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Abstract

The polyhedron model provides one possible approach to model-based program
analysis and transformation. Over the years, it has undergone many improvements in
order to handle a still growing class of programs. A recent approach enabled the use
of non-linear parameters, which was in that generality not possible before. While this
new framework uses real quantifier elimination, the present work examines possibili-
ties to describe the integral solutions to certain problems occurring in the polyhedron
model exactly. In particular, we study the solvability of systems of linear Diophan-
tine equations in one and several non-linear integral parameters and demonstrate the
applicability of the developed methods for Banerjee’s data dependence analysis.
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Chapter 1

Introduction

Data dependence analysis lies at the core of many applications in computer science
concerned with analysis and transformation of programs. Ranging from automatic
parallelizers to sophisticated debuggers, whenever we have to take a close look at
our programs and ask “which statement writes when and before or after which other
statement to this memory cell?”, data dependence analysis enters the scene.

Focusing on the construction of automatic parallel compilers, one approach which
has been the subject of intensive study ([KMW67], [Lam74]) is a model-based ap-
proach which restricts the input program to nested for-loop programs having array
access functions and bounds linear in the index variables and structural parameters.
This constitutes the so-called polytope model ([Len93]), which was later extended to
the polyhedron model ([LG95]).

When Armin Größlinger introduced real quantifier elimination in this model
([Grö03]), those restrictions were further eased as the coefficients of the index vari-
ables may now also contain structural parameters. In fact, he demonstrated that
algorithms central to parallel-compiler construction can be generalized in such a way
that those “non-linear parameters” can be handled adequately.

Real quantifier elimination, however, treats the parameters – as the name suggests
– as variables from R, while the applications actually require the parameters to be
from Z. The difference is that often real solutions to the application problems exist
whereas integral solutions do not. To illustrate this point, just look at the simple
equation

3x = 7.

It is clear that this equation has no solution in Z but it does in R. Unfortunately,
there is no integral quantifier elimination as implied by the unsolvability of Hilbert’s
Tenth Problem ([Mat70]).

Recent research introduced an interesting weak form of quantifier elimination “for
the Full Linear Theory of the Integers” ([LS06]) and it would be one way to study in
a top-down fashion how this general approach to integral problems can be adapted to
the application’s needs. The present work, however, takes a different, more bottom-
up account and studies how existing methods can be extended such that they meet
the needs of the integral, non-linear parametric case.

More precisely, we will concentrate on the classical approach to data dependence
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analysis developed by Utpal Banerjee in 1993 ([Ban93]) and try to extend the math-
ematical methods used by it.

To get a first impression of the mathematical tools involved let us consider the
program

for i = 0 to n do
for j = 0 to n do

S: A[p · i + j] = A[p · i + j] + 1
end for

end for

with one integral, non-linear parameter p > 0 (which could have occurred in rewriting
a two-dimensional array) and one structural parameter n. Dependencies occur, for
instance, if at iteration (i0, j0) some value is written to A[pi0 + j0] which in turn
is used at some later iteration (i1, j1). For example, let n = 3 and p = 2. Then
iteration (i, j) = (0, 3) increases the value of A[3], which is read out again at iteration
(i, j) = (1, 1). In general, by Banerjee’s approach, the possible dependencies are
described by the equation system

pi + j = pi′ + j′. (1.1)

Let us see, how the set of integral solutions can be found. To this end, we rewrite
(1.1) as

(i, j, i′, j′)A = b. (1.2)

with A = (p, 1,−p,−1)t and b = 0. As described in Section 2.2, we first have to find
some Echelon matrix S and some uni-modular matrix U such that

S = UA. (1.3)

The set of solutions to (1.2) is now given by

{tU | t ∈ Z4 ∧ tS = b}. (1.4)

For our example we find

S =





1
0
0
0



 and U =





0 0 0 −1
0 1 0 1
0 0 1 −p
1 0 0 p



 . (1.5)

Now, the set of vectors t = (t1, t2, t3, t4) ∈ Z4 with tS = 0 is given by

{(0, t2, t3, t4) | t2, t3, t4 ∈ Z}

and therefore, the set of solutions to (1.1) is the set

{(t4, t2, t3, t2 − pt3 + pt4) | t2, t3, t4 ∈ Z}.

Note that we did not say how to find S and U in (1.5) – which is straightforward
in the given example but will turn out to be harder in general. The systematic
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construction of solutions to systems of linear Diophantine equations of type (1.1) is
the main theme of this thesis. That is, we consider equations in the form of

(x1, . . . , xm)




f11(p) . . . f1n(p)

...
...

fm1(p) . . . fmn(p)



 = (b1(p), . . . , bn(p)) (1.6)

with p = (p1, . . . , pz), fij ∈ Z[X1, . . . ,Xz ], bi ∈ Z[X1, . . . ,Xz] and xi ∈ Z and ask

• for which p ∈ Zz do solutions exist, and

• if there are solutions for certain p, can we describe the set of all solutions to
(1.6)?

We will give a positive answer for the case z = 1 and show that one can find a finite
tree where each branch describes conditions ϕ in the single parameter p and each
leaf describes (in a uniform way) the set of all solutions to (1.6) for the case that
the condition ϕ(p) of the branch leading to the respective leaf is true. For z ≥ 2 our
approach fails in its full generality and we will see why. Under certain circumstances
it will, however, be possible to carry the results over to the multi-parametric case
and we will describe some conditions where this happens.

This work is organized as follows. Chapter 2 discusses the mathematical prereq-
uisites. Basic facts from elementary number theory such as integral division or the
Chinese Remainder Theorem will be presented in Section 2.1. The reader may quickly
skim through these pages and come back later, when the results are used. Section 2.3
studies a special kind of quasi-polynomials called aiq-polynomials. They essentially
contain the information necessary to construct the decision trees mentioned above.

In the final analysis, solving linear Diophantine equations is nothing but the
computation of gcd’s with the Extended Euclidean Algorithm (hidden behind the
term Echelon reduction). Therefore, Section 2.2 studies this well known algorithm
once more in depth and shows how it is used to solve linear Diophantine equations.

Chapter 3 explains Banerjee’s data dependence analysis. It is by no means an
ersatz for studying Banerjee’s original work ([Ban93]) but explains the main concepts
and core ideas.

In Chapter 4, we study how the process of solving linear (non-parametric) Dio-
phantine equations can be mimicked for one parameter (Section 4.1) and why it is
problematic in the multi-parametric setting (Section 4.2).

Chapter 5 critically reflects the achievements and gives an outlook on future work.





Chapter 2

Mathematical Prerequisites

2.1 Integers

We repeat some well known facts about the ring of integers Z =
{. . . ,−2,−1, 0, 1, 2, . . . }, integer polynomials f ∈ Z[X] and their respective poly-
nomial functions.

Remark 1 (Notation) Throughout this thesis, N = {0, 1, . . . } denotes the set of
non-negative integers. We will use N≥k to denote the set {n | n ∈ N ∧ n ≥ k}. If
f : M −→ N is a mapping from M to N then f(M) := {n | n = f(m)∧m ∈ M}, as
in 5Z + 7 = {n | n = 5z + 7 ∧ z ∈ Z}.

We start with some facts about the functions ⌊·⌋ (floor) and ⌈·⌉ (ceil) which are
defined by

⌊x⌋ := max {z ∈ Z | z ≤ x} (2.1)

and

⌈x⌉ := min{z ∈ Z | z ≥ x}. (2.2)

for all x ∈ R. Because of (i) in the following lemma, the properties are formulated
for ⌊·⌋ only.

Lemma 2 (Ceil and Floor) Let x, y ∈ R. Then

(i) ⌈x⌉ = −⌊−x⌋

(ii) ⌊x⌋ ≤ x < ⌊x⌋ + 1

(iii) ⌊x⌋ ≥ x ⇒ ⌊x⌋ = x (i.e., x ∈ Z).

(iv) x < y ⇒ ⌊x⌋ ≤ ⌊y⌋

(v) ⌊x⌋ < ⌊y⌋ ⇒ x < y.

Proof. (i) follows from max D = −min−D for every D ⊆ R (assuming that the
maximum actually exists). (ii)-(v) follow directly from the definition. 2
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Division in Z Let a, b ∈ Z. If as = b for some s ∈ Z we say that a divides b, that
a is a divisor of b, or that b is divisible by a and write a | b.

Lemma 3 (Properties of “|”) Let a, b, c ∈ Z. Then

(i) a | a.

(ii) if a | b and b | c then a | c.

(iii) if a | b and b | a then a = ±b.

(iv) if a | b and a | c then a | (b + c).

(v) if a | b then a | bc.

(vi) a | b iff a | −b iff −a | b iff −a | −b.

(vii) a | 0, but 0 | a iff a = 0.

(viii) ±1 | a.

Proof. Follows directly from the definition of |. 2

By properties (i) and (ii) of the preceding lemma, | is a quasi-order. It cannot be a
partial order, since for all a ∈ Z − {0}: a | −a iff −a | a but of course a 6= −a. We
can alter this situation by defining an equivalence relation ∼ on Z:

a ∼ b :iff a = (±1)b;

in this situation we call a and b associated.
A replacement for division in Z is given by the notion of quotient and remainder

of two integers a and b as supplied by the following, well known proposition.

Proposition 4 Let a, b ∈ Z. Then a and b uniquely determine a quotient q ∈ Z

and a remainder r ∈ {0, . . . , |b| − 1} such that

a = qb + r. (2.3)

Proof. See [Leu96], p. 13. 2

A constructive approach to quotients and remainders is, for instance, given in
[WBK93], Algorithm DIVINT on p. 12. A note to the reader looking up this source
– what we strongly recommend: It is interesting to observe that the algorithm given
there is in fact a little more complicated than one would expect at first. This is due
to the fact that one requires the remainder r to be non-negative and one therefore
has to treat the quotient “in the right way.” The problem will become clear if we ask
for a way to express the q and r of the last proposition in terms of a, b and common
functions like |·| or ⌊ ··⌋:

q = sgn (b)

⌊
a

|b|

⌋

r = a − b sgn (b)

⌊
a

|b|

⌋

= a − |b|

⌊
a

|b|

⌋



2.1. Integers 7

While the last proposition is remainder centric (because it requires the remainder
to be non-negative), the programing language Haskell provides two more quotient
centric approaches to integral division that require the remainder only to be between
−|b| and |b| (see [Jon02], sec. 6.4.2). In Haskell, the following equations hold for the
integer division methods quot and div , assuming b 6= 0:

• quot a b = sgn (ab)
⌊
|a|
|b|

⌋
, i.e., a

b
is truncated toward zero.

• div a b = ⌊a
b
⌋, i.e., a

b
is truncated toward minus infinity.

The respective remainder methods rem and mod are such that they satisfy the fol-
lowing laws (b 6= 0):

• (x ‘quot ‘ y) ∗ y + (x ‘rem‘ y) == x

• (x ‘div ‘ y) ∗ y + (x ‘mod ‘ y) == x

For the purpose of this work, we only concentrate on the second versions, div and
mod , and show the relation to their number theoretic siblings from Proposition 4.

Lemma 5 Let a ∈ Z, b ∈ Z−{0}. Define q := ⌊a
b
⌋ (i.e., q = a ‘div ‘ b) and r := a−qb.

Then

|r| < |b|. (2.4)

In particular, if b > 0 then q and r coincide with the quotient and remainder given
in Proposition 4.

Proof. Let a ∈ Z, b ∈ Z − {0}. Then by Lemma 2

⌊a

b

⌋
− 1 <

a

b
<
⌊a

b

⌋
+ 1.

If b > 0, then ⌊a

b

⌋
b − b < a <

⌊a

b

⌋
b + b

and so
−b < a −

⌊a

b

⌋
b < b.

I.e.,
−b < r < b

by definition of r. Similarly, if b < 0, then

−b > r > b.

In any case, inequality (2.4) follows. To prove the second statement, let q and r be
as defined and observe that b > 0 implies r ≥ 0 (again use ⌊x⌋ ≤ x for all x ∈ Q):

q =
⌊a

b

⌋
≤

a

b
and b > 0 ⇒ qb ≤ a ⇒ 0 ≤ a − qb = r.

Since r ≤ |b|− 1 and of course a = qb+ r, we know by Proposition 4 that q and r are
uniquely determined and hence must be equal to the quotient and remainder given
there. 2
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From now on, the functions div and mod are used in the same way they are used in
Haskell

div : Z × Z − {0} −→ Z : (a, b) 7→
⌊a

b

⌋

and

mod : Z × Z − {0} −→ Z : (a, b) 7→ a − b
⌊a

b

⌋

except that we will write them infix without back-ticks.

Congruences, gcd’s and lcm’s Let l ∈ N≥1 and let the equivalence relation ≡l

on Z be defined by

a ≡l b iff l | (a − b). (2.5)

Note that in case l = 1 we have a ≡1 b for all a, b ∈ Z. For given l ∈ Z,

[a]l := {x ∈ Z | x ≡l a}

denotes the equivalence class of a modulo l. It is well known that for l ≥ 1, there are
exactly l different equivalence classes that partition Z:

Z = [0]l ∪ [1]l ∪ · · · ∪ [l − 1]l.

Therefore, each equivalence class modulo l has a representative within {0, . . . , l − 1}
which we call the normal representative (modulo l). Note that for any p ∈ Z its
normal representative is given by p mod l. Note that

[a]l = a + lZ.

Sometimes, we prefer the notation on the right hand side, especially if a = 0. The
set of equivalence classes modulo l itself is denoted by Z/lZ.

Proposition 6 Let a, a′, b, b′ ∈ Z and l ∈ N≥1. Let f ∈ Z[X].

(i) If a ≡l a′ and b ≡l b′ then a + b ≡l a′ + b′ and ab ≡l a′b′.

(ii) If a ≡l a′ then f(a) ≡l f(a′).

Proof. (i) follows easily from the definitions. To prove (ii), observe that with f(X) =
a0 + a1X + · · · + anXn we get

f(a) − f(a′) = (a0 + a1a + · · · + anan) − (a0 + a1a
′ + · · · + ana′n)

= a1(a − a′) + · · · + an(an − a′n).

By repeated application of (i) we derive ai ≡l a′i for all 1 ≤ i ≤ n, and therefore,
l | ai − a′i. With Lemma 3 this implies l | f(a) − f(a′), i.e., f(a) ≡l f(a′). 2

An integer d is called greatest common divisor (gcd) of a1,. . . ,an ∈ Z, if

(i) d is a common divisor of the ai and

(ii) any further divisor d′ of a1,. . . ,an also divides d.
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Note that we do not require d ≥ 0. Therefore, if d is a gcd of the ai, then so is
−d. On the other hand, if d and d′ are any two gcd’s of a1, . . . , an, then d | d′ and
d′ | d by definition. With Lemma 3(iii) we get d = ±d′. This shows that the gcd
of a1, . . . , an is determined uniquely up to multiplication by −1. In other words, the
gcd is determined uniquely up to association. So we can write d ∼ gcd(a1, . . . , an) if
d is any gcd of a1, . . . , an. Two integers a, b are coprime if gcd(a, b) ∼ 1.

Let us repeat some elementary properties of gcd (cf. [Ban93], p. 55 and [Leu96],
p. 15):

Lemma 7 (Properties of gcd) Let a1, . . . , an ∈ Z (n ≥ 1). Then

(i) gcd(a1, . . . , an) ∼ gcd(±a1, . . . ,±an) or in other words gcd(a1, . . . , an) ∼
gcd(±b1, . . . ,±bn) whenever ai ∼ bi,

(ii) gcd(a1, 0, . . . , 0) ∼ a1,

(iii) gcd(1, a1, . . . , an) ∼ 1,

(iv) gcd(a1, . . . , an) ∼ gcd(aπ(1), . . . , aπ(n))
for any permutation π : {1, . . . , n} → {1, . . . , n},

(v) gcd(ka1, . . . , kan) ∼ k · gcd(a1, . . . , an) for any k ∈ Z,

(vi) gcd(a1, a2, . . . , an) ∼ gcd(a1 − qa2, a2, . . . , an) for any q ∈ Z,

(vii) gcd(a1, a2, . . . , an) ∼ gcd(a1, gcd(a2, . . . , an)) if n ≥ 3,

(viii) gcd(a1, . . . , an) | gcd(ka1, a2, . . . , an) for all k ∈ Z,

(ix) the ai have a gcd d for which dZ = a1Z + · · · + anZ holds.

Further, let a, b, c ∈ Z with gcd(a, c) ∼ 1. Then

(x) gcd(ab, c) ∼ gcd(b, c).

Proof. For (i)-(vii) consult [Ban93], p. 55 and [Leu96], p.15. For (viii), note that
d | a1 =⇒ d | ka1 (Lemma 3). Next, we prove (ix) in two steps: First we show that
there is some d ∈ N≥1 such that

dZ = a1Z + · · · + anZ

and second we reveal d as a gcd of the ai. So let us define

d := min N≥1 ∩ (a1Z + · · · + anZ)

which must exist because each aiZ and therefore a1Z+· · ·+anZ, too, contain positive
elements. Thus there are s1, . . . , sn ∈ Z such that d = s1a1 + · · · + snan. Now, if
p ∈ dZ, there is some p′ such that

p = p′d

= p′(s1a1 + · · · + snan)

= (p′s1)ai + · · · + (p′sn)an

∈ a1Z + · · · + anZ
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which means dZ ⊆ a1Z + · · · + anZ. Next, let p ∈ a1Z + · · · + anZ and set q := ⌊p
d
⌋.

Observe that for any x, y ∈ a1Z + · · · + anZ also (x − ky) ∈ a1Z + · · · + anZ for any
k ∈ Z. Therefore, r := p− qd must also be in a1Z + · · ·+ anZ. But by Lemma 5, we
have 0 ≤ r < d. Because d was chosen as smallest positive integer in a1Z+ · · ·+anZ,
r must be 0. It follows that d | p and in particular p ∈ dZ.

