properties due to the above hierarchy.

« If we either inferred that the input set is convex or if the user specified it, we can immedi-
ately add the section to the boundary of one of the surrounding sectors.

« If the input set is not convex but simply connected as specified by the user, we check
the requirements of Theorem 3.5 on page 39. If these requirements are fulfilled, we add the
section to the sector code without computation, otherwise we have to invoke the recursive
procedure for the section.

« If the respective section is either the first or last one in the current dimension, we check if
they can be added without computation as described in Section 3.9.2.

Further research should be done in order to derive more general inferrable criteria describing
when this optimization can be applied.

3.10. Affine Projection

As mentioned in Section 3.3.2, the choice of the projection operator has a big influence on the
overall code generation performance. We also stated that we choose the projection strategy of
Brown as it promises the best performance in the average case.

But as we will show, we can improve this projection further for the special case of linear-affine
polynomials.

Before we do that, we have to introduce some terminology.

"+...4+ a9 €Q[xy,...,xr] be a polynomial with a,, # 0. Then

Definition 3.3. Let f = anXy

ldef(f) = an
is the leading coeflicient of f.

For convenience, let us define an expression for the irreducible factor of a polynomial.

Definition 3.4. Let f = apx!+...+a1xx +ao € Q[x1, . .., x¢] be a polynomial with main variable
Xi. Then we define coeffs(f) to be the greatest common divisor of all its coefficients, i.e.

coeffs (f) = ged(ay, . . ., an).

41

3. Implementation and Optimizations

Further, we need to define the discriminant and the resultants in the context of polynomials

which were originally defined in [] although not explicitly mentioned. Collins re-introduced
the concept of resultants and the Sylvester matrix in []

Definition 3.5. Let f = alx,l< + ...+ aixg +ap € Qxy,...,xx] be a polynomial and let g =
bmxl':‘ + ...+ bixy + by € Q[xy,...,xx] be another polynomial.

The Sylvester matrix [1S(f,g) of f and g is a (I + m) X (I + m) matrix defined by

fa; aj-1 ... a
aj a—, ... qa
a aj_ e a
SED =1y b b(l) o ’
bm bme1 ... b
b bme1 ... bo

The resultant res(f,g) of f and g is given through the determinant det S(f,g) [.

Definition 3.6. Let f = aan + ...+ aixg +ap € Q[xy,...,xx] be apolynomial of degree n. The
discriminant discr(f) of f is given through []

discr (f) = (—1)”<”_1)/2afl"_2 n(ri - rj)z,

i<j
wherery, ...,r, are the roots of f.

Finally, we can state Browns projection operator and an optimization for the affine case.

In his paper, Brown defined his projection strategy of a set of polynomials A to be the union of
the set of all leading coefficients, the set of all discriminants of polynomials f and the set of all
resultants of pairs f, g of distinct elements of A []

In mathematical notation, this can be rewritten as follows.
Definition 3.7. Let A be a squarefree basis in Q[xy, ..., x;], k > 2.
The projection operator projB of Brown is defined by

projB(A) = projB, (A) U projB,(A)
projB, () = | Jtdiser(f)} U {ldef ()} U {coeffs(f))

feA

projB,(A) = |] tres(f.9))

f,geA
f+9

A common case which occurs often in practice is that the polynomials are affine w.r.t. the cur-
rently processed variable xj. In this case, we can minimize the number of projected polynomials
further to our affine projection operator.

Definition 3.8. Let A be a set of affine-linear polynomials in Q[xy, . . ., xx], k = 2. Define

projAfflA) = projAff;(A) U projB,(A)
projAffy(4) = | J{ldef (£)} U {coeffs(f))

feA

42

3.10. Affine Projection

Naturally, we have to show that this projection operator performs correctly i.e. that it is delin-
eating. We do so by showing the equivalence to Browns operator.

Lemma 3.3. Let A be a set of polynomials in Q[x1, . . ., xx] which are affine w.r.t. the variable xj..
Then projAff(A) produces the same set of polynomials as projB(A).

Proof. The only difference between these two operators is that the set of discriminants was omit-
ted in our own projection. Therefore we show that these discriminants are not relevant for pro-
jection.

Let f = axx + f € Q[xy, . .., xx] be an affine-linear polynomial. Since this polynomial is affine-
linear w.r.t. xi, it has at most one root. But then the discriminant does not exist (since it would
require two distinct roots) and it is commonly defined to be 1, which is constant and therefore
not relevant for projection. O

As we just showed, our projection is equivalent to Browns for the special case of affine polyno-
mials. Because of this, the set of projected polynomials is identical to the set projected by Browns
operator, as the latter computes the discriminant but discards it afterwards.

