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Preface


The desire to write a book on Objective Caml sprang from the authors’ pedagogical
experience in teaching programming concepts through the Objective Caml language.
The students in various majors and the engineers in continuing education at Pierre
and Marie Curie University have, through their dynamism and their critiques, caused
our presentation of the Objective Caml language to evolve greatly. Several examples
in this book are directly inspired by their projects.


The implementation of the Caml language has been ongoing for fifteen years. Its devel-
opment comes from the Formel and then Cristal projects at INRIA, in collaboration
with Denis Diderot University and the École Normale Supérieure. The continuous
efforts of the researchers on these teams, as much to develop the theoretical underpin-
nings as the implementation itself, have produced over the span of years a language
of very high quality. They have been able to keep pace with the constant evolution of
the field while integrating new programming paradigms into a formal framework. We
hope through this exposition to contribute to the widespread diffusion which this work
deserves.


The form and the foundation of this book wouldn’t be what they are without the help
of numerous colleagues. They were not put off by rereading our first manuscripts. Their
remarks and their comments have allowed this exposition to improve throughout the
course of its development. We wish particularly to thank Maŕıa-Virginia Aponte, Syl-
vain Baro, Christian Codognet, Hélène Cottier, Guy Cousineau, Pierre Crégut, Titou
Durand, Christophe Gonzales, Michelle Morcrette, Christian Queinnec, Attila Raksany
and Didier Rémy.


The HTML version of this book would not have seen the light of day without the
tools hevea and VideoC. A big thank you to their respective authors, Luc Maranget
and Christian Queinnec, who have always responded in the briefest intervals to our
questions and our demands for changes.
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Introduction


Objective Caml is a programming language. One might ask why yet another lan-
guage is needed. Indeed there are already numerous existing languages with new ones
constantly appearing. Beyond their differences, the conception and genesis of each one
of them proceeds from a shared motivation: the desire to abstract.


To abstract from the machine In the first place, a programming language permits
one to neglect the “mechanical” aspect of the computer; it even lets one forget
the microprocessor model or the operating system on which the program will be
executed.


To abstract from the operational model The notion of function which most lan-
guages possess in one form or another is borrowed from mathematics and not
from electronics. In a general way, languages substitute formal models for purely
computational viewpoints. Thus they gain expressivity.


To abstract errors This has to do with the attempt to guarantee execution safety; a
program shouldn’t terminate abruptly or become inconsistent in case of an error.
One of the means of attaining this is strong static typing of programs and having
an exception mechanism in place.


To abstract components (i) Programming languages make it possible to subdivide
an application into different software components which are more or less indepen-
dent and autonomous. Modularity permits higher-level structuring of the whole
of a complex application.


To abstract components (ii) The existence of programming units has opened up
the possibility of their reuse in contexts other than the ones for which they were
developed. Object-oriented languages constitute another approach to reusability
permitting rapid prototyping.


Objective Caml is a recent language which takes its place in the history of program-
ming languages as a distant descendant of Lisp, having been able to draw on the lessons
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of its cousins while incorporating the principal characteristics of other languages. It is
developed at INRIA1 and is supported by long experience with the conception of the
languages in the ML family. Objective Caml is a general-purpose language for the
expression of symbolic and numeric algorithms. It is object-oriented and has a param-
eterized module system. It supports the development of concurrent and distributed
applications. It has excellent execution safety thanks to its static typing, its exception
mechanism and its garbage collector. It is high-performance while still being portable.
Finally, a rich development environment is available.


Objective Caml has never been the subject of a presentation to the “general public”.
This is the task to which the authors have set themselves, giving this exposition three
objectives:


1. To describe in depth the Objective Caml language, its libraries and its develop-
ment environment.


2. To show and explain what are the concepts hidden behind the programming
styles which can be used with Objective Caml.


3. To illustrate through numerous examples how Objective Caml can serve as the
development language for various classes of applications.


The authors’ goal is to provide insight into how to choose a programming style and
structure a program, consistent with a given problem, so that it is maintainable and
its components are reusable.


Description of the language


Objective Caml is a functional language: it manipulates functions as values in
the language. These can in turn be passed as arguments to other functions or returned
as the result of a function call.


Objective Caml is statically typed: verification of compatibility between the
types of formal and actual parameters is carried out at program compilation time.
From then on it is not necessary to perform such verification during the execution of
the program, which increases its efficiency. Moreover, verification of typing permits the
elimination of most errors introduced by typos or thoughtlessness and contributes to
execution safety.


Objective Caml has parametric polymorphism: a function which does not tra-
verse the totality of the structure of one of its arguments accepts that the type of this
argument is not fully determined. In this case this parameter is said to be polymorphic.
This feature permits development of generic code usable for different data structures,


1. Institut National de Recherche en Informatique et Automatique (National Institute for Research
in Automation and Information Technology).
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such that the exact representation of this structure need not be known by the code in
question. The typing algorithm is in a position to make this distinction.


Objective Caml has type inference: the programmer need not give any type
information within the program. The language alone is in charge of deducing from the
code the most general type of the expressions and declarations therein. This inference
is carried out jointly with verification, during program compilation.


Objective Caml is equipped with an exception mechanism: it is possible to
interrupt the normal execution of a program in one place and resume at another place
thanks to this facility. This mechanism allows control of exceptional situations, but it
can also be adopted as a programming style.


Objective Caml has imperative features: I/O, physical modification of values
and iterative control structures are possible without having recourse to functional pro-
gramming features. Mixture of the two styles is acceptable, and offers great develop-
ment flexibility as well as the possibility of defining new data structures.


Objective Caml executes (threads): the principal tools for creation, synchroniza-
tion, management of shared memory, and interthread communication are predefined.


Objective Caml communicates on the Internet: the support functions needed
to open communication channels between different machines are predefined and permit
the development of client-server applications.


Numerous libraries are available for Objective Caml: classic data structures,
I/O, interfacing with system resources, lexical and syntactic analysis, computation with
large numbers, persistent values, etc.


A programming environment is available for Objective Caml: including in-
teractive toplevel, execution trace, dependency calculation and profiling.


Objective Caml interfaces with the C language: by calling C functions from
an Objective Caml program and vice versa, thus permitting access to numerous C
libraries.


Three execution modes are available for Objective Caml: interactive by
means of an interactive toplevel, compilation to bytecodes interpreted by a virtual ma-
chine, compilation to native machine code. The programmer can thus choose between
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flexibility of development, portability of object code between different architectures, or
performance on a given architecture.


Structure of a program


Development of important applications requires the programmer or the development
team to consider questions of organization and structure. In Objective Caml, two mod-
els are available with distinct advantages and features.


The parameterized module model: data and procedures are gathered within a
single entity with two facets: the code proper, and its interface. Communication be-
tween modules takes place via their interface. The description of a type may be hidden,
not appearing in the module interface. These abstract data types facilitate modifica-
tions of the internal implementation of a module without affecting other modules which
use it. Moreover, modules can be parameterized by other modules, thus increasing their
reusability.


The object model: descriptions of procedures and data are gathered into enti-
ties called classes; an object is an instance (value) of a class. Interobject communica-
tion is implemented through “message passing”, the receiving object determines upon
execution (late binding) the procedure corresponding to the message. In this way,
object-oriented programming is “data-driven”. The program structure comes from the
relationships between classes; in particular inheritance lets one class be defined by
extending another. This model allows concrete, abstract and parameterized classes.
Furthermore, it introduces polymorphism of inclusion by defining the subtyping rela-
tionship between classes.


The choice between these two models allows great flexibility in the logical organization
of an application and facilitates its maintenance and evolution. There is a duality
between these two models. One cannot add data fields to a module type (no extensibility
of data), but one can add new procedures (extensibility of procedures) acting on data.
In the object model, one can add subclasses of a class (extensibility of data) for dealing
with new cases, but one cannot add new procedures visible from the ancestor class
(no extensibility of procedures). Nevertheless the combination of the two offers new
possibilities for extending data and procedures.


Safety and efficiency of execution


Objective Caml bestows excellent execution safety on its programs without sacrificing
their efficiency. Fundamentally, static typing is a guarantee of the absence of run-
time type errors and makes useful static information available to the compiler without
burdening performance with dynamic type tests. These benefits also extend to the
object-oriented language features. Moreover, the built-in garbage collector adds to the
safety of the language system. Objective Caml’s is particularly efficient. The exception
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mechanism guarantees that the program will not find itself in an inconsistent state
after a division by zero or an access outside the bounds of an array.


Outline of the book


The present work consists of four main parts, bracketed by two chapters and enhanced
by two appendices, a bibliography, an index of language elements and an index of
programming concepts.


Chapter 1 : This chapter describes how to install version 2.04 of the Objective Caml
language on the most current systems (Windows, Unix and MacOS).


Part I: Core of the language The first part is a complete presentation of the basic
elements of the Objective Caml language. Chapter 2 is a dive into the func-
tional core of the language. Chapter 3 is a continuation of the previous one and
describes the imperative part of the language. Chapter 4 compares the “pure”
functional and imperative styles, then presents their joint use. Chapter 5 presents
the graphics library. Chapter 6 exhibits three applications: management of a
simple database, a mini-Basic interpreter and a well-known single-player game,
minesweeper.


Part II: Development tools The second part of the book describes the various tools
for application development. Chapter 7 compares the various compilation modes,
which are the interactive toplevel and command-line bytecode and native code
compilers. Chapter 8 presents the principal libraries provided with the language
distribution. Chapter 9 explains garbage collection mechanisms and details the
one used by Objective Caml. Chapter 10 explains the use of tools for debug-
ging and profiling programs. Chapter 11 addresses lexical and syntactic tools.
Chapter 12 shows how to interface Objective Caml programs with C. Chapter
13 constructs a library and an application. This library offers tools for the con-
struction of GUIs. The application is a search for least-cost paths within a graph,
whose GUI uses the preceding library.


Part III: Organization of applications The third part describes the two ways of
organizing a program: with modules, and with objects. Chapter 14 is a presenta-
tion of simple and parameterized language modules. Chapter 15 introduces Ob-
jective Caml object-oriented extension. Chapter 16 compares these two types of
organization and indicates the usefulness of mixing them to increase the extensi-
bility of programs. Chapter 17 describes two substantial applications: two-player
games which put to work several parameterized modules used for two different
games, and a simulation of a robot world demonstrating interobject communica-
tion.


Part IV: Concurrence and distribution The fourth part introduces concurrent
and distributed programs while detailing communication between processes, lightweight
or not, and on the Internet. Chapter 18 demonstrates the direct link between
the language and the system libraries, in particular the notions of process and
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communication. Chapter 19 leads to the lack of determinism of concurrent pro-
gramming while presenting Objective Caml’s threads. Chapter 20 discusses in-
terprocess communication via sockets in the distributed memory model. Chapter
21 presents first of all a toolbox for client-server applications. It is subsequently
used to extend the robots of the previous part to the client-server model. Finally,
we adapt some of the programs already encountered in the form of an HTTP
server.


Chapter 22 This last chapter takes stock of application development in Objective
Caml and presents the best-known applications of the ML language family.


Appendices The first appendix explains the notion of cyclic types used in the typ-
ing of objects. The second appendix describes the language changes present in
the new version 3.00. These have been integrated in all following versions of
Objective Caml (3.xx).


Each chapter consists of a general presentation of the subject being introduced, a
chapter outline, the various sections thereof, statements of exercises to carry out, a
summary, and a final section entitled “To learn more” which indicates bibliographic
references for the subject which has been introduced.







1
How to obtain


Objective Caml


The various programs used in this work are “free” software 1. They can be found either
on the CD-ROM accompanying this work, or by downloading them from the Internet.
This is the case for Objective Caml, developed at Inria.


Description of the CD-ROM


The CD-ROM is provided as a hierarchy of files. At the root can be found the file
index.html which presents the CD-ROM, as well as the five subdirectories below:


• book: root of the HTML version of the book along with the solutions to the
exercises;


• apps: applications described in the book;


• exercises: independent solutions to the proposed exercises;


• distrib: set of distributions provided by Inria, as described in the next section;


• tools: set of tools for development in Objective Caml;


• docs: online documentation of the distribution and the tools.


To read the CD-ROM, start by opening the file index.html in the root using your
browser of choice. To access directly the hypertext version of the book, open the file
book/index.html. This file hierarchy, updated in accordance with readers’ remarks,
can be found posted on the editor’s site:


Link: http://www.oreilly.fr


1. “Free software” is not to be confused with “freeware”. “Freeware” is software which costs nothing,
whereas “free software” is software whose source is also freely available. In the present case, all the
programs used cost nothing and their source is available.
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Downloading


Objective Caml can be downloaded via web browser at the following address:


Link: http://caml.inria.fr/ocaml/distrib.html


There one can find binary distributions for Linux (Intel and PPC), for Windows (NT,
95, 98) and for MacOS (7, 8), as well as documentation, in English, in different formats
(PDF, PostScript and HTML). The source code for the three systems is available
for download as well. Once the desired distribution is copied to one’s machine, it’s time
to install it. This procedure varies according to the operating system used.


Installation


Installing Objective Caml requires about 10MB of free space on one’s hard disk drive.
The software can easily be uninstalled without corrupting the system.


Installation under Windows


The file containing the binary distribution is called: ocaml-2.04-win.zip, indicating
the version number (here 2.04) and the operating system.


Warning
Objective Caml only works under recent versions of
Windows : Windows 95, 98 and NT. Don’t try to in-
stall it under Windows 3.x or OS2/Warp.


1. The file is in compressed (.zip) format; the first thing to do is decompress it.
Use your favorite decompression software for this. You obtain in this way a file
hierarchy whose root is named ocaml. You can place this directory at any location
on your hard disk. It is denoted by <caml-dir> in what follows.


2. This directory includes:
• two subdirectories: bin for binaries and lib for libraries;
• two “text” files: License.txt and Changes.txt containing the license to


use the software and the changes relative to previous versions;
• an application: OCamlWin corresponding to the main application;
• a configuration file: Ocamlwin.ini which will need to be modified (see the


following point);
• two files of version notes: the first, Readme.gen, for this version and the


second, Readme.win, for the version under Windows.


3. If you have chosen a directory other than c:\ocaml as the root of your file
hierarchy, then it is necessary to indicate this in the configuration file. Edit it
with Wordpad and change the line defining CmdLine which is of the form:
CmdLine=ocamlrun c:\ocaml\bin\ocaml.exe -I c:\ocaml\lib
to
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CmdLine=ocamlrun <caml-dir>\bin\ocaml.exe -I <caml-dir>\lib
You have to replace the names of the search paths for binaries and libraries with
the name of the Objective Caml root directory. If we have chosen C:\Lang\ocaml
as the root directory (<caml-dir>), the modification becomes:
CmdLine=ocamlrun C:\Lang\ocaml\bin\ocaml.exe -I C:\Lang\ocaml\lib


4. Copy the file OCamlWin.ini to the main system directory, that is, C:\windows
or C:\win95 or C:\winnt according to the installation of your system.


Now it’s time to test the OCamlWin application by double-clicking on it. You’ll get the
window in figure 1.1.


Figure 1.1: Objective Caml window under Windows.


The configuration of command-line executables, launched from a DOS window, is done
by modifying the PATH variable and the Objective Caml library search path vari-
able (CAMLLIB), as follows:


PATH=%PATH%;<caml-dir>\bin
set CAMLLIB=<caml-dir>\lib


where <caml-dir> is replaced by the path where Objective Caml is installed.
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These two commands can be included in the autoexec.bat file which every good DOS
has. To test the command-line executables, type the command ocaml in a DOS window.
This executes the file:


<caml-dir>/bin/ocaml.exe


corresponding to the Objective Caml. text mode toplevel. To exit from this command,
type #quit;;.


To install Objective Caml from source under Windows is not so easy, because it requires
the use of commercial software, in particular the Microsoft C compiler. Refer to the
file Readme.win of the binary distribution to get the details.


Installation under Linux


The Linux installation also has an easy-to-install binary distribution in the form of an
rpm. package. Installation from source is described in section 1. The file to download
is: ocaml-2.04-2.i386.rpm which will be used as follows with root privileges:


rpm -i ocaml-2.04-2.i386.rpm


which installs the executables in the /usr/bin directory and the libraries in the
/usr/lib/ocaml directory.


To test the installation, type: ocamlc -v which prints the version of Objective Caml
installed on the machine.


ocamlc -v
The Objective Caml compiler, version 2.04
Standard library directory: /usr/lib/ocaml


You can also execute the command ocaml which prints the header of the interactive
toplevel.


Objective Caml version 2.04


#


The # character is the prompt in the interactive toplevel. This interactive toplevel can
be exited by the #quit;; directive, or by typing CTRL-D. The two semi-colons indicate
the end of an Objective Caml phrase.


Installation under MacOS


The MacOS distribution is also in the form of a self-extracting binary. The file to
download is: ocaml-2.04-mac.sea.bin which is compressed. Use your favorite software
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to decompress it. Then all you have to do to install it is launch the self-extracting
archive and follow the instructions printed in the dialog box to choose the location
of the distribution. For the MacOS X server distribution, follow the installation from
source under Unix.


Installation from source under Unix


Objective Caml can be installed on systems in the Unix family from the source dis-
tribution. Indeed it will be necessary to compile the Objective Caml system. To do
this, one must either have a C compiler on one’s Unix, machine, which is generally
the case, or download one such as gcc which works on most Unix. systems. The Ob-
jective Caml distribution file containing the source is: ocaml-2.04.tar.gz. The file
INSTALL describes, in a very clear way, the various stages of configuring, making, and
then installing the binaries.


Installation of the HTML documentation


Objective Caml’s English documentation is present also in the form of a hierarchy of
HTML files which can be found in the docs directory of the CD-ROM.


This documentation is a reference manual. It is not easy reading for the beginner.
Nevertheless it is quite useful as a description of the language, its tools, and its libraries.
It will soon become indispensable for anyone who hopes to write a program of more
than ten lines.


Testing the installation


Once installation of the Objective Caml development environment is done, it is nec-
essary to test it, mainly to verify the search paths for executables and libraries. The
simplest way is to launch the interactive toplevel of the system and write the first little
program that follows:


String.concat "/" ["a"; "path"; "here"] ;;


This expression concatenates several character strings, inserting the “/” character be-
tween each word. The notation String.concat indicates use of the function concat
from the String. If the library search path is not correct, the system will print an error.
It will be noted that the system indicates that the computation returns a character
string and prints the result.


The documentation of this function String.concat can be found in the online reference
manual by following the links “The standard library” then “Module String: string
operations”.


To exit the interactive toplevel, the user must type the directive “#quit ;;”.
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The first part of this book is a complete introduction to the core of the Objective
Caml language, in particular the expression evaluation mechanism, static typing and
the data memory model.


An expression is the description of a computation. Evaluation of an expression returns
a value at the end of the computation. The execution of an Objective Caml program
corresponds to the computation of an expression. Functions, program execution control
structures, even conditions or loops, are themselves also expressions.


Static typing guarantees that the computation of an expression cannot cause a run-time
type error. In fact, application of a function to some arguments (or actual parameters)
isn’t accepted unless they all have types compatible with the formal parameters indi-
cated in the definition of the function. Furthermore, the Objective Caml language has
type infererence: the compiler automatically determines the most general type of an
expression.


Finally a minimal knowledge of the representation of data is indispensable to the
programmer in order to master the effects of physical modifications to the data.


Outline


Chapter 2 contains a complete presentation of the purely functional part of the lan-
guage and the constraints due to static typing. The notion of expression evaluation is
illustrated there at length. The following control structures are detailed: conditional,
function application and pattern matching. The differences between the type and the
domain of a function are discussed in order to introduce the exception mechanism. This
feature of the language goes beyond the functional context and allows management of
computational breakdowns.


Chapter 3 exhibits the imperative style. The constructions there are closer to classic
languages. Associative control structures such as sequence and iteration are presented
there, as well as mutable data structures. The interaction between physical modifica-
tions and sharing of data is then detailed. Type inference is described there in the
context of these new constructions.


Chapter 4 compares the two preceding styles and especially presents different mixed
styles. This mixture supports in particular the construction of lazy data structures,
including mutable ones.


Chapter 5 demonstrates the use of the Graphics library included in the language
distribution. The basic notions of graphics programming are exhibited there and im-
mediately put into practice. There’s even something about GUI construction thanks
to the minimal event control provided by this library.


These first four chapters are illustrated by a complete example, the implementation
of a calculator, which evolves from chapter to chapter.


Chapter 6 presents three complete applications: a little database, a mini-BASIC inter-
preter and the game Minesweeper. The first two examples are constructed mainly in a
functional style, while the third is done in an imperative style.
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The rudiments of syntax


Before beginning we indicate the first elements of the syntax of the language. A program
is a sequence of phrases in the language. A phrase is a complete, directly executable
syntactic element (an expression, a declaration). A phrase is terminated with a double
semi-colon (; ;). There are three different types of declarations which are each marked
with a different keyword:


value declaration : let


exception declaration : exception


type declaration : type


All the examples given in this part are to be input into the interactive toplevel of the
language.


Here’s a first (little) Objective Caml program, to be entered into the toplevel, whose
prompt is the pound character (#), in which a function fact computing the factorial
of a natural number, and its application to a natural number 8, are defined.
# let rec fact n = if n < 2 then 1 else n * fact(n-1) ; ;


val fact : int -> int = <fun>


# fact 8 ; ;


- : int = 40320


This program consists of two phrases. The first is the declaration of a function value
and the second is an expression. One sees that the toplevel prints out three pieces
of information which are: the name being declared, or a dash (-) in the case of an
expression; the inferred type; and the return value. In the case of a function value, the
system prints <fun>.


The following example demonstrates the manipulation of functions as values in the
language. There we first of all define the function succ which calculates the successor
of an integer, then the function compose which composes two functions. The latter will
be applied to fact and succ.


# let succ x = x+1 ; ;


val succ : int -> int = <fun>


# let compose f g x = f(g x) ; ;


val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>


# compose fact succ 8 ; ;


- : int = 362880


This last call carries out the computation fact(succ 8) and returns the expected
result. Let us note that the functions fact and succ are passed as parameters to
compose in the same way as the natural number 8.







2
Functional


programming


The first functional language, Lisp, appeared at the end of the 1950’s. That is, at
the same time as Fortran, the first representative of the imperative languages. These
two languages still exist, although both have evolved greatly. They are used widely for
numerical programming (in the case of Fortran) and symbolic applications in the case of
Lisp. Interest in functional programming arises from the great ease of writing programs
and specifying the values which they manipulate. A program is a function applied to its
arguments. It computes a result which is returned (when the computation terminates)
as the output of the program. In this way it becomes easy to combine programs: the
output of one program becomes an input argument to another, in the sense of function
composition.


Functional programming is based on a simple computation model with three construc-
tions: variables, function definitions, and applications of a function to an argument.
This model is called the λ-calculus and it was introduced by Alonzo Church in 1932,
thus before the first computer. It was created to offer a general theoretical model of
the notion of computability. In the λ-calculus, all functions are values which can be
manipulated. They can be used as arguments to other functions, or returned as the
result of a call to another function. The theory of λ-calculus asserts that everything
which is computable (i.e., programmable) can be written in this formalism. Its syntax
is too limited to make its use as a programming language practical, so primitive values
(such as integers or character strings), operations on these primitive values, control
structures, and declarations which allow the naming of values or functions and, in
particular, recursive functions, have all been added to the λ-calculus to make it more
palatable.


There are several classifications of functional languages. For our part, we will distin-
guish them according to two characteristics which seem to us most salient:


• Without side effects (pure) or with side effects (impure): a pure functional lan-
guage is a language in which there is no change of state. There everything is
simply a computation and the way it is carried out is unimportant. Impure func-
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tional languages, such as Lisp or ML, integrate imperative traits such as change
of state. They permit the writing of algorithms in a style closer to languages like
Fortran, where the order of evaluation of expressions is significant.


• Dynamically typed or statically typed: typing permits verification of whether
an argument passed to a function is indeed of the type of the function’s formal
parameter. This verification can be made during program execution. In that case
this verification is called dynamic typing. If type errors occur the program will
halt in a consistent state. This is the case in the language Lisp. This verification
can also be done before program execution, that is, at compilation time. This a
priori verification is called static typing. Having been carried out once and for all,
it won’t slow down program execution. This is the case in the ML language and
its dialects such as Objective Caml. Only correctly typed programs, i.e., those
accepted by the type verifier, will be able to be compiled and then executed.


Chapter outline


This chapter presents the basic elements of the functional part of the Objective Caml
language, namely its syntactic elements, its language of types and its exception mech-
anism. This will lead us to the development of a first example of a complete program.


The first section describes the core of the language, beginning with primitive values
and the functions which manipulate them. We then go on to structured values and to
function values. The basic control structures are introduced as well as local and global
value declarations. The second section deals with type definitions for the construction
of structured values and with pattern matching to access these structures. The third
section compares the inferred type of functions and their domain of definition, which
leads us to introduce the exception mechanism. The fourth section illustrates all these
notions put together, by describing a simple application: a desktop calculator.


Functional core of Objective Caml


Like all functional languages, Objective Caml is an expression oriented language, where
programming consists mainly of creating functions and applying them. The result of
the evaluation of one of these expressions is a value in the language and the execution
of a program is the evaluation of all the expressions which comprise it.


Primitive values, functions, and types


Integers and floating-point numbers, characters, character strings, and booleans are
predefined in Objective Caml.
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Numbers


There are two kinds of numbers: integers1 of type int and floating-point numbers of
type float. Objective Caml follows the IEEE 754 standard2 for representing double-
precision floating-point numbers. The operations on integers and floating-point num-
bers are described in figure 2.1. Let us note that when the result of an integer operation
is outside the interval on which values of type int are defined, this does not produce
an error, but the result is an integer within the system’s interval of integers. In other
words, all integer operations are operations modulo the boundaries of the interval.


integer numbers floating-point numbers
+ addition
- subtraction and unary negation
* multiplication
/ integer division


mod remainder of integer division


+. addition
-. subtraction and unary negation
*. multiplication
/. division
** exponentiation


# 1 ; ;


- : int = 1


# 1 + 2 ; ;


- : int = 3


# 9 / 2 ; ;


- : int = 4


# 11 mod 3 ; ;


- : int = 2


(* limits of the representation *)


(* of integers *)


# 2147483650 ; ;


- : int = 2


# 2.0 ; ;


- : float = 2


# 1.1 +. 2.2 ; ;


- : float = 3.3


# 9.1 /. 2.2 ; ;


- : float = 4.13636363636


# 1. /. 0. ; ;


- : float = inf


(* limits of the representation *)


(* of floating-point numbers *)


# 222222222222.11111 ; ;


- : float = 222222222222


Figure 2.1: Operations on numbers.


Differences between integers and floating-point numbers Values having dif-
ferent types such as float and int can never be compared directly. But there are
functions for conversion (float of int and int of float) between one and the other.


# 2 = 2.0 ; ;


Characters 5-8:


This expression has type float but is here used with type int


# 3.0 = float of int 3 ; ;


1. In the interval [−230, 230 − 1] on 32-bit machines and in the interval [−262, 262 − 1] on 64-bit
machines
2. The floating point number m× 10n is represented with a 53-bit mantissa m and an exponent n in
the interval [−1022, 1023].
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- : bool = true


In the same way, operations on floating-point numbers are distinct from those on
integers.


# 3 + 2 ; ;


- : int = 5


# 3.0 +. 2.0 ; ;


- : float = 5


# 3.0 + 2.0 ; ;


Characters 0-3:


This expression has type float but is here used with type int


# sin 3.14159 ; ;


- : float = 2.65358979335e-06


An ill-defined computation, such as a division by zero, will raise an exception (see page
54) which interrupts the computation. Floating-point numbers have a representation
for infinite values (printed as Inf) and ill-defined computations (printed as NaN3). The
main functions on floating-point numbers are described in figure 2.2.


functions on floats trigonometric functions
ceil


floor


sqrt square root
exp exponential
log natural log
log10 log base 10


cos cosine
sin sine
tan tangent
acos arccosine
asin arcsine
atan arctangent


# ceil 3.4 ; ;


- : float = 4


# floor 3.4 ; ;


- : float = 3


# ceil (-.3.4) ; ;


- : float = -3


# floor (-.3.4) ; ;


- : float = -4


# sin 1.57078 ; ;


- : float = 0.999999999867


# sin (asin 0.707) ; ;


- : float = 0.707


# acos 0.0 ; ;


- : float = 1.57079632679


# asin 3.14 ; ;


- : float = nan


Figure 2.2: Functions on floats.


3. Not a Number
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Characters and Strings


Characters, type char, correspond to integers between 0 and 255 inclusive, following
the ASCII encoding for the first 128. The functions char of int and int of char
support conversion between integers and characters. Character strings, type string,
are sequences of characters of definite length (less than 224 − 6). The concatenation
operator is ^ . The functions int of string, string of int, string of float and
float of string carry out the various conversions between numbers and character
strings.
# ’B’ ; ;


- : char = ’B’


# int of char ’B’ ; ;


- : int = 66


# "is a string" ; ;


- : string = "is a string"


# (string of int 1987) ^ " is the year Caml was created" ; ;


- : string = "1987 is the year Caml was created"


Even if a string contains the characters of a number, it won’t be possible to use it in
operations on numbers without carrying out an explicit conversion.
# "1999" + 1 ; ;


Characters 1-7:


This expression has type string but is here used with type int


# (int of string "1999") + 1 ; ;


- : int = 2000


Numerous functions on character strings are gathered in the String module (see page
217).


Booleans


Booleans, of type bool, belong to a set consisting of two values: true and false. The
primitive operators are described in figure 2.3. For historical reasons, the “and” and
“or” operators each have two forms.


not negation
&& sequential and
|| sequential or


& synonym for &&
or synonym for ||


Figure 2.3: Operators on booleans.


# true ; ;


- : bool = true


# not true ; ;


- : bool = false
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# true && false ; ;


- : bool = false


The operators && and ||, or their synonyms, evaluate their left argument and then,
depending on its value, evaluate their right argument. They can be rewritten in the
form of conditional constructs (see page 18).


= structural equality
== physical equality
<> negation of =
!= negation of ==


< less than
> greater than
<= less than or equal to
>= greater than or equal to


Figure 2.4: Equality and comparison operators.


The equality and comparison operators are described in figure 2.4. They are polymor-
phic, i.e., they can be used to compare two integers as well as two character strings.
The only constraint is that their two operands must be of the same type (see page 28).


# 1<=118 && (1=2 || not(1=2)) ; ;


- : bool = true


# 1.0 <= 118.0 && (1.0 = 2.0 || not (1.0 = 2.0)) ; ;


- : bool = true


# "one" < "two" ; ;


- : bool = true


# 0 < ’0’ ; ;


Characters 4-7:


This expression has type char but is here used with type int


Structural equality tests the equality of two values by traversing their structure, whereas
physical equality tests whether the two values occupy the same region in memory. These
two equality operators return the same result for simple values: booleans, characters,
integers and constant constructors (page 45).


Warning Floating-point numbers and character strings are con-
sidered structured values.


Unit


The unit type describes a set which possesses only a single element, denoted: ().
# () ; ;


- : unit = ()


This value will often be used in imperative programs (see chapter 3, page 67) for
functions which carry out side effects. Functions whose result is the value () simulate
the notion of procedure, which doesn’t exist in Objective Caml, just as the type void
does in the C language.
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Cartesian product, tuple


Values of possibly different types can be gathered in pairs or more generally in tuples.
The values making up a tuple are separated by commas. The type constructor * in-
dicates a tuple. The type int * string is the type of pairs whose first element is an
integer (of type int) and whose second is a character string (of type string).
# ( 12 , "October" ) ; ;


- : int * string = 12, "October"


When there is no ambiguity, it can be written more simply:
# 12 , "October" ; ;


- : int * string = 12, "October"


The functions fst and snd allow access to the first and second elements of a pair.
# fst ( 12 , "October" ) ; ;


- : int = 12


# snd ( 12 , "October" ) ; ;


- : string = "October"


These two functions accept pairs whose components are of any type whatsoever. They
are polymorphic, in the same way as equality.
# fst; ;


- : ’a * ’b -> ’a = <fun>


# fst ( "October", 12 ) ; ;


- : string = "October"


The type int * char * string is that of triplets whose first element is of type int,
whose second is of type char, and whose third is of type string. Its values are written


# ( 65 , ’B’ , "ascii" ) ; ;


- : int * char * string = 65, ’B’, "ascii"


Warning The functions fst and snd applied to a tuple, other
than a pair, result in a type error.


