
christoph woller

P O LY H E D R A L O P T I M I Z AT I O N F O R G P U O F F L O A D I N G I N T H E
E X A S T E N C I L S C O D E G E N E R AT O R

P O LY H E D R A L O P T I M I Z AT I O N F O R G P U O F F L O A D I N G I N
T H E E X A S T E N C I L S C O D E G E N E R AT O R

christoph woller

Master’s Thesis

Programming Group
Department of Informatics and Mathematics

University of Passau

Supervisor: Prof. Christian Lengauer, Ph.D.
Tutor: Dr. Armin Größlinger

October 2016

Christoph Woller: Polyhedral Optimization for GPU Offloading in the ExaStencils Code Gen-
erator,, Master’s Thesis, © October 2016

A B S T R A C T

A popular subject in high-performance computing (HPC) is the engineering of massive
parallel algorithms for stencil codes. Modern supercomputers approach exascale perfor-
mance, yet HPC software engineering suffers from the effective exploitation of the mas-
sive parallelism. Project ExaStencils adopts a new course to take stencil code engineering
to the next level. In the context of this project, a new domain-specific language (DSL)
is designed, which facilitates the development of multigrid methods for solving sys-
tems arising from a discretization of partial differential equations (PDEs). Furthermore,
project ExaStencils offers a DSL compiler that is able to generate high-performance hy-
brid target code.

This thesis presents a polyhedral CUDA code generation for the ExaStencils gener-
ator. Besides exploitation of the polyhedron model, the workflow features further ex-
tensions such as shared memory utilization, spatial blocking with shared memory, and
spatial blocking with read-only cache. A polyhedral schedule exploration reveals the
best performing schedule for graphics processing unit (GPU) targets. Several experi-
ments demonstrate that the polyhedral CUDA code generation is capable of dealing
with a real world problem from the ExaStencils’ domain. The limitations of the work-
flow are discussed and a hybrid tiling approach for further performance improvements
is examined.

v

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [8]

A C K N O W L E D G M E N T S

I would like to thank the following people for their help throughout this thesis:
Prof. Christian Lengauer, Dr. Armin Größlinger, and Stefan Kronawitter for support-

ing and guiding me towards this thesis. All members of the Programming Group and
all participants in project ExaStencils for providing helpful hints.

vii

C O N T E N T S

i background and fundamentals 1

1 introduction 3

1.1 Project ExaStencils . 3

1.2 High-performance computing with GPUs 4

1.3 Motivation . 5

1.4 Outline of the thesis . 7

2 fundamentals of gpgpu computation and modern nvidia gpus 9

2.1 Architecture of modern NVIDIA GPUs . 9

2.2 The NVIDIA Kepler GK110 architecture . 11

2.2.1 The streaming multiprocessor SMX 11

2.2.2 Kepler’s memory system . 13

2.2.3 Innovations of Kepler GPUs . 14

2.3 NVIDIA GeForce GTX TITAN Black . 15

2.4 CUDA GPU programming . 16

2.4.1 Basic idea behind CUDA . 16

2.4.2 The CUDA programming model . 17

2.4.3 CUDA’s programming interface in a nutshell 21

3 fundamentals of the polyhedron model 25

3.1 From a for-loop program to a polyhedron 25

3.2 Polyhedral transformations . 27

3.3 From a polyhedron back to a for-loop program 29

4 exaslang and the exastencils generator 31

4.1 The domain-specific language ExaSlang . 31

4.1.1 Multigrid methods in a nutshell . 32

4.1.2 ExaSlang by example . 33

4.2 Workflow of the ExaStencils generator . 36

4.3 Polyhedral optimizations applied by ExaStencils generator 37

4.4 CUDA code generation in project ExaStencils 39

ii polyhedral code generation for gpus 43

5 polyhedral code generation for cuda in project exastencils 45

5.1 Related work . 45

5.2 Polyhedral CUDA compilation workflow 46

5.3 CUDA code generation extensions . 49

5.3.1 Shared memory utilization . 50

5.3.2 Spatial blocking with shared memory 52

5.3.3 Spatial blocking with read-only cache 53

5.4 Polyhedral schedule exploration . 53

6 experiments 55

ix

x contents

6.1 Experimental framework . 55

6.2 Experimental setup . 56

6.2.1 Experiment 1 - sequential performance and worthwhile parts for
optimizations . 57

6.2.2 Experiment 2 - best performing schedule for smoother 57

6.2.3 Experiment 3 - performance impact of the CUDA code generation
extensions on smoothing . 60

6.2.4 Experiment 4 - performance impact of tiling on smoothing 62

6.2.5 Experiment 5 - performance evaluation of advanced smoother ex-
amples . 63

6.2.6 Experiment 6 - multigrid solver evaluation 66

6.2.7 Experiment 7 - fluid flow simulation 68

6.3 Smoother analysis - performance limiters and optimization opportunities 71

6.3.1 Performance estimates and actual performance 72

6.3.2 Kernel analysis with NVIDIA profiling tools 73

6.4 Evaluation of PPCG’s hybrid tiling feature for GPUs 77

7 conclusion 79

iii appendix 81

a sequential runtime of exemplary multigrid solvers 83

b polyhedral search space exploration test case 91

c example smoother definition in exaslang 93

d runtime of exemplary multigrid solvers 95

e hybrid tiling performance results 97

bibliography 99

L I S T O F F I G U R E S

Figure 1 Performance evolution of selected GPUs and CPUs [22, p. 2] . . . 5

Figure 2 Bandwidth evolution of selected GPUs and CPUs [22, p. 3] 6

Figure 3 central processing unit (CPU) design vs. GPU design [22, p. 3] . . 9

Figure 4 Design of a CUDA-capable GPU [22, p. 7] 10

Figure 5 Compute capability of Fermi and Kepler GPU architectures [20,
p. 7] . 11

Figure 6 Structure of SMX unit in Kepler [20, p. 8] 12

Figure 7 Kepler’s memory subsystem [20, p. 13] 13

Figure 8 The left side shows the previous Fermi architecture without dy-
namic parallelism needing the CPU to launch new work and
the right side shows the Kepler architecture with dynamic par-
allelism able to generate work by itself [20, p. 15]. 15

Figure 9 On the left side the previous Fermi architecture allowing just a
single hardware-managed connection at a time and on the right
side the Kepler architecture with Hyper-Q able to manage simul-
taneously 32 connections [20, p. 17]. 15

Figure 10 Simple CUDA example [3] . 17

Figure 11 Heterogeneous programming with CUDA [22, p. 15] 18

Figure 12 The CUDA thread hierarchy [22, p. 11] 20

Figure 13 The CUDA memory hierarchy [22, p. 13] 22

Figure 14 Source index space with n = 4 and m = 2 27

Figure 15 Target index space with n = 4 and m = 2 28

Figure 16 DSL Hierarchy in ExaStencils [12, p. 559] 31

Figure 17 Workflow of the ExaStencils generator 37

Figure 18 Workflow of the old CUDA code generation 40

Figure 19 Workflow of the polyhedral CUDA compilation 47

Figure 20 Two-dimensional 5-point stencil with halo data 51

Figure 21 Loading required halo data into shared memory 52

Figure 22 Three-dimensional subdomain processed by one thread block . . 53

Figure 23 Polyhedral schedule exploration results 58

Figure 24 Smoother loop comparison between schedule 0 and schedule 6304 59

Figure 25 Smoother kernel comparison between schedule 0 and schedule 6304 59

Figure 26 Smoother kernel call comparison between schedule 0 and sched-
ule 6304 . 60

Figure 27 Performance comparison of smoother variants in MLUPs 61

Figure 28 Performance of smoother variants with different tiling configura-
tions in MLUPs . 62

Figure 29 Performance comparison of variants of BS smoother in mean time
per V-cycle . 64

xi

Figure 30 Performance comparison of variants of Jac smoother in mean time
per V-cycle . 65

Figure 31 Performance comparison of variants of RBGS smoother in mean
time per V-cycle . 66

Figure 32 Runtime comparison of variants of the three-dimensional steady-
state heat equation with Dirichlet boundary conditions on the
unit square and constant changing thermal conductivity 67

Figure 33 Runtime comparison of variants of the three-dimensional steady-
state heat equation with Dirichlet boundary conditions on the
unit square and smoothly changing thermal conductivity 68

Figure 34 Runtime comparison of variants of Fluid Flow 70

Figure 35 Compute throughput and memory bandwidth utilization of the
kernel in Listing 18 relative to the peak performance of the NVIDIA
GeForce GTX TITAN Black . 75

Figure 36 nvvp’s break-down of instruction stall reasons averaged over the
entire execution of the smoother kernel 75

Figure 37 Performance comparison of different stencil test cases in GFLOPS 78

Figure 38 Runtime comparison of variants of the two-dimensional steady-
state heat equation with Dirichlet boundary conditions on the
unit square and constant changing thermal conductivity 95

Figure 39 Runtime comparison of variants of the two-dimensional steady-
state heat equation with Dirichlet boundary conditions on the
unit square and smoothly changing thermal conductivity 96

Figure 40 Execution time of different stencil test cases 97

L I S T O F TA B L E S

Table 1 NVIDIA GeForce GTX TITAN Black specifications 16

Table 2 Overview of the data types available in ExaSlang 34

Table 3 Applied g++ and nvcc compilation flags 55

Table 4 Overview on the different generated program variants with in-
formation about the used extensions and optimizations. 56

Table 5 Sequential runtime of the three-dimensional steady-state heat equa-
tion with Dirichlet boundary conditions on the unit square and
smoothly changing thermal conductivity 57

Table 6 Performance estimates for loop nest shown in Listing 17 72

Table 7 Measured performance of variant 2 in Table 4 of the program
presented in Appendix C . 73

Table 8 Results of nvvp’s overall GPU usage analysis 74

xii

Table 9 Sequential runtime of the two-dimensional steady-state heat equa-
tion with Dirichlet boundary conditions on the unit square and
constant changing thermal conductivity 84

Table 10 Sequential runtime of the two-dimensional steady-state heat equa-
tion with Dirichlet boundary conditions on the unit square and
smoothly changing thermal conductivity 85

Table 11 Sequential runtime of the three-dimensional steady-state heat equa-
tion with Dirichlet boundary conditions on the unit square and
constant changing thermal conductivity 87

Table 12 Sequential runtime of the three-dimensional steady-state heat equa-
tion with Dirichlet boundary conditions on the unit square and
smoothly changing thermal conductivity 89

Table 13 Performance results of hybrid tiling experiments 98

L I S T O F A L G O R I T H M S

Figure 1 Recursive V-cycle to solve u(k+1)
h = Vh(u

(k)
h ,Ah, fh, v1, v2) [26, p.

44] . 33

Figure 2 Polyhedral Optimization Strategy 38

Figure 3 Calculate CUDA relevant loop annotations 48

Figure 4 Analyze field accesses for shared memory 51

L I S T I N G S

Listing 1 Standard C code . 17

Listing 2 C with CUDA extensions . 17

Listing 3 CUDA C matrix addition example 17

Listing 4 Example source program . 25

Listing 5 Example target program after polyhedral transformation 29

Listing 6 V-cycle specification in ExaSlang equivalent to Algorithm 1 . . . 34

Listing 7 Example of variable and constant definitions in ExaSlang 35

Listing 8 Fields and Layouts . 35

Listing 9 5-point Jacobi stencil example . 35

xiii

Listing 10 Control flow examples in ExaSlang 36

Listing 11 Simple example of a loop nest L 39

Listing 12 CUDA code resulting from Listing 11 41

Listing 13 n perfectly nested loops . 48

Listing 14 Source loop nest L . 63

Listing 15 Target loop nest L after tiling innermost dimension with tile size 5 63

Listing 16 Smoothing function extracted from the ExaSlang program listed
in Appendix C . 71

Listing 17 Loop nest extracted from SmootherT in Listing 16 71

Listing 18 CUDA kernel function resulting from SmootherT in Listing 16 . . 72

Listing 19 Three-dimensional Jacobi stencil test case 77

Listing 20 Example program in ExaSlang measuring the performance of a
smoother in MLUPs. The smoother definition uses temporal block-
ing. 91

Listing 21 Example program in ExaSlang measuring the performance of a
smoother in MLUPs. 93

A C R O N Y M S

dsl domain-specific language . v

hpc high-performance computing . v

pde partial differential equation. .v

ast abstract syntax tree . 39

lse linear system of equations . 69

gpgpu general-purpose computation on graphics hardware . 4

gpu graphics processing unit .v

cpu central processing unit . xi

xiv

acronyms xv

alu arithmetic logic unit . 9

sm streaming multiprocessor . 10

simt single-instruction-multiple-thread . 10

sfu special function unit . 12

fma fused multiply-add . 12

cwd CUDA work distributor . 14

mpi Message Passing Interface . 3

jit just-in-time . 21

scop static control program . 25

tpdl target platform description language . 32

isl integer set library . 38

Part I

B A C K G R O U N D A N D F U N D A M E N TA L S

1
I N T R O D U C T I O N

This chapter explains the topic of this thesis and the motivation behind it. The first part
of the chapter gives an overview of the ExaStencils research project and introduces high-
performance computing with GPUs. The second part points out the idea behind the new
polyhedral CUDA code generation. The last part outlines the structure of this thesis.

1.1 project exastencils

Supercomputers begin to scratch the surface of exascale performance [12, p. 553]. In the
domain of parallel programming the programming languages of choice are Fortran, C,
or C++. At best these general-purpose languages are adorned with the Message Passing
Interface (MPI) and OpenMP to achieve an high degree of parallelism. The overall goals
in HPC engineering range from high performance to power consumption. The Holy
Grail is software that is highly parallel and efficient with low energy consumption that
can be ported to different execution platforms with minimal effort [12, p. 554]. However,
the step towards exascale performance of the supercomputers creates one of the toughest
problems in HPC software engineering: the necessity of the explicit treatment of the
massive parallelism inside one node of a high-performance cluster [12, p. 553f.].

A highly recurring subject in HPC is the engineering of massive parallel algorithms
for stencil codes that scale with the increasing performance of supercomputers [12, p.
554]. Stencil codes are compute-intensive algorithms, in which data points arranged
in a large grid are being recomputed repeatedly from the values of data points in a
predefined neighborhood [13, p. 56]. This fixed neighborhood pattern is called a stencil.
Among other things, the application field of stencil codes covers multigrid methods for
solving systems arising from a discretization of PDEs [12, p. 554]. Implementing stencil
codes and numerical solvers like multigrid methods requires knowledge not only about
the application domain and the mathematical model but also about the programming
of modern, increasingly heterogeneous, HPC clusters [26, p. 42]. Programmers have to
take huge efforts to get the mandatory expertise for writing optimized programs for an
HPC cluster. Project ExaStencils1 provides an escape from this scenario by pursuing a
new way of stencil code engineering [12, p. 554].

Project ExaStencils follows two new ideas. Instead of using a general-purpose source
language, a dedicated DSL called ExaSlang2 is introduced. The main benefit of an ex-

1 http://www.exastencils.org/

2 ExaSlang stands for ExaStencils language.

3

http://www.exastencils.org/

4 introduction

ternal domain-specific language is the separation of algorithm and implementation [26,
p. 42]. Domain experts are able to provide an algorithm written in ExaSlang without
taking care of the implementation details. The DSL compiler, in our case the ExaStencils
generator, is responsible for compiling the ExaSlang code into a target program with
good performance. The second idea is to perform domain-specific optimizations at ev-
ery refinement step to reach exascale performance for the domain of stencil codes [12, p.
555]. This explains the name of the project: ExaStencils. The vision of project ExaStencils
is one automatic tool that is able to engineer a variety of stencil codes [12, p. 562]. There
is already a code generator written in Scala that compiles ExaSlang to high-performance
multigrid code written in C++ for upcoming exascale supercomputers [26, p. 42f.]. The
output C++ code is parallelized with MPI, OpenMP, and also CUDA is possible.

The ExaStencils code generator and the ExaSlang domain-specific language are dis-
cussed in greater detail in Chapter 4. More information about project ExaStencils itself
can be found elsewhere [12].

1.2 high-performance computing with gpus

In the previous section we briefly addressed high-performance computing and its quest
towards exascale performance. Another topic in HPC that is getting more and more
important is the use of GPUs. HPC can no longer be imagined without general-purpose
computation on graphics hardware (GPGPU) [24, p. 21]. Commodity computer graphics
chips, better known as GPUs, belong to the most powerful computational hardware in
relation to its cost. The reasons for the prevalence of GPUs in HPC are varied.

On the one hand, GPUs are powerful and inexpensive [24, p. 21f.]. On the other hand,
GPUs are getting more and more flexible and programmable [24, p. 22]. A modern GPU
offers fully programmable processing units with support of vectorized floating-point op-
erations. Furthermore, in comparison to CPUs, the evolution of the computation capabil-
ities and the theoretical bandwidth of GPUs is far more impressive. Figure 1 illustrates
the performance growth of CPUs and GPUs. The diagram reveals that the theoretical
peak performance of modern GPUs, measured in GFLOP/s, is much higher than the
one of modern CPUs. For example the GeForce GTX TITAN achieves a theoretical peak
performance of about 4500 GFLOP/s with single precision, whereas an Ivy Bridge CPU
scratches just the 750 mark. Additionally, the performance jumps made by the latest
GPU generations are more promising than on the CPU side.

Beside the tremendous performance growth, the increasing bandwidth of GPUs as
opposed to CPUs is noteworthy [22, p. 1ff.]. Figure 2 shows the bandwidth change of
CPUs and GPUs. The bandwidth of GPUs is increasing just as the performance of GPUs
and leaves CPUs behind. Overall, the power of modern GPUs eclipses that of CPUs and,
in addition, such commodity computer graphics chips can be bought as off-the-shelf
graphics cards built for the PC video game market that are available for $400-500 at
release [24, p. 22].

One drawback of GPGPU computing is the unusual programming model [24, p. 22]. A
developer has to learn a new language and express computations in graphics terms. This

1.3 motivation 5

Introduction

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v7.5 | 2

Figure 1 Floating-Point Operations per Second for the CPU and GPUFigure 1: Performance evolution of selected GPUs and CPUs [22, p. 2]

requires a fundamental knowledge of the underlying hardware, its design, limitations,
and evolution.

In summary, the theoretical performance, the increased precision, and the rapidly
expanding programmability of the hardware make GPUs an attractive platform for
general-purpose computation [24, p. 22]. The application of GPUs and data-parallel
processing goes far beyond image rendering and processing [22, p. 4]. For example, gen-
eral signal processing, physics simulation to computational finance or computational
biology, or partial differential equations belong to their field of application.

1.3 motivation

In the previous section we got an impression of how powerful modern GPUs are and
which opportunities they provide with regard to high-performance computing. Retro-
spectively, we can state that project ExaStencils aims to develop a parallel code genera-
tor that is able to construct code reaching exascale performance and, on the other hand,
modern GPUs offer enormous compute power. As a consequence, the ExaStencils code
generator ought to produce code for GPUs.

6 introduction

Introduction

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v7.5 | 3

Figure 2 Memory Bandwidth for the CPU and GPU

The reason behind the discrepancy in floating-point capability between the CPU and the
GPU is that the GPU is specialized for compute-intensive, highly parallel computation
- exactly what graphics rendering is about - and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow control, as
schematically illustrated by Figure 3.

Cache

ALUCont rol

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 3 The GPU Devotes More Transistors to Data Processing

Figure 2: Bandwidth evolution of selected GPUs and CPUs [22, p. 3]

As mentioned in Section 1.1, the ExaStencils code generator applies code optimiza-
tions at different points and levels of the code generation process. In this context, the
polyhedron model is used to apply transformations and optimizations for better parallel
target code. The polyhedron model aims at improving the overall parallel speedup of a
program but currently it is only used for CPU and not for GPU code generation in the
ExaStencils generator.

The guiding questions of this thesis are:

• How can you utilize best a GPU’s performance capabilities for project ExaStencils?

• How can you exploit the power of the polyhedron model for GPU code generation?

• What are the limits of GPUs in the context of project ExaStencils?

Hence, this thesis focuses on a new GPU code generation for the ExaStencils gen-
erator. We concentrate on NVIDIA GPUs and use NVIDIA’s general-purpose parallel
computing platform CUDA [22, p. 4]. CUDA is a programming model that simplifies
programming of NVIDIA GPUs. Furthermore, the new workflow exploits the power of
the polyhedron model and uses GPU-specific optimizations to get the most performance
from GPUs.

1.4 outline of the thesis 7

1.4 outline of the thesis

The next chapter lays the foundation for high-performance programming with NVIDIA
GPUs. Chapter 3 examines the basic principles of the polyhedron model. In Chapter 4

the DSL ExaSlang and the ExaStencils code generator are discussed in greater detail.
Additionally, the state of the art of GPU code generation and of polyhedral optimiza-
tions in the ExaStencils generator is explained. The second part of this thesis focuses
on the implemented innovations in the ExaStencils generator. Chapter 5 presents the
new GPU code generation workflow. Subsequently, the used polyhedral schedule explo-
ration is explained. The last chapter presents the performed experiments and discusses
the gathered results.

2
F U N D A M E N TA L S O F G P G P U C O M P U TAT I O N A N D M O D E R N
N V I D I A G P U S

This chapter describes the architecture of modern NVIDIA GPUs and focuses on the
GK110 architecture in greater detail. Furthermore, programming with CUDA is ex-
plained.

2.1 architecture of modern nvidia gpus

After giving a brief introduction and motivation for GPGPU computing, this section
covers the fundamental architecture of modern NVIDIA GPUs, which is the explanation
for the difference in performance growth of CPUs and GPUs [22, p. 3f.]. The architectural
contrasts of CPUs and GPUs are schematically shown in Figure 3.

Introduction

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v7.5 | 3

Figure 2 Memory Bandwidth for the CPU and GPU

The reason behind the discrepancy in floating-point capability between the CPU and the
GPU is that the GPU is specialized for compute-intensive, highly parallel computation
- exactly what graphics rendering is about - and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow control, as
schematically illustrated by Figure 3.

Cache

ALUCont rol

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 3 The GPU Devotes More Transistors to Data ProcessingFigure 3: CPU design vs. GPU design [22, p. 3]

At the outset the main purpose of GPUs has been graphics rendering [22, p. 3]. Hence,
they perform compute-intensive, highly parallel computations. However, CPUs are low-
latency low-throughput processors. Thus, CPUs are designed to minimize latency, which
requires caches. GPUs are high-latency high-throughput processors. As a consequence,
there is no need of large caches and GPUs can dedicate more of the chip area to com-
putational power. GPUs can have more arithmetic logic units (ALUs) for the same sized
chip and therefore can support many more threads of computation. So, in contrast to
CPUs, more transistors are devoted to data processing rather than data caching and
control flow. In other words, the basic architecture of GPUs is designed for data-parallel
computations. The idea of data parallelism is to perform the same task on many differ-
ent data elements with high arithmetic intensity. This approach has two implications for

9

10 fundamentals of gpgpu computation and modern nvidia gpus

the GPU architecture. First of all if the same task is executed on a large number of data
elements, there is a lower requirement for sophisticated control flow. Secondly, the mem-
ory access latency can be hidden with calculations instead of big data caches because
the same task is executed on many data elements with high arithmetic intensity.

After this first explanation we take a closer look at the architectural design of NVIDIA
GPUs [22, p. 69f.]. The core of the NVIDIA GPU architecture consists of a scalable array
of multithreaded streaming multiprocessors (SMs). A multithreaded CUDA program
is divided in thread blocks and the SMs execute them independently. This execution
process is schematically shown in Figure 4.

Introduction

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v7.5 | 7

GPU w ith 2 SMs

SM 1SM 0

GPU w ith 4 SMs

SM 1SM 0 SM 3SM 2

Block 5 Block 6

Mult it hreaded CUDA Program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Block 1Block 0

Block 3Block 2

Block 5Block 4

Block 7Block 6

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware
Implementation for more details). A multithreaded program is partitioned into blocks
of threads that execute independently from each other, so that a GPU with more
multiprocessors will automatically execute the program in less time than a GPU with
fewer multiprocessors.