Since we do not compute the discriminant, we reduce the computational effort and hence we
expect a little improvement of the overall code generation time. This is confirmed by our exper-
iments in Chapter 4.

43

Chapter 4

Experiments

After describing all needed prerequisites and our implementation including the applied optimiz-
ations, this chapter presents the performance evaluation of this implementation.

4.1. Experimental Setup

First, let us describe the setup on which we tested our system.

4.1.1. Resources

In our experiments, we used both the computers aesche and nervling with each having four cores
supporting hyperthreading, making eight virtual cores in total. They use an Intel® Core " i7—-4790
CPU clocked at 3.6 GHz.

On the software side, we used the freely available Computer Arithmetic Library ' at revision
e1c17fa5f5713c4ff0223fbc5024655d91ac8cbe, which is a prerequisite of the Satisfiability-Modulo-
Theories Real Algebra Toolbox > (SMT-RAT) at revision 6af593b0d51ae2849774617432baed8c31364eae.
Additionally, the SMT-RAT library requires the GNU Multiple Precision Arithmetic Library, for
which we use version 10.3.0.

To build these libraries and our own implementation, we choose gcc as compiler and we used

gce 5.4.0. For each of the above libraries, we specified to use a thread-safe build and a release
build. Our application itself can be built by invoking

g+t+ -Wall -std=c++14 -03 -I<paths/to/includes> -L<paths/to/libraries> \
smtrat_tests.cc \
-ltcmalloc -lcarl -lsmtrat -lgmpxx -lgmp -lpthread

4.1.2. Test cases

For our experiments, we distinguish between the nine test cases rect-rect, rect-par, rect-invpar,
tri-rect, tri-invpar, nonconvex, nonconvexz, sphere and steinmetz, for each of which we measured
the execution time of the code generation phase and took the average over ten runs.

The first five test cases are rectangular/triangular index sets with different parametric tilings
applied. Each tiling consists of two parameters for a tiles width and height. Table 4.1 on the next
page summarizes this.

For each of these test cases, we compute the parametric tiling on our own, where we use the tile

shape defining matrices
1 0 1 1 1 -1
SN A

for rectangular (K;), paralleogram (K3) and inverse parallelogram (K3) tilings.

'https://github.com/smtrat/carl
2https://github.com/smtrat/smtrat

45

https://github.com/smtrat/carl
https://github.com/smtrat/smtrat

4. Experiments

Index set | Description Tiling Abbreviation
rectangular rect-rect

rectangular | {(x,y) € Z* |1 <x < 12A 1<y < 6} | parallelogram rect-par
inverse parallelogram | rect-invpar

triangular | {(x,y) € Z |0 < x A0 <y <p—x) .rectangular tr%—.rect
inverse parallelogram | tri-invpar

Table 4.1.: Test cases involving tiling

It is easy to see that the test cases are increasing in complexity, especially with the triangular
case involving an additional parameter in the index set description. Considering the doubly-
exponential nature of the Cylindrical Algebraic Decomposition, we expect a significant difference
in execution times.

The remaining test cases include non-polyhedral constraints. The first test case (nonconvex) uses
a non-convex index set described by

D; = {(x,y) € Z* | 10 < x < 70A10 < y < 90A(y—40)*~30x+1200 > 0A(x—70)*+(y—80)*~100 > 0}.

Quite similar, the test case nonconvexz is described via the index set

Dy={(x,y) €Z* | 1<x<TA1<y<9IA(y—4)>*—-3x+12> 0}

Finally, the test cases sphere and steinmetz describe the three-dimensional sphere of radius 2 and
the Steinmetz solid, respectively, and are defined by

Ds = {(x,y,2) € Z* | x* + y* + 2% < 4},

Dy={(x,y,2) €2 | X* +y* <@ ANy +Z* <a* Ax* +2* < d®), acZ,

where a is a parameter.

4.2. Improvements over the basic implementation

In this part, we compare the basic implemented code generation procedure successively to the
implementation with optimizations activated.

In our basic implementation we noticed that execution times varied from milliseconds (test case
nonconvex) to nearly three hours (test case tri-invpar).

In order to improve the code generation speed, we applied our optimizations described in Chapter 3
one after another to our procedure. Table 4.2 on the facing page shows the execution times of
our polyhedral test cases at all optimizations. The optimizations are applied incrementally and
stay activated for all later tests. The only exception is the parallelized version, which uses all
previous optimizations, but the version including the Simplification optimization is not executed
in parallel. For each of these tests we used Brown’s projection operator.