# snd ( 65 , ’B’ , "ascii" ) ; ;


Characters 7-25:


This expression has type int * char * string but is here used with type


’a * ’b


There is indeed a difference between the type of a pair and that of a triplet. The type
int * int * int is different from the types (int * int) * int and int * (int *


int). Functions to access a triplet (and other tuples) are not defined by the core library.
One can use pattern matching to define them if need be (see page 34).


Lists


Values of the same type can be gathered into a list. A list can either be empty or
consist of elements of the same type.
# [] ; ;


- : ’a list = []
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# [ 1 ; 2 ; 3 ] ; ;


- : int list = [1; 2; 3]


# [ 1 ; "two" ; 3 ] ; ;


Characters 14-17:


This expression has type int list but is here used with type string list


The function which adds an element at the head of a list is the infix operator :: . It is
the analogue of Lisp’s cons.
# 1 :: 2 :: 3 :: [] ; ;


- : int list = [1; 2; 3]


Concatenation of two lists is also an infix operator @.
# [ 1 ] @ [ 2 ; 3 ] ; ;


- : int list = [1; 2; 3]


# [ 1 ; 2 ] @ [ 3 ] ; ;


- : int list = [1; 2; 3]


The other list manipulation functions are defined in the List library. The functions
hd and tl from this library give respectively the head and the tail of a list when these
values exist. These functions are denoted by List.hd and List.tl to indicate to the
system that they can be found in the module List4.
# List.hd [ 1 ; 2 ; 3 ] ; ;


- : int = 1


# List.hd [] ; ;


Uncaught exception: Failure("hd")


In this last example, it is indeed problematic to request retrieval of the first element
of an empty list. It is for this reason that the system raises an exception (see page 54).


Conditional control structure


One of the indispensable control structures in any programming language is the struc-
ture called conditional (or branch) which guides the computation as a function of a
condition.


Syntax : if expr1 then expr2 else expr3


The expression expr1 is of type bool. The expressions expr2 and expr3 must be of the
same type, whatever it may be.


# if 3=4 then 0 else 4 ; ;


- : int = 4


# if 3=4 then "0" else "4" ; ;


4. The List module is presented on page 217.
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- : string = "4"


# if 3=4 then 0 else "4"; ;


Characters 20-23:


This expression has type string but is here used with type int


A conditional construct is itself an expression and its evaluation returns a value.


# (if 3=5 then 8 else 10) + 5 ; ;


- : int = 15


Note
The else branch can be omitted, but in this case it is implicitly replaced
by else () . Consequently, the type of the expression expr2 must be unit


(see page 79).


Value declarations


A declaration binds a name to a value. There are two types: global declarations and
local declarations. In the first case, the declared names are known to all the expressions
following the declaration; in the second, the declared names are only known to one
expression. It is equally possible to simultaneously declare several name-value bindings.


Global declarations


Syntax : let name = expr ;;


A global declaration defines the binding between the name name and the value of the
expression expr which will be known to all subsequent expressions.
# let yr = "1999" ; ;


val yr : string = "1999"


# let x = int of string(yr) ; ;


val x : int = 1999


# x ; ;


- : int = 1999


# x + 1 ; ;


- : int = 2000


# let new yr = string of int (x + 1) ; ;


val new_yr : string = "2000"
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Simultaneous global declarations


Syntax :


let name1 = expr1
and name2 = expr2
...
and namen = exprn ;;


A simultaneous declaration declares different symbols at the same level. They won’t
be known until the end of all the declarations.
# let x = 1 and y = 2 ; ;


val x : int = 1


val y : int = 2


# x + y ; ;


- : int = 3


# let z = 3 and t = z + 2 ; ;


Characters 18-19:


Unbound value z


It is possible to gather several global declarations in the same phrase; then printing of
their types and their values does not take place until the end of the phrase, marked by
double “;;”. These declarations are evaluated sequentially, in contrast with a simulta-
neous declaration.
# let x = 2


let y = x + 3 ; ;


val x : int = 2


val y : int = 5


A global declaration can be masked by a new declaration of the same name (see page
26).


Local declarations


Syntax : let name = expr1 in expr2;;


The name name is only known during the evaluation of expr2. The local declaration
binds it to the value of expr1.
# let xl = 3 in xl * xl ; ;


- : int = 9


The local declaration binding xl to the value 3 is only in effect during the evaluation
of xl * xl.
# xl ; ;


Characters 1-3:


Unbound value xl


A local declaration masks all previous declarations of the same name, but the previous
value is reinstated upon leaving the scope of the local declaration:
# let x = 2 ; ;
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val x : int = 2


# let x = 3 in x * x ; ;


- : int = 9


# x * x ; ;


- : int = 4


A local declaration is an expression and can thus be used to construct other expressions:


# (let x = 3 in x * x) + 1 ; ;


- : int = 10


Local declarations can also be simultaneous.


Syntax :


let name1 = expr1
and name2 = expr2
...
and namen = exprn


in expr ;;


# let a = 3.0 and b = 4.0 in sqrt (a*.a +. b*.b) ; ;


- : float = 5


# b ; ;


Characters 0-1:


Unbound value b


Function expressions, functions


A function expression consists of a parameter and a body. The formal parameter is a
variable name and the body an expression. The parameter is said to be abstract. For
this reason, a function expression is also called an abstraction.


Syntax : function p –> expr


Thus the function which squares its argument is written:
# function x → x*x ; ;


- : int -> int = <fun>


The Objective Caml system deduces its type. The function type int -> int indicates
a function expecting a parameter of type int and returning a value of type int.


Application of a function to an argument is written as the function followed by the
argument.
# (function x → x * x) 5 ; ;


- : int = 25


The evaluation of an application amounts to evaluating the body of the function, here







22 Chapter 2 : Functional programming


x * x, where the formal parameter, x, is replaced by the value of the argument (or the
actual parameter), here 5.


In the construction of a function expression, expr is any expression whatsoever. In
particular, expr may itself be a function expression.


# function x → (function y → 3*x + y) ; ;


- : int -> int -> int = <fun>


The parentheses are not required. One can write more simply:
# function x → function y → 3*x + y ; ;


- : int -> int -> int = <fun>


The type of this expression can be read in the usual way as the type of a function which
expects two integers and returns an integer value. But in the context of a functional
language such as Objective Caml we are dealing more precisely with the type of a
function which expects an integer and returns a function value of type int -> int:
# (function x → function y → 3*x + y) 5 ; ;


- : int -> int = <fun>


One can, of course, use the function expression in the usual way by applying it to two
arguments. One writes:
# (function x → function y → 3*x + y) 4 5 ; ;


- : int = 17


When one writes f a b, there is an implicit parenthesization on the left which makes
this expression equivalent to: (f a) b.


Let’s examine the application


(function x → function y → 3*x + y) 4 5


in detail. To compute the value of this expression, it is necessary to compute the value
of


(function x → function y → 3*x + y) 4


which is a function expression equivalent to


function y → 3*4 + y


obtained by replacing x by 4 in 3*x + y. Applying this value (which is a function) to
5 we get the final value 3*4+5 = 17:
# (function x → function y → 3*x + y) 4 5 ; ;


- : int = 17
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Arity of a function


The number of arguments of a function is called its arity. Usage inherited from math-
ematics demands that the arguments of a function be given in parentheses after the
name of the function. One writes: f(4, 5). We’ve just seen that in Objective Caml, one
more usually writes: f 4 5. One can, of course, write a function expression in Objective
Caml which can be applied to (4, 5):
# function (x,y) → 3*x + y ; ;


- : int * int -> int = <fun>


But, as its type indicates, this last expression expects not two, but only one argument:
a pair of integers. Trying to pass two arguments to a function which expects a pair or
trying to pass a pair to a function which expects two arguments results in a type error:


# (function (x,y) → 3*x + y) 4 5 ; ;


Characters 29-30:


This expression has type int but is here used with type int * int


# (function x → function y → 3*x + y) (4, 5) ; ;


Characters 39-43:


This expression has type int * int but is here used with type int


Alternative syntax


There is a more compact way of writing function expressions with several parameters.
It is a legacy of former versions of the Caml language. Its form is as follows:


Syntax : fun p1 . . . pn –> expr


It allows one to omit repetitions of the function keyword and the arrows. It is equiv-
alent to the following translation:


function p1 –> . . . –> function pn –> expr


# fun x y → 3*x + y ; ;


- : int -> int -> int = <fun>


# (fun x y → 3*x + y) 4 5 ; ;


- : int = 17


This form is still encountered often, in particular in the libraries provided with the
Objective Caml distribution.


Closure


Objective Caml treats a function expression like any other expression and is able to
compute its value. The value returned by the computation is a function expression and
is called a closure. Every Objective Caml expression is evaluated in an environment
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consisting of name-value bindings coming from the declarations preceding the expres-
sion being computed. A closure can be described as a triplet consisting of the name
of the formal parameter, the body of the function, and the environment of the expres-
sion. This environment needs to be preserved because the body of a function expression
may use, in addition to the formal parameters, every other variable declared previously.
These variables are said to be “free” in the function expression. Their values will be
needed when the function expression is applied.
# let m = 3 ; ;


val m : int = 3


# function x → x + m ; ;


- : int -> int = <fun>


# (function x → x + m) 5 ; ;


- : int = 8


When application of a closure to an argument returns a new closure, the latter pos-
sesses within its environment all the bindings necessary for a future application. The
subsection on the scope of variables (see page 26) details this notion. We will return
to the memory representation of a closure in chapter 4 (page 103) as well as chapter
12 (page 332).


The function expressions used until now are anonymous. It is rather useful to be able
to name them.


Function value declarations


Function values are declared in the same way as other language values, by the let


construct.
# let succ = function x → x + 1 ; ;


val succ : int -> int = <fun>


# succ 420 ; ;


- : int = 421


# let g = function x → function y → 2*x + 3*y ; ;


val g : int -> int -> int = <fun>


# g 1 2; ;


- : int = 8


To simplify writing, the following notation is allowed:


Syntax : let name p1 . . . pn = expr


which is equivalent to the following form:


let name = function p1 –> . . . –> function pn –> expr


The following declarations of succ and g are equivalent to their previous declaration.
# let succ x = x + 1 ; ;
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val succ : int -> int = <fun>


# let g x y = 2*x + 3*y ; ;


val g : int -> int -> int = <fun>


The completely functional character of Objective Caml is brought out by the following
example, in which the function h1 is obtained by the application of g to a single integer.
In this case one speaks of partial application:
# let h1 = g 1 ; ;


val h1 : int -> int = <fun>


# h1 2 ; ;


- : int = 8


One can also, starting from g, define a function h2 by fixing the value of the second
parameter, y, of g:
# let h2 = function x → g x 2 ; ;


val h2 : int -> int = <fun>


# h2 1 ; ;


- : int = 8


Declaration of infix functions


Certain functions taking two arguments can be applied in infix form. This is the case
with addition of integers. One writes 3 + 5 for the application of + to 3 and 5. To
use the symbol + as a regular function value, this must be syntactically indicated by
surrounding the infix symbol with parentheses. The syntax is as follows:


Syntax : ( op )


The following example defines the function succ using ( + ).
# ( + ) ; ;


- : int -> int -> int = <fun>


# let succ = ( + ) 1 ; ;


val succ : int -> int = <fun>


# succ 3 ; ;


- : int = 4


It is also possible to define new operators. We define an operator ++, addition on pairs
of integers
# let ( ++ ) c1 c2 = (fst c1)+(fst c2), (snd c1)+(snd c2) ; ;


val ++ : int * int -> int * int -> int * int = <fun>


# let c = (2,3) ; ;


val c : int * int = 2, 3


# c ++ c ; ;


- : int * int = 4, 6
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There is an important limitation on the possible operators. They must contain only
symbols (such as *, +, @, etc. ) and not letters or digits. Certain functions predefined as
infixes are exceptions to the rule. They are listed as follows: or mod land lor lxor
lsl lsr asr.


Higher order functions


A function value (a closure) can be returned as a result. It can equally well be passed as
an argument to a function. Functions taking function values as arguments or returning
them as results are called higher order.
# let h = function f → function y → (f y) + y ; ;


val h : (int -> int) -> int -> int = <fun>


Note
Application is implicitly parenthesized to the left, but function types are
implicitly parenthesized to the right. Thus the type of the function h can
be written
(int -> int) -> int -> int or (int -> int) -> (int -> int)


Higher order functions offer elegant possibilities for dealing with lists. For example the
function List.map can apply a function to all the elements of a list and return the
results in a list.
# List.map ; ;


- : (’a -> ’b) -> ’a list -> ’b list = <fun>


# let square x = string of int (x*x) ; ;


val square : int -> string = <fun>


# List.map square [1; 2; 3; 4] ; ;


- : string list = ["1"; "4"; "9"; "16"]


As another example, the function List.for all can find out whether all the elements
of a list satisfy a given criterion.
# List.for all ; ;


- : (’a -> bool) -> ’a list -> bool = <fun>


# List.for all (function n → n<>0) [-3; -2; -1; 1; 2; 3] ; ;


- : bool = true


# List.for all (function n → n<>0) [-3; -2; 0; 1; 2; 3] ; ;


- : bool = false


Scope of variables


In order for it to be possible to evaluate an expression, all the variables appearing
therein must be defined. This is the case in particular for the expression e in the dec-
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laration let p = e. But since p is not yet known within this expression, this variable
can only be present if it refers to another value issued by a previous declaration.
# let p = p ^ "-suffix" ; ;


Characters 9-10:


Unbound value p


# let p = "prefix" ; ;


val p : string = "prefix"


# let p = p ^ "-suffix" ; ;


val p : string = "prefix-suffix"


In Objective Caml, variables are statically bound. The environment used to execute
the application of a closure is the one in effect at the moment of its declaration (static
scope) and not the one in effect at the moment of application (dynamic scope).


# let p = 10 ; ;


val p : int = 10


# let k x = (x, p, x+p) ; ;


val k : int -> int * int * int = <fun>


# k p ; ;


- : int * int * int = 10, 10, 20


# let p = 1000 ; ;


val p : int = 1000


# k p ; ;


- : int * int * int = 1000, 10, 1010


The function k contains a free variable: p. Since the latter is defined in the global
environment, the definition of k is legal. The binding between the name p and the
value 10 in the environment of the closure k is static, i.e., does not depend on the most
recent definition of p.


Recursive declarations


A variable declaration is called recursive if it uses its own identifier in its definition.
This facility is used mainly for functions, notably to simulate a definition by recurrence.
We have just seen that the let declaration does not support this. To declare a recursive
function we will use a dedicated syntactic construct.


Syntax : let rec name = expr ;;


We can equally well use the syntactic facility for defining function values while indi-
cating the function parameters:


Syntax : let rec name p1 . . . pn = expr ;;


By way of example, here is the function sigma which computes the sum of the (non-
negative) integers between 0 and the value of its argument, inclusive.
# let rec sigma x = if x = 0 then 0 else x + sigma (x-1) ; ;


val sigma : int -> int = <fun>
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# sigma 10 ; ;


- : int = 55


It may be noted that this function does not terminate if its argument is strictly negative.


A recursive value is in general a function. The compiler rejects some recursive decla-
rations whose values are not functions:
# let rec x = x + 1 ; ;


Characters 13-18:


This kind of expression is not allowed as right-hand side of ‘let rec’


We will see however that in certain cases such declarations are allowed (see page 52).


The let rec declaration may be combined with the and construction for simultaneous
declarations. In this case, all the functions defined at the same level are known within
the bodies of each of the others. This permits, among other things, the declaration of
mutually recursive functions.
# let rec even n = (n<>1) && ((n=0) or (odd (n-1)))


and odd n = (n<>0) && ((n=1) or (even (n-1))) ; ;


val even : int -> bool = <fun>


val odd : int -> bool = <fun>


# even 4 ; ;


- : bool = true


# odd 5 ; ;


- : bool = true


In the same way, local declarations can be recursive. This new definition of sigma tests
the validity of its argument before carrying out the computation of the sum defined by
a local function sigma rec.
# let sigma x =


let rec sigma rec x = if x = 0 then 0 else x + sigma rec (x-1) in


if (x<0) then "error: negative argument"


else "sigma = " ^ (string of int (sigma rec x)) ; ;


val sigma : int -> string = <fun>


Note
The need to give a return value of the same type, whether the argument is
negative or not, has forced us to give the result in the form of a character
string. Indeed, what value should be returned by sigma when its argument
is negative? We will see the proper way to manage this problem, using
exceptions (see page 54).


Polymorphism and type constraints


Some functions execute the same code for arguments having different types. For exam-
ple, creation of a pair from two values doesn’t require different functions for each type
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known to the system5. In the same way, the function to access the first field of a pair
doesn’t have to be differentiated according to the type of the value of this first field.
# let make pair a b = (a,b) ; ;


val make_pair : ’a -> ’b -> ’a * ’b = <fun>


# let p = make pair "paper" 451 ; ;


val p : string * int = "paper", 451


# let a = make pair ’B’ 65 ; ;


val a : char * int = ’B’, 65


# fst p ; ;


- : string = "paper"


# fst a ; ;


- : char = ’B’


Functions are called polymorphic if their return value or one of their parameters is of
a type which need not be specified. The type synthesizer contained in the Objective
Caml compiler finds the most general type for each expression. In this case, Objective
Caml uses variables, here ’a and ’b, to designate these general types. These variables
are instantiated to the type of the argument during application of the function.


With Objective Caml’s polymorphic functions, we get the advantages of being able
to write generic code usable for values of every type, while still preserving the exe-
cution safety of static typing. Indeed, although make pair is polymorphic, the value
created by (make pair ’B’ 65) has a well-specified type which is different from that of
(make pair "paper" 451). Moreover, type verification is carried out on compilation,
so the generality of the code does not hamper the efficiency of the program.


Examples of polymorphic functions and values


The following examples of polymorphic functions have functional parameters whose
type is parameterized.


The app function applies a function to an argument.
# let app = function f → function x → f x ; ;


val app : (’a -> ’b) -> ’a -> ’b = <fun>


So it can be applied to the function odd defined previously:
# app odd 2; ;


- : bool = false


The identity function (id ) takes a parameter and returns it as is.
# let id x = x ; ;


val id : ’a -> ’a = <fun>


# app id 1 ; ;


- : int = 1


5. Fortunately since the number of types is only limited by machine memory
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The compose function takes two functions and another value and composes the appli-
cation of these two functions to this value.
# let compose f g x = f (g x) ; ;


val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>


# let add1 x = x+1 and mul5 x = x*5 in compose mul5 add1 9 ; ;


- : int = 50


It can be seen that the result of g must be of the same type as the argument of f.


Values other than functions can be polymorphic as well. For example, this is the case
for the empty list:
# let l = [] ; ;


val l : ’a list = []


The following example demonstrates that type synthesis indeed arises from resolution
of the constraints coming from function application and not from the value obtained
upon execution.
# let t = List.tl [2] ; ;


val t : int list = []


The type of List.tl is ’a list -> ’a list, so this function applied to a list of
integers returns a list of integers. The fact that upon execution it is the empty list
which is obtained doesn’t change its type at all.


Objective Caml generates parameterized types for every function which doesn’t use
the form of its arguments. This polymorphism is called parametric polymorphism6.


Type constraint


As the Caml type synthesizer generates the most general type, it may be useful or
necessary to specify the type of an expression.


The syntactic form of a type constraint is as follows:


Syntax : ( expr : t )


When it runs into such a constraint, the type synthesizer will take it into account while
constructing the type of the expression. Using type constraints lets one:


• make the type of the parameters of a function visible;


• forbid the use of a function outside its intended context;


• specify the type of an expression, which will be particularly useful for mutable
values (see page 68).


The following examples demonstrate the use of such type constraints
# let add (x:int) (y:int) = x + y ; ;


6. Some predefined functions do not obey this rule, in particular the structural equality function (=)
which is polymorphic (its type is ’a -> ’a -> bool) but which explores the structure of its arguments
to test their equality.
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val add : int -> int -> int = <fun>


# let make pair int (x:int) (y:int) = x,y; ;


val make_pair_int : int -> int -> int * int = <fun>


# let compose fn int (f : int → int) (g : int → int) (x:int) =


compose f g x; ;


val compose_fn_int : (int -> int) -> (int -> int) -> int -> int = <fun>


# let nil = ( [] : string list); ;


val nil : string list = []


# ’H’ :: nil; ;


Characters 5-8:


This expression has type string list but is here used with type char list


Restricting polymorphism this way lets us control the type of an expression better by
constraining the polymorphism of the type deduced by the system. Any defined type
whatsoever may be used, including ones containing type variables, as the following
example shows:
# let llnil = ( [] : ’a list list) ; ;


val llnil : ’a list list = []


# [1;2;3]:: llnil ; ;


- : int list list = [[1; 2; 3]]


The symbol llnil is a list of lists of any type whatsoever.


Here we are dealing with constraints, and not replacing Objective Caml’s type synthesis
with explicit typing. In particular, one cannot generalize types beyond what inference
permits.
# let add general (x:’a) (y:’b) = add x y ; ;


val add_general : int -> int -> int = <fun>


Type constraints will be used in module interfaces (see chapter 14) as well as in class
declarations (see chapter 15).


Examples


In this section we will give several somewhat elaborate examples of functions. Most of
these functions are predefined in Objective Caml. We will redefine them for the sake
of “pedagogy”.


Here, the test for the terminal case of recursive functions is implemented by a condi-
tional. Hence a programming style closer to Lisp. We will see how to give a more ML
character to these definitions when we present another way of defining functions by
case (see page 34).


Length of a list


Let’s start with the function null which tests whether a list is empty.
# let null l = (l = [] ) ; ;
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val null : ’a list -> bool = <fun>


Next, we define the function size to compute the length of a list (i.e., the number of
its elements).
# let rec size l =


if null l then 0


else 1 + (size (List.tl l)) ; ;


val size : ’a list -> int = <fun>


# size [] ; ;


- : int = 0


# size [1;2;18;22] ; ;


- : int = 4


The function size tests whether the list argument is empty. If so it returns 0, if not it
returns 1 plus the value resulting from computing the length of the tail of the list.


Iteration of composition


The expression iterate n f computes the value f iterated n times.
# let rec iterate n f =


if n = 0 then (function x → x)


else compose f (iterate (n-1) f) ; ;


val iterate : int -> (’a -> ’a) -> ’a -> ’a = <fun>


The iterate function tests whether n is 0, if yes it returns the identity function, if not
it composes f with the iteration of f n-1 times.


Using iterate, one can define exponentiation as iteration of multiplication.
# let rec power i n =


let i times = ( * ) i in


iterate n i times 1 ; ;


val power : int -> int -> int = <fun>


# power 2 8 ; ;


- : int = 256


The power function iterates n times the function expression i times, then applies this
result to 1, which does indeed compute the nth power of an integer.


Multiplication table


We want to write a function multab which computes the multiplication table of an
integer passed as an argument.


First we define the function apply fun list such that, if f list is a list of functions,
apply fun list x f list returns the list of results of applying each element of f list


to x.
# let rec apply fun list x f list =


if null f list then []


else ((List.hd f list) x) :: (apply fun list x (List.tl f list)) ; ;


val apply_fun_list : ’a -> (’a -> ’b) list -> ’b list = <fun>


# apply fun list 1 [( + ) 1;( + ) 2;( + ) 3] ; ;
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- : int list = [2; 3; 4]


The function mk mult fun list returns the list of functions multiplying their argument
by i, for i varying from 0 to n.
# let mk mult fun list n =


let rec mmfl aux p =


if p = n then [ ( * ) n ]


else (( * ) p) :: (mmfl aux (p+1))


in (mmfl aux 1) ; ;


val mk_mult_fun_list : int -> (int -> int) list = <fun>


We obtain the multiplication table of 7 by:
# let multab n = apply fun list n (mk mult fun list 10) ; ;


val multab : int -> int list = <fun>


# multab 7 ; ;


- : int list = [7; 14; 21; 28; 35; 42; 49; 56; 63; 70]


Iteration over lists


The function call fold left f a [e1; e2; ... ; en] returns f ... (f (f a e1) e2)
... en. So there are n applications.
# let rec fold left f a l =


if null l then a


else fold left f ( f a (List.hd l)) (List.tl l) ; ;


val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>


The function fold left permits the compact definition of a function to compute the
sum of the elements of a list of integers:
# let sum list = fold left (+) 0 ; ;


val sum_list : int list -> int = <fun>


# sum list [2;4;7] ; ;


- : int = 13


Or else, the concatenation of the elements of a list of strings:
# let concat list = fold left (^) "" ; ;


val concat_list : string list -> string = <fun>


# concat list ["Hello "; "world" ; "!"] ; ;


- : string = "Hello world!"
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Type declarations and pattern matching


Although Objective Caml’s predefined types permit the construction of data structures
from tuples and lists, one needs to be able to define new types to describe certain data
structures. In Objective Caml, type declarations are recursive and may be parameter-
ized by type variables, in the same vein as the type ’a list already encountered. Type
inference takes these new declarations into account to produce the type of an expres-
sion. The construction of values of these new types uses the constructors described in
their definition. A special feature of languages in the ML family is pattern matching. It
allows simple access to the components of complex data structures. A function defini-
tion most often corresponds to pattern matching over one of its parameters, allowing
the function to be defined by cases.


First of all we present pattern matching over the predefined types, and then go on to
describe the various ways to declare structured types and how to construct values of
such types, as well as how to access their components through pattern matching.


Pattern matching


A pattern is not strictly speaking an Objective Caml expression. It’s more like a correct
(syntactically, and from the point of view of types) arrangement of elements such as
constants of the primitive types (int, bool, char, ..), variables, constructors, and the
symbol called the wildcard pattern. Other symbols are used in writing patterns. We
will introduce them to the extent needed.


Pattern matching applies to values. It is used to recognize the form of this value and lets
the computation be guided accordingly, associating with each pattern an expression to
compute.


Syntax :


match expr with


| p1 –> expr1
...
| pn –> exprn


The expression expr is matched sequentially to the various patterns p1, . . . , pn. If one of
the patterns (for example pi) is consistent with the value of expr then the corresponding
computation branch (expri) is evaluated. The various patterns pi are of the same type.
The same goes for the various expressions expri. The vertical bar preceding the first
pattern is optional.


Examples


Here are two ways to define by pattern matching a function imply of type (bool *


bool) –> bool implementing logical implication. A pattern which matches pairs has
the form ( , ).
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The first version of imply enumerates all possible cases, as a truth table would:
# let imply v = match v with


(true,true) → true


| (true,false) → false


| (false,true) → true


| (false,false) → true; ;


val imply : bool * bool -> bool = <fun>


By using variables which group together several cases, we obtain a more compact
definition.
# let imply v = match v with


(true,x) → x


| (false,x) → true; ;


val imply : bool * bool -> bool = <fun>


These two versions of imply compute the same function. That is, they return the same
values for the same inputs.


Linear pattern


A pattern must necessarily be linear, that is, no given variable can occur more than
once inside the pattern being matched. Thus, we might have hoped to be able to write:


# let equal c = match c with


(x,x) → true


| (x,y) → false; ;


Characters 35-36:


This variable is bound several times in this matching


But this would have required the compiler to know how to carry out equality tests.
Yet this immediately raises numerous problems. If we accept physical equality between
values, we get a system which is too weak, incapable of recognizing the equality be-
tween two occurrences of the list [1; 2], for example. If we decide to use structural
equality, we run the risk of having to traverse, ad infinitum, circular structures. Re-
cursive functions, for example, are circular structures, but we can construct recursive,
hence circular, values which are not functions as well (see page 52).


Wildcard pattern


The symbol matches all possible values. It is called a wildcard pattern. It can be used
to match complex types. We use it, for example, to further simplify the definition of
the function imply:
# let imply v = match v with


(true,false) → false


| _ → true; ;


val imply : bool * bool -> bool = <fun>
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A definition by pattern matching must handle the entire set of possible cases of the
values being matched. If this is not the case, the compiler prints a warning message:
# let is zero n = match n with 0 → true ; ;


Characters 17-40:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


1


val is_zero : int -> bool = <fun>


Indeed if the actual parameter is different from 0 the function doesn’t know what value
to return. So the case analysis can be completed using the wildcard pattern.
# let is zero n = match n with


0 → true


| _ → false ; ;


val is_zero : int -> bool = <fun>


If, at run-time, no pattern is selected, then an exception is raised. Thus, one can write:


# let f x = match x with 1 → 3 ; ;


Characters 11-30:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


0


val f : int -> int = <fun>


# f 1 ; ;


- : int = 3


# f 4 ; ;


Uncaught exception: Match_failure("", 11, 30)


The Match Failure exception is raised by the call to f 4, and if it is not handled
induces the computation in progress to halt (see 54)


Combining patterns


Combining several patterns lets us obtain a new pattern which can match a value
according to one or another of the original patterns. The syntactic form is as follows:


Syntax : p1 | . . . | pn


It constructs a new pattern by combining the patterns p1, . . . and pn. The only strong
constraint is that all naming is forbidden within these patterns. So each one of them
must contain only constant values or the wildcard pattern. The following example
demonstrates how to verify that a character is a vowel.
# let is a vowel c = match c with


’a’ | ’e’ | ’i’ | ’o’ | ’u’ | ’y’ → true


| _ → false ; ;


val is_a_vowel : char -> bool = <fun>
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# is a vowel ’i’ ; ;


- : bool = true


# is a vowel ’j’ ; ;


- : bool = false


Pattern matching of a parameter


Pattern matching is used in an essential way for defining functions by cases. To make
writing these definitions easier, the syntactic construct function allows pattern match-
ing of a parameter:


Syntax :


function | p1 –> expr1
| p2 –> expr2


...
| pn –> exprn


The vertical bar preceding the first pattern is optional here as well. In fact, like Mr.
Jourdain, each time we define a function, we use pattern matching7. Indeed, the con-
struction function x –> expression, is a definition by pattern matching using a
single pattern reduced to one variable. One can make use of this detail with simple
patterns as in:
# let f = function (x,y) → 2*x + 3*y + 4 ; ;


val f : int * int -> int = <fun>


In fact the form


function p1 –> expr1 | . . . | pn –> exprn


is equivalent to


function expr –> match expr with p1 –> expr1 | . . . | pn –> exprn


Using the equivalence of the declarations mentioned on page 24, we write:
# let f (x,y) = 2*x + 3*y + 4 ; ;


val f : int * int -> int = <fun>


But this natural way of writing is only possible if the value being matched belongs to


7. Translator’s note: In Molière’s play Le Bourgeois Gentilhomme (The Bourgeois Gentleman), the
character Mr. Jourdain is amazed to discover that he has been speaking prose all his life. The play
can be found at
Link: http://www.site-moliere.com/pieces/bourgeoi.htm


and
Link: http://moliere-in-english.com/bourgeois.html


gives an excerpt from an English translation, including this part.
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a type having only a single constructor. If such is not the case, the pattern matching
is not exhaustive:
# let is zero 0 = true ; ;


Characters 13-21:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


1


val is_zero : int -> bool = <fun>


Naming a value being matched


During pattern matching, it is sometimes useful to name part or all of the pattern. The
following syntactic form introduces the keyword as which binds a name to a pattern.


Syntax : ( p as name )


This is useful when one needs to take apart a value while still maintaining its integrity.
In the following example, the function min rat gives the smaller rational of a pair of
rationals. The latter are each represented by a numerator and denominator in a pair.


# let min rat pr = match pr with


((_,0),p2) → p2


| (p1,(_,0)) → p1


| (((n1,d1) as r1), ((n2,d2) as r2)) →
if (n1 * d2 ) < (n2 * d1) then r1 else r2; ;


val min_rat : (int * int) * (int * int) -> int * int = <fun>


To compare two rationals, it is necessary to take them apart in order to name their
numerators and denominators (n1, n2, d1 and d2), but the initial pair (r1 or r2) must
be returned. The as construct allows us to name the parts of a single value in this way.
This lets us avoid having to reconstruct the rational returned as the result.


Pattern matching with guards


Pattern matching with guards corresponds to the evaluation of a conditional expression
immediately after the pattern is matched. If this expression comes back true, then
the expression associated with that pattern is evaluated, otherwise pattern matching
continues with the following pattern.


Syntax :


match expr with
...
| pi when condi –> expri


...


The following example uses two guards to test equality of two rationals.
# let eq rat cr = match cr with
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((_,0),(_,0)) → true


| ((_,0),_) → false


| (_,(_,0)) → false


| ((n1,1), (n2,1)) when n1 = n2 → true


| ((n1,d1), (n2,d2)) when ((n1 * d2) = (n2 * d1)) → true


| _ → false; ;


val eq_rat : (int * int) * (int * int) -> bool = <fun>


If the guard fails when the fourth pattern is matched, matching continues with the
fifth pattern.