Hence, d also divides any ai, i.e., d is a common divisor of all ai. Let d′ be any
further common divisor such that ai = d′a′i (1 ≤ i ≤ n). Then

d = s1a1 + · · · + snan

= s1(d
′a′1) + · · · + sn(d′a′n)

= d′(s1a
′
1 + · · · + sna′n)

which means d′ | d. It follows that d must be a gcd.
(x) Finally, let a, b, c ∈ Z with gcd(a, c) ∼ 1. Let d := |gcd(ab, c)| and let d′ :=
|gcd(b, c)|. We have to show d | d′ and d′ | d. The latter relation follows directly from
(viii). To prove d | d′, we show that d′ ∈ dZ = abZ + cZ. Since gcd(a, c) ∼ 1, by the
proof of (ix) above there are s, t ∈ Z such that as + ct = 1. By the same reasoning
there are u, v ∈ Z such that bu + cv = d′. Therefore,

d′ = bu + cv

= bu(as + ct) + cv

= ab(us) + c(but + v)

which implies d′ ∈ dZ. 2

Statement (ix) proves the existence of gcd’s, unfortunately, in an unconstructive way.
A constructive approach will be given later, when we study the Euclidean Algorithm.

An integer v is called least common multiple (lcm) of a1, . . . , an ∈ Z if

(i) v is a common multiple of all ai

(ii) for any further common multiple v′ of the ai it holds v | v′.

As with the gcd, the lcm is only determined up to multiplication by −1. Since the
lcm plays only a minor role within our work, we merely provide its most important
properties.

Lemma 8 Let a1, . . . , an ∈ Z (n ≥ 1). Then the following statements hold:

(i) There is some v ∈ Z such that vZ = a1Z ∩ · · · ∩ anZ and v ∼ lcm(a1, . . . , an),

(ii) lcm(a1, a2, . . . , an) ∼ lcm(a1, lcm(a2, . . . , an)) if n ≥ 3,

(iii) If the ai are pairwise coprime then lcm(a1, . . . , an) ∼ a1 . . . an.

Furthermore, let a, b ∈ Z. Then

(iv) gcd(a, b) lcm(a, b) ∼ ab.
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Proof. (i) The proof is very similar to the proof of Lemma 7(ix) and we leave it to
the reader.
(ii)

lcm(a1, a2, . . . , an)Z = a1Z ∩ (a2Z · · · ∩ anZ)

= a1Z ∩ lcm(a2, . . . , an)Z

= lcm(a1, lcm(a2, . . . , an))Z

(iv) See [Leu96], p.17.
(iii) We conduct a proof by induction on n. If n = 2 we get lcm(a1, a2) ∼ a1a2 by
(iv) because gcd(a1, a2) ∼ 1. If n + 1 ≥ 3 then

lcm(a1, . . . , an, an+1) ∼ lcm(lcm(a1, . . . , an), an+1)

∼ lcm(a1 . . . an, an+1)

by induction hypothesis. Again by (iv), gcd(a1 . . . an, an+1) lcm(a1 . . . an, an+1) ∼
a1 . . . anan+1 and by repeated application of Lemma 7(x), gcd(a1 . . . an, an+1) ∼ 1
which proves our claim. 2

The Chinese Remainder Theorem Lemma 8(i) is a special case of the following
problem: Let a1, . . . , an ∈ Z and l1, . . . , ln ∈ N≥1 be given. Is it possible to find some
a ∈ Z and l ∈ N≥1 such that

[a]l = [a1]l1 ∩ · · · ∩ [an]ln . (2.6)

Lemma 9 Let a1, a2 ∈ Z and l1, l2 ∈ N≥2. Then there is some a ∈ Z such that
[a1]l1 ∩ [a2]l2 = [a]lcm(l1,l2) iff gcd(l1, l2) | (a2 − a1).

Proof. There is some a ∈ [a1]l1 ∩ [a2]l2 iff there are x1, x2 ∈ Z such that

a = a1 + l1x1

a = a2 + l2x2

iff there are x1, x2 ∈ Z such that

l1x1 − l2x2 = a2 − a1. (2.7)

This equation in turn has a solution iff gcd(l1, l2) | (a2 − a1). So, let us assume that
(2.7) has a solution (x1, x2) = (s1, s2). Let a := a1 + l1s1 such that a ∈ [a1]l1 ∩ [a2]l2
(and also a = a2 + l2s2) and set l := lcm(l1, l2). It remains to show that

[a1]l1 ∩ [a2]l2 = [a]lcm(l1,l2).

“⊆”: Let a′ ∈ [a1]l1 ∩ [a2]l2 . Then a1 ≡l1 a′ and a2 ≡l2 a′. Because

a1 ≡l1 a′ ⇔ a − l1s1 ≡l1 a′

⇔ l1 | (a − a′) − l1s1

⇔ l1 | (a − a′)
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and also

a2 ≡l2 a′ ⇔ l2 | (a − a′)

(a − a′) is a common multiple of both l1 and l2 and therefore divisible by l, i.e.,
a ≡l a′ and therefore a′ ∈ [a]l.
“⊇”: Let a′ ∈ [a]l. Then l | (a−a′). Because l is a multiple of l1 and because a ≡l1 a1

by our assumptions we get

l1 | (a − a′) =⇒ a ≡l1 a′

=⇒ a1 ≡l1 a′

=⇒ a′ ∈ [a1]l1

and in the same way since l2 | l

a′ ∈ [a2]l2 .

This shows a′ ∈ [a1]l1 ∩ [a2]l2 and hence concludes the proof. 2

Proposition 10 (Chinese Remainder Theorem) Let [a1]l1 , . . . , [an]ln ⊆ Z (li ≥
2). Then

n⋂

i=1

[ai]l1

is either empty or equals [a]lcm(l1,...,ln) for any a ∈
⋂n

i=1[ai]l1

Proof. The proof is a simple induction on n. If n = 2, the statement reduces to
Lemma 9. So assume the statement is true for n > 2. Then M :=

⋂n
i=1[ai]l1 is either

empty in which case M ∩ [an+1]ln+1 is empty, too. Or, M = [a′]lcm(l1,...,ln) for some
a′ ∈ Z. Then, again by Lemma 9, M ∩ [an+1]ln+1 is either empty or there is some
a ∈ Z such that

M ∩ [an+1]ln+1 = [a′]lcm(l1,...,ln) ∩ [an+1]ln+1

= [a]lcm(lcm(l1,...,ln),ln+1)

= [a]lcm(l1,...,ln,ln+1) 2

Often the following corollary is presented as Chinese Remainder Theorem, probably
due to the fact that it guarantees non-emptiness of the intersection in question.

Corollary 11 If l1, . . . , ln are pairwise coprime then

n⋂

i=1

[ai]li 6= ∅.

Proof. by induction on n. If n = 2

gcd(l1, l2) ∼ 1 =⇒ gcd(l1, l2) | (a1 − a1)

and [a1]l1 ∩ [a2]l2 6= ∅ by Lemma 9. Assume the proposition true for n > 2, i.e., there
exists some a such that

n⋂

i=1

[ai]li = [a]lcm(l1,...,ln).
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Since gcd(li, lj) ∼ 1 for all i 6= j we obtain

gcd(lcm(l1, . . . , ln), ln+1) ∼ gcd(l1 . . . ln, ln+1)

∼ 1

by Lemma 8(iii) and repeated application of Lemma 7(x). Therefore,
gcd(lcm(l1, . . . , ln), ln+1) | (an+1 − a) and there is some a′ such that

[a]lcm(l1,...,ln) ∩ [an+1]l+1 = [a′]lcm(lcm(l1,...,ln),ln+1)

= [a′]lcm(l1,...,ln,ln+1) 2

The Polynomial Rings Z[X] and Q[X] We assume that the reader is familiar
with the definitions of Z[X] and Q[X] (cf. [WBK93, Section 2.1]) as well as with
polynomial division in Q[X] (cf. [WBK93, Section 2.2]). The degree of an polynomial
f is denoted by deg(f) and we write HC (f) for the coefficient of the term with the
highest exponent. By the algebraic structure of Z and Q, it is possible to show that
gcd’s of polynomials f, g do always exist in both Z[X] and Q[X]. While it is possible
to determine s, t ∈ Q[X] for given f, g ∈ Q[X] such that

sf + tg ∼ gcd(f, g)

([WBK93, Theorem 2.32]), the same is not any more true for arbitrary f, g ∈ Z[X].
Just consider, for instance, the polynomials 2,X ∈ Z[X]. We only note that gcd’s in
Z[X] can be computed with the aid of Q[X] as described in [WBK93, Section 2.5].

2.2 Linear Diophantine Equations

An equation of the form

f(a1, . . . , an) = 0 (2.8)

where f ∈ Z[X1,. . . ,Xn] and ai ∈ Z is called Diophantine equation. In 1970, I.
Matiyasevich showed that in the general case the existence of solutions for (2.8) is
undecidable ([Mat70]). It is however possible to solve systems of linear Diophantine
equations

Ax = b (2.9)

where A ∈ Zm×n, b ∈ Zn and the variables x ∈ Zm. Solving linear equations over
the integers differs from solving such equations over the rationals or the reals, since
in Z no division is available – while Q and R are fields, Z is a ring.

We will see in a moment that solving (2.9) is intimately connected to the compu-
tation of certain gcd’s, which in turn is done by the well known Euclidean Algorithm.

The Euclidean Algorithm Revised By property (vii) of Lemma 7, the com-
putation of gcd(a1, . . . , an) can be reduced to computing the gcd of only two of the
numbers. This is done by Algorithms 1 and 2. Even though well known, they lie
at the heart of our extension to Banerjee’s data dependence analysis (Section 4.1.4)
and therefore, we state them explicitly.
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Remark 12 The algorithms presented in this work are written in a Haskell-like pseu-
docode that uses common mathematical notation. When vectors or matrices are in-
volved, the signature indicates this, using Vecn(R) for vectors in Rn and Matm× n(R)
for matrices in Rm×n. If x = (x1, . . . , xn) is a vector we write x≥k for (xk, . . . , xn).
Similarly, if A is a m × n-matrix, A≥(2,2) denotes the matrix one obtains by delet-
ing the upper row and the left-most column. Sometimes we will use list-notation to
denote vectors. That way, we can take advantage of some convenient, well-known
Haskell functions as, for example, map.

Algorithm 1 Euclidean Algorithm for Two Integers

gcd2 :: Vec2(Z) → Vec2(Z)
gcd2

(
a
0

)
=
(
a
0

)

gcd2

(
a
b

)
= gcd2

(
b

a−⌊ a

b
⌋ b

)

Theorem 13 For any given a, b ∈ Z, Algorithm 1 terminates after a finite number
of steps. Its output is of the form

(
d
0

)
, where d ∼ gcd(a, b).

Proof. We first show termination. Let {
(
ai

bi

)
}i∈N be the sequence of consecutive

instances in the calls of gcd2 in Algorithm 1, i.e., let
(

a0

b0

)
:=

(
a

b

)
(2.10)

(
ai+1

bi+1

)
:=

(
bi

ai −
⌊

ai

bi

⌋
bi

)
. (2.11)

By Lemma 5, |bi| > |bi+1| for all i ∈ N. Since each |bi| ∈ N, and there are no infinitely
decreasing sequences in N, we are done. In particular, there is some n0 ∈ N, such that
bn0 = 0. Therefore, the output is of the required form and with Lemma 7 correctness
follows. 2

Algorithm 2 Euclidean Algorithm for n ≥ 2 Integers

gcd :: [Integer ] → [Integer ]
gcd [] = []
gcd [a1] = [a1]
gcd (a1 : as) = (gcd2 [a1, a ′

2]) : as ′

where
a ′
2 =head (gcd as)

as ′ =tail (gcd as)

Corollary 14 Let a1, . . . , an ∈ Z. Then Algorithm 2 terminates and
gcd [a1, . . . , an ] = [d , 0, . . . , 0] where d ∼ gcd(a1, . . . , an).
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Proof. The proof follows by an easy induction on the length n of the input list
[a1, . . . , an ]. 2

More important than mere computations of gcd’s in Z is the extended version
of the Euclidean Algorithm that will (for given a1, . . . , an ∈ Z) compute integers
u1, . . . , un, such that

u1a1 + · · · + unan ∼ gcd(a1, . . . , an). (2.12)

For this task, we need the notion of an unimodular matrix, as given in the fol-
lowing definition.

Definition 15 (Unimodular Matrix) Let A ∈ Zn×n. Then A is called unimod-
ular if

detA ∼ 1.

Lemma 16 (Properties of Unimodular Matrices) Let A,B ∈ Zn×n be uni-
modular matrices. Then the following propositions hold.

(i) A−1 ∈ Zn×n exists and is unimodular.

(ii) AB is unimodular.

(iii) At is unimodular.

Proof. (i) follows from [Sch87, Theorem 4.3]. (ii) and (iii) follow from detAB =
detAdetB and detAt = detA which can be found in any textbook on linear algebra.
2

Example 17 Elementary row and column operations can be carried out by pre-
and post-multiplication by corresponding elementary matrices. Moreover, it can be
shown that every unimodular matrix is the product of (is generated by) elementary
matrices. See [Ban93], pp.28-31 and Lemma 2.3, p. 45.

Recall that there are three elementary row (column) operations operating on
integral matrices ([Ban93], p.28):

(1) reversal: Multiplying a row (column) by −1;

(2) interchange: Interchange two rows (columns);

(3) skewing: Add an integer multiple of one row (column) to another row (column).

These operations do not change the absolute value of the determinant of a the ma-
nipulated matrix.

The class of elementary matrices is obtained by application of one elementary row
operation to the identity matrix In (note that applying column operations would yield
exactly the same class of matrices). For instance, let us consider some elementary
2 × 2-matrices:

Multiply row (column) 1 by −1:

(
−1 0
0 1

)

Interchange rows (columns) 1 and 2:

(
0 1
1 0

)

Add row 2 z-times to row 1 (of column 1 to column 2):

(
1 z
0 1

)
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In general, to each elementary row (column) operation, there exists a correspond-
ing elementary matrix; and to each elementary matrix there is one corresponding
elementary row operation and one corresponding column operation.

Lemma 18 Let U ∈ Zn×n be unimodular, (a1, . . . , an)t ∈ Zn and

(a′1, . . . , a
′
n)t := U(a1, . . . , an)t.

Then

gcd(a1, . . . , an) ∼ gcd(a′1, . . . , a
′
n).

Proof. If U is an elementary matrix the proposition is immediately clear from
Lemma 7(i), (iv) and (vi). The general case follows from the fact that any unimod-
ular matrix can be decomposed into elementary matrices ([Sch87, Theorem 4.3]).
2

Now we can turn back to the problem of finding integers u1, . . . , un, such that
(2.12) holds. Therefore, we consider the n × 1 matrix a := (a1, . . . , an)t. Our goal
is to construct a unimodular matrix U that reflects the steps carried out by the
Euclidean Algorithm given above:

Ua = (d, 0, . . . , 0)t (2.13)

where d ∼ gcd(a1, . . . , an). The first row (u11, . . . , u1n) of U then obviously gives a
solution to (2.12) (let ui := u1i).

To understand how U is constructed, we look again at the 2× 2-case. Recall the
finite sequence {

(
ai

bi

)
}i∈N defined by (2.10) above, where

(
ai+1

bi+1

)
=

(
0 1
1 −⌊ai

bi
⌋

)(
ai

bi

)
. (2.14)

Let

Ui :=

(
0 1
1 −⌊ai

bi
⌋

)
. (2.15)

Then
(

ai+1

bi+1

)
= Ui · · · · · U0

(
a0

b0

)

= Ui · · · · · U0

(
a
b

)

and in particular, if n0 ∈ N is again such that bn0 = 0:

(
d
0

)
= Un0−1 · · · · · U0

(
a
b

)
(2.16)

Note that each Ui is unimodular since it is a product of two elementary row op-
erations. Algorithm 3 extends Algorithm 1, now taking care of the corresponding
matrices.
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Algorithm 3 Extended Euclidean Algorithm for Two Integers

extGcd2 :: [Integer ] → ([Integer ], Mat2× 2 (Integer))
extGcd2 [a, 0] = ([a, 0],

(
1 0
0 1

)
)

extGcd2 [a, b] = (xs, UcU)
where

(xs, Uc) =extGcd2 [b, a − ⌊a
b
⌋ b]

U =
(

0 1
1 −⌊a

b
⌋

)

Corollary 19 For any given a, b ∈ Z, Algorithm 3 terminates. Its output is of the
form ([d, 0],U) where d ∼ gcd(a, b) and U ∈ Z2×2 such that

U

(
a
b

)
=

(
d
0

)

Example 20 Even though elementary, we depict the sequence of arguments,
extGcd2[12, 18] is called with and the corresponding matrices occurring from call
to call. Keep this picture in mind when we study Example 63.

(
12
18

) (
18
12

) (12
6

) (6
0

)

U = U3U2U1U0 =
(
−1 1
3 −2

)

U0 = ( 0 1
1 0 ) U1 =

(
0 1
1 −1

)
U2 =

(
0 1
1 −2

)
U3 = ( 1 0

0 1 )

2

To extend the Euclidean Algorithm for input lists of length greater than 2,
note that gcd [a1, a2, . . . , an ] first computes gcd [a2, . . . , an ] = [a ′

2, 0, . . . , 0] and then
gcd2 [a1, a

′
2] = [d , 0]. Therefore, in the extended version, extGcd [a2, . . . , an ] will pro-

vide us with a (n − 1) × (n − 1)-matrix Uc, such that

Uc(a2, . . . , an)t = (a′2, 0, . . . , 0)
t (2.17)

and extGcd2 [a1, a
′
2] will return the respective 2 × 2-matrix U with

U(a1, a
′
2)

t = (d, 0)t (2.18)

To see how these two matrices can be glued together, observe that

(
1 0
0 Uc

)
(a1, a2, . . . , an)t = (a1, a

′
2, 0, . . . , 0)

t (2.19)

and (
U 0
0 In−2

)
(a1, a

′
2, 0, . . . , 0)

t = (d, 0, 0, . . . , 0)t. (2.20)

We need to fill up the matrix bearing U with In−2, since otherwise unimodularity
would be destroyed.
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Algorithm 4 Extended Euclidean Algorithm for n ≥ 2 Integers

extGcd :: [Integer ] → ([Integer ], Matn× n(Integer))
extGcd [] = ([], ())
extGcd [a1] = ([a1], (1))

extGcd (a1 : as) = (ds : as ′,

(
U 0
0 In−2

) (
1 0
0 Uc

)
)

where
(xs, Uc) =extGcd as
(ds,U) =extGcd2 [a1, a ′

2]
a ′
2 =head xs

as ′ =tail xs
n =length (a1 : as)

Corollary 21 For any given a1, . . . , an ∈ Z Algorithm 4 terminates and
gcd [a1, . . . , an ] = ([d , 0, . . . , 0],U), where d ∼ gcd(a1, . . . , an) and U ∈ Zn×n, such
that

U(a1, . . . , an)t = (d, 0, . . . , 0)t.