Figure 5 Automatic Scalability

1.4. Document Structure
This document is organized into the following chapters:

‣ Chapter Introduction is a general introduction to CUDA.
‣ Chapter Programming Model outlines the CUDA programming model.
‣ Chapter Programming Interface describes the programming interface.
‣ Chapter Hardware Implementation describes the hardware implementation.
‣ Chapter Performance Guidelines gives some guidance on how to achieve maximum

performance.
‣ Appendix CUDA-Enabled GPUs lists all CUDA-enabled devices.
‣ Appendix C Language Extensions is a detailed description of all extensions to the C

language.

Figure 4: Design of a CUDA-capable GPU [22, p. 7]

Hence, an SM is designed to concurrently execute a large amount of threads [22, p.
69f.]. For this purpose, the multiprocessors follow the single-instruction-multiple-thread
(SIMT) model. If a multiprocessor gets a thread block for execution, it partitions the
block into warps. A warp is a group of 32 parallel threads. The threads within a warp
have consecutive, increasing thread IDs. The part of an SM responsible for managing
and scheduling warps is simply called the warp scheduler. All threads of a warp start
at the same program address. Each thread has its own instruction address counter and
register state, thus it is free to branch and execute independently. A warp executes
one common instruction at a time. If there is a data-dependent conditional branch, it is
possible that the threads of a single warp diverge. A warp serially executes every branch
taken, while disabling threads that are not on that path. When all paths complete, the
threads converge back to the same execution path. The full efficiency can be achieved
if all threads composing a warp follow the same execution path. Each SM has a set of

2.2 the nvidia kepler gk110 architecture 11

32-bit registers that are partitioned among the warps, and a parallel data cache or shared
memory that is partitioned among the thread blocks [22, p. 71].

2.2 the nvidia kepler gk110 architecture

The last section provided an overview of the general design of a CUDA-capable NVIDIA
GPU. In this section we will look in detail at the NVIDIA Kepler GK110 architecture
because GPUs implementing this architecture are used for the experiments discussed in
the later parts of the thesis.

The Kepler GK110/210 architecture was released in 2012 and comprises 7.1 billion
transistors [20, p. 4]. NVIDIA puts the focus of this GPU architecture generation on
compute performance. The Kepler GK110/210 architecture outperforms previous gen-
eration GPUs with regard to the raw compute power, the power consumption, and the
heat output [20, p. 6]. GPUs implementing Kepler GK110 or GK 210 can perform double
precision calculations at a rate of up to 1/3 of single precision compute performance.
Figure 5 provides an overview of the compute capabilities of Fermi and Kepler GPU
architectures.

Kepler GK110 Full chip block diagram

Kepler GK110 supports the new CUDA Compute Capability 3.5. (For a brief overview of CUDA see
Appendix A - Quick Refresher on CUDA). The following table compares parameters of different Compute
Capabilities for Fermi and Kepler GPU architectures:

Compute Capability of Fermi and Kepler GPUs

FERMI
GF100

FERMI
GF104

KEPLER
GK104

KEPLER
GK110

KEPLER
GK210

Compute Capability 2.0 2.1 3.0 3.5 3.7

Threads / Warp 32

Max Threads / Thread Block 1024

Max Warps / Multiprocessor 48 64

Max Threads / Multiprocessor 1536 2048

Max Thread Blocks / Multiprocessor 8 16

32-bit Registers / Multiprocessor 32768 65536 131072

Max Registers / Thread Block 32768 65536 65536

Max Registers / Thread 63 255

Max Shared Memory / Multiprocessor 48K 112K
Max Shared Memory / Thread Block 48K
Max X Grid Dimension 2^16-1 2^32-1
Hyper-Q No Yes
Dynamic Parallelism No Yes

 Figure 5: Compute capability of Fermi and Kepler GPU architectures [20, p. 7]

2.2.1 The streaming multiprocessor SMX

One innovation in the GK 110 and GK 210 architecture is the new streaming multipro-
cessor called SMX that is schematically shown in Figure 6.

12 fundamentals of gpgpu computation and modern nvidia gpus

Streaming Multiprocessor (SMX) Architecture

The Kepler GK110/GK210 SMX unit features several architectural innovations that make it the most
powerful multiprocessor we’ve built for double precision compute workloads.

SMX: 192 single-precision CUDA cores, 64 double-precision units, 32 special function units (SFU), and 32 load/store units
(LD/ST).

Figure 6: Structure of SMX unit in Kepler [20, p. 8]

Kepler GPUs feature 15 SMX units and six 64-bit memory controllers [20, p. 6]. Each
SMX unit consists of 192 single-precision CUDA cores and every one of them ships
with fully pipelined floating-point and integer arithmetic logic units [20, p. 9]. A Kepler
SMX has eight times as many special function units (SFUs) for fast approximate tran-
scendental operations as the Fermi GF110 SM and provides IEEE-754-2008 compliant
single- and double-precision arithmetic including the fused multiply-add (FMA) opera-
tion. Each SMX has four warp schedulers, whose union is called a quad warp scheduler.
Each warp scheduler has two instruction dispatch units, making in total eight instruc-

2.2 the nvidia kepler gk110 architecture 13

referenced by a compute program. Instead, programs can map textures at any time and pass texture
handles around as they would any other pointer.

Kepler Memory Subsystem – L1, L2, ECC

Kepler’s memory hierarchy is organized similarly to Fermi. The Kepler architecture supports a unified
memory request path for loads and stores, with an L1 cache per SMX multiprocessor. Kepler GK110 also
enables compiler-directed use of an additional new cache for read-only data, as described below.

Thread

Shared
Memory

L1
Cache

L2
Cache

DRAM

Kepler Memory Hierarchy

Read-Only
Data Cache

Configurable Shared Memory and L1 Cache

In the Kepler GK110 architecture, as in the previous generation Fermi architecture, each SMX has 64 KB
of on-chip memory that can be configured as 48 KB of Shared memory with 16 KB of L1 cache, or as 16
KB of shared memory with 48 KB of L1 cache. Kepler now allows for additional flexibility in configuring
the allocation of shared memory and L1 cache by permitting a 32KB / 32KB split between shared
memory and L1 cache. To support the increased throughput of each SMX unit, the shared memory
bandwidth for 64b and larger load operations is also doubled compared to the Fermi SM, to 256B per
core clock.

For the GK210 architecture, the total amount of configurable memory is doubled to 128 KB, allowing a
maximum of 112 KB shared memory and 16 KB of L1 cache. Other possible memory configurations are
32 KB L1 cache with 96 KB shared memory, or 48 KB L1 cache with 80 KB of shared memory. This
increase allows a similar improvement in concurrency of threads as is enabled by the register file
capacity improvement described above.

Figure 7: Kepler’s memory subsystem [20, p. 13]

tion dispatch units, allowing four warps to be issued and executed concurrently. Hence,
four warps can be selected by the scheduler and, in each cycle, two independent instruc-
tions per warp can be dispatched. It is noteworthy that double-precision instructions can
be paired with other instructions. In a Kepler GK110 GPU a CUDA thread can access up
to 255 registers [20, p. 11] and in comparison to GK 110, the Kepler GK210 architeture
improves this further by doubling the overall register file capacity per SMX. Further per-
formance improvements are achieved with a new shuffle instruction allowing threads
within a warp to share data. CUDA threads within the same warp can read values from
other threads in the warp in any permutation and there is no need for separate load
and store operations to pass data through shared memory. The performance advantage
of shuffle instructions over shared memory comes from the fact that the execution of
a store-and-load operation requires only a single clock cycle. In addition to it, shuffle
instructions go hand in hand with a lower amount of shared memory needed per thread
block because data exchanged at warp level never needs to be stored in shared memory.

2.2.2 Kepler’s memory system

The next point discusses Kepler’s memory subsystem shown in Figure 7 [20, p. 13]. The
memory request path for loads and stores is unified and each SMX unit has an L1 cache.
In the Kepler GK110 architecture an SMX multiprocessor is equipped with a 64KB on-
chip memory. This memory is split into shared memory and L1 cache providing the
following configuration options. 48KB of shared memory with 16KB of L1 cache, or the
other way round. The third option is to allocate 32KB of shared memory and 32KB of L1

cache. The shared memory bandwidth for 64-bit and larger load operations amounts to
256B per core clock. In the Kepler GK210 architecture an SMX multiprocessor has 128KB
on-chip memory. The following splitting configurations into shared memory / L1 cache
are possible: 112KB / 16KB, 96KB / 32KB, and 80 KB / 48 KB. Furthermore, Kepler

14 fundamentals of gpgpu computation and modern nvidia gpus

GK110 and GK210 have a 48KB read-only data cache that is directly accessible to the
SMX units for general load operations [20, p. 14]. The benefit of using this cache arises
from its higher tag bandwidth supporting, for example, full-speed unaligned memory
access patterns. Besides the L1 and the read-only data cache, there is a 1536KB L2 cache,
which is the primary point of data unification between the SMX units, servicing all
load, store, and texture requests. All streaming multiprocessors have access to the same
on-board DRAM memory called global memory. The global memory is banked, which
means that simultaneous memory accesses to adjacent positions can be coalesced into
a single memory transaction [30, p. 5]. In contrast to previous-generation GPUs, Kepler
does not use the L1 cache for DRAM load caching, but only for register spilling [15, p.
1].

2.2.3 Innovations of Kepler GPUs

Apart from the new streaming multiprocessor SMX, GPUs of the Kepler generation offer
two more noteworthy features [20, p. 5], [19]. First, the Dynamic Parallelism feature
makes it easier for developers to exploit the massive parallel processing power of the
GPU. This feature spawns new threads by adapting to the data without going back
to the host CPU. Second, with the Hyper-Q feature it is possible that multiple CPU
cores can start work on a single GPU simultaneously. The impact of this feature is an
increased GPU utilization and a reduction of CPU idle times. A Kepler GPU allows
up to 32 simultaneous hardware-managed connections. The previous Fermi architecture
supports just a single connection.

2.2.3.1 Dynamic Parallelism

The new Dynamic Parallelism feature, visualized by Figure 8, was first presented by
NVIDIA in its Kepler GK110/210 architecture [20, p. 15f.]. It enables kernels to launch
new kernels, to create the necessary streams, events and to manage the dependences
needed to process additional work. Thus, the GPU is able to create work without any
CPU interaction. Hence, dynamic parallelism simplifies the development of recursive
and data-dependent execution patterns. As an immediate consequence more code can
be run on a Kepler GPU.

2.2.3.2 Hyper-Q

The Hyper-Q feature makes it possible to have 32 simultaneous, hardware-managed con-
nections, called work queues, between the host and the CUDA work distributor (CWD)
logic in the GPU [20, p. 17f.]. Figure 9 illustrates the Hyper-Q feature. It allows connec-
tions from multiple CUDA streams, from multiple MPI processes, or even from multiple
threads within a process. There is a one-to-one mapping between CUDA streams and
work queues. Hence, a CUDA stream is managed within its own hardware work queue.
Furthermore, inter-stream dependences are optimized. Consequently, operations in one
stream will no longer block other streams and concurrent execution of streams is possi-
ble.

2.3 nvidia geforce gtx titan black 15

Dynamic Parallelism

In a hybrid CPU-GPU system, enabling a larger amount of parallel code in an application to run efficiently
and entirely within the GPU improves scalability and performance as GPUs increase in perf/watt. To
accelerate these additional parallel portions of the application, GPUs must support more varied types of
parallel workloads.

Dynamic Parallelism is introduced with Kepler GK110 and also included in GK210. It allows the GPU to
generate new work for itself, synchronize on results, and control the scheduling of that work via
dedicated, accelerated hardware paths, all without involving the CPU.

Fermi was very good at processing large parallel data structures when the scale and parameters of the
problem were known at kernel launch time. All work was launched from the host CPU, would run to
completion, and return a result back to the CPU. The result would then be used as part of the final
solution, or would be analyzed by the CPU which would then send additional requests back to the GPU
for additional processing.

In Kepler GK110/210 any kernel can launch another kernel, and can create the necessary streams,
events and manage the dependencies needed to process additional work without the need for host CPU
interaction. This architectural innovation makes it easier for developers to create and optimize recursive
and data-dependent execution patterns, and allows more of a program to be run directly on GPU. The
system CPU can then be freed up for additional tasks, or the system could be configured with a less
powerful CPU to carry out the same workload.

Dynamic Parallelism allows more parallel code in an application to be launched directly by the GPU onto itself (right side of
image) rather than requiring CPU intervention (left side of image).

Figure 8: The left side shows the previous Fermi architecture without dynamic parallelism need-
ing the CPU to launch new work and the right side shows the Kepler architecture with
dynamic parallelism able to generate work by itself [20, p. 15].

Hyper-Q

One of the challenges in the past has been keeping the GPU supplied with an optimally scheduled load
of work from multiple streams. The Fermi architecture supported 16-way concurrency of kernel
launches from separate streams, but ultimately the streams were all multiplexed into the same
hardware work queue. This allowed for false intra-stream dependencies, requiring dependent kernels
within one stream to complete before additional kernels in a separate stream could be executed. While
this could be alleviated to some extent through the use of a breadth-first launch order, as program
complexity increases, this can become more and more difficult to manage efficiently.

Kepler GK110/210 improve on this functionality with their Hyper-Q feature. Hyper-Q increases the total
number of connections (work queues) between the host and the CUDA Work Distributor (CWD) logic in
the GPU by allowing 32 simultaneous, hardware-managed connections (compared to the single
connection available with Fermi). Hyper-Q is a flexible solution that allows connections from multiple
CUDA streams, from multiple Message Passing Interface (MPI) processes, or even from multiple threads
within a process. Applications that previously encountered false serialization across tasks, thereby
limiting GPU utilization, can see up to a 32x performance increase without changing any existing code.

Hyper-Q permits more simultaneous connections between CPU and GPU.

Each CUDA stream is managed within its own hardware work queue, inter-stream dependencies are
optimized, and operations in one stream will no longer block other streams, enabling streams to execute
concurrently without needing to specifically tailor the launch order to eliminate possible false
dependencies.

Figure 9: On the left side the previous Fermi architecture allowing just a single hardware-
managed connection at a time and on the right side the Kepler architecture with Hyper-
Q able to manage simultaneously 32 connections [20, p. 17].

2.3 nvidia geforce gtx titan black

The experiments discussed later in this thesis were performed on an NVIDIA GeForce
GTX TITAN Black GPU. For the sake of completeness, this section provides an overview
of the TITAN Black GPU and presents its technical details. The NVIDIA GeForce GTX
TITAN Black GPU is part of the GeForce 700 Series and is based on the Kepler GK110

GPU microarchitecture discussed in Section 2.2 [18]. Table 1 lists its specification details.

16 fundamentals of gpgpu computation and modern nvidia gpus

GPU Engine Specifications

CUDA Cores 2880

Base Clock 889 MHz

Boost Clock 980 MHz

Texture Fill Rate 213 GigaTexels/sec

Theoretical Peak Performance Single Precision (MAD) 5120,6 GFLOPS

Theoretical Peak Performance Double Precision (FMA) 1706,9 GFLOPS

Memory Specifications

Memory Clock 7.0 Gbps

Standard Memory Configuration 6144 MB

Memory Interface GDDR5

Memory Interface Width 384 Bit

Memory Bandwidth 336 GB/sec

Table 1: NVIDIA GeForce GTX TITAN Black specifications

2.4 cuda gpu programming

NVIDIA introduced CUDA in November 2006 as general-purpose parallel computing
platform [22, p. 4]. Furthermore, CUDA is a programming model that simplifies the
application development for parallel compute engines in NVIDIA GPUs. The CUDA
platform allows the developer to implement an application in one of the high-level
programming languages C, C++, or Fortran and upgrade it with CUDA extensions or
OpenACC directives for expressing parallelism. CUDA is available as NVIDIA CUDA
Toolkit1. This toolkit covers a comprehensive development environment for C and C++
developers. It ships with a compiler for NVIDIA GPUs, math libraries, and tools for
debugging and optimizing applications.

2.4.1 Basic idea behind CUDA

The development of a massive parallel application with CUDA for NVIDIA GPUs fol-
lows a basic principle [3]. First, the problem is solved in an higher-level programming
language like C or C++. After this step, the application is enriched with CUDA key-
words and extensions to shift computations from CPU to GPU. Figure 10 shows a sim-
ple C program on the left side and a version of this program with CUDA extensions on
its right. For example, the compiler recognizes based on the __global__ annotation that
the function saxpy is destined for the GPU and the remaining program should run on
the CPU. In addition, some memory transfer statements are added to manage the data
transfer between CPU and GPU. In summation, there are only a few changes necessary
to get a CUDA program that is parallel executable on GPUs.

1 https://developer.nvidia.com/cuda-toolkit

https://developer.nvidia.com/cuda-toolkit

2.4 cuda gpu programming 17

1 void saxpy(int n, float a,
float *x, float *y) {

2 for (int i = 0; i < n; ++i)
3 y[i] = a*x[i] + y[i];
4 }
5
6 int N = 1<<20;
7 // Perform SAXPY on 1M elements
8 saxpy(N, 2.0, x, y);

Listing 1: Standard C code

1 __global__ void saxpy(int n, float a, float *x,
float *y) {

2 int i = blockIdx.x*blockDim.x + threadIdx.x;
3 if (i < n) y[i] = a*x[i] + y[i];
4 }
5
6 int N = 1<<20;
7 cudaMemcpy(x, d_x, N, cudaMemcpyHostToDevice);
8 cudaMemcpy(y, d_y, N, cudaMemcpyHostToDevice);
9 // Perform SAXPY on 1M elements
10 saxpy<<<4096,256)>>>(N, 2.0, x, y);
11 cudaMemcpy(d_y, y, N, cudaMemcpyDeviceToHost);

Listing 2: C with CUDA extensions

Figure 10: Simple CUDA example [3]

2.4.2 The CUDA programming model

This subsection addresses the main concepts of the CUDA programming model to get a
better understanding of the semantic of the CUDA extensions in Figure 10 [7]. To put it
in a nutshell, CUDA is a heterogeneous programming model, in which code is executed
on the CPU and the GPU. This model refers to the CPU as host. The GPU is called
the device. The programming model proceeds on the assumption that the host and the
device maintain their own separate memory spaces in DRAM, which are respectively
denoted by host memory and device memory. The device executes the CUDA parts of a
program and operates as coprocessor to the host running the main program. Figure 11

illustrates the relation between host and device. A developer implements a program in
an high-level programming language and adds special CUDA extensions to mark the
parts of the code that should be executed on the device in parallel. The remaining code
runs on the host. The main concepts of the CUDA programming model are explained
with help of the following example in Listing 3 [22, p. 12]. The example shows a simple
matrix addition of two square matrices.

1 __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {
2 int i = blockIdx.x * blockDim.x + threadIdx.x;
3 int j = blockIdx.y * blockDim.y + threadIdx.y;
4 if (i < N && j < N)
5 C[i][j] = A[i][j] + B[i][j];
6 }
7 int main() {
8 . . .
9 // Kernel invocation
10 dim3 threadsPerBlock(16, 16);
11 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
12 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
13 . . .
14 }

Listing 3: CUDA C matrix addition example

18 fundamentals of gpgpu computation and modern nvidia gpus

Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v7.5 | 15

Devi ce

Grid 0

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Host

C Program
Sequential
Execution

Serial code

Parallel kernel
Kernel0< < < > > > ()

Serial code

Parallel kernel
Kernel1< < < > > > ()

Host

Devi ce

Grid 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

Serial code executes on the host while parallel code executes on the device.

Figure 8 Heterogeneous Programming
Figure 11: Heterogeneous programming with CUDA [22, p. 15]

2.4 cuda gpu programming 19

2.4.2.1 Kernels and Threads

The central unit in the CUDA programming model is a kernel [22, p. 9]. The term kernel
refers to a function that is meant to be executed on the device. The developer can extend
a regular function definition with the __global__ declaration specifier to mark it as ker-
nel. For example the function MatAdd in line 1 in Listing 3 forms a CUDA kernel. Hence,
the main function in line 7 is executed by the host and calls the kernel function MatAdd in
line 12, which is then executed by the device. Beside the name of the kernel function and
the function arguments, a kernel function call requires the specification of an execution
configuration. The developer defines the execution configuration within <<< . . . >>> like
shown in line 12 in Listing 3. A kernel is executed N times in parallel by N different
CUDA threads [22, p. 9]. In the CUDA programming model, these N threads are orga-
nized in one-dimensional, two-dimensional, or three-dimensional thread blocks and these
thread blocks together form a one-dimensional, two-dimensional, or three-dimensional
grid [22, p. 10f]. The freedom of defining blocks and grids of dimensionality 1, 2, or 3

should enable a simpler approach to vector, matrix, or volume calculations. Nonetheless,
a kernel is executed by a number of equally shaped thread blocks and the total number
of CUDA threads being launched equals the number of threads per block times the num-
ber of blocks in the grid. The number of threads per block and the number of blocks
in the grid is determined by the kernel call’s execution configuration, which has the
following structure: <<<numBlocks, threadsPerBlock, sharedMemory, cudaStream>>> [22, p.
135].

• numBlocks: This variable of type int or dim3 specifies the dimension and size of
the grid [22, p. 135]. A one-dimensional grid is specified by providing an int

variable. A two-dimensional grid is specified by defining numBlocks like in line 11

in Listing 3. To get a three-dimensional grid, one has to define a dim3 variable like
for a two-dimensional grid but adding a third component. Hence, the number of
blocks being launched is equal to:

– numBlocks for a one-dimensional grid

– numBlocks.x * numBlocks.y for a two-dimensional grid

– numBlocks.x * numBlocks.y * numBlocks.z for a three-dimensional grid

• threadsPerBlock: This variable of type int or dim3 specifies the dimension and size
of each block [22, p. 135]. One-dimensional, two-dimensional, and three-dimension-
al thread blocks are specified like for the grid mentioned in the previous point.
Hence, the number of threads per block is equal to:

– threadsPerBlock for a one-dimensional grid

– threadsPerBlock.x * threadsPerBlock.y for a two-dimensional grid

– threadsPerBlock.x * threadsPerBlock.y * threadsPerBlock.z for a three-dimen-
sional grid.

• sharedMemory: This variable of type size_t is an optional argument and defaults
to zero [22, p. 135]. It specifies the number of bytes in shared memory that are

20 fundamentals of gpgpu computation and modern nvidia gpus

dynamically allocated per block for this call in addition to the statically allocated
memory.

• cudaStream: This variable of type cudaStream_t is an optional argument and defaults
to zero [22, p. 135]. It specifies the associated stream.

Figure 12 illustrates the thread hierarchy in the CUDA programming model for a
better understanding of the thread organization in thread blocks and the grid compo-
sition of thread blocks [22, p. 9ff.]. Each CUDA thread has a unique thread ID and be-
longs to exactly one thread block in a grid. As a consequence, the unique thread ID for
some thread can be calculated with help of the built-in variable threadIdx of type uint3

that contains the thread index within the respective thread block, the built-in variable
blockIdx of type uint3 that contains the block index within the grid, and the built-in
variable blockDim of type dim3 that contains the number of threads per dimension in
a block. Hence, the unique thread ID is one-dimensional, two-dimensional, or three-
dimensional according to the dimensionality of the grid and the thread block. Simply
put, for a unique three-dimensional thread ID tid = (x,y, z) of a CUDA thread holds:
i = blockIdx.i ∗ blockDim.i+ threadIdx.i, i ∈ {x,y, z}. For a two-dimensional or a one-
dimensional thread ID the calculation is straightforward. An example of the calculation
of a two-dimensional thread ID is shown in line 2 and 3 in Listing 3.

Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v7.5 | 11

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

,
���&#
�����	 �
�����
��#���0�����	
���&#
�����#���0���
���������
����
�����	

�����������$�	�(�����#
����	$�
��
���������+�,�����&
��������#���0���������������#

��
����
��������	
�
(�&��
��#�!
+

A�� �#���0���	 ���	
����������#
���
�	���
��#$�����
���&
���������	�����&
��������
���	 �

���&
�����������
(����
���#�
���	 ���	
�0
��
��	 ���� �	
�#���	�������� ���
!����#�
+�,
���&
���������	
�	 �
���#���0�������
���#�
���	 ���	
�0
��
��	 ���� �	

#���	�������� !���!����#�
+

Figure 12: The CUDA thread hierarchy [22, p. 11]

2.4 cuda gpu programming 21

As discussed previously in Section 2.1, the thread blocks are distributed to the differ-
ent streaming multiprocessors, which execute the thread blocks in any order, in parallel
or in series [22, p. 12]. Consequently, the thread blocks have to be independent of each
other. Furthermore, the number of threads per block is limited to 1024 threads in mod-
ern GPUs because all threads of a block reside on the same streaming multiprocessor
and must share its limited memory resources. Threads within the same block can share
data through the shared memory of the SM and synchronize their execution with the
intrinsic function __syncthreads(). This function acts as a barrier, which causes a thread
to wait for all other threads of the same block before proceeding. There is no global
synchronization between threads of different blocks.