Note
The verification carried out by Objective Caml as to whether the pattern
matching is exhaustive assumes that the conditional expression in the
guard may be false. Consequently, it does not count this pattern since it is
not possible to know, before execution, whether the guard will be satisfied
or not.


It won’t be possible to detect that the pattern matching in the following example is
exhaustive.
# let f = function x when x = x → true; ;


Characters 10-40:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


_


val f : ’a -> bool = <fun>


Pattern matching on character intervals


In the context of pattern matching on characters, it is tedious to construct the combi-
nation of all the patterns corresponding to a character interval. Indeed, if one wishes
to test a character or even a letter, one would need to write 26 patterns at a minimum
and combine them. For characters, Objective Caml permits writing patterns of the
form:


Syntax : ’c1’ .. ’cn’


It is equivalent to the combination: ’c1’ | ’c2’ | ...| ’cn’.


For example the pattern ’0’ .. ’9’ corresponds to the pattern ’0’ | ’1’ | ’2’
| ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’. The first form is nicer to read and
quicker to write.


Warning This feature is among the extensions to the language
and may change in future versions.


Using combined patterns and intervals, we define a function categorizing characters
according to several criteria.
# let char discriminate c = match c with
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’a’ | ’e’ | ’i’ | ’o’ | ’u’ | ’y’


| ’A’ | ’E’ | ’I’ | ’O’ | ’U’ | ’Y’ → "Vowel"


| ’a’..’z’ | ’A’..’Z’ → "Consonant"


| ’0’..’9’ → "Digit"


| _ → "Other" ; ;


val char_discriminate : char -> string = <fun>


It should be noted that the order of the groups of patterns has some significance.
Indeed, the second set of patterns includes the first, but it is not examined until after
the check on the first.


Pattern matching on lists


As we have seen, a list can be:


• either empty (the list is of the form []),


• or composed of a first element (its head) and a sublist (its tail). The list is then
of the form h::t.


These two possible ways of writing a list can be used as patterns and allow pattern
matching on a list.
# let rec size x = match x with


[] → 0


| _::tail x → 1 + (size tail x) ; ;


val size : ’a list -> int = <fun>


# size [] ; ;


- : int = 0


# size [7;9;2;6]; ;


- : int = 4


So we can redo the examples described previously (see page 31) using pattern matching,
such as iteration over lists for example.
# let rec fold left f a = function


[] → a


| head :: tail → fold left f (f a head) tail ; ;


val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>


# fold left (+) 0 [8;4;10]; ;


- : int = 22


Value declaration through pattern matching


Value declaration in fact uses pattern matching. The declaration let x = 18 matches
the value 18 with the pattern x. Any pattern is allowed as the left-hand side of a
declaration; the variables in the pattern are bound to the values which they match.
# let (a,b,c) = (1, true, ’A’); ;


val a : int = 1
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val b : bool = true


val c : char = ’A’


# let (d,c) = 8, 3 in d + c; ;


- : int = 11


The scope of pattern variables is the usual static scope for local declarations. Here, c
remains bound to the value ’A’.
# a + (int of char c); ;


- : int = 66


As with any kind of pattern matching, value declaration may not be exhaustive.
# let [x;y;z] = [1;2;3]; ;


Characters 5-12:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


[]


val x : int = 1


val y : int = 2


val z : int = 3


# let [x;y;z] = [1;2;3;4]; ;


Characters 4-11:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


[]


Uncaught exception: Match_failure("", 4, 11)


Any pattern is allowed, including constructors, wildcards and combined patterns.
# let head :: 2 :: _ = [1; 2; 3] ; ;


Characters 5-19:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


[]


val head : int = 1


# let _ = 3. +. 0.14 in "PI" ; ;


- : string = "PI"


This last example is of little use in the functional world insofar as the computed value
3.14 is not named and so is lost.


Type declaration


Type declarations are another possible ingredient in an Objective Caml phrase. They
support the definition of new types corresponding to the original data structures used
in a program. There are two major families of types: product types for tuples or records;
and sum types for unions.
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Type declarations use the keyword type.


Syntax : type name = typedef ;;


In contrast with variable declarations, type declarations are recursive by default. That
is, type declarations, when combined, support the declaration of mutually recursive
types.


Syntax :


type name1 = typedef1
and name2 = typedef2


...
and namen = typedefn ;;


Type declarations can be parameterized by type variables. A type variable name always
begins with an apostrophe (the ’ character):


Syntax : type ’a name = typedef ;;


When there are several of them, the type parameters are declared as a tuple in front
of the name of the type:


Syntax : type (’a1 . . . ’an) name = typedef ;;


Only the type parameters defined on the left-hand side of the declaration may appear
on the right-hand side.


Note
Objective Caml’s type printer renames the type parameters encountered;
the first is called ’a, the second ’b and so forth.


One can always define a new type from one or more existing types.


Syntax : type name = type expression


This is useful for constraining a type which one finds too general.
# type ’param paired with integer = int * ’param ; ;


type ’a paired_with_integer = int * ’a


# type specific pair = float paired with integer ; ;


type specific_pair = float paired_with_integer


Nevertheless without type constraints, inference will produce the most general type.
# let x = (3, 3.14) ; ;


val x : int * float = 3, 3.14


But one can use a type constraint to see the desired name appear:
# let (x:specific pair) = (3, 3.14) ; ;


val x : specific_pair = 3, 3.14
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Records


Records are tuples, each of whose fields is named in the same way as the Pascal record
or the C struct. A record always corresponds to the declaration of a new type. A record
type is defined by the declaration of its name and the names and types of each of its
fields.


Syntax : type name = { name1 : t1; . . . ; namen : tn } ;;


We can define a type representing complex numbers by:
# type complex = { re:float; im:float } ; ;


type complex = { re: float; im: float }


The creation of a value of record type is done by giving a value to each of its fields (in
arbitrary order).


Syntax : { namei1 = expri1; . . . ; namein = exprin } ;;


For example, we create a complex number with real part 2. and imaginary part 3.:
# let c = {re=2.;im=3.} ; ;


val c : complex = {re=2; im=3}


# c = {im=3.;re=2.} ; ;


- : bool = true


In the case where some fields are missing, the following error is produced:
# let d = { im=4. } ; ;


Characters 9-18:


Some labels are undefined


A field can be accessed in two ways: by the dot notation or by pattern matching on
certain fields.


The dot notation syntax is as usual:


Syntax : expr.name


The expression expr must be of a record type containing a field name.


Pattern matching a record lets one retrieve the value bound to several fields. A pattern
to match a record has the following syntax:


Syntax : { namei = pi ; . . . ; namej = pj }


The patterns are to the right of the = sign (pi, . . . , pj). It is not necessary to make all
the fields of a record appear in such a pattern.
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The function add complex accesses fields through the dot notation, while the function
mult complex accesses them through pattern matching.
# let add complex c1 c2 = {re=c1.re+.c2.re; im=c1.im+.c2.im}; ;
val add_complex : complex -> complex -> complex = <fun>


# add complex c c ; ;


- : complex = {re=4; im=6}


# let mult complex c1 c2 = match (c1,c2) with


({re=x1;im=y1},{re=x2;im=y2}) → {re=x1*.x2-.y1*.y2;im=x1*.y2+.x2*.y1} ; ;


val mult_complex : complex -> complex -> complex = <fun>


# mult complex c c ; ;


- : complex = {re=-5; im=12}


The advantages of records, as opposed to tuples, are at least twofold:


• descriptive and distinguishing information thanks to the field names: in particular
this allows pattern matching to be simplified;


• access in an identical way, by name, to any field of the record whatsoever: the
order of the fields no longer has significance, only their names count.


The following example shows the ease of accessing the fields of records as opposed to
tuples:
# let a = (1,2,3) ; ;


val a : int * int * int = 1, 2, 3


# let f tr = match tr with x,_,_ → x ; ;


val f : ’a * ’b * ’c -> ’a = <fun>


# f a ; ;


- : int = 1


# type triplet = {x1:int; x2:int; x3:int} ; ;


type triplet = { x1: int; x2: int; x3: int }


# let b = {x1=1; x2=2; x3=3} ; ;


val b : triplet = {x1=1; x2=2; x3=3}


# let g tr = tr.x1 ; ;


val g : triplet -> int = <fun>


# g b ; ;


- : int = 1


For pattern matching, it is not necessary to indicate all the fields of the record being
matched. The inferred type is then that of the last field.
# let h tr = match tr with {x1=x} → x; ;


val h : triplet -> int = <fun>


# h b; ;


- : int = 1


There is a construction which lets one create a record identical to another except for
some fields. It is often useful for records containing many fields.
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Syntax : { name with namei= expri ; . . . ; namej=exprj}


# let c = {b with x1=0} ; ;


val c : triplet = {x1=0; x2=2; x3=3}


A new copy of the value of b is created where only the field x1 has a new value.


Warning This feature is among the extensions to the language
and may change in future versions.


Sum types


In contrast with tuples or records, which correspond to a Cartesian product, the dec-
laration of a sum type corresponds to a union of sets. Different types (for example
integers or character strings) are gathered into a single type. The various members of
the sum are distinguished by constructors, which support on the one hand, as their
name indicates, construction of values of this type and on the other hand, thanks to
pattern matching, access to the components of these values. To apply a constructor to
an argument is to indicate that the value returned belongs to this new type.


A sum type is declared by giving the names of its constructors and the types of their
eventual arguments.


Syntax :


type name = . . .
| Namei . . .
| Namej of tj . . .
| Namek of tk * ...* tl . . . ;;


A constructor name is a particular identifier:


Warning The names of constructors always begin with a capital
letter.


Constant constructors


A constructor which doesn’t expect an argument is called a constant constructor. Con-
stant constructors can subsequently be used directly as a value in the language, as a
constant.
# type coin = Heads | Tails; ;


type coin = | Heads | Tails


# Tails; ;


- : coin = Tails


The type bool can be defined in this way.
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Constructors with arguments


Constructors can have arguments. The keyword of indicates the type of the construc-
tor’s arguments. This supports the gathering into a single type of objects of different
types, each one being introduced with a particular constructor.


Here is a classic example of defining a datatype to represent the cards in a game, here
Tarot8. The types suit and card are defined in the following way:
# type suit = Spades | Hearts | Diamonds | Clubs ; ;


# type card =


King of suit


| Queen of suit


| Knight of suit


| Knave of suit


| Minor card of suit * int


| Trump of int


| Joker ; ;


The creation of a value of type card is carried out through the application of a con-
structor to a value of the appropriate type.
# King Spades ; ;


- : card = King Spades


# Minor card(Hearts, 10) ; ;


- : card = Minor_card (Hearts, 10)


# Trump 21 ; ;


- : card = Trump 21


And here, for example, is the function all cards which constructs a list of all the
cards of a suit passed as a parameter.
# let rec interval a b = if a = b then [b] else a :: (interval (a+1) b) ; ;


val interval : int -> int -> int list = <fun>


# let all cards s =


let face cards = [ Knave s; Knight s; Queen s; King s ]


and other cards = List.map (function n → Minor card(s,n)) (interval 1 10)


in face cards @ other cards ; ;


val all_cards : suit -> card list = <fun>


# all cards Hearts ; ;


- : card list =


[Knave Hearts; Knight Hearts; Queen Hearts; King Hearts;


Minor_card (Hearts, 1); Minor_card (Hearts, 2); Minor_card (Hearts, 3);


Minor_card (Hearts, ...); ...]


8. Translator’s note: The rules for French Tarot can be found, for example, at


Link: http://www.pagat.com/tarot/frtarot.html
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To handle values of sum types, we use pattern matching. The following example con-
structs conversion functions from values of type suit and of type card to character
strings (type string):
# let string of suit = function


Spades → "spades"


| Diamonds → "diamonds"


| Hearts → "hearts"


| Clubs → "clubs" ; ;


val string_of_suit : suit -> string = <fun>


# let string of card = function


King c → "king of " ^ (string of suit c)


| Queen c → "queen of " ^ (string of suit c)


| Knave c → "knave of " ^ (string of suit c)


| Knight c → "knight of " ^ (string of suit c)


| Minor card (c, n) → (string of int n) ^ " of "^(string of suit c)


| Trump n → (string of int n) ^ " of trumps"


| Joker → "joker" ; ;


val string_of_card : card -> string = <fun>


Lining up the patterns makes these functions easy to read.


The constructor Minor card is treated as a constructor with two arguments. Pattern
matching on such a value requires naming its two components.
# let is minor card c = match c with


Minor card v → true


| _ → false; ;


Characters 41-53:


The constructor Minor_card expects 2 argument(s),


but is here applied to 1 argument(s)


To avoid having to name each component of a constructor, one declares it to have a
single argument by parenthesizing the corresponding tuple type. The two constructors
which follow are pattern-matched differently.
# type t =


C of int * bool


| D of (int * bool) ; ;


# let access v = match v with


C (i, b) → i,b


| D x → x; ;


val access : t -> int * bool = <fun>


Recursive types


Recursive type definitions are indispensable in any algorithmic language for describing
the usual data structures (lists, heaps, trees, graphs, etc.). To this end, in Objective
Caml type definition is recursive by default, in contrast with value declaration (let).
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Objective Caml’s predefined type of lists only takes a single parameter. One may wish
to store values of belonging to two different types in a list structure, for example,
integers (int) or characters (char). In this case, one defines:
# type int or char list =


Nil


| Int cons of int * int or char list


| Char cons of char * int or char list ; ;


# let l1 = Char cons ( ’=’, Int cons(5, Nil) ) in


Int cons ( 2, Char cons ( ’+’, Int cons(3, l1) ) ) ; ;


- : int_or_char_list =


Int_cons (2, Char_cons (’+’, Int_cons (3, Char_cons (’=’, Int_cons (...)))))


Parametrized types


A user can equally well declare types with parameters. This lets us generalize the
example of lists containing values of two different types.
# type (’a, ’b) list2 =


Nil


| Acons of ’a * (’a, ’b) list2


| Bcons of ’b * (’a, ’b) list2 ; ;


# Acons(2, Bcons(’+’, Acons(3, Bcons(’=’, Acons(5, Nil))))) ; ;


- : (int, char) list2 =


Acons (2, Bcons (’+’, Acons (3, Bcons (’=’, Acons (...)))))


One can, obviously, instantiate the parameters ’a and ’b with the same type.
# Acons(1, Bcons(2, Acons(3, Bcons(4, Nil)))) ; ;


- : (int, int) list2 = Acons (1, Bcons (2, Acons (3, Bcons (4, Nil))))


This use of the type list2 can, as in the preceding example, serve to mark even
integers and odd integers. In this way we extract the sublist of even integers in order
to construct an ordinary list.
# let rec extract odd = function


Nil → []


| Acons(_, x) → extract odd x


| Bcons(n, x) → n :: (extract odd x) ; ;


val extract_odd : (’a, ’b) list2 -> ’b list = <fun>


The definition of this function doesn’t give a single clue as to the nature of the values
stored in the structure. That is why its type is parameterized.
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Scope of declarations


Constructor names obey the same scope discipline as global declarations: a redefini-
tion masks the previous one. Nevertheless values of the masked type still exist. The
interactive toplevel does not distinguish these two types in its output. Whence some
unclear error messages.


In this first example, the constant constructor Nil of type int or char has been
masked by the constructor declarations of the type (’a, ’b) list2.
# Int cons(0, Nil) ; ;


Characters 13-16:


This expression has type (’a, ’b) list2 but is here used with type


int_or_char_list


This second example provokes a rather baffling error message, at least the first time it
appears. Let the little program be as follows:
# type t1 = Empty | Full; ;


type t1 = | Empty | Full


# let empty t1 x = match x with Empty → true | Full → false ; ;


val empty_t1 : t1 -> bool = <fun>


# empty t1 Empty; ;


- : bool = true


Then, we redeclare the type t1:
# type t1 = {u : int; v : int} ; ;


type t1 = { u: int; v: int }


# let y = { u=2; v=3 } ; ;


val y : t1 = {u=2; v=3}


Now if we apply the function empty t1 to a value of the new type t1, we get the
following error message:
# empty t1 y; ;


Characters 10-11:


This expression has type t1 but is here used with type t1


The first occurrence of t1 represents the first type defined, while the second corresponds
to the second type.


Function types


The type of the argument of a constructor may be arbitrary. In particular, it may very
well contain a function type. The following type constructs lists, all of whose elements
except the last are function values.
# type ’a listf =


Val of ’a


| Fun of (’a → ’a) * ’a listf ; ;
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type ’a listf = | Val of ’a | Fun of (’a -> ’a) * ’a listf


Since function values are values which can be manipulated in the language, we can
construct values of type listf:
# let eight div = (/) 8 ; ;


val eight_div : int -> int = <fun>


# let gl = Fun (succ, (Fun (eight div, Val 4))) ; ;


val gl : int listf = Fun (<fun>, Fun (<fun>, Val 4))


and functions which pattern-match such values:
# let rec compute = function


Val v → v


| Fun(f, x) → f (compute x) ; ;


val compute : ’a listf -> ’a = <fun>


# compute gl; ;


- : int = 3


Example: representing trees


Tree structures come up frequently in programming. Recursive types make it easy to
define and manipulate such structures. In this subsection, we give two examples of tree
structures.


Binary trees We define a binary tree structure whose nodes are labelled with values
of a single type by declaring:
# type ’a bin tree =


Empty


| Node of ’a bin tree * ’a * ’a bin tree ; ;


We use this structure to define a little sorting program using binary search trees. A
binary search tree has the property that all the values in the left branch are less than
that of the root, and all those of the right branch are greater. Figure 2.5 gives an
example of such a structure over the integers. The empty nodes (constructor Empty)
are represented there by little squares; the others (constructor Node), by a circle in
which is inscribed the stored value.


A sorted list is extracted from a binary search tree via an inorder traversal carried out
by the following function:


# let rec list of tree = function


Empty → []


| Node(lb, r, rb) → (list of tree lb) @ (r :: (list of tree rb)) ; ;


val list_of_tree : ’a bin_tree -> ’a list = <fun>
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Figure 2.5: Binary search tree.


To obtain a binary search tree from a list, we define an insert function.
# let rec insert x = function


Empty → Node(Empty, x, Empty)


| Node(lb, r, rb) → if x < r then Node(insert x lb, r, rb)


else Node(lb, r, insert x rb) ; ;


val insert : ’a -> ’a bin_tree -> ’a bin_tree = <fun>


The function to transform a list into a tree is obtained by iterating the function insert.


# let rec tree of list = function


[] → Empty


| h :: t → insert h (tree of list t) ; ;


val tree_of_list : ’a list -> ’a bin_tree = <fun>


The sort function is then simply the composition of the functions tree of list and
list of tree.
# let sort x = list of tree (tree of list x) ; ;


val sort : ’a list -> ’a list = <fun>


# sort [5; 8; 2; 7; 1; 0; 3; 6; 9; 4] ; ;


- : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]


General planar trees In this part, we use the following predefined functions from
the List module (see page 217):


• List.map: which applies a function to all the elements of a list and returns the
list of results;
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• List.fold left: which is an equivalent version of the function fold left defined
on page 33;


• List.exists: which applies a boolean-valued function to all the elements of a
list; if one of these applications yields true then the result is true, otherwise the
function returns false.


A general planar tree is a tree whose number of branches is not fixed a priori; to each
node is associated a list of branches whose length may vary.
# type ’a tree = Empty


| Node of ’a * ’a tree list ; ;


The empty tree is represented by the value Empty. A leaf is a node without branches
either of the form Node(x,[]), or of the degenerate form Node(x, [Empty;Empty;
..]). It is then relatively easy to write functions to manipulate these trees, e.g., to
determine whether an element belongs to a tree or compute the height of the tree.


To test membership of an element e, we use the following algorithm: if the tree is empty
then e does not belong to this tree, otherwise e belongs to the tree if and only if either
it is equal to the label of the root, or it belongs to one of its branches.
# let rec belongs e = function


Empty → false


| Node(v, bs) → (e=v) or (List.exists (belongs e) bs) ; ;


val belongs : ’a -> ’a tree -> bool = <fun>


To compute the height of a tree, we use the following definition: an empty tree has
height 0, otherwise the height of the tree is equal to the height of its highest subtree
plus 1.
# let rec height =


let max list l = List.fold left max 0 l in


function


Empty → 0


| Node (_, bs) → 1 + (max list (List.map height bs)) ; ;


val height : ’a tree -> int = <fun>


Recursive values which are not functions


Recursive declaration of non-function values allows the construction of circular data
structures.


The following declaration constructs a circular list with one element.
# let rec l = 1 :: l ; ;


val l : int list =


[1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; ...]


Application of a recursive function to such a list risks looping until memory overflows.
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# size l ; ;


Stack overflow during evaluation (looping recursion?).


Structural equality remains usable with such lists only when physical equality is first
verified:
# l=l ; ;


- : bool = true


In short, if you define a new list, even an equal one, you must not use the structural
equality test on pain of seeing your program loop indefinitely. So we don’t recommend
attempting to evaluate the following example:


let rec l2 = 1::l2 in l=l2 ;;


On the other hand, physical equality always remains possible.
# let rec l2 = 1 :: l2 in l==l2 ; ;


- : bool = false


The predicate == tests equality of an immediate value or sharing of a structured object
(equality of the address of the value). We will use it to verify that in traversing a list
we don’t retraverse a sublist which was already examined. First of all, we define the
function memq, which verifies the presence of an element in the list by relying on physical
equality. It is the counterpart to the function mem which tests structural equality; these
two functions belong to the module List.
# let rec memq a l = match l with


[] → false


| b :: l → (a==b) or (memq a l) ; ;


val memq : ’a -> ’a list -> bool = <fun>


The size computation function is redefined, storing the list of lists already examined
and halting if a list is encountered a second time.
# let special size l =


let rec size aux previous l = match l with


[] → 0


| _::l1 → if memq l previous then 0


else 1 + (size aux (l :: previous) l1)


in size aux [] l ; ;


val special_size : ’a list -> int = <fun>


# special size [1;2;3;4] ; ;


- : int = 4


# special size l ; ;


- : int = 1


# let rec l1 = 1 :: 2 :: l2 and l2 = 1 :: 2 :: l1 in special size l1 ; ;


- : int = 4
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Typing, domain of definition, and


exceptions


The inferred type of a function corresponds to a subset of its domain of definition. Just
because a function takes a parameter of type int doesn’t mean it will know how to
compute a value for all integers passed as parameters. In general this problem is dealt
with using Objective Caml’s exception mechanism. Raising an exception results in a
computational interruption which can be intercepted and handled by the program. For
this to happen program execution must have registered an exception handler before
the computation of the expression which raises this exception.


Partial functions and exceptions


The domain of definition of a function corresponds to the set of values on which the
function carries out its computation. There are many mathematical functions which
are partial; we might mention division or taking the natural log. This problem also
arises for functions which manipulate more complex data structures. Indeed, what is
the result of computing the first element of an empty list? In the same way, evaluation
of the factorial function on a negative integer can lead to an infinite recursion.


Several exceptional situations may arise during execution of a program, for example
an attempt to divide by zero. Trying to divide a number by zero will provoke at best a
program halt, at worst an inconsistent machine state. The safety of a programming lan-
guage comes from the guarantee that such a situation will not arise for these particular
cases. Exceptions are a way of responding to them.


Division of 1 by 0 will cause a specific exception to be raised:
# 1/0; ;


Uncaught exception: Division_by_zero


The message Uncaught exception: Division_by_zero indicates on the one hand
that the Division by zero exception has been raised, and on the other hand that it
has not been handled. This exception is among the core declarations of the language.


Often, the type of a function does not correspond to its domain of definition when a
pattern-matching is not exhaustive, that is, when it does not match all the cases of a
given expression. To prevent such an error, Objective Caml prints a message in such a
case.
# let head l = match l with h :: t → h ; ;


Characters 14-36:


Warning: this pattern-matching is not exhaustive.


Here is an example of a value that is not matched:


[]


val head : ’a list -> ’a = <fun>
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If the programmer nevertheless keeps the incomplete definition, Objective Caml will
use the exception mechanism in the case of an erroneous call to the partial function:
# head [] ; ;


Uncaught exception: Match_failure("", 14, 36)


Finally, we have already met with another predefined exception: Failure. It takes an
argument of type string. One can raise this exception using the function failwith.
We can use it in this way to complete the definition of our head:
# let head = function


[] → failwith "Empty list"


| h :: t → h; ;


val head : ’a list -> ’a = <fun>


# head [] ; ;


Uncaught exception: Failure("Empty list")


Definition of an exception


In Objective Caml, exceptions belong to a predefined type exn. This type is very
special since it is an extensible sum type: the set of values of the type can be extended
by declaring new constructors9. This detail lets users define their own exceptions by
adding new constructors to the type exn.


The syntax of an exception declaration is as follows:


Syntax : exception Name ;;


or


Syntax : exception Name of t ;;


Here are some examples of exception declarations:
# exception MY EXN; ;


exception MY_EXN


# MY EXN; ;


- : exn = MY_EXN


# exception Depth of int; ;


exception Depth of int


# Depth 4; ;


- : exn = Depth(4)


Thus an exception is a full-fledged language value.


9. Translator’s note: Thanks to the new “polymorphic variants” feature of Objective Caml 3.00, some
other sum types can now be extended as well
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Warning The names of exceptions are constructors. So they nec-
essarily begin with a capital letter.


# exception lowercase ; ;


Characters 11-20:


Syntax error


Warning
Exceptions are monomorphic: they do not have type
parameters in the declaration of the type of their argu-
ment.


# exception Value of ’a ; ;


Characters 20-22:


Unbound type parameter ’a


A polymorphic exception would permit the definition of functions with an arbitrary
return type as we will see further on, page 58.


Raising an exception


The function raise is a primitive function of the language. It takes an exception as an
argument and has a completely polymorphic return type.
# raise ; ;


- : exn -> ’a = <fun>


# raise MY EXN; ;


Uncaught exception: MY_EXN


# 1+(raise MY EXN); ;


Uncaught exception: MY_EXN


# raise (Depth 4); ;


Uncaught exception: Depth(4)


It is not possible to write the function raise in Objective Caml. It must be predefined.


Exception handling


The whole point of raising exceptions lies in the ability to handle them and to direct
the sequence of computation according to the value of the exception raised. The order
of evaluation of an expression thus becomes important for determining which exception
is raised. We are leaving the purely functional context, and entering a domain where
the order of evaluation of arguments can change the result of a computation, as will
be discussed in the following chapter (see page 85).


The following syntactic construct, which computes the value of an expression, permits
the handling of an exception raised during this computation:
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Syntax :


try expr with


| p1 –> expr1
...
| pn –> exprn


If the evaluation of expr does not raise any exception, then the result is that of the
evaluation of expr. Otherwise, the value of the exception which was raised is pattern-
matched; the value of the expression corresponding to the first matching pattern is
returned. If none of the patterns corresponds to the value of the exception then the
latter is propagated up to the next outer try-with entered during the execution of the
program. Thus pattern matching an exception is always considered to be exhaustive.
Implicitly, the last pattern is | e -> raise e. If no matching exception handler is
found in the program, the system itself takes charge of intercepting the exception and
terminates the program while printing an error message.


One must not confuse computing an exception (that is, a value of type exn) with raising
an exception which causes computation to be interrupted. An exception being a value
like others, it can be returned as the result of a function.
# let return x = Failure x ; ;


val return : string -> exn = <fun>


# return "test" ; ;


- : exn = Failure("test")


# let my raise x = raise (Failure x) ; ;


val my_raise : string -> ’a = <fun>


# my raise "test" ; ;


Uncaught exception: Failure("test")


We note that applying my raise does not return any value while applying return
returns one of type exn.


Computing with exceptions


Beyond their use for handling exceptional values, exceptions also support a specific
programming style and can be the source of optimizations. The following example
finds the product of all the elements of a list of integers. We use an exception to
interrupt traversal of the list and return the value 0 when we encounter it.
# exception Found zero ; ;


exception Found_zero


# let rec mult rec l = match l with


[] → 1


| 0 :: _ → raise Found zero


| n :: x → n * (mult rec x) ; ;


val mult_rec : int list -> int = <fun>


# let mult list l =


try mult rec l with Found zero → 0 ; ;


val mult_list : int list -> int = <fun>


# mult list [1;2;3;0;5;6] ; ;
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- : int = 0


So all the computations standing by, namely the multiplications by n which follow each
of the recursive calls, are abandoned. After encountering raise, computation resumes
from the pattern-matching under with.


Polymorphism and return values of


functions


Objective Caml’s parametric polymorphism permits the definition of functions whose
return type is completely unspecified. For example:
# let id x = x ; ;


val id : ’a -> ’a = <fun>


However, the return type depends on the type of the argument. Thus, when the function
id is applied to an argument, the type inference mechanism knows how to instantiate
the type variable ’a. So for each particular use, the type of id can be determined.


If this were not so, it would no longer make sense to use strong static typing, entrusted
with ensuring execution safety. Indeed, a function of completely unspecified type such
as ’a -> ’b would allow any type conversion whatsoever, which would inevitably lead
to a run-time error since the physical representations of values of different types are
not the same.


Apparent contradiction


However, it is possible in the Objective Caml language to define a function whose return
type contains a type variable which does not appear in the types of its arguments. We
will consider several such examples and see why such a possibility is not contradictory
to strong static typing.


Here is a first example:
# let f x = [] ; ;


val f : ’a -> ’b list = <fun>


This function lets us construct a polymorphic value from anything at all:
# f () ; ;


- : ’_a list = []


# f "anything at all" ; ;


- : ’_a list = []


Nevertheless, the value obtained isn’t entirely unspecified: we’re dealing with a list. So
it can’t be used just anywhere.
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Here are three examples whose type is the dreaded ’a -> ’b:
# let rec f1 x = f1 x ; ;


val f1 : ’a -> ’b = <fun>


# let f2 x = failwith "anything at all" ; ;


val f2 : ’a -> ’b = <fun>


# let f3 x = List.hd [] ; ;


val f3 : ’a -> ’b = <fun>


These functions are not, in fact, dangerous vis-a-vis execution safety, since it isn’t
possible to use them to construct a value: the first one loops forever, the latter two
raise an exception which interrupts the computation.


Similarly, it is in order to prevent functions of type ’a -> ’b from being defined that
new exception constructors are forbidden from having arguments whose type contains
a variable.


Indeed, if one could declare a polymorphic exception Poly exn of type ’a -> exn, one
could then write the function:
let f = function


0 → raise (Poly exn false)


| n → n+1 ; ;


The function f being of type int -> int and Poly exn being of type ’a -> exn, one
could then define:
let g n = try f n with Poly exn x → x+1 ; ;


This function is equally well-typed (since the argument of Poly exn may be arbitrary)
and now, evaluation of (g 0) would end up in an attempt to add an integer and a
boolean!


Desktop Calculator


To understand how a program is built in Objective Caml, it is necessary to develop one.
The chosen example is a desktop calculator—that is, the simplest model, which only
works on whole numbers and only carries out the four standard arithmetic operations.


To begin, we define the type key to represent the keys of a pocket calculator. The latter
has fifteen keys, namely: one for each operation, one for each digit, and the = key.
# type key = Plus | Minus | Times | Div | Equals | Digit of int ; ;


We note that the numeric keys are gathered under a single constructor Digit taking
an integer argument. In fact, some values of type key don’t actually represent a key.
For example, (Digit 32) is a possible value of type key, but doesn’t represent any of
the calculator’s keys.


So we write a function valid which verifies that its argument corresponds to a calcu-
lator key. The type of this function is key -> bool, that is, it takes a value of type
key as argument and returns a value of type bool.
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The first step is to define a function which verifies that an integer is included between
0 and 9. We declare this function under the name is digit:
# let is digit = function x → (x>=0) && (x<=9) ; ;


val is_digit : int -> bool = <fun>


We then define the function valid by pattern-matching over its argument of type key:


# let valid ky = match ky with


Digit n → is digit n


| _ → true ; ;


val valid : key -> bool = <fun>


The first pattern is applied when the argument of valid is a value made with the Digit
constructor; in this case, the argument of Digit is tested by the function is digit.
The second pattern is applied to every other kind of value of type key. Recall that
thanks to typing, the value being matched is necessarily of type key.