Echelon Reduction A matrix A = (aij) ∈ Zm×n is an echelon matrix if:

(1) There is some r ∈ {0, . . . ,m} such that

i > r ⇒ aij = 0

for all j ∈ {1, . . . , n};

(2) For all 1 ≤ i ≤ r the set Mi := {j | aij 6= 0} is not empty;

(3) ρ1 < ρ2 < . . . < ρr, where ρi := minMi.

An 1×n matrix (a row vector) already is an echelon matrix. An m×1 matrix A can
be reduced to an echelon matrix S by the Extended Euclidean Algorithm, which will
additionally find a unimodular matrix U such that UA = S. The case of a general
m × n matrix is covered by Algorithm 5.

Proposition 22 Let A ∈ Zm×n. Algorithm 5 terminates and
echelonReduction A = (S,U) where U ∈ Zm×m is a unimodular matrix and
S ∈ Zm×n is echelon such that UA = S.

Proof. Despite the technical notation, Algorithm 5 is essentially a recursive algo-
rithm. Each recursive call is instantiated with the matrix A′ whose number of rows
is reduced by 1 compared to the input matrix A. Since any other operation done
within the where clause terminates, the whole procedure will terminate.

Correctness is established by induction on the number m of rows of the input
matrix A. If m = 1, then A = S is echelon and of course A = UA with U = (1), as
given by the base case of Algorithm 5.

The case n = 1, easily follows from Algorithm 4.
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Algorithm 5 Echelon Reduction

echelonReduction :: Matm× n(Integer) → (Matm× n(Integer), Matm× m(Integer))
echelonReduction A
| m == 1 = (A, (1))
| n == 1 = extGcd [a11, . . . , am1]
| otherwise = (S ,U )
where

( ,V ) =extGcd [a11, . . . , am1]
(a ′

ij ) =VA
(S ′,U ′) =echelonReduction ((a ′

i ,j≥2))

S =

(
a′11 a′12 · · · a′1n

0 S′

)

U =

(
1 0
0 S′

)
· V

Now, let m > 1 and n > 1. The call of extGcd [a11, . . . , am1] returns V ∈ Zm×m,
such that

VA =

(
a′11 a′12 · · · a

′
1n

0 A′

)
∈ Zm×n

where a11 ∼ gcd(a11, . . . , am1). By the induction hypothesis, echelonReduction A′

returns S′ ∈ Z(m−1)×(n−1) and U′ ∈ Z(m−1)×(m−1) with U′A′ = S′. Finally, let U
and S be defined as in the algorithm, then

UA =

(
1 0
0 S′

)
VA

=

(
1 0
0 S′

)(
a′11 a′12 · · · a

′
1n

0 A′

)

=

(
a′11 a′12 · · · a

′
1n

0 U′A′

)

=

(
a′11 a′12 · · · a

′
1n

0 S′

)

= S. �

Solving Linear Diophantine Equations Now to our main result (see [Ban93],
Theorem 3.6).

Theorem 23 Let A ∈ Zm×n and b ∈ Zn. Let U ∈ Zm×m denote a unimodular
matrix and S ∈ Zm×n an echelon matrix, such that UA = S. The system of equations

xA = b (2.21)
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has a solution iff there exists a vector t ∈ Zm such that

tS = b. (2.22)

When a solution exists, the set of all solutions is given by the formula (the general
solution)

x = tU (2.23)

where t is any integer vector satisfying tS = b.

Proof. See [Ban93] p. 63. 2

Remark 24 In order to derive the description of the set of solutions (2.23), two
steps are involved

(1) find an echelon matrix S, and

(2) describe all vectors t with tS = b.

The first step is carried out by Algorithm 5, the second step comes down to simple
divisibility tests as S is in echelon form.

Example 25 Consider

(t1, t2, t3)




3 1
0 2
0 0



 = (6, 8). (2.24)

Then t1 = 2 as 3 | 6 and and because 2 | 8− t1 we get t2 = 3. t3 can be chosen freely
from Z and, therefore, the set of vectors t satisfying (2.24) is given by

{(2, 3, t3) | t3 ∈ Z}.

2.3 Quasi-Polynomials

This section introduces quasi-polynomials (sometimes also called pseudo-
polynomials), a special extension of polynomials which are, in the form of Ehrhart-
(Quasi-)polynomials, already known to the parallel computing community. As it
turns out, quasi-polynomials constitute an interesting framework for solving paramet-
ric linear equation systems (cf. Chapter 4 where we will see that, given f, g ∈ Z[X],
the mapping p 7→ gcd(f(p), g(p)) is a quasi-polynomial). To this end, however, we
have to consider quasi-polynomials in a syntactical representation (Definition 30) dif-
ferent from the usual one (Definition 27). Both are linked together by Theorem 38.

Definition 26 (Periodic Number) Let l ∈ N≥1 and let c0, . . . , cl−1 ∈ Q. A peri-
odic number c is a mapping of the form

c : Z −→ Q : p 7→






c0 if p ≡l 0

. . .

cl−1 if p ≡l (l − 1).

We call l the period of c. The set of all periodic numbers is denoted by P.
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More conveniently, c is often written as

c(p) = [c0, . . . , cl−1]p.

Note that periodic numbers do not have a unique period. With l, for every k ∈ N≥1

also kl is a period.

[c0, . . . , cl−1]p = [c0, . . . , cl−1, c0, . . . , cl−1]p = . . .

Therefore, any two periodic numbers can be rewritten with a common period given
by (a multiple of) the lcm of the two periods. With the usual pointwise operations, P
is a ring. Indeed, if [c0, . . . , cl] and [d0, . . . , dl] are periodic numbers with a common
period l then

[c0, . . . , cl−1] + [d0, . . . , dl−1] = [c0 + d0, . . . , cl−1 + dl−1]

and

[c0, . . . , cl−1] · [d0, . . . , dl−1] = [c0d0, . . . , cl−1dl−1]

are periodic numbers, too.

Definition 27 (Quasi-Polynomials) Let f ∈ P[X]. Then f is called a (univari-
ate) quasi-polynomial.

Remark 28 Let P be a polytope in Rn and let t ∈ N. In 1962, Ehrhart proved that
the function

iP : N≥1 −→ N : t 7→ |(tP ∩ Zn)|

is a Quasi-polynomial ([Ehr62], [Ehr77]), called Ehrhart-polynomial.

Note that each quasi-polynomial f can be written as

f(p) =
n∑

i=0

ci(p)pi

=






f0(p) if p ≡l 0

f1(p) if p ≡l 1

. . .

fl−1(p) if p ≡l (l − 1)

where fi ∈ Q[X] and l ∈ Z≥1 is a common period of the ci. The fi are called the
constituents of f .

Example 29 Let

f =
1

4
X2 + [0,−

1

2
]X + [0,

1

4
].

On closer inspection we find that

f(p) =
⌊p

2

⌋2
.
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Indeed, remembering that p mod2 = i iff p = 2p′ + i ∧ p′ = ⌊p
2⌋ for i ∈ {0, 1} we get

f(p) =
1

4
p2 + [0,−

1

2
]p + [0,

1

4
]

=

{
1
4p2 if p ≡2 0
1
4p2 − 1

2p + 1
4 if p ≡2 1

=

{
1
44p′2 if p = 2p′ ∧ p′ = ⌊p

2⌋
1
4(2p′ + 1)2 − 1

2 (2p′ + 1) + 1
4 if p = 2p′ + 1 ∧ p′ = ⌊p

2⌋

=

{
p′2 if p = 2p′ ∧ p′ = ⌊p

2⌋

p′2 if p = 2p′ + 1 ∧ p′ = ⌊p
2⌋

=
⌊p

2

⌋2

The next definition presents a variant of quasi-polynomials which will, as already
mentioned, play an important role in Chapter 4.

Definition 30 (Aiq-polynomials) A map f : Z −→ Z is called a (univariate)
almost integer quasi polynomial (aiq-plynomial) if there is some l ∈ N≥1 and poly-
nomial maps f0, . . . , fl−1 ∈ Z[X] such that

f(p) =






f0(⌊
p
l
⌋) if p ≡l 0

. . .

fl−1(⌊
p
l
⌋) if p ≡l (l − 1).

We call l a period or a modulus of f and fi the i-th constituent for each 0 ≤ i < l.
The set of all aiq-polynomials is denoted by AIQ.

An important feature of aiq-polynomials is that we find their period l within the
arguments ⌊p

l
⌋ of the fi. This seems to prohibit that, with l, every kl (k ∈ N≥1) is

a period of f . However, the contrary is the case as we see in Lemma 35. In fact, we
will see that the set AIQ is exactly the set of quasi-polynomials f with f(Z) ⊆ Z.
But before we proceed, let us have a look at some examples of aiq-polynomials.

Example 31 (i) Z[X] ⊆ AIQ, as f(p) = f(⌊p
1⌋) for every f ∈ Z[X].

(ii) Let f(p) = p2 − 3p + 1. Then
⌊

f(p)
2

⌋
∈ AIQ. This example will be generalized

in Proposition 33. Its proof will be rather technical, so we give the following
detailed calculation which already contains the main ideas of the proof.

⌊p2 − 3p + 1

2

⌋
=






⌊
(2p′)2−3(2p′)+1

2

⌋
if p = 2p′

⌊
(2p′+1)2−3(2p′+1)+1

2

⌋
if p = 2p′ + 1

=






⌊
4p′2−6p′+1

2

⌋
if p = 2p′

⌊
(4p′2+4p′+12)+(−6p′−3·1)+1

2

⌋
if p = 2p′ + 1
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=






⌊
4p′2−6p′+f(0)

2

⌋
if p = 2p′

⌊
4p′2−2p′+f(1)

2

⌋
if p = 2p′ + 1

=






⌊
2p′2 − 3p′ + f(0)

2

⌋
if p = 2p′

⌊
2p′2 − p′ + f(1)

2

⌋
if p = 2p′ + 1

=






2p′2 − 3p′ +
⌊

1
2

⌋
if p = 2p′

2p′2 − p′ +
⌊
−1
2

⌋
if p = 2p′ + 1

=






2p′2 − 3p′ if p = 2p′, i.e., p′ = ⌊p
2⌋ ∧ p ≡2 0

2p′2 − p′ − 1 if p = 2p′ + 1, i.e., p′ = ⌊p
2⌋ ∧ p ≡2 1

=






2⌊p
2⌋

2 − 3⌊p
2⌋ if p ≡2 0

2⌊p
2⌋

2 − ⌊p
2⌋ − 1 if p ≡2 1

(iii) f(p) := ⌊p
2⌋ + ⌊p

3⌋ ∈ AIQ. To see this, observe that

⌊p

2

⌋
=

{
p′ if p = 2p′

p′ if p = 2p′ + 1

=






3p′′ if p = 2p′ ∧ p′ = 3p′′ , i.e., p = 6p′′

3p′′ + 1 if p = 2p′ ∧ p′ = 3p′′ + 1 , i.e., p = 6p′′ + 2

3p′′ + 2 if p = 2p′ ∧ p′ = 3p′′ + 2 , i.e., p = 6p′′ + 4

3p′′ if p = 2p′ + 1 ∧ p′ = 3p′′ , i.e., p = 6p′′ + 1

3p′′ + 1 if p = 2p′ + 1 ∧ p′ = 3p′′ + 1 , i.e., p = 6p′′ + 3

3p′′ + 2 if p = 2p′ + 1 ∧ p′ = 3p′′ + 2 , i.e., p = 6p′′ + 5

and

⌊p

3

⌋
=






p′ if p = 3p′

p′ if p = 3p′ + 1

p′ if p = 3p′ + 1
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=






2p′′ if p = 3p′ ∧ p′ = 2p′′ , i.e., p = 6p′′

2p′′ + 1 if p = 3p′ ∧ p′ = 2p′′ + 1 , i.e., p = 6p′′ + 3

2p′′ if p = 3p′ + 1 ∧ p′ = 2p′′ , i.e., p = 6p′′ + 1

2p′′ + 1 if p = 3p′ + 1 ∧ p′ = 2p′′ + 1 , i.e., p = 6p′′ + 4

2p′′ if p = 3p′ + 2 ∧ p′ = 2p′′ , i.e., p = 6p′′ + 2

2p′′ + 1 if p = 3p′ + 2 ∧ p′ = 2p′′ + 1 , i.e., p = 6p′′ + 5.

Therefore,

⌊p

2

⌋
+
⌊p

3

⌋
=






5p′′ if p = 6p′′

5p′′ if p = 6p′′ + 1

5p′′ + 1 if p = 6p′′ + 2

5p′′ + 2 if p = 6p′′ + 3

5p′′ + 3 if p = 6p′′ + 4

5p′′ + 3 if p = 6p′′ + 5

=






5⌊p
6⌋ if p ≡6 0

5⌊p
6⌋ if p ≡6 1

5⌊p
6⌋ + 1 if p ≡6 2

5⌊p
6⌋ + 2 if p ≡6 3

5⌊p
6⌋ + 3 if p ≡6 4

5⌊p
6⌋ + 3 if p ≡6 5

The next lemma prepares the generalization of Example 31(ii).

Lemma 32 Let f ∈ Z[X] and l, r ∈ Z. Then there exists some g ∈ Z[X] such that

f(lX + r) = lg(X) + f(r).

Proof. Let f ∈ Z[X] with degree n and let l, r ∈ Z. Let µi(X) = aiX
i denote the

terms of f (0 ≤ i ≤ n). Then

µi(lX + r) = ai(lX + r)i

= ai

i∑

j=0

(
i

j

)
(lX)jri−j

= air
i + ai

i∑

j=1

(
i

j

)
ljri−jXj

= air
i + l

i∑

j=1

(
i

j

)
ail

(j−1)ri−jXj

= air
i + lνi(X)

with νi(X) :=
∑i

j=1

(
i
j

)
ail

(j−1)ri−jXj . Note that νi(X) ∈ Z[X]. Now let g(X) :=
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∑n
i=0 νi(X) (again ∈ Z[X]) such that

f(lX + r) =
n∑

i=0

µi(lX + r)

=

n∑

i=0

(air
i + lνi(X))

=

n∑

i=0

air
i + l

n∑

i=0

νi(X)

= f(r) + lg(X)

which proves the proposed equality. 2

Proposition 33 Let f ∈ Z[X], 0 6= l ∈ Z. Then
⌊

f(p)
l

⌋
∈ AIQ.

Proof. Let f and l be as stated. Let p ∈ Z. By Lemma 5 one can write p = |l|p′ + r
where 0 ≤ r < |l| and p′ = ⌊ p

|l|⌋. Moreover, by Lemma 32 there is some gr ∈ Z[X]

dependent only on r (since l is fixed) such that

f(p) = f(|l|p′ + r)

= |l|gr(p
′) + f(r).

Therefore,

⌊f(p)

l

⌋
=
⌊ |l|gr(p

′) + f(r)

l

⌋

=
⌊
sgn (l)gr(p

′) +
f(r)

l

⌋

= sgn (l)gr(p
′) +

⌊f(r)

l

⌋

= sgn (l)gr(⌊
p

|l|
⌋) +

⌊f(r)

l

⌋

Finally, set

fr(X) := sgn (l)gr(X) +
⌊f(r)

l

⌋
.

Altogether, by case distinction on the residue class modulo l that p belongs to we
get:

⌊f(p)

l

⌋
=






f0(⌊
p
|l|⌋) if p ≡|l| 0

. . .

f(|l|−1)(⌊
p
|l|⌋) if p ≡|l| (|l| − 1).

This proves
⌊

f(p)
l

⌋
∈ AIQ. 2

The proof of Proposition 33 demonstrates the simple but important concept of rewrit-
ing the argument of a given polynomial modulo some positive integer. It is of such
importance that we give its own name to it within the following definition.
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Definition 34 Let f ∈ Z[X] and l ∈ N≥1. Then we can write

f(p) =






f(lp′) if p = lp′ for some p′ ∈ Z

f(lp′ + 1) if p = lp′ + 1 for some p′ ∈ Z

. . .

f(lp′ + (l − 1)) if p = lp′ + (l − 1) for some p′ ∈ Z

or equivalently

f(p) =






f(lp′) if p′ = ⌊p
l
⌋ ∧ p ≡l 0

f(lp′ + 1) if p′ = ⌊p
l
⌋ ∧ p ≡l 1

. . .

f(lp′ + (l − 1)) if p′ = ⌊p
l
⌋ ∧ p ≡l (l − 1)

or equivalently

f(p) =






f(l⌊p
l
⌋) if p ≡l 0

f(l⌊p
l
⌋ + 1) if p ≡l 1

. . .

f(l⌊p
l
⌋ + (l − 1)) if p ≡l (l − 1).

We call the transition to (equivalent variants of) the respective right-hand sides l-
extending f and the respective right-hand side an l-extension of f .

By Lemma 32, for each 0 ≤ i < l there is some gi ∈ Z[X] such that f(lX + i) =
lgi(X) + f(i). Set fi(X) := lgi(X) + f(i). Then

f(p) =






f0(⌊
p
l
⌋) if p ≡l 0

f1(⌊
p
l
⌋) if p ≡l 1

. . .

fl−1(⌊
p
l
⌋) if p ≡l (l − 1)

and we call the fi the constituents determined by l-extending f .

The following lemma is a further example of l-extension in action and shows that
periods of aiq-polynomials do behave as periods do.

Lemma 35 Let f ∈ AIQ and let l ∈ N≥1 be a modulus of f . Then kl is also a
modulus of f for any k ∈ N≥1.

Proof. Let f ∈ AIQ and let l be its modulus. Let k ∈ N≥1. Denote the l constituents
of f by f0, . . . , fl−1. Let p ∈ Z and let 0 ≤ i0 < l be such that p ≡l i0. Then

f(p) = fi0(⌊
p

l
⌋)

= fi0(p
′)



2.3. Quasi-Polynomials 27

where p′ is determined by p = lp′ + i0, or equivalently
(
p′ = ⌊p

l
⌋ ∧ p ≡l i0

)
. Now, we

k-extend fi0(p
′):

f(p) = fi0(p
′) (2.25)

=






fi0(kp′′) if p′ = kp′′ ∧ p = lp′ + i0

fi0(kp′′ + 1) if p′ = kp′′ + 1 ∧ p = lp′ + i0

. . .

fi0(kp′′ + (k − 1)) if p′ = kp′′ + (k − 1) ∧ p = lp′ + i0

(2.26)

=






kgi00(p
′′) + fi0(0) if p = lkp′′ + i0

kgi01(p
′′) + fi0(1) if p = l(kp′′ + 1) + i0

. . .

kgi0(k−1)(p
′′) + fi0(k − 1) if p = l(kp′′ + (k − 1)) + i0.