2.4.2.2 Memory Hierarchy

Figure 13 provides an overview of the different memory spaces the CUDA threads have
access to [22, p. 12f.]. Each thread has its own private local memory. For data exchange
between threads of the same thread block there is a shared memory. Each thread block
has its own shared memory. Moreover, there are three memory spaces that can be ac-
cessed by all threads no matter which grid or block. These include the global, the con-
stant, and the texture memory space. The last two memory spaces, constant and texture,
are read-only. All three are persistent across kernel launches by the same application.

2.4.3 CUDA’s programming interface in a nutshell

After discussing the general CUDA programming model, this section gives an overview
of CUDA’s programming interface [22, p. 17]. As already mentioned in Section 2.4.1,
the CUDA C toolkit provides a set of extensions to the C/C++ language and a runtime
library. In order to run a CUDA application it must be compiled with NVIDIA’s compiler
driver nvcc that is introduced in the following subsection. Furthermore, we have a look
at the CUDA runtime and the different compute modes of an NVIDIA GPU.

2.4.3.1 CUDA compilation workflow

Programs written in C or C++ with CUDA extensions must be compiled into binary
code by the NVIDIA compiler driver nvcc2 that is contained in the CUDA toolkit to
execute on the GPU [22, p. 17f.]. The nvcc compiler driver supports offline and just-in-
time (JIT) compilation. It expects source files containing a mix of host and device code
as input and accomplishes the following tasks:

(1) Separation of device and host code.

(2) Compilation of the device code into an assembly form and/or binary form.

(3) Modification of the host code by replacing kernel invocations and the respective
execution configurations with the necessary CUDA C runtime function calls to load
and launch each compiled kernel from the assembly and/or binary form.

2 http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

22 fundamentals of gpgpu computation and modern nvidia gpus

Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v7.5 | 13

&
&��$���������
�������
�
�	�����
������&��
�������
��������	�����	
������������&

��
��������	�����&�	��@�

�,
(��
�����������
�%
&��$B+

,
����#��������	��	������	
(��
�&
&��$�����
����
��
����	
�	��������0
��
�������
�
#$�	
���&
��������	���+

Global memory

Gr id 0

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Gr id 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

Thread Block
Per-block shared

mem ory

Thread

Per-t hread local
mem ory

Figure 7 Memory HierarchyFigure 13: The CUDA memory hierarchy [22, p. 13]

(4) Output of the modified host code either as C code or as object code. In the first case
the resulting C code must be compiled using another tool. In the latter case nvcc

calls the host compiler itself during the last compilation stage.

2.4.3.2 CUDA C runtime

The CUDA C runtime is based on the CUDA driver API, which is a lower-level C API [22,
p. 20f.]. It is implemented in the cudart library. If one executes a CUDA application, the
runtime is initialized upon the first call of a runtime function. One part of this initializa-

2.4 cuda gpu programming 23

tion is the context creation. For each device in the system an individual context, serving
as the primary context of this device, is created. A CUDA context can be regarded as
GPU analog of a CPU process [22, p. 224]. It encapsulates resources and actions per-
formed within the CUDA driver API. If a context is destroyed, the system automatically
cleans up all these resources. The primary context of a device is shared among all host
threads of the program [22, p. 21]. Hence, there is an usage count for each context and
if the usage count is equal to zero, the respective context is destroyed [22, p. 224]. If JIT
compilation is used, the device code is compiled during the context creation and loaded
into the device memory [22, p. 21].

A more detailed explanation of the CUDA C runtime and more information about the
CUDA context can be found elsewhere [22, p. 20ff.], [22, p. 224].

2.4.3.3 Compute modes

Modern NVIDIA GPUs offer different modes for compute applications [22, p. 67f.]. The
compute mode of a device can be changed with help of the tool NVIDIA’s System Man-
agement Interface (nvidia-smi)3. According to the GPU, there a four different compute
modes:

(1) Default: Multiple host threads are able to use the device at the same time.

(2) Exclusive-process: Only one CUDA context may be created on the device across all
processes in the system and that context may be accessible to as many threads as
desired within the process that created the context.

(3) Exclusive-process-and-thread: Same as exclusive-process with the additional constraint
that the context may only be accessible to one thread at a time.

(4) Prohibited: No CUDA context can be created on the device.

3 https://developer.nvidia.com/nvidia-system-management-interface

https://developer.nvidia.com/nvidia-system-management-interface

3
F U N D A M E N TA L S O F T H E P O LY H E D R O N M O D E L

Since the 1990s, the polyhedron model has been used as an abstract representation of
loop programs to ease the process of code transformation and parallelization [4, 5, 11].
The abstract consideration of a loop program in the polyhedron model helps to answer
the questions of the possibility of finding parallelism. In this chapter we will discuss
the polyhedron model on the basis of an example program and how it can be used to
parallelize a program. Listing 4 shows our example program.

1 for i = 1← 1→ n
2 for j = 1← 1→ i+m
3 S1 : A[i][j] = A[i− 1][j] +A[i][j− 1]
4 S2 : A[i][i+m+ 1] = A[i− 1][i+m] +A[i][i+m]

Listing 4: Example source program

As its name implies, the main idea of the polyhedron model is to transform a loop
program in an appropriate polyhedron [5, p. 1581], [11, p. 1f.]. The benefit of this trans-
formation is to take advantage of the established theory of linear programming for
working with polyhedra. The basic model expects a polyhedron to be convex, to have a
flat surface, and to fulfill some more requirements [11, p. 2]. These required properties
restrict the sets of programs that can be modeled to mainly for-loop programs acting
on arrays. Furthermore, in a valid for-loop program, composed of n perfectly nested
loops acting on arrays, the loop bounds and the array subscripts have to be affine ex-
pressions in the indices of the enclosing loops and in the problem size. Such a program
is called a static control program (SCoP) and can then be represented by a polyhedron
in Zn, where each of the n loops defines the extent of the polyhedron in one dimen-
sion. Hence, our example program in Listing 4 can be interpreted as a polyhedron in
Z2. There are extensions to get a wider application of the model, but for the sake of
simplicity we only consider basic for-loop programs.

3.1 from a for-loop program to a polyhedron

It is still to be clarified how to transform a for-loop program into a polyhedron. In List-
ing 4 we can recognize two statements S1 and S2. S1 is enclosed by two loops whereas
only the outer loop surrounds S2. Since S1 and S2 are part of a loop body, they are ex-
ecuted several times. These statement executions are called instances and the instances
of a statement can be identified with the name of the statement and the surrounding

25

26 fundamentals of the polyhedron model

loop counters [5, p. 1581ff.]. Hence, the instances of S1 can be identified in the form of
< S1, i, j > and the one of S2 with < S2, i >. In the first step, a loop program is repre-
sented by the set of all instances occurring in it. This set is named the iteration domain
or index space IS. In this thesis we are only interested in terminating programs, thus
the index space IS is finite. The index space IS has to be ordered by some relation ≺ to
represent the source program. If a,b ∈ IS, a ≺ b means that the instance a is executed
before the instance b. In the case of a sequential program, ≺ is a total order and in
the case of a fully parallel program, the relation ≺ is empty since all operations can be
performed in any order. If ≺1 and ≺2 are two different execution orders for the same
index space IS, the concept of dependences is used to decide whether the tuples (IS,≺1)

and (IS,≺2) represent the same program or not. The dependency relation is defined by
δ = {(a,b) ∈ IS× IS : a ≺ b ∩R(a) ∩W(b) 6= ∅∨W(a) ∩R(b) 6= ∅∨W(a) ∩W(b) 6= ∅},
where W(a) is the set of all memory cells written by instance a ∈ IS and R(a) is the
set of all memory cells read by instance a ∈ IS. To put it in a nutshell, two instances
a,b ∈ IS are dependent, written aδb, if both access the same memory cell and at least
one of them modifies it. The tuples (IS,≺1) and (IS,≺2) are equivalent (represent the
same program), if dependent instances are executed in the same order in both. The in-
dex space IS of the example program in Listing 4 is given as IS = {< S1, i, j >: 1 6
i 6 n∧ 1 6 j 6 i+m} ∪ {< S2, i >: 1 6 i 6 n}. A convex polyhedron can be defined
as the intersection of a finite number of half-spaces. A half-space in Zk can be spec-
ified with an affine inequality of the form a1 · x1 + a2 · x2 + · · · + ak · xk 6 β, where
a1, . . . ,ak ∈ Z∧β ∈ Z are constants and x1, . . . , xk ∈ Z are variables. A convex polyhe-
dron in Zk can then be specified as a system of l affine inequalities of the form A · x 6 b,
where A is an l× k matrix, x is an k× 1 vector of variables, and b is an l× 1 vector of
constants. In our example, we can separate the instances in IS into instances of S1 and
instances of S2. For the sake of simplicity we just consider the instances of S1 now, which
fulfill in total four inequalities originating from the loop bounds. These four inequalities
form a system of affine inequalities that describes a polyhedron. The following equiv-
alent transformations describe how to get from the inequalities, derived from the loop
bounds, to the system of affine inequalities that describe a polyhedron, which represents
the instances of S1:

i > 1

j > 1

i 6 n

j 6 m+ i

⇔


−i

−j

i

−i+ j

 6


1

1

n

m

⇔

−1 0

0 −1

1 0

−1 1


︸ ︷︷ ︸

A:=

·

[
i

j

]
︸ ︷︷ ︸
x:=

6


1

1

n

m


︸ ︷︷ ︸

b:=

The rightmost representation corresponds to a system of affine inequalities that de-
scribes a polyhedron in Z2. We can also devise a system of affine inequalities for the
instances of S2, which can again be represented as a polyhedron in Z2. These two
polyhedra together are illustrated in Figure 14 and represent the index space IS of the
example program in Listing 4.

3.2 polyhedral transformations 27

i > 1 i 6 n

j > 1

j 6 i+m

j

i

Figure 14: Source index space with n = 4 and m = 2

The dashed lines in Figure 14 highlight the half-spaces that bound the polyhedra and
the arrows symbolize the dependences between the instances in IS. Figure 14 visualizes
the instances of S1 with blue points and the ones of S2 with green points.

3.2 polyhedral transformations

The previous subsection discussed the representation of a for-loop as polyhedron in
Zk. This section addresses program optimizations in the polyhedron model. In general,
optimizations in the polyhedron model are performed by coordinate transformations of
the index space IS [5, p. 1584f.]. In the following we discuss one possible transformation
of the index space shown in Figure 14. The loop nest in Listing 4 is imperfect because not
all statements belong to the innermost loop body. Additionally, one notices that both the
loop on i and on j are sequential since one iteration always accesses the value written by
the previous iteration. However, with the aid of the polyhedron model we can expose
parallelism by applying a skewing transformation. Figure 15 presents the result of this
transformation. It reveals that there are no dependences between iterations of the p loop
for a given value of t. Hence, the iterations of the p loop can be executed in parallel.

28 fundamentals of the polyhedron model

p

t

Figure 15: Target index space with n = 4 and m = 2

Essentially, the applied skewing transformation is a change of coordinates of the
points in the polyhedra combined with a renaming [5, p. 1584f.]. The following equalities
define the applied skewing transformation for S1 and S2:

S1 :

[
t

p

]
=

[
1 1

0 1

]
︸ ︷︷ ︸

T1:=

·

[
i

j

]
+

[
−2

−1

]

S2 :

[
t

p

]
=

[
2

1

]
︸ ︷︷ ︸
T2:=

·
[
i

]
+

[
m− 1

m

]

The matrices T1, T2 are called space-time mapping [11, p. 6] and are derived from a
placement function p̂ and a schedule function t̂. The schedule function t̂ assigns a point
in time to every instance in the index space IS whereas the placement function p̂ as-
signs a processor to each instance in IS. This is why the dimensions in the target index
space are named t and p. Linear programming offers methods and techniques to find
good schedule and placement functions. A more detailed explanation of schedule and
placement functions is outside the scope of this thesis and not essential in this context.

An important fact is that the transformation matrix T1 is unimodular because its deter-
minant is equal to 1. As a result of this unimodularity T1 is bijective in the integers. As
a consequence the target polyhedron resulting from T1 is precisely the target space [11,
p. 6].

3.3 from a polyhedron back to a for-loop program 29

3.3 from a polyhedron back to a for-loop program

In the previous subsection we demonstrated how to expose parallelism in a supposed
sequential program. The next step is to obtain a loop program from the representation
in the polyhedron model. Figure 15 serves again as an example. As already mentioned,
we have a sequential loop on t for the time dimension and a parallel loop on p for
the spatial dimension. In our case a very simple approach is to define the loop on t
as the outer loop and the loop on p as the inner one. Since the calculation of the loop
bounds is slightly difficult, we do not discuss it at this point. Listing 5 depicts the target
program retrieved from the target index space in Figure 15. The parfor keyword in line 2

in Listing 5 indicates that the iterations of this loop can be executed in parallel.

1 for t = 0← 1→ m+ 2 ∗n− 1
2 parfor p = max(0, t−n+ 1)← 1→ min(t, d(t+m)/2e)
3 S1 : A[i][j] = A[i− 1][j] +A[i][j− 1]
4
5 S2 : A[i][i+m+ 1] = A[i− 1][i+m] +A[i][i+m]

Listing 5: Example target program after polyhedral transformation

4
E X A S L A N G A N D T H E E X A S T E N C I L S G E N E R AT O R

Project ExaStencils was already introduced in Section 1.1. This chapter has its focus now
on the ExaStencils code generator and the DSL ExaSlang. First, the DSL is presented.
After that, we discuss the ExaStencils generator and the workflow of the CUDA code
generation prior to this thesis.

4.1 the domain-specific language exaslang

As already mentioned, the domain of ExaSlang is multigrid stencil codes on (semi-)
structured grids [12, p. 556]. Such stencil codes appear in multigrid methods, which
are asymptotically optimal solvers for elliptic PDEs. In other words one can say that
ExaSlang is an external DSL for highly scalable multigrid solvers. One characteristic of
ExaSlang is its composition of four hierarchically ordered layers [26, p. 44f.]. The division
into four layers is a design decision regarding the major user groups of ExaSlang: engi-
neers, natural scientists, mathematicians, computer scientists. The hierarchy of ExaSlang
is shown in Figure 16. ExaStencils: Advanced Stencil-Code Engineering 559

abstract
problem

formulation

concrete
solver

implementation

1

2

3

4

Continuous Domain & Continuous Model

Discrete Domain & Discrete Model

Algorithmic Components & Parameters

Complete Program Specification

H
ardw

are
D

escription

Fig. 3. The DSL hierarchy of ExaStencils

worse, certain combinations of options can interfere with each other with respect
to performance in subtle ways (which is an instance of the feature-interaction
problem [7,37]). To make this problem tractable, ExaStencils will provide a capa-
bility of recommending suitable combinations of configuration option, based on
a machine-learning approach. The objective is to make sufficiently accurate per-
formance predictions on the basis of performance measurements of only a small
number of concrete stencil-code variants. The latest innovation here emerged
from recent work on automated software configuration [37]: The key idea is to
detect and handle explicitly interactions among configurations options—even
among numeric parameters, rather than simply using black-box auto-tuning [12]
or machine-learning approach [22].

We started experiments with the Highly Scalable Multigrid Solver [26]. This
solver tolerates a limited lack of structure in the grid by considering so-called
hierarchical hybrid grids, as depicted in Fig. 4. At the coarsest level, on the left,
the grid is unstructured, but refinements of each segment (middle and right)
must be homogeneous, though each segment may exhibit a different structure.

Fig. 4. Successive refinement of a hierarchical hybrid grid

Commonalities and variabilities are usually specified in terms of a variability
model. The variability model for the Highly Scalable Multigrid Solver is illus-
trated in Fig. 5. Each node denotes a configuration option—in our case, the
choice of a coarse grid solver, a smoother, and pre- and post-smoothing param-
eter values which must satisfy the condition that their sum is greater than zero.

Figure 16: DSL Hierarchy in ExaStencils [12, p. 559]

The first layer, or just ExaSlang 1, is the most abstract layer and is designed for en-
gineers and natural scientists [26, p. 44f.]. With ExaSlang 1 they are able to describe
problems in mathematical formulation. Example problems would cover energy func-
tionals that should be minimized or partial differential equations that should be solved
on a given domain with corresponding boundary conditions. ExaSlang 2 is the layer for

31

32 exaslang and the exastencils generator

mathematicians. It is a bit less abstract than ExaSlang 1 and allows to define a problem
in a discretized formulation. In the third layer one can identify the multigrid method for
the first time. ExaSlang 3 allows not only the specification of the problem in a discretized
way, but also the modeling of algorithmic components, settings, and parameter values.
This layer is intended for mathematicians. With the last layer, ExaSlang 4, the descrip-
tion of user-relevant parts of the parallelization is possible. For example data structures
for data exchange can be chosen and the communication patterns can be selected. Most
computer scientists will use ExaSlang 4. Additionally, there is an intermediate represen-
tation (ExaSlang IR), which appears only temporarily in the translation process and is
not available to the user. This is the reason why ExaSlang IR is not depicted in Figure 16.
Orthogonal to the functional description of programs using ExaSlang 1-4 is the target
platform description. The target platform description covers the nature of the target sys-
tem, for example the hardware components like CPUs, memory hierarchies, accelerators,
cluster topology and available software like compilers, MPI implementations, and more.
These properties can be specified with the target platform description language (TPDL).

The CUDA code generation operates on ExaSlang IR, which results from ExaSlang 4.
Hence, we discuss only ExaSlang 4 in greater detail and refer to ExaSlang 4 as ExaSlang
for the rest of this thesis.

4.1.1 Multigrid methods in a nutshell

Before we address the features of ExaSlang, a brief introduction to multigrid methods
is in order. Multigrid methods are iterative solvers for systems arising from a discretiza-
tion of PDEs [26, p. 44]. The iterative solver traverses between fine and coarse grids in a
grid hierarchy. The basic idea is to approximate the unknown errors, to a given approx-
imation on a fine grid, on a coarser grid. This is possible since a coarser grid has fewer
discretization points. The combination of this coarse-grid principle and the smoothing
property yields a fast rate of convergence. The smoothing property declares in example
that classical iterative methods like Jacobi or Gauss-Seidel are able to smooth the error
after few steps. The V-cycle, described in Algorithm 1, is an example for a multigrid
iteration. Taken as a whole Algorithm 1 performs the following actions [26, p. 44]:

(1) Pre-smoothing: Smooth high-frequency error components

(2) Compute residual: Calculate a new error approximation called residual

(3) Restrict residual: Approximate the lower-frequency error components of the residual
on coarser grids

(4) Recursion: Perform algorithm recursively on coarser grid

(5) Prolongate error: Prolongate residual back to the finer grids

(6) Coarse grid correction: Eliminate the residual on the finer grids

(7) Post-smoothing: Smooth remaining high-frequency error components

4.1 the domain-specific language exaslang 33

Algorithm 1 Recursive V-cycle to solve u(k+1)
h = Vh(u

(k)
h ,Ah, fh, v1, v2) [26, p. 44]

1: if coarsest level then
2: solve Ah · uh = fh exactly or by many smoothing iterations
3: else
4: ū

(k)
h = S

v1

h (u
(k)
h ,Ah, fh) . {pre-smoothing}

5: rh = fh −Ah · ū(k)h . {compute residual}
6: rH = R · rh . {restrict residual}
7: eH = VH(0,AH, rH, v1, v2) . {recursion}
8: eh = P · eH . {prolongate error}
9: ũ

(k)
h = ū

(k)
h + eh . {coarse grid correction}

10: u
(k+1)
h = S

v2

h (ũ
(k)
h ,Ah, fh) . {post-smoothing}

11: end if

4.1.2 ExaSlang by example

The aim of this thesis is to compile an ExaSlang program into a well performing CUDA
target program. Hence, we discuss in the following the most important points and fea-
tures of the ExaSlang DSL on the basis of some examples [26, p. 45ff.]. ExaSlang is
implemented as an external DSL and obeys the procedural programming paradigm [26,
p. 45]. Its syntax partially follows Scala. Furthermore, ExaSlang comes with well-tried
language elements, such as data types, functions, loops, variables, and constants. Addi-
tionally, the following paragraphs examine some main features of ExaSlang.

level specifications The level specifications allow the user to map between func-
tionality and multigrid level, which corresponds to the granularity of the grids [26, p.
45]. ExaSlang affords the opportunity to specify the level that corresponds to the coars-
est grid and the higher the level number the finer the grid it refers to. For the sake of
simplicity, ExaSlang provides a few keywords to work with grids of different granular-
ity [26, p. 45]:

(1) coarsest: the lowermost multigrid level

(2) finest: the uppermost multigrid level

(3) current: can be used in functions for accessing objects on the same grid granularity

(4) coarser, finer: multigrid level adjacent to the current one

We clarify the use of level specifications by the example presented in Listing 6. List-
ing 6 provides a specification in ExaSlang of the V-cycle algorithm, which is defined in
Algorithm 1. The example shows how the explained keywords can be used to perform
calculations on grids with different granularity. Moreover, it demonstrates how arith-
metic can be used to address different multigrid levels. Adding a positive number to
a multigrid level results in a finer grid, for example coarsest + 1. On the other hand,
subtracting a positive number leads to a coarser grid.

34 exaslang and the exastencils generator

1 Function VCycle @((coarsest + 1) to finest) () : Unit {
2 repeat 3 times {
3 Smoother @current ()
4 }
5 UpResidual @current ()
6 Restriction @current ()
7 SetSolution @coarser (0)
8 VCycle @coarser ()
9 Correction @current ()
10 repeat 2 times {
11 Smoother @current ()
12 }
13 }
14
15 Function VCycle @coarsest () : Unit {
16 /* ... Solve directly ... */
17 }

Listing 6: V-cycle specification in ExaSlang equivalent to Algorithm 1

data types and variables ExaSlang supports a variety of data types, which can
be separated into three different categories: simple data types, aggregate data types, and
algorithmic data types [26, p. 45]. Table 2 gives an overview of the data types currently
available in ExaSlang, ordered by its category.

Data type Explanation Example(s)

Simple data types

Real floating-point numbers 1.2,0.8435

Integer whole numbers 1,2,3,25

String character sequences "ExaSlang"

Boolean result of comparisons true, false

Unit return type of functions without return value Function T() : Unit

Aggregate data types

Complex complex numbers; underlying data type must be Real or Integer

Algorithmic data types

Stencil corresponds to matrices

Field corresponds to vectors

Table 2: Overview of the data types available in ExaSlang

Variables of simple and aggregate data type can be specified with the keyword Variable

or short Var [26, p. 46]. We can also define constants of simple and aggregate data type
with the keyword Value or short Val. Variable and constant declarations are exemplified
by Listing 7.

4.1 the domain-specific language exaslang 35

1 // variable definitions
2 Variable a : Real = 3.14
3 Var b : Integer = 3
4
5 // constant definitions
6 Value c : Integer = 0
7 Val d : Real = 0.8

Listing 7: Example of variable and constant definitions in ExaSlang

The category of algorithmic data types derives from the multigrid domain and is
used for numerical calculations [26, p. 46]. In a mathematical sense a Field corresponds
to a vector, for example discretized variables. Technically, a Field is an array of certain
size, which is linked to the size of the computational domain. A Field is specified with
the help of a predefined Layout. Listing 8 contains the specification of a computational
domain, of a Layout, and a Field using the predefined ExampleLayout.

1 Domain global< [0, 0, 0] to [1, 1, 1] >
2 Layout ExampleLayout< Real, Node >@finest {
3 innerPoints = [512, 512, 512]
4 ghostLayers = [5, 5, 5]
5 duplicateLayers = [1, 1, 1]
6 }
7 Field ExampleField< global, ExampleLayout, 0.0 >[2]@finest

Listing 8: Fields and Layouts

The Stencil data type represents matrices in a mathematical sense [26, p. 46]. Its ap-
plication ranges from smoother implementation to correction or prolongation functions.
A Stencil is defined by specifying offsets from the grid node and the weight of the grid
node’s neighbors. Listing 9 provides an example for the definition of a 5-point stencil.