Before setting out to code the calculator mechanism, we will specify a model allowing
us to describe from a formal point of view the reaction to the activation of one of the
device’s keys. We will consider a pocket calculator to have four registers in which are
stored respectively the last computation done, the last key activated, the last operator
activated, and the number printed on the screen. The set of these four registers is
called the state of the calculator; it is modified by each keypress on the keypad. This
modification is called a transition and the theory governing this kind of mechanism is
that of automata. A state will be represented in our program by a record type:
# type state = {


lcd : int; (* last computation done *)


lka : key; (* last key activated *)


loa : key; (* last operator activated *)


vpr : int (* value printed *)


} ; ;


Figure 2.6 gives an example of a sequence of transitions.


state key
(0, =, =, 0) 3


−→ (0, 3,=, 3) +
−→ (3, +, +, 3) 2
−→ (3, 2,+, 2) 1
−→ (3, 1,+, 21) ×
−→ (24, ∗, ∗, 24) 2
−→ (24, 2, ∗, 2) =
−→ (48, =, =, 48)


Figure 2.6: Transitions for 3 + 21 ∗ 2 = .
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In what follows we need the function evaluate which takes two integers and a value
of type key containing an operator and which returns the result of the operation
corresponding to the key, applied to the integers. This function is defined by pattern-
matching over its last argument, of type key:
# let evaluate x y ky = match ky with


Plus → x + y


| Minus → x - y


| Times → x * y


| Div → x / y


| Equals → y


| Digit _ → failwith "evaluate : no op"; ;


val evaluate : int -> int -> key -> int = <fun>


Now we give the definition of the transition function by enumerating all possible cases.
We assume that the current state is the quadruplet (a, b,⊕, d):


• a key with digit x is pressed, then there are two cases to consider:
– the last key pressed was also a digit. So it is a number which the user of the


pocket calculator is in the midst of entering; consequently the digit x must
be affixed to the printed value, i.e., replacing it with d × 10 + x. The new
state is:


(a, (Digit x),⊕, d× 10 + x)


– the last key pressed was not a digit. So it is the start of a new number which
is being entered. The new state is:


(a, (Digit x),⊕, x)


• a key with operator ⊗ has been pressed, the second operand of the operation has
thus been completely entered and the calculator has to deal with carrying out
this operation. It is to this end that the last operation (here ⊕) is stored. The
new state is:


(⊕d,⊗,⊗, a⊕ d)


To write the function transition, it suffices to translate the preceding definition word
for word into Objective Caml: the definition by cases becomes a definition by pattern-
matching over the key passed as an argument. The case of a key, which itself is made up
of two cases, is handled by the local function digit transition by pattern-matching
over the last key activated.
# let transition st ky =


let digit transition n = function


Digit _ → { st with lka=ky; vpr=st.vpr*10+n }
| _ → { st with lka=ky; vpr=n }


in


match ky with


Digit p → digit transition p st.lka


| _ → let res = evaluate st.lcd st.vpr st.loa


in { lcd=res; lka=ky; loa=ky; vpr=res } ; ;
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val transition : state -> key -> state = <fun>


This function takes a state and a key and computes the new state.


We can now test this program on the previous example:
# let initial state = { lcd=0; lka=Equals; loa=Equals; vpr=0 } ; ;


val initial_state : state = {lcd=0; lka=Equals; loa=Equals; vpr=0}


# let state2 = transition initial state (Digit 3) ; ;


val state2 : state = {lcd=0; lka=Digit 3; loa=Equals; vpr=3}


# let state3 = transition state2 Plus ; ;


val state3 : state = {lcd=3; lka=Plus; loa=Plus; vpr=3}


# let state4 = transition state3 (Digit 2) ; ;


val state4 : state = {lcd=3; lka=Digit 2; loa=Plus; vpr=2}


# let state5 = transition state4 (Digit 1) ; ;


val state5 : state = {lcd=3; lka=Digit 1; loa=Plus; vpr=21}


# let state6 = transition state5 Times ; ;


val state6 : state = {lcd=24; lka=Times; loa=Times; vpr=24}


# let state7 = transition state6 (Digit 2) ; ;


val state7 : state = {lcd=24; lka=Digit 2; loa=Times; vpr=2}


# let state8 = transition state7 Equals ; ;


val state8 : state = {lcd=48; lka=Equals; loa=Equals; vpr=48}


This run can be written in a more concise way using a function applying a sequence of
transitions corresponding to a list of keys passed as an argument.


# let transition list st ls = List.fold left transition st ls ; ;


val transition_list : state -> key list -> state = <fun>


# let example = [ Digit 3; Plus; Digit 2; Digit 1; Times; Digit 2; Equals ]


in transition list initial state example ; ;


- : state = {lcd=48; lka=Equals; loa=Equals; vpr=48}


Exercises


Merging two lists


1. Write a function merge i which takes as input two integer lists sorted in in-
creasing order and returns a new sorted list containing the elements of the first
two.


2. Write a general function merge which takes as argument a comparison function
and two lists sorted in this order and returns the list merged in the same order.
The comparison function will be of type ’a → ’a → bool.


3. Apply this function to two integer lists sorted in decreasing order, then to two
string lists sorted in decreasing order.


4. What happens if one of the lists is not in the required decreasing order?
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5. Write a new list type in the form of a record containing three fields: the
conventional list, an order function and a boolean indicating whether the list is
in that order.


6. Write the function insert which adds an element to a list of this type.


7. Write a function sort which insertion sorts the elements of a list.


8. Write a new function merge for these lists.


Lexical trees


Lexical trees (or tries) are used for the representation of dictionaries.
# type lex node = Letter of char * bool * lex tree


and lex tree = lex node list; ;


# type word = string; ;


The boolean value in lex node marks the end of a word when it equals true. In such
a structure, the sequence of words “fa, false, far, fare, fried, frieze” is stored in the
following way:


F 


A*  
�


L 


S 
�


E*  
�


R*  
�


E*  
�


R 


I 


E 


D*  
�


Z 


E*  
�


An asterisk (*) marks the end of a word.


1. Write the function exists which tests whether a word belongs to a dictionary
of type lex tree.


2. Write a function insert which takes a word and a dictionary and returns a new
dictionary which additionally contains this word. If the word is already in the
dictionary, it is not necessary to insert it.


3. Write a function construct which takes a list of words and constructs the
corresponding dictionary.


4. Write a function verify which takes a list of words and a dictionary and returns
the list of words not belonging to this dictionary.


5. Write a function select which takes a dictionary and a length and returns the
set of words of this length.
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Graph traversal


We define a type ’a graph representing directed graphs by adjacency lists containing
for each vertex the list of its successors:
# type ’a graph = ( ’a * ’a list) list ; ;


1. Write a function insert vtx which inserts a vertex into a graph and returns the
new graph.


2. Write a function insert edge which adds an edge to a graph already possessing
these two vertices.


3. Write a function has edges to which returns all the vertices following directly
from a given vertex.


4. Write a function has edges from which returns the list of all the vertices leading
directly to a given vertex.


Summary


This chapter has demonstrated the main features of functional programming and para-
metric polymorphism, which are two essential features of the Objective Caml language.
The syntax of the expressions in the functional core of the language as well as those of
the types which have been described allowed us to develop our first programs. More-
over, the profound difference between the type of a function and its domain of defini-
tion was underlined. Introducing the exception mechanism allowed us to resolve this
problem and already introduces a new programming style in which one specifies how
computations should unfold.


To learn more


The computation model for functional languages is λ-calculus, which was invented by
Alonzo Church in 1932. Church’s goal was to define a notion of effective computability
through the medium of λ-definability. Later, it became apparent that the notion thus
introduced was equivalent to the notions of computability in the sense of Turing (Tur-
ing machine) and Gödel-Herbrand (recursive functions). This cöıncidence leads one to
think that there exists a universal notion of computability, independent of particular
formalisms: this is Church’s thesis. In this calculus, the only two constructions are ab-
straction and application. Data structures (integers, booleans, pairs, ...) can be coded
by λ-termes.


Functional languages, of which the first representative was Lisp, implement this model
and extend it mainly with more efficient data structures. For the sake of efficiency, the
first functional languages implemented physical modifications of memory, which among
other things forced the evaluation strategy to be immediate, or strict, evaluation. In
this strategy, the arguments of functions are evaluated before being passed to the
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function. It is in fact later, for other languages such as Miranda, Haskell, or LML, that
the strategy of delayed (lazy, or call-by-need) evaluation was implemented for pure
functional languages.


Static typing, with type inference, was promoted by the ML family at the start of the
80’s. The web page


Link: http://www.pps.jussieu.fr/˜cousinea/Caml/caml history.html


presents a historical overview of the ML language. Its computation model is typed
λ-calculus, a subset of λ-calculus. It guarantees that no type error will occur during
program execution. Nevertheless “completely correct” programs can be rejected by
ML’s type system. These cases seldom arise and these programs can always be rewritten
in such a way as to conform to the type system.


The two most-used functional languages are Lisp and ML, representatives of impure
functional languages. To deepen the functional approach to programming, the books
[ASS96] and [CM98] each present a general programming course using the languages
Scheme (a dialect of Lisp) and Caml-Light, respectively.
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3
Imperative


Programming


In contrast to functional programming, in which you calculate a value by applying a
function to its arguments without caring how the operations are carried out, imperative
programming is closer to the machine representation, as it introduces memory state
which the execution of the program’s actions will modify. We call these actions of
programs instructions, and an imperative program is a list, or sequence, of instructions.
The execution of each operation can alter the memory state. We consider input-output
actions to be modifications of memory, video memory, or files.


This style of programming is directly inspired by assembly programming. You find it
in the earliest general-purpose programming languages (Fortran, C, Pascal, etc.). In
Objective Caml the following elements of the language fit into this model:


• modifiable data structures, such as arrays, or records with mutable fields;


• input-output operations;


• control structures such as loops and exceptions.


Certain algorithms are easier to write in this programming style. Take for instance
the computation of the product of two matrices. Even though it is certainly possible
to translate it into a purely functional version, in which lists replace vectors, this is
neither natural nor efficient compared to an imperative version.


The motivation for the integration of imperative elements into a functional language
is to be able to write certain algorithms in this style when it is appropriate. The two
principal disadvantages, compared to the purely functional style, are:


• complicating the type system of the language, and rejecting certain programs
which would otherwise be considered correct;


• having to keep track of the memory representation and of the order of calcula-
tions.
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Nevertheless, with a few guidelines in writing programs, the choice between several
programming styles offers the greatest flexibility for writing algorithms, which is the
principal objective of any programming language. Besides, a program written in a style
which is close to the algorithm used will be simpler, and hence will have a better chance
of being correct (or at least, rapidly correctable).


For these reasons, the Objective Caml language has some types of data structures whose
values are physically modifiable, structures for controlling the execution of programs,
and an I/O library in an imperative style.


Plan of the Chapter


This chapter continues the presentation of the basic elements of the Objective Caml
language begun in the previous chapter, but this time focusing on imperative construc-
tions. There are five sections. The first is the most important; it presents the different
modifiable data structures and describes their memory representation. The second de-
scribes the basic I/O of the language, rather briefly. The third section is concerned
with the new iterative control structures. The fourth section discusses the impact of
imperative features on the execution of a program, and in particular on the order of
evaluation of the arguments of a function. The final section returns to the calculator
example from the last chapter, to turn it into a calculator with a memory.


Modifiable Data Structures


Values of the following types: vectors, character strings, records with mutable fields,
and references are the data structures whose parts can be physically modified.


We have seen that an Objective Caml variable bound to a value keeps this value to
the end of its lifetime. You can only modify this binding with a redefinition—in which
case we are not really talking about the “same” variable; rather, a new variable of the
same name now masks the old one, which is no longer directly accessible, but which
remains unchanged. With modifiable values, you can change the value associated with
a variable without having to redeclare the latter. You have access to the value of a
variable for writing as well as for reading.


Vectors


Vectors, or one dimensional arrays, collect a known number of elements of the same
type. You can write a vector directly by listing its values between the symbols [| and
|], separated by semicolons as for lists.
# let v = [| 3.14; 6.28; 9.42 |] ; ;


val v : float array = [|3.14; 6.28; 9.42|]


The creation function Array.create takes the number of elements in the vector and
an initial value, and returns a new vector.
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# let v = Array.create 3 3.14; ;


val v : float array = [|3.14; 3.14; 3.14|]


To access or modify a particular element, you give the index of that element:


Syntax : expr1 . ( expr2 )


Syntax : expr1 . ( expr2 ) <- expr3


expr1 should be a vector (type array) whose values have type expr3. The expression
expr2 must, of course, have type int. The modification is an expression of type unit.
The first element of a vector has index 0 and the index of the last element is the length
of the vector minus 1. The parentheses around the index expression are required.


# v.(1) ; ;


- : float = 3.14


# v.(0) <- 100.0 ; ;


- : unit = ()


# v ; ;


- : float array = [|100; 3.14; 3.14|]


If the index used to access an element in an array is outside the range of indices of the
array, an exception is raised at the moment of access.
# v.(-1) +. 4.0; ;


Uncaught exception: Invalid_argument("Array.get")


This check is done during program execution, which can slow it down. Nevertheless
it is essential, in order to avoid writing to memory outside the space allocated to a
vector, which would cause serious execution errors.


The functions for manipulating arrays are part of the Array module in the standard
library. We’ll describe them in chapter 8 (page 217). In the examples below, we will
use the following three functions from the Array module:


• create which creates an array of the given size with the given initial value;


• length which gives the length of a vector;


• append which concatenates two vectors.


Sharing of Values in a Vector


All the elements of a vector contain the value that was passed in when it was created.
This implies a sharing of this value, if it is a structured value. For example, let’s create
a matrix as a vector of vectors using the function create from the Array module.
# let v = Array.create 3 0; ;


val v : int array = [|0; 0; 0|]


# let m = Array.create 3 v; ;
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val m : int array array = [|[|0; 0; 0|]; [|0; 0; 0|]; [|0; 0; 0|]|]


0 00


m


v


Figure 3.1: Memory representation of a vector sharing its elements.


If you modify one of the fields of vector v, which was used in the creation of m, then
you automatically modify all the “rows” of the matrix together (see figures 3.1 and
3.2).
# v.(0) <- 1; ;


- : unit = ()


# m; ;


- : int array array = [|[|1; 0; 0|]; [|1; 0; 0|]; [|1; 0; 0|]|]


0 01


m


v


Figure 3.2: Modification of shared elements of a vector.


Duplication occurs if the initialization value of the vector (the second argument passed
to Array.create) is an atomic value and there is sharing if this value is a structured
value.


Values whose size does not exceed the standard size of Objective Caml values—that
is, the memory word—are called atomic values. These are the integers, characters,
booleans, and constant constructors. The other values—structured values—are repre-
sented by a pointer into a memory area. This distinction is detailed in chapter 9 (page
247).
Vectors of floats are a special case. Although floats are structured values, the creation
of a vector of floats causes the the initial value to be copied. This is for reasons of
optimization. Chapter 12, on the interface with the C language (page 315), describes
this special case.
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Non-Rectangular Matrices


A matrix, a vector of vectors, does not need not to be rectangular. In fact, nothing
stops you from replacing one of the vector elements with a vector of a different length.
This is useful to limit the size of such a matrix. The following value t constructs a
triangular matrix for the coefficients of Pascal’s triangle.
# let t = [|


[|1|];


[|1; 1|];


[|1; 2; 1|];


[|1; 3; 3; 1|];


[|1; 4; 6; 4; 1|];


[|1; 5; 10; 10; 5; 1|]


|] ; ;


val t : int array array =


[|[|1|]; [|1; 1|]; [|1; 2; 1|]; [|1; 3; 3; 1|]; [|1; 4; 6; 4; ...|]; ...|]


# t.(3) ; ;


- : int array = [|1; 3; 3; 1|]


In this example, the element of vector t with index i is a vector of integers with size
i + 1. To manipulate such matrices, you have to calculate the size of each element
vector.


Copying Vectors


When you copy a vector, or when you concatenate two vectors, the result obtained is
a new vector. A modification of the original vectors does not result in the modification
of the copies, unless, as usual, there are shared values.
# let v2 = Array.copy v ; ;


val v2 : int array = [|1; 0; 0|]


# let m2 = Array.copy m ; ;


val m2 : int array array = [|[|1; 0; 0|]; [|1; 0; 0|]; [|1; 0; 0|]|]


# v.(1)<- 352; ;


- : unit = ()


# v2; ;


- : int array = [|1; 0; 0|]


# m2 ; ;


- : int array array = [|[|1; 352; 0|]; [|1; 352; 0|]; [|1; 352; 0|]|]


We notice in this example that copying m only copies the pointers to v. If one of the
elements of v is modified, m2 is modified too.


Concatenation creates a new vector whose size is equal to the sum of the sizes of the
two others.
# let mm = Array.append m m ; ;


val mm : int array array =


[|[|1; 352; 0|]; [|1; 352; 0|]; [|1; 352; 0|]; [|1; 352; 0|];


[|1; 352; ...|]; ...|]


# Array.length mm ; ;
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- : int = 6


# m.(0) <- Array.create 3 0 ; ;


- : unit = ()


# m ; ;


- : int array array = [|[|0; 0; 0|]; [|1; 352; 0|]; [|1; 352; 0|]|]


# mm ; ;


- : int array array =


[|[|1; 352; 0|]; [|1; 352; 0|]; [|1; 352; 0|]; [|1; 352; 0|];


[|1; 352; ...|]; ...|]


On the other hand, modification of v, a value shared by m and mm, does affect both
these matrices.
# v.(1) <- 18 ; ;


- : unit = ()


# mm; ;


- : int array array =


[|[|1; 18; 0|]; [|1; 18; 0|]; [|1; 18; 0|]; [|1; 18; 0|]; [|1; 18; ...|];


...|]


Character Strings


Character strings can be considered a special case of vectors of characters. Nevertheless,
for efficient memory usage1 their type is specialized. Moreover, access to their elements
has a special syntax:


Syntax : expr1 . [expr2]


The elements of a character string can be physically modified:


Syntax : expr1 . [expr2] <- expr3


# let s = "hello"; ;


val s : string = "hello"


# s.[2]; ;


- : char = ’l’


# s.[2]<-’Z’; ;


- : unit = ()


# s; ;


- : string = "heZlo"


1. A 32-bit word contains four characters coded as bytes
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Mutable Fields of Records


Fields of a record can be declared mutable. All you have to do is to show this in the
declaration of the type of the record using the keyword mutable.


Syntax : type name = { . . . ; mutable namei : t ; . . . }


Here is a small example defining a record type for points in the plane:
# type point = { mutable xc : float; mutable yc : float } ; ;


type point = { mutable xc: float; mutable yc: float }


# let p = { xc = 1.0; yc = 0.0 } ; ;


val p : point = {xc=1; yc=0}


Thus the value of a field which is declared mutable can be modified using the syntax:


Syntax : expr1 . name <- expr2


The expression expr1 should be a record type which has the field name. The modifica-
tion operator returns a value of type unit.
# p.xc <- 3.0 ; ;


- : unit = ()


# p ; ;


- : point = {xc=3; yc=0}


We can write a function for moving a point by modifying its components. We use a
local declaration with pattern matching in order to sequence the side-effects.
# let moveto p dx dy =


let () = p.xc <- p.xc +. dx


in p.yc <- p.yc +. dy ; ;


val moveto : point -> float -> float -> unit = <fun>


# moveto p 1.1 2.2 ; ;


- : unit = ()


# p ; ;


- : point = {xc=4.1; yc=2.2}


It is possible to mix mutable and non-mutable fields in the definition of a record. Only
those specified as mutable may be modified.
# type t = { c1 : int; mutable c2 : int } ; ;


type t = { c1: int; mutable c2: int }


# let r = { c1 = 0; c2 = 0 } ; ;


val r : t = {c1=0; c2=0}


# r.c1 <- 1 ; ;


Characters 0-9:


The label c1 is not mutable


# r.c2 <- 1 ; ;


- : unit = ()
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# r ; ;


- : t = {c1=0; c2=1}


On page 82 we give an example of using records with modifiable fields and arrays to
implement a stack structure.


References


Objective Caml provides a polymorphic type ref which can be seen as the type of a
pointer to any value; in Objective Caml terminology we call it a reference to a value.
A referenced value can be modified. The type ref is defined as a record with one
modifiable field:


type ’a ref = {mutable contents:’a}


This type is provided as a syntactic shortcut. We construct a reference to a value using
the function ref. The referenced value can be reached using the prefix function (!).
The function modifying the content of a reference is the infix function (:=).
# let x = ref 3 ; ;


val x : int ref = {contents=3}


# x ; ;


- : int ref = {contents=3}


# !x ; ;


- : int = 3


# x := 4 ; ;


- : unit = ()


# !x ; ;


- : int = 4


# x := !x+1 ; ;


- : unit = ()


# !x ; ;


- : int = 5


Polymorphism and Modifiable Values


The type ref is parameterized. This is what lets us use it to create references to values
of any type whatever. However, it is necessary to place certain restrictions on the type
of referenced values; we cannot allow the creation of a reference to a value with a
polymorphic type without taking some precautions.


Let us suppose that there were no restriction; then someone could declare:


let x = ref [] ;;
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Then the variable x would have type ’a list ref and its value could be modified in
a way which would be inconsistent with the strong static typing of Objective Caml:
x := 1 :: !x ; ;


x := true :: !x ; ;


Thus we would have one and the same variable having type int list at one moment
and bool list the next.


In order to avoid such a situation, Objective Caml’s type inference mechanism uses
a new category of type variables: weak type variables. Syntactically, they are distin-
guished by the underscore character which prefixes them.
# let x = ref [] ; ;


val x : ’_a list ref = {contents=[]}


The type variable ’ a is not a type parameter, but an unknown type awaiting instan-
tiation; the first use of x after its declaration fixes the value that ’ a will take in all
types that depend on it, permanently.
# x := 0::!x ; ;


- : unit = ()


# x ; ;


- : int list ref = {contents=[0]}


From here onward, the variable x has type int list ref.


A type containing an unknown is in fact monomorphic even though its type has not
been specified. It is not possible to instantiate this unknown with a polymorphic type.


# let x = ref [] ; ;


val x : ’_a list ref = {contents=[]}


# x := (function y → ())::!x ; ;


- : unit = ()


# x ; ;


- : (’_a -> unit) list ref = {contents=[<fun>]}


In this example, even though we have instantiated the unknown type with a type which
is a priori polymorphic (’a -> unit), the type has remained monomorphic with a new
unknown type.


This restriction of polymorphism applies not only to references, but to any value con-
taining a modifiable part: vectors, records having at least one field declared mutable,
etc. Thus all the type parameters, even those which have nothing to do with a modifi-
able part, are weak type variables.
# type (’a,’b) t = { ch1 :’a list ; mutable ch2 : ’b list } ; ;


type (’a, ’b) t = { ch1: ’a list; mutable ch2: ’b list }


# let x = { ch1 = [] ; ch2 = [] } ; ;


val x : (’_a, ’_b) t = {ch1=[]; ch2=[]}


Warning This modification of the typing of application has con-
sequences for pure functional programs.
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Likewise, when you apply a polymorphic value to a polymorphic function, you get a
weak type variable, because you must not exclude the possibility that the function may
construct physically modifiable values. In other words, the result of the application is
always monomorphic.
# (function x → x) [] ; ;


- : ’_a list = []


You get the same result with partial application:
# let f a b = a ; ;


val f : ’a -> ’b -> ’a = <fun>


# let g = f 1 ; ;


val g : ’_a -> int = <fun>


To get a polymorphic type back, you have to abstract the second argument of f and
then apply it:
# let h x = f 1 x ; ;


val h : ’a -> int = <fun>


In effect, the expression which defines h is the functional expression function x →
f 1 x. Its evaluation produces a closure which does not risk producing a side effect,
because the body of the function is not evaluated.


In general, we distinguish so-called “non-expansive” expressions, whose calculation we
are sure carries no risk of causing a side effect, from other expressions, called “expan-
sive.” Objective Caml’s type system classifies expressions of the language according to
their syntactic form:


• “non-expansive” expressions include primarily variables, constructors of non-
mutable values, and abstractions;


• “expansive” expressions include primarily applications and constructors of mod-
ifiable values. We can also include here control structures like conditionals and
pattern matching.


Input-Output


Input-output functions do calculate a value (often of type unit) but during their
calculation they cause a modification of the state of the input-output peripherals:
modification of the state of the keyboard buffer, outputting to the screen, writing
in a file, or modification of a read pointer. The following two types are predefined:
in channel and out channel for, respectively, input channels and output channels.
When an end of file is met, the exception End of file is raised. Finally, the following
three constants correspond to the standard channels for input, output, and error in
Unix fashion: stdin, stdout, and stderr.
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Channels


The input-output functions from the Objective Caml standard library manipulate com-
munication channels: values of type in channel or out channel. Apart from the three
standard predefined values, the creation of a channel uses one of the following func-
tions:
# open in; ;


- : string -> in_channel = <fun>


# open out; ;


- : string -> out_channel = <fun>


open in opens the file if it exists2, and otherwise raises the exception Sys error.
open out creates the specified file if it does not exist or truncates it if it does.
# let ic = open in "koala"; ;


val ic : in_channel = <abstr>


# let oc = open out "koala"; ;


val oc : out_channel = <abstr>


The functions for closing channels are:
# close in ; ;


- : in_channel -> unit = <fun>


# close out ; ;


- : out_channel -> unit = <fun>


Reading and Writing


The most general functions for reading and writing are the following:
# input line ; ;


- : in_channel -> string = <fun>


# input ; ;


- : in_channel -> string -> int -> int -> int = <fun>


# output ; ;


- : out_channel -> string -> int -> int -> unit = <fun>


• input line ic: reads from input channel ic all the characters up to the first
carriage return or end of file, and returns them in the form of a list of characters
(excluding the carriage return).


• input ic s p l: attempts to read l characters from an input channel ic and
stores them in the list s starting from the pth character. The number of characters
actually read is returned.


• output oc s p l: writes on an output channel oc part of the list s, starting at
the p-th character, with length l.


2. With appropriate read permissions, that is.
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The following functions read from standard input or write to standard output:
# read line ; ;


- : unit -> string = <fun>


# print string ; ;


- : string -> unit = <fun>


# print newline ; ;


- : unit -> unit = <fun>


Other values of simple types can also be read directly or appended. These are the
values of types which can be converted into lists of characters.


Local declarations and order of evaluation We can simulate a sequence of print-
outs with expressions of the form let x = e1 in e2. Knowing that, in general, x is
a local variable which can be used in e2, we know that e1 is evaluated first and then
comes the turn of e2. If the two expressions are imperative functions whose results
are () but which have side effects, then we have executed them in the right order. In
particular, since we know the return value of e1—the constant () of type unit—we get
a sequence of printouts by writing the sequence of nested declarations which pattern
match on () .


# let () = print string "and one," in


let () = print string " and two," in


let () = print string " and three" in


print string " zero"; ;


and one, and two, and three zero- : unit = ()


Example: Higher/Lower


The following example concerns the game “Higher/Lower” which consists of choosing
a number which the user must guess at. The program indicates at each turn whether
the chosen number is smaller or bigger than the proposed number.


# let rec hilo n =


let () = print string "type a number: " in


let i = read int ()


in


if i = n then


let () = print string "BRAVO" in


let () = print newline ()


in print newline ()


else


let () =


if i < n then
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let () = print string "Higher"


in print newline ()


else


let () = print string "Lower"


in print newline ()


in hilo n ; ;


val hilo : int -> unit = <fun>


Here is an example session:


# hilo 64;;
type a number: 88
Lower
type a number: 44
Higher
type a number: 64
BRAVO


- : unit = ()


Control Structures


Input-output and modifiable values produce side-effects. Their use is made easier by
an imperative programming style furnished with new control structures. We present in
this section the sequence and iteration structures.


We have already met the conditional control structure on page 18, whose abbreviated
form if then patterns itself on the imperative world. We will write, for example:
# let n = ref 1 ; ;


val n : int ref = {contents=1}


# if !n > 0 then n := !n - 1 ; ;


- : unit = ()


Sequence


The first of the typically imperative structures is the sequence. This permits the left-
to-right evaluation of a sequence of expressions separated by semicolons.


Syntax : expr1 ; . . . ; exprn


A sequence of expressions is itself an expression, whose value is that of the last expres-
sion in the sequence (here, exprn). Nevertheless, all the expressions are evaluated, and
in particular their side-effects are taken into account.
# print string "2 = "; 1+1 ; ;
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2 = - : int = 2


With side-effects, we get back the usual construction of imperative languages.
# let x = ref 1 ; ;


val x : int ref = {contents=1}


# x:=!x+1 ; x:=!x*4 ; !x ; ;


- : int = 8


As the value preceding a semicolon is discarded, Objective Caml gives a warning when
it is not of type unit.
# print int 1; 2 ; 3 ; ;


Characters 14-15:


Warning: this expression should have type unit.


1- : int = 3


To avoid this message, you can use the function ignore:
# print int 1; ignore 2; 3 ; ;


1- : int = 3


A different message is obtained if the value has a functional type, as Objective Caml
suspects that you have forgotten a parameter of a function.
# let g x y = x := y ; ;


val g : ’a ref -> ’a -> unit = <fun>


# let a = ref 10; ;


val a : int ref = {contents=10}


# let u = 1 in g a ; g a u ; ;


Characters 13-16:


Warning: this function application is partial,


maybe some arguments are missing.


- : unit = ()


# let u = !a in ignore (g a) ; g a u ; ;


- : unit = ()


As a general rule we parenthesize sequences to clarify their scope. Syntactically, paren-
thesizing can take two forms:


Syntax : ( expr )


Syntax : begin expr end


We can now write the Higher/Lower program from page 78 more naturally:
# let rec hilo n =


print string "type a number: ";


let i = read int () in
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if i = n then print string "BRAVO\n\n"


else


begin


if i < n then print string "Higher\n" else print string "Lower\n" ;


hilo n


end ; ;


val hilo : int -> unit = <fun>


Loops


The iterative control structures are also from outside the functional world. The condi-
tional expression for repeating, or leaving, a loop does not make sense unless there can
be a physical modification of the memory which permits its value to change. There are
two iterative control structures in Objective Caml: the for loop for a bounded iteration
and the while loop for a non-bounded iteration. The loop structures themselves are
expressions of the language. Thus they return a value: the constant () of type unit.


The for loop can be rising (to) or falling (downto) with a step of one.


Syntax : for name = expr1 to expr2 do expr3 done


for name = expr1 downto expr2 do expr3 done


The expressions expr1 and expr2 are of type int. If expr3 is not of type unit, the
compiler produces a warning message.
# for i=1 to 10 do print int i; print string " " done; print newline () ; ;


1 2 3 4 5 6 7 8 9 10


- : unit = ()


# for i=10 downto 1 do print int i; print string " " done; print newline () ; ;


10 9 8 7 6 5 4 3 2 1


- : unit = ()


The non-bounded loop is the “while” loop whose syntax is:


Syntax : while expr1 do expr2 done


The expression expr1 should be of type bool. And, as for the for loop, if expr2 is not
of type unit, the compiler produces a warning message.
# let r = ref 1


in while !r < 11 do


print int !r ;


print string " " ;


r := !r+1


done ; ;


1 2 3 4 5 6 7 8 9 10 - : unit = ()
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It is important to understand that loops are expressions like the previous ones which
calculate the value () of type unit.
# let f () = print string "-- end\n" ; ;


val f : unit -> unit = <fun>


# f (for i=1 to 10 do print int i; print string " " done) ; ;


1 2 3 4 5 6 7 8 9 10 -- end


- : unit = ()


Note that the string "-- end\n" is output after the integers from 1 to 10 have been
printed: this is a demonstration that the arguments (here the loop) are evaluated before
being passed to the function.


In imperative programming, the body of a loop (expr2) does not calculate a value, but
advances by side effects. In Objective Caml, when the body of a loop is not of type
unit the compiler prints a warning, as for the sequence:
# let s = [5; 4; 3; 2; 1; 0] ; ;


val s : int list = [5; 4; 3; 2; 1; 0]


# for i=0 to 5 do List.tl s done ; ;


Characters 17-26:


Warning: this expression should have type unit.


- : unit = ()


Example: Implementing a Stack


The data structure ’a stack will be implemented in the form of a record containing
an array of elements and the first free position in this array. Here is the corresponding
type:
# type ’a stack = { mutable ind:int; size:int; mutable elts : ’a array } ; ;


The field size contains the maximal size of the stack.


The operations on these stacks will be init stack for the initialization of a stack,
push for pushing an element onto a stack, and pop for returning the top of the stack
and popping it off.
# let init stack n = {ind=0; size=n; elts =[||]} ; ;


val init_stack : int -> ’a stack = <fun>


This function cannot create a non-empty array, because you would have to provide it
with the value with which to construct it. This is why the field elts gets an empty
array.