(2.27)

Let us define

fi0j(X) := kgi0j(X) + fi0(j) (0 ≤ j < k),

consider that for all j ∈ {0, . . . , k − 1}

p = l(kp′′ + j) + i0 ⇐⇒
(
p′′ =

⌊ p

lk

⌋
∧ p ≡lk kj + i0

)

and hence get

f(p) =






fi00(p
′′) if p = lkp′′ + i0

fi01(p
′′) if p = l(kp′′ + 1) + i0

. . .

fi0(k−1)(p
′′) if p = l(kp′′ + (k − 1)) + i0

=






fi00(⌊
p
lk
⌋) if p ≡lk i0

fi01(⌊
p
lk
⌋) if p ≡lk k + i0

. . .

fi0(k−1)(⌊
p
lk
⌋) if p ≡lk k(k − 1) + i0

The described k-extension can be carried out for every 0 ≤ i < l which leads to one
big case distinction on the residue classes of p modulo lk, see Figure 2.1. Note that
the nature of the given construction leads to a complete case distinction on the lk
possible residue classes of p modulo lk. Therefore, f is expressed as an aiq-polynomial
with modulus lk, which concludes the proof. 2

Remark 36 Given p ∈ Z with p ≡lk r (0 ≤ r < lk−1), one can find the appropriate
constituent fij of Figure 2.1 via the bijection

ϕ : {0, . . . , lk − 1} −→ {0, . . . , l − 1} × {0, . . . , k − 1}

r 7−→ (i, j) =
(
r −

⌊r

l

⌋
l,
⌊r

l

⌋)
,
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f(p) =






f00(⌊
p
lk
⌋) if p ≡lk 0

f01(⌊
p
lk
⌋) if p ≡lk l

. . .

f0(k−1)(⌊
p
lk
⌋) if p ≡lk l(k − 1)

f10(⌊
p
lk
⌋) if p ≡lk 1

f11(⌊
p
lk
⌋) if p ≡lk l + 1

. . .

f1(k−1)(⌊
p
lk
⌋) if p ≡lk k(k − 1) + 1

. . .

f(l−1)0(⌊
p
lk
⌋) if p ≡lk (l − 1)

f(l−1)1(⌊
p
lk
⌋) if p ≡lk l + (l − 1)

. . .

f(l−1)(k−1)(⌊
p
lk
⌋) if p ≡lk k(k − 1) + (l − 1)

=






f00(⌊
p
lk
⌋) if p ≡lk 0

f10(⌊
p
lk
⌋) if p ≡lk 1

. . .

f(l−1)0(⌊
p
lk
⌋) if p ≡lk (l − 1)

f01(⌊
p
lk
⌋) if p ≡lk l

f11(⌊
p
lk
⌋) if p ≡lk l + 1

. . .

f(l−1)1(⌊
p
lk
⌋) if p ≡lk k + (l − 1)

. . .

f0(k−1)(⌊
p
lk
⌋) if p ≡lk l(k − 1)

f1(k−1)(⌊
p
lk
⌋) if p ≡lk l(k − 1) + 1

. . .

f(l−1)(k−1)(⌊
p
lk
⌋) if p ≡lk lk − 1

Figure 2.1: Complete case distinction on the residues p modulo lk.
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such that

fij = fϕ(r).

Moreover, note that for all r, r′ ∈ {0, . . . , lk − 1}:

r ≤ r′ ⇐⇒ ϕ(r) ≺revlex ϕ(r′).

Theorem 37 AIQ is a ring.

Proof. By the subring test ([WBK93, Section 1.4]), we only have to show that with
f, g ∈ AIQ also f − g, fg ∈ AIQ. So let f, g ∈ AIQ and let m ∈ N≥1 be a common
modulus of f and g (apply Lemma 35 if necessary). Let fi, gi ∈ Z[X] (0 ≤ i < m)
denote the m constituents of f and g. Then one can immediately see that fi − gi

and figi, respectively, give the m constituents of f − g and fg by pointwise addition
and multiplication, which shows that f − g and fg are actually aiq-polynomials with
modulus m. 2

The following theorem links aiq-polynomials and quasi-polynomials with f(Z) ⊆ Z

together. The reader may note that Theorem 37 actually is an easy consequence of
it but we leave it to her to provide this alternative proof.

Theorem 38 The set AIQ of aiq-polynomials is exactly the set of quasi-polynomials
f with f(Z) ⊆ Z.

Proof. Let f ∈ AIQ of period l and let f0, . . . , fl−1 be the constituents of f . Further,
let p ∈ Z. Then with i := p mod l

f(p) = fi(
⌊p

l

⌋
)

= fi(
p − i

l
).

Thus, f is a quasi-polynomial because each fi(
X−i

l
) ∈ Q[X] and clearly f(Z) ⊆ Z.

Conversely, let f be a quasi-polynomial such that f(Z) ⊆ Z. Let f be of period l
and let f0, . . . , fl−1 ∈ Q[X] be its constituents. For each constituent we have

p mod l = i =⇒ fi(p) ∈ Z.

Let n denote the absolute value of the least common multiple of the denominators of
all coefficients of all fi. Then there are integral polynomials gi ∈ Z[X] with fi = gi

n
.

Finally, for each 0 ≤ i < l we set hi(X) := gi(lX + i) such that for all p ∈ Z

f(p) = fi(p) =
gi(p)

n

=
hi(⌊

p
l
⌋)

n
=

hi(p
′)

n

whenever i = p mod l and p′ = ⌊p
l
⌋. Note in particular that

hi(j)

n
∈ Z (j ∈ {0, . . . , n − 1}). (2.28)
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Then for all i ∈ {0, . . . , l − 1} and all p with p ≡l i and p′ := ⌊ p
n
⌋

hi(p
′)

n
=






hi(np′′)
n

if p′ = np′′

hi(np′′+1)
n

if p′ = np′′ + 1

. . .
hi(np′′+n−1)

n
if p′ = np′′ + (n − 1)

=






hi0(p
′′) + hi(0)

n
if p′ = np′′

hi1(p
′′) + hi(1)

n
if p′ = np′′ + 1

. . .

hi(n−1)(p
′′) + hi(n−1)

n
if p′ = np′′ + (n − 1)

where the hij ∈ Z[X] are defined such that hi(nX + j) = nhij(X) + hi(j), cf.

Lemma 32. With (2.28) we have hij(X) + hi(j)
n

∈ Z[X]. And so, by a line of
reasoning similar to that of Lemma 35 and its proof, we conclude that f is indeed
an aiq-polynomial. 2

Generalizing Aiq-polynomials Further In [Wei90], a certain extension of Pres-
burger arithmetic called almost linear arithmetic is studied. In simple terms,
Weispfenning considers formulas of type ∃Xt(X) ρ 0 with

t(X) =

(
f(X) + c1

⌊f1(X)

g1(X)

⌋
+ · · · + cm

⌊fm(X)

gm(X)

⌋)
(2.29)

and ρ ∈ {<,>,=,≡l}, ci ∈ Z and p, pi, qi ∈ Z[X]. He shows that one can compute
some s ∈ N≥1 such that

∃Xt(X) ρ 0 iff ∃X (−s < X < s ∧ t(X) ρ 0)

and takes this result to generalize Presburger arithmetic accordingly. We take up
the ideas given in his proof of Theorem 2.1 in [Wei90] and show how terms of type
⌊f

g
⌋ with f, g ∈ Z[X] are related to aiq-polynomials.
Let

h : Z − Pu −→ Z : p 7→
⌊f(p)

g(p)

⌋

with f, g ∈ Q[X] and Pu := {p ∈ Z | g(p) = 0}. By usual polynomial division in
Q[X] we can find polynomials q, r ∈ Q[X] such that deg(r) < deg(g) and

f

g
= q +

r

g
.

It is well known from calculus that r(p)
g(p) → 0 when p → ±∞. In particular, with

r(X) =
∑d

i=0 aiX
i, g(X) =

∑d′

i=0 biX
i and k ∈ N≥2 for any p ∈ Z with |p| > (k+1) ad

bd′

∣∣∣∣
r(p)

g(p)

∣∣∣∣ <
1

k − 1

(cf. Corollary 2.4, [Wei90]) and

r(p)

g(p)
> 0 iff

ad

bd′
pd−d′ > 0. (2.30)



2.3. Quasi-Polynomials 31

The question is now, how small do we want ⌊ r(p)
g(p)⌋ to be? The answer depends entirely

on q(p). Let l be the absolute value of a lcm of the denominators of the coefficients
of q and choose q′ ∈ Z[X] such that

q(X) =
q′(X)

l
.

For each i ∈ {0, . . . , l − 1}, determine qi ∈ Z[Y ] such that q′(lY + i) = lqi(Y ) + q′(i)
(cf. Lemma 32). Then for all p, with i = p mod l

⌊f(p)

g(p)

⌋
=
⌊
q(p) +

r(p)

g(p)

⌋

=
⌊q′(p)

l
+

r(p)

g(p)

⌋

=
⌊
qi(⌊

p

l
⌋) +

q′(i)

l
+

r(p)

g(p)

⌋

= qi(⌊
p

l
⌋) +

⌊q′(i)

l
+

r(p)

g(p)

⌋

The remaining floor expression can be computed if | r(p)
g(p) | is sufficiently small which

certainly is the case if ∣∣∣∣
r(p)

g(p)

∣∣∣∣ < min(M − {0}) (2.31)

with

M = {1} ∪
l−1⋃

i=0

{
q′(i)

l
−
⌊q′(i)

l

⌋
,
⌈q′(i)

l

⌉
−

q′(i)

l

}
.

With (2.30), we can find some s ∈ N≥1 such that Pu ⊆ (Z ∩ [−s, s]) and each⌊
q′(i)

l
+ r(p)

g(p)

⌋
is constant on Z − [−s, s]. Therefore, choose |p0| > s and define

zi :=
⌊q′(i)

l
+

r(p0)

g(p0)

⌋
.

Then

⌊f(p)

g(p)

⌋
=






q0(⌊
p
l
⌋) + z0 if p ≡l 0

. . .

ql−1(⌊
p
l
⌋) + zl−1 if p ≡l l − 1

for all |p| > s. In other words,
⌊

f(p)
g(p)

⌋
is an aiq-polynomials outside the interval

Z ∩ [−s, s].

What makes these considerations notably interesting is that we are now in the
position to consider functions containing nested ⌊ ··⌋-fractions as the following example
demonstrates. We do not investigate this topic any further within this thesis, but we
claim that all the methods studied in Chapter 4 apply to those types of functions as
well, allowing data dependency analysis for a wider class of programs.
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Example 39 Consider the mapping

f : Z −→ Z : p 7→

⌊
⌊ 3p2

2p+1⌋ + 3p

2

⌋
(2.32)

which is defined for all p ∈ Z. We start by simplifying the inner ⌊ ··⌋-expression in
the way described above, i.e., we divide 3X2 by 2X + 1 and get

3X2

2X + 1
=

6X − 3

4
+

3

8X + 4
. (2.33)

Therefore,

⌊ 3p2

2p + 1

⌋
=
⌊6p − 3

4
+

3

8p + 4

⌋

=






⌊6⌊p
4⌋ −

3
4 + 3

8p+4⌋ if p ≡4 0

⌊6⌊p
4⌋ + 3

4 + 3
8p+4⌋ if p ≡4 1

⌊6⌊p
4⌋ + 9

4 + 3
8p+4⌋ if p ≡4 2

⌊6⌊p
4⌋ + 15

4 + 3
8p+4⌋ if p ≡4 3

=






6⌊p
4⌋ + ⌊−3

4 + 3
8p+4⌋ if p ≡4 0

6⌊p
4⌋ + ⌊3

4 + 3
8p+4⌋ if p ≡4 1

6⌊p
4⌋ + ⌊9

4 + 3
8p+4⌋ if p ≡4 2

6⌊p
4⌋ + ⌊15

4 + 3
8p+4⌋ if p ≡4 3

We get 3
8p+4 < 1

4 for all |p| ≥ 3, i.e., we get

⌊ 3p2

2p + 1

⌋
=






6⌊p
4⌋ − 1 if p ≡4 0

6⌊p
4⌋ if p ≡4 1

6⌊p
4⌋ + 2 if p ≡4 2

6⌊p
4⌋ + 3 if p ≡4 3

for all |p| ≥ 3. Altogether, we get

f(p) =






⌊18p′−1
2 ⌋ if p = 4p′

⌊18p′+3
2 ⌋ if p = 4p′ + 1

⌊18p′+8
2 ⌋ if p = 4p′ + 2

⌊18p′+12
2 ⌋ if p = 4p′ + 3

for all |p| ≥ 3 which is an aiq-polynomial.



Chapter 3

Banerjee’s Data Dependence

Analysis

While the Introduction (Chapter 1) was mainly concentrated on one particular aspect
of data dependence analysis – the solution to certain equation systems –, this chapter
describes the different steps of Banerjee’s approach in more detail. By and large, our
presentation follows [Ban93, Chapter 4] and [Kei97, Chapter 6].

The basic building blocks of programs are for-loops

for i = p to q do
S : S(i)
T : T (i)
. . .

end for

and assignment statements as indicated by S, T, . . . . These statements constitute
the body of the given loop. i is called index variable. The body statements are
dependent on i since they can contain array accesses A[f(i)], B[g(i)], . . . where the
access functions f, g, . . . take i as arguments. Note that the general signature of the
access functions is Zm −→ Zn, since the arrays can of course be multi-dimensional.
p is the lower limit and q the upper limit of the given for-loop. We assume that the
strides of all for-loops are always 1. Loops can be nested as in

for i1 = p1 to q1 do
for i2 = p2(i1) to q2(i1) do

S : S(i1, i2)
end for
T : T (i1)

end for

Note that the loops do not have to be nested perfectly. Observe further that the
loop bounds can depend on the array indices of the surrounding loops. Similarly,
the access functions of the arrays contained within the different statements can be
functions in the index variables of the respective surrounding loops. An important
question regards the way in which the bounds and access functions can be formed
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from the surrounding index variables. One usual condition is that the loop bounds
and access functions are affine functions in the index variables and additional struc-
tural parameters. Hereby, structural parameters are constants whose value will be
known at run time. For instance, in our example program from Chapter 1 n is a
structural parameter. So, assume that i1, . . . , ik are surrounding index variables of
some statement or loop and assume that p1, . . . , pz are structural parameters. Then

c1i1 + · · · + ckik + ck+1p1 + · · · + dk+zpz + c (3.1)

with cj , c ∈ Z is a legitimate dimension of an access function or a legitimate loop
bound. We will come back to the problem of the concrete form of (3.1) at the end
of this chapter after we discussed Banerjee’s data dependence analysis.

A data dependency between statements S(i) and T (j), for given concrete instances
of i and j, occurs if

• S and T read from or write to the same memory location;

• S is executed before T .

As for the first condition, let A[f(i)] be an array access in statement S and A[g(j)]
an array access in statement T . Then a dependency between S and T (with respect
to the given common array A) can only occur if

f(i) = g(j). (3.2)

If the target dimensions of f and g are in the form of (3.1), we deal with a system of
linear Diophantine equations in the variables i and j and so we can derive a complete
description of the possible dependencies by Theorem 23. Note in particular that S
and T are not dependent on each other (with respect to the given array accesses) if
(3.2) has no solution. This demonstrates why it is not enough to consider rational
or real solutions to (3.2) as their existence does not imply integral feasibility.

Even if (3.2) has a solution, it is still possible that S and T are not dependent.
For, on the one hand, we still have to consider the second condition given above,
which requires that i ≺lex j. On the other hand, there are the constraints imposed
on i and j by the loop bounds. They describe a system of linear inequalities provided
that the loop bounds are linear expressions as in (3.1). One possibility to handle these
inequalities is given by the Fourier-Motzkin elimination method which decides if the
inequalities are satisfiable over the reals. Again, this does not imply satisfiabilty over
the integers, therefore, another possibility lies in the application of methods known
from integer programming. In any case, the description of the integral solutions to
(3.2) precedes any further action.

Let us return to the question of the actual form of the access functions and the
loop bounds. In [Grö03], the restriction given above was eased such that in (3.1)
now also c1, . . . , ck ∈ R[p1, . . . , pz] are admitted. Among other things, A. Größlinger
shows that Fourier-Motzkin elimination is possible within the new framework as well
as (real) linear programming. Since it is also possible to treat systems of linear
equations with coefficients from R[p1, . . . , pz], the algorithmic basis for an extended
data dependence analysis is prepared. However, as argued above, we would prefer
solutions to systems of linear equations within Z[p1, . . . , pz]. The next chapter attends
this task and it relies on the assumption that the methods presented there will give
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results compatible with, for instance, the extended Fourier-Motzkin elimination. We
support this assumption by the following example which continues the example from
Chapter 1 and leads over to Chapter 4.

Example 40 Let us repeat the example program from Chapter 1:

for i = 0 to n do
for j = 0 to n do

S: A[p · i + j] = A[p · i + j] + 1
end for

end for

S depends on itself if
pi + j = pi′ + j′. (3.3)

for (i, j) ≺lex (i′, j′), that is

i < i′ (3.4)

∨ (i = i′ ∧ j < j′). (3.5)

The constraints of the loop bounds are given by

0 ≤ i ≤ n
0 ≤ j ≤ n
0 ≤ i′ ≤ n
0 ≤ j′ ≤ n

(3.6)

As we already know from Chapter 1, the set of solutions to (3.3) is given by

(i, j, i′, j′) = (t4, t2, t3, t2 − t3p + t4p) (3.7)

for all t1, t2, t3 ∈ Z. The next step combines (3.7) with (3.6), (3.4) and (3.5), respec-
tively. Thus, we get

t4 < t3 (3.8)

∨ (t4 = t3 ∧ t2 < t2 − t3p + t4p) (3.9)

and
0 ≤ t4 ≤ n
0 ≤ t2 ≤ n
0 ≤ t3 ≤ n
0 ≤ t2 − t3p + t4p ≤ n

(3.10)

The extended Fourier-Motzkin eliminations applied to these inequalities returns the
condition p ≤ n in case (3.10) ∧ (3.8) and that no solutions exist in case (3.10) ∧
(3.9).