1 Stencil Jacobi@finest {
2 [0, 0] => 4.8
3 [1, 0] => -0.8
4 [-1, 0] => -0.8
5 [0, 1] => -0.8
6 [0, -1] => -0.8
7 }

Listing 9: 5-point Jacobi stencil example

control flow ExaSlang also features control flow elements like loops, branching,
and function calls [26, p. 46f.]. These elements are mainly self-explaining and hence they
are not discussed in detail at this point. Listing 10 sets some introductory examples. For
instance, the loop over construct in line 4 specifies a loop over a defined Field. Line 11

shows a classical loop defined with the keywords repeat and until. The function with
signature Function Application() : Unit in line 16 is something special because it is

36 exaslang and the exastencils generator

the main entry point of a program written in ExaSlang. The Application function is
translated into a C++ main() function by the ExaStencils code generator.

1 Field ExampleField...
2
3 Function InitExampleField() : Unit {
4 loop over ExampleField@current sequentially {
5 ExampleField[active]@finest = 0
6 }
7 }
8
9 Function ExampleFunction() : Unit {
10 Val repetitions = 10
11 repeat until repetitions {
12 InitExampleField()
13 }
14 }
15
16 Function Application() : Unit {
17 ExampleFunction()
18 }

Listing 10: Control flow examples in ExaSlang

A more detailed discussion of the ExaSlang language can be found elsewhere [26].

4.2 workflow of the exastencils generator

The previous subsection introduced the ExaSlang DSL and the purpose of the different
DSL layers. As mentioned in Section 1.1 project ExaStencils provides a generator compil-
ing ExaSlang to high-performance code. Figure 17 illustrates the principal workflow of
the ExaStencils generator [12, p. 555ff.]. The idea behind the ExaStencils generator is to
perform a stepwise translation from ExaSlang 1 into high-performance exascale target
code. For the sake of simplicity, assume we have a program written in ExaSlang 1. The
first step of the ExaStencils generator is to translate the program into ExaSlang 2. The
program representation in ExaSlang 2 is then lowered to ExaSlang 3, which is lowered
to ExaSlang 4. Domain and platform knowledge are used at every step of this lowering
process to guarantee an appropriate translation and optimization.

Finally, the ExaStencils generator parses ExaSlang 4 into ExaSlang IR. The generator
applies different transformations, in this context called strategies, on ExaSlang IR. These
strategies refine and optimize the ExaSlang IR program using again the provided infor-
mation about domain and platform. The applied strategies involve both polyhedral and
traditional optimizations [10, p. 5]. Example traditional strategies that are called into
action are loop unrolling and vectorization [10, p. 9]. For a more detailed description
of the optimizations applied by the ExaStencils code generator please refer to the cor-
responding ExaStencils publication [10]. In the end, ExaSlang IR is compiled to hybrid
target code for the specified target system.

4.3 polyhedral optimizations applied by exastencils generator 37

Domain
Knowledge

Problem
Variants

Discretization
Variants

Algorithm
Variants

Platform
Knowledge

ExaSlang 1

ExaSlang 2

ExaSlang 3

ExaSlang 4

ExaSlang IR

polyhedral
optimization

domain-/target-
specific optimization

hybrid target code

CPUs GPUs FPGAs ...

TPDL

refine

polyhedral extraction

polyhedron model

SCoPs

performance
modeling

performance and
power model

Natural
Scientists

Mathematicians

Computer
Scientists

LFA

domain exploration/
machine learning

Continuous
Domain/Model

Discrete
Domain/Model

Algorithmic
Components

Complete Program
Specification

Figure 17: Workflow of the ExaStencils generator

4.3 polyhedral optimizations applied by exastencils generator

This section explains the polyhedral optimization strategy of the ExaStencils code gen-
erator in greater detail [10, p. 5ff.]. The strategy contains all polyhedral optimizations
available in the generator and it is applied on the ExaSlang IR representation of the
input program as shown in Figure 17.

38 exaslang and the exastencils generator

Algorithm 2 Polyhedral Optimization Strategy

1: procedure poly-opt-strategy(p)
2: . ExaSlang IR program p

3: scops← extract models from p

4:

5: for all scop ∈ scops do
6: mergeModels(scop)

7: simplifyModel(scop)

8: computeDependences(scop)

9: if DCE is requested then
10: deadCodeElimination(scop)

11: end if
12: ignoreReductionDependences(scop)

13: simplifyModel(scop)

14: if scop offers enough potential for optimization then
15: searchParallelSchedule(scop)

16: end if
17: tileDimensions(scop)

18: recreateAST(scop)

19: end for
20: end procedure

Algorithm 2 describes the process of the polyhedral optimization strategy. For its
polyhedral optimizations the ExaStencils generator takes advantage of the integer set
library (isl), which is the most recent C library that supports the polyhedron model [10, p.
4], [29]. The first step of the polyhedral optimization strategy is to extract program parts
that can be translated into the polyhedron model [10, p. 5]. These parts are called SCoPs.
A program part has to fulfill certain constraints to be recognized as a valid SCoP. These
constraints were already discussed in Chapter 3. In this step the polyhedral optimization
strategy searches for loop statements in the ExaSlang IR code. If a loop statement forms
a valid SCoP it is translated into the polyhedron model. The result of this first action is a
list of SCoPs in the polyhedron model. Hence, every SCoP is equivalent to a polyhedron.
Afterwards, the strategy traverses this list and performs the following actions on every
SCoP in the list [10, p. 5ff.]:

(1) mergeModels: Every SCoP is equivalent to one polyhedron. If it is profitable, the
strategy merges polyhedra of adjacent SCoPs.

(2) simplifyModel: The isl tries to simplify the representation of the SCoP.

(3) computeDependences: The generator computes the data dependences inside the
polyhedron with the help of the isl.

(4) deadCodeElimination: Remove statements / instructions from the iteration domain,
whose effect is not visible or not required.

4.4 cuda code generation in project exastencils 39

(5) ignoreReductionDependences: If there is a reduction in the SCoP, its dependences
get ignored to parallelize the reduction. To guarantee correctness, the generated code
performs independent, sequential reductions in each thread and then a parallel tree
reduction over the accumulators of all threads.

(6) searchParallelSchedule: This step forms the central polyhedral optimization. If the
SCoP offers enough potential for optimization, the isl scheduler optimizes the sched-
ule of the SCoP by attempting to increase data locality by minimizing the distance
of input-dependences, with respect to all other dependences.

(7) tileDimensions: Apply classical tiling on the optimized SCoP inside the polyhedron
model. The tile size is prescribed by the user.

(8) recreateAST: The abstract syntax tree (AST) builder of the isl generates an AST from
the SCoP. This AST representation is then transformed to ExaSlang IR code.

4.4 cuda code generation in project exastencils

In the previous subsections we discussed the general workflow of the ExaStencils gener-
ator and its polyhedral optimization strategy. This subsection concentrates now on the
relevant parts for GPU code generation. At the time of writing the generator is capable
of creating CUDA target code for NVIDIA GPUs. Figure 18 visualizes a detail of the
ExaStencils generator’s workflow. The important parts for CUDA code generation are
highlighted. The ExaStencils generator compiles an ExaSlang input program in a CUDA
program, only if the user enables the CUDA support at the invocation of the ExaStencils
generator.

If CUDA support is enabled, the ExaStencils generator translates the ExaSlang input
program into ExaSlang IR. In the next step the generator divides the ExaSlang IR code
into a host part and a device part. As discussed in Section 2.4 the CPU is responsible
for the host part and the device part is executed by the CUDA-capable GPU. For this
division, the ExaStencils generator searches the ExaSlang IR code for loops. If a loop
offers potential for parallelization, it is transformed into a kernel and its parallel dimen-
sions are mapped to CUDA’s thread identifiers. The CUDA code generation process
is divided into the four strategies colored in Figure 18. For the sake of simplicity, the
strategies are explained by an example. Listing 11 contains a loop nest L updating an
array A. L serves as our starting point for the CUDA code generation. L consists of four
nested loops L1, L2, L3, and L4. So as not to introduce the components of ExaSlang IR,
Listing 11 is written in pseudo code.

1 for w = 0← 1→ 10
2 for z = 0← 1→ 10
3 for y = 0← 1→ 10
4 for x = 0← 1→ 10
5 A[((1000 ∗w) + (100 ∗ z) + (10 ∗ y) + x)] = 1

Listing 11: Simple example of a loop nest L

40 exaslang and the exastencils generator

ExaSlang 4

ExaSlang IR

polyhedral
optimization

domain-/target-
specific optimization

hybrid target code

host device

refine

polyhedral extraction

polyhedron model

SCoPs

Split Loops for Host and Device

Adapt Kernel Dimensionalities

Handle Kernel Reduction

Convert to Kernel Functions

Figure 18: Workflow of the old CUDA code generation

At the end of the CUDA generation process, L will result in the CUDA code in List-
ing 12. Listing 12 shows a kernel K with the same semantic as L and a wrapper function
for calling K.

4.4 cuda code generation in project exastencils 41

1 __global__ void K(int _cu_begin_0, int _cu_end_0, int _cu_begin_1, int _cu_end_1
, int _cu_begin_2, int _cu_end_2, float* A) {

2 int _cu_global_x = ((blockIdx.x*blockDim.x)+threadIdx.x);
3 int _cu_global_y = ((blockIdx.y*blockDim.y)+threadIdx.y);
4 int _cu_global_z = ((blockIdx.z*blockDim.z)+threadIdx.z);
5 bool _cu_condition = ((((_cu_global_x>=_cu_begin_0)&&(_cu_global_x<_cu_end_0))

&&((_cu_global_y>=_cu_begin_1)&&(_cu_global_y<_cu_end_1)))&&((_cu_global_z>=
_cu_begin_2)&&(_cu_global_z<_cu_end_2)));

6 if (_cu_condition) {
7 for (int _cu_global_w = 0; _cu_global_w<10; _cu_global_w += 1) {
8 A[((1000*_cu_global_w)+(100*_cu_global_z)+(10*_cu_global_y)+_cu_global_x)]

= 1;
9 }
10 }
11 }
12
13 extern "C" void K_wrapper() {
14 K<<<dim3(2, 2, 2), dim3(8, 8, 8)>>>(0, 10, 0, 10, 0, 10, A);
15 }

Listing 12: CUDA code resulting from Listing 11

The following paragraphs explain the four strategies, which transform the loop L step
by step into the kernel K.

split loops for host and device The first and central part of the CUDA code
generation is the division of loops into host and device code. As its name implies, this
strategy searches the ExaSlang IR code for loop statements. If a loop statement offers po-
tential for parallelization, the strategy substitutes it by a kernel on the level of ExaSlang
IR. Let L be the loop nest in Listing 11. The iterations of the nested loops L1, L2, L3, and
L4 can be executed in parallel and thus L is substituted by a kernel K. The innermost
body of L, the assignment of 1 to an array cell, forms the body of K. Additionally, the
ExaSlang IR kernel K saves the loop bounds of L as context information required for
the compilation. Furthermore, this strategy inserts statements for data synchronization
between host and device in the ExaSlang IR code. Data synchronizations take place only
if data on host or device is outdated. This guarantees that both, host and device, work
with correct data.

adapt kernel dimensionalities The previous strategy substituted the loop nest
L from Listing 11 by a kernel K on the level of ExaSlang IR. As already mentioned the
parallel dimensions of L are mapped to CUDA’s thread identifiers. The current version
of CUDA supports only up to three-dimensional thread identifiers. Hence, at most three
parallel dimensions can be mapped to CUDA’s thread identifiers. This strategy takes
care of adapting a kernel’s dimensionality by recreating a loop nest in the kernel’s body
if necessary. The example loop nest L contains four parallel loops, thus one loop is
recreated in the body of kernel K by this strategy. This is the reason why the kernel K in
Listing 12 contains a loop in its body.

42 exaslang and the exastencils generator

handle kernel reduction The next step is to handle kernel reduction. If a ker-
nel requires reduction handling for some assignment, this strategy inserts a temporary
buffer and redirects the original assignment to it. Furthermore, a reduction kernel is cre-
ated for the temporary buffer and an appropriate call of this kernel is inserted in order
to calculate the correct result.

convert to kernel functions In the previous strategies the loop nest L was
transformed into the kernel K, the kernel’s dimensionality was adapted, and reduction
was handled. In the last step the body of K is enriched with statements for calculating
a thread’s global id. The global id is then used for accessing fields appearing in the
kernel’s body. The lines 2 to 4 in Listing 12 contain the calculation of a thread’s global
id. This id is then used for accessing the array A in line 8. In addition to it this strategy
calculates the kernel’s function arguments and creates a wrapper function calling the
kernel. The lines 13-15 contain the wrapper function for kernel K. The kernel call in
line 14 requires an execution configuration. In the Split Loops for Host and Device strategy,
the kernel K saved L’s loop bounds as context information. This context information is
now used to calculate the total number of iterations, which is equivalent to the total
number of required threads. Since loop bounds are maybe unknown until runtime, the
number of iterations is over approximated. In order to guarantee correct behavior, the
conditional in line 6 checks if a thread’s global id is out of bounds at runtime. The thread
block size for the execution configuration is user-defined. The grid size is calculated
from the total number of threads and the user-defined thread block size.

In summary, the ExaStencils generator compiles the loop nest L in Listing 11 to the
CUDA code in Listing 12. Since the division into host and device code takes place before
the polyhedral optimization strategy is applied, the CUDA code does not benefit from
the polyhedron model and its maybe useful loop transformations.

Part II

P O LY H E D R A L C O D E G E N E R AT I O N F O R G P U S

5
P O LY H E D R A L C O D E G E N E R AT I O N F O R C U D A I N P R O J E C T
E X A S T E N C I L S

In the previous chapter we discussed the general workflow of the ExaStencils code gen-
erator and in particular the current CUDA code generation. In a nutshell the underlying
idea is to look for multi-dimensional loops in the ExaSlang IR code and map these to
kernels. Since the CUDA code generation substitutes loops with kernels before the poly-
hedral optimization takes hold, the substituted loops do not benefit from the polyhedral
optimizations. In the recent past, a lot of different compilers targeting GPUs came up,
which exploit the polyhedron model in their code generation process. The Polyhedral
Parallel Code Generator or short PPCG [30], C-to-CUDA [2], and Par4All [1] are just a
few noteworthy source-to-source compilers in this context. The first part of this chapter
gives a summary of related work in the field of polyhedral compilation. The second part
introduces the new CUDA code generation of the ExaStencils code generator, which
exploits the polyhedron model. The last part introduces further transformations and
optimizations for the CUDA code generation.

5.1 related work

This section focuses on the state of the art in code generation and optimization tools for
GPU targets. In this connection the domain of source-to-source polyhedral compilers
is most attractive to project ExaStencils in reference to this thesis. The first noteworthy
representative is C-to-CUDA, which was presented by Muthu Manikandan Baskaran et
al. in 2010 [2]. C-to-CUDA is one of the first automatic code transformation systems
that translates C code into parallel CUDA code. Pluto’s algorithm serves as the basis
for Baskaran’s C-to-CUDA compiler and experiments show that the performance of au-
tomatically generated CUDA code can keep up with manually optimized CUDA code.
At the time of writing C-to-CUDA remains still a prototype with a field of application
limited to a small set of benchmarks. Since 2011 Reservoir Labs1 offers another represen-
tative called the R-Stream compiler [16]. We do not discuss the R-Stream compiler any
further because it is a commercial product and no source code is available. Additionally,
the validation of this tool seems to be very restricted [30, p. 3]. The most promising candi-
date is Sven Verdoolaege’s et al. PPCG source-to-source compiler developed in 2013 [30].
It expects C code as input and accelerates computations from any static control loop
nest by generating CUDA kernels. PPCG uses polyhedral compilation techniques and

1 https://www.reservoir.com

45

https://www.reservoir.com

46 polyhedral code generation for cuda in project exastencils

applies new optimization techniques customized for GPU targets like hybrid tiling [6].
PPCG was evaluated on the entire PolyBench2 suite and convinces with good perfor-
mance results. PPCG is under further development and the latest release is available
at http://repo.or.cz/w/ppcg.git. The CUDA code generation in PPCG executes the
following steps [30, p. 8ff.]. First, the input C code is translated to the polyhedron model
where a dependence analysis takes place. The PPCG compiler exploits parallelism found
by an optimization based on the Pluto algorithm. The next step is the mapping to host
and device with subsequent tiling. Furthermore, the memory management is addressed
and analyses for shared memory and register usage are performed. The last step is the
CUDA code generation for the schedule resulting from the polyhedron model. Aside
from these polyhedral tools, there are also source-to-source compilers that are not di-
rectly based on the polyhedron model. For example Par4All is an automatic parallelizing
and optimizing compiler for C and Fortran programs developed by the HPC project [1].
It is based on the source-to-source compiler infrastructure PIPS3 and benefits from its
powerful interprocedural analyses like reduction detection and parallelism detection. It
does not use the polyhedron model, but works with an abstract interpretation for ar-
ray regions, which also involves polyhedra [30, p. 3]. Par4All is capable of generating
OpenMP, CUDA, or OpenCL code. In comparison with PPCG it achieves competitive
speedup [30, p. 19ff.].

5.2 polyhedral cuda compilation workflow

As stated in [30, p. 6], polyhedral CUDA code generation faces some challenges. First,
the source code has to be partitioned into host and device code. Device code has to
be mapped to the CUDA environment (threads, blocks, grids). Data locality should be
exploited by using shared memory and registers to reduce bandwidth requirements
and finally, one has to consider, to schedule, and to control memory transfer. On the
following pages we discuss the new CUDA code generation and how it masters the
addressed challenges. Figure 19 illustrates its workflow and highlights the important
parts of the CUDA code generation. The individual strategies are explained successively.

prepare cuda relevant code The first strategy searches the ExaSlang IR code for
loop statements. If a loop statement offers potential for parallelization, it is annotated
with advice for later CUDA transformation. Additionally, the strategy already inserts
statements for data synchronization between host and device in the ExaSlang IR code.
Data synchronization takes place only if data on host or device is outdated. This guaran-
tees that both, host and device, work with correct data. In comparison to the old CUDA
code generation there are two innovations. First, the strategy considers a wider variety
of loops in the ExaSlang IR than the old workflow. The second difference is the notewor-
thy fact that at this stage no kernel is created and loop statements are not substituted
with anything else.

2 http://web.cse.ohio-state.edu/~pouchet/software/polybench/

3 http://pips4u.org

http://repo.or.cz/w/ppcg.git
http://web.cse.ohio-state.edu/~pouchet/software/polybench/
http://pips4u.org

5.2 polyhedral cuda compilation workflow 47

ExaSlang 4

ExaSlang IR

polyhedral
optimization

domain-/target-
specific optimization

hybrid target code

host device

refine

polyhedral extraction

polyhedral model

SCoPs

Adapt Kernel Dimensionalities

Handle Kernel Reduction

Convert to Kernel Functions

Prepare CUDA relevant Code

Calculate CUDA Loops Annotations

Extract Host and Device Code

Figure 19: Workflow of the polyhedral CUDA compilation

polyhedral optimization The loop statements annotated in the previous step
offer potential for parallelization. In other words, these statements form valid SCoPs and
can be translated to the polyhedron model. Hence, loops intended for transformation
into kernels can now benefit from the polyhedral optimizations discussed in Section 4.3.

48 polyhedral code generation for cuda in project exastencils

calculate cuda loops annotations This strategy is to look for loop state-
ments that feature the annotation from the first step. Let L be such an annotated n

dimensional loop nest looking as shown in Listing 13. Let L1, . . . ,Ln denote the individ-
ual loops.

1 L1: for i1 = l1 ← 1→ u1
2

...
3 Ln: for in = ln ← 1→ un
4 // body...

Listing 13: n perfectly nested loops

The purpose of this strategy is to annotate the loops L1, . . . ,Ln with specific informa-
tion to guarantee an easier and correct transformation into a kernel. This loop annota-
tion process is shown in Algorithm 3. Moreover, the strategy determines, for each loop
Li, 1 6 i 6 n, the extrema of the loop bounds li and ui, 1 6 i 6 n, and saves them as
context information for later calculations.

Algorithm 3 Calculate CUDA relevant loop annotations

1: procedure calculate-loop-annotations(L1)
2: . The outermost loop L1
3:

4: . Find the first parallel loop in the loop nest
5: S← L1
6: while Is S not parallel? do
7: S← get for loop in body of S
8: end while
9: if Is S parallel? then

10: Annotate S with the information Band − Start (indicating that this is the
outermost parallel loop)

11:

12: . Annotate all direct successive parallel loops with appropriate information
13: P ← get loop in body of S
14: while Is P parallel? do
15: Annotate P with the information Band− Part (indicating that this loop is

part of a parallel loop nest)
16: P ← get loop in body of P
17: end while
18:

19: . Annotate all remaining loops
20: if Is P not parallel? then
21: Annotate P with the information Inner
22: end if
23: Annotate all loops in the body of P with the information Inner
24: end if
25: end procedure

5.3 cuda code generation extensions 49

extract host and device code This strategy addresses loop statements with the
annotated information Band−Start. Let L1 denote such a loop statement. From the pre-
vious strategy we know that the body of L1 contains n− 1 nested loops L2, . . . ,Ln with
annotation Band− Part. The strategy replaces L1, . . . ,Ln by a kernel K in the ExaSlang
IR code. The body of Ln defines the body of K. The loops L1, . . . ,Ln are mapped to
CUDA’s thread identifiers because they can be executed in parallel according to their
annotations.

adapt kernel dimensionalities This strategy searches the ExaSlang IR code for
kernels and verifies their dimensionalities. Let K be such a kernel and let L1, . . . ,Ln de-
note the loops, which were replaced by K in the previous step. As already mentioned
L1, . . . ,Ln are mapped to CUDA’s thread identifiers. The current version of CUDA sup-
ports only up to three-dimensional thread identifiers. Hence, at most three parallel
dimensions can be mapped to CUDA’s thread identifiers. This strategy takes care of
adapting a kernel’s dimensionality by recreating a (n− 3)-dimensional loop nest in the
kernel’s body if n > 3.

handle kernel reduction This strategy has the same behavior as in the old
CUDA generation workflow explained in Section 4.4.

convert to kernel functions The last step of the new CUDA code generation
is quite the same as in the old workflow explained in Section 4.4. The strategy searches
the ExaSlang IR code for kernels and completes the body of a kernel K. The body of K is
enriched with statements for calculating a thread’s global id. The global id is then used
for accessing fields appearing in the kernel’s body. In addition, this strategy calculates
the kernel’s function arguments and creates a wrapper function calling the kernel. The
kernel call requires an execution configuration. Let L denote the loop nest the kernel
K was created from. As mentioned above, the Calculate CUDA Loops Annotations strat-
egy saved the extrema of the loop bounds of L as context information. This context
information is now used to calculate the total number of iterations, which is equivalent
to the total number of required threads. Since we work with extrema of loop bounds,
the number of iterations is over-approximated. In order to guarantee correct behavior,
a conditional is inserted that checks whether a thread’s global id is out of bounds at
runtime. The thread block size for K’s execution configuration is user-defined. The grid
size is calculated from the total number of threads and the user-defined thread block
size. In contrast to the old workflow, further extensions like shared memory utilization
are applied by this strategy. The new available extensions are discussed in the following
subsection.

5.3 cuda code generation extensions

The previous subsection discussed the new workflow of the CUDA code generation in
the ExaStencils generator. In addition to modifications on the workflow itself, further
extensions were installed as part of this thesis. This section concentrates on these ex-

50 polyhedral code generation for cuda in project exastencils

tensions and explains each one in detail. We use the terms extension and optimization
interchangeably. The principal aim of all extensions is to improve the speedup in com-
parison to the sequential program executed on a CPU.

Micikevicius [17] describes a parallelization of the 3D finite difference computation
for GPU targets using the CUDA framework. In this context he discusses an efficient
CUDA implementation for stencils. Maruyama and Aoki [15] compare different sten-
cil optimizations for NVIDIA Kepler GPUs. Among other things, they examine spatial
blocking with read-only cache and spatial blocking with shared memory. The latter is
also used by Micikevicius. We adopt the ideas of Maruyama and Micikevicius and intro-
duce shared memory, spatial blocking with shared memory, and spatial blocking with
read-only cache to the ExaStencils code generator as part of this thesis.