Similarly, Table 4.3 on the next page shows the same order of optimizations activated for our
non-polyhedral test cases. Execution times are now given in milliseconds.

46

4.2. Improvements over the basic implementation

For brevity, the optimized memory allocation will be referred as Memory, Loop indicates that
our loop fusion technique is activated, Early denotes the usage of our tree pruning techniques,
Overapp. denotes our tiling specific overapproximation, and Simpl. indicates that our section
code elimination simplification was used if possible.

Test Original Memory Early Loop Overapp. Simpl. Parallel
rect-rect 9.64 7.61 1.44 1.45 1.39 0.05 1.97
rect-par 1,092 869 67 69 55 2 59
rect-invpar 3,122 2,383 161 164 168 6 177
tri-rect 3,703 2,914 365 377 144 9 180
tri-invpar 10, 757 8,644 1,024 1,027 679 45 814

Table 4.2.: Execution times including optimizations (seconds, polyhedral tests)

Test Original Memory Early Loop Overapp. Simpl. Parallel
nonconvex 18.0 14.1 10.6 10.0 10.2 5.7 10.4
nonconvexz 116.6 102.4 93.0 93.8 98.6 22.3 93.8
sphere 9.7 6.7 7.0 7.6 7.6 3.5 7.8
steinmetz 462.8 382.9 261.8 260.9 263.0 80.5 280.3

Table 4.3.: Execution times including optimizations (milliseconds, non-polyhedral tests)

Figure 4.1 depicts the total speedup of our optimizations compared to our original basic imple-
mentation as derived from Table 4.2 for the polyhedral test cases. As described, the execution
times (and therefore the speedups) were measured incrementally, i.e. preceeding optimizations
stay activated for later measurements. As an example, the optimization called Early Return was
active for the last three measurements.

E I B rect-rect _ E

- (ln rect-par]

" |IWrect-invpar M i

102 | |BBtri-rect -

o - |UBtri-invpar i

=} I 1

.s) - 1]
() 7]

<5 = 7] N
) /]

i | | | | ;: | | I

100 - Oom . g 4 3_ LJ k4 _ -

. T T T T T -

Memory Early Loop Over- Simplification

Allocation Return Fusion approximation

Figure 4.1.: Total speedup over basic implementation (polyhedral tests)

As one can see, our optimizations are beneficial especially for higher-dimensional systems cre-
ated by tiling the index space.

The first big speedup is reached with the optimizations of pruning the lifting tree and by using
additional constraints computed for tiled systems with our overapproximation.

47

4. Experiments

The graph shows that the loop fusion did not increase performance very much as expected. How-
ever, it greatly reduces memory consumption by a factor of about 300 bytes for every loop fused
into another one, which is essential for dealing with more complex code generation problems.
In the more complicated test cases we notice, that our overapproximation (which yields addi-
tional constraints on tiled system), our application gets about 2.6 times as fast as without it 3.
Clearly, the most beneficial optimization is the simplification by eliminating section code gener-
ation as described in Section 3.9, which yields total speedups of up to 500 times faster than the
original implementation. However, even though this optimization is applicable for many cases
in practice, it is not for all.

Sadly, parallelism did not bring any benefit in our application due to the excessive use of pooling
datastructures in the library SMT-RAT. In fact, the performance decreases a little bit because of
synchronization overhead. We hope that future work will compensate this disadvantage.

Performing the same experiments for our non-polyhedral test cases, we obtain the graph shown
in Figure 4.2

6 [|
BB sphere o
l# nonconvex
5| |IWnonconvex?2 .
b8 steinmetz
=" 4 |
=
.S
D
2,
5 3] .
2 [|
1 ([T Hll i +
Memory Early Loop Over- Simplification
Allocation Return Fusion approximation

Figure 4.2.: Total speedup over basic implementation (non-polyhedral tests)

Clearly, memory allocation does not yield a big improvement as there is little memory to transfer
here due to the small workload induced by the test cases.

We see further that the lifting tree pruning optimization improves our non-polyhedral cases even
further, and we expect this optimization to become more important in bigger test cases like the
high-dimensional systems shown earlier.

As expected, the loop fusion has no impact on the execution times, but again this will become
more important for bigger systems.

Further, the overapproximation did contribute nothing to the performance. But this is also clear,
as the overapproximation can be used for tiled systems only, and we did not tile our index sets
here.

Finally, just like in the polyhedral case, the function call elimination optimization did bring some
improvement, although not as big as before, for the simple reason that there are fewer function
calls to eliminate.

3Note that Figure 4.1 on the preceding page uses a logarithmic scale.

48

4.2. Improvements over the basic implementation

Similar to the shown tests, we did the same experiments as above but using our own affine pro-
jection operator as described in Section 3.10 where applicable. The results are shown in Table 4.4.