Chapter 4

Equation Systems with

Non-linear Parameters

In the following, we will describe an extension of Theorem 23 for systems of
parametrized linear Diophantine equations

xA = b, (4.1)

where A ∈ Z[p1, . . . , pk]
m×n, b ∈ Z[p1,. . . , pk]

m which we will call modulo reduction.
In the case of a single non-linear parameter (k = 1) this reduction will lead to a
complete description of the respective solutions, which in turn are descriptions of the
data dependencies from where (4.1) arose. In the multi-parameter case (k > 1) this
generality will not apply. However, our method can give partial information about
the solutions that is still useful in later phases of dependence analysis.

4.1 Modulo Reduction with a Single Parameter

4.1.1 An Introductory Example

As in Section 2.2, we start with the computation of gcd(a, b), a, b ∈ Z[p] and then
extend it to the full echelon reduction of the matrix A from (4.1). To introduce the
idea of modulo reduction we start with a simple example and try to compute

d(p) := gcd ( 2p2 + 1, 3 ).

First, note that we are not interested in the polynomial gcd of 2X2 + 1 and 3, but in
the function

d : Z → Z, p 7→ gcd ( 2p2 + 1, 3 ).

Second, by computation we mean giving some explicit and finite representation of
d(p) avoiding any occurrence of “gcd”. For instance, Table 4.1 suggests that

d(p) =

{
1 if p ≡3 0,

3 if p ≡3 1 or p ≡3 2.
(4.2)

Of course, it is clear that d(p) must be either 1 or 3, since these are the only
possible positive divisors of 3 in gcd ( 2p2+1, 3 ). It is less clear that d(p) contains the
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Table 4.1 d(p) = gcd ( 2p2 + 1, 3 )

p -5 -4 -3 -2 -1 0 1 2 3 4 5

2p2 + 1 51 33 19 9 3 1 3 9 19 33 51

d(p) 3 3 1 3 3 1 3 3 1 3 3

claimed amount of internal structure, which, however, is verified by case distinction
on the residue classes of p modulo 3:
Case p ≡3 0: Since p = 3p′ for some p′ ∈ Z, we get

gcd(2p2 + 1, 3) ∼ gcd(18p′2 + 1, 3)

(∗)
∼ gcd(1, 3) ;

(
1 −6p′2

0 1

)

∼ gcd(3, 1) ;

(
0 1
1 0

)

∼ gcd(0, 1) ;

(
1 −3
0 1

)

∼ gcd(1, 0) ;

(
0 1
1 0

)

∼ 1

In (∗) we apply Lemma 7(vi), gcd(a, b) = gcd(a − qb, b) with q = 6p′2. The matrices
on the right hand side “collect” the actions along the transformations, similarly as is
done in Algorithm 3. Check for instance that in (∗)

(
1 −6p′2

0 1

)(
18p′2 + 1

3

)
=

(
1
3

)
.

Each matrix is obviously unimodular, and their product

U0 =

(
0 1
1 0

)(
1 −3
0 1

)(
0 1
1 0

)(
1 −6p′2

0 1

)

=

(
1 −6p′2

−3 1 + 18p′2

) (4.3)

is again unimodular for every p′ ∈ Z.
Case p ≡3 1: Now p = 3p′ + 1 for some p′ ∈ Z, and

gcd(2p2 + 1, 3) ∼ gcd(2(3p′ + 1)2 + 1, 3)

∼ gcd(18p′2 + 12p′ + 3, 3)

(∗)
∼ gcd(0, 3) ;

(
1 −6p′2 − 4p′ − 1
0 1

)

∼ gcd(3, 0) ;

(
0 1
1 0

)

∼ 3
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with q = 6p′2 + 4p′ + 1 in (∗). Again,

U1 =

(
0 1
1 0

)(
1 −6p′2 − 4p′ − 1
0 1

)

=

(
0 1
1 −6p′2 − 4p′ − 1

) (4.4)

is unimodular.
Case p ≡3 2: Here, p = 3p′ + 2 for some p′ ∈ Z, and

gcd(2p2 + 1, 3) ∼ gcd(2(3p′ + 2)2 + 1, 3)

∼ gcd(18p′2 + 24p′ + 9, 3)

(∗)
∼ gcd(0, 3) ;

(
1 −6p′2 − 8p′ − 3
0 1

)

∼ gcd(3, 0) ;

(
0 1
1 0

)

∼ 3

with q = 6p′2 + 8p′ + 3 in (∗) and

U2 =

(
0 1
1 0

)(
1 −6p′2 − 8p′ − 3
0 1

)

=

(
0 1
1 −6p′2 − 8p′ − 3

) (4.5)

unimodular and our guess from Equation (4.2) is finally justified. The gcd’s of 2p2+1
and 3 can be described by a finite case distinction on the residue classes of p modulo
3 or, in other words, the gcd is an aiq-polynomial.

Let us go a step further and ask for the solutions of

(x, y)A = p. (4.6)

with A =

(
2p2 + 1

3

)
. By Theorem 23 and the above calculation, (4.6) has a solution

iff there is some (t1, t2) ∈ Z2 such that






(t1, t2)

(
1

0

)
= t1 = 3p′ if p ≡3 0 ∧ p′ = ⌊p

3⌋

(t1, t2)

(
3

0

)
= 3t1 = 3p′ + 1 if p ≡3 1 ∧ p′ = ⌊p

3⌋

(t1, t2)

(
3

0

)

= 3t1 = 3p′ + 2 if p ≡3 2 ∧ p′ = ⌊p
3⌋

(4.7)

Therefore, (4.6) has a solution iff p ≡3 0 and {t = (p, t2) | t2 ∈ Z} then gives the
set of integer vectors satisfying t

(1
0

)
= p. So the set of all solutions in case p ≡3 0 is
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given by

(x, y) = (p, t2)U0

= (p, t2)

(
1 −6⌊p

3⌋
2

−3 1 + 18⌊p
3⌋

2

)

= (p − 3t2,−6p⌊
p

3
⌋2 + t2 + t2⌊

p

3
⌋2).

(4.8)

If p ≡3 1 or p ≡3 2 Equation (4.6) has no solution.

In the following we will generalize this example step by step. Our agenda reads
as follows:

1. In Section 4.1.2 we will demonstrate that for f, g ∈ Z[X] the function

d : Z −→ Z : p 7→ gcd(f(p), g(p))

is an aiq-polynomial (called the aiq-gcd of f and g) and will get a clear picture how
the constituents look like (Proposition 45 and Theorem 48). In preparation for
Section 4.1.3, we will prove a result about the divisibility of certain constituents
involved (Corollary 49). Finally, we extend the previous results to the case of
more than two polynomials (Corollary 52) and will see that the gcd of two aiq-
polynomials is again an aiq-polynomial (Corollary 53).

2. Section 4.1.3 shows how we can describe the set of integers p such that f(p) | g(p)
for given f, g ∈ Z[X]. Interestingly, aiq-gcd’s are involved. This section leads to
the extension of step (2) from Remark 24.

3. The unimodular matrices that we get from the Extended Euclidean Algorithm
play a prominent role for the solution of linear Diophantine equations. While
Section 4.1.2 introduces the ideas behind aiq-gcd’s, no algorithms are developed.
It is not even clear yet, if we can actually obtain some kind of “unimodular aiq-
matrices” in the sense of Algorithms 4 and 5. Section 4.1.4 will show that this is
possible and the respective algorithms are developed. A larger example illustrates
the ideas behind the algorithms.

4. Resting on previous algorithms, Section 4.1.5 describes aiq-echelon reduction.
This section is rather technical and focuses mainly on the principal feasibility
of a Haskell implementation.

5. Section 4.1.6 finally describes how the different pieces can be put together in order
to construct a tree that represents the different exact solutions of a system of linear
Diophantine equations in one non-linear parameter.

4.1.2 The Aiq-gcd of Integer Polynomial Functions

Aiq-gcd’s of two integer polynomials We initially treat only the case that two
polynomials are relatively prime. This simplifies our considerations and leads to
Proposition 45 which is prepared by following lemmas and corollaries.
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Lemma 41 Let f, g ∈ Z[X] and let gcd(f(X), g(X)) = 1, where the polynomial gcd
of f and g is considered in Q[X]. Then there is some 0 6= l ∈ Z such that for all
p ∈ Z

gcd(f(p), g(p)) | l.

In other words, gcd(f(p), g(p)) is bounded.

Proof. Let f and g be as stated. Then by [WBK93, Theorem 2.32] there are s, t ∈
Q[X] such that

sf + tg = 1.

Choose 0 6= l ∈ Z as a common multiple of the denominators of the coefficients of s
and t and let p ∈ Z. Then ls, lt ∈ Z[X], i.e., ls(p), lt(p) ∈ Z and therefore,

ls(p)f(p) + lt(p)g(p) = l.

But with Lemma 7(ix) this means just

l ∈ f(p)Z + g(p)Z = gcd(f(p), g(p))Z

which in turn implies
gcd(f(p), g(p)) | l.

Since
a | l ∧ l 6= 0 =⇒ |a| ≤ |l|,

gcd(f(p), g(p)) is indeed bounded. 2

The bound l given by the last lemma will now be used to confirm the cyclic behaviour
observed by the introductory example, in case f and g are relatively prime.

Lemma 42 Let a, b ∈ Z and let l ∈ N≥1. Then

a ≡l b =⇒ gcd(a, l) ∼ gcd(b, l).

Proof. a ≡l b implies a − b = ql for some q ∈ Z. Therefore, by Lemma 7(vi)

gcd(a, l) ∼ gcd(a − ql, l)

= gcd(b, l). 2

Corollary 43 Let f ∈ Z[X] and l ∈ N≥1. Then

p1 ≡l p2 =⇒ gcd(f(p1), l) ∼ gcd(f(p2), l)

for all p1, p2 ∈ Z.

Proof. Let f and l be as supposed. Let p1, p2 ∈ Z. Then

p1 ≡l p2 =⇒ f(p1) ≡l f(p2)

by Lemma 6 and

f(p1) ≡l f(p2) =⇒ gcd(f(p1), l) ∼ gcd(f(p2), l)

by the preceding lemma. 2
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Lemma 44 Let a, b ∈ Z and l ∈ N≥1 such that

gcd(a, b) | l.

Then
gcd(a, b) ∼ gcd(a, b, l).

Proof. Let a, b and l be as stated and denote by d a gcd of a and b, i.e., d ∼ gcd(a, b).
Since d | l there is some q ∈ Z such that l = dq. Then follows

gcd(a, b) ∼ d · 1

∼ d gcd(1, q)

∼ gcd(d, dq)

∼ gcd(gcd(a, b), l)

∼ gcd(a, b, l). 2

Proposition 45 Let f, g ∈ Z[X] be relatively prime in Q[X]. Then there is some
l ∈ N≥1 such that

p1 ≡l p2 =⇒ gcd(f(p1), g(p1)) ∼ gcd(f(p2), g(p2))

for all p1, p2 ∈ Z. In particular, set ci := |gcd(f(i), g(i))| for i ∈ {0, . . . , l− 1}. Then

gcd(f(p), g(p)) ∼






c0 if p ≡l 0

. . .

cl−1 if p ≡l (l − 1)

Proof. Let f and g be as required. By Lemma 41 there is some 0 6= l′ ∈ Z such that

gcd(f(p), g(p)) | l′

and therefore, with l := |l′| ≥ 1

gcd(f(p), g(p)) | l

for all p ∈ Z. Now let p1, p2 ∈ Z such that p1 ≡l p2. By repeated application of
Lemma 7 and Corollary 43 we get

gcd(f(p1), g(p1), l) ∼ gcd(f(p2), g(p2), l). (4.9)

By the above Lemma 44 we additionally get

gcd(f(p1), g(p1)) ∼ gcd(f(p1), g(p1), l) (4.10)

and
gcd(f(p2), g(p2)) ∼ gcd(f(p2), g(p2), l), (4.11)

and finally, by putting (4.9), (4.10) and (4.11) together, the proposed relation. Now,
set ci := |gcd(f(i), g(i))| for i ∈ {0, . . . , l − 1} and define

ι : Z → Z : p 7→ p mod l
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Table 4.2 d(p) ∼ gcd ( p2, 3p + 2 )

p -5 -4 -3 -2 -1 0 1 2 3 4 5

p2 25 16 9 4 1 0 1 4 9 16 25

3p + 2 -13 -10 -7 -4 -1 2 5 8 11 14 17

d(p) 1 2 1 4 1 2 1 4 1 2 1

such that p ≡l ι(p) and 0 ≤ ι(p) < l for all p ∈ Z. Then, with what we have already
proven,

gcd(f(p), g(p)) ∼ gcd(f(ι(p)), g(ι(p))

∼ cι(p)

=






c0 if ι(p) = 0, i.e., p ≡l 0

. . .

cl−1 if ι(p) = (l − 1), i.e., p ≡l (l − 1)

.

This concludes our proof. 2

Remark 46 The preceding corollary contains a way to compute the gcd of two
polynomial functions f(p) and g(p) where f, g ∈ Z[X] are relatively prime (in Q[X]):
Let f, g ∈ Z[X] be two such polynomials. As done in the proof of Lemma 41, find
(with the extended Euclidean Algorithm for polynomials in Q[X]) some 0 6= l ∈ Z,
such that for all p ∈ Z

gcd(f(p), g(p)) | l.

Then compute a gcd di of f(i) and g(i)) for every 0 ≤ i < l. Given any p ∈ Z,
to determine d(p) ∼ gcd(f(p), g(p)) it is now enough to identify the residue class
(modulo l) p belongs to: if p ≡l i0 (where 0 ≤ i0 < l) then

d(p) ∼ di0 .

Example 47 Let f := X2 and g := 3X + 2. By the Extended Euclidean Algorithm
(which requires only one polynomial division) we find s = 9

4 and t = −3
4p + 1

2 such
that

sf + tg = 1

which implies
9f + (−3p + 2)g = 4.

Therefore, by Lemma 41 and its proof for all p ∈ Z

gcd(p2, 3p + 2) | 4.

Table 4.2 shows–among others–the gcd’s for p ∈ {0, 1, 2, 3}. By Proposition 45 we
therefore know that

gcd(p2, 3p + 2) ∼






2 if p ≡4 0

1 if p ≡4 1

4 if p ≡4 2

1 if p ≡4 3
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Now we are prepared to see that the gcd function of two arbitrary integer polynomials
is indeed an aiq-polynomial.

Theorem 48 Let f, g ∈ Z[X]. Then there is some δ ∈ AIQ such that for all p ∈ Z

δ(p) ∼ gcd(f(p), g(p)). (4.12)

In particular, let l be a modulus of δ and let h ∼ gcd(f, g) be a polynomial gcd of f
and g in Z[X]. Then each constituent di of δ has the form

di(X) = cihi(X), (0 ≤ i < l) (4.13)

where ci ∈ Z and hi is the i-th constituent determined by l-extending h.

Proof. Let f, g ∈ Z[X], let h ∈ Z[X] be a gcd of f and g in Z[X] and let f ′, g′ ∈ Z[X]
such that f = hf ′ and g = hg′, i.e., gcd(f ′, g′) ∼ 1 in Z[X]. Then, by Proposition 45,
there is some l ∈ N≥1 and there are c0, . . . , cl−1 ∈ Z, such that

gcd(f ′(p), g′(p)) ∼






c0 if p ≡l 0

. . .

cl−1 if p ≡l (l − 1)

.

Denote by h0(X), . . . , hl−1(X) the l-extensions of h such that for all p ∈ Z

h(p) =






h0(⌊
p
l
⌋) if p ≡l 0

. . .

hl−1(⌊
p
l
⌋) if p ≡l (l − 1)

Then for all p ∈ Z

gcd(f(p), g(p)) ∼ gcd(h(p)f ′(p), h(p)g′(p))

(∗)
∼ h(p) gcd(f ′(p), g′(p))

∼






h0(⌊
p
l
⌋)c0 if p ≡l 0

. . .

hl−1(⌊
p
l
⌋)cl−1 if p ≡l (l − 1)

(4.14)

where we used Lemma 7(v) for (∗). Clearly, the last line of (4.14) uncovers
gcd(f(p), g(p) as an aiq-polynomial in the form required by our statement which
was to be proven. 2

So far, we considered pointwise properties of two integral polynomial functions f
and g because we realized that a mere polynomial view was in general too coarse for
the intended applications. This pointwise view led us to the insight that instead of
observing f and g, we better turn our attention to certain related aiq-polynomials –
and in particular we just proved that the pointwise gcd of f and g can be expressed
as an aiq-polynomial. The following lemma considers properties of the involved
constituents, now again from a more polynomial perspective.
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Corollary 49 Let f, g ∈ Z[X], let δ ∈ AIQ be their aiq-gcd and let l be a modulus of
δ. Denote the constituents of δ by d0, . . . , dl−1 ∈ Z[X] and denote by f0, . . . , fl−1 ∈
Z[X] and g0, . . . , gl−1 ∈ Z[X] the constituents of f and g after l-extending them.
Then

di | fi and di | gi

for all i ∈ {0, . . . , l − 1}.

Proof. First, assume gcd(f, g) ∼ 1 such that each di ∈ Z. Let i ∈ {0, . . . , l − 1}.
Then we have to show that di divides every coefficient of fi. Remember that by
Definition 34

fi(X) = f(lX + i)

= lf̂i(X) + f(i).

Since di|l (cf. Proposition 45 and its proof) and of course di|f(i), every coefficient of
fi is divisible by di which implies di|fi. In the same way we can prove di|gi.
Now, let f and g be arbitrary polynomials in Z[X] and let h ∈ Z[X] be their gcd. Let
f ′, g′ ∈ Z[X] such that f = hf ′ and g = hg′. By Theorem 48, the aiq-gcd δ of f and
g is determined by the aiq-gcd of f ′ and g′ (let l again denote one of its modulus),
and the l-extension of h, i.e., with the notation from the proof of Theorem 48, we
get

δ(p) ∼






c0h0(⌊
p
l
⌋) if p ≡l 0

. . .

cl−1hl−1(⌊
p
l
⌋) if p ≡l (l − 1)

i.e., di = cihi. As in the former case, ci|f
′
i , where f ′

0, . . . , f
′
l−1 are the constituents of

the l-extension of f ′. Furthermore, for each i ∈ {0, . . . , l − 1}

fi(X) = f(lX + i)

= h(lX + i)f ′(lX + i)

= hi(X)f ′(lX + i)

= hi(X)f ′
i(X)

such that obviously
di = cihj |f

′
ihi = fi

as stated. 2

Aiq-gcd’s of more than two polynomials So far we gained some insight into
the structure of the gcd mapping of two integral polynomials. What, if more than
two polynomials in Z[X] are given? We prepare the answer with the following lemma
and corollary.