5.3.1 Shared memory utilization

NVIDIA’s SIMT execution model is based on the idea to apply a single instruction on
multiple data by running many threads in parallel. As mentioned in Section 2.2.2, all
threads simultaneously access the global memory, which causes a high pressure on
the memory bandwidth [30, p. 6]. As reported by NVIDIA and several researchers the
memory bandwidth utilization has a significant impact on the performance of a CUDA
program [17, p. 2], [15, p. 2]. Hence, an important optimization is the reduction of global
memory accesses because they are not implicitly cached by the hardware. This can be
achieved by optimizing memory accesses and introducing shared memory. Furthermore,
one exploits inter-thread locality and data reuse with an intelligent shared memory uti-
lization. If the ExaStencils code generator takes shared memory into account, it performs
two additional steps in the workflow presented in Figure 19. On the one hand, the Ex-
tract Host and Device Code strategy examines the newly created kernels and analyzes their
field accesses. If a field access is suitable for shared memory, it is annotated with this
information. Algorithm 4 describes this analysis process and explains the condition for
shared memory suitability. On the other hand, the Convert to Kernel Functions strategy
translates previously annotated field accesses to appropriate shared memory accesses
in ExaSlang IR. Additionally, each kernel body that has shared memory accesses is en-
riched with statements for allocating shared memory and loading the necessary data
from global into shared memory.

The allocation and loading process can be best explained with an example. Let K be a
kernel, which corresponds to a simple two-dimensional 5-point stencil code. In this case
each CUDA thread is responsible for updating exactly one point or more specifically the
thread with id (x,y) updates the point (x+ 1,y+ 1). (CUDA thread ids are zero-based
and in our example we have one halo data point in every dimension, thus there is an
offset of 1 when addressing the actual data point.) Assume that the CUDA threads are
organized in 5× 5 thread blocks. Since each thread block has its own shared memory,
we concentrate on a single thread block in the following explanation. First a thread block
allocates a two-dimensional chunk of shared memory for its corresponding subdomain.
Figure 20 shows such a 5× 5 subdomain of our example stencil, which is updated by
one thread block. The white blocks are points of the stencil that need to be updated.

5.3 cuda code generation extensions 51

Algorithm 4 Analyze field accesses for shared memory

1: fieldToFieldAccesses← extract all field accesses appearing in the kernel body and
store them as map from field name to a list of all respective field accesses

2: availableSmem← read in the shared memory amount of the target GPU
3:

4: . Fields with the most accesses are considered first
5: Sort fieldToFieldAccesses according to the number of field accesses from high to

low
6:

7: for all (field, fieldAccesses)← fieldToFieldAccesses do
8: . Evaluate all conditions to be complied with
9: requiredMem← calculate memory required to store field in shared memory

10: basic← are there at least two field accesses?
11: readOnly← is field only read?
12: enoughMem← is there enough shared memory available?
13: neighborsRequired← are there at least two different accesses per iteration?
14:

15: . Is field suitable for shared memory?
16: if basic∧ readOnly∧ enoughMem∧neighborsRequired then
17: annotate field for shared memory
18: availableSmem← availableSmem− requiredMem

19: end if
20: end for

The gray blocks illustrate halo data, which is introduced for the sake of simplicity to
circumvent costly border updates. Assume that the current thread has the id (3, 3) and
consequently is responsible for the blue point in Figure 20. As we deal with a 5-point
stencil we require the four adjacent green points and the old value of the blue point for
an update of the blue point.

Figure 20: Two-dimensional 5-point stencil with halo data

The goal is that a thread reads the required values only from shared memory and
not from global memory. Hence, each thread stores the old value of its point in shared
memory. In this way all white points in Figure 20 are present in shared memory, but
required halo data is still missing. The simplest approach would be to check if a thread
is responsible for a margin point and to prompt this thread to load halo data. This

52 polyhedral code generation for cuda in project exastencils

approach would require a check if a thread’s id is at a lower margin and an additional
check if it is at an upper margin. In order to save one check, we only verify whether a
thread’s id is at a lower margin. If this is true, the corresponding thread is responsible
for loading halo data to shared memory as illustrated in Figure 21. The blue points in
the subfigures are the points that should be updated by the current thread and the green
points represent the halo data loaded by this thread. A thread with id (0,y) additionally
loads the halo data at (0,y) and (6,y). A thread with id (x, 0) additionally loads the halo
data at (x, 0) and (x, 6). Added together, a thread with id (x,y), x = 0∨ y = 0, regards
the required halo data.

(a) Left margin (b) Bottom
margin

(c) Corner point

Figure 21: Loading required halo data into shared memory

The current shared memory utilization of the ExaStencils generator lacks two impor-
tant points. Firstly, the ExaStencils generator does not support a write back from shared
memory to global memory. Hence, just read-only fields can be considered for shared
memory. Secondly, the ExaStencils generator cannot handle diagonal neighbor relations.
The latter point has no bearing on this thesis because most test cases involve Jacobi
stencils, which do not have diagonal neighbors.

5.3.2 Spatial blocking with shared memory

The shared memory utilization can be improved further with explicit blocking [17, 15].
Currently, spatial blocking with shared memory can only be applied to kernels that arise
from a parallel three-dimensional loop nest working on a three-dimensional field. As a
rule, such a kernel would be called with a three-dimensional thread block configuration
in order to process one point of the field per thread as discussed in the previous section.

In the case of spatial blocking with shared memory, this kernel is instead called with a
two-dimensional thread block configuration [17, p.2f], [15, p. 3f.]. Let z be the outermost
dimension of the source loop nest and let Figure 22 show the three-dimensional subdo-
main of the field that is processed by one thread block. The field points in the x-y-planes
are computed in parallel by the threads in a thread block, whereas the computation over
the z-direction is swept sequentially per thread. In other words, the three-dimensional
subdomain showed in Figure 22 is sliced in two-dimensional pieces indicated by the
blue plane. Threads in a thread block traverse the volume along the z-direction coher-
ently and compute output for each slice. As a consequence, data reuse between threads
in a thread block only exists for a single x-y-plane. Hence, we only need one two-
dimensional chunk in shared memory. Additional values required in z dimension are

5.4 polyhedral schedule exploration 53

x

y
z

Figure 22: Three-dimensional subdomain processed by one thread block

stored in thread’s registers. Once all threads in a thread block finished processing the
current slice the next slice is loaded to shared memory and values in local variables are
shifted in z-direction.

5.3.3 Spatial blocking with read-only cache

NVIDIA GPUs of the Kepler generation feature a 48KB read-only data cache that is di-
rectly accessible by the SMX units and can be used for general load operations as stated
in Section 2.2.2. It is a separate cache equipped with a separate memory pipe [23, p. 6].
Furthermore, the read-only data cache has relaxed memory coalescing rules. For this
reason NVIDIA recommends its usage in case of bandwidth-limited kernels for perfor-
mance improvements. Recent experiments evidence this proposition [15]. The read-only
data cache is automatically utilized by the NVIDIA compiler where data is guaranteed
read-only for the duration of the kernel. The NVIDIA compiler detects that this condi-
tion is satisfied, if the data is marked with both the const and __restrict__ qualifiers.
This is implemented in the ExaStencils code generator as follows. If spatial blocking
with read-only cache is enabled, the Convert to Kernel Functions strategy analyzes the
kernel body and searches for read-only fields. If a located read-only field is provided as
kernel argument, the related argument is marked with the const and __restrict__ qual-
ifiers. It should be noted that the current version of the ExaStencils code generator does
not support shared memory usage in combination with spatial blocking with read-only
cache because both optimizations target read-only fields and currently no heuristic is
implemented that is able to decide whether a field should reside in shared memory or
read-only cache.

5.4 polyhedral schedule exploration

The overall aim of this thesis is to produce performance optimal result code for GPU
targets. The pre- and post-smoothing steps in the V-cycle algorithm are among the most

54 polyhedral code generation for cuda in project exastencils

runtime intensive parts of multigrid methods. Hence, these steps offer a lot of poten-
tial for optimization. A smoother is implemented as stencil code like Jacobi, Red-Black
Gauß-Seidel, or others. The stencil codes form valid SCoPs and can be translated into the
polyhedron model as discussed in Chapter 3. In this context, a scheduler assigns a new
execution time to each statement instance. As previously mentioned, the ExaStencils
generator takes advantage of the isl, which offers a Pluto-like scheduler. The Pluto algo-
rithm optimizes for parallelism and locality [9]. Its basic approach is to create the space
of all legal transformations in the polyhedron model and to choose the best among them
according to an affine objective function.

As part of project ExaStencils, Stefan Kronawitter examined the Jacobi smoother and
its performance after optimizing with the isl scheduler [9]. The scheduler was not able
to find the best transformation for several smoothing steps. As a consequence, Stefan
Kronawitter applied a polyhedral search space exploration for CPU targets in order
to identify the performance-optimal transformation among all legal ones. This chapter
explains the performed polyhedral search space exploration and discusses the algorithm
used for an exploration for GPU targets.

polyhedral search space exploration The set of all legal one-dimensional
transformations is a (unbounded) polyhedron [9]. A n-dimensional stencil requires n
linearly independent schedules and a polyhedron for a higher dimension depends on all
previous ones. The problem is to find the performance-optimal transformation among
the legal ones. For this purpose there are several different approaches. On the one hand,
the search space can be heuristically restricted and a full exploration can be performed.
However, in many cases the search space is still too large or too complex to enumerate
all elements efficiently. The second approach is to use a generator-based (dual) represen-
tation for the exploration. This is the chosen approach for ExaStencils.

The generator-based approach uses Chernikova’s algorithm for finding an irredun-
dant set of vertices V and rays R for a given polyhedron [9], [31]. With respect to
schedules it holds that V = {

−→
0 }. The set of valid schedules can then be defined as

S = {s : s =
∑

r∈R cr · r∧ cr ∈ Q+
0 }. Since the exploration examines a subset C ⊂ Q+

0 ,
the examined schedules are defined as Ŝ = {s : s =

∑
r∈R cr · r∧ cr ∈ C} ⊂ S. Addition-

ally, spatial blocking is required for larger grids, but this is only possible if no schedule
dimension violates dependences carried by a previous one.

Stefan Kronawitter showed in his experiments that his polyhedral search space ex-
ploration is capable of finding schedules for the Jacobi smoother outperforming the isl
scheduler [9]. Furthermore, he presented common properties of the schedules with the
highest performance. These properties involve consecutive memory accesses, possibility
of parallel execution, vectorizability, parallelism of the second dimension. In summary it
can be said, therefore, that there are huge performance differences between valid sched-
ules with regard to the Jacobi smoother targeting CPUs. Hence, this begs the question if
the polyhedral search space exploration is also able to provide performance-optimal re-
sults for GPU targets. For this reason the polyhedral search space exploration is adapted
to the new CUDA code generation workflow presented in Section 5.2. Section 6.2.2 dis-
cusses the performed experiments for the Jacobi smoother targeting GPUs.

6
E X P E R I M E N T S

This chapter assesses the new CUDA code generation on the basis of several experi-
ments. Furthermore, the effect of the implemented extensions is evaluated. The last part
analyzes the performance limitations of ExaStencils’ generated CUDA code. In the end,
we discuss the hybrid tiling feature of PPCG and evaluate its benefit for the ExaStencils
domain.

6.1 experimental framework

All experiments were conducted on an NVIDIA GeForce GTX TITAN Black GPU as
described in Section 2.3. All timings include the data transfer overhead to and from the
GPU. Furthermore, all calculations were performed as single precision floating point
computations. Experiments concerning the CPU performance were run on an Intel Xeon
E5-2690v2 CPU with 3,0 GHz operating frequency, 10 cores, and two hyper-threads
per core, plus 64 GB RAM. We worked on Ubuntu 16.04 with CUDA Toolkit 7.5 and
g++ 5.4.0. The compilation was performed with the flags described in Table 3. A detailed
explanation of the flags can be found elsewhere [21, 27].

g++ flags

-O3 Apply certain optimizations

-std=c++11 Select C++11 standard

-DNDEBUG No debugging

nvcc flags

-O3 Apply certain optimizations

-std=c++11 Select C++11 standard

-DNDEBUG No debugging

-lineinfo Generate line-number information for device code

-arch=sm_35 Specify the name of the class of NVIDIA virtual GPU architecture for
which the CUDA input files must be compiled

Table 3: Applied g++ and nvcc compilation flags

If we generated CUDA code with the ExaStencils generator, we used a thread block
size of (8, 8, 8) for three-dimensional problem sizes and a thread block size of (16, 16)

55

56 experiments

for two-dimensional problem sizes. According to NVIDIA, it is beneficial to choose a
thread block size that is a multiple of the warp size (32).

6.2 experimental setup

This section describes the performed experiments and discusses their results. For better
understanding, some results are displayed graphically.

All test programs used in the following experiments were compiled by the ExaStencils
generator. We compiled some test programs with 14 different configurations in order to
assess available optimizations and the extensions introduced in Section 5.3. Table 4 lists
the 14 configurations.

Variant poly opta smemb L1 cachec sb smemd sb ROCe oldf

0 false true false true false false

1 false true false false false false

2 false false true false true false

3 false false true false false false

4 false false false false true false

5 false false false false false true

6 false false false false false false

7 true true false true false false

8 true true false false false false

9 true false true false true false

10 true false true false false false

11 true false false false true false

12 true false false false false true

13 true false false false false false

a apply polyhedral optimizations
b shared memory is used
c use 48KB of L1 cache and 16KB of shared memory
d apply spatial blocking with shared memory
e apply spatial blocking with read-only cache
f use the old CUDA code generation workflow without any optimizations

Table 4: Overview on the different generated program variants with information about the used
extensions and optimizations.

Unless otherwise specified in the following experiments, the compiled test programs
/ variants were executed five times and the median performance of the five runs is used
for comparison.

6.2 experimental setup 57

6.2.1 Experiment 1 - sequential performance and worthwhile parts for optimizations

In the first experiment we address the sequential performance on the CPU of an example
problem from the ExaStencils domain, in order to identify the performance-critical parts.
As example problem we consider the steady-state heat equation with Dirichlet bound-
ary conditions on the unit square, which describes the asymptotic heat distribution in a
square region. The steady-state heat equation is better known as Laplace’s equation [14,
p. 66]. We investigated two different configurations of this problem, which represent a
constant or smoothly changing thermal conductivity. We refer to the constant changing
thermal conductivity as the constant test case and the smoothly changing thermal con-
ductivity as the variable test case. Furthermore, we examined a two-dimensional and a
three-dimensional problem size for both the constant and the variable test case.

We executed all test cases five times on the CPU and examined the best run in greater
detail. In the following we discuss the performance results of the three-dimensional
variable test case. Table 5 depicts an excerpt of its runtime results. The excerpt contains
the results on the finest multigrid level, level eight, since this is the costliest level. The
results reveal that the pre-smoothing and post-smoothing steps are clearly the most
runtime-intensive parts. All test cases use the Laplace operator for smoothing.

Solver step Time in ms

Total time to setup 191.545

Total time to solve in 4 steps 7609.83

Mean time per V-cycle 460.414

Total time spent on level 8 in pre-smoothing 557.707

Total time spent on level 8 in updating residual 186.886

Total time spent on level 8 in restricting 66.5284

Total time spent on level 8 in setting solution 2.9271

Total time spent on level 8 in prolongating and correcting 249.355

Total time spent on level 8 in post-smoothing 558.966

Table 5: Sequential runtime of the three-dimensional steady-state heat equation with Dirichlet
boundary conditions on the unit square and smoothly changing thermal conductivity

Appendix A provides the complete runtime results and further runtime informa-
tion about all considered test cases. All show the same effect: the smoother is the
performance-critical part of the example problem.

6.2.2 Experiment 2 - best performing schedule for smoother

The previous experiment showed that the pre-smoothing and post-smoothing steps are
performance-critical parts of a V-cycle. Hence, we used the polyhedral search space

58 experiments

exploration explained in Section 5.4 to find the optimal performing schedule for a
smoother. Appendix B shows in Listing 20 a test program examining the performance
of a defined smoother in MLUPs. The smoother uses the three-dimensional Laplace
operator based on the Jacobi stencil. Furthermore, the smoother applies a technique
called temporal blocking, which performs multiple updates on a small block of the com-
putational domain before proceeding to the next block [32, p. 579]. Hence, temporal
blocking introduces dependences, which allow to explore several different schedules for
the smoother. The polyhedral search space exploration is able to obtain 12049 sched-
ules. The test program was compiled 12049 times with the ExaStencils generator, once
for each schedule. The ExaStencils generator applied the new CUDA code generation
workflow to obtain CUDA code and used no further extensions. Figure 23 visualizes the
performance results of the different schedules.

0

1000

2000

3000

4000

5000

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
04

8

Schedule

M
ea

n
pe

rfo
rm

an
ce

 in
 M

LU
P

s

Figure 23: Polyhedral schedule exploration results

Remarkably enough, the initial schedule 0 outperforms all other schedules. The rea-
son seems to be that the initial schedule already offers full parallelism. The iterations
can be performed in parallel with low compute intensity per iteration and thus per
CUDA thread. All transformations lead to schedules with higher compute intensity per
CUDA thread and with constraints on parallel execution. For a better understanding we
compare a smoother kernel of schedule 0 with the equivalent smoother kernel of sched-
ule 6304, which is the second best schedule. We start our comparison with the internal
smoother loop nest, which results from the polyhedral optimizations. Figure 24 shows
the loop nest of schedule 0 on its left and the loop nest of schedule 6304 on its right.
For a better readability unimportant details are omitted. There are two differences that
cause the worse performance of schedule 6304. First, the ExaStencils generator is able to
identify the whole loop nest of schedule 0 as parallel, but the generator recognizes that
the loop on _i3 of schedule 6304 is not parallel. Hence, the loop on _i3 will be executed
sequentially by the host. Second, the loop on _i5 of schedule 6304 depends on the loop

6.2 experimental setup 59

on _i3. This dependency is the reason why the generator is not able to map the loop on
_i5 to CUDA’s thread identifiers.

for (int _i1 = ((3 * iterationOffsetBegin
[2]) - 2); _i1 <= ((3 *
iterationOffsetEnd[2]) + 515); _i1
+= 1) {

for (int _i2 = ((3 *
iterationOffsetBegin[1]) - 2); _i2 <
= ((3 * iterationOffsetEnd[1]) + 515)
; _i2 += 1) {
for (int _i3 = ((3 *
iterationOffsetBegin[0]) - 2); _i3 <
((3 * iterationOffsetEnd[0]) + 516);
_i3 += 1) {
solutionData[...] = ...;

}
}

}

for (int _i3 = (-517 - (3 *
iterationOffsetEnd[1])); _i3 < (-515
- (2 * iterationOffsetEnd[1])); _i3
+= 1) {

for (int _i4 = (_i3 - ((3 *
iterationOffsetEnd[0]) + 515)); _i4
<= ((_i3 + 2) - (3 *
iterationOffsetBegin[0])); _i4 += 1)
{

for (int _i5 = (((3 *
iterationOffsetBegin[2]) + _i3) - 2);
_i5 < ((3 * iterationOffsetEnd[2]) +
_i3 + 516); _i5 += 1) {
solutionData[...] = ...;

}
}

}

Figure 24: Smoother loop comparison between schedule 0 and schedule 6304

If we consider the resulting CUDA code, these two differences become more obvious.
Figure 25 depicts the kernel of schedule 0 on the left and the kernel of schedule 6304 on
its right.

__global__ void Smoother(. . .) {
int _cu_global_x = . . .;
int _cu_global_y = . . .;
int _cu_global_z = . . .;
bool _cu_condition = . . .;
if (_cu_condition) {

solutiontData_0_o1[. . .] = . . .;
}

}

extern "C" void Smoother_wrapper(. . .) {
Smoother<<<dim3(65, 65, 65), dim3(8, 8,

8)>>>(. . .);
}

__global__ void Smoother(. . .) {
int _cu_global_x = . . .;
bool _cu_condition = . . .;
if (_cu_condition) {
int _start = . . .;
int _end = . . .;
int _intermediate = . . .;
for (int _i5 = _start; _i5<
_intermediate; _i5 += 2) {
solutiontData_0_o1[. . .] = . . .;
solutiontData_0_o1[. . .] = . . .;

}
for (int _i5 = _intermediate; _i5<
_end; _i5 += 1) {
solutiontData_0_o1[. . .] = . . .;

}
}

}

extern "C" void Smoother_wrapper(. . .) {
Smoother<<<66, 8>>>(. . .);

}

Figure 25: Smoother kernel comparison between schedule 0 and schedule 6304

60 experiments

The wrapper function of schedule 0 launches the kernel with a three-dimensional exe-
cution configuration. Since the loop on _i3 and _i5 cannot be mapped to CUDA’s thread
identifiers, the kernel of schedule 6304 is called with an one-dimensional execution con-
figuration. Furthermore, the kernel of schedule 6304 sequentially executes the loop on
_i5, which increases the compute intensity per CUDA thread.

Figure 26 reveals how the wrapper functions in Figure 25 are called. Schedule 6304

calls its wrapper function inside of the loop on _i3 whereas schedule 0 calls the wrapper
just once.

Smoother(. . .); for (int _i3 = (-517-(3*
iterationOffsetEnd[1])); _i3<
(-515-(2*iterationOffsetEnd[1]));
_i3 += 1) {
Smoother(. . .);

}

Figure 26: Smoother kernel call comparison between schedule 0 and schedule 6304

In summary, schedule 6304 performs worse than schedule 0 because of the sequential
loops executed both on host and device. Overall, the polyhedral schedule exploration
is not able to find a schedule better than the initial schedule in case of the examined
smoother.

6.2.3 Experiment 3 - performance impact of the CUDA code generation extensions on smooth-
ing

The next step is to examine the impact of the extensions presented in Section 5.3 on
the performance of a smoother. Appendix C describes in Listing 21 a test program writ-
ten in ExaSlang. It measures the performance of a smoother in MLUPs. The smoother
represents the Laplace operator implemented with the Jacobi stencil. The test program
executes the smoother once for cache warmup and nine times for measurement. We
compiled the test program with the ExaStencils generator and provided 14 different
configurations. As a result we obtained 14 different variants of the test program. Table 4

lists the 14 configurations.
Figure 27 visualizes the performance in MLUPs. A larger value indicates a better

performing program. The red horizontal line in Figure 27 indicates the performance of
the sequential program execution on the CPU without optimizations. As expected, the
performance of all variants is considerably improved in comparison to the sequential
program. The variants 0 to 6 use no polyhedral optimizations, whereas variants 7 to 13

do. Figure 27 reveals that the polyhedral optimizations do not improve the performance.
There is one simple reason for that. The loop nest in ExaSlang IR that servers as input
for the polyhedral optimizations already offers full parallelism. Hence, the scheduler
does not perform any transformations.

6.2 experimental setup 61

42
44

.8
06

56
01

.2
72

12
18

0.
4

54
12

.0
08

11
99

7.
96

51
87

.0
36

51
87

.1
02

42
60

.5
96

56
05

.2

12
00

4.
22

54
22

.8
96

12
14

9.
72

51
28

.8
5

51
59

.7
88

0

2500

5000

7500

10000

12500

Va
ria

nt
 0

0
Va

ria
nt

 0
1

Va
ria

nt
 0

2
Va

ria
nt

 0
3

Va
ria

nt
 0

4
Va

ria
nt

 0
5

Va
ria

nt
 0

6
Va

ria
nt

 0
7

Va
ria

nt
 0

8
Va

ria
nt

 0
9

Va
ria

nt
 1

0
Va

ria
nt

 1
1

Va
ria

nt
 1

2
Va

ria
nt

 1
3

ID

M
ea

n
pe

rfo
rm

an
ce

 in
 M

LU
P

s

sequential

990.3522

Figure 27: Performance comparison of smoother variants in MLUPs

Furthermore, the variants 2, 4, 9, and 11 exceed all other variants. All four variants
rely on spatial blocking with the read-only cache and use no shared memory. The two
worst performing variants are the ones using spatial blocking with shared memory. In-
terestingly enough, they are even worse than the variants 5, 6, 12, and 13, which utilize
no extensions. In comparison to the other variants, spatial blocking with shared memory
performs poorly because only a two-dimensional execution configuration is used for the
kernels and each of the CUDA threads traverses the third dimension. Hence, in the case
of spatial blocking with shared memory a smaller number of CUDA threads is launched
and the compute intensity per CUDA thread is higher than in the other variants. The
variants 1 and 8 utilize shared memory and do best next to the variants 2, 4, 9, and 11.
However, shared memory does not gain very much performance in comparison to the
variants without extensions. Variants 5 and 12 were generated with the old CUDA code
generation discussed in Section 4.4. If we compare their performance with the perfor-
mance of the variants generated with the new CUDA code generation, we observe that
the new CUDA code generation provides far more performant target code than the old
CUDA code generation. The variants exploiting spatial blocking with read-only cache
are actually more than two times faster than the variants 5 and 12.