Test Original Memory Early Loop Overapp. Simpl. Parallel
rect-rect 9.84 7.66 1.46 1.48 1.38 0.06 1.93
rect-par 1,082 858 67 68 55 2 60
rect-invpar 3,033 2,432 162 167 169 6 176
tri-rect 1,492 1,214 123 126 36 2 44
tri-invpar 2,403 1,808 197 196 117 9 138

Table 4.4.: Execution times using our affine projection

When comparing the above results to our previous ones using Brown’s projection operator, we
see that the improvements compared optimization-by-optimization are roughly the same over all
optimizations. This indeed indicates that although our projection is equivalent to Brown’s, the
computation of the (in this case) obsolete discriminant takes a long time which can be omitted
safely. As Table 4.4 clearly shows, this optimization improves the code generation speed espe-
cially in the triangular test cases, where e.g. for the test case tri-invpar the runtime drops by a
factor of 5 from 45 to 9 seconds.

Fortunately, these improvements become more evident for more complex test cases like the tiled
triangular index space. This hints that our affine projection operator performs better in the
special case of parametric parallelepiped tiling than Brown’s projection operator.

Independence of Optimizations

Additionally, we also tested our optimizations for both projection strategies individually activ-
ated. The goal of this experiment was to determine whether our optimizations are independent
of each other, for which we compared the overall speedup of each test case according to the above
tables with the product of the individual speedups of the individual optimizations.

It should be noted that our Overapp. optimization only generates more constraints to check by the
optimization Early but does not perform the checks itself. Therefore, the activation of Overapp.
implies the optimization Early.

Table 4.5 on the next page shows the execution times of our test cases with each column being
the only active optimization during the respective run. The execution times for tests marked
with * are given in milliseconds, while the other times are given in seconds.

Now we compare the speedups. For example, for the testcase tri-invpar using our affine pro-
jection strategy, the overall speedup, i.e. the speedup of all optimizations excluding parallelism
compared to the original execution time is about 259, while the product of the speedups according
to Table 4.5 on the following page for this test case is 304.

The deviation between these two values is clearly the dependence of the optimization Overapp.
on Early as we described above.

But besides this, our optimizations seem to perform nearly independently.

49

4. Experiments

Projection | Test Original Memory Early Overapp. Simpl.
rect-rect 9.64 7.61 1.44 1.39 13.02
rect-par 1,092 869 67 56 1,356
rect-invpar 3,122 2,383 161 169 3,371
tri-rect 3,703 2,914 365 146 4,962
Brown tri-invpar 10,757 8,644 1,024 683 11,347
nonconvex” 18 14 10 11 10
nonconvex2* 116 102 93 45 94
sphere* 9 6 7 2 8
steinmetz* 462 382 261 244 262
rect-rect 9.84 7.66 1.46 1.36 12.9
rect-par 1,082 858 67 55 1,319
Affine rect-invpar 3,033 2,432 162 169 3,422
tri-rect 1,492 1,214 123 36 2,317
tri-invpar 2,403 1,808 197 118 2,593

Table 4.5.: Execution times with only one optimization active at a time

4.3. Evaluation against a Haskell prototype

In this section, we evaluate the performance of our code generation procedure compared to an
existing Haskell prototype.

For this, we implemented our test cases in the existing Haskell prototype, but we noticed that
only four out of our nine test cases yielded results. The execution times of the Haskell prototype
as well as our already shown times are presented in Table 4.6.

sphere nonconvex nonconvexz rect-rect
C++ 0.397 [ms] 0.633 [ms] 2.391 [ms] 0.057 [s]
Haskell 72 [ms] 107 [ms] 348 [ms] 159.350 [s]
Speedup 181X 169X 146X 2,795X

Table 4.6.: Comparison of execution times of the Haskell prototype to our implementation

For all other test cases, the prototype either ran out of memory or we aborted the computation
after several hours.

This behaviour hints that our solution is expected to scale better with higher-dimensional sys-
tems than the existing implementation. This is especially true for polyhedral cases, as the existing
implementation only yielded a result for our simplest test case, while our approach barely needed
any additional memory and produced a correct result in a few seconds.

Overall, we can see that our implementation is superior to the existing prototypical implement-
ation in every case we tested.

50

4-4. Final Program Analysis

4.4. Final Program Analysis

After we finished all our experiments, we did a final program analysis using the common per-
formance profiling tool perf. The results are presented in this section.

Figure 4.3 shows the (truncated) results of a profiling run with perf on test case rect-invpar.