Lemma 50 Let k ∈ N≥1 and f0, . . . , f(k−1) ∈ AIQ. Then the mapping

f : Z −→ Z : p 7→






f0(⌊
p
k
⌋) if p ≡k 0

. . .

f(k−1)(⌊
p
k
⌋) if p ≡k (k − 1)

is an aiq-polynomial.
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Proof. Let k ∈ N≥1 and f0, . . . , f(k−1) ∈ AIQ be expressed with a common mod-
ulus l, cf. Lemma 35, such that for 0 ≤ i < k, each fi consists of l constituents
fi0, . . . , fi(l−1). Now, we claim that for all p ∈ Z

f(p) = fij(⌊
p

kl
⌋),

where (i, j) = ϕ(r) with r ≡kl p (0 ≤ r < kl) is determined by the bijection ϕ from
Remark 36. If this is true, the fij will directly constitute kl constituents of f and
f ∈ AIQ as proposed.

So, let p ∈ Z and choose 0 ≤ r < kl such that p ≡lk r, i.e.,

p = klq + r

for some q ∈ Z. Set

(i, j) := ϕ(r) = (r − ⌊
r

k
⌋, ⌊

r

k
⌋)

and note that 0 ≤ i < k and 0 ≤ j < l by definition of ϕ. Since p ≡l r ≡k i we find
that

f(p) = fi(⌊
p

k
⌋)

must hold. Because of ⌊p

k

⌋
=
⌊klq + r

k

⌋
= lq +

⌊ r

k

⌋

we get ⌊p

k

⌋
≡l

⌊ r

k

⌋
= j

which means that we have to choose the j-th constituent of fi, such that indeed

fi(
⌊p

k

⌋
) = fij(

⌊⌊p
k
⌋

l

⌋
)

= fij(
⌊ p

kl

⌋
)

as claimed. 2

Corollary 51 Let δ ∈ AIQ and f ∈ Z[X]. Then there is some aiq-polynomial ǫ
such that for all p ∈ Z

ǫ(p) ∼ gcd(δ(p), f(p)).

Proof. We first define the desired ǫ. Let l denote a modulus of δ and let δ0, . . . , δ(l−1) ∈
Z[X] be the constituents of δ. Moreover, l-extend f such that f0, . . . , f(l−1) ∈ Z[X]
are the constituents of f . By Theorem 48, for each 0 ≤ i < l there is an aiq-
polynomial ǫi such that for all p ∈ Z

gcd(δi(p), fi(p)) ∼ ǫi(p).

By Lemma 50,

ǫ : Z −→ Z : p 7→






ǫ0(⌊
p
l
⌋) if p ≡l 0

. . .

ǫ(l−1)(⌊
p
l
⌋) if p ≡l (l − 1)
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is again an aiq-polynomial. Let us next put everything together and verify that
actually

ǫ(p) ∼ gcd(δ(p), f(p))

for all p ∈ Z, as desired. To do so, let p ∈ Z. Let 0 ≤ i < l be such that p ≡l i. Then

gcd(δ(p), f(p)) = gcd(δi(⌊
p

l
⌋), fi(⌊

p

l
⌋))

∼ ǫi(⌊
p

l
⌋)

= ǫ(p)

which proves our claim. 2

Given f1, . . . , fm ∈ Z[X] (m ≥ 2), this corollary offers an inductive argument on the
number m of given polynomials that there is indeed an aiq-polynomial δ such that

δ(p) ∼ gcd(f1(p), . . . , fm(p))

for all p ∈ Z. If m = 2, apply Theorem 48. If m > 2, by induction hypothesis there
is a δ ∈ AIQ such that

δ(p) ∼ gcd(f1(p), . . . , f(m−1)(p))

for all p ∈ Z and therefore

gcd(f1(p), . . . , f(m−1)(p)fm(p)) ∼ gcd(δ(p), fm(p)).

Now apply Corollary 51. The conclusion is drawn in the following corollary.

Corollary 52 Let m ≥ 2 and f1, . . . , fm ∈ Z[X]. Then there is an aiq-polynomial ǫ
such that for all p ∈ Z

ǫ(p) ∼ gcd(f1(p), . . . , fm(p)).

Before we proceed with the more algorithmic aspects of the “aiq-gcd-mappings”, let
us note that it takes only a slight modification in the proof of Corollary 51 to state
the following corollary.

Corollary 53 Let δ1, δ2 ∈ AIQ. Then there is some ǫ ∈ AIQ such that for all
p ∈ Z

ǫ(p) ∼ gcd(δ1(p), δ2(p)).

Proof. Let δ1, δ2 ∈ AIQ, let l be a common period of δ1 and δ2 and denote their
constituents by δ10, . . . , δ1(l−1) and δ20, . . . , δ2(l−1), respectively. Then we can simply
replace each occurrence of “δ” in the proof of Corollary 51 by δ1 and each occurrence
of “f” by δ2, and so forth. 2
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4.1.3 Intermezzo: Divisibility of Integral Polynomial Functions

As a first application of aiq-gcd’s, we consider the following problem: Let f , g ∈ Z[X].
For which p ∈ Z does f(p) divide g(p)? Or, stated in a different way, can we explicitly
describe the set

D(f |g) := {p ∈ Z | f(p)|g(p)} ?

The following lemma is the key to the answer which in turn is given by the subsequent
corollary.

Lemma 54 Let a, b ∈ Z. Then

a | b iff a ∼ gcd(a, b).

Proof. The proof follows directly from the respective definitions. 2

Lemma 55 Let f, g ∈ Z[X]. Then

∀ p ∈ Z (f(p) ∼ g(p)) ⇐⇒ (f = g ∨ f = −g).

Proof. “⇒”: Let n = max{deg(f),deg(g)}. Since there are infinitly many points
p ∈ Z with either f(p) = g(p) or f(p) = −g(p) we can find in particular n + 1 points
such that either f(p) = g(p) or f(p) = −g(p). But any polynomials of degree n is
completly detetermined by n + 1 points. Therefore, either f = g or f = −g.
“⇐”: Clear. 2

Corollary 56 Let f , g ∈ Z[X], let δ ∈ AIQ be their aiq-gcd and let l be some
modulus of δ. Then there is some finite (possibly empty) set M ⊂ Z and there exist
0 ≤ k ≤ l different integers 0 ≤ n1 < · · · < nk < l such that

D(f |g) = M ∪ [n1]l ∪ · · · ∪ [nk]l.

Proof. Let f, g, δ and l be as stated and let d0 . . . , d(l−1) ∈ Z[X] be the constituents
of δ. By l-extending f , let f0, . . . , f(l−1) ∈ Z[X] denote the constituents of f . Now,
consider the set

Si := {s ∈ Z | fi(s) ∼ di(s)}

for 0 ≤ i < l. Because a ∼ b iff a = b ∨ a = −b, we get

Si = {s ∈ Z | fi(s) = di(s)} ∪ {s ∈ Z | fi(s) = −di(s)}

= {s ∈ Z | fi(s) − di(s) = 0} ∪ {s ∈ Z | fi(s) + di(s) = 0}.

Each Si is either finite (if fi 6= gi ∧ f1 6= −gi) and can be computed by the methods
described in [WBK93] or equals Z, in which case fi = gi ∨ fi = −gi (cf. Lemma 55).
Therefore, each set lSi + i is either finite or equals [i]l. Next, we set

S :=
l−1⋃

i=1

(lSi + i)

(note that S is in the stated form) and show that

D(f |g) = S.
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So, let p ∈ D(f |g) and set i := p mod l such that p = l⌊p
l
⌋+i. Then, with Lemma 54

(for (∗)) and Theorem 48 (for (∗∗)), we get

p ∈ D(f |g) ⇐⇒ f(p)|g(p)

(∗)
⇐⇒ f(p) ∼ gcd(f(p), g(p))

(∗∗)
⇐⇒ f(p) ∼ δ(p)

⇐⇒ i = p mod l ∧ fi(
⌊p

l

⌋
) ∼ di(

⌊p

l

⌋
)

⇐⇒ i = p mod l ∧
⌊p

l

⌋
∈ Si

⇐⇒ i = p mod l ∧ l
⌊p

l

⌋
+ i ∈ lSi + i

=⇒ p ∈ S.

Conversely, if p ∈ S, then there is some i ∈ {0, . . . , l − 1} such that p ∈ lSi + i, i.e.,
there is some p′ ∈ Si such that p = lp′ + i which means

i = p mod l ∧ l
⌊p

l

⌋
+ i ∈ lSi + i

and the above equivalences go all the way up and lead to p ∈ D(f |g). 2

Example 57 Let f = 2(X + 1) and g = X(X + 1). The polynomial gcd of f and g
is X + 1 such that it is easy to see that

gcd(f(p), g(p)) ∼

{
2(2p′ + 1) if p = 2p′

1(2p′ + 2) if p = 2p′ + 1

=

{
4⌊p

2⌋ + 2 if p ≡2 0

2⌊p
2⌋ + 2 if p ≡2 1

which gives us d0 = 4X + 2 and d1 = 2X + 2. The 2-extension of f is given by

f(p) =

{
2(2p′ + 1) if p = 2p′

2((2p′ + 1) + 1) if p = 2p′ + 1

=

{
4⌊p

2⌋ + 2 if p ≡2 0

4⌊p
2⌋ + 4 if p ≡2 1

such that f0 = 4X + 2 and f1 = 4X + 4. This implies

S0 = {s ∈ Z | (f0 ± d0)(s) = 0}

= Z

since f0 = d0, and

S1 = {s ∈ Z | (f1 ± d1)(s) = 0}

= {s ∈ Z | 6s + 6 = 0 ∨ 2s + 2 = 0}

= {−1}.
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Table 4.3

p -5 -4 -3 -2 -1 0 1 2 3 4 5

f(p) -8 -6 -4 2 0 2 4 6 8 10 12

g(p) 20 12 6 2 0 0 2 6 12 20 30

gcd(f(p), g(p)) -4 -6 -2 -2 0 2 2 6 4 10 6

Therefore,

D(f |g) = (2Z + 0) ∪ (2{−1} + 1)

= 2Z ∪ {−1}

c.f. Table 4.3.

Corollary 58 Let f, g ∈ Z[X] and let l be some period of the aiq-gcd d of f and g.
Let [i]l ⊂ D(f |g) denote one of the equivalence classes as described in Corollary 56
(i ∈ {0, . . . , l − 1}). Then fi|gi, where f0, . . . , fl−1 and g0, . . . , gl−1 denote the l-
extensions of f and g.

Proof. The statement follows from the fact that either fi = di or fi = −di, similarly
as in the proof of Corollary 56. 2

4.1.4 The Extended Euclidean Algorithm for Aiq-gcd’s

Recall the Introductory Example given above, where we not only provided an aiq-
polynomial representing the gcd of given polynomials in Z[X] but also derived matri-
ces Ui ∈ Z[X]m×n such that the Ui(p) were unimodular for every p ∈ Z and therefore
led to solutions of a corresponding parametric equation system. In the following we
describe how these matrices can be systematically constructed while also finding
the aiq-gcd for given f1, . . . , fn ∈ AIQ. Thereby, we let us guide by the following
observation.

Observation 59 Let f =
∑m

i=0 aiX
i and g =

∑n
i=0 biX

i be integer polynomials
with am, bn > 0. Without loss of generality, we may assume m ≥ n and consider the
following two cases:

• m = n Define a sequence (fi, gi)i∈N of pairs of integer polynomials:

(f0, g0) := (f, g)

(fi+1, gi+1) :=

{
(gi, fi − ⌊HC (fi)

HC (gi)
⌋gi) if deg(gi) = n

(fi, gi) otherwise.

Comparing this sequence to Theorem 13 and its proof, we could say that the
computation of the gcd of am and bn is “lifted” to f and g. As the computa-
tion of gcd(am, bn) in Algorithm 1 terminates, there is some i0 ∈ N such that
deg(gi0) < n and deg(gi0−1) = n. Let

U =

(
s1 t1
s2 t2

)
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be the matrix from Algorithm 3. Then

fi0 = s1f + t1g

gi0 = s2f + t2g.

Moreover, note that

gcd(f(p), g(p)) ∼ gcd(fi(p), gi(p))

for all i ∈ N and all p ∈ Z (cf. Lemma 18). Altogether, we can say that by
“lifting” Algorithm 1 to the leading coefficients of f and g, we can reduce the
degree of one polynomial without loosing information about gcd(f(p), g(p)).

• m > n For 0 ≤ k < |bn|, consider the polynomials

f(bnY + k) =

m∑

i=0

ai(bnY + k)i

=

m∑

i=0

ai

i∑

j=0

(
i

j

)
(bnY )jk(i−j)

= ambm
n Y m + am

m−1∑

j=0

(
m

j

)
(bnY )jk(m−j) +

m−1∑

i=0

i∑

j=0

ai

(
i

j

)
(bnY )jk(i−j)

︸ ︷︷ ︸
:=f̂k(Y )

and

g(bnY + k) =

n∑

i=0

bi(bnY + k)i

=

n∑

i=0

bi

i∑

j=0

(
i

j

)
(bnY )jk(i−j)

= bn+1
n Y n + bn

n−1∑

j=0

(
n

j

)
(bnY )jk(n−j) +

n−1∑

i=0

bi

i∑

j=0

(
i

j

)
(bnY )jk(i−j)

︸ ︷︷ ︸
:=ĝk(Y )

where ambm
n Y m and bn+1

n Y n are the respective highest terms, i.e., deg(f̂k) < m
and deg(ĝk) < m. Because m > n, we get

bn+1
n Y n | ambm

n Y m. (4.15)

and therefore, the polynomial

hk(Y ) := f(bnY + k) − amb(m−n−1)
n Y m−ng(bnY + k)

= (ambm
n Y m + f̂k(Y )) − ambm

n Y m − amb(m−n−1)
n ĝk(Y )

= f̂k(Y ) − amb(m−n−1)
n ĝk(Y )
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has degree < m. The idea behind the substitution of X by bnY +k is lent from
bn-extending f(p) and g(p): Any p ∈ Z can be uniquely written as

p = bnp′ + k

with p′ ∈ Z and 0 ≤ k < |bn| and so

gcd(f(p), g(p)) ∼ gcd(f(bnp′ + k), g(bnp′ + k))

∼ gcd(f(bnp′ + k) − ambm−n−1
n pm−ng(bnp′ + k), g(bnp′ + k))

∼ gcd(hk(p
′), g(bnp′ + k))

∼ gcd(g(bnp′ + k), hk(p′)).

Again, we reduced the degree of one polynomial and preserved information
about gcd(f(p), g(p)). Moreover, we can find a unimodular matrix U(p) such
that

U(p′)

(
f(bnp′ + k)

g(bnp′ + k)

)
=

(
g(bnp′ + k)

hk(p′)

)
,

namely

U(p′) =

(
0 1

1 −amb
(m−n−1)
n p′(m−n)

)

However, this comes at the cost of having to treat bn different cases, one for each
residue class modulo bn that p could belong to. Note that the case distinction
on bn is essentially a bn-reduction. Note moreover that U(p′) does not depend
on k! 2

Observation 59 contains the two main concepts (cases m = n and m > n) needed to
develop the desired algorithm. The core idea of both concepts is to reduce the degrees
of the polynomials involved to get more and more“information”about gcd(f(p), g(p)).
To see the idea of this kind of reducibility in the right light, we provide the following
definition and lemma.

Definition 60 Let f, g ∈ Z[X], f, g 6= 0. Then we say that f is d-reducible (degree-
reducible) by g and write f ↓d g if either deg(f) = deg(g) or deg(f) > deg(g) and
HC (g) | HC (f).

Lemma 61 Let f, g ∈ Z[X] and f ↓d g. Then one can find a unimodular matrix
U ∈ Z[X]2×2 and polynomials f ′, g′ ∈ Z[X] such that

(i) U
(
f
g

)
=
(
f ′

g

)
,

(ii) deg(f) > deg(f ′)

(iii) for all p ∈ Z

gcd(f(p), g(p)) ∼ gcd(f ′(p), g′(p)).

In particular, if deg(f) = deg(g) then the matrix U is given by
extGcd [HC (f ), HC (g)] . If deg(f) > deg(g) then U is given by

(
1 −HC (f)

HC (g)X
deg(f)−deg(g)

0 1

)
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Proof. The propositions follow immediately from Definition 60, Observation 59 and
Lemma 18. 2

In a very informal way, we could visualize the effect of the last lemma as follows:

(
f
g

) (
f ′

g′

)
U

This shall mean that f is d-reducible by g and f ′, g′ and U are such that they meet
the three properties of Lemma 61. It is important to note that, by definition, if
f = 0 or g = 0 then neither f ↓d g nor g ↓d f . As well it is possible that even though
f, g 6= 0 we find f 6↓dg and g 6↓df , too, take for instance f = X2 and g = 3X + 2. In
this situation the next lemma is helpful. It essentially restates Observation 59 with
the terminology from Definition 60, therefore, we omit its proof.

Lemma 62 Let f, g ∈ Z[X] with deg(f) > deg(g) ≥ 0 and f 6↓dg. Define l :=
|HC (g)|. Then for 0 ≤ i < l and Y 6= X

f(lY + i) ↓d g(lY + i).

This specialization can be drawn as:

(
f(X)
g(X)

)

(
f(lY )
g(lY )

) (
f(lY +1)
g(lY +1)

) (
f(lY +l−1)
g(lY +l−1)

)
. . .

X = lY

X = lY + 1

X = lY + l − 1

We are now ready to introduce the algorithm by an example illustrating the applica-
tion of Observation 59 and the two preceding lemmas. It does so by construction of
a tree that keeps track of the respective l-extensions and degree-reductions. It uses
the informal visualisations given above to become familiar with the core idea.