62 experiments

In summary, it can be stated that the smoother’s performance benefits most from
spatial blocking with the read-only cache and polyhedral optimizations do not have
any performance impact at all. Furthermore, the new CUDA code generation is able to
generate more performant CUDA code than the old CUDA code generation.

6.2.4 Experiment 4 - performance impact of tiling on smoothing

This experiment examines whether classical tiling increases the performance of the
smoother presented in Listing 21 in Appendix C. As a starting point for tiling, we use the
smoother variant 11 described in Table 4, which exploits spatial blocking with read-only
cache, because the last experiment showed that this variant performs best. We consider
all combinations of the following settings:

• tile size of dimension x: tx ∈ {4, 8, 16, 32, 64, 128}

• tile size of dimension y: ty ∈ {4, 8, 16, 32, 64, 128}

• tile size of dimension z: tz ∈ {4, 8, 16, 32, 64, 128}

• allow tiling outer loop dimension: outer ∈ {true, false}

In total these are 63 · 2 = 432 variants. Figure 28 illustrates the performance of the
different variants in MLUPs. A larger value indicates again a better performing program.
The red horizontal line shows the performance of the sequential program executed on
the CPU. The blue horizontal line depicts the performance of the starting point.

0

2500

5000

7500

10000

12500

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

43
1

ID

M
ea

n
pe

rfo
rm

an
ce

 in
 M

LU
P

s

Figure 28: Performance of smoother variants with different tiling configurations in MLUPs

No matter what tiling configuration is applied, its performance is far behind the per-
formance of the starting point. Actually, the performance obtained with tiling approx-
imates the sequential performance. The main reason for the performance collapse is

6.2 experimental setup 63

the relationship between tiling and the mapping of loop dimensions to CUDA’s thread
identifiers. As mentioned in Section 4.4, at most three parallel loop dimensions can be
mapped to CUDA’s thread identifiers. The problem that arises from this mapping and
tiling is best explained with a simple example. Listing 14 shows a loop nest L.

1 for z = 0← 1→ 10
2 for y = 0← 1→ 10
3 for x = 0← 1→ 10
4 . . .

Listing 14: Source loop nest L

If we apply classical tiling on the innermost dimension of L with tile size 5, we get the
loop nest in Listing 15 as a result.

1 for x1 = 0← 5→ 10
2 for z = 0← 1→ 10
3 for y = 0← 1→ 10
4 for x2 = x1 ← 1→ min(10, x1 + 5)
5 . . .

Listing 15: Target loop nest L after tiling innermost dimension with tile size 5

Regarding the tiled loop in Listing 15, the loop dimensions have increased because
of tiling. We have four loop dimensions, but only three of them can be mapped to
CUDA’s thread identifiers. As a consequence either only the three innermost dimensions
are mapped to CUDA’s thread identifiers and the remaining dimension is executed on
the CPU, or the outermost dimensions are mapped to CUDA’s thread identifiers and
the remaining dimension is executed on the GPU. In both cases, a loop is executed
sequentially, which reduces the performance of the code. Furthermore, Listing 15 shows
that the iterator of the point loop depends on the iterator of the tile loop. Due to this
dependency the ExaStencils generator does not allow a parallelization of this loop with
CUDA.

6.2.5 Experiment 5 - performance evaluation of advanced smoother examples

The last experiment investigated the performance of a Jacobi smoother dependent on
the applied optimizations. We go now one step further and discuss the runtime of a
smoother not isolated but in a complete multigrid solver. We considered three differ-
ent smoothers: Block-Smoother (BS), Jacobi (Jac), and Red-Black Gauss-Seidel (RBGS).
For each smoother we generated again the 14 different variants listed in Table 4. This
experiment considers the mean time per V-cycle as reference value, since it deals with
a complete multigrid method. Additionally, we can deduce the impact of a single op-
timization on the V-cycle. The following figures show the achieved speedup over the
sequential execution on the CPU. Hence, a larger value indicates a better performing
program.

64 experiments

99
.6

79
58

75
94

81
91

99
.7

13
72

07
11

85
38

99
.7

46
73

56
83

03
43

99
.7

26
05

88
52

68
62

99
.7

30
59

22
59

73
78

99
.7

09
81

16
51

78
8

99
.7

18
32

58
57

40
32

97
.9

76
64

51
70

20
97

98
.0

15
44

12
93

99
03

97
.9

07
68

81
31

97
14

97
.9

76
83

43
05

17
57

98
.0

04
32

93
95

71
33

99
.7

17
98

46
46

16
23

97
.9

99
76

89
59

20
37

0

25

50

75

100

Va
ria

nt
 0

0
Va

ria
nt

 0
1

Va
ria

nt
 0

2
Va

ria
nt

 0
3

Va
ria

nt
 0

4
Va

ria
nt

 0
5

Va
ria

nt
 0

6
Va

ria
nt

 0
7

Va
ria

nt
 0

8
Va

ria
nt

 0
9

Va
ria

nt
 1

0
Va

ria
nt

 1
1

Va
ria

nt
 1

2
Va

ria
nt

 1
3

ID

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

on
 C

P
U

Figure 29: Performance comparison of variants of BS smoother in mean time per V-cycle

block-smoother Figure 29 visualizes the results for the Block-Smoother. The re-
sults are very close to each other. This has one main reason. Almost all fields are updated
in-place. Thus, these fields cannot be cached by the read-only cache and shared memory
cannot be used, since a write back from shared memory to global memory is not sup-
ported yet. For example, the stencil updates in the smoother are in-place and smoothing
cannot benefit from shared memory or the read-only cache. However, the variants ex-
ploiting spatial blocking with the read-only cache perform best. Interestingly enough,
polyhedral optimizations have a negative impact on the performance (variants 7-11,13)
because some loop nests are not parallel anymore after polyhedral optimizations. Hence,
the performance is worse because fewer computations are executed in parallel on the
GPU.

jacobi smoother Figure 30 shows the results for the Jacobi smoother. Experiment 3

in Section 6.2.3 already discussed the impact of optimizations on the Jacobi smoother. We
can observe similar results in this experiment. The variants exploiting spatial blocking
with read-only cache perform best again. The variants 5 and 12 were created with the old
GPU code generation workflow. The code destined for GPU is the same in both cases, but
there are differences in CPU code due to the polyhedral optimizations. These differences

6.2 experimental setup 65

74
.6

01
76

19
42

17
33

81
.0

25
73

60
08

62
96

83
.0

46
84

39
97

46
5

79
.8

44
22

40
82

12
27

85
.4

78
48

25
90

81
11

84
.9

33
93

49
31

73
02

81
.0

16
26

64
72

23
25

63
.5

45
28

33
20

59
92

78
.9

99
15

85
55

14
79

85
.1

69
80

94
92

25
44

85
.0

75
61

90
13

90
45

85
.3

69
74

88
74

67
73

77
.6

68
81

66
69

33
2

79
.1

31
50

14
64

92
51

0

25

50

75

Va
ria

nt
 0

0
Va

ria
nt

 0
1

Va
ria

nt
 0

2
Va

ria
nt

 0
3

Va
ria

nt
 0

4
Va

ria
nt

 0
5

Va
ria

nt
 0

6
Va

ria
nt

 0
7

Va
ria

nt
 0

8
Va

ria
nt

 0
9

Va
ria

nt
 1

0
Va

ria
nt

 1
1

Va
ria

nt
 1

2
Va

ria
nt

 1
3

ID

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

on
 C

P
U

Figure 30: Performance comparison of variants of Jac smoother in mean time per V-cycle

cause a worse efficient program in case of the polyhedral optimizations. Spatial blocking
with shared memory is applied in the variants 0 and 7, whereby variant 7 is worse than
variant 0 because of the polyhedral optimizations.

red-black gauss-seidel smoother Figure 31 illustrates the results for the RBGS
smoother. The variants, which have been optimized in the polyhedron model, show a
lower performance than the others. After polyhedral optimizations some loop nests have
inner loop counters that depend on outer loop iterators. As exposed by the previous
experiments, such loop nests can only be partially executed in parallel on the GPU.
Hence, these variants offer less GPU parallelism than the variants without polyhedral
optimizations. Moreover, spatial blocking with read-only cache does not promote the
performance to the extent observed in other test cases. In particular, spatial blocking
with read-only cache cannot be applied to a lot of fields because the fields are updated in-
place as with the Block-Smoother. The same applies for the utilization of shared memory.

In summary, this experiment shows that the polyhedral optimizations sometimes
have a negative impact on the performance because loop nests are not parallel anymore
or there are additional dependences that render a mapping to CUDA impossible.

66 experiments

87
.2

91
98

76
02

74
9

81
.6

37
40

20
88

77
28

83
.3

22
13

97
29

02
7

85
.3

71
14

13
43

68
85

86
.0

52
93

10
09

14
61

88
.3

88
61

60
89

47
58

82
.4

99
20

03
91

64
49

57
.4

67
73

64
17

13
43

67
.2

70
23

27
87

83
9

69
.7

68
58

42
84

44
47

74
.1

38
50

42
44

71
09

64
.6

55
07

50
65

27
41

81
.6

39
11

31
79

14
33

67
.2

99
55

28
25

45
31

0

25

50

75

Va
ria

nt
 0

0
Va

ria
nt

 0
1

Va
ria

nt
 0

2
Va

ria
nt

 0
3

Va
ria

nt
 0

4
Va

ria
nt

 0
5

Va
ria

nt
 0

6
Va

ria
nt

 0
7

Va
ria

nt
 0

8
Va

ria
nt

 0
9

Va
ria

nt
 1

0
Va

ria
nt

 1
1

Va
ria

nt
 1

2
Va

ria
nt

 1
3

ID

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

on
 C

P
U

Figure 31: Performance comparison of variants of RBGS smoother in mean time per V-cycle

6.2.6 Experiment 6 - multigrid solver evaluation

The idea behind this experiment is to demonstrate that the new CUDA code generation
workflow and the introduced extensions are also able to handle a complete multigrid
solver as presented in Algorithm 1.

We consider again the steady-state heat equation with Dirichlet boundary conditions
on the unit square, which is already known from experiment 1. One more time we refer
to the constant changing thermal conductivity as the constant test case and the smoothly
changing thermal conductivity as the variable test case. Furthermore, we examined a
two-dimensional and a three-dimensional problem size for both, the constant and the
variable test case. All test cases use the Laplace operator for smoothing. For each test
case we examined the 14 variants listed in Table 4. We measure again the mean time per
V-cycle. In the following, the plots detail the performance speedup over the sequential
execution of the test cases on the CPU. A larger value indicates a better performance.

three-dimensional constant test case Figure 32 shows the results for the
three-dimensional constant test case. Unsurprisingly, spatial blocking with read-only
cache boosts the performance and outperforms the variants generated with the old

6.2 experimental setup 67

87
.0

65
47

76
62

41
97

87
.7

46
62

64
41

39
5

94
.3

11
04

83
80

65
38

86
.4

36
89

05
81

42
76

94
.3

02
19

93
28

14
16

85
.8

30
85

60
29

79
61

85
.9

83
00

95
14

82
39

87
.0

60
02

21
41

65
33

87
.7

38
69

80
55

56
72

94
.3

08
86

46
50

58
42

86
.4

49
64

29
56

32
92

94
.3

15
32

45
35

00
63

85
.8

51
50

63
55

26
32

85
.9

75
91

80
98

70
92

0

25

50

75

Va
ria

nt
 0

0
Va

ria
nt

 0
1

Va
ria

nt
 0

2
Va

ria
nt

 0
3

Va
ria

nt
 0

4
Va

ria
nt

 0
5

Va
ria

nt
 0

6
Va

ria
nt

 0
7

Va
ria

nt
 0

8
Va

ria
nt

 0
9

Va
ria

nt
 1

0
Va

ria
nt

 1
1

Va
ria

nt
 1

2
Va

ria
nt

 1
3

ID

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

on
 C

P
U

Figure 32: Runtime comparison of variants of the three-dimensional steady-state heat equation
with Dirichlet boundary conditions on the unit square and constant changing thermal
conductivity

CUDA code generation. The runtimes of the remaining variants are very close to each
other. The utilization of shared memory improves the performance only slightly as
against the variants without optimizations.

three-dimensional variable test case The performance results of the three-
dimensional variable test case are very similar to the ones of the constant test case.
Figure 33 reveals that variants exploiting spatial blocking with read-only cache do best
and the remaining variants are hardly differentiable. However, this test case exposes the
negative impact of spatial blocking with shared memory on the runtime of a V-cycle.
As mentioned in the third experiment, spatial blocking with shared memory launches a
fewer number of CUDA threads and the compute intensity per CUDA thread is higher
than in the other variants. Nevertheless, the variants generated with the new CUDA
code generation, which use spatial blocking with read-only cache, do again better than
the variants generated with the old CUDA code generation.

68 experiments

78
.4

98
49

48
32

91
12

85
.8

79
05

66
75

07
94

88
.1

70
04

69
57

73
8

85
.5

52
05

09
80

20
48

88
.1

60
85

08
86

37
62

85
.0

98
58

95
30

29
23

85
.0

99
12

81
75

94
6

78
.4

59
80

79
12

00
96

85
.8

39
76

16
05

85
91

88
.1

82
27

50
82

86
02

85
.5

76
01

20
23

96
1

88
.1

61
19

83
99

70
11

85
.0

80
80

98
79

80
38

85
.0

63
79

04
14

71
37

0

25

50

75

Va
ria

nt
 0

0
Va

ria
nt

 0
1

Va
ria

nt
 0

2
Va

ria
nt

 0
3

Va
ria

nt
 0

4
Va

ria
nt

 0
5

Va
ria

nt
 0

6
Va

ria
nt

 0
7

Va
ria

nt
 0

8
Va

ria
nt

 0
9

Va
ria

nt
 1

0
Va

ria
nt

 1
1

Va
ria

nt
 1

2
Va

ria
nt

 1
3

ID

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

on
 C

P
U

Figure 33: Runtime comparison of variants of the three-dimensional steady-state heat equation
with Dirichlet boundary conditions on the unit square and smoothly changing ther-
mal conductivity

Appendix D provides the runtime results of the two-dimensional test cases that were
part of this experiment. In summary, the new CUDA code generation is able to generate
better performing CUDA code than the old CUDA code generation for all considered
test cases.

6.2.7 Experiment 7 - fluid flow simulation

The last experiment focuses on a complete application program. The idea behind this
experiment is to demonstrate the applicability of the new CUDA code generation work-
flow to a relevant program in the domain of project ExaStencils. Hence, we examine the
simulation of non-isothermal and non-Newtonian fluid flows. The targeted fluids have a
high relevance in academia and industry alike. They are usually given by suspensions of
particles or macromolecules and can be encountered as gels, pastes or foams. Relevant
examples include organic fluids such as blood, food products such as fruit juice, and
industrial fluids such as drilling fluids and mining pulps.

6.2 experimental setup 69

The fluid flow simulation is implemented based on the SIMPLE algorithm (Semi-
Implicit Method for Pressure Linked Equations). A detailed derivation is beyond the
scope of this thesis and can be found elsewhere [28, 25]. To put it in a nutshell, the SIM-
PLE algorithm works as follows: Instead of solving the entire non-linear system at once,
linear systems of equations (LSEs) are set up for each of the velocity components. This
step corresponds to freezing all other unknowns. Next, the single LSEs are solved. In our
case, we use dedicated geometric multigrid solvers for this step. Since freezing compo-
nents introduces some errors, a subsequent pressure correction has to be calculated and
applied. In the classical SIMPLE algorithm, these steps are repeated until convergence
is reached.

This fluid flow simulation is implemented in ExaSlang. We compiled four different
variants of the ExaSlang source program with the ExaStencils generator:

(1) CPU optimized: a CPU variant using OpenMP for parallelization. We applied polyhe-
dral optimizations and common subexpression elimination to this variant in order
to boost its performance. The CPU variant is executed with 10 OpenMP threads.

(2) GPU: a GPU variant compiled with the new CUDA code generation workflow ex-
ploiting spatial blocking with read-only cache.

(3) GPU + OMP: same as variant two but additionally using OpenMP.

(4) GPU old: a GPU variant compiled with the old CUDA code generation workflow.

We do not consider other optimizations in this experiment because the previous ex-
periments evinced that spatial blocking with read-only cache is most efficient. All four
variants were executed five times, all calculations were performed as double precision,
and four different execution times were extracted:

1. update quantities: the time to update physical properties such as viscosity

2. compile LSEs: the time to set up the LSEs for all variables

3. solve LSEs: the time to solve the LSEs

4. total: the total time, which consists of the previous mentioned and other factors
such as convergence checks

Figure 34 shows the median of the execution times. The new GPU compilation work-
flow is able to handle the complete fluid flow simulation and to map it to the CUDA
programming model. The new CUDA code generation performs significantly better than
the old CUDA workflow. Furthermore, the new CUDA workflow is about two times
faster in setting up the LSEs for all variables than the optimized CPU version. The
combination of CUDA and OpenMP offers no additional performance improvement be-
cause all program parts relevant for OpenMP parallelization are already parallelized
with CUDA and there is no heuristic, which decides if OpenMP or CUDA should be
used for a program part. Overall the CPU optimized variant outperforms the GPU vari-
ants generated by the GPU compilation workflow in the ExaStencils generator.

70 experiments

0

25000

50000

75000

update quantities compile LSEs solve LSEs total
Extracted Execution Time

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
pe

r
tim

es
te

p
in

 m
s

Variant

CPU optimized

GPU

GPU + OMP

GPU old

Figure 34: Runtime comparison of variants of Fluid Flow

6.3 smoother analysis - performance limiters and optimization opportunities 71

6.3 smoother analysis - performance limiters and optimization oppor-
tunities

The previous experiments assessed the CUDA code generation in the ExaStencils gener-
ator. We discussed the performance of different programs and program variants depend-
ing on the enabled optimizations. In comparison to sequential programs or programs
generated with the old CUDA generation workflow, the new one produces better per-
forming code. However, one remaining question is how much potential for optimization
is left or whether we already reached the performance limit. For this purpose, we focus
again on the ExaSlang program provided in Appendix C. We already know that the pro-
gram variant 2 described in Table 4 performs best among the examined variants. This
section analyzes variant 2 in greater detail to reveal possible optimization opportunities
and performance delimiters. We concentrate on the smoothing function of our example
program shown in Listing 16.

1 Function SmootherT : Unit {
2 loop over fragments {
3 loop over SolutionT@finest {
4 SolutionT[nextSlot]@finest = SolutionT[active]@finest + (0.8 / diag(

Laplace@finest) * (RHST@finest - Laplace@finest * SolutionT[active]@finest))
5 }
6 advance SolutionT@finest
7 }
8 }

Listing 16: Smoothing function extracted from the ExaSlang program listed in Appendix C

If the ExaStencils generator is encouraged to produce sequential CPU code, the func-
tion SmootherT results in the C++ loop nest exposed in Listing 17. We use this loop nest
for further analysis purposes.

1 for (int z=iterationOffsetBegin[2]; z<(iterationOffsetEnd[2]+514); z+=1) {
2 for (int y=iterationOffsetBegin[1]; y<(iterationOffsetEnd[1]+514); y+=1) {
3 for (int x=iterationOffsetBegin[0]; x<(iterationOffsetEnd[0]+514); x+=1) {
4 field[((slot + 1) % 2)][((276672 * z) + (528 * y) + x + 1386008)] =

((0.19999999999999996f * field[(slot % 2)][((276672 * z) + (528 * y) + x +
1386008)]) + (0.16666666666666669f * fieldData_RHST[((275616 * z) + (528 * y
) + x + 1104584)]) + (0.13333333333333336f * (field[(slot % 2)][((276672 * z
) + (528 * y) + x + 1109336)] + field[(slot % 2)][((276672 * z) + (528 * y)
+ x + 1385480)] + field[(slot % 2)][((276672 * z) + (528 * y) + x + 1386007)
] + field[(slot % 2)][((276672 * z) + (528 * y) + x + 1386009)] + field[(
slot % 2)][((276672 * z) + (528 * y) + x + 1386536)] + field[(slot % 2)
][((276672 * z) + (528 * y) + x + 1662680)])));

5 }
6 }
7 }

Listing 17: Loop nest extracted from SmootherT in Listing 16

In the context of variant 2 in Table 4, the ExaStencils generator compiles the SmootherT

function to a C++ function calling a CUDA kernel, which is presented in Listing 18.

72 experiments

1 __global__ void SmootherT(int _cu_begin_0, int _cu_end_0, int _cu_begin_1, int
_cu_end_1, int _cu_begin_2, int _cu_end_2, float *solution_0_o1, const float

*__restrict__ rhstData_0, const float *__restrict__ solution_0_o0, int
slot_0, int fragmentIdx) {

2 int _cu_x = ((blockIdx.x * blockDim.x) + threadIdx.x);
3 int _cu_y = ((blockIdx.y * blockDim.y) + threadIdx.y);
4 int _cu_z = ((blockIdx.z * blockDim.z) + threadIdx.z);
5 bool _cu_condition = ((((_cu_x >= _cu_begin_0) && (_cu_x < _cu_end_0)) && ((

_cu_y >= _cu_begin_1) && (_cu_y < _cu_end_1))) && ((_cu_z >= _cu_begin_2) &&
(_cu_z < _cu_end_2)));

6 if (_cu_condition) {
7 solution_0_o1[((276672 * _cu_z) + (528 * _cu_y) + _cu_x + 1386008)] =

((0.19999999999999996f * solution_0_o0[((276672 * _cu_z) + (528 * _cu_y) +
_cu_x + 1386008)]) + (0.16666666666666669f * rhstData_0[((275616 * _cu_z) +
(528 * _cu_y) + _cu_x + 1104584)]) + (0.13333333333333336f * (solution_0_o0
[((276672 * _cu_z) + (528 * _cu_y) + _cu_x + 1109336)] + solution_0_o0
[((276672 * _cu_z) + (528 * _cu_y) + _cu_x + 1385480)] + solution_0_o0
[((276672 * _cu_z) + (528 * _cu_y) + _cu_x + 1386007)] + solution_0_o0
[((276672 * _cu_z) + (528 * _cu_y) + _cu_x + 1386009)] + solution_0_o0
[((276672 * _cu_z) + (528 * _cu_y) + _cu_x + 1386536)] + solution_0_o0
[((276672 * _cu_z) + (528 * _cu_y) + _cu_x + 1662680)])));

8 }
9 }

Listing 18: CUDA kernel function resulting from SmootherT in Listing 16

6.3.1 Performance estimates and actual performance

The ExaStencils generator affords the opportunity to calculate performance estimates
for a single call of a function F. It estimates the performance of F cumulatively with
the performance of all calls to subfunctions appearing in F. In simplified terms, the
ExaStencils generator traverses the AST of F and estimates the performance of its nodes
on the basis of the provided platform configuration. With this in mind, the estimated
performance corresponds to the technically possible performance. Table 6 details the
calculated performance estimates for the loop nest in Listing 17.

Estimated time for loop on GPU 8.3499 ms

Max iterations 135796744

Optimistic memory transfer per iteration 12 byte

Optimistic device time for memory ops 4.8499 ms

Optimistic device time for computational ops 7.4255e−4 ms

Assumed kernel call overhead 3.5 ms

Table 6: Performance estimates for loop nest shown in Listing 17

The ExaStencils generator calculated the performance estimates based on the tech-
nical details of the NVIDIA GeForce GTX TITAN Black presented in Section 2.3. For
comparison, we executed variant 2 in Table 4 of the program in Appendix C again 10

6.3 smoother analysis - performance limiters and optimization opportunities 73

times. Table 7 lists the execution time of the best run. The average runtime of smoother
includes memory synchronization statements between host and device and a call to the
kernel in Listing 18. Comparing this average smoother runtime with the estimated time
detailed in Table 6, our generated smoother is only 2,7049 ms behind the technically
possible performance.