Two exceptions are declared to guard against attempts to pop an empty stack or to
add an element to a full stack. They are used in the functions pop and push.
# exception Stack empty ; ;


# exception Stack full ; ;


# let pop p =


if p.ind = 0 then raise Stack empty


else (p.ind <- p.ind - 1; p.elts.(p.ind)) ; ;
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val pop : ’a stack -> ’a = <fun>


# let push e p =


if p.elts = [||] then


(p.elts <- Array.create p.size e;


p.ind <- 1)


else if p.ind >= p.size then raise Stack full


else (p.elts.(p.ind) <- e; p.ind <- p.ind + 1) ; ;


val push : ’a -> ’a stack -> unit = <fun>


Here is a small example of the use of this data structure:
# let p = init stack 4 ; ;


val p : ’_a stack = {ind=0; size=4; elts=[||]}


# push 1 p ; ;


- : unit = ()


# for i = 2 to 5 do push i p done ; ;


Uncaught exception: Stack_full


# p ; ;


- : int stack = {ind=4; size=4; elts=[|1; 2; 3; 4|]}


# pop p ; ;


- : int = 4


# pop p ; ;


- : int = 3


If we want to prevent raising the exception Stack full when attempting to add an
element to the stack, we can enlarge the array. To do this the field size must be
modifiable too:
# type ’a stack =


{mutable ind:int ; mutable size:int ; mutable elts : ’a array} ; ;


# let init stack n = {ind=0; size=max n 1; elts = [||]} ; ;


# let n push e p =


if p.elts = [||]


then


begin


p.elts <- Array.create p.size e;


p.ind <- 1


end


else if p.ind >= p.size then


begin


let nt = 2 * p.size in


let nv = Array.create nt e in


for j=0 to p.size-1 do nv.(j) <- p.elts.(j) done ;


p.elts <- nv;


p.size <- nt;


p.ind <- p.ind + 1


end


else
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begin


p.elts.(p.ind) <- e ;


p.ind <- p.ind + 1


end ; ;


val n_push : ’a -> ’a stack -> unit = <fun>


All the same, you have to be careful with data structures which can expand without
bound. Here is a small example where the initial stack grows as needed.
# let p = init stack 4 ; ;


val p : ’_a stack = {ind=0; size=4; elts=[||]}


# for i = 1 to 5 do n push i p done ; ;


- : unit = ()


# p ; ;


- : int stack = {ind=5; size=8; elts=[|1; 2; 3; 4; 5; 5; 5; 5|]}


# p.stack ; ;


Characters 0-7:


Unbound label stack


It might also be useful to allow pop to decrease the size of the stack, to reclaim unused
memory.


Example: Calculations on Matrices


In this example we aim to define a type for matrices, two-dimensional arrays containing
floating point numbers, and to write some operations on the matrices. The monomor-
phic type mat is a record containing the dimensions and the elements of the matrix.
The functions create mat, access mat, and mod mat are respectively the functions for
creation, accessing an element, and modification of an element.
# type mat = { n:int; m:int; t: float array array }; ;
type mat = { n: int; m: int; t: float array array }


# let create mat n m = { n=n; m=m; t = Array.create matrix n m 0.0 } ; ;


val create_mat : int -> int -> mat = <fun>


# let access mat m i j = m.t.(i).(j) ; ;


val access_mat : mat -> int -> int -> float = <fun>


# let mod mat m i j e = m.t.(i).(j) <- e ; ;


val mod_mat : mat -> int -> int -> float -> unit = <fun>


# let a = create mat 3 3 ; ;


val a : mat = {n=3; m=3; t=[|[|0; 0; 0|]; [|0; 0; 0|]; [|0; 0; 0|]|]}


# mod mat a 1 1 2.0; mod mat a 1 2 1.0; mod mat a 2 1 1.0 ; ;


- : unit = ()


# a ; ;


- : mat = {n=3; m=3; t=[|[|0; 0; 0|]; [|0; 2; 1|]; [|0; 1; 0|]|]}
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The sum of two matrices a and b is a matrix c such that cij = aij + bij .
# let add mat p q =


if p.n = q.n && p.m = q.m then


let r = create mat p.n p.m in


for i = 0 to p.n-1 do


for j = 0 to p.m-1 do


mod mat r i j (p.t.(i).(j) +. q.t.(i).(j))


done


done ;


r


else failwith "add_mat : dimensions incompatible"; ;


val add_mat : mat -> mat -> mat = <fun>


# add mat a a ; ;


- : mat = {n=3; m=3; t=[|[|0; 0; 0|]; [|0; 4; 2|]; [|0; 2; 0|]|]}


The product of two matrices a and b is a matrix c such that cij =
∑k=ma


k=1 aik.bkj


# let mul mat p q =


if p.m = q.n then


let r = create mat p.n q.m in


for i = 0 to p.n-1 do


for j = 0 to q.m-1 do


let c = ref 0.0 in


for k = 0 to p.m-1 do


c := !c +. (p.t.(i).(k) *. q.t.(k).(j))


done;


mod mat r i j !c


done


done;


r


else failwith "mul_mat : dimensions incompatible" ; ;


val mul_mat : mat -> mat -> mat = <fun>


# mul mat a a; ;


- : mat = {n=3; m=3; t=[|[|0; 0; 0|]; [|0; 5; 2|]; [|0; 2; 1|]|]}


Order of Evaluation of Arguments


In a pure functional language, the order of evaluation of the arguments does not matter.
As there is no modification of memory state and no interruption of the calculation, there
is no risk of the calculation of one argument influencing another. On the other hand, in
Objective Caml, where there are physically modifiable values and exceptions, there is
a danger in not taking account of the order of evaluation of arguments. The following
example is specific to version 2.04 of Objective Caml for Linux on Intel hardware:
# let new print string s = print string s; String.length s ; ;


val new_print_string : string -> int = <fun>
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# (+) (new print string "Hello ") (new print string "World!") ; ;


World!Hello - : int = 12


The printing of the two strings shows that the second string is output before the first.


It is the same with exceptions:
# try (failwith "function") (failwith "argument") with Failure s → s; ;


- : string = "argument"


If you want to specify the order of evaluation of arguments, you have to make local
declarations forcing this order before calling the function. So the preceding example
can be rewritten like this:
# let e1 = (new print string "Hello ")


in let e2 = (new print string "World!")


in (+) e1 e2 ; ;


Hello World!- : int = 12


In Objective Caml, the order of evaluation of arguments is not specified. As it happens,
today all implementations of Objective Caml evaluate arguments from left to right. All
the same, making use of this implementation feature could turn out to be dangerous
if future versions of the language modify the implementation.


We come back to the eternal debate over the design of languages. Should certain fea-
tures of the language be deliberately left unspecified—should programmers be asked
not to use them, on pain of getting different results from their program according to
the compiler implementation? Or should everything be specified—should programmers
be allowed to use the whole language, at the price of complicating compiler implemen-
tation, and forbidding certain optimizations?


Calculator With Memory


We now reuse the calculator example described in the preceding chapter, but this
time we give it a user interface, which makes our program more usable as a desktop
calculator. This loop allows entering operations directly and seeing results displayed
without having to explicitly apply a transition function for each keypress.


We attach four new keys: C, which resets the display to zero, M, which memorizes a
result, m, which recalls this memory and OFF, which turns off the calculator. This
corresponds to the following type:
# type key = Plus | Minus | Times | Div | Equals | Digit of int


| Store | Recall | Clear | Off ; ;


It is necessary to define a translation function from characters typed on the keyboard
to values of type key. The exception Invalid key handles the case of characters that
do not represent any key of the calculator. The function code of module Char translates
a character to its ASCII-code.
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# exception Invalid key ; ;


exception Invalid_key


# let translation c = match c with


’+’ → Plus


| ’-’ → Minus


| ’*’ → Times


| ’/’ → Div


| ’=’ → Equals


| ’C’ | ’c’ → Clear


| ’M’ → Store


| ’m’ → Recall


| ’o’ | ’O’ → Off


| ’0’..’9’ as c → Digit ((Char.code c) - (Char.code ’0’))


| _ → raise Invalid key ; ;


val translation : char -> key = <fun>


In imperative style, the translation function does not calculate a new state, but physi-
cally modifies the state of the calculator. Therefore, it is necessary to redefine the type
state such that the fields are modifiable. Finally, we define the exception Key off for
treating the activation of the key OFF.
# type state = {


mutable lcd : int; (* last computation done *)


mutable lka : bool; (* last key activated *)


mutable loa : key; (* last operator activated *)


mutable vpr : int; (* value printed *)


mutable mem : int (* memory of calculator *)


}; ;


# exception Key off ; ;


exception Key_off


# let transition s key = match key with


Clear → s.vpr <- 0


| Digit n → s.vpr <- ( if s.lka then s.vpr*10+n else n );


s.lka <- true


| Store → s.lka <- false ;


s.mem <- s.vpr


| Recall → s.lka <- false ;


s.vpr <- s.mem


| Off → raise Key off


| _ → let lcd = match s.loa with


Plus → s.lcd + s.vpr


| Minus → s.lcd - s.vpr


| Times → s.lcd * s.vpr


| Div → s.lcd / s.vpr


| Equals → s.vpr
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| _ → failwith "transition: impossible match"


in


s.lcd <- lcd ;


s.lka <- false ;


s.loa <- key ;


s.vpr <- s.lcd; ;


val transition : state -> key -> unit = <fun>


We define the function go, which starts the calculator. Its return value is (), because
we are only concerned about effects produced by the execution on the environment
(start/end, modification of state). Its argument is also the constant (), because the
calculator is autonomous (it defines its own initial state) and interactive (the arguments
of the computation are entered on the keyboard as required). The transitions are
performed within an infinite loop (while true do) so we can quit with the exception
Key off.


# let go () =


let state = { lcd=0; lka=false; loa=Equals; vpr=0; mem=0 }
in try


while true do


try


let input = translation (input char stdin)


in transition state input ;


print newline () ;


print string "result: " ;


print int state.vpr ;


print newline ()


with


Invalid key → () (* no effect *)


done


with


Key off → () ; ;


val go : unit -> unit = <fun>


We note that the initial state must be either passed as a parameter or declared locally
within the function go, because it needs to be initialized at every application of this
function. If we had used a value initial state as in the functional program, the
calculator would start in the same state as the one it had when it was terminated. This
would make it difficult to use two calculators in the same program.
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Exercises


Doubly Linked Lists


Functional programming lends itself well to the manipulation of non-cyclic data struc-
tures, such as lists for example. For cyclic structures, on the other hand, there are real
implementation difficulties. Here we propose to define doubly linked lists, i.e., where
each element of a list knows its predecessor and its successor.


1. Define a parameterized type for doubly linked lists, using at least one record
with mutable fields.


2. Write the functions add and remove which add and remove an element of a
doubly linked list.


Solving linear systems


This exercise has to do with matrix algebra. It solves a system of equations by Gaussian
elimination (i.e., pivoting). We write the system of equations A X = Y with A, a
square matrix of dimension n, Y , a vector of constants of dimension n and X, a vector
of unknowns of the same dimension.


This method consists of transforming the system A X = Y into an equivalent system
C X = Z such that the matrix C is upper triangular. We diagonalize C to obtain the
solution.


1. Define a type vect, a type mat, and a type syst .
2. Write utility functions for manipulating vectors: to display a system on screen,


to add two vectors, to multiply a vector by a scalar.
3. Write utility functions for matrix computations: multiplication of two matrices,


product of a matrix with a vector.
4. Write utility functions for manipulating systems: division of a row of a system


by a pivot, (Aii), swapping two rows.
5. Write a function to diagonalize a system. From this, obtain a function solving


a linear system.
6. Test your functions on the following systems:


AX =






10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



 ∗






x1


x2


x3


x4



 =






32
23
33
31



 = Y


AX =






10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



 ∗






x1


x2


x3


x4



 =






32.1
22.9
33.1
30.9



 = Y
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AX =






10 7 8.1 7.2
7.08 5.04 6 5
8 5.98 9.89 9


6.99 4.99 9 9.98



 ∗






x1


x2


x3


x4



 =






32
23
33
31



 = Y


7. What can you say about the results you got?


Summary


This chapter has shown the integration of the main features of imperative program-
ming (mutable values, I/O, iterative control structures) into a functional language.
Only mutable values, such as strings, arrays, and records with mutable fields, can be
physically modified. Other values, once created, are immutable. In this way we ob-
tain read-only (RO) values for the functional part and read-write (RW) values for the
imperative part.


It should be noted that, if we don’t make use of the imperative features of the language,
this extension to the functional core does not change the functional part, except for
typing considerations which we can get around.


To Learn More


Imperative programming is the style of programming which has been most widely
used since the first computer languages such as Fortran, C, or Pascal. For this reason
numerous algorithms are described in this style, often using some kind of pseudo-Pascal.
While they could be implemented in a functional style, the use of arrays promotes the
use of an imperative style. The data structures and algorithms presented in classic
algorithms books, such as [AHU83] and [Sed88], can be carried over directly in the
appropriate style. An additional advantage of including these two styles in a single
language is being able to define new programming models by mixing the two. This is
precisely the subject of the next chapter.







4
Functional and


Imperative Styles


Functional and imperative programming languages are primarily distinguished by the
control over program execution and the data memory management.


• A functional program computes an expression. This computation results in a
value. The order in which the operations needed for this computation occur does
not matter, nor does the physical representation of the data manipulated, because
the result is the same anyway. In this setting, deallocation of memory is managed
implicitly by the language itself: it relies on an automatic garbage collector or
GC; see chapter 9.


• An imperative program is a sequence of instructions modifying a memory state.
Each execution step is enforced by rigid control structures that indicate the
next instruction to be executed. Imperative programs manipulate pointers or
references to values more often than the values themselves. Hence, the memory
space needed to store values must be allocated and reclaimed explicitly, which
sometimes leads to errors in accessing memory. Nevertheless, nothing prevents
use of a GC.


Imperative languages provide greater control over execution and the memory represen-
tation of data. Being closer to the actual machine, the code can be more efficient, but
loses in execution safety. Functional programming, offering a higher level of abstrac-
tion, achieves a better level of execution safety: Typing (dynamic or static) may be
stricter in this case, thus avoiding operations on incoherent values. Automatic storage
reclamation, in exchange for giving up efficiency, ensures the current existence of the
values being manipulated.


Historically, the two programming paradigms have been seen as belonging to differ-
ent universes: symbolic applications being suitable for the former, and numerical ap-
plications being suitable for the latter. But certain things have changed, especially
techniques for compiling functional programming languages, and the efficiency of GCs.
From another side, execution safety has become an important, sometimes the predom-
inant criterion in the quality of an application. Also familiar is the “selling point” of
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the Java language, according to which efficiency need not preempt assurance, espe-
cially if efficiency remains reasonably good. And this idea is spreading among software
producers.


Objective Caml belongs to this class. It combines the two programming paradigms,
thus enlarging its domain of application by allowing algorithms to be written in either
style. It retains, nevertheless, a good degree of execution safety because of its static
typing, its GC, and its exception mechanism. Exceptions are a first explicit execution
control structure; they make it possible to break out of a computation or restart it. This
trait is at the boundary of the two models, because although it does not replace the
result of a computation, it can modify the order of execution. Introducing physically
mutable data can alter the behavior of the purely functional part of the language.
For instance, the order in which the arguments to a function are evaluated can be
determined, if that evaluation causes side effects. For this reason, such languages are
called “impure functional languages.” One loses in level of abstraction, because the
programmer must take account of the memory model, as well as the order of events
in running the program. This is not always negative, especially for the efficiency of
the code. On the other hand, the imperative aspects change the type system of the
language: some functional programs, correctly typed in theory, are no longer in fact
correctly typed because of the introduction of references. However, such programs can
easily be rewritten.


Plan of the Chapter


This chapter provides a comparison between the functional and imperative models in
the Objective Caml language, at the level both of control structure and of the memory
representation of values. The mixture of these two styles allows new data structures to
be created. The first section studies this comparison by example. The second section
discusses the ingredients in the choice between composition of functions and sequencing
of instructions, and in the choice between sharing and copying values. The third section
brings out the interest of mixing these two styles to create mutable functional data,
thus permitting data to be constructed without being completely evaluated. The fourth
section describes streams, potentially infinite sequences of data, and their integration
into the language via pattern-matching.


Comparison between Functional and


Imperative


Character strings (of Objective Caml type string) and linked lists (of Objective Caml
type ’a list) will serve as examples to illustrate the differences between “functional”
and “imperative.”
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The Functional Side


The function map (see page 26) is a classic ingredient in functional languages. In a
purely functional style, it is written:
# let rec map f l = match l with


[] → []


| h :: q → (f h) :: (map f q) ; ;


val map : (’a -> ’b) -> ’a list -> ’b list = <fun>


It recursively constructs a list by applying f to the elements of the list given as argu-
ment, independently specifying its head (f h) and its tail (map f q). In particular,
the program does not stipulate which of the two will be computed first.


Moreover, the physical representation of lists need not be known to the programmer
to write such a function. In particular, problems of allocating and sharing data are
managed implicitly by the system and not by the programmer. An example illustrating
this follows:
# let example = [ "one" ; "two" ; "three" ] ; ;


val example : string list = ["one"; "two"; "three"]


# let result = map (function x → x) example ; ;


val result : string list = ["one"; "two"; "three"]


The lists example and result contain equal values:
# example = result ; ;


- : bool = true


These two values have exactly the same structure even though their representation in
memory is different, as one learns by using the test for physical equality:
# example == result ; ;


- : bool = false


# (List.tl example) == (List.tl result) ; ;


- : bool = false


The Imperative Side


Let us continue the previous example, and modify a string in the list result.
# (List.hd result).[1] <- ’s’ ; ;


- : unit = ()


# result ; ;


- : string list = ["ose"; "two"; "three"]


# example ; ;


- : string list = ["ose"; "two"; "three"]


Evidently, this operation has modified the list example. Hence, it is necessary to know
the physical structure of the two lists being manipulated, as soon as we use imperative
aspects of the language.
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Let us now observe how the order of evaluating the arguments of a function can amount
to a trap in an imperative program. We define a mutable list structure with primitive
functions for creation, modification, and access:
# type ’a ilist = { mutable c : ’a list } ; ;


type ’a ilist = { mutable c: ’a list }


# let icreate () = { c = [] }
let iempty l = (l.c = [] )


let icons x y = y.c <- x :: y.c ; y


let ihd x = List.hd x.c


let itl x = x.c <- List.tl x.c ; x ; ;


val icreate : unit -> ’a ilist = <fun>


val iempty : ’a ilist -> bool = <fun>


val icons : ’a -> ’a ilist -> ’a ilist = <fun>


val ihd : ’a ilist -> ’a = <fun>


val itl : ’a ilist -> ’a ilist = <fun>


# let rec imap f l =


if iempty l then icreate ()


else icons (f (ihd l)) (imap f (itl l)) ; ;


val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>


Despite having reproduced the general form of the map of the previous paragraph, with
imap we get a distinctly different result:
# let example = icons "one" (icons "two" (icons "three" (icreate ()))) ; ;


val example : string ilist = {c=["one"; "two"; "three"]}


# imap (function x → x) example ; ;


Uncaught exception: Failure("hd")


What has happened? Just that the evaluation of (itl l) has taken place before the
evaluation of (ihd l), so that on the last iteration of imap, the list referenced by l


became the empty list before we examined its head. The list example is henceforth
definitely empty even though we have not obtained any result:
# example ; ;


- : string ilist = {c=[]}


The flaw in the function imap arises from a mixing of the genres that has not been
controlled carefully enough. The choice of order of evaluation has been left to the
system. We can reformulate the function imap, making explicit the order of evaluation,
by using the syntactic construction let .. in ..


# let rec imap f l =


if iempty l then icreate ()


else let h = ihd l in icons (f h) (imap f (itl l)) ; ;


val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>


# let example = icons "one" (icons "two" (icons "three" (icreate ()))) ; ;


val example : string ilist = {c=["one"; "two"; "three"]}


# imap (function x → x) example ; ;
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- : string ilist = {c=["one"; "two"; "three"]}


However, the original list has still been lost:
# example ; ;


- : string ilist = {c=[]}


Another way to make the order of evaluation explicit is to use the sequencing operator
and a looping structure.
# let imap f l =


let l res = icreate ()


in while not (iempty l) do


ignore (icons (f (ihd l)) l res) ;


ignore (itl l)


done ;


{ l res with c = List.rev l res.c } ; ;


val imap : (’a -> ’b) -> ’a ilist -> ’b ilist = <fun>


# let example = icons "one" (icons "two" (icons "three" (icreate ()))) ; ;


val example : string ilist = {c=["one"; "two"; "three"]}


# imap (function x → x) example ; ;


- : string ilist = {c=["one"; "two"; "three"]}


The presence of ignore emphasizes the fact that it is not the result of the functions
that counts here, but their side effects on their argument. In addition, we had to put
the elements of the result back in the right order (using the function List.rev).


Recursive or Iterative


People often mistakenly associate recursive with functional and iterative with impera-
tive. A purely functional program cannot be iterative because the value of the condition
of a loop never varies. By contrast, an imperative program may be recursive: the orig-
inal version of the function imap is an example.


Calling a function conserves the values of its arguments during its computation. If it
calls another function, the latter conserves its own arguments in addition. These values
are conserved on the execution stack. When the call returns, these values are popped
from the stack. The memory space available for the stack being bounded, it is possible
to encounter the limit when using a recursive function with calls too deeply nested. In
this case, Objective Caml raises the exception Stack overflow.


# let rec succ n = if n = 0 then 1 else 1 + succ (n-1) ; ;


val succ : int -> int = <fun>


# succ 100000 ; ;


Stack overflow during evaluation (looping recursion?).
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In the iterative version succ iter, the stack space needed for a call does not depend
on its argument.
# let succ iter n =


let i = ref 0 in


for j=0 to n do incr i done ;


!i ; ;


val succ_iter : int -> int = <fun>


# succ iter 100000 ; ;


- : int = 100001


The following recursive version has a priori the same depth of calls, yet it executes
successfully with the same argument.
# let succ tr n =


let rec succ aux n accu =


if n = 0 then accu else succ aux (n-1) (accu+1)


in


succ aux 1 n ; ;


val succ_tr : int -> int = <fun>


# succ tr 100000 ; ;


- : int = 100001


This function has a special form of recursive call, called tail recursion, in which the
result of this call will be the result of the function without further computation. It
is therefore unnecessary to have stored the values of the arguments to the function
while computing the recursive call. When Objective Caml can observe that a call is
tail recursive, it frees the arguments on the stack before making the recursive call. This
optimization allows recursive functions that do not increase the size of the stack.


Many languages detect tail recursive calls, but it is indispensable in a functional lan-
guage, where naturally many tail recursive calls are used.


Which Style to Choose?


This is no matter of religion or esthetics; a priori neither style is prettier or holier than
the other. On the contrary, one style may be more adequate than the other depending
on the problem to be solved.


The first rule to apply is the rule of simplicity. Whether the algorithm to use imple-
mented is written in a book, or whether its seed is in the mind of the programmer, the
algorithm is itself described in a certain style. It is natural to use the same style when
implementing it.


The second criterion of choice is the efficiency of the program. One may say that an
imperative program (if well written) is more efficient that its functional analogue, but
in very many cases the difference is not enough to justify complicating the code to
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adopt an imperative style where the functional style would be natural. The function
map in the previous section is a good example of a problem naturally expressed in the
functional style, which gains nothing from being written in the imperative style.


Sequence or Composition of Functions


We have seen that as soon as a program causes side effects, it is necessary to determine
precisely the order of evaluation for the elements of the program. This can be done in
both styles:


functional: using the fact that Objective Caml is a strict language, which means
that the argument is evaluated before applying the function. The expression (f
(g x)) is computed by first evaluating (g x), and then passing the result as
argument to f. With more complex expressions, we can name an intermediate
result with the let in construction, but the idea remains the same: let aux=(g
x) in (f aux).


imperative: using sequences or other control structures (loops). In this case, the
result is not the value returned by a function, but its side effects on memory:
aux:=(g x) ; (f !aux).


Let us examine this choice of style on an example. The quick sort algorithm, applied
to a vector, is described recursively as follows:


1. Choose a pivot: This is the index of an element of the vector;


2. Permute around the pivot: Permute the elements of the vector so elements less
than the value at the pivot have indices less than the pivot, and vice versa;


3. sort the subvectors obtained on each side of the pivot, using the same algorithm:
The subvector preceding the pivot and the subvector following the pivot.


The choice of algorithm, namely to modify a vector so that its elements are sorted,
incites us to use an imperative style at least to manipulate the data.


First, we define a function to permute two elements of a vector:
# let permute element vec n p =


let aux = vec.(n) in vec.(n) <- vec.(p) ; vec.(p) <- aux ; ;


val permute_element : ’a array -> int -> int -> unit = <fun>


The choice of a good pivot determines the efficiency of the algorithm, but we will use the
simplest possible choice here: return the index of the first element of the (sub)vector.
# let choose pivot vec start finish = start ; ;


val choose_pivot : ’a -> ’b -> ’c -> ’b = <fun>


Let us write the algorithm that we would like to use to permute the elements of the
vector around the pivot.
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1. Place the pivot at the beginning of the vector to be permuted;


2. Initialize i to the index of the second element of the vector;


3. Initialize j to the index of the last element of the vector;


4. If the element at index j is greater than the pivot, permute it with the element
at index i and increment i; otherwise, decrement j;


5. While i < j, repeat the previous operation;


6. At this stage, every element with index < i (or equivalently, j) is less than the
pivot, and all others are greater; if the element with index i is less than the pivot,
permute it with the pivot; otherwise, permute its predecessor with the pivot.


In implementing this algorithm, it is natural to adopt imperative control structures.
# let permute pivot vec start finish ind pivot =


permute element vec start ind pivot ;


let i = ref (start+1) and j = ref finish and pivot = vec.(start) in


while !i < !j do


if vec.(!j) >= pivot then decr j


else


begin


permute element vec !i !j ;


incr i


end


done ;


if vec.(!i) > pivot then decr i ;


permute element vec start !i ;


!i


; ;


val permute_pivot : ’a array -> int -> int -> int -> int = <fun>


In addition to its effects on the vector, this function returns the index of the pivot as
its result.


All that remains is to put together the different stages and add the recursion on the
sub-vectors.
# let rec quick vec start finish =


if start < finish


then


let pivot = choose pivot vec start finish in


let place pivot = permute pivot vec start finish pivot in


quick (quick vec start (place pivot-1)) (place pivot+1) finish


else vec ; ;


val quick : ’a array -> int -> int -> ’a array = <fun>


We have used the two styles here. The chosen pivot serves as argument to the per-
mutation around this pivot, and the index of the pivot after the permutation is an
argument to the recursive call. By contrast, the vector obtained after the permutation
is not returned by the permute pivot function; instead, this result is produced by side
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effect. However, the quick function returns a vector, and the sorting of sub-vectors is
obtained by composition of recursive calls.


The main function is:
# let quicksort vec = quick vec 0 ((Array.length vec)-1) ; ;


val quicksort : ’a array -> ’a array = <fun>


It is a polymorphic function because the order relation < on vector elements is itself
polymorphic.
# let t1 = [|4;8;1;12;7;3;1;9|] ; ;


val t1 : int array = [|4; 8; 1; 12; 7; 3; 1; 9|]


# quicksort t1 ; ;


- : int array = [|1; 1; 3; 4; 7; 8; 9; 12|]


# t1 ; ;


- : int array = [|1; 1; 3; 4; 7; 8; 9; 12|]


# let t2 = [|"the"; "little"; "cat"; "is"; "dead"|] ; ;


val t2 : string array = [|"the"; "little"; "cat"; "is"; "dead"|]


# quicksort t2 ; ;


- : string array = [|"cat"; "dead"; "is"; "little"; "the"|]


# t2 ; ;


- : string array = [|"cat"; "dead"; "is"; "little"; "the"|]


Shared or Copy Values


When the values that we manipulate are not mutable, it does not matter whether they
are shared or not.
# let id x = x ; ;


val id : ’a -> ’a = <fun>


# let a = [ 1; 2; 3 ] ; ;


val a : int list = [1; 2; 3]


# let b = id a ; ;


val b : int list = [1; 2; 3]


Whether b is a copy of the list a or the very same list makes no difference, because
these are intangible values anyway. But if we put modifiable values in place of integers,
we need to know whether modifying one value causes a change in the other.


The implementation of polymorphism in Objective Caml causes immediate values to be
copied, and structured values to be shared. Even though arguments are always passed
by value, only the pointer to a structured value is copied. This is the case even in the
function id:
# let a = [| 1 ; 2 ; 3 |] ; ;


val a : int array = [|1; 2; 3|]


# let b = id a ; ;


val b : int array = [|1; 2; 3|]


# a.(1) <- 4 ; ;


- : unit = ()


# a ; ;
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- : int array = [|1; 4; 3|]


# b ; ;


- : int array = [|1; 4; 3|]


We have here a genuine programming choice to decide which is the most efficient way
to represent a data structure. On one hand, using mutable values allows manipulations
in place, which means without allocation, but requires us to make copies sometimes
when immutable data would have allowed sharing. We illustrate this here with two
ways to implement lists.
# type ’a list immutable = LInil | LIcons of ’a * ’a list immutable ; ;


# type ’a list mutable = LMnil | LMcons of ’a * ’a list mutable ref ; ;


The immutable lists are strictly equivalent to lists built into Objective Caml, while
the mutable lists are closer to the style of C, in which a cell is a value together with a
reference to the following cell.


With immutable lists, there is only one way to write concatenation, and it requires
duplicating the structure of the first list; by contrast, the second list may be shared
with the result.
# let rec concat l1 l2 = match l1 with


LInil → l2


| LIcons (a,l11) → LIcons(a, (concat l11 l2)) ; ;


val concat : ’a list_immutable -> ’a list_immutable -> ’a list_immutable =


<fun>


# let li1 = LIcons(1, LIcons(2, LInil))


and li2 = LIcons(3, LIcons(4, LInil)) ; ;


val li1 : int list_immutable = LIcons (1, LIcons (2, LInil))


val li2 : int list_immutable = LIcons (3, LIcons (4, LInil))


# let li3 = concat li1 li2 ; ;


val li3 : int list_immutable =


LIcons (1, LIcons (2, LIcons (3, LIcons (4, LInil))))


# li1==li3 ; ;


- : bool = false


# let tlLI l = match l with


LInil → failwith "Liste vide"


| LIcons(_,x) → x ; ;


val tlLI : ’a list_immutable -> ’a list_immutable = <fun>


# tlLI(tlLI(li3)) == li2 ; ;


- : bool = true


From these examples, we see that the first cells of li1 and li3 are distinct, while the
second half of li3 is exactly li2.


With mutable lists, we have a choice between modifying arguments (function concat share)
and creating a new value (function concat copy).
# let rec concat copy l1 l2 = match l1 with


LMnil → l2


| LMcons (x,l11) → LMcons(x, ref (concat copy !l11 l2)) ; ;







Which Style to Choose? 101


val concat_copy : ’a list_mutable -> ’a list_mutable -> ’a list_mutable =


<fun>


This first solution, concat copy, gives a result similar to the previous function, concat.
A second solution shares its arguments with its result fully:
# let concat share l1 l2 =


match l1 with


LMnil → l2


| _ → let rec set last = function


LMnil → failwith "concat_share : impossible case!!"


| LMcons(_,l) → if !l=LMnil then l:=l2 else set last !l


in


set last l1 ;


l1 ; ;


val concat_share : ’a list_mutable -> ’a list_mutable -> ’a list_mutable =


<fun>


Concatenation with sharing does not require any allocation, and therefore does not
use the constructor LMcons. Instead, it suffices to cause the last cell of the first list
to point to the second list. However, this version of concatenation has the potential
weakness that it alters arguments passed to it.
# let lm1 = LMcons(1, ref (LMcons(2, ref LMnil)))


and lm2 = LMcons(3, ref (LMcons(4, ref LMnil))) ; ;


val lm1 : int list_mutable =


LMcons (1, {contents=LMcons (2, {contents=LMnil})})


val lm2 : int list_mutable =


LMcons (3, {contents=LMcons (4, {contents=LMnil})})


# let lm3 = concat share lm1 lm2 ; ;


val lm3 : int list_mutable =


LMcons (1, {contents=LMcons (2, {contents=LMcons (...)})})


We do indeed obtain the expected result for lm3. However, the value bound to lm1 has
been modified.
# lm1 ; ;


- : int list_mutable =


LMcons (1, {contents=LMcons (2, {contents=LMcons (...)})})


This may therefore have consequences on the rest of the program.