Example 63 As in Example 47, let f = X2 and g = 3X + 2. Let us assume p0 ∈ Z

and start the aiq-tree with a single node and labeled as follows:

(
p2
0

3p0+2

)

Since deg(f) > deg(g), case m > n of Observation 59 applies, and because HC (g) =
3, we add three new cases for each p0 = 3p1 + k where k ∈ {0, 1, 2}:
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(
p2
0

3p0+2

)

( 9p2
1

9p1+2

) (9p2
1+6p1+1
9p1+5

) (9p2
1+12p1+4
9p1+8

)

p0 = 3p1

p0 = 3p1 + 1

p0 = 3p1 + 2

and with hk(p1) = f(3p1 + k) − p1g(3p1 + k) and

U(p1) =

(
1 −p1

0 1

)

we get

(
p2
0

3p0+2

)

( 9p2
1

9p1+2

) (9p2
1+6p1+1
9p1+5

) (9p2
1+12p1+4
9p1+8

)

( −2p1

9p1+2

) (
p1+1
9p1+5

) (4p1+4
9p1+8

)

p0 = 3p1

p0 = 3p1 + 1

p0 = 3p1 + 2

(
1 −p1
0 1

) (
1 −p1
0 1

) (
1 −p1
0 1

)

So, we were able to reduce the degree of f in each branch and can now apply case
m = n of Observation 59. Only considering head coefficients in the leaf of the tree
constructed so far we compute

extGcd2

(−2
9

)
= (
(1
0

)
, ( 4 1

9 2 ))

extGcd2

(1
9

)
= (
(1
0

)
,
(

1 0
−9 1

)
)

extGcd2

(
4
9

)
= (
(
1
0

)
,
(

−2 1
9 −4

)
)

and extend the aiq-tree accordingly:
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(
p2
0

3p0+2

)

( 9p2
1

9p1+2

) (9p2
1+6p1+1
9p1+5

) (9p2
1+12p1+4
9p1+8

)

(
−2p1
9p1+2

) (
p1+1
9p1+5

) (4p1+4
9p1+8

)

(
p1+2

4

) (
p1+1
−4

) (
p1

4

)

p0 = 3p1

p0 = 3p1 + 1

p0 = 3p1 + 2

(
1 −p1
0 1

) (
1 −p1
0 1

) (
1 −p1
0 1

)

( 4 1
9 2 )

(
1 0
−9 1

) (
−2 1
9 −4

)

Observe again, how the degrees of the corresponding polynomials decrease. The
two polynomials of each leaf have different degrees, so again case m < n applies.
However, the center branch needs a small adjustment such that all head coefficients
are positive, an adjustment which is justified by Lemma 7(i). Here, due to the limited
space, we only show the center branch:

. . .

. . . . . .. . .. . .

(
p1+1
−4

)

(
p1+1

4

)

(4p2+1
4

) (4p2+2
4

) (
4p2+3

4

) (4p2+4
4

)

(1
4

) (2
4

) (
3
4

) (4
4

)

p1=4p2

p1= 4p2+1 p1= 4p2+2

p1=4p2+3

(
1 0
0 −1

)

(
1 −p2
0 1

) (
1 −p2
0 1

) (
1 −p2
0 1

) (
1 −p2
0 1

)

Now all polynomials are reduced to degree 0 and a final application of the Extended
Euclidean Algorithm completes the subtree:
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. . .. . .. . .. . .

(
1
4

) (2
4

) (3
4

) (
4
4

)

(1
0

) (2
0

) (1
0

) (
4
0

)

(
1 0
−4 1

) (
1 0
−2 1

) (
−1 1
4 −3

) (
0 1
1 −1

)

We do not draw the two missing continuations of the whole graph (and leave this
task as an exercise to the reader). Instead, we want to present a condensed version
of the complete graph (see Figure 4.1) that we get as follows. Let us concentrate
on the path marked by the bold edges in the preceding figures. Consider only the
portion of the graph containing the first three consecutive transformations

. . .. . .

(9p2
1+6p1+1
9p1+5

) (
p1+1
9p1+5

) (
p1+1
−4

) (
p1+1

4

)

(
1 −p1
0 1

) (
1 0
−9 1

) (
1 0
0 −1

)

Since
(

1 0
0 −1

)(
1 0
−9 1

)(
1 −p1

0 1

)
=

(
1 −p1

9 −9p1 − 1

)

we can simply draw

. . . . . .

(9p2
1+6p1+1
9p1+5

) (
p1+1

4

)

(
1 −p1
9 −9p1−1

)

In the same way we can replace

. . . . . .

(4p2+2
4

) (2
4

) (
2
0

)

(
1 −p2
0 1

) (
1 0
−2 1

)

by

. . . . . .

(4p2+2
4

) (2
0

)

(
1 −p2
−2 2p2+1

)

such that the whole bold path now reads as
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(
p2
0

3p0+2

) (9p2
1+6p1+1
9p1+5

) (
p1+1

4

) (
4p2+2

4

) (2
0

)

p0=3p1+1

(
1 −p2
−2 2p2+1

)
p1=4p2+1

(
1 −p1
9 −9p1−1

)

Since any valid equation U(X)v(X) = w(X) remains valid if we substitute X by lY +
k, we can substitute any occurrence of p1 by 4p2 + 1 and delete the now unnecessary
arrow labeled by p1 = 4p2 + 1. Thus, we get

(
p2
0

3p0+2

) (144p2
2+96p2+16

36p2+14

) (4p2+2
4

) (2
0

)

p0=12p2+4

(
1 −4p2−1
9 −36p2−10

) (
1 −p2
−2 2p2+1

)

or, simplified as above,

(
p2
0

3p0+2

) (144p2
2+96p2+16

36p2+14

)

p0=12p2+4

(
−9p2+1 36p2

2+6p2−1

18p2+7 −72p2
2−48p2−8

)

(2
0

)

This can be read as follows. Whenever p0 ∈ Z and p0 = 12p2 + 4 (i.e., p0 ≡12 4 and
p2 = ⌊p0

12⌋) then




−9
⌊

p0

12

⌋
+ 1 36

⌊
p0

12

⌋2
+ 6
⌊

p0

12

⌋
− 1

18
⌊

p0

12

⌋
+ 7 −72

⌊
p0

12

⌋2
− 48

⌊
p0

12

⌋
− 8




(

p2
0

3p0 + 2

)
=

(
2

0

)
.

Thus, if p0 ≡12 4 the gcd of p2
0 and 3p0 + 2 is always 2. Moreover, we have found a

unimodular matrix that encapsulates (in dependence of p0) all the steps which lead
to this gcd.

The Algorithm Let us turn our attention now to the general data structure which
will be used to represent aiq-polynomials as well as the result of algorithm aiqGcd2

we are about to develop.

data LTree α = LNode α [LTree α]
| TNode α (LTree α)
| EmptyLNode [LTree α]
| Leaf α

As in the example above, an LNode will represent a specialisation (or l-extension)
while a TNode will stand for a transformation. In both cases, these inner nodes
can carry intermediate results, in contrast to EmptyLNode . For a given LNode x ys,
TNode x y or Leaf x we will call x the content of the respective node.
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Figure 4.1: All branches of the condensed aiq-graph from Example 63
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Algorithm 6

nmap :: (α → β) → LTree α → LTree β
nmap fn (Leaf x ) = Leaf (fn x )
nmap fn (LNode x xs) = LNode (fn x ) (map (nmap fn) xs)
nmap fn (TNode x y) = TNode (fn x ) (nmap fn y)
nmap fn (EmptyLNode xs) = EmptyLNode (map (nmap fn) xs)

Algorithm 7

lmap :: (α → LTree α) → LTree α → LTree α
lmap fn (Leaf x ) = fn x
lmap fn (LNode x xs) = LNode x (map (lmap fn) xs)
lmap fn (TNode x y) = TNode x (lmap fn y)
lmap fn (EmptyLNode xs) = EmptyLNode (map (lmap fn) xs)

Algorithms 6 and 7 introduce two useful functions that operate on LTrees: nmap
which applies a given function to all nodes within some LTree and lmap that applies
a given function to leaves only, thereby extending them.

We use the set
P = {p, p0, p1, . . . }

as a pool of parameters used for specialisation. To represent the modulo case dis-
tinctions we use linear equations of the form

p ≈ lpi + k

where l ∈ N≥1, 0 ≤ k < l and i ∈ N. To distinguish the “=”-relation within equations
from other occurrences within the algorithms, we use “≈”. Note that we always
use p on the left hand side of the equations, i.e., we will always use the condensed
information on the modulo cases. To use these equations as syntactical objects in
our Haskell pseudocode, we provide the type ModEqs. It will be convenient to use
ϕ(x) as an abbreviation for the equation p ≈ lx+ k. The argument of ϕ refers to the
right-hand parameter and hence allows to denote specialization in an easy manner.

Another special type is

type Zu [P ] = Z[p] ∪
⋃

i∈N
Z[pi ]

the set of all univariate polynomials with a parameter from P . Algorithm aiqGcd2

uses the two auxiliary functions provided by Algorithm 8 and Algorithm 9.

Lemma 64 Let f, g ∈ Z[X]. Then Algorithm 8 terminates. Its result is of the form
([f ′, g′],U) with f ′, g′ ∈ Z[X] such that neither f ′ ↓d g′ nor g′ ↓d f ′. Moreover,
U ∈ Z[X]2×2 is unimodular and for all p ∈ Z

(
f ′(p)

g′(p)

)
= U(p)

(
f(p)

g(p)

)
.
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Algorithm 8

dreduce :: [Z[X ]] → ([Z[X ]], Mat2×2(Z[X ]))
dreduce [f , 0] = ([f , 0], I2)
dreduce [0, f ] = ([f , 0], ( 0 1

1 0 ))

dreduce [f , g ] = if (f ↓d g ∨ g ↓d f ) then
([f ′, g ′], WV)

else
([f , g ], I2)

where

V =






(
0 1

1 −HC (f)
HC (g)X

deg(f) − deg(g)

)

if deg(f) > deg(g) ∧ HC (g) | HC (f)

snd $ extGcd2 [HC (f),HC (g)] if deg(f) = deg(g)(
1 0

−HC(g)
HC (f)X

deg(g) − deg(f) 1

)

if deg (f) < deg(g) ∧ HC (f) | HC (g)

([f ′, g ′], W) =dreduce (V · [f , g ])

Proof. Follows by induction on deg(f)+ deg(g) together with Lemmas 61 and 62. 2

Algorithm 9

specialize :: (ModEqs, Vec2(Zu [P ]), Mat2× 2(Zu [P ]))
→ [(ModEqs, Vec2(Zu [P ]), Mat2× 2(Zu [P ]))]

specialize (ϕ(pi ),
(f (pi )
g(pi )

)
, U(pi ))

= map
(λ x → (ϕ(l ′pi+1 + x ),

(f (l ′pi+1+x)
g(l ′pi+1+x)

)
, U(l ′pi+1 + x )))

[0..l ′ − 1]
where

l ′ = if deg(f ) < deg(g) then
|HC (f )|

else
|HC (g)|

Theorem 65 Let f, g ∈ Z[X]. Then aiqGcd2 (p ≈ p0,
(f (p0)
g(p0)

)
, I2) terminates, i.e.,

its result, say T , is a finite LTree. Let p ∈ Z. Then there is exactly one leaf of the
form Leaf (p ≈ lpi + k ,

(
f ′(pi )

0

)
, U(pi )) in T such that p = lpi + k for some pi ∈ Z.

Moreover,

gcd(f(p), g(p)) ∼ f ′(pi)

and (
f ′(pi)

0

)
= U(pi)

(
f(p)

g(p)

)
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where pi is determined by the equation p = lpi + k, i.e., pi = ⌊p
l
⌋. The matrix U is

unimodular.

Proof. Again, the proof is an induction on deg(f) + deg(g) and follows from
Lemma 64. 2

Algorithm 10

aiqGcd2 :: (ModEqs, Vec2(Zu [P ]), Mat2× 2(Zu [P ]))
→ LTree (ModEqs, Vec2([Zu [P ]), Mat2× 2(Zu [P ]))

aiqGcd2 (ϕ, [f , g ], U)
| g = 0 =Leaf (ϕ, [f , g ], U)
| f = 0 =Leaf (ϕ, [g , f ], ( 0 1

1 0 )U)
| (f ↓d g ∨ g ↓d f ) =TNode (ϕ, [f , g ], U) (aiqGcd2 (ϕ, [f ′, g ′], VU))

where
([f ′, g ′], V) = dreduce [f , g ]

| otherwise =LNode (ϕ, [f , g ], U) (map aiqGcd2 (specialize (ϕ,
(
f
g

)
, U)))

As in Section 2.2, we are going to extend Algorithm 10 for an arbitrary finite number
of polynomials f1, . . . , fn ∈ Z[X], n > 2. Assume, for instance, that we want to
compute the aiq-gcd of (f1, f2, f3) First, the aiq-gcd is computed only for f2 and
f3, resulting in leaves of the form (p ≈ lpi + k , [f ′(pi ), 0], U′). Then each leaf is
“extended” by f1 to look like (p ≈ lpi + k , [f1(lpi + k), f ′(pi ), 0], Uext). Finally,
the aiq-computation is continued with the two polynomials f1 and f ′. The algorithm
which does all this is given by Algorithm 12. It uses Algorithm 11, a version of
Algorithm 10 working on vectors of length ≥ 2.

There is one last step of generalization we can undertake, namely, to compute the
aiq-gcd not just of polynomials from Z[X] but directly from AIQ. So, let f1, . . . , fn ∈
AIQ and let k be a common modulus, such that

fi(p) =






fi0(p
′) if p = kp′

fi1(p
′) if p = kp′ + 1

. . .

fi(k−1)(p
′) if p = kp′ + (k − 1).

Therefore

(f1(p), . . . , fn(p)) =






(f10(p
′), . . . , fn0(p

′)) if p = kp′

(f11(p
′), . . . , fn1(p

′)) if p = kp′ + 1

. . .

(f1(k−1)(p
′), . . . , fn(k−1)(p

′)) if p = kp′ + (k − 1)

and we can lmap Algorithm 12 to the initialDataStructure given below.

initialDataStructure :: LTree (ModEqs, Vecn(Zu [P ]), Matn× n(Zu [P ]))
initialDataStructure
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Algorithm 11

aiqGcdn ::(ModEqs, Vecn(Zu [P ]), Matn×n (Zu [P ])
→ LTree (ModEqs, Vecn(Zu [P ]), Matn×n(Zu [P ])

aiqGcdn (ϕ, f , U)
| n == 1 = Leaf (ϕ, f , U)
| f2 == 0 = Leaf (ϕ, f , U)
| f1 == 0 = Leaf (ϕ, f ′, U′)

where

f ′ =




0 1 . . .
1 0
... I(n−2)



 f

U′ =




0 1
1 0

I(n−2)



U

| (f1 ↓d f2 ∨ f2 ↓d f1) = TNode (ϕ, f , U) (aiqGcdn (ϕ, f ′, VU))
where

f ′ =(f ′1 , f ′2, f3, . . . , fn)t

V =

(
V′ 0
0 I(n−2)

)

((f ′1
f ′2

)
,V′

)
=dreduce

(
f1
f2

)

| otherwise = LNode (ϕ, f , U) (map aiqGcdn (specialize (ϕ, f , U)))

Algorithm 12

aiqGcd ::(ModEqs, Vecn(Zu [P ]), Matn×n(Zu [P ]))
→ LTree (ModEqs, Vecn(Zu [P ]), Matn×n(Zu [P ]))

aiqGcd (ϕ, f , U)
| n == 1 = Leaf (ϕ, f , U)
| n ≥ 2 = lmap aiqGcdn T1

where
T1 = nmap (extendBy f1) T2

T2 = aiqGcd (ϕ, f≥ 2, U≥(2,2))
extendBy v(p) (p ≈ kp′ + l , v(p′), M(p′))

= (p ≈ kp′ + l ,
(
v(kp′+l)
v(p′)

)
,
( 1 0

0 M(p′)

)
)
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= EmptyLNode [ Leaf (p ≈ kp′, (f10(p
′), . . . , fn0(p

′)), In),
Leaf (p ≈ kp′ + 1, (f11(p

′), . . . , fn1(p
′)), In),

. . . ,
Leaf (p ≈ kp′ + (k − 1), (f1(k−1)(p

′), . . . , fn(k−1)(p
′)), In) ]

4.1.5 Aiq-Echelon Reduction

By now, it may be already clear to the reader that aiq-echelon reduction for paramet-
ric matrices U ∈ Z[p]m×n might be possible in a similar way as it was for pure integral
matrices in Section 2.2, i.e., by repeated application of Algorithm 12 to smaller and
smaller matrices. There are, however, some technical details we have to be aware of
and the purpose of the current section is to provide a Haskell oriented approach to
them.

Definition 66 (Weak Echelon Form) Let A = (aij) ∈ Z[X]m×n. Then A is in
weak echelon form if

(1) There is some r ∈ {0, . . . ,m} such that

i > r ⇒ aij = 0

for all j ∈ {1, . . . , n};

(2) For all 1 ≤ i ≤ r the set Mi := {j | aij 6= 0} is not empty;

(3) ρ1 < ρ2 < . . . < ρr, where ρi := minMi.

The reason for the definition of a weak echelon form is illustrated by the following
example.

Example 67 Consider the matrix




X − 2 X − 1 1

0 X2 − 1 2
0 0 3



 .

By the above definition, the matrix is echelon. However, for X = 2 the matrix
becomes 


0 1 1
0 −1 2
0 0 3





which is not echelon because l1 = l2. For X = −1 we get




−3 −2 1
0 0 2
0 0 3





again not echelon since l2 = l3. The same would be true in case X = 1.

Definition 68 (Strong Echelon Form) Let A = (aij) ∈ Z[X]m×n be weak eche-
lon. Then we say that A is in strong echelon form if A(p) ∈ Zm×n is echelon for all
p ∈ Z.



64 4. Equation Systems with Non-linear Parameters

The “repeated application of Algorithm 12” which we are going to describe will guar-
antee that all matrices contained within the leaves of the resulting LTree are in weak
echelon form. The implications of a matrix not being strong echelon will be discussed
later, when we describe the solutions of parametric equation systems (Section 4.1.6).