Smoother runtime for 9 runs 99.4933 ms

Smoother MLUPs for 9 runs 12141.1 MLUPs

Average runtime of smoother 11.0548 ms

Table 7: Measured performance of variant 2 in Table 4 of the program presented in Appendix C

6.3.2 Kernel analysis with NVIDIA profiling tools

In the next step we perform a detailed analysis of the kernel presented in Listing 18 with
the help of NVIDIAs profiling tools. The main work is done by the NVIDIA Visual Pro-
filer (nvvp1), which is a cross-platform performance profiling tool that delivers feedback
for optimizing CUDA C/C++ applications. Furthermore, we used nvprof2 to collect the
metrics needed by the guided analysis system of nvvp for an individual kernel. nvprof
was called with the following arguments:

nvprof -kernels SmootherT -analysis-metrics -o sm.nvprof exa

exa is the compilation of our example program in Appendix C. The resulting output
file sm.nvprof was then imported by nvvp in order to perform the guided analysis for
the SmootherT kernel shown in Listing 18. The following paragraphs explain the analysis
results.

application’s overall gpu usage The first analysis with nvvp addresses the
overall GPU usage of our example program. Table 8 details the analysis results, a short
explanation provided by nvvp, and an evaluation of the result’s meaning. Overall, the
results of the GPU usage analysis are expected and do not indicate further potential for
optimization.

The following paragraphs discuss the results of the analysis, which concentrate on
the smoother kernel. Hence, results, explanations, and evaluations refer to the smoother
kernel presented in Listing 18.

1 https://developer.nvidia.com/nvidia-visual-profiler

2 http://docs.nvidia.com/cuda/profiler-users-guide/

https://developer.nvidia.com/nvidia-visual-profiler
http://docs.nvidia.com/cuda/profiler-users-guide/

74 experiments

Result Explanation Evaluation

Low Compute
/ Memcpy Effi-
ciency

The amount of time perform-
ing compute is low relative to
the amount of time required for
memcpy.

This is expected. Our example
program uses a Jacobi stencil as
smoother. The update of a field
is completely performed on the
GPU. Hence, all data required
for the field updates has to be
copied from host to device. In
comparison to that, the computa-
tion of field updates is quite fast
because the TITAN Black offers
enough CUDA cores.

Low Compute
/ Memcpy
Overlap

The percentage of time when
memcpy is being performed in
parallel with compute is low.

This is expected. There is just
a single kernel and memcpy
is only performed before the
smoother kernel is called.

Low Kernel
Concurrency

The percentage of time when
two kernels are being executed
in parallel is low.

This is expected. Our example
program contains only one ker-
nel.

Low Compute
Utilization

The multiprocessors of one or
more GPUs are mostly idle.

This is expected. Regarding the
timeline presented by nvvp, the
most execution time is spent
on CPU for CUDA context
creation, memory transfer, and
CUDA context destruction. The
smoother kernel itself needs
comparatively few time and the
GPU is not used elsewhere.

Table 8: Results of nvvp’s overall GPU usage analysis

performance limiters The first step in analyzing the smoother kernel is to de-
termine if its performance is bounded by computation, memory bandwidth, or instruc-
tion/memory latency.

Figure 35 visualizes that the smoother kernel exhibits low compute throughput and
memory bandwidth utilization relative to the peak performance of the NVIDIA GeForce
GTX TITAN Black. According to nvvp these utilization levels indicate that the perfor-
mance of the kernel is most likely limited by the latency of arithmetic or memory opera-
tions because achieved compute throughput and/or memory bandwidth below 60% of
peak typically indicates latency issues.

6.3 smoother analysis - performance limiters and optimization opportunities 75

Figure 35: Compute throughput and memory bandwidth utilization of the kernel in Listing 18

relative to the peak performance of the NVIDIA GeForce GTX TITAN Black

instruction and memory latency analysis The previous analysis revealed
that the smoother kernel is most likely latency bound. The next step is to analyze how
the instruction and memory latency limits the kernel’s performance.

The NVIDIA Visual Profiler examined different instruction stall reasons, which indi-
cate the condition that prevents warps from executing on any given cycle. Figure 36

shows nvvp’s break-down of stall reasons averaged over the entire execution of the
smoother kernel. As a result, nvvp states that the kernel has good theoretical and achieved
occupancy indicating that there are likely sufficient warps executing on each SM. Fur-
thermore, nvvp concludes that the smoother’s performance is probably limited by the
instruction stall reasons listed below because occupancy is not an issue.

Figure 36: nvvp’s break-down of instruction stall reasons averaged over the entire execution of
the smoother kernel

76 experiments

The following instruction stall reasons are sorted by the frequency of their occurrence
from high to low. The remarks on the instruction stall reasons are extracted from nvvp’s
analysis result.

(1) Memory Dependency: A loadstore cannot be made because the required resources
are not available or are fully utilized, or too many requests of a given type are
outstanding. Data request stalls can potentially be reduced by optimizing memory
alignment and access patterns.

(2) Execution Dependency: An input required by the instruction is not yet available. Exe-
cution dependency stalls can potentially be reduced by increasing instruction-level
parallelism.

(3) Texture: The texture sub-system is fully utilized or has too many outstanding re-
quests.

(4) Instruction Fetch: The next assembly instruction has not yet been fetched.

(5) Not Selected: Warp was ready to issue, but some other warp issued instead. You may
be able to sacrifice occupancy without impacting latency hiding and doing so may
help improve cache hit rates.

(6) Pipeline Busy: The compute resource(s) required by the instruction is not yet avail-
able.

(7) Constant: A constant load is blocked due to a miss in the constants cache.

(8) Memory Throttle: Large number of pending memory operations prevent further for-
ward progress. These can be reduced by combining several memory transactions
into one.

(9) Synchronization: The warp is blocked at a syncthreads() call.

The two most important instruction stall reasons are memory dependency and execution
dependency. We first discuss the execution dependency. Regarding the smoother kernel in
Listing 18, a field update is already performed completely in parallel. Hence, increasing
instruction-level parallelism may not be useful or even possible. Since this point offers
no obvious potential for optimization, we face now the memory dependency. The optimiza-
tion of memory alignment and access patterns is difficult because every performed load
operation is required for the stencil update. However, aligning data in shared memory
and consequently optimizing the access patterns results in a poor smoother performance
as already discussed in the previous experiments.

occupancy analysis The last analysis of the smoother examines its occupancy.
Occupancy is a measure of how many warps the kernel has active on the GPU, relative
to the maximum number of warps supported by the GPU. The NVIDIA Visual Profiler
argues that occupancy is not limiting the kernel’s performance because the kernel’s
block size, register usage, and shared memory usage allow it to fully utilize all warps
on the GPU. Hence, the nvvp comes to the conclusion that a further investigation of the
occupancy may not be useful.

6.4 evaluation of ppcg’s hybrid tiling feature for gpus 77

In summary, it can be stated that the smoother kernel in Listing 18 is limited by
instruction and memory latency. As already revealed in the previous subsection, the
smoother’s performance is close to the technically possible performance calculated by
the ExaStencils generator. However, NVIDIA’s profiling tools state that the CUDA code
generation in the ExaStencils generator can possibly be improved by optimizing instruc-
tion-level parallelism, memory alignment, and access patterns. Furthermore, the fluid
flow experiment in Section 6.2.7 illustrates that the current CUDA workflow cannot
keep up with the optimized CPU code generated by the ExaStencils generator.

6.4 evaluation of ppcg’s hybrid tiling feature for gpus

Tobias Grosser et al. proposed an hybrid tiling algorithm to improve the performance
of code generated for GPUs [6]. This hybrid tiling algorithm is a stencil-specific tiling
scheme incorporated in the Polyhedral Parallel Code Generator (PPCG). In short, the
algorithm addresses stencil codes and applies hexagonal tiling to the outer dimension
along with classical tiling on all remaining dimensions. A detailed derivation of the com-
plete hybrid tiling algorithm is beyond the scope of this thesis and can be found else-
where [6]. They tested two-dimensional and three-dimensional Jacobi stencils in their
experiments and showed that hybrid tiling provides a noteworthy performance boost.
Listing 19 shows such a Jacobi stencil. There is an outer time loop performing T stencil
iterations. The performance boost with hybrid tiling was examined with T = 128 and
T = 512.

1 for (t = 0; t < T; t++) {
2 for (i = 1; i < N; i++)
3 for (j = 1; j < N; j++)
4 for (k = 1; k < N; k++)
5 A[(t+1) % 2][i][j][k] = (2.0f / 7.0f) * A[t%2][i][j][k] +
6 (1.0f / 7.0f) * (A[t%2][i+1][j][k] + A[t%2][i-1][j][k] + A[t%2][i][j

+1][k] + A[t%2][i][j-1][k] + A[t%2][i][j][k+1] + A[t%2][i][j][k-1]);
7 }

Listing 19: Three-dimensional Jacobi stencil test case

The stencils appearing in the ExaStencils domain are slightly different from the pre-
sented test case. First, it is improbable that a stencil is performed more than four times
iteratively and second there is no time loop because the handling of boundary points
differ from time step to time step. The test case in Listing 19 reveals the same han-
dling of boundary points for each time step. Hence, porting the hybrid tiling algorithm
from PPCG to ExaStencils bears some challenges. Furthermore, it is arguable whether
hybrid tiling performs well on only a few time steps. However, the detailed analysis
of the smoother in the last section exposed a potential for optimization. Furthermore,
the experiment in Section 6.2.4 showed that the tiling approach implemented in the
ExaStencils generator does not improve the performance of generated CUDA code. In
this section we examine the performance impact of hybrid tiling if only a few time
steps are performed, in order to assess the benefits of hybrid tiling for the ExaStencils
generator.

78 experiments

The following experiments were performed with the development version of PPCG
(git version hash 4c0ecc8d6a316b1a802aad0b85c64073ceb52ca8). For benchmarks we used
a Laplace kernel and a heat stencil. Both were tested with two space dimensions and
three space dimensions. We compiled different versions of the test cases with PPCG,
varying the problem size and the number of time steps. All programs were executed five
times on the NVIDIA GeForce GTX TITAN Black. Figure 37 visualizes the performance
results of the best run. Each plot names the stencil, the problem size, and the performed
time steps. Interestingly enough, hybrid tiling improves the performance of every stencil
independently from the executed time steps. One reason why PPCG’s hybrid tiling is
beneficial for a stencil in comparison to the tiling applied by the ExaStencils generator
could be that PPCG does not only map loop dimensions to CUDA’s thread identifiers,
but also to CUDA’s block identifiers. Hence, PPCG uses three more dimensions for the
mapping from loop dimensions to the CUDA model.

heat−2d

3072

2

heat−2d

3072

512

heat−3d

384

128

heat−3d

512

2

laplacian−2d

3072

2

laplacian−2d

3072

512

laplacian−3d

512

4

laplacian−3d

512

128

0

2

4

6

0

20

40

60

80

0

20

40

60

0

5

10

15

0

1

2

3

4

0

25

50

75

100

0

3

6

9

0

20

40

60

G
F

LO
P

S

Hybrid Tiling Enabled

no

yes

Figure 37: Performance comparison of different stencil test cases in GFLOPS

Appendix E presents the complete results of the hybrid tiling experiments. The exper-
iments evince that PPCG’s hybrid tiling approach may be useful to further improve the
performance of the CUDA code generated by the ExaStencils generator.

7
C O N C L U S I O N

This thesis presented a new CUDA code generation for the ExaStencils generator, which
exploits the polyhedron model for its GPU code optimizations and features several ex-
tensions like spatial blocking with read-only cache and the utilization of shared mem-
ory. The new CUDA code generation is able to compile ExaSlang source code to high-
performance GPU target code. Furthermore, we assessed this new workflow in extensive
experiments.

The experiments revealed that the smoothing steps of a multigrid solver are the most
performance-critical parts. Hence, we examined especially the smoother step. One im-
portant result of the experiments is the fact that polyhedral optimizations and polyhe-
dral schedule exploration do not improve the performance of the generated CUDA code.
In addition to it, the experiments exposed the negative impact of the current tiling ap-
proach on the performance of generated CUDA code. However, we were able to observe
enormous performance boosts with the new CUDA workflow compared to sequential
CPU variants. Furthermore, the experiments showed that the introduced extensions en-
able the new workflow to outperform the old CUDA code generation workflow. Addi-
tionally, the experiments successfully demonstrated that our new workflow cannot only
deal with smoothers, but is also able to handle real world problems as discussed in
Section 6.2.7.

The last part of the thesis concentrated on the performance limitations of the gener-
ated CUDA code. On the one hand, we compared a smoother’s theoretical performance,
predicted by the ExaStencils generator, with its actual performance. On the other hand,
we examined a smoother’s performance with NVIDIA’s profiling tools. In summary, the
results exhibited that the smoother’s performance is close to the generator’s predicted
performance but also that it is bounded by instruction and memory latency. In reference
to further performance improvements, we assessed PPCG’s hybrid tiling feature with
problem sizes of the ExaStencils’ domain.

In conclusion, the thesis points out that the introduced polyhedral GPU code gen-
eration workflow compiles ExaSlang to well performing CUDA code. Furthermore, it
shows that the polyhedron model has only marginal impact on the generated CUDA
code. With regard to classical tiling and polyhedral schedule exploration, the thesis
demonstrated that some techniques used for optimizing CPU performance fail at opti-
mizing GPU performance.

79

80 conclusion

outline of further work The experiments just exposed that PPCG’s hybrid
tiling approach could further improve a smoother’s performance. Hence, an implemen-
tation of hybrid tiling in the ExaStencils generator may be beneficial. As part of this
implementation, the mapping of loop dimensions to the CUDA model has to be mod-
ified to deal with the increasing number of dimensions. A remaining task is also to
extend the shared memory utilization to stencils with diagonal neighbors. Currently,
shared memory is only used for read-only fields. This constraint can be removed by
implementing a write back from shared memory to global memory. Furthermore, the
ExaStencils generator does not use the read-only cache and shared memory in combina-
tion. A heuristic would be desirable, which decides if a field should reside in read-only
cache or if it should be loaded in shared memory. Since we examined the performance
with fixed CUDA thread block sizes, it is still to be clarified how varying thread block
sizes influence the performance. Finally, the next level of polyhedral GPU code gen-
eration would be to combine CPU and GPU parallelism. On the one hand, a support
for CUDA-aware MPI is imaginable and on the other hand, the utilization of multiple
GPUs in the ExaStencils generator is possible. The new features of modern CUDA capa-
ble GPUs like Hyper-Q and Dynamic Parallelism are also interesting for further studies.

Part III

A P P E N D I X

A
S E Q U E N T I A L R U N T I M E O F E X E M P L A RY M U LT I G R I D S O LV E R S

This appendix provides the complete runtime results of the experiment discussed in
Section 6.2.1. The Tables 9, 10, 11, and 12 give an overview on the sequential runtime of
four different test cases. All four test cases have in common that the pre-smoothing and
post-smoothing steps are the most runtime intensive steps of the solver.

Table 9 details the results of the two-dimensional steady-state heat equation with
Dirichlet boundary conditions on the unit square and constant changing thermal con-
ductivity.

Solver step Time in ms

Total time to setup 7.35611

Total time to solve in 100 steps 1813.78

Mean time per V-cycle 12.5436

Total time spent on level 5 in pre-smoothing 0

Total time spent on level 6 in pre-smoothing 1.1114

Total time spent on level 7 in pre-smoothing 3.80301

Total time spent on level 8 in pre-smoothing 16.4782

Total time spent on level 9 in pre-smoothing 61.3861

Total time spent on level 10 in pre-smoothing 257.317

Total time spent on level 5 in updating residual 0

Total time spent on level 6 in updating residual 0.403369

Total time spent on level 7 in updating residual 1.28279

Total time spent on level 8 in updating residual 5.21165

Total time spent on level 9 in updating residual 20.2505

Total time spent on level 10 in updating residual 85.2311

Total time spent on level 5 in restricting 0

Total time spent on level 6 in restricting 0.186424

Total time spent on level 7 in restricting 0.626223

Total time spent on level 8 in restricting 2.43679

Total time spent on level 9 in restricting 8.98563

Total time spent on level 10 in restricting 34.7119

83

84 sequential runtime of exemplary multigrid solvers

Total time spent on level 5 in setting solution 0

Total time spent on level 6 in setting solution 0.045492

Total time spent on level 7 in setting solution 0.175215

Total time spent on level 8 in setting solution 0.514977

Total time spent on level 9 in setting solution 1.96414

Total time spent on level 10 in setting solution 6.92722

Total time spent on level 5 in prolongating and correcting 0

Total time spent on level 6 in prolongating and correcting 1.14755

Total time spent on level 7 in prolongating and correcting 4.53962

Total time spent on level 8 in prolongating and correcting 18.0047

Total time spent on level 9 in prolongating and correcting 71.891

Total time spent on level 10 in prolongating and correcting 287.028

Total time spent on level 5 in post-smoothing 0

Total time spent on level 6 in post-smoothing 1.09767

Total time spent on level 7 in post-smoothing 3.77848

Total time spent on level 8 in post-smoothing 16.3233

Total time spent on level 9 in post-smoothing 61.1968

Total time spent on level 10 in post-smoothing 254.29

Table 9: Sequential runtime of the two-dimensional steady-state heat equation with Dirichlet
boundary conditions on the unit square and constant changing thermal conductivity

Table 10 details the results of the two-dimensional steady-state heat equation with
Dirichlet boundary conditions on the unit square and smoothly changing thermal con-
ductivity.

Solver step Time in ms

Total time to setup 15.151

Total time to solve in 100 steps 11099.9

Mean time per V-cycle 22.4803

Total time spent on level 5 in pre-smoothing 0

Total time spent on level 6 in pre-smoothing 2.04676

Total time spent on level 7 in pre-smoothing 7.60026

Total time spent on level 8 in pre-smoothing 31.1715

Total time spent on level 9 in pre-smoothing 122.575

Total time spent on level 10 in pre-smoothing 611.548

Total time spent on level 5 in updating residual 0

sequential runtime of exemplary multigrid solvers 85

Total time spent on level 6 in updating residual 0.634189

Total time spent on level 7 in updating residual 2.26438

Total time spent on level 8 in updating residual 9.13774

Total time spent on level 9 in updating residual 34.0553

Total time spent on level 10 in updating residual 205.108

Total time spent on level 5 in restricting 0

Total time spent on level 6 in restricting 0.178953

Total time spent on level 7 in restricting 0.618911

Total time spent on level 8 in restricting 2.17718

Total time spent on level 9 in restricting 8.1937

Total time spent on level 10 in restricting 33.8058

Total time spent on level 5 in setting solution 0

Total time spent on level 6 in setting solution 0.060375

Total time spent on level 7 in setting solution 0.207412

Total time spent on level 8 in setting solution 0.65891

Total time spent on level 9 in setting solution 2.41712

Total time spent on level 10 in setting solution 10.0165

Total time spent on level 5 in prolongating and correcting 0

Total time spent on level 6 in prolongating and correcting 1.02688

Total time spent on level 7 in prolongating and correcting 4.00626

Total time spent on level 8 in prolongating and correcting 15.9245

Total time spent on level 9 in prolongating and correcting 63.5843

Total time spent on level 10 in prolongating and correcting 254.038

Total time spent on level 5 in post-smoothing 0

Total time spent on level 6 in post-smoothing 1.82079

Total time spent on level 7 in post-smoothing 6.97171

Total time spent on level 8 in post-smoothing 28.4941

Total time spent on level 9 in post-smoothing 110.24

Total time spent on level 10 in post-smoothing 645.728

Table 10: Sequential runtime of the two-dimensional steady-state heat equation with Dirichlet
boundary conditions on the unit square and smoothly changing thermal conductivity

Table 11 details the results of the three-dimensional steady-state heat equation with
Dirichlet boundary conditions on the unit square and constant changing thermal con-
ductivity.

86 sequential runtime of exemplary multigrid solvers

Solver step Time in ms

Total time to setup 79.0469

Total time to solve in 3 steps 1133.98

Mean time per V-cycle 262.853

Total time spent on level 0 in pre-smoothing 0

Total time spent on level 1 in pre-smoothing 0.001457

Total time spent on level 2 in pre-smoothing 0.002382

Total time spent on level 3 in pre-smoothing 0.013281

Total time spent on level 4 in pre-smoothing 0.069628

Total time spent on level 5 in pre-smoothing 0.42937

Total time spent on level 6 in pre-smoothing 2.96025

Total time spent on level 7 in pre-smoothing 21.7716

Total time spent on level 8 in pre-smoothing 183.185

Total time spent on level 0 in updating residual 0

Total time spent on level 1 in updating residual 0.001122

Total time spent on level 2 in updating residual 0.001751

Total time spent on level 3 in updating residual 0.005489

Total time spent on level 4 in updating residual 0.022724

Total time spent on level 5 in updating residual 0.146541

Total time spent on level 6 in updating residual 0.96561

Total time spent on level 7 in updating residual 7.33021

Total time spent on level 8 in updating residual 58.9012

Total time spent on level 0 in restricting 0

Total time spent on level 1 in restricting 0.000316

Total time spent on level 2 in restricting 0.000973

Total time spent on level 3 in restricting 0.002099

Total time spent on level 4 in restricting 0.009769

Total time spent on level 5 in restricting 0.086894

Total time spent on level 6 in restricting 0.758946

Total time spent on level 7 in restricting 6.39969

Total time spent on level 8 in restricting 56.7561

Total time spent on level 0 in setting solution 0

Total time spent on level 1 in setting solution 0.000145

Total time spent on level 2 in setting solution 0.001404

Total time spent on level 3 in setting solution 0.001059

Total time spent on level 4 in setting solution 0.00312

sequential runtime of exemplary multigrid solvers 87

Total time spent on level 5 in setting solution 0.008553

Total time spent on level 6 in setting solution 0.048855

Total time spent on level 7 in setting solution 0.340559

Total time spent on level 8 in setting solution 2.51204

Total time spent on level 0 in prolongating and correcting 0

Total time spent on level 1 in prolongating and correcting 0.000986

Total time spent on level 2 in prolongating and correcting 0.0013

Total time spent on level 3 in prolongating and correcting 0.005838

Total time spent on level 4 in prolongating and correcting 0.047941

Total time spent on level 5 in prolongating and correcting 0.414661

Total time spent on level 6 in prolongating and correcting 3.40126

Total time spent on level 7 in prolongating and correcting 26.6808

Total time spent on level 8 in prolongating and correcting 213.486

Total time spent on level 0 in post-smoothing 0

Total time spent on level 1 in post-smoothing 0.000266

Total time spent on level 2 in post-smoothing 0.001294

Total time spent on level 3 in post-smoothing 0.010383

Total time spent on level 4 in post-smoothing 0.062223

Total time spent on level 5 in post-smoothing 0.424309

Total time spent on level 6 in post-smoothing 2.94058

Total time spent on level 7 in post-smoothing 21.8311

Total time spent on level 8 in post-smoothing 176.492

Table 11: Sequential runtime of the three-dimensional steady-state heat equation with Dirichlet
boundary conditions on the unit square and constant changing thermal conductivity

Table 12 details the results of the three-dimensional steady-state heat equation with
Dirichlet boundary conditions on the unit square and smoothly changing thermal con-
ductivity.