15.41% smtrat cadtest 1libtcmalloc _minimal.so.4.2.6 [.] operator delete[]
13.81% smtrat cadtest 1libtcmalloc _minimal.so.4.2.6 [.] tc_malloc

6.75% smtrat_cadtest libtcmalloc minimal.so0.4.2.6 [.] tc_realloc

4.80% smtrat_cadtest 1libgmp.so0.10.3.0 [.1] _gmpz _mul

3.90% smtrat_cadtest 1libgmp.so0.10.3.0 [.] _gmpz init set

3.29% smtrat_cadtest 1libgmp.so0.10.3.0 [.] _gmpn_ gcd 1

3.18% smtrat cadtest 1ibgmp.s0.10.3.0 [.] _gmpn copyi

2.48% smtrat cadtest 1ibgmp.s0.10.3.0 [.] _ gmpz divexact gcd
2.21% smtrat cadtest 1ibgmp.s0.10.3.0 [.] gmpz gcd

1.86% smtrat cadtest 1libgmp.so0.10.3.0 [.] gmpz set

1.63% smtrat cadtest 1libgmp.so0.10.3.0 [.] _gmpq clear

1.60% smtrat cadtest libtcmalloc minimal.so.4.2.6 [.] operator new[]

1.53% smtrat cadtest 1libsmtrat.so.2.1.0 [.] carl::Term<_ gmp expr<_
1.53% smtrat cadtest 1libgmp.so0.10.3.0 [.] _gmp default_allocate
1.33% smtrat cadtest 1libgmp.so0.10.3.0 [.] _gmpqg div

1.16% smtrat cadtest 1libgmp.so0.10.3.0 [.] _gmpz add

1.15% smtrat cadtest 1libgmp.so0.10.3.0 [.1] _ gmpg mul

1.15% smtrat cadtest 1libtcmalloc minimal.so.4.2.6 [.] tcmalloc::CentralFreelLi
1.14% smtrat _cadtest 1ibgmp.s0.10.3.0 [.] gmpn mul 1

1.02% smtrat cadtest 1libgmp.so0.10.3.0 [.] _gmpz realloc

0.79% smtrat _cadtest 1libgmp.so0.10.3.0 [.] _gmpqg init

0.76% smtrat_cadtest 1libgmp.so0.10.3.0 [.] free@plt

0.76% smtrat_cadtest 1libtcmalloc _minimal.so.4.2.6 [.] tc free

0.72% smtrat_cadtest 1libsmtrat.so.2.1.0 [.] carl::pow<__gmp _expr<__
0.70% smtrat_cadtest libsmtrat.so.2.1.0 [.] std::vector<carl::Term<
0.66% smtrat_cadtest 1ibgmp.so0.10.3.0 [.] _ gmp default reallocat
0.64% smtrat_cadtest libsmtrat.so.2.1.0 [.] carl::Term<__gmp_expr<_
0.54% smtrat cadtest libsmtrat.so.2.1.0 [.] carl::Constraint<carl::
0.53% smtrat cadtest smtrat cadtest [.] carl::TermAdditionManag

Figure 4.3.: Perf performance analysis

We clearly see that the majority of the overall execution time is spent in the memory allocation
part, and another bigger share in the internal functions of the GNU MP library.

Closer inspection of these parts showed that the GNU MP functions actually invoke the alloc-
ations done by tcmalloc and that most of these GNU MP functions themselves are invoked by
polynomial arithmetic functions in the libraries SMT-RAT and CArL.

For this test case we evaluated that there are over 165 million allocations, while we are only
responsible for 0.2% of these allocations.

The computationally most expensive part our own code causes is shown in the very last line of
Figure 4.3, which itself is a call to the term addition manager defined in the library CArL and is
used to retrieve the terms of a polynomial.

Summing these facts up we see that our own code only participates little to the overall hot spots.
The biggest influence of our program on the overall performance not directly shown here is the
cascading recursive structure.

Additionally, we also did an analysis using the tool perf stat which emits common performance
measuring metrics. Again, we did the analysis for the test case rect-invpar and executed the tests
five times to get stable results.

51

4. Experiments

An excerpt of the results is shown in Listing 4.1.

*> perf stat -d -d -r 5 ./smtrat_cadtest > test.c
Performance counter stats for ’./smtrat_cadtest’ (5 runs):

56.988.
10.784.

51

18.906.
87.
12.

66.
18.903.

13.

029.
903.
.194.
467.
968.
207.
614.
150.
426.
.562.
440.
885.