How to Choose your Style


In a purely functional program, side effects are forbidden, and this excludes mutable
data structures, exceptions, and input/output. We prefer, though, a less restrictive
definition of the functional style, saying that functions that do not modify their global
environment may be used in a functional style. Such a function may manipulate mu-
table values locally, and may therefore be written in an imperative style, but must
not modify global variables, nor its arguments. We permit them to raise exceptions in
addition. Viewed from outside, these functions may be considered “black boxes.” Their
behavior matches a function written in a purely functional style, apart from being able
of breaking control flow by raising an exception. In the same spirit, a mutable value
which can no longer be modified after initialization may be used in a functional style.
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On the other hand, a program written in an imperative style still benefits from the
advantages provided by Objective Caml: static type safety, automatic memory man-
agement, the exception mechanism, parametric polymorphism, and type inference.


The choice between the imperative and functional styles depends on the application to
be developed. We may nevertheless suggest some guidelines based on the character of
the application, and the criteria considered important in the development process.


• choice of data structures: The choice whether to use mutable data structures
follows from the style of programming adopted. Indeed, the functional style is es-
sentially incompatible with modifying mutable values. By contrast, constructing
and traversing objects are the same whatever their status. This touches the same
issue as “modification in place vs copying” on page 99; we return to it again in
discussing criteria of efficiency.


• required data structures: If a program must modify mutable data structures,
then the imperative style is the only one possible. If, on the other hand, you
just have to traverse values, then adopting the functional style guarantees the
integrity of the data.
Using recursive data structures requires the use of functions that are themselves
recursive. Recursive functions may be defined using either of the two styles, but
it is often easier to understand the creation of a value following a recursive defi-
nition, which corresponds to a functional approach, than to repeat the recursive
processing on this element. The functional style allows us to define generic iter-
ators over the structure of data, which factors out the work of development and
makes it faster.


• criteria of efficiency: Modification in place is far more efficient than creating a
value. When code efficiency is the preponderant criterion, it will usually tip the
balance in favor of the imperative style. We note however that the need to avoid
sharing values may turn out to be a very hard task, and in the end costlier than
copying the values to begin with.
Being purely functional has a cost. Partial application and using functions passed
as arguments from other functions has an execution cost greater than total appli-
cation of a function whose declaration is visible. Using this eminently functional
feature must thus be avoided in those portions of a program where efficiency is
crucial.


• development criteria: the higher level of abstraction of functional programs
permits them to be written more quickly, leading to code that is more compact
and contains fewer errors than the equivalent imperative code, which is generally
more verbose. The functional style is better suited to the constraints imposed by
developing substantial applications. Since each function is not dependent upon
its evaluation context, functional can be easily divided into small units that can
be examined separately; as a consequence, the code is easier to read.
Programs written using the functional style are more easily reusable because of
its better modularity, and because functions may be passed as arguments to other
functions.
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These remarks show that it is often a good idea to mix the two programming styles
within the same application. The functional programming style is faster to develop and
confers a simpler organization to an application. However, portions whose execution
time is critical repay being developed in a more efficient imperative style.


Mixing Styles


As we have mentioned, a language offering both functional and imperative character-
istics allows the programmer to choose the more appropriate style for each part of the
implementation of an algorithm. One can indeed use both aspects in the same function.
This is what we will now illustrate.


Closures and Side Effects


The convention, when a function causes a side effect, is to treat it as a procedure and
to return the value (), of type unit. Nevertheless, in some cases, it can be useful to
cause the side effect within a function that returns a useful value. We have already
used this mixture of the styles in the function permute pivot of quicksort.


The next example is a symbol generator that creates a new symbol each time that it
is called. It simply uses a counter that is incremented at every call.
# let c = ref 0; ;


val c : int ref = {contents=0}


# let reset symb = function () → c:=0 ; ;


val reset_symb : unit -> unit = <fun>


# let new symb = function s → c:=!c+1 ; s^(string of int !c) ; ;


val new_symb : string -> string = <fun>


# new symb "VAR" ; ;


- : string = "VAR1"


# new symb "VAR" ; ;


- : string = "VAR2"


# reset symb () ; ;


- : unit = ()


# new symb "WAR" ; ;


- : string = "WAR1"


# new symb "WAR" ; ;


- : string = "WAR2"


The reference c may be hidden from the rest of the program by writing:
# let (reset s , new s) =


let c = ref 0


in let f1 () = c := 0


and f2 s = c := !c+1 ; s^(string of int !c)


in (f1,f2) ; ;
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val reset_s : unit -> unit = <fun>


val new_s : string -> string = <fun>


This declaration creates a pair of functions that share the variable c, which is local to
this declaration. Using these two functions produces the same behavior as the previous
definitions.
# new s "VAR"; ;


- : string = "VAR1"


# new s "VAR"; ;


- : string = "VAR2"


# reset s () ; ;


- : unit = ()


# new s "WAR"; ;


- : string = "WAR1"


# new s "WAR"; ;


- : string = "WAR2"


This example permits us to illustrate the way that closures are represented. A closure
may be considered as a pair containing the code (that is, the function part) as one
component and the local envoronment containing the values of the free variables of
the function. Figure 4.1 shows the memory representation of the closures reset s and
new s.


environment code


newt_s


fun s -> ...


{contents=0}


c


c fun () -> c:=0


code


reset_s


environment


Figure 4.1: Memory representation of closures.


These two closures share the same environment, containing the value of c. When either
one modifies the reference c, it modifies the contents of an area of memory that is shared
with the other closure.
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Physical Modifications and Exceptions


Exceptions make it possible to escape from situations in which the computation cannot
proceed. In this case, an exception handler allows the calculation to continue, knowing
that one branch has failed. The problem with side effects comes from the state of the
modifiable data when the exception was raised. One cannot be sure of this state if
there have been physical modifications in the branch of the calculation that has failed.


Let us define the increment function (++) analogous to the operator in C:
# let (++) x = x:=!x+1; x; ;


val ++ : int ref -> int ref = <fun>


The following example shows a little computation where division by zero occurs to-
gether with
# let x = ref 2; ;


val x : int ref = {contents=2}


(* 1 *)


# !((++) x) * (1/0) ; ;


Uncaught exception: Division_by_zero


# x; ;


- : int ref = {contents=2}


(* 2 *)


# (1/0) * !((++) x) ; ;


Uncaught exception: Division_by_zero


# x; ;


- : int ref = {contents=3}


The variable x is not modified during the computation of the expression in (∗1∗), while
it is modified in the computation of (∗2∗). Unless one saves the initial values, the form
try .. with .. must not have a with .. part that depends on modifiable variables
implicated in the expression that raised the exception.


Modifiable Functional Data Structures


In functional programming a program (in particular, a function expression) may also
serve as a data object that may be manipulated, and one way to see this is to write
association lists in the form of function expressions. In fact, one may view association
lists of type (’a * ’b) list as partial functions taking a key chosen from the set ’a
and returning a value in the set of associated values ’b. Each association list is then a
function of type ’a -> ’b.


The empty list is the everywhere undefined function, which one simulates by raising
an exception:
# let nil assoc = function x → raise Not found ; ;


val nil_assoc : ’a -> ’b = <fun>


We next write the function add assoc which adds an element to a list, meaning that
it extends the function for a new entry:
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# let add assoc (k,v) l = function x → if x = k then v else l x ; ;


val add_assoc : ’a * ’b -> (’a -> ’b) -> ’a -> ’b = <fun>


# let l = add assoc (’1’, 1) (add assoc (’2’, 2) nil assoc) ; ;


val l : char -> int = <fun>


# l ’2’ ; ;


- : int = 2


# l ’x’ ; ;


Uncaught exception: Not_found


We may now re-write the function mem assoc:
# let mem assoc k l = try (l k) ; true with Not found → false ; ;


val mem_assoc : ’a -> (’a -> ’b) -> bool = <fun>


# mem assoc ’2’ l ; ;


- : bool = true


# mem assoc ’x’ l ; ;


- : bool = false


By contrast, writing a function to remove an element from a list is not trivial, because
one no longer has access to the values captured by the closures. To accomplish the
same purpose we mask the former value by raising the exception Not found.
# let rem assoc k l = function x → if x=k then raise Not found else l x ; ;


val rem_assoc : ’a -> (’a -> ’b) -> ’a -> ’b = <fun>


# let l = rem assoc ’2’ l ; ;


val l : char -> int = <fun>


# l ’2’ ; ;


Uncaught exception: Not_found


Clearly, one may also create references and work by side effect on such values. However,
one must take some care.
# let add assoc again (k,v) l = l := (function x → if x=k then v else !l x) ; ;


val add_assoc_again : ’a * ’b -> (’a -> ’b) ref -> unit = <fun>


The resulting value for l is a function that points at itself and therefore loops. This
annoying side effect is due to the fact that the dereferencing !l is within the scope of
the closure function x →. The value of !l is not evaluated during compilation, but
at run-time. At that time, l points to the value that has already been modified by
add assoc. We must therefore correct our definition using the closure created by our
original definition of add assoc:
# let add assoc again (k, v) l = l := add assoc (k, v) !l ; ;


val add_assoc_again : ’a * ’b -> (’a -> ’b) ref -> unit = <fun>


# let l = ref nil assoc ; ;


val l : (’_a -> ’_b) ref = {contents=<fun>}


# add assoc again (’1’,1) l ; ;


- : unit = ()
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# add assoc again (’2’,2) l ; ;


- : unit = ()


# !l ’1’ ; ;


- : int = 1


# !l ’x’ ; ;


Uncaught exception: Not_found


Lazy Modifiable Data Structures


Combining imperative characteristics with a functional language produces good tools
for implementing computer languages. In this subsection, we will illustrate this idea by
implementing data structures with deferred evaluation. A data structure of this kind
is not completely evaluated. Its evaluation progresses according to the use made of it.


Deferred evaluation, which is often used in purely functional languages, is simulated
using function values, possibly modifiable. There are at least two purposes for manip-
ulating incompletely evaluated data structures: first, so as to calculate only what is
effectively needed in the computation; and second, to be able to work with potentially
infinite data structures.


We define the type vm, whose members contain either an already calculated value
(constructor Imm) or else a value to be calculated (constructor Deferred):
# type ’a v =


Imm of ’a


| Deferred of (unit → ’a); ;


# type ’a vm = {mutable c : ’a v }; ;


A computation is deferred by encapsulating it in a closure. The evaluation function for
deferred values must return the value if it has already been calculated, and otherwise,
if the value is not already calculated, it must evaluate it and then store the result.
# let eval e = match e.c with


Imm a → a


| Deferred f → let u = f () in e.c <- Imm u ; u ; ;


val eval : ’a vm -> ’a = <fun>


The operations of deferring evaluation and activating it are also called freezing and
thawing a value.


We could also write the conditional control structure in the form of a function:
# let if deferred c e1 e2 =


if eval c then eval e1 else eval e2; ;


val if_deferred : bool vm -> ’a vm -> ’a vm -> ’a = <fun>
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Here is how to use it in a recursive function such as factorial:
# let rec facr n =


if deferred


{c=Deferred(fun () → n = 0)}
{c=Deferred(fun () → 1)}
{c=Deferred(fun () → n*(facr(n-1)))}; ;


val facr : int -> int = <fun>


# facr 5; ;


- : int = 120


The classic form of if can not be written in the form of a function. In fact, if we define
a function if function this way:
# let if function c e1 e2 = if c then e1 else e2; ;


val if_function : bool -> ’a -> ’a -> ’a = <fun>


then the three arguments of if function are evaluated at the time they are passed
to the function. So the function fact loops, because the recursive call fact(n-1) is
always evaluated, even when n has the value 0.
# let rec fact n = if function (n=0) 1 (n*fact(n-1)) ; ;


val fact : int -> int = <fun>


# fact 5 ; ;


Stack overflow during evaluation (looping recursion?).


Module Lazy


The implementation difficulty for frozen values is due to the conflict between the eager
evaluation strategy of Objective Caml and the need to leave expressions unevaluated.
Our attempt to redefine the conditional illustrated this. More generally, it is impossible
to write a function that freezes a value in producing an object of type vm:
# let freeze e = { c = Deferred (fun () → e) }; ;
val freeze : ’a -> ’a vm = <fun>


When this function is applied to arguments, the Objective Caml evaluation strategy
evaluates the expression e passed as argument before constructing the closure fun ()
→ e. The next example shows this:
# freeze (print string "trace"; print newline () ; 4*5); ;


trace


- : int vm = {c=Deferred <fun>}


This is why the following syntactic form was introduced.


Syntax : lazy expr


Warning This form is a language extension that may evolve in
future versions.
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When the keyword lazy is applied to an expression, it constructs a value of a type
declared in the module Lazy:
# let x = lazy (print string "Hello"; 3*4) ; ;


val x : int Lazy.status ref = {contents=Lazy.Delayed <fun>}


The expression (print string "Hello") has not been evaluated, because no message
has been printed. The function force of module Lazy allows one to force evaluation:
# Lazy.force x ; ;


Hello- : int = 12


Now the value x has altered:
# x ; ;


- : int Lazy.t = {contents=Lazy.Value 12}


It has become the value of the expression that had been frozen, namely 12.


For another call to the function force, it’s enough to return the value already calcu-
lated:
# Lazy.force x ; ;


- : int = 12


The string "Hello" is no longer prefixed.


“Infinite” Data Structures


The second reason to defer evaluation is to be able to construct potentially infinite
data structures such as the set of natural numbers. Because it might take a long time
to construct them all, the idea here is to compute only the first one and to know how
to pass to the next element.


We define a generic data structure ’a enum which will allow us to enumerate the
elements of a set.
# type ’a enum = { mutable i : ’a; f :’a → ’a } ; ;


type ’a enum = { mutable i: ’a; f: ’a -> ’a }


# let next e = let x = e.i in e.i <- (e.f e.i) ; x ; ;


val next : ’a enum -> ’a = <fun>


Now we can get the set of natural numbers by instantiating the fields of this structure:


# let nat = { i=0; f=fun x → x + 1 }; ;
val nat : int enum = {i=0; f=<fun>}


# next nat; ;


- : int = 0


# next nat; ;


- : int = 1


# next nat; ;


- : int = 2


Another example gives the elements of the Fibonnacci sequence, which has the defini-
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tion: 




u0 = 1
u1 = 1
un+2 = un + un+1


The function to compute the successor must take account of the current value, (un−1),
but also of the preceding one (un−2). For this, we use the state c in the following
closure:
# let fib = let fx = let c = ref 0 in fun v → let r = !c + v in c:=v ; r


in { i=1 ; f=fx } ; ;


val fib : int enum = {i=1; f=<fun>}


# for i=0 to 10 do print int (next fib); print string " " done ; ;


1 1 2 3 5 8 13 21 34 55 89 - : unit = ()


Streams of Data


Streams are (potentially infinite) sequences containing elements of the same kind. The
evaluation of a part of a stream is done on demand, whenever it is needed by the
current computation. A stream is therefore a lazy data structure.


The stream type is an abstract data type; one does not need to know how it is imple-
mented. We manipulate objects of this type using constructor functions and destructor
(or selector) functions. For the convenience of the user, Objective Caml has simple syn-
tactic constructs to construct streams and to access their elements.


Warning Streams are an extension of the language, not part of
the stable core of Objective Caml.


Construction


The syntactic sugar to construct streams is inspired by that for lists and arrays. The
empty stream is written:
# [< >] ; ;


- : ’a Stream.t = <abstr>


One may construct a stream by enumerating its elements, preceding each one with an
with a single quote (character ’):
# [< ’0; ’2; ’4 >] ; ;


- : int Stream.t = <abstr>


Expressions not preceded by an apostrophe are considered to be sub-streams:
# [< ’0; [< ’1; ’2; ’3 >]; ’4 >] ; ;


- : int Stream.t = <abstr>


# let s1 = [< ’1; ’2; ’3 >] in [< s1; ’4 >] ; ;
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- : int Stream.t = <abstr>


# let concat stream a b = [< a ; b >] ; ;


val concat_stream : ’a Stream.t -> ’a Stream.t -> ’a Stream.t = <fun>


# concat stream [< ’"if"; ’"c";’"then";’"1" >] [< ’"else";’"2" >] ; ;


- : string Stream.t = <abstr>


The Stream module also provides other construction functions. For instance, the func-
tions of channel and of string return a stream containing a sequence of characters,
received from an input stream or a string.
# Stream.of channel ; ;


- : in_channel -> char Stream.t = <fun>


# Stream.of string ; ;


- : string -> char Stream.t = <fun>


The deferred computation of streams makes it possible to manipulate infinite data
structures in a way similar to the type ’a enum defined on page 109. We define the
stream of natural numbers by its first element and a function calculating the stream
of elements to follow:
# let rec nat stream n = [< ’n ; nat stream (n+1) >] ; ;


val nat_stream : int -> int Stream.t = <fun>


# let nat = nat stream 0 ; ;


val nat : int Stream.t = <abstr>


Destruction and Matching of Streams


The primitive next permits us to evaluate, retrieve, and remove the first element of a
stream, all at once:
# for i=0 to 10 do


print int (Stream.next nat) ;


print string " "


done ; ;


0 1 2 3 4 5 6 7 8 9 10 - : unit = ()


# Stream.next nat ; ;


- : int = 11


When the stream is exhausted, an exception is raised.
# Stream.next [< >] ; ;


Uncaught exception: Stream.Failure


To manipulate streams, Objective Caml offers a special-purpose matching construct
called destructive matching. The value matched is calculated and removed from the
stream. There is no notion of exhaustive match for streams, and, since the data type
is lazy and potentially infinite, one may match less than the whole stream. The syntax
for matching is:
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Syntax : match expr with parser [< ’p1 . . . >] -> expr1 | . . .


The function next could be written:
# let next s = match s with parser [< ’x >] → x ; ;


val next : ’a Stream.t -> ’a = <fun>


# next nat; ;


- : int = 12


Note that the enumeration of natural numbers picks up where we left it previously.


As with function abstraction, there is a syntactic form matching a function parameter
of type Stream.t.


Syntax : parser p -¿ . . .


The function next can thus be rewritten:
# let next = parser [<’x>] → x ; ;


val next : ’a Stream.t -> ’a = <fun>


# next nat ; ;


- : int = 13


It is possible to match the empty stream, but take care: the stream pattern [<>]
matches every stream. In fact, a stream s is always equal to the stream [< [<>]; s


>]. For this reason, one must reverse the usual order of matching:
# let rec it stream f s =


match s with parser


[< ’x ; ss >] → f x ; it stream f ss


| [<>] → () ; ;


val it_stream : (’a -> ’b) -> ’a Stream.t -> unit = <fun>


# let print int1 n = print int n ; print string" " ; ;


val print_int1 : int -> unit = <fun>


# it stream print int1 [<’1; ’2; ’3>] ; ;


1 2 3 - : unit = ()


Since matching is destructive, one can equivalently write:
# let rec it stream f s =


match s with parser


[< ’x >] → f x ; it stream f s


| [<>] → () ; ;


val it_stream : (’a -> ’b) -> ’a Stream.t -> unit = <fun>


# it stream print int1 [<’1; ’2; ’3>] ; ;


1 2 3 - : unit = ()


Although streams are lazy, they want to be helpful, and never refuse to furnish a first
element; when it has been supplied once it is lost. This has consequences for matching.
The following function is an attempt (destined to fail) to display pairs from a stream
of integers, except possibly for the last element.
# let print int2 n1


n2 =
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print string "(" ; print int n1 ; print string "," ;


print int n2 ; print string ")" ; ;


val print_int2 : int -> int -> unit = <fun>


# let rec print stream s =


match s with parser


[< ’x; ’y >] → print int2 x y; print stream s


| [< ’z >] → print int1 z; print stream s


| [<>] → print newline () ; ;


val print_stream : int Stream.t -> unit = <fun>


# print stream [<’1; ’2; ’3>]; ;


(1,2)Uncaught exception: Stream.Error("")


The first two two members of the stream were displayed properly, but during the
evaluation of the recursive call (print stream [<3>]), the first pattern found a value
for x, which was thereby consumed. There remained nothing more for y. This was what
caused the error. In fact, the second pattern is useless, because if the stream is not
empty, then first pattern always begins evaluation.


To obtain the desired result, we must sequentialize the matching:
# let rec print stream s =


match s with parser


[< ’x >]


→ (match s with parser


[< ’y >] → print int2 x y; print stream s


| [<>] → print int1 x; print stream s)


| [<>] → print newline () ; ;


val print_stream : int Stream.t -> unit = <fun>


# print stream [<’1; ’2; ’3>]; ;


(1,2)3


- : unit = ()


If matching fails on the first element of a pattern however, then we again have the
familiar behavior of matching:
# let rec print stream s =


match s with parser


[< ’1; ’y >] → print int2 1 y; print stream s


| [< ’z >] → print int1 z; print stream s


| [<>] → print newline () ; ;


val print_stream : int Stream.t -> unit = <fun>


# print stream [<’1; ’2; ’3>] ; ;


(1,2)3


- : unit = ()
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The Limits of Matching


Because it is destructive, matching streams differs from matching on sum types. We
will now illustrate how radically different it can be.


We can quite naturally write a function to compute the sum of the elements of a stream:


# let rec sum s =


match s with parser


[< ’n; ss >] → n+(sum ss)


| [<>] → 0 ; ;


val sum : int Stream.t -> int = <fun>


# sum [<’1; ’2; ’3; ’4>] ; ;


- : int = 10


However, we can just as easily consume the stream from the inside, naming the partial
result:
# let rec sum s =


match s with parser


[< ’n; r = sum >] → n+r


| [<>] → 0 ; ;


val sum : int Stream.t -> int = <fun>


# sum [<’1; ’2; ’3; ’4>] ; ;


- : int = 10


We will examine some other important uses of streams in chapter 11, which is devoted
to lexical and syntactic analysis. In particular, we will see how consuming a stream
from the inside may be profitably used.


Exercises


Binary Trees


We represent binary trees in the form of vectors. If a tree a has height h, then the
length of the vector will be 2(h+1)− 1. If a node has position i, then the left subtree of
this node lies in the interval of indices [i+1 , i+1+2h], and its right subtree lies in the
interval [i+1+2h +1 , 2(h+1)−1]. This representation is useful when the tree is almost
completely filled. The type ’a of labels for nodes in the tree is assumed to contain a
special value indicating that the node does not exist. Thus, we represent labeled trees
by the by vectors of type ’a array.


1. Write a function , taking as input a binary tree of type ’a bin tree (defined
on page 50) and an array (which one assumes to be large enough). The function
stores the labels contained in the tree in the array, located according to the
discipline described above.


2. Write a function to create a leaf (tree of height 0).
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3. Write a function to construct a new tree from a label and two other trees.
4. Write a conversion function from the type ’a bin tree to an array.
5. Define an infix traversal function for these trees.
6. Use it to display the tree.
7. What can you say about prefix traversal of these trees?


Spelling Corrector


The exercise uses the lexical tree , from the exercise of chapter 2, page 63, to build a
spelling corrector.


1. Construct a dictionary from a file in ASCII in which each line contains one word.
For this, one will write a function which takes a file name as argument and
returns the corresponding dictionary.


2. Write a function words that takes a character string and constructs the list
of words in this string. The word separators are space, tab, apostrophe, and
quotation marks.


3. Write a function verify that takes a dictionary and a list of words, and returns
the list of words that do not occur in the dictionary.


4. Write a function occurrences that takes a list of words and returns a list of
pairs associating each word with the number of its occurrences.


5. Write a function spellcheck that takes a dictionary and the name of a file con-
taining the text to analyze. It should return the list of incorrect words, together
with their number of occurrences.


Set of Prime Numbers


We would like now to construct the infinite set of prime numbers (without calculating
it completely) using lazy data structures.


1. Define the predicate divisible which takes an integer and an initial list of prime
numbers, and determines whether the number is divisible by one of the integers
on the list.


2. Given an initial list of prime numbers, write the function next that returns the
smallest number not on the list.


3. Define the value setprime representing the set of prime numbers, in the style of
the type ’a enum on page 109. It will be useful for this set to retain the integers
already found to be prime.


Summary


This chapter has compared the functional and imperative programming styles. They
differ mainly in the control of execution (implicit in functional and explicit in impera-
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tive programming), and in the representation in memory of data (sharing or explicitly
copied in the imperative case, irrelevant in the functional case). The implementation
of algorithms must take account of these differences. The choice between the two styles
leads in fact to mixing them. This mixture allows us to clarify the representation of clo-
sures, to optimize crucial parts of applications, and to create mutable functional data.
Physical modification of values in the environment of a closure permits us to better
understand what a functional value is. The mixture of the two styles gives powerful
implementation tools. We used them to construct potentially infinite values.


To Learn More


The principal consequences of adding imperative traits to a functional language are:


• To determine the evaluation strategy (strict evaluation);


• to add implementation constraints, especially for the GC (see Chapter 9);


• For statically typed languages, to make their type system more complex;


• To offer different styles of programming in the same language, permitting us to
program in the style appropriate to the algorithm at hand, or possibly in a mixed
style.


This last point is important in Objective Caml where we need the same parametric
polymorphism for functions written in either style. For this, certain purely functional
programs are no longer typable after the addition. Wright’s article ([Wri95]) explains
the difficulties of polymorphism in languages with imperative aspects. Objective Caml
adopts the solution that he advocates. The classification of different kinds of poly-
morphism in the presence of physical modification is described well in the thesis of
Emmanuel Engel ([Eng98]).


These consequences make the job of programming a bit harder, and learning the lan-
guage a bit more difficult. But because the language is richer for this reason and above
all offers the choice of style, the game is worth the candle. For example, strict evalua-
tion is the rule, but it is possible to implement basic mechanisms for lazy evaluation,
thanks to the mixture of the two styles. Most purely functional languages use a lazy
evaluation style. Among languages close to ML, we would mention Miranda, LazyML,
and Haskell. The first two are used at universities for teaching and research. By con-
trast, there are significant applications written in Haskell. The absence of controllable
side effects necessitates an additional abstraction for input/output called monads. One
can read works on Haskell (such as [Tho99]) to learn more about this subject. Streams
are a good example of the mixture of functional and imperative styles. Their use in
lexical and syntactic analysis is described in Chapter 11.







5
The Graphics


Interface


This chapter presents the Graphics library, which is included in the distribution of
the Objective Caml-language. This library is designed in such a way that it works
identically under the main graphical interfaces of the most commonly used operating
systems: Windows, MacOS, Unix with X-Windows. Graphics permits the realization
of drawings which may contain text and images, and it handles basic events like mouse
clicks or pressed keys.


The model of programming graphics applied is the “painter’s model:” the last touch of
color erases the preceding one. This is an imperative model where the graphics window
is a table of points which is physically modified by each graphics primitive. The inter-
actions with the mouse and the keyboard are a model of event-driven programming:
the primary function of the program is an infinite loop waiting for user interaction.
An event starts execution of a special handler, which then returns to the main loop to
wait for the next event.


Although the Graphics library is very simple, it is sufficient for introducing basic
concepts of graphical interfaces, and it also contains basic elements for developing
graphical interfaces that are rich and easy to use by the programmer.


Chapter overview


The first section explains how to make use of this library on different systems. The
second section introduces the basic notions of graphics programming: reference point,
plotting, filling, colors, bitmaps. The third section illustrates these concepts by describ-
ing and implementing functions for creating and drawing “boxes.” The fourth section
demonstrates the animation of graphical objects and their interaction with the back-
ground of the screen or other animated objects. The fifth section presents event-driven
programming, in other terms the skeleton of all graphical interfaces. Finally, the last
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section uses the library Graphics to construct a graphical interface for a calculator
(see page 86).


Using the Graphics Module


Utilization of the library Graphics differs depending on the system and the compilation
mode used. We will not cover applications other than usable under the interactive
toplevel of Objective Caml. Under the Windows and MacOS systems the interactive
working environment already preloads this library. To make it available under Unix, it
is necessary to create a new toplevel. This depends on the location of the X11 library.
If this library is placed in one of the usual search paths for C language libraries, the
command line is the following:


ocamlmktop -custom -o mytoplevel graphics.cma -cclib -lX11


It generates a new executablemytoplevel into which the library Graphics is integrated.
Starting the executable works as follows:


./mytoplevel


If, however, as under Linux, the library X11 is placed in another directory, this has to
be indicated to the command ocamlmktop:


ocamlmktop -custom -o mytoplevel graphics.cma -cclib \
-L/usr/X11/lib -cclib -lX11


In this example, the file libX11.a is searched in the directory /usr/X11/lib.


A complete description of the command ocamlmktop can be found in chapter 7.


Basic notions


Graphics programming is tightly bound to the technological evolution of hardware, in
particular to that of screens and graphics cards. In order to render images in sufficient
quality, it is necessary that the drawing be refreshed (redrawn) at regular and short
intervals, somewhat like in a cinema. There are basically two techniques for drawing on
the screen: the first makes use of a list of visible segments where only the useful part
of the drawing is drawn, the second displays all points of the screen (bitmap screen).
It is the last technique which is used on ordinary computers.


Bitmap screens can be seen as rectangles of accessible, in other terms, displayable
points. These points are called pixels, a word derived from picture element. They are
the basic elements for constructing images. The height and width of the main bitmap
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is the resolution of the screen. The size of this bitmap therefore depends on the size
of each pixel. In monochrome (black/white) displays, a pixel can be encoded in one
bit. For screens that allow gray scales or for color displays, the size of a pixel depends
on the number of different colors and shades that a pixel may take. In a bitmap of
320x640 pixels with 256 colors per pixel, it is therefore necessary to encode a pixel in 8
bits, which requires video memory of: 480 ∗ 640 bytes = 307200 bytes ' 300KB. This
resolution is still used by certain MS-DOS programs.


The basic operations on bitmaps which one can find in the Graphics library are:


• coloration of pixels,


• drawing of pixels,


• drawing of forms: rectangles, ellipses,


• filling of closed forms: rectangles, ellipses, polygons,


• displaying text: as bitmap or as vector,


• manipulation or displacement of parts of the image.


All these operations take place at a reference point, the one of the bitmap. A certain
number of characteristics of these graphical operations like the width of strokes, the
joints of lines, the choice of the character font, the style and the motive of filling define
what we call a graphical context. A graphical operation always happens in a particular
graphical context, and its result depends on it. The graphical context of the Graphics
library does not contain anything except for the current point, the current color, the
current font and the size of the image.


Graphical display


The elements of the graphical display are: the reference point and the graphical context,
the colors, the drawings, the filling pattern of closed forms, the texts and the bitmaps.


Reference point and graphical context


The Graphics library manages a unique main window. The coordinates of the reference
point of the window range from point (0, 0) at the bottom left to the upper right corner
of the window. The main functions on this window are:


• open graph, of type string -> unit, which opens a window;


• close graph, of type unit -> unit, which closes it;


• clear graph, of type unit -> unit, which clears it.


The dimensions of the graphical window are given by the functions size x and size y.


The string argument of the function open graph depends on the window system of the
machine on which the program is executed and is therefore not platform independent.
The empty string, however, opens a window with default settings. It is possible to
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specify the size of the window: under X-Windows, " 200x300" yields a window which
is 200 pixels wide and 300 pixels high. Beware, the space at the beginning of the string
" 200x300" is required!


The graphical context contains a certain number of readable and/or modifiable param-
eters:


the current point: current point : unit -> int * int


moveto : int -> int -> unit


the current color: set color : color -> unit


the width of lines: set line width : int -> unit


the current character font: set font : string -> unit


the size of characters: set text size : int -> unit


Colors


Colors are represented by three bytes: each stands for the intensity value of a main color
in the RGB-model (red, green, blue), ranging from a minimum of 0 to a maximum of
255. The function rgb (of type int -> int -> int -> color) allows the generation
of a new color from these three components. If the three components are identical,
the resulting color is a gray which is more or less intense depending on the intensity
value. Black corresponds to the minimum intensity of each component (0 0 0) and
white is the maximum (255 255 255). Certain colors are predefined: black, white,
red, green, blue, yellow, cyan and magenta.


The variables foreground and background correspond to the color of the fore- and
the background respectively. Clearing the screen is equivalent to filling the screen with
the background color.


A color (a value of type color) is in fact an integer which can be manipulated to,
for example, decompose the color into its three components (from rgb) or to apply a
function to it that inverts it (inv color).
(* color == R * 256 * 256 + G * 256 + B *)


# let from rgb (c : Graphics.color) =


let r = c / 65536 and g = c / 256 mod 256 and b = c mod 256


in (r,g,b); ;


val from_rgb : Graphics.color -> int * int * int = <fun>


# let inv color (c : Graphics.color) =


let (r,g,b) = from rgb c


in Graphics.rgb (255-r) (255-g) (255-b); ;


val inv_color : Graphics.color -> Graphics.color = <fun>


The function point color, of type int -> int -> color, returns the color of a point
when given its coordinates.