Solver step Time in ms

Total time to setup 191.545

Total time to solve in 4 steps 7609.83

Mean time per V-cycle 460.414

Total time spent on level 0 in pre-smoothing 0

Total time spent on level 1 in pre-smoothing 0.002376

Total time spent on level 2 in pre-smoothing 0.004782

88 sequential runtime of exemplary multigrid solvers

Total time spent on level 3 in pre-smoothing 0.028628

Total time spent on level 4 in pre-smoothing 0.139943

Total time spent on level 5 in pre-smoothing 0.956643

Total time spent on level 6 in pre-smoothing 7.48184

Total time spent on level 7 in pre-smoothing 65.8215

Total time spent on level 8 in pre-smoothing 557.707

Total time spent on level 0 in updating residual 0

Total time spent on level 1 in updating residual 0.001866

Total time spent on level 2 in updating residual 0.002391

Total time spent on level 3 in updating residual 0.00875

Total time spent on level 4 in updating residual 0.045019

Total time spent on level 5 in updating residual 0.290869

Total time spent on level 6 in updating residual 2.07604

Total time spent on level 7 in updating residual 22.7912

Total time spent on level 8 in updating residual 186.886

Total time spent on level 0 in restricting 0

Total time spent on level 1 in restricting 0.000534

Total time spent on level 2 in restricting 0.001292

Total time spent on level 3 in restricting 0.002207

Total time spent on level 4 in restricting 0.011277

Total time spent on level 5 in restricting 0.10144

Total time spent on level 6 in restricting 0.885046

Total time spent on level 7 in restricting 7.57429

Total time spent on level 8 in restricting 66.5284

Total time spent on level 0 in setting solution 0

Total time spent on level 1 in setting solution 0.00025

Total time spent on level 2 in setting solution 0.001309

Total time spent on level 3 in setting solution 0.001392

Total time spent on level 4 in setting solution 0.003375

Total time spent on level 5 in setting solution 0.011117

Total time spent on level 6 in setting solution 0.053897

Total time spent on level 7 in setting solution 0.393639

Total time spent on level 8 in setting solution 2.9271

Total time spent on level 0 in prolongating and correcting 0

Total time spent on level 1 in prolongating and correcting 0.001337

Total time spent on level 2 in prolongating and correcting 0.001212

Total time spent on level 3 in prolongating and correcting 0.006538

sequential runtime of exemplary multigrid solvers 89

Total time spent on level 4 in prolongating and correcting 0.055504

Total time spent on level 5 in prolongating and correcting 0.483209

Total time spent on level 6 in prolongating and correcting 3.97127

Total time spent on level 7 in prolongating and correcting 31.142

Total time spent on level 8 in prolongating and correcting 249.355

Total time spent on level 0 in post-smoothing 0

Total time spent on level 1 in post-smoothing 0.000377

Total time spent on level 2 in post-smoothing 0.002156

Total time spent on level 3 in post-smoothing 0.02076

Total time spent on level 4 in post-smoothing 0.131732

Total time spent on level 5 in post-smoothing 0.914085

Total time spent on level 6 in post-smoothing 7.24866

Total time spent on level 7 in post-smoothing 66.5939

Total time spent on level 8 in post-smoothing 558.966

Table 12: Sequential runtime of the three-dimensional steady-state heat equation with Dirichlet
boundary conditions on the unit square and smoothly changing thermal conductivity

B
P O LY H E D R A L S E A R C H S PA C E E X P L O R AT I O N T E S T C A S E

This chapter provides further information on the polyhedral search space exploration
examined in Section 6.2.2. Listing 20 shows a program written in ExaSlang. This test
program measures the performance of the defined smoother in MLUPs. Therefor the
smoother is executed once for cache warmup and afterwards three times for the mea-
surement. Furthermore, the smoother applies temporal blocking. The smoother is imple-
mented with the help of a Jacobi stencil.

1 Domain global< [0, 0, 0] to [1, 1, 1] >
2
3 Layout FullTempBlockable< Real, Node >@finest {
4 innerPoints = [512, 512, 512]
5 ghostLayers = [5, 5, 5]
6 duplicateLayers = [1, 1, 1]
7 }
8 Layout PartTempBlockable< Real, Node >@finest {
9 innerPoints = [512, 512, 512]
10 ghostLayers = [4, 4, 4]
11 duplicateLayers = [1, 1, 1]
12 }
13
14 Field SolutionT< global, FullTempBlockable, 0.0 >[2]@finest
15 Field RHST< global, PartTempBlockable, None >@finest
16
17 Stencil Laplace@finest {
18 [0, 0, 0] => 4.8
19 [1, 0, 0] => -0.8
20 [-1, 0, 0] => -0.8
21 [0, 1, 0] => -0.8
22 [0, -1, 0] => -0.8
23 [0, 0, 1] => -0.8
24 [0, 0, -1] => -0.8
25 }
26
27 Globals {
28 }
29
30 Function LUPs() : Real {
31 Variable dimSize : Integer = 512
32 return(dimSize * dimSize * dimSize)
33 }
34

91

92 polyhedral search space exploration test case

35 Function SmootherTTempBlock() : Unit {
36 loop over fragments {
37 repeat 3 times with contraction [1,1,1] { // marker;
38 loop over SolutionT@finest {
39 SolutionT[nextSlot]@finest = SolutionT[active]@finest + (0.8 /

diag(Laplace@finest) * (RHST@finest - Laplace@finest * SolutionT[active]@
finest))

40 }
41 advance SolutionT@finest
42 }
43 }
44 }
45
46 Function InitFields () : Unit {
47 loop over SolutionT@finest sequentially {
48 SolutionT[active]@finest = native(’((double)std::rand()/RAND_MAX)’)
49 }
50 loop over RHST@finest sequentially {
51 RHST@finest = 0
52 }
53 }
54
55 Function BenchmarkT() : Unit {
56 print(’-------------------------------’)
57 print(’Smoother 3D’)
58 print(’Cache warmup’)
59 repeat 1 times {
60 SmootherTTempBlock()
61 }
62
63 print(’Starting benchmark’)
64 startTimer(benchTTimer)
65 repeat 3 times { // marker
66 SmootherTTempBlock()
67 }
68 stopTimer(benchTTimer)
69
70 Variable time : Real = getTotalFromTimer(benchTTimer)
71 print(’Runtime: ’, time)
72 print(’MLUPs: ’, (LUPs() * 9) / time / 1e3)
73 }
74
75 Function Application() : Unit {
76 startTimer(setupWatch)
77 initGlobals()
78 initDomain()
79 InitFields()
80 stopTimer(setupWatch)
81 print(’Total time to setup: ’, getTotalFromTimer(setupWatch))
82 BenchmarkT()
83 destroyGlobals()
84 }

Listing 20: Example program in ExaSlang measuring the performance of a smoother in
MLUPs. The smoother definition uses temporal blocking.

C
E X A M P L E S M O O T H E R D E F I N I T I O N I N E X A S L A N G

This chapter contains an example program written in ExaSlang, which is used by several
performed experiments. The ExaSlang program is shown in Listing 21. It measures the
performance of the defined smoother in MLUPs. Therefor the smoother is executed
once for cache warmup and afterwards nine times for the measurement. The smoother
is implemented with the help of a Jacobi stencil.

1 Domain global< [0, 0, 0] to [1, 1, 1] >
2
3 Layout FullTempBlockable< Real, Node >@finest {
4 innerPoints = [512, 512, 512]
5 ghostLayers = [5, 5, 5]
6 duplicateLayers = [1, 1, 1]
7 }
8 Layout PartTempBlockable< Real, Node >@finest {
9 innerPoints = [512, 512, 512]
10 ghostLayers = [4, 4, 4]
11 duplicateLayers = [1, 1, 1]
12 }
13
14 Field SolutionT< global, FullTempBlockable, 0.0 >[2]@finest
15 Field RHST< global, PartTempBlockable, None >@finest
16
17 Stencil Laplace@finest {
18 [0, 0, 0] => 4.8
19 [1, 0, 0] => -0.8
20 [-1, 0, 0] => -0.8
21 [0, 1, 0] => -0.8
22 [0, -1, 0] => -0.8
23 [0, 0, 1] => -0.8
24 [0, 0, -1] => -0.8
25 }
26
27 Globals {
28 }
29
30 Function LUPs() : Real {
31 Variable dimSize : Integer = 512
32 return(dimSize * dimSize * dimSize)
33 }
34
35 Function SmootherT : Unit {
36 loop over fragments {

93

94 example smoother definition in exaslang

37 loop over SolutionT@finest {
38 SolutionT[nextSlot]@finest = SolutionT[active]@finest + (0.8 / diag(

Laplace@finest) * (RHST@finest - Laplace@finest * SolutionT[active]@finest))
39 }
40 advance SolutionT@finest
41 }
42 }
43
44 Function InitFields () : Unit {
45 loop over SolutionT@finest sequentially {
46 SolutionT[active]@finest = native(’((double)std::rand()/RAND_MAX)’)
47 }
48 loop over RHST@finest sequentially {
49 RHST@finest = 0
50 }
51 }
52
53 Function BenchmarkT() : Unit {
54 print(’-------------------------------’)
55 print(’Smoother 3D’)
56 print(’Cache warmup’)
57 repeat 1 times {
58 SmootherT()
59 }
60
61 print(’Starting benchmark’)
62 startTimer(benchTTimer)
63 repeat 9 times { // marker
64 SmootherT()
65 }
66 stopTimer(benchTTimer)
67
68 Variable time : Real = getTotalFromTimer(benchTTimer)
69 print(’Runtime: ’, time)
70 print(’MLUPs: ’, (LUPs() * 9) / time / 1e3)
71 }
72
73 Function Application() : Unit {
74 startTimer(setupWatch)
75 initGlobals()
76 initDomain()
77 InitFields()
78 stopTimer(setupWatch)
79 print(’Total time to setup: ’, getTotalFromTimer(setupWatch))
80 BenchmarkT()
81 destroyGlobals()
82 }

Listing 21: Example program in ExaSlang measuring the performance of a smoother in
MLUPs.

D
R U N T I M E O F E X E M P L A RY M U LT I G R I D S O LV E R S

This appendix provides further runtime results of the experiment discussed in Sec-
tion 6.2.6. The discussed test cases were generated by the ExaStencils generator with
different configurations as described in Table 4.

Figure 38 details the results of the two-dimensional steady-state heat equation with
Dirichlet boundary conditions on the unit square and constant changing thermal con-
ductivity.

12
.4

81
10

59
02

61
17

12
.8

10
35

74
73

13
37

17
.6

52
02

97
20

33
55

13
.6

18
57

83
98

54
59

17
.2

70
64

00
07

65
33

13
.3

55
01

76
98

26
84

13
.8

61
41

13
97

04
71

16
.0

81
50

77
01

13
84

15
.6

45
10

98
56

81
94

19
.2

52
90

98
50

44
17

16
.2

56
57

70
59

21
74

20
.3

69
47

92
56

35
38

13
.2

10
24

26
73

55
46

16
.2

25
64

49
50

41
3

0

5

10

15

20

Va
ria

nt
 0

0
Va

ria
nt

 0
1

Va
ria

nt
 0

2
Va

ria
nt

 0
3

Va
ria

nt
 0

4
Va

ria
nt

 0
5

Va
ria

nt
 0

6
Va

ria
nt

 0
7

Va
ria

nt
 0

8
Va

ria
nt

 0
9

Va
ria

nt
 1

0
Va

ria
nt

 1
1

Va
ria

nt
 1

2
Va

ria
nt

 1
3

ID

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

on
 C

P
U

Figure 38: Runtime comparison of variants of the two-dimensional steady-state heat equation
with Dirichlet boundary conditions on the unit square and constant changing thermal
conductivity

95

96 runtime of exemplary multigrid solvers

Figure 39 details the results of the two-dimensional steady-state heat equation with
Dirichlet boundary conditions on the unit square and smoothly changing thermal con-
ductivity.

55
.3

98
86

03
35

49
38

55
.5

27
97

78
29

47
74

58
.8

35
00

66
50

26
71

55
.5

71
10

89
26

48
23

56
.5

36
54

97
79

14

55
.0

10
93

84
66

12
37

55
.1

41
25

70
11

69
47

54
.5

80
17

90
90

13
67

56
.7

77
32

05
87

35
87

60
.2

37
37

22
77

06
04

56
.8

34
21

48
45

88
73

60
.1

15
51

44
72

67
16

55
.1

64
03

25
08

46
3

56
.4

90
48

27
78

25
47

0

20

40

60
Va

ria
nt

 0
0

Va
ria

nt
 0

1
Va

ria
nt

 0
2

Va
ria

nt
 0

3
Va

ria
nt

 0
4

Va
ria

nt
 0

5
Va

ria
nt

 0
6

Va
ria

nt
 0

7
Va

ria
nt

 0
8

Va
ria

nt
 0

9
Va

ria
nt

 1
0

Va
ria

nt
 1

1
Va

ria
nt

 1
2

Va
ria

nt
 1

3
ID

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

on
 C

P
U

Figure 39: Runtime comparison of variants of the two-dimensional steady-state heat equation
with Dirichlet boundary conditions on the unit square and smoothly changing ther-
mal conductivity

E
H Y B R I D T I L I N G P E R F O R M A N C E R E S U LT S

This appendix contains the complete performance results of the hybrid tiling experi-
ments presented in Section 6.4. Figure 40 illustrates the execution time of the different
test cases. Each plot names the stencil, the problem size, and the performed time steps.

heat−2d

3072

2

heat−2d

3072

512

heat−3d

384

128

heat−3d

512

2

laplacian−2d

3072

2

laplacian−2d

3072

512

laplacian−3d

512

4

laplacian−3d

512

128

0.00

0.01

0.02

0.03

0.0

0.2

0.4

0.6

0.0

2.5

5.0

7.5

10.0

0.0

0.2

0.4

0.6

0.00

0.01

0.02

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.5

0

2

4

T
im

e
in

 s
ec

Hybrid Tiling Enabled

no

yes

Figure 40: Execution time of different stencil test cases

97

98 hybrid tiling performance results

Table 13 details the performance results of all test cases.

Stencil Problem
Size

Time
Steps

Hybrid Tiling
Enabled

Time [s] GFLOPS

laplacian-3d 512 128 no 5.608 24.219884

laplacian-3d 512 128 yes 2.328 58.347458

laplacian-3d 512 4 no 0.517 8.204049

laplacian-3d 512 4 yes 0.374 11.347147

laplacian-2d 3072 512 no 0.368 78.636611

laplacian-2d 3072 512 yes 0.302 95.808356

laplacian-2d 3072 2 no 0.028 4.097634

laplacian-2d 3072 2 yes 0.027 4.248312

heat-3d 384 128 no 9.802 19.653440

heat-3d 384 128 yes 2.698 71.409268

heat-3d 512 2 no 0.626 11.445464

heat-3d 512 2 yes 0.420 17.034886

heat-2d 3072 512 no 0.640 67.911916

heat-2d 3072 512 yes 0.513 84.706147

heat-2d 3072 2 no 0.029 5.908413

heat-2d 3072 2 yes 0.025 6.735032

Table 13: Performance results of hybrid tiling experiments

B I B L I O G R A P H Y

[1] Mehdi Amini, Onig Goubier, Serge Guelton, Janice Onanian Mcmahon, François-
xavier Pasquier, Grégoire Péan, and Pierre Villalon. Par4All: From Convex Array
Regions to Heterogeneous Computing. In 2nd International Workshop on Polyhedral
Compilation Techniques (HiPEAC), January 2012.

[2] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-
to-CUDA Code Generation for Affine Programs. In Compiler Construction, Lecture
Notes in Computer Science, pages 244–263. Springer, March 2010.

[3] Mark Ebersole. What Is CUDA | NVIDIA Official Blog. https://blogs.nvidia.

com/blog/2012/09/10/what-is-cuda-2/, 2012.

[4] Paul Feautrier. Automatic parallelization in the polytope model. In The Data Parallel
Programming Model, number 1132 in Lecture Notes in Computer Science, pages 79–
103. Springer, 1996.

[5] Paul Feautrier and Christian Lengauer. Polyhedron Model. In Encyclopedia of Paral-
lel Computing, pages 1581–1592. Springer, September 2011.

[6] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Ver-
doolaege. Hybrid Hexagonal/Classical Tiling for GPUs. In Proceedings of An-
nual IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
pages 66:66–66:75, 2014.

[7] Mark Harris. An Easy Introduction to CUDA C and C++. https://devblogs.

nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/, 2012.

[8] Donald E. Knuth. Computer Programming as an Art. Communications of the ACM,
17(12):667–673, December 1974.

[9] Stefan Kronawitter and Armin Größlinger. Polyhedral Search Space Exploration for
Stencil Codes. In 3rd International Workshop on High-Performance Stencil Computations,
January 2016. URL http://www.exastencils.org/histencils/2016/.

[10] Stefan Kronawitter and Christian Lengauer. Optimizations Applied by the
ExaStencils Code Generator. Technical Report MIP-1502, Faculty of Informatics
and Mathematics, University of Passau, January 2015.

[11] Christian Lengauer. Loop parallelization in the polytope model. In 4th Interna-
tional Conference on Concurrency Theory (CONCUR), volume 715 of Lecture Notes in
Computer Science, pages 398–416. Springer, 1993.

99

https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
http://www.exastencils.org/histencils/2016/

100 bibliography

[12] Christian Lengauer, Sven Apel, Matthias Bolten, Armin Größlinger, Frank Hannig,
Harald Köstler, Ulrich Rüde, Jürgen Teich, Alexander Grebhahn, Stefan Kronawit-
ter, Sebastian Kuckuk, Hannah Rittich, and Christian Schmitt. ExaStencils: Ad-
vanced Stencil-Code Engineering. In Lecture Notes in Computer Science, volume 8806,
pages 553–564, 2014.

[13] Christian Lengauer, Matthias Bolten, Robert D. Falgout, and Olaf Schenk. Ad-
vanced Stencil-Code Engineering (Dagstuhl Seminar 15161). Dagstuhl reports,
Dagstuhl Seminar 15161, 2015.

[14] J. David Logan. Applied Partial Differential Equations. Undergraduate Texts in Math-
ematics. Springer, 3 edition, 2015.

[15] Naoya Maruyama and Takayuki Aoki. Optimizing Stencil Computations for
NVIDIA Kepler GPUs. In 1st International Workshop on High-Performance Stencil
Computations, 2014.

[16] Benoit Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan Baskaran,
Allen Leung, and Richard Lethin. R-Stream Compiler. In David Padua, editor,
Encyclopedia of Parallel Computing, pages 1756–1765. Springer US, 2011.

[17] Paulius Micikevicius. 3D Finite Difference Computation on GPUs Using CUDA.
In Proceedings of 2Nd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU-2, pages 79–84, 2009.

[18] NVIDIA. GeForce GTX TITAN Black Edition Grafikkarte | GeForce |
NVIDIA. http://www.nvidia.de/object/geforce-gtx-titan-black-de.html#

pdpContent=2.

[19] NVIDIA. NVIDIA Kepler Compute Architecture Datasheet, May 2012.

[20] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110/210. 2014.

[21] NVIDIA. CUDA Compiler Driver NVCC, September 2015.

[22] NVIDIA. CUDA C Programming Guide, September 2015.

[23] NVIDIA. Tuning CUDA Applications for Kepler, September 2015.

[24] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,
Aaron E. Lefohn, and Timothy J. Purcell. A Survey of General-Purpose Compu-
tation on Graphics Hardware. In State of the Art Reports, volume 26, pages 21–51,
August 2005.

[25] S. V. Patankar and D. B. Spalding. A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. International Journal of
Heat and Mass Transfer, 15(10):1787 – 1806, 1972.

http://www.nvidia.de/object/geforce-gtx-titan-black-de.html#pdpContent=2
http://www.nvidia.de/object/geforce-gtx-titan-black-de.html#pdpContent=2

bibliography 101

[26] Christian Schmitt, Sebastian Kuckuk, Frank Hannig, Harald Köstler, and Jürgen Te-
ich. ExaSlang: A Domain-Specific Language for Highly Scalable Multigrid Solvers.
In Proceedings of the 4th International Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing (WOLFHPC), pages 42–51, Novem-
ber 2014.

[27] Richard M. Stallman. Using the GNU Compiler Collection. 2015. URL https:

//gcc.gnu.org/onlinedocs/gcc/.

[28] Diego A. Vasco, Nelson O. Moraga, and Gundolf Haase. Parallel Finite Volume
Method Simulation of Three-Dimensional Fluid Flow and Convective Heat Transfer
for Viscoplastic Non-Newtonian Fluids. Numerical Heat Transfer, Part A: Applications,
66(9):990–1019, 2014.

[29] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei
Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors, 3rd
International Congress on Mathematical Software (ICMS), volume 6327 of Lecture Notes
in Computer Science, pages 299–302. Springer, 2010.

[30] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian
Tenllado, and Francky Catthoor. Polyhedral Parallel Code Generation for CUDA.
ACM Transactions on Architecture and Code Optimization (TACO), 9(4):54:1–54:23, Jan-
uary 2013.

[31] H. Le Verge. A note on Chernikova’s Algorithm. Technical Report 635, IRISA-
Rennes, July 1994.

[32] Gerhard Wellein, Georg Hager, Thomas Zeiser, Markus Wittmann, and Holger
Fehske. Efficient temporal blocking for stencil computations by multicore-aware
wavefront parallelization. In Computer Software and Applications Conference (COMP-
SAC), volume 1, pages 579–586. IEEE, July 2009.

https://gcc.gnu.org/onlinedocs/gcc/
https://gcc.gnu.org/onlinedocs/gcc/

D E C L A R AT I O N

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und ohne Benutzung
anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Aus-
führungen, die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeich-
net sind, sowie dass ich diese Masterarbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegt habe.

Passau, Germany, October 2016

Christoph Woller

colophon

This document was typeset using the typographical look-and-feel classicthesis devel-
oped by André Miede. The style was inspired by Robert Bringhurst’s seminal book on
typography “The Elements of Typographic Style”. classicthesis is available for both LATEX
and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of October 10, 2016 (classicthesis Version 1.0).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms
	Background and Fundamentals
	1 Introduction
	1.1 Project ExaStencils
	1.2 High-performance computing with GPUs
	1.3 Motivation
	1.4 Outline of the thesis

	2 Fundamentals of GPGPU computation and modern NVIDIA GPUs
	2.1 Architecture of modern NVIDIA GPUs
	2.2 The NVIDIA Kepler GK110 architecture
	2.2.1 The streaming multiprocessor SMX
	2.2.2 Kepler's memory system
	2.2.3 Innovations of Kepler GPUs

	2.3 NVIDIA GeForce GTX TITAN Black
	2.4 CUDA GPU programming
	2.4.1 Basic idea behind CUDA
	2.4.2 The CUDA programming model
	2.4.3 CUDA's programming interface in a nutshell

	3 Fundamentals of the polyhedron model
	3.1 From a for-loop program to a polyhedron
	3.2 Polyhedral transformations
	3.3 From a polyhedron back to a for-loop program

	4 ExaSlang and the ExaStencils generator
	4.1 The domain-specific language ExaSlang
	4.1.1 Multigrid methods in a nutshell
	4.1.2 ExaSlang by example

	4.2 Workflow of the ExaStencils generator
	4.3 Polyhedral optimizations applied by ExaStencils generator
	4.4 CUDA code generation in project ExaStencils

	Polyhedral code generation for GPUs
	5 Polyhedral code generation for CUDA in project ExaStencils
	5.1 Related work
	5.2 Polyhedral CUDA compilation workflow
	5.3 CUDA code generation extensions
	5.3.1 Shared memory utilization
	5.3.2 Spatial blocking with shared memory
	5.3.3 Spatial blocking with read-only cache

	5.4 Polyhedral schedule exploration

	6 Experiments
	6.1 Experimental framework
	6.2 Experimental setup
	6.2.1 Experiment 1 - sequential performance and worthwhile parts for optimizations
	6.2.2 Experiment 2 - best performing schedule for smoother
	6.2.3 Experiment 3 - performance impact of the CUDA code generation extensions on smoothing
	6.2.4 Experiment 4 - performance impact of tiling on smoothing
	6.2.5 Experiment 5 - performance evaluation of advanced smoother examples
	6.2.6 Experiment 6 - multigrid solver evaluation
	6.2.7 Experiment 7 - fluid flow simulation

	6.3 Smoother analysis - performance limiters and optimization opportunities
	6.3.1 Performance estimates and actual performance
	6.3.2 Kernel analysis with NVIDIA profiling tools

	6.4 Evaluation of PPCG's hybrid tiling feature for GPUs

	7 Conclusion

	Appendix
	A Sequential Runtime of exemplary multigrid solvers
	B Polyhedral search space exploration test case
	C Example smoother definition in ExaSlang
	D Runtime of exemplary multigrid solvers
	E Hybrid tiling performance results
	Bibliography
	Declaration
	Colophon