082
756
358
399
589
755
000
675
010
670
865
187

instructions
branches
branch-misses
L1-dcache-loads

L1-dcache-load-misses

LLC-1loads
LLC-load-misses

L1-icache-load-misses

dTLB-loads
dTLB-load-misses
iTLB-1loads
iTLB-load-misses

1205,756 M/sec
0,01% of all dTLB cache hits
0,857 M/sec

%

2,44 insns per cycle

687,916 M/sec

0,47% of all branches

1205,950 M/sec

0,47% of all L1-dcache hits
0,779 M/sec

10,06% of all LL-cache hits
4,219 M/sec

#

#

#

#

of all iTLB cache hits

S

Listing 4.1: Analysis using perf

We clearly see that we achieve a good performance indicated by a very small number of branch
and cache misses relatively to the total amount of accesses. Naturally, these metrics and espe-
cially the cache misses highly depend on the used test case and other factors active during the
program execution.

All in all, we can assume that our implementation only contributes little to the remaining hot
spots and performs well even when dealing with high-dimensional inputs.

52

Chapter 5

Conclusion and Further Work

5.1. Conclusion

In the first chapter of this thesis, we provided a general introduction to the problem of code
generation for index sets described using constraints allowing arbitrary polynomials. In that
chapter we especially focussed on the description of the Cylindrical Algebraic Decomposition,
which is our chosen method for solving the problem of code generation.

We further discussed our implementation in the programming language C++ including several
optimizations. Considering our optimizations, we can basically distinguish between two cases,
namely optimizations which can be applied to every input problem, and improvements which are
tuned towards special cases which occur often in practice. While the first case covers techniques
like early aborting code generation if it can be proven that the iteration domain constraints
are not satisfiable with the partial information, the special case optimizations include the fully
automated computation of additional constraints that must be fulfilled and the elimination of
recursive function calls.

Finally, we measured the execution times of our code generation procedure and evaluated how
much we improved by including our optimizations. As the results show, our own implement-
ation needed several hours in its basic form, but the stated enhancements improved it greatly
with overall speedups of up to 500% can be observed when all optimizations are activated, where
the most influental optimization was without a doubt the elimination of section code genera-
tion calls which effectively omit every second recursive function call. We further compared our
implementation to an already existing prototypical implementation in Haskell and showed that
our approach outperformed it in each of our tested cases.

Summing up, we implemented a more general code generation procedure in C++ and enhanced
its performance greatly. We also showed in our thesis that there are several points which can
and should be improved in future work.

53

5. Conclusion and Further Work

5.2. Future Work

As mentioned, there exist points in our implementation which should be improved further. We
showed that the major performance bottleneck of our application is the memory management,
therefore one should investigate this. Additionally, it might be beneficial to eliminate the recurs-
ive structure (e.g. by using trampoline functions) if possible.

Besides that, we do not expect many potential for improvement considering low-level optimiza-
tions. However, there is still room for algorithmic improvements.

Our first suggestion here is that one should investigate more general and ideally inferrable cri-
teria when our function call elimination optimization can be applied.

Our experiments further showed that, although the algorithm can be parallelized conceptually,
it did not bring any benefit due to library problems. Hence, the thread-safe build of the library
SMT-RAT should be fixed. From this, we expect quite some improvement.

Finally, we want to leave a note about the idea of leaving the classical Cylindrical Algebraic
Decomposition behind and move on to more advanced techniques. For this, we suggest fu-
ture investigation of methods such as Truth Table-invariant Cylindrical Algebraic Decomposi-
tion [], CAD computations using triangulations or the use of Grobner bases if equational
constraints occur often.

54

Appendices

55

A. Inverse matrices of triagonal matrices

A. Inverse matrices of triagonal matrices

Lemma A.1. Let K € {Q,R} and let M € K™" be an invertible, upper triangular matrix.

Then M~! is triangular again.

Proof. We proof this by induction over n € N.
Induction base (n = 1): Trivial.

Inductive step (mn — n+1):
Let M € K(*DX(n+1) have the shape

welr 7]

0, M

where 0 # m € K is the first element, 0,,, z7 € K" are vectors and M’ € K™" is the lower right
block matrix. Now let

1 _iZT(M/)—l
—|m m (n+1)x(n+1)
N [On (M) ek .

By our induction hypothesis, (M’)~! is an upper triangular matrix. Then MN = I, ie. N = M~}
and N is clearly an upper triangular matrix again.]

B. Convex Polyhedra

Definition B.1 (Convex Set). Letn € N and S C R" be a set.
S is called convex if for all points x,y € S and for all « € [0, 1] the point ax + (1 — a)y € P.

Lemma B.1. Let P = {x € R"|Mx > q} be a polyhedron according to Definiton 2.4 on page 3. Then
P is a convex set according to Definition B.1.