Graphical display 121


Drawing and filling


A drawing function draws a line on the screen. The line is of the current width and
color. A filling function fills a closed form with the current color. The various line- and
filling functions are presented in figure 5.1.


drawing filling type
plot int -> int -> unit


lineto int -> int -> unit


fill rect int -> int -> int -> int -> unit


fill poly ( int * int) array -> unit


draw arc fill arc int -> int -> int -> int -> int -> unit


draw ellipse fill ellipse int -> int -> int -> int -> unit


draw circle fill circle int -> int -> int -> unit


Figure 5.1: Drawing- and filling functions.


Beware, the function lineto changes the position of the current point to make drawing
of vertices more convenient.


Drawing polygons To give an example, we add drawing primitives which are not
predefined. A polygon is described by a table of its vertices.
# let draw rect x0 y0 w h =


let (a,b) = Graphics.current point ()


and x1 = x0+w and y1 = y0+h


in


Graphics.moveto x0 y0;


Graphics.lineto x0 y1; Graphics.lineto x1 y1;


Graphics.lineto x1 y0; Graphics.lineto x0 y0;


Graphics.moveto a b; ;


val draw_rect : int -> int -> int -> int -> unit = <fun>


# let draw poly r =


let (a,b) = Graphics.current point () in


let (x0,y0) = r.(0) in Graphics.moveto x0 y0;


for i = 1 to (Array.length r)-1 do


let (x,y) = r.(i) in Graphics.lineto x y


done;


Graphics.lineto x0 y0;


Graphics.moveto a b; ;


val draw_poly : (int * int) array -> unit = <fun>
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Please note that these functions take the same arguments as the predefined ones for
filling forms. Like the other functions for drawing forms, they do not change the current
point.


Illustrations in the painter’s model This example generates an illustration of a
token ring network (figure 5.2). Each machine is represented by a small circle. We place
the set of machines on a big circle and draw a line between the connected machines.
The current position of the token in the network is indicated by a small black disk.


The function net points generates the coordinates of the machines in the network.
The resulting data is stored in a table.
# let pi = 3.1415927; ;


val pi : float = 3.1415927


# let net points (x,y) l n =


let a = 2. *. pi /. (float n) in


let rec aux (xa,ya) i =


if i > n then []


else


let na = (float i) *. a in


let x1 = xa + (int of float ( cos(na) *. l))


and y1 = ya + (int of float ( sin(na) *. l)) in


let np = (x1,y1) in


np :: (aux np (i+1))


in Array.of list (aux (x,y) 1); ;


val net_points : int * int -> float -> int -> (int * int) array = <fun>


The function draw net displays the connections, the machines and the token.
# let draw net (x,y) l n sc st =


let r = net points (x,y) l n in


draw poly r;


let draw machine (x,y) =


Graphics.set color Graphics.background;


Graphics.fill circle x y sc;


Graphics.set color Graphics.foreground;


Graphics.draw circle x y sc


in


Array.iter draw machine r;


Graphics.fill circle x y st; ;


val draw_net : int * int -> float -> int -> int -> int -> unit = <fun>


The following function call corresponds to the left drawing in figure 5.2.
# draw net (140,20) 60.0 10 10 3; ;


- : unit = ()


# save screen "IMAGES/tokenring.caa"; ;
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- : unit = ()


We note that the order of drawing objects is important. We first plot the connections


Figure 5.2: Tokenring network.


then the nodes. The drawing of network nodes erases some part of the connecting lines.
Therefore, there is no need to calculate the point of intersection between the connection
segments and the circles of the vertices. The right illustration of figure 5.2 inverts the
order in which the objects are displayed. We see that the segments appear inside of
the circles representing the nodes.


Text


The functions for displaying texts are rather simple. The two functions draw char (of
type char -> unit) and draw string (of type string -> unit) display a character
and a character string respectively at the current point. After displaying, the latter is
modified. These functions do not change the current font and its current size.


Note
The displaying of strings may differ depending on the graphical interface.


The function text size takes a string as input and returns a pair of integers that
correspond to the dimensions of this string when it is displayed in the current font and
size.


Displaying strings vertically This example describes the function draw string v,
which displays a character string vertically at the current point. It is used in figure 5.3.
Each letter is displayed separately by changing the vertical coordinate.
# let draw string v s =
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let (xi,yi) = Graphics.current point ()


and l = String.length s


and (_,h) = Graphics.text size s


in


Graphics.draw char s.[0];


for i=1 to l-1 do


let (_,b) = Graphics.current point ()


in Graphics.moveto xi (b-h);


Graphics.draw char s.[i]


done;


let (a,_) = Graphics.current point () in Graphics.moveto a yi; ;


val draw_string_v : string -> unit = <fun>


This function modifies the current point. After displaying, the point is placed at the
initial position offset by the width of one character.


The following program permits displaying a legend around the axes (figure 5.3)
#


Graphics.moveto 0 150; Graphics.lineto 300 150;


Graphics.moveto 2 130; Graphics.draw string "abscissa";


Graphics.moveto 150 0; Graphics.lineto 150 300;


Graphics.moveto 135 280; draw string v "ordinate"; ;


- : unit = ()


Figure 5.3: Legend around axes.


If we wish to realize vertical displaying of text, it is necessary to account for the
fact that the current point is modified by the function draw string v. To do this, we
define the function draw text v, which accepts the spacing between columns and a list
of words as parameters.
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# let draw text v n l =


let f s = let (a,b) = Graphics.current point ()


in draw string v s;


Graphics.moveto (a+n) b


in List.iter f l; ;


val draw_text_v : int -> string list -> unit = <fun>


If we need further text transformations like, for example, rotation, we will have to take
the bitmap of each letter and perform the rotation on this set of pixels.


Bitmaps


A bitmap may be represented by either a color matrix (color array array) or a value
of abstract type 1 image, which is declared in library Graphics. The names and types
of the functions for manipulating bitmaps are given in figure 5.4.


function type
make image color array array -> image


dump image image -> color array array


draw image image -> int -> int -> unit


get image int -> int -> int -> int -> image


blit image image -> int -> int -> unit


create image int -> int -> image


Figure 5.4: Functions for manipulating bitmaps.


The functions make image and dump image are conversion functions between types
image and color array array. The function draw image displays a bitmap starting
at the coordinates of its bottom left corner.


The other way round, one can capture a rectangular part of the screen to create an
image using the function get image and by indicating the bottom left corner and the
upper right one of the area to be captured. The function blit image modifies its first
parameter (of type image) and captures the region of the screen where the lower left
corner is given by the point passed as parameter. The size of the captured region is
the one of the image argument. The function create image allows initializing images
by specifying their size to use them with blit image.


The predefined color transp can be used to create transparent points in an image. This
makes it possible to display an image within a rectangular area only; the transparent
points do not modify the initial screen.


1. Abstract types hide the internal representation of their values. The declaration of such types will
be presented in chapter 14.
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Polarization of Jussieu This example inverts the color of points of a bitmap. To
do this, we use the function for color inversion presented on page 120, applying it to
each pixel of a bitmap.
# let inv image i =


let inv vec = Array.map (fun c → inv color c) in


let inv mat = Array.map inv vec in


let inverted matrix = inv mat (Graphics.dump image i) in


Graphics.make image inverted matrix; ;


val inv_image : Graphics.image -> Graphics.image = <fun>


Given the bitmap jussieu, which is displayed in the left half of figure 5.5, we use the
function inv image and obtain a new “solarized” bitmap, which is displayed in the
right half of the same figure.


# let f jussieu2 () = inv image jussieu1; ;


val f_jussieu2 : unit -> Graphics.image = <fun>


Figure 5.5: Inversion of Jussieu.


Example: drawing of boxes with relief patterns


In this example we will define a few utility functions for drawing boxes that carry relief
patterns. A box is a generic object that is useful in many cases. It is inscribed in a
rectangle which is characterized by a point of origin, a height and a width.
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To give an impression of a box with a relief
pattern, it is sufficient to surround it with two
trapezoids in a light color and two others in a
somewhat darker shade.


color 1


color 2


color 3


Inverting the colors, one can give the im-
pression that the boxes are on top or at the
bottom.


Implementation We add the border width, the display mode (top, bottom, flat)
and the colors of its edges and of its bottom. This information is collected in a record.
# type relief = Top | Bot | Flat; ;


# type box config =


{ x:int; y:int; w:int; h:int; bw:int; mutable r:relief;


b1 col : Graphics.color;


b2 col : Graphics.color;


b col : Graphics.color}; ;
Only field r can be modified. We use the function draw rect defined at page 121,
which draws a rectangle.


For convenience, we define a function for drawing the outline of a box.
# let draw box outline bcf col =


Graphics.set color col;


draw rect bcf.x bcf.y bcf.w bcf.h; ;


val draw_box_outline : box_config -> Graphics.color -> unit = <fun>


The function of displaying a box consists of three parts: drawing the first edge, drawing
the second edge and drawing the interior of the box.
# let draw box bcf =


let x1 = bcf.x and y1 = bcf.y in


let x2 = x1+bcf.w and y2 = y1+bcf.h in


let ix1 = x1+bcf.bw and ix2 = x2-bcf.bw


and iy1 = y1+bcf.bw and iy2 = y2-bcf.bw in


let border1 g =


Graphics.set color g;


Graphics.fill poly


[| (x1,y1);(ix1,iy1);(ix2,iy1);(ix2,iy2);(x2,y2);(x2,y1) |]







128 Chapter 5 : The Graphics Interface


in


let border2 g =


Graphics.set color g;


Graphics.fill poly


[| (x1,y1);(ix1,iy1);(ix1,iy2);(ix2,iy2);(x2,y2);(x1,y2) |]


in


Graphics.set color bcf.b col;


( match bcf.r with


Top →
Graphics.fill rect ix1 iy1 (ix2-ix1) (iy2-iy1);


border1 bcf.b1 col;


border2 bcf.b2 col


| Bot →
Graphics.fill rect ix1 iy1 (ix2-ix1) (iy2-iy1);


border1 bcf.b2 col;


border2 bcf.b1 col


| Flat →
Graphics.fill rect x1 y1 bcf.w bcf.h );


draw box outline bcf Graphics.black; ;


val draw_box : box_config -> unit = <fun>


The outline of boxes is highlighted in black. Erasing a box fills the area it covers with
the background color.
# let erase box bcf =


Graphics.set color bcf.b col;


Graphics.fill rect (bcf.x+bcf.bw) (bcf.y+bcf.bw)


(bcf.w-(2*bcf.bw)) (bcf.h-(2*bcf.bw)); ;


val erase_box : box_config -> unit = <fun>


Finally, we define a function for displaying a character string at the left, right or in the
middle of the box. We use the type position to describe the placement of the string.
# type position = Left | Center | Right; ;


type position = | Left | Center | Right


# let draw string in box pos str bcf col =


let (w, h) = Graphics.text size str in


let ty = bcf.y + (bcf.h-h)/2 in


( match pos with


Center → Graphics.moveto (bcf.x + (bcf.w-w)/2) ty


| Right → let tx = bcf.x + bcf.w - w - bcf.bw - 1 in


Graphics.moveto tx ty


| Left → let tx = bcf.x + bcf.bw + 1 in Graphics.moveto tx ty );


Graphics.set color col;


Graphics.draw string str; ;


val draw_string_in_box :


position -> string -> box_config -> Graphics.color -> unit = <fun>







Graphical display 129


Example: drawing of a game We illustrate the use of boxes by displaying the
position of a game of type “tic-tac-toe” as shown in figure 5.6. To simplify the creation
of boxes, we predefine colors.
# let set gray x = (Graphics.rgb x x x); ;


val set_gray : int -> Graphics.color = <fun>


# let gray1= set gray 100 and gray2= set gray 170 and gray3= set gray 240; ;


val gray1 : Graphics.color = 6579300


val gray2 : Graphics.color = 11184810


val gray3 : Graphics.color = 15790320


We define a function for creating a grid of boxes of same size.
# let rec create grid nb col n sep b =


if n < 0 then []


else


let px = n mod nb col and py = n / nb col in


let nx = b.x +sep + px*(b.w+sep)


and ny = b.y +sep + py*(b.h+sep) in


let b1 = {b with x=nx; y=ny} in


b1 :: (create grid nb col (n-1) sep b); ;


val create_grid : int -> int -> int -> box_config -> box_config list = <fun>


And we create the vector of boxes:
# let vb =


let b = {x=0; y=0; w=20;h=20; bw=2;


b1 col=gray1; b2 col=gray3; b col=gray2; r=Top} in


Array.of list (create grid 5 24 2 b); ;


val vb : box_config array =


[|{x=90; y=90; w=20; h=20; bw=2; r=Top; b1_col=6579300; b2_col=15790320;


b_col=11184810};


{x=68; y=90; w=20; h=20; bw=2; r=Top; b1_col=6579300; b2_col=15790320;


b_col=...};


...|]


Figure 5.6 corresponds to the following function calls:


# Array.iter draw box vb;


draw string in box Center "X" vb.(5) Graphics.black;


draw string in box Center "X" vb.(8) Graphics.black;


draw string in box Center "O" vb.(12) Graphics.yellow;


draw string in box Center "O" vb.(11) Graphics.yellow; ;


- : unit = ()
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Figure 5.6: Displaying of boxes with text.


Animation


The animation of graphics on a screen reuses techniques of animated drawings. The
major part of a drawing does not change, only the animated part must modify the
color of its constituent pixels. One of the immediate problems we meet is the speed
of animation. It can vary depending on the computational complexity and on the
execution speed of the processor. Therefore, to be portable, an application containing
animated graphics must take into account the speed of the processor. To get smooth
rendering, it is advisable to display the animated object at the new position, followed
by the erasure of the old one and taking special care with the intersection of the old
and new regions.


Moving an object We simplify the problem of moving an object by choosing ob-
jects of a simple shape, namely rectangles. The remaining difficulty is knowing how to
redisplay the background of the screen once the object has been moved.


We try to make a rectangle move around in a closed space. The object moves at a
certain speed in directions X and Y. When it encounters a border of the graphical
window, it bounces back depending on the angle of impact. We assume a situation
without overlapping of the new and old positions of the object. The function calc pv
computes the new position and the new velocity from an old position (x,y), the size of
the object (sx,sy) and from the old speed (dx,dy), taking into account the borders
of the window.
# let calc pv (x,y) (sx,sy) (dx,dy) =


let nx1 = x+dx and ny1 = y + dy


and nx2 = x+sx+dx and ny2 = y+sy+dy


and ndx = ref dx and ndy = ref dy


in


( if (nx1 < 0) || (nx2 >= Graphics.size x ()) then ndx := -dx );
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( if (ny1 < 0) || (ny2 >= Graphics.size y ()) then ndy := -dy );


((x+ !ndx, y+ !ndy), (!ndx, !ndy)); ;


val calc_pv :


int * int -> int * int -> int * int -> (int * int) * (int * int) = <fun>


The function move rect moves the rectangle given by pos and size n times, the
trajectory being indicated by its speed and by taking into account the borders of the
space. The trace of movement which one can see in figure 5.7 is obtained by inversion
of the corresponding bitmap of the displaced rectangle.
# let move rect pos size speed n =


let (x, y) = pos and (sx,sy) = size in


let mem = ref (Graphics.get image x y sx sy) in


let rec move aux x y speed n =


if n = 0 then Graphics.moveto x y


else


let ((nx,ny),n speed) = calc pv (x,y) (sx,sy) speed


and old mem = !mem in


mem := Graphics.get image nx ny sx sy;


Graphics.set color Graphics.blue;


Graphics.fill rect nx ny sx sy;


Graphics.draw image (inv image old mem) x y;


move aux nx ny n speed (n-1)


in move aux x y speed n; ;


val move_rect : int * int -> int * int -> int * int -> int -> unit = <fun>


The following code corresponds to the drawings in figure 5.7. The first is obtained on
a uniformly red background, the second by moving the rectangle across the image of
Jussieu.


# let anim rect () =


Graphics.moveto 105 120;


Graphics.set color Graphics.white;


Graphics.draw string "Start";


move rect (140,120) (8,8) (8,4) 150;


let (x,y) = Graphics.current point () in


Graphics.moveto (x+13) y;


Graphics.set color Graphics.white;


Graphics.draw string "End"; ;


val anim_rect : unit -> unit = <fun>


# anim rect () ; ;


- : unit = ()


The problem was simplified, because there was no intersection between two successive
positions of the moved object. If this is not the case, it is necessary to write a function
that computes this intersection, which can be more or less complicated depending on
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Figure 5.7: Moving an object.


the form of the object. In the case of a square, the intersection of two squares yields a
rectangle. This intersection has to be removed.


Events


The handling of events produced in the graphical window allows interaction between
the user and the program. Graphics supports the treating of events like keystrokes,
mouse clicks and movements of the mouse.


The programming style therefore changes the organization of the program. It becomes
an infinite loop waiting for events. After handling each newly triggered event, the pro-
gram returns to the infinite loop except for events that indicate program termination.


Types and functions for events


The main function for waiting for events is wait next event of type event list ->


status.


The different events are given by the sum type event.
type event = Button down | Button up | Key pressed | Mouse motion | Poll; ;


The four main values correspond to pressing and to releasing a mouse button, to
movement of the mouse and to keystrokes. Waiting for an event is a blocking operation
except if the constructor Poll is passed in the event list. This function returns a value
of type status:
type status =


{ mouse x : int;


mouse y : int;
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button : bool;


keypressed : bool;


key : char}; ;


This is a record containing the position of the mouse, a Boolean which indicates whether
a mouse button is being pressed, another Boolean for the keyboard and a character
which corresponds to the pressed key. The following functions exploit the data con-
tained in the event record:


• mouse pos: unit -> int * int: returns the position of the mouse with respect
to the window. If the mouse is placed elsewhere, the coordinates are outside the
borders of the window.


• button down: unit -> bool: indicates pressing of a mouse button.


• read key: unit -> char: fetches a character typed on the keyboard; this oper-
ation blocks.


• key pressed: unit -> bool: indicates whether a key is being pressed on the
keyboard; this operation does not block.


The handling of events supported by Graphics is indeed minimal for developing inter-
active interfaces. Nevertheless, the code is portable across various graphical systems
like Windows, MacOS or X-Windows. This is the reason why this library does not take
into account different mouse buttons. In fact, the Mac does not even possess more than
one. Other events, such as exposing a window or changing its size are not accessible
and are left to the control of the library.


Program skeleton


All programs implementing a graphical user interface make use of a potentially infinite
loop waiting for user interaction. As soon as an action arrives, the program executes
the job associated with this action. The following function possesses five parameters
of functionals. The first two serve for starting and closing the application. The next
two arguments handle keyboard and mouse events. The last one permits handling of
exceptions that escape out of the different functions of the application. We assume that
the events associated with terminating the application raise the exception End.
# exception End; ;


exception End


# let skel f init f end f key f mouse f except =


f init () ;


try


while true do


try


let s = Graphics.wait next event


[Graphics.Button down; Graphics.Key pressed]


in if s.Graphics.keypressed then f key s.Graphics.key


else if s.Graphics.button


then f mouse s.Graphics.mouse x s.Graphics.mouse y
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with


End → raise End


| e → f except e


done


with


End → f end () ; ;


val skel :


(unit -> ’a) ->


(unit -> unit) ->


(char -> unit) -> (int -> int -> unit) -> (exn -> unit) -> unit = <fun>


Here, we use the skeleton to implement a mini-editor. Touching a key displays the
typed character. A mouse click changes the current point. The character ’&’ exits the
program. The only difficulty in this program is line breaking. We assume as simplifi-
cation that the height of characters does not exceed twelve pixels.
# let next line () =


let (x,y) = Graphics.current point ()


in if y>12 then Graphics.moveto 0 (y-12)


else Graphics.moveto 0 y; ;


val next_line : unit -> unit = <fun>


# let handle char c = match c with


’&’ → raise End


| ’\n’ → next line ()


| ’\r’ → next line ()


| _ → Graphics.draw char c; ;


val handle_char : char -> unit = <fun>


# let go () = skel


(fun () → Graphics.clear graph () ;


Graphics.moveto 0 (Graphics.size y () -12) )


(fun () → Graphics.clear graph ())


handle char


(fun x y → Graphics.moveto x y)


(fun e → ()); ;


val go : unit -> unit = <fun>


This program does not handle deletion of characters by pressing the key DEL.


Example: telecran


Telecran is a little drawing game for training coordination of movements. A point
appears on a slate. This point can be moved in directions X and Y by using two
control buttons for these axes without ever releasing the pencil. We try to simulate
this behavior to illustrate the interaction between a program and a user. To do this
we reuse the previously described skeleton. We will use certain keys of the keyboard
to indicate movement along the axes.
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We first define the type state, which is a record describing the size of the slate in
terms of the number of positions in X and Y, the current position of the point and the
scaling factor for visualization, the color of the trace, the background color and the
color of the current point.
# type state = {maxx:int; maxy:int; mutable x : int; mutable y :int;


scale:int;


bc : Graphics.color;


fc: Graphics.color; pc : Graphics.color}; ;


The function draw point displays a point given its coordinates, the scaling factor and
its color.
# let draw point x y s c =


Graphics.set color c;


Graphics.fill rect (s*x) (s*y) s s; ;


val draw_point : int -> int -> int -> Graphics.color -> unit = <fun>


All these functions for initialization, handling of user interaction and exiting the pro-
gram receive a parameter corresponding to the state. The first four functions are defined
as follows:
# let t init s () =


Graphics.open graph (" " ^ (string of int (s.scale*s.maxx)) ^


"x" ^ (string of int (s.scale*s.maxy)));


Graphics.set color s.bc;


Graphics.fill rect 0 0 (s.scale*s.maxx+1) (s.scale*s.maxy+1);


draw point s.x s.y s.scale s.pc; ;


val t_init : state -> unit -> unit = <fun>


# let t end s () =


Graphics.close graph () ;


print string "Good bye..."; print newline () ; ;


val t_end : ’a -> unit -> unit = <fun>


# let t mouse s x y = () ; ;


val t_mouse : ’a -> ’b -> ’c -> unit = <fun>


# let t except s ex = () ; ;


val t_except : ’a -> ’b -> unit = <fun>


The function t init opens the graphical window and displays the current point, t end
closes this window and displays a message, t mouse and t except do not do anything.
The program handles neither mouse events nor exceptions which may accidentally arise
during program execution. The important function is the one for handling the keyboard
t key:
# let t key s c =


draw point s.x s.y s.scale s.fc;


(match c with


’8’ → if s.y < s.maxy then s.y <- s.y + 1;


| ’2’ → if s.y > 0 then s.y <- s.y - 1
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| ’4’ → if s.x > 0 then s.x <- s.x - 1


| ’6’ → if s.x < s.maxx then s.x <- s.x + 1


| ’c’ → Graphics.set color s.bc;


Graphics.fill rect 0 0 (s.scale*s.maxx+1) (s.scale*s.maxy+1);


Graphics.clear graph ()


| ’e’ → raise End


| _ → ());


draw point s.x s.y s.scale s.pc; ;


val t_key : state -> char -> unit = <fun>


It displays the current point in the color of the trace. Depending on the character
passed, it modifies, if possible, the coordinates of the current point (characters: ’2’,
’4’, ’6’, ’8’), clears the screen (character: ’c’) or raises the exception End (character:
’e’), then it displays the new current point. Other characters are ignored. The choice
of characters for moving the cursor comes from the layout of the numeric keyboard:
the chosen keys correspond to the indicated digits and to the direction arrows. It is
therefore useful to activate the numeric keyboard for the ergonomics of the program.


We finally define a state and apply the skeleton function in the following way:
# let stel = {maxx=120; maxy=120; x=60; y=60;


scale=4; bc=Graphics.rgb 130 130 130;


fc=Graphics.black; pc=Graphics.red}; ;
val stel : state =


{maxx=120; maxy=120; x=60; y=60; scale=4; bc=8553090; fc=0; pc=16711680}


# let slate () =


skel (t init stel) (t end stel) (t key stel)


(t mouse stel) (t except stel); ;


val slate : unit -> unit = <fun>


Calling function slate displays the graphical window, then it waits for user interaction
on the keyboard. Figure 5.8 shows a drawing created with this program.


A Graphical Calculator


Let’s consider the calculator example as described in the preceding chapter on imper-
ative programming (see page 86). We will give it a graphical interface to make it more
usable as a desktop calculator.


The graphical interface materializes the set of keys (digits and functions) and an area
for displaying results. Keys can be activated using the graphical interface (and the
mouse) or by typing on the keyboard. Figure 5.9 shows the interface we are about to
construct.


We reuse the functions for drawing boxes as described on page 126. We define the
following type:
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Figure 5.8: Telecran.


Figure 5.9: Graphical calculator.


# type calc state =


{ s : state; k : (box config * key * string ) list; v : box config } ; ;


It contains the state of the calculator, the list of boxes corresponding to the keys
and the visualization box. We plan to construct a calculator that is easily modifiable.
Therefore, we parameterize the construction of the interface with an association list:
# let descr calc =


[ (Digit 0,"0"); (Digit 1,"1"); (Digit 2,"2"); (Equals, "=");


(Digit 3,"3"); (Digit 4,"4"); (Digit 5,"5"); (Plus, "+");







138 Chapter 5 : The Graphics Interface


(Digit 6,"6"); (Digit 7,"7"); (Digit 8,"8"); (Minus, "-");


(Digit 9,"9"); (Recall,"RCL"); (Div, "/"); (Times, "*");


(Off,"AC"); (Store, "STO"); (Clear,"CE/C")


] ; ;


Generation of key boxes At the beginning of this description we construct a list
of key boxes. The function gen boxes takes as parameters the description (descr),
the number of the column (n), the separation between boxes (wsep), the separation
between the text and the borders of the box (wsepint) and the size of the board
(wbord). This function returns the list of key boxes as well as the visualization box.
To calculate these placements, we define the auxiliary functions max xy for calculating
the maximal size of a list of complete pairs and max lbox for calculating the maximal
positions of a list of boxes.
# let gen xy vals comp o =


List.fold left (fun a (x,y) → comp (fst a) x,comp (snd a) y) o vals ; ;


val gen_xy : (’a * ’a) list -> (’b -> ’a -> ’b) -> ’b * ’b -> ’b * ’b = <fun>


# let max xy vals = gen xy vals max (min int,min int); ;


val max_xy : (int * int) list -> int * int = <fun>


# let max boxl l =


let bmax (mx,my) b = max mx b.x, max my b.y


in List.fold left bmax (min int,min int) l ; ;


val max_boxl : box_config list -> int * int = <fun>


Here is the principal function gen boxes for creating the interface.
# let gen boxes descr n wsep wsepint wbord =


let l l = List.length descr in


let nb lig = if l l mod n = 0 then l l / n else l l / n + 1 in


let ls = List.map (fun (x,y) → Graphics.text size y) descr in


let sx,sy = max xy ls in


let sx,sy= sx+wsepint ,sy+wsepint in


let r = ref [] in


for i=0 to l l-1 do


let px = i mod n and py = i / n in


let b = { x = wsep * (px+1) + (sx+2*wbord) * px ;


y = wsep * (py+1) + (sy+2*wbord) * py ;


w = sx; h = sy ; bw = wbord;


r=Top;


b1 col = gray1; b2 col = gray3; b col =gray2}
in r:= b::!r


done;


let mpx,mpy = max boxl !r in


let upx,upy = mpx+sx+wbord+wsep,mpy+sy+wbord+wsep in


let (wa,ha) = Graphics.text size " 0" in


let v = { x=(upx-(wa+wsepint +wbord))/2 ; y= upy+ wsep;


w=wa+wsepint; h = ha +wsepint; bw = wbord *2; r=Flat ;
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b1 col = gray1; b2 col = gray3; b col =Graphics.black}
in


upx,(upy+wsep+ha+wsepint+wsep+2*wbord),v,


List.map2 (fun b (x,y) → b,x,y ) (List.rev !r) descr; ;


val gen_boxes :


(’a * string) list ->


int ->


int ->


int -> int -> int * int * box_config * (box_config * ’a * string) list =


<fun>


Interaction Since we would also like to reuse the skeleton proposed on page 133
for interaction, we define the functions for keyboard and mouse control, which are
integrated in this skeleton. The function for controlling the keyboard is very simple. It
passes the translation of a character value of type key to the function transition of
the calculator and then displays the text associated with the calculator state.
# let f key cs c =


transition cs.s (translation c);


erase box cs.v;


draw string in box Right (string of int cs.s.vpr) cs.v Graphics.white ; ;


val f_key : calc_state -> char -> unit = <fun>


The control of the mouse is a bit more complex. It requires verification that the position
of the mouse click is actually in one of the key boxes. For this we first define the auxiliary
function mem, which verifies membership of a position within a rectangle.
# let mem (x,y) (x0,y0,w,h) =


(x >= x0) && (x< x0+w) && (y>=y0) && ( y<y0+h); ;


val mem : int * int -> int * int * int * int -> bool = <fun>


# let f mouse cs x y =


try


let b,t,s =


List.find (fun (b,_,_) →
mem (x,y) (b.x+b.bw,b.y+b.bw,b.w,b.h)) cs.k


in


transition cs.s t;


erase box cs.v;


draw string in box Right (string of int cs.s.vpr ) cs.v Graphics.white


with Not found → () ; ;


val f_mouse : calc_state -> int -> int -> unit = <fun>


The function f mouse looks whether the position of the mouse during the click is really-
dwell within one of the boxes corresponding to a key. If it is, it passes the corresponding
key to the transition function and displays the result, otherwise it will not do anything.
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The function f exc handles the exceptions which can arise during program execution.
# let f exc cs ex =


match ex with


Division by zero →
transition cs.s Clear;


erase box cs.v;


draw string in box Right "Div 0" cs.v (Graphics.red)


| Invalid key → ()


| Key off → raise End


| _ → raise ex; ;


val f_exc : calc_state -> exn -> unit = <fun>


In the case of a division by zero, it restarts in the initial state of the calculator and
displays an error message on its screen. Invalid keys are simply ignored. Finally, the
exception Key off raises the exception End to terminate the loop of the skeleton.


Initialization and termination The initialization of the calculator requires calcu-
lation of the window size. The following function creates the graphical information of
the boxes from a key/text association and returns the size of the principal window.
# let create e k =


Graphics.close graph () ;


Graphics.open graph " 10x10";


let mx,my,v,lb = gen boxes k 4 4 5 2 in


let s = {lcd=0; lka = false; loa = Equals; vpr = 0; mem = 0} in


mx,my,{s=s; k=lb;v=v}; ;
val create_e : (key * string) list -> int * int * calc_state = <fun>


The initialization function makes use of the result of the preceding function.
# let f init mx my cs () =


Graphics.close graph () ;


Graphics.open graph (" "^(string of int mx)^"x"^(string of int my));


Graphics.set color gray2;


Graphics.fill rect 0 0 (mx+1) (my+1);


List.iter (fun (b,_,_) → draw box b) cs.k;


List.iter


(fun (b,_,s) → draw string in box Center s b Graphics.black) cs.k ;


draw box cs.v;


erase box cs.v;


draw string in box Right "hello" cs.v (Graphics.white); ;


val f_init : int -> int -> calc_state -> unit -> unit = <fun>


Finally the termination function closes the graphical window.
# let f end e () = Graphics.close graph () ; ;


val f_end : ’a -> unit -> unit = <fun>
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The function go is parameterized by a description and starts the interactive loop.
# let go descr =


let mx,my,e = create e descr in


skel (f init mx my e) (f end e) (f key e) (f mouse e) (f exc e); ;


val go : (key * string) list -> unit = <fun>


The call to go descr calc corresponds to the figure 5.9.


Exercises


Polar coordinates


Coordinates as used in the library Graphics are Cartesian. There a line segment is
represented by its starting point (x0,y0) and its end point (x1,y1). It can be useful
to use polar coordinates instead. Here a line segment is described by its point of origin
(x0,y0), a length (radius) (r) and an angle (a). The relation between Cartesian and
Polar coordinates is defined by the following equations:


{
x1 = x0 + r ∗ cos(a)
y1 = y0 + r ∗ sin(a)


The following type defines the polar coordinates of a line segment:
# type seg pol = {x:float; y:float; r:float; a:float}; ;
type seg_pol = { x: float; y: float; r: float; a: float }


1. Write the function to cart that converts polar coordinates to Cartesian ones.


2. Write the function draw seg which displays a line segment defined by polar
coordinates in the reference point of Graphics.