Algorithm 13

aiqEchelon :: (ModEqs, Matm×n (Zu [P ]), Matm×m (Zu [P ]))
→ LTree (ModEqs, Matm×n(Zu [P ]), Matm×m (Zu [P ]))

aiqEchelon (p ≈ kp′ + l , A(p′), U(p′))
= T3

where
T1 =aiqGcd (p′ ≈ p′, a1(p

′), Im)
T2 =lift A(p′) T1

T3 =lmap f T2

f x =nmap (extend x ) ((aiqEchelon ◦ extract) x )

Theorem 69 Let A ∈ Z[p]m×n and let T = aiqEchelon (p0 ≈ p0, A(p0), Im).
Then T is a finite LTree such that for any p ∈ Z there is exactly one leaf of the
form L = Leaf (p0 ≈ kpi + l , S(pi ), U(pi )) with S ∈ Zu[P ]m×n, U ∈ Zu[P ]m×m

and 0 ≤ l < k such that the following statements hold.

(1) p ≡k l,

(2) S is in weak echelon form,

(3) U is unimodular,

(4) S(pi) = U(pi)A(pi) for all pi ∈ Z.

Proof. Let A ∈ Z[X]m×n and let a1 denote the first column of A.
Let T1 = aiqGcd (p ≈ p, a1(p), Im) denote the LTree obtained by apply-
ing Algorithm 12 to a1. From there, we know that for any content
(p ≈ kp′ + l , a′

1(p
′), U′(p′)) of T1 the equation

a′
1(p

′) = U′(p′)a1(kp′ + l)

applies. Therefore, we can lift the actions of U′ on a1 to the whole matrix A by the
function lift .

lift :: Matrixm× n(Zu [P ])
→ LTree (ModEqs, Vecm(Zu [P ]), Matm× m(Zu [P ]) )
→ LTree (ModEqs, Matm× n(Zu [P ]), Matm× m(Zu [P ]) )

lift A(p) =lmap (λ (p ≈ kpi + l , x(pi ), U(pi )) → (p ≈ kpi + l , A(kpi + l), U(pi ))



4.1. Modulo Reduction with a Single Parameter 65

Thus, for any column ai of A and the corresponding column a′
i of A′ we have

a′
i(p

′) = U′(p′)ai(kp′ + l)

or, viewing all columns simultaneously,

A′(p′) = U′(p′)A(kp′ + l).

Now let T2 = lift A(p) T1, let

L := Leaf(p ≈ kp′ + l,A′(p′),U′(p′))

be a leaf of T2 and let

C := (p ≈ kp′ + l,A′(p′),U′(p′))

be its content. The first row of A′ is already in the desired form
(
a′

11
0

)
, so we want

to reduce As := A′
(i,j)≥(2,2). This step is accomplished by the function extract .

extract :: (ModEqs, Matm× n(Zu [P ]), Matm× m(Zu [P ]))
→ (ModEqs, Mat(m−1)× (n−1)(Zu [P ]), Mat(m−1)× (m−1)(Zu [P ]))

extract(pi ≈ kpj + l , A(pj ), U(pj )) = (pj ≈ pj , A(pj )≥ (2,2), I(m−1)×(m−1)).

By applying the induction hypothesis, consider

Ts = aiqEchelon (extract C ) = aiqEchelon (p′ ≈ p′, As(p
′), I(m−1)).

If (p′ ≈ k′p′′ + l′,A′′(p′′),U′′(p′′)) is the content of any node N of Ts then

A′′(p′′) = U′′(p′′)As(k
′p′′ + l′).

If N is a leaf then A′′ is weak echelon. Now we have to combine Ts and L. First,
we extend each matrix A′′(p′′) in Ls by the upper row and the zeroes we deleted in
order to get As. I.e., we replace each A′′(p′′) in Ts by

Â′′(p′′) :=

(
a′11(k

′p′′ + l′) a′12(k
′p′′ + l′) . . . a′1n(k′p′′ + l′)

0 A′′(p′′)

)
.

Moreover, we replace each U′′(p′′) by

Û′′(p′′) :=

(
1 0
0 U′′(p′′)

)
,

such that

Â′′(p′′) = Û′′(p′′)A′(k′p′′ + l′).

This is done by nmapping the function extend to Ts.
Second, we replace each equation

p′ ≈ k′p′′ + l′
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extend :: (ModEqs, Matm×n (Zu [P ]), Matm×m (Zu [P ]))
→ (ModEqs, Mat(m−1)×(n−1)(Zu [P ]), Mat(m−1)×(m−1)(Zu [P ]))
→ (ModEqs, Matm×n(Zu [P ]), Matm×m(Zu [P ]))

extend (p ≈ qp′ + r , A(p′), U(p′)) (p′ ≈ kp′′ + l , A′(p′′), U′)
=(p ≈ (qk)p′′ + (ql + r), Â′(p′′), Û′(p′′)U(kp′′ + l))

where

Â′(p′′) =

(
a′11 (kp′′ + l) a′12 (kp′′ + l) . . . a′1n (kp′′ + l)

0 A′(p′′)

)

Û′(p′′) =

(
1 0
0 U′(p′′)

)

by
p ≈ k(k′p′′ + l′) + l

and each Û′′(p′′) by Û′′(p′′)U′(k′p′′ + l′). Altogether, if N denotes again any node
within Ts, then its former content

(p′ ≈ k′p′′ + l′,A′′(p′′),U′′(p′′))

is now replaced by

(p ≈ k(k′p′′ + l′) + l, Â′′(p′′), Û′′(p′′)U′(k′p′′ + l′)).

Now, N directly relates to the root node of T2 because

Â′′(p′′) = Û′′(p′′)A′(k′p′′ + l′)

= Û′′(p′′)
(
U′(p′)A(k(k′p′′ + l′) + l)

)
.

If N is a leaf of Ts, then Â′′ is by the very nature of our construction in weak echelon
form. 2

4.1.6 Solving Parametric Equation Systems

By now, we possess all the tools necessary to describe the solutions of integral equa-
tion systems with one parameter. To this end, we initially consider the following spe-
cial situation. Let A ∈ Z[p]m×n and b ∈ Zn. Suppose further that there already is
some strong echelon matrix S ∈ Z[p]m×n and some unimodular matrix U ∈ Z[p]m×m

such that
UA = S

for all p ∈ Z. We aim to describe all solutions of the equation system

xA(p) = b(p) (4.16)

in dependence of p.

Lemma 70 Let fi, gi ∈ Z[X] for (1 ≤ i ≤ n). Then

n⋂

1=1

D(fi | gi) = M ∪ [a1]l ∪ · · · ∪ [am]l

for some finite set M ⊆ Z and some m ∈ N.
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Proof. By Corollary 56, for each i there is some finite set Mi and some ki such that

D(fi | gi) = Mi ∪
ki⋃

j=1

[aij ]li .

Set Ai0 := Mi and Aij := [aij ]li for i ≥ 1. Then

n⋂

i=1

D(fi | gi) = (A10 ∪ A11 ∪ · · · ∪ A1k1)

∩ (A20 ∪ A21 ∪ · · · ∪ A2k2)

∩ . . .

∩ (An0 ∪ An1 ∪ · · · ∪ Ankn
)

=
⋃

(j1,...,jn)

∈
Qn

i=1{0,...,ki}

A1j1 ∩ · · · ∩ Anjn .

Each A1j1∩· · ·∩Anjn is either finite if some ji = 0 or of the form [a1j1 ]l1∩· · ·∩[anjn ]ln .
By the Chinese Remainder Theorem (Proposition 10), the latter set is either empty
or of the form [a′]lcm(l1,...,ln). Therefore, with

M :=
⋃

some ji=0

A1j1 ∩ · · · ∩ Anjn and l := lcm(l1, . . . , ln)

the proposed statement follows. 2

Theorem 71 Let A ∈ Z[p]m×n, b ∈ Z[p]n. Let S ∈ Z[p]m×n be echelon and U ∈
Z[p]m×m be unimodular such that

U = AS.

Consider the system of equations

xA(p) = b(p). (4.17)

Then one can construct a finite LTree (ModEqs, Vecn(Zu [P∪T ]), ) where each leaf
is either of the form

Leaf (p ≈ c, (c1, . . . , ci , ti+1 . . . , tm ), ) (∗)

with cj ∈ Z, or of the form

Leaf (p ≈ lp′ + k , (f1(p
′), . . . , fi (p

′), ti+1, . . . , tm ), ) (∗∗)

with fj ∈ Z[p′] such that for any p ∈ Z system (4.17) has a solution iff

(1) either there is a corresponding leaf (∗) and p = c. Then the set of solutions is
given by the set of vectors

{x | x = (c1, . . . , ci, ti+1 . . . , tn)U(c), ti+1 . . . , tm ∈ Z}
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(2) or there is a corresponding leaf (∗∗) with p ≡l k. The set of all solutions is given
by

{x | x = (f1(p
′), . . . , fi(p

′), ti+1, . . . , tn)U(lp′ + k), ti+1 . . . , tm ∈ Z}

where p′ = ⌊p
l
⌋.

Proof. Let A,b,S and U be as stated. The construction of the proposed LTree
starts with

T0 := LNode(p ≈ p, (t1, . . . , tm), E) (4.18)

where E is the equation system (t1, . . . , tm)S = b. To begin with, we compute the
set

Γ :=
⋃

sij 6=0

{p ∈ Z | sij(p) = 0} ∪
⋃

bi 6=0

{p ∈ Z | bi(p) = 0}

because we want to treat all the cases where one sij or bj disappears occasionally
separately. The set Γ is finite and for each c ∈ Γ we determine the solutions of E(c)
and extend T0 by a leaf provided that E(c) is solvable.
Consider the numbers ρi from Definition 66. Set ϕΓ(p) :=

∧
c∈Γ p 6≈ c. Since S is

echelon, the first ρ2 − 1 equations have the form

t1s11(X) = b1(X)

t1s12(X) = b2(X)

. . .

t1s1(ρ2−1)(X) = b(ρ2−1)(X)

(4.19)

(note that if there is no ρ2 then these equations already represent the whole equation
system.) The j-th equation is satisfiable if D(s1j |bj) 6= ∅. To satisfy all ρ2 − 1
equations, it is necessary that

(1)
n⋂

j=1

D(s1j|bj) 6= ∅

and

(2) for any p ∈ ∩n
j=1D(s1j |bj)

bj(p)

s1j(p)
=

bj′(p)

s1j′(p)
(4.20)

for all 1 ≤ j, j′ ≤ ρ2 − 1.

If
⋂n

j=1 D(s1j|bj) = ∅, there is no p for which we can determine t1 besides the solutions
found above and so we are done. If

⋂n
j=1 D(s1j |bj) 6= ∅ then by Lemma 70 we can

find some l ∈ Z, a finite set M ⊆ Z and k1, . . . , ki0 ∈ Z such that

n⋂

j=1

D(s1j|bj) = M ∪ [k1]l ∪ · · · ∪ [ki0 ]l.
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Now, we have to check for each case if condition (4.20) does hold as follows. For
each c ∈ M we treat the parameter-free equation system E(c) in the same way as we
did above for Γ. So, let us concentrate on the [kj ]l. By Corollary 58, we know that

s1j(lX
′ + kj) | bj(lX + kj), i.e.,

bj(lX
′+kj)

s1j(lX′+kj)
∈ Z[X]. Set fj(X

′) :=
bj(lX

′+kj)
s1j(lX′+kj)

such

that (4.19) reads as

t1 = f1(X
′)

t1 = f2(X
′)

. . .

t1 = fρ2−1(X
′).

(4.21)

If ρ2 = 2 then t1 is fully determined by f1 and we construct the new node

LNode (p ≈ lp′ + kj ∧ ϕΓ (p), (f1(p
′), t2, . . . , tm ), E ′(p′))

where E′ results from E by deleting the first row and replacing each row

t1s1j(X) + t2s2j(X) + · · · = bj(X)

by
t2s2j(X) + · · · = bj(X) − f1(X)s1j(X).

If ρ2 > 2 then we have to determine N :=
⋂

j<j′{p | fj(p) = fj′(p)} whereas three
cases can occur.

1. N = Z, i.e., fj = fj′ for all j < j′. Proceed similar as in case ρ2 = 2 but delete
the first ρ2 − 1 rows of E in order to get E′.

2. N is finite. For each c ∈ N , construct a leaf

Leaf (p ≈ lp′ + k ∧ p′ ≈ c ∧ ϕΓ (p), t, ())

where t is the solution of the parameter-free system E(c).

3. N = ∅. In this case, nothing has to be done.

In this manner we construct new nodes for each kj which concludes the first step.
Each leaf of the LTree constructed up to now is either a Leaf or an LNode. In the
latter case, we can continue the computation of the remaining ti (i > 2) based on
the E′ in the same way as is described for t1. 2

4.2 Limitations and Possibilities in the Multi-variate

Case

While we have concrete results in the case of a single parameter, the situation changes
completely when it comes to more than one parameter. Consider for instance the
following equation system with parameters p1 and p2:

(x, y)

(
p1

p1

)
= 0. (4.22)
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Of course, (4.22) has always a solution. However, to describe the set of all solutions
we must be able to express the gcd of p1 and p2. Let us assume for a moment that
we were able to extend our previous results in a straight forward way to more than
one parameter, that is, that there are polynomials f00, f01, . . . , f(k−1)(k−1) : Z2 −→ Z

such that for all p1, p2 ∈ Z

gcd(p1, p2) ∼






f00(⌊
p1

k
⌋, ⌊p2

k
⌋) if p1, p2 ≡k 0

f01(⌊
p1

k
⌋, ⌊p2

k
⌋) if p1 ≡k 0 ∧ p2 ≡k 1

. . .

f(k−1)(k−1)(⌊
p1

k
⌋, ⌊p2

k
⌋) if p1, p2 ≡k k − 1.

(4.23)

The right hand side of ∼ in (4.23) involves

1. a fixed number of case distinctions that are determined by the

2. computations of the moduli of p1 and p2,

3. computations of ⌊ ··⌋-expressions and

4. a finite and fixed number of additions and multiplications determined by the
polynomials fij.

Therefore, (4.23) describes a primitive recursive function, using the functions +, ·,
⌊ ··⌋ and mod (to which ≡k can be reduced). Moreover, if we assume these functions
as given, (4.23) states that the gcd of two integers can be computed within a fixed
number of steps. This, however, contradicts a result by L. van den Dries, given in
[vdD03, Theorem 6.1]. There, he proves, by model theoretic considerations, that the
number of steps needed to compute the gcd of two integers – under the assumption
that addition, multiplication, ⌊ ··⌋ and mod are given – is unbounded. More precisely,
for infinitely many p1, p2, the number of steps needed to compute gcd(p1, p2) has a
lower bound linear in p1 + p2.

But there are cases, when modulo reduction is possible, though. Consider, for
instance, the matrix

A =




p1p

2
2

p1 + 1
2



 (4.24)

which contains the constant term 2. Considerations similar to those given in Sec-
tion 4.1.1 show that

gcd(p1p
2
2, p1 + 1, 2) ∼






1 if p1 ≡2 0 ∧ p2 ≡2 0

1 if p1 ≡2 0 ∧ p2 ≡2 1

2 if p1 ≡2 1 ∧ p2 ≡2 0

1 if p1 ≡2 1 ∧ p2 ≡2 1.

We can as well find unimodular matrices Uij for each case p1 ≡2 i ∧ p2 ≡2 j (i, j ∈
{0, 1}) such that

UijA ∼ (gcd(p1p
2
2, p1 + 1, 2), 0, 0)t.
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For example, if p1 = 2p′1 + 1 and p2 = 2p′2 then

U10 =




0 0 1
0 1 −(p′1 + 1)
1 0 −2p′22 (2p′1 − 1)



 .

In fact, we can generalize this example to the case that, whenever some m×1-matrix
contains a constant c, complete modulo reduction to the form (d,0)t is possible for
all occurring cases p1 ≡|c| j1 ∧ · · · ∧ pz ≡|c| jz with (j1, . . . , jz) ∈ {0, . . . , |c| − 1}z.

What about m × n-matrices with n > 1? Let us extend the example from above
and let now

B =




p1p

2
2 2

p1 + 1 3
2 4



 . (4.25)

If we simply reduce the left column as above, we may introduce parameters to the
right column. Take again p1 = 2p′1 + 1 and p2 = 2p′2. Then

U10B =




2 4
0 3 − 4(p′1 + 1)
0 2 − 8p′22 (2p′1 − 1)



 . (4.26)

We can avoid this undesirable accumulation of parameters within a former parameter-
free column if we simply switch the columns. And again, this observation can be
easily generalized. Whenever it is possible to reorder the entries of a matrix by inter-
changing rows or columns such that the obtained matrix contains a lower triangular
matrix with constant entries only, complete modulo reduction is possible for that
lower part of the matrix.

Even in the case that only one column can be completely reduced, this information
may be enough to conclude that the respective equation system has no solution.
Consider

xB = (2p1p2 + 1, 0) (4.27)

in case p1 = 2p′1 + 1 and p2 = 2p′2. With B being only partially reduced, as in
(4.26), we can already see that the equations do not have any solutions since 2 does
not divide 2(2p′1 + 1)(2p′2) + 1 for any p′1, p

′
2 ∈ Z. Any echelon form of B will have

(2, 0, 0)t as left column but 2p1p2 + 1, the first entry of the right hand side of (4.27),
will always be odd.





Chapter 5

Conclusion

This work described certain possibilities and limits of solving parametric linear Dio-
phantine equation systems as they occur in Banerjee’s data dependence analysis. A
complete algorithmic approach that extends the well-known non-parametric tech-
niques such as Echelon reduction and integral divisibility could be developed in the
case of one non-linear parameter. The algorithms were presented in such a way that
it should be straight forward to implement them in Haskell, provided the respective
libraries for vector and matrix arithmetic are present.

To get these results, we had to adapt quasi-polynomials to our needs, which
in turn allows us now to treat even programs where the access functions contain
coefficients from the set AIQ, which is more than we initially expected. By the
remarks given at the end of Section 2.3, we are confident that these methods equally
apply for coefficients with nested ⌊ ··⌋-expressions. Moreover, we believe that the
presented method of l-extension can be adjusted to extend other all-integral methods
known for the polytope model.

A severe problem that could impose limitations in practical applications could be
the growth of the decision trees. We think that this growth is similar to the growth
of coefficients as it occurs for the computation of gcd’s in Z[X].

The multi-parametric case turned out to be more complicated. Model theoretic
considerations imply that a simple continuation of the uni-parametric approach is in
general not possible. We gave, however, heuristic examples which demonstrate that
in special situations some uni-parametric results can be carried over. This may be a
starting point for further research.
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