Proof. Let P be a polyhedron as given. Let x, y € P be any arbitrary two points in that polyhedron
and let « € [0, 1] be arbitrary.

W.lo.g. we can assume that x # y, otherwise the claim holds trivially.

Let z = ax + (1 — @)y be the convex combination of the points x and y.
Then it holds that

Mz=M(ax+(1-a)y) =a Mx +(1-a) My >aq+(1—-a)g=q
>q >q

hence z € P. a

57

Bibliography

[Alg1]

[BDE*14]

[Broo1]

[Broo4]

[Col67]

[Col7s]

[GKZo9]

[Grig6]

[Groog]

[HEW*15]

[Hongo]

[Leng3]

[McC85]

ANcourT, Corinne ; IRIGOIN, Frangois: Scanning Polyhedra with DO Loops. In:
SIGPLAN Not. 26 (1991), April, Nr. 7, 39—50. http://dx.doi.org/10.1145/109626.
109631. — DOI 10.1145/109626.109631. — ISSN 0362-1340

BRADFORD, Russell J. ; DAVENPORT, James H. ; ENGLAND, Matthew ; McCALLUM, Scott
; WiLsoN, David J.: Truth Table Invariant Cylindrical Algebraic Decomposition. In:
CoRR abs/1401.0645 (2014). http://arxiv.org/abs/1401.0645

BrowN, Christopher W.: Improved Projection for Cylindrical Algebraic De-
composition. In: Journal of Symbolic Computation 32 (2001), Nr. 5, 447 -
465. http://dx.doi.org/https://doi.org/10.1006/jsco.2001.0463. — DOI ht-
tps://doi.org/10.1006/jsc0.2001.0463. — ISSN 0747-7171

BrowN, Christopher W.: Companion to the Tutorial Cylindrical Algebraic Decom-
position Presented at ISSAC 2004. (2004). http://www.usna.edu/Users/cs/wcbrown/
research/ISSAC@4/handout.pdf

Corrins, George E.: Subresultants and Reduced Polynomial Remainder Sequences.
In: . ACM 14 (1967), Januar, Nr. 1, S. 129. — ISSN 0004-5411

CoLLins, George E.: Quantifier elimination for real closed fields by cylindrical al-
gebraic decompostion. In: BrRaknHAGE, H. (Hrsg.): Automata Theory and Formal
Languages 2nd GI Conference Kaiserslautern, May 20-23, 1975. Berlin, Heidelberg :
Springer Berlin Heidelberg, 1975. — ISBN 978—3-540-37923-2, S. 134—-183

GELFAND, LM. ; KAPRANOV, M. ; ZELEVINSKY, A.: Discriminants, Resultants, and Mul-
tidimensional Determinants. Birkhduser Boston, 2009 (Modern Birkhauser Classics).
—405S. https://1link.springer.com/book/10.1007%2F978-0-8176-4771-1. - ISBN
978—0-8176—4771-1

GRIEBL, Martin: The Mechanical Parallelization of Loop Nests Containing while Loops,
University of Passau, Diss., 1996. http://www.uni-passau.de/~griebl/thesis.html.
— also available as technical report MIP-9701

GROSSLINGER, Armin: The Challenges of Non-linear Parameters and Variables in Auto-
matic Loop Parallelisation, University of Passau, Diss., 2009. https://opus4.kobv.
de/opus4-uni-passau/files/116/Groesslinger_Armin.pdf

HuaNG, Zongyan ; ENGLAND, Matthew ; WiLsoN, David ; DAVENPORT, James H. ;
Paurson, Lawrence C.: A comparison of three heuristics to choose the variable or-
dering for CAD. In: ACM Communications in Computer Algebra 48 (2015), Nr. 3/4, 121 -
123. http://dx.doi.org/10.1145/2733693.2733706. — DOI 10.1145/2733693.2733706.
— ISSN 1932-2240

Hong, H.: An Improvement of the Projection Operator in Cylindrical Algebraic De-
composition. In: Proceedings of the International Symposium on Symbolic and Algeb-
raic Computation. New York, NY, USA : ACM, 1990 (ISSAC ’90). — ISBN o-201-
54892-5, 261-264

In: LENGAUER, Christian: Loop parallelization in the polytope model. Berlin, Heidel-
berg : Springer Berlin Heidelberg, 1993. — ISBN 978-3-540-47968-0, 398-416
McCALLuM, Scott: An improved projection operation for cylindrical algebraic decom-
position. In: CaviNgss, Bob F. (Hrsg.): EUROCAL °85. Berlin, Heidelberg : Springer
Berlin Heidelberg, 1985. — ISBN 978-3-540-39685-7, S. 277-278

59

http://dx.doi.org/10.1145/109626.109631
http://dx.doi.org/10.1145/109626.109631
http://arxiv.org/abs/1401.0645
http://dx.doi.org/https://doi.org/10.1006/jsco.2001.0463
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://link.springer.com/book/10.1007%2F978-0-8176-4771-1
http://www.uni-passau.de/~griebl/thesis.html
https://opus4.kobv.de/opus4-uni-passau/files/116/Groesslinger_Armin.pdf
https://opus4.kobv.de/opus4-uni-passau/files/116/Groesslinger_Armin.pdf
http://dx.doi.org/10.1145/2733693.2733706

Bibliography

[ORWoo]

[Schs6]

[Stro6]

[Syl4o]

[Tar48]

[TTSYoo]

[VKA17]

[Xueoo]

60

QUuILLERE, Fabien ; RAJOPADHYE, Sanjay ; WILDE, Doran: Generation of Efficient
Nested Loops from Polyhedra. In: International Journal of Parallel Programming 28
(2000), Oct, Nr. 5, 469-498. http://dx.doi.org/10.1023/A:1007554627716. — DOI
10.1023/A:1007554627716. — ISSN 1573-7640

SCHRIJVER, Alexander: Theory of Linear and Integer Programming. New York, NY,
USA : John Wiley & Sons, Inc., 1986. — ISBN 0-471-90854-1

STRZEBONSKI, Adam W.: Cylindrical Algebraic Decomposition using valid-
ated numerics. In: Journal of Symbolic Computation 41 (2006), Nr. 9, 1021 -
1038. http://dx.doi.org/https://doi.org/10.1016/j.jsc.2006.06.004. — DOI ht-
tps://doi.org/10.1016/j.jsc.2006.06.004. — ISSN 0747-7171

SYLVESTER, James J.: XXIII. A method of determining by mere inspection the de-
rivatives from two equations of any degree. In: The London, Edinburgh, and Dub-
lin Philosophical Magazine and Journal of Science 16 (1840), Nr. 101, 132-135. http:
//dx.doi.org/10.1080/14786444008649995. — DOI 10.1080/14786444008649995

Tarski, Alfred: A Decision Method for a Elementary Algebra and Geometry. Rand Cor-
poration, 1948 (Project rand). https://books.google.at/books?id=gFptAAAAMAAT

TanNAKA, Yoshizumi ; TAura, Kenjiro ; SaTo, Mitsuhisa ; YoNEzAwWA, Akinori: Per-
formance Evaluation of OpenMP Applications with Nested Parallelism. In: Selected
Papers from the 5th International Workshop on Languages, Compilers, and Run-Time
Systems for Scalable Computers. London, UK, UK : Springer-Verlag, 2000 (LCR ’00).
- ISBN 3-540-41185-2, 100-112

VIEHMANN, Tarik ; KREMER, Gereon ; ABRAHAM, Erika: Comparing Different Pro-
jection Operators in the Cylindrical Algebraic Decomposition for SMT Solving. In:
SC?’@ISSAC, 2017

In: XUE, Jingling: Communication-Minimal Tiling. Boston, MA : Springer US, 2000.
— ISBN 978-1-4615-4337-4, 169-197

http://dx.doi.org/10.1023/A:1007554627716
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2006.06.004
http://dx.doi.org/10.1080/14786444008649995
http://dx.doi.org/10.1080/14786444008649995
https://books.google.at/books?id=gFptAAAAMAAJ

Bibliography

Statement of Authorship

I, Thomas Lang, hereby certify that this master thesis has been composed by myself and describes
my own work unless otherwise stated. All references and verbatim extracts have been quoted
and all sources of information have been specifically acknowledged. In addition, this thesis has
not been accepted in any previous application for a degree.

Passau, 21st March 2018

(Thomas Lang)

61

	Introduction
	Prerequisites
	The Code Generation Problem
	Tiling
	Cylindrical Algebraic Decomposition

	Implementation and Optimizations
	Basic Code Generation
	A code generation example
	Influence of variable orderings and projection operators
	Reducing memory consumption
	Pruning the lifting tree
	Avoiding unnecessary exact arithmetic
	Parallelization
	Overapproximation for Tiled Systems
	Eliminating Section Code Generation
	Affine Projection

	Experiments
	Experimental Setup
	Improvements over the basic implementation
	Evaluation against a Haskell prototype
	Final Program Analysis

	Conclusion and Further Work
	Conclusion
	Future Work

	Appendices
	Inverse matrices of triagonal matrices
	Convex Polyhedra
	Statement of Authorship