3. One of the motivations behind polar coordinates is to be able to easily apply
transformations to line segments. A translation only modifies the point of origin,
a rotation only affects the angle field and modifying the scale only changes the
length field. Generally, one can represent a transformation as a triple of floats:
the first represents the translation (we do not consider the case of translating
the second point of the line segment here), the second the rotation and the third
the scaling factor. Define the function app trans which takes a line segment in
polar coordinates and a triple of transformations and returns the new segment.


4. One can construct recursive drawings by iterating transformations. Write the
function draw r which takes as arguments a line segment s, a number of itera-
tions n, a list of transformations and displays all the segments resulting from the
transformations on s iterated up to n.


5. Verify that the following program does produce the images in figure 5.10.
let pi = 3.1415927 ; ;
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let s = {x=100.; y= 0.; a= pi /. 2.; r = 100.} ; ;


draw r s 6 [ (-.pi/.2.),0.6,1.; (pi/.2.), 0.6,1.0] ; ;


Graphics.clear graph () ; ;


draw r s 6 [(-.pi /. 6.), 0.6, 0.766;


(-.pi /. 4.), 0.55, 0.333;


(pi /. 3.), 0.4, 0.5 ] ; ;


Figure 5.10: Recursive drawings.


Bitmap editor


We will attempt to write a small bitmap editor (similar to the command bitmap in
X-window). For this we represent a bitmap by its dimensions (width and height), the
pixel size and a two-dimensional table of booleans.


1. Define a type bitmap state describing the information necessary for containing
the values of the pixels, the size of the bitmap and the colors of displayed and
erased points.


2. Write a function for creating bitmaps (create bitmap) and for displaying bitmaps
(draw bitmap) .


3. Write the functions read bitmap and write bitmap which respectively read
and write in a file passed as parameter following the ASCII format of X-window.
If the file does not exist, the function for reading creates a new bitmap using the
function create bitmap. A displayed pixel is represented by the character #, the
absence of a pixel by the character -. Each line of characters represents a line of
the bitmap. One can test the program using the functions atobm and bmtoa of
X-window, which convert between this ASCII format and the format of bitmaps
created by the command bitmap. Here is an example.
###################-------------#######---------######


###################---------------###-------------##--


###-----###-----###---------------###-------------#---


##------###------##----------------###-----------##---


#-------###-------#-----------------###---------##----
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#-------###-------#-----------------###--------##-----


--------###--------------------------###-------#------


--------###-------###############-----###----##-------


--------###-------###---------###------###--##--------


--------###-------###----------##-------###-#---------


--------###-------###-----------#-------#####---------


--------###-------###-----------#--------###----------


--------###-------###--------------------####---------


--------###-------###--------------------####---------


--------###-------###------#-----------##---###-------


--------###-------###------#----------##----###-------


--------###-------##########----------#------###------


--------###-------##########---------##-------###-----


--------###-------###------#--------##--------###-----


--------###-------###------#-------##----------###----


--------###-------###--------------#------------###---


------#######-----###-----------#######--------#######


------------------###---------------------------------


------------------###-----------#---------------------


------------------###-----------#---------------------


------------------###----------##---------------------


------------------###---------###---------------------


------------------###############---------------------


4. We reuse the skeleton for interactive loops on page 133 to construct the graph-
ical interface of the editor. The human-computer interface is very simple. The
bitmap is permanently displayed in the graphical window. A mouse click in one
of the slots of the bitmap inverts its color. This change is reflected on the screen.
Pressing the key ’S’ saves the bitmap in a file. The key ’Q’ terminates the pro-
gram.
• Write a function start of type bitmap state -> unit -> unit which


opens a graphical window and displays the bitmap passed as parameter.
• Write a function stop that closes the graphical window and exits the pro-


gram.
• Write a function mouse of type bitmap state -> int -> int -> unit


which modifies the pixel state corresponding to the mouse click and displays
the change.


• Write a function key of type string -> bitmap state -> char -> unit


which takes as arguments the name of a file, a bitmap and the char of the
pressed key and executes the associated actions: saving to a file for the key
’S’ and raising of the exception End for the key ’Q’.


5. Write a function go which takes the name of a file as parameter, loads the
bitmap, displays it and starts the interactive loop.


Earth worm


The earth worm is a small, longish organism of a certain size which grows over time
while eating objects in a world. The earth worm moves constantly in one direction.
The only actions allowing a player to control it are changes in direction. The earth
worm vanishes if it touches a border of the world or if it passes over a part of its body.
It is most often represented by a vector of coordinates with two principal indices: its
head and its tail. A move will therefore be computed from the new coordinates of its
head, will display it and erase the tail. A growth step only modifies its head without
affecting the tail of the earth worm.


1. Write the Objective Caml type or types for representing an earth worm and
the world where it evolves. One can represent an earth worm by a queue of its
coordinates.
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2. Write a function for initialization and displaying an earth worm in a world.


3. Modify the function skel of the skeleton of the program which causes an ac-
tion at each execution of the interactive loop, parameterized by a function. The
treatment of keyboard events must not block.


4. Write a function run which advances the earth worm in the game. This function
raises the exception Victory (if the worm reaches a certain size) and Loss if it
hits a full slot or a border of the world.


5. Write a function for keyboard interaction which modifies the direction of the
earth worm.


6. Write the other utility functions for handling interaction and pass them to the
new skeleton of the program.


7. Write the initiating function which starts the application.


Summary


This chapter has presented the basic notions of graphics programming and event-driven
programming using the Graphics library in the distribution of Objective Caml. Af-
ter having explained the basic graphical elements (colors, drawing, filling, text and
bitmaps) we have approached the problem of animating them. The mechanism of han-
dling events in Graphics was then described in a way that allowed the introduction of
a general method of handling user interaction. This was accomplished by taking a game
as model for event-driven programming. To improve user interactions and to provide
interactive graphical components to the programmer, we have developed a new library
called Awi, which facilitates the construction of graphical interfaces. This library was
used for writing the interface to the imperative calculator.


To learn more


Although graphics programming is naturally event-driven, the associated style of pro-
gramming being imperative, it is not only possible but also often useful to introduce
more functional operators to manipulate graphical objects. A good example comes
from the use of the MLgraph library,


Link: http://www.pps.jussieu.fr/˜cousinea/MLgraph/mlgraph.html


which implements the graphical model of PostScript and proposes functional operators
to manipulate images. It is described in [CC92, CS94] and used later in [CM98] for the
optimized placement of trees to construct drawings in the style of Escher.


One interesting characteristic of the Graphics library is that it is portable to the
graphical interfaces of Windows, MacOS and Unix. The notion of virtual bitmaps can
be found in several languages like Le Lisp and more recently in Java. Unfortunately,
the Graphics library in Objective Caml does not possess interactive components for
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the construction of interfaces. One of the applications described in part II of this book
contains the first bricks of the Awi library. It is inspired by the Abstract Windowing
Toolkit of the first versions of Java. One can perceive that it is relatively easy to extend
the functionality of this library thanks to the existence of functional values in the lan-
guage. Therefore chapter 16 compares the adaptation of object oriented programming
and functional and modular programming for the construction of graphical interfaces.
The example of Awi is functional and imperative, but it is also possible to only use
the functional style. This is typically the case for purely functional languages. We cite
the systems Fran and Fudget developed in Haskell and derivatives. The system Fran
permits construction of interactive animations in 2D and 3D, which means with events
between animated objects and the user.


Link: http://www.research.microsoft.com/˜conal/fran/


The Fudget library is intended for the construction of graphical interfaces.


Link: http://www.cs.chalmers.se/ComputingScience/Research/Functional/Fudgets/


One of the difficulties when one wants to program a graphical interface for ones appli-
cation is to know which of the numerous existing libraries to choose. It is not sufficient
to determine the language and the system to fix the choice of the tool. For Objective
Caml there exist several more or less complete ones:


• the encapsulation of libX, for X-Windows;


• the librt library, also for X-Windows;


• ocamltk, an adaptation of Tcl/Tk, portable;


• mlgtk, an adaptation of Gtk, portable.


We find the links to these developments in the “Caml Hump”:


Link: http://caml.inria.fr/hump.html


Finally, we have only discussed programming in 2D. The tendency is to add one dimen-
sion. Functional languages must also respond to this necessity, perhaps in the model
of VRML or the Java 3D-extension. In purely functional languages the system Fran
offers interesting possibilities of interaction between sprites. More closely to Objective
Caml one can use the VRcaML library or the development environment SCOL.


The VRcaML library was developed in the manner of MLgraph and integrates a part of
the graphical model of VRML in Objective Caml.


Link: http://www.pps.jussieu.fr/˜emmanuel/Public/enseignement/VRcaML


One can therefore construct animated scenes in 3D. The result is a VRML-file that
can be directly visualized.


Still in the line of Caml, the language SCOL is a functional communication language
with important libraries for 2D and 3D manipulations, which is intended as environ-
ment for people with little knowledge in computer science.
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Link: http://www.cryo-networks.com


The interest in the language SCOL and its development environment is to be able
to create distributed applications, e.g. client-server, thus facilitating the creation of
Internet sites. We present distributed programming in Objective Caml in chapter 20.







6
Applications


The reason to prefer one programming language over another lies in the ease of de-
veloping and maintaining robust applications. Therefore, we conclude the first part of
this book, which dealt with a general presentation of the Objective Caml language, by
demonstrating its use in a number of applications.


The first application implements a few functions which are used to write database
queries. We emphasize the use of list manipulations and the functional programming
style. The user has access to a set of functions with which it is easy to write and
run queries using the Objective Caml language directly. This application shows the
programmer how he can easily provide the user with most of the query tools that the
user should need.


The second application is an interpreter for a tiny BASIC1. This kind of imperative
language fueled the success of the first microcomputers. Twenty years later, they seem
to be very easy to design. Although BASIC is an imperative language, the implemen-
tation of the interpreter uses the functional features of Objective Caml, especially for
the evaluation of commands. Nevertheless, the lexer and parser for the language use a
mutable structure.


The third application is a one-player game, Minesweeper, which is fairly well-known
since it is bundled with the standard installation of Windows systems. The goal of
the game is to uncover a bunch of hidden mines by repeatedly uncovering a square,
which then indicates the number of mines around itself. The implementation uses the
imperative features of the language, since the data structure used is a two-dimensional
array which is modified after each turn of the game. This application uses the Graphics
module to draw the game board and to interact with the player. However, the automatic
uncovering of some squares will be written in a more functional style.
This latter application uses functions from the Graphics module described in chapter


1. which means “Beginner’s All purpose Symbolic Instruction Code”.
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5 (see page 117) as well as some functions from the Random and Sys modules (see
chapter 8, pages 216 and 234).


Database queries


The implementation of a database, its interface, and its query language is a project far
too ambitious for the scope of this book and for the Objective Caml knowledge of the
reader at this point. However, restricting the problem and using the functional pro-
gramming style at its best allows us to create an interesting tool for query processing.
For instance, we show how to use iterators as well as partial application to formulate
and execute queries. We also show the use of a data type encapsulating functional
values.


For this application, we use as an example a database on the members of an association.
It is presumed to be stored in the file association.dat.


Data format


Most database programs use a “proprietary” format to store the data they manipulate.
However, it is usually possible to store the data as some text that has the following
structure:


• the database is a list of cards separated by carriage-returns;


• each card is a list of fields separated by some given character, ’:’ in our case;


• a field is a string which contains no carriage-return nor the character ’:’;


• the first card is the list of the names associated with the fields, separated by the
character ’|’.


The association data file starts with:


Num|Lastname|Firstname|Address|Tel|Email|Pref|Date|Amount


0:Chailloux:Emmanuel:Université P6:0144274427:ec@lip6.fr:email:25.12.1998:100.00


1:Manoury:Pascal:Laboratoire PPS::pm@lip6.fr:mail:03.03.1997:150.00


2:Pagano:Bruno:Cristal:0139633963::mail:25.12.1998:150.00


3:Baro:Sylvain::0144274427:baro@pps.fr:email:01.03.1999:50.00


The meaning of the fields is the following:


• Num is the member number;


• Lastname, Firstname, Address, Tel, and Email are obvious;


• Pref indicates the means by which the member wishes to be contacted: by mail
(mail), by email (email), or by phone (tel);


• Date and Amount are the date and the amount of the last membership fee received,
respectively.







Database queries 149


We need to decide what represention the program should use internally for a database.
We could use either a list of cards or an array of cards. On the one hand, a list has
the nice property of being easily modified: adding and removing a card are simple
operations. On the other hand, an array allows constant access time to any card. Since
our goal is to work on all the cards and not on some of them, each query accesses
all the cards. Thus a list is a good choice. The same issue arises concerning the cards
themselves: should they be lists or arrays of strings? This time an array is a good
choice, since the format of a card is fixed for the whole database. It not possible to add
a new field. Since a query might access only a few fields, it is important for this access
to be fast.


The most natural solution for a card would be to use an array indexed by the names
of the fields. Since such a type is not available in Objective Caml, we can use an array
(indexed by integers) and a function associating a field name with the array index
corresponding to the field.
# type data card = string array ; ;


# type data base = { card index : string → int ; data : data card list } ; ;


Access to the field named n of a card dc of the database db is implemented by the
function:
# let field db n (dc : data card) = dc.(db.card index n) ; ;


val field : data_base -> string -> data_card -> string = <fun>


The type of dc has been set to data card to constrain the function field to only
accept string arrays and not arrays of other types.


Here is a small example:
# let base ex =


{ data = [ [|"Chailloux"; "Emmanuel"|] ; [|"Manoury"; "Pascal"|] ] ;


card index = function "Lastname"→0 | "Firstname"→1


| _->raise Not found } ; ;


val base_ex : data_base =


{card_index=<fun>;


data=[[|"Chailloux"; "Emmanuel"|]; [|"Manoury"; "Pascal"|]]}


# List.map (field base ex "Lastname") base ex.data ; ;


- : string list = ["Chailloux"; "Manoury"]


The expression field base ex "Lastname" evaluates to a function which takes a card
and returns the value of its "Lastname" field. The library function List.map applies
the function to each card of the database base ex, and returns the list of the results:
a list of the "Lastname" fields of the database.


This example shows how we wish to use the functional style in our program. Here, the
partial application of field allows us to define an access function for a given field,
which we can use on any number of cards. This also shows us that the implementation
of the field function is not very efficient, since although we are always accessing the
same field, its index is computed for each access. The following implementation is
better:
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# let field base name =


let i = base.card index name in fun (card : data card) → card.(i) ; ;


val field : data_base -> string -> data_card -> string = <fun>


Here, after applying the function to two arguments, the index of the field is computed
and is used for any subsequent application.


Reading a database from a file


As seen from Objective Caml, a file containing a database is just a list of lines. The
first work that needs to be done is to read each line as a string, split it into smaller
parts according to the separating character, and then extract the corresponding data
as well as the field indexing function.


Tools for processing a line


We need a function split that splits a string at every occurrence of some separating
character. This function uses the function suffix which returns the suffix of a string
s after some position i. To do this, we use three predefined functions:


• String.length returns the length of a string;


• String.sub returns the substring of s starting at position i and of length l;


• String.index from computes the position of the first occurrence of character c
in the string s, starting at position n.


# let suffix s i = try String.sub s i ((String.length s)-i)


with Invalid argument("String.sub") → "" ; ;


val suffix : string -> int -> string = <fun>


# let split c s =


let rec split from n =


try let p = String.index from s n c


in (String.sub s n (p-n)) :: (split from (p+1))


with Not found → [ suffix s n ]


in if s="" then [] else split from 0 ; ;


val split : char -> string -> string list = <fun>


The only remarkable characteristic in this implementation is the use of exceptions,
specifically the exception Not found.


Computing the data base structure There is no difficulty in creating an array
of strings from a list of strings, since this is what the of list function in the Array
module does. It might seem more complicated to compute the index function from a
list of field names, but the List module provides all the needed tools.
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Starting from a list of strings, we need to code a function that associates each string
with an index corresponding to its position in the list.
# let mk index list names =


let rec make enum a b = if a > b then [] else a :: (make enum (a+1) b) in


let list index = (make enum 0 ((List.length list names) - 1)) in


let assoc index name = List.combine list names list index in


function name → List.assoc name assoc index name ; ;


val mk_index : ’a list -> ’a -> int = <fun>


To create the association function between field names and indexes, we combine
the list of indexes and the list of names to obtain a list of associations of the type
string * int list. To look up the index associated with a name, we use the func-
tion assoc from the List library. The function mk index returns a function that takes
a name and calls assoc on this name and the previously built association list.


It is now possible to create a function that reads a file of the given format.
# let read base filename =


let channel = open in filename in


let split line = split ’:’ in


let list names = split ’|’ (input line channel) in


let rec read file () =


try


let data = Array.of list (split line (input line channel )) in


data :: (read file ())


with End of file → close in channel ; []


in


{ card index = mk index list names ; data = read file () } ; ;


val read_base : string -> data_base = <fun>


The auxiliary function read file reads records from the file, and works recursively on
the input channel. The base case of the recursion corresponds to the end of the file,
signaled by the End of file exception. In this case, the empty list is returned after
closing the channel.


The association’s file can now be loaded:
# let base ex = read base "association.dat" ; ;


val base_ex : data_base =


{card_index=<fun>;


data=


[[|"0"; "Chailloux"; "Emmanuel"; "Universit\233 P6"; "0144274427";


"ec@lip6.fr"; "email"; "25.12.1998"; "100.00"|];


[|"1"; "Manoury"; "Pascal"; "Laboratoire PPS"; ...|]; ...]}


General principles for database processing


The effectiveness and difficulty of processing the data in a database is proportional to
the power and complexity of the query language. Since we want to use Objective Caml
as query language, there is no limit a priori on the requests we can express! However,
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we also want to provide some simple tools to manipulate cards and their data. This
desire for simplicity requires us to limit the power of the Objective Caml language,
through the use of general goals and principles for database processing.


The goal of database processing is to obtain a state of the database. Building such a
state may be decomposed into three steps:


1. selecting, according to some given criterion, a set of cards;


2. processing each of the selected cards;


3. processing all the data collected on the cards.


Figure 6.1 illustrates this decomposition.


Selection of 


a card
Processing


cards to process


Processing the results


Figure 6.1: Processing a request.


According to this decomposition, we need three functions of the following types:


1. (data card -> bool) -> data card list -> data card list


2. (data card -> ’a) -> data card list -> ’a list


3. (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b


Objective Caml provides us with three higher-order function, also known as iterators,
introduced page 219, that satisfy our specification:
# List.find all ; ;


- : (’a -> bool) -> ’a list -> ’a list = <fun>


# List.map ; ;


- : (’a -> ’b) -> ’a list -> ’b list = <fun>


# List.fold right ; ;


- : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b = <fun>


We will be able to use them to implement the three steps of building a state by choosing
the functions they take as an argument.







Database queries 153


For some special requests, we will also use:
# List.iter ; ;


- : (’a -> unit) -> ’a list -> unit = <fun>


Indeed, if the required processing consists only of displaying some data, there is nothing
to compute.


In the next paragraphs, we are going to see how to define functions expressing simple
selection criteria, as well as simple queries. We conclude this section with a short
example using these functions according to the principles stated above.


Selection criteria


Concretely, the boolean function corresponding to the selection criterion of a card is
a boolean combination of properties of some or all of the fields of the card. Each field
of a card, even though it is a string, can contain some information of another type: a
float, a date, etc.


Selection criteria on a field


Selecting on some field is usually done using a function of the type data base -> ’a


-> string -> data card -> bool. The ’a type parameter corresponds to the type
of the information contained in the field. The string argument corresponds to the
name of the field.


String fields We define two simple tests on strings: equality with another string,
and non-emptiness.
# let eq sfield db s n dc = (s = (field db n dc)) ; ;


val eq_sfield : data_base -> string -> string -> data_card -> bool = <fun>


# let nonempty sfield db n dc = ("" <> (field db n dc)) ; ;


val nonempty_sfield : data_base -> string -> data_card -> bool = <fun>


Float fields To implement tests on data of type float, it is enough to translate
the string representation of a decimal number into its float value. Here are some
examples obtained from a generic function tst ffield:
# let tst ffield r db v n dc = r v (float of string (field db n dc)) ; ;


val tst_ffield :


(’a -> float -> ’b) -> data_base -> ’a -> string -> data_card -> ’b = <fun>


# let eq ffield = tst ffield (=) ; ;


# let lt ffield = tst ffield (<) ; ;


# let le ffield = tst ffield (<=) ; ;


(* etc. *)


These three functions have type:


data base -> float -> string -> data card -> bool.
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Dates This kind of information is a little more complex to deal with, as it depends
on the representation format of dates, and requires that we define date comparison.


We decide to represent dates in a card as a string with format dd.mm.yyyy. In order
to be able to define additional comparisons, we also allow the replacement of the
day, month or year part with the underscore character (’_’). Dates are compared
according to the lexicographic order of lists of integers of the form [year; month; day].
To express queries such as: “is before July 1998”, we use the date pattern: " .07.1998".
Comparing a date with a pattern is accomplished with the function tst dfield which
analyses the pattern to create the ad hoc comparison function. To define this generic
test function on dates, we need a few auxiliary functions.


We first code two conversion functions from dates (ints of string) and date patterns
(ints of dpat) to lists of ints. The character ’_’ of a pattern will be replaced by the
integer 0:
# let split date = split ’.’ ; ;


val split_date : string -> string list = <fun>


# let ints of string d =


try match split date d with


[d;m;y] → [int of string y; int of string m; int of string d]


| _ → failwith "Bad date format"


with Failure("int_of_string") → failwith "Bad date format" ; ;


val ints_of_string : string -> int list = <fun>


# let ints of dpat d =


let int of stringpat = function "_" → 0 | s → int of string s


in try match split date d with


[d;m;y] → [ int of stringpat y; int of stringpat m;


int of stringpat d ]


| _ → failwith "Bad date format"


with Failure("int_of_string") → failwith "Bad date pattern" ; ;


val ints_of_dpat : string -> int list = <fun>


Given a relation r on integers, we now code the test function. It simply consists of
implementing the lexicographic order, taking into account the particular case of 0:
# let rec app dtst r d1 d2 = match d1, d2 with


[] , [] → false


| (0 :: d1) , (_::d2) → app dtst r d1 d2


| (n1 :: d1) , (n2 :: d2) → (r n1 n2) || ((n1 = n2) && (app dtst r d1 d2))


| _, _ → failwith "Bad date pattern or format" ; ;


val app_dtst : (int -> int -> bool) -> int list -> int list -> bool = <fun>


We finally define the generic function tst dfield which takes as arguments a relation
r, a database db, a pattern dp, a field name nm, and a card dc. This function checks
that the pattern and the field from the card satisfy the relation.
# let tst dfield r db dp nm dc =
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r (ints of dpat dp) (ints of string (field db nm dc)) ; ;


val tst_dfield :


(int list -> int list -> ’a) ->


data_base -> string -> string -> data_card -> ’a = <fun>


We now apply it to three relations.
# let eq dfield = tst dfield (=) ; ;


# let le dfield = tst dfield (<=) ; ;


# let ge dfield = tst dfield (>=) ; ;


These three functions have type:
data base -> string -> string -> data card -> bool.


Composing criteria


The tests we have defined above all take as first arguments a database, a value, and
the name of a field. When we write a query, the value of these three arguments are
known. For instance, when we work on the database base ex, the test “is before July
1998” is written
# ge dfield base ex "_.07.1998" "Date" ; ;


- : data_card -> bool = <fun>


Thus, we can consider a test as a function of type data card -> bool. We want to
obtain boolean combinations of the results of such functions applied to a given card.
To this end, we implement the iterator:
# let fold funs b c fs dc =


List.fold right (fun f → fun r → c (f dc) r) fs b ; ;


val fold_funs : ’a -> (’b -> ’a -> ’a) -> (’c -> ’b) list -> ’c -> ’a = <fun>


Where b is the base value, the function c is the boolean operator, fs is the list of test
functions on a field, and dc is a card.


We can obtain the conjunction and the disjunction of a list of tests with:
# let and fold fs = fold funs true (&) fs ; ;


val and_fold : (’a -> bool) list -> ’a -> bool = <fun>


# let or fold fs = fold funs false (or) fs ; ;


val or_fold : (’a -> bool) list -> ’a -> bool = <fun>


We easily define the negation of a test:
# let not fun f dc = not (f dc) ; ;


val not_fun : (’a -> bool) -> ’a -> bool = <fun>


For instance, we can use these combinators to define a selection function for cards
whose date field is included in a given range:
# let date interval db d1 d2 =


and fold [(le dfield db d1 "Date"); (ge dfield db d2 "Date")] ; ;


val date_interval : data_base -> string -> string -> data_card -> bool =
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<fun>


Processing and computation


It is difficult to guess how a card might be processed, or the data that would result
from that processing. Nevertheless, we can consider two common cases: numerical com-
putation and data formatting for printing. Let’s take an example for each of these two
cases.


Data formatting


In order to print, we wish to create a string containing the name of a member of the
association, followed by some information.


We start with a function that reverses the splitting of a line using a given separating
character:
# let format list c =


let s = String.make 1 c in


List.fold left (fun x y → if x="" then y else x^s^y) "" ; ;


val format_list : char -> string list -> string = <fun>


In order to build the list of fields we are interested in, we code the function extract
that returns the fields associated with a given list of names in a given card:
# let extract db ns dc =


List.map (fun n → field db n dc) ns ; ;


val extract : data_base -> string list -> data_card -> string list = <fun>


We can now write the line formatting function:
# let format line db ns dc =


(String.uppercase (field db "Lastname" dc))


^" "^(field db "Firstname" dc)


^"\t"^(format list ’\t’ (extract db ns dc))


^"\n" ; ;


val format_line : data_base -> string list -> data_card -> string = <fun>


The argument ns is the list of requested fields. In the resulting string, fields are sepa-
rated by a tab (’\t’) and the string is terminated with a newline character.


We display the list of last and first names of all members with:
# List.iter print string (List.map (format line base ex [] ) base ex.data) ; ;


CHAILLOUX Emmanuel


MANOURY Pascal


PAGANO Bruno


BARO Sylvain


- : unit = ()
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Numerical computation


We want to compute the total amount of received fees for a given set of cards. This is
easily done by composing the extraction and conversion of the correct field with the
addition. To get nicer code, we define an infix composition operator:
# let (++) f g x = g (f x) ; ;


val ++ : (’a -> ’b) -> (’b -> ’c) -> ’a -> ’c = <fun>


We use this operator in the following definition:
# let total db dcs =


List.fold right ((field db "Amount") ++ float of string ++ (+.)) dcs 0.0 ; ;


val total : data_base -> data_card list -> float = <fun>


We can now apply it to the whole database:
# total base ex base ex.data ; ;


- : float = 450


An example


To conclude, here is a small example of an application that uses the principles described
in the paragraphs above.


We expect two kinds of queries on our database:


• a query returning two lists, the elements of the first containing the name of a
member followed by his mail address, the elements of the other containing the
name of the member followed by his email address, according to his preferences.


• another query returning the state of received fees for a given period of time. This
state is composed of the list of last and first names, dates and amounts of the
fees as well as the total amount of the received fees.


List of addresses


To create these lists, we first select the relevant cards according to the field "Pref",
then we use the formatting function format line:
# let mail addresses db =


let dcs = List.find all (eq sfield db "mail" "Pref") db.data in


List.map (format line db ["Mail"]) dcs ; ;


val mail_addresses : data_base -> string list = <fun>


# let email addresses db =


let dcs = List.find all (eq sfield db "email" "Pref") db.data in


List.map (format line db ["Email"]) dcs ; ;


val email_addresses : data_base -> string list = <fun>
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State of received fees


Computing the state of the received fees uses the same technique: selection then pro-
cessing. In this case however the processing part is twofold: line formatting followed by
the computation of the total amount.
# let fees state db d1 d2 =


let dcs = List.find all (date interval db d1 d2) db.data in


let ls = List.map (format line db ["Date";"Amount"]) dcs in


let t = total db dcs in


ls, t ; ;


val fees_state : data_base -> string -> string -> string list * float = <fun>


The result of this query is a tuple containing a list of strings with member information,
and the total amount of received fees.


Main program


The main program is essentially an interactive loop that displays the result of queries
asked by the user through a menu. We use here an imperative style, except for the
display of the results which uses an iterator.
# let main () =


let db = read base "association.dat" in


let finished = ref false in


while not !finished do


print string" 1: List of mail addresses\n";


print string" 2: List of email addresses\n";


print string" 3: Received fees\n";


print string" 0: Exit\n";


print string"Your choice: ";


match read int () with


0 → finished := true


| 1 → (List.iter print string (mail addresses db))


| 2 → (List.iter print string (email addresses db))


| 3


→ (let d1 = print string"Start date: "; read line () in


let d2 = print string"End date: "; read line () in


let ls, t = fees state db d1 d2 in


List.iter print string ls;


print string"Total: "; print float t; print newline ())


| _ → ()


done;


print string"bye\n" ; ;


val main : unit -> unit = <fun>


This example will be extended in chapter 21 with an interface using a web browser.
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Further work


A natural extension of this example would consist of adding type information to every
field of the database. This information would be used to define generic comparison
operators with type data base -> ’a -> string -> data card -> bool where the
name of the field (the third argument) would trigger the correct conversion and test
functions.


BASIC interpreter


The application described in this section is a program interpreter for Basic. Thus, it is
a program that can run other programs written in Basic. Of course, we will only deal
with a restricted language, which contains the following commands:


• PRINT expression
Prints the result of the evaluation of the expression.


• INPUT variable
Prints a prompt (?), reads an integer typed in by the user, and
assigns its value to the variable.


• LET variable = expression
Assigns the result of the evaluation of expression to the variable.


• GOTO line number
Continues execution at the given line.


• IF condition THEN line number
Continues execution at the given line if the condition is true.


• REM any string
One-line comment.


Every line of a Basic program is labelled with a line number, and contains only one
command. For instance, a program that computes and then prints the factorial of an
integer given by the user is written:


5 REM inputting the argument
10 PRINT " factorial of:"
20 INPUT A
30 LET B = 1
35 REM beginning of the loop
40 IF A <= 1 THEN 80
50 LET B = B * A
60 LET A = A - 1
70 GOTO 40
75 REM prints the result
80 PRINT B


We also wish to write a small text editor, working as a toplevel interactive loop. It
should be able to add new lines, display a program, execute it, and display the result.
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Execution of the program is started with the RUN command. Here is an example of the
evaluation of this program:


> RUN
factorial of: ? 5


120


The interpreter is implemented in several distinct parts:


Description of the abstract syntax : describes the definition of data types to rep-
resent Basic programs, as well as their components (lines, commands, expressions,
etc.).


Program pretty printing : consists of transforming the internal representation of
Basic programs to strings, in order to display them.


Lexing and parsing : accomplish the inverse transformation, that is, transform a
string into the internal representation of a Basic program (the abstract syntax).


Evaluation : is the heart of the interpreter. It controls and runs the program. As
we will see, functional languages, such as Objective Caml, are particularly well
adapted for this kind of problem.


Toplevel interactive loop : glues together all the previous parts.


Abstract syntax


Figure 6.2 introduces the concrete syntax, as a BNF grammar, of the Basic we will
implement. This kind of description for language syntaxes is described in chapter 11,
page 295.


We can see that the way expressions are defined does not ensure that a well formed
expression can be evaluated. For instance, 1+"hello" is an expression, and yet it is
not possible to evaluate it. This deliberate choice lets us simplify both the abstract
syntax and the parsing of the Basic language. The price to pay for this choice is that
a syntactically correct Basic program may generate a runtime error because of a type
mismatch.


Defining Objective Caml data types for this abstract syntax is easy, we simply translate
the concrete syntax into a sum type:
# type unr op = UMINUS | NOT ; ;


# type bin op = PLUS | MINUS | MULT | DIV | MOD


| EQUAL | LESS | LESSEQ | GREAT | GREATEQ | DIFF


| AND | OR ; ;


# type expression =


ExpInt of int


| ExpVar of string


| ExpStr of string
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Unary Op ::= − | !


Binary Op ::= + | − | ∗ | / | %
| = | < | > | <= | >= | <>


| & | ′ | ′


Expression ::= integer
| variable
| "string"


| Unary Op Expression


| Expression Binary Op Expression


| ( Expression )


Command ::= REM string
| GOTO integer
| LET variable = Expression


| PRINT Expression


| INPUT variable
| IF Expression THEN integer


Line ::= integer Command


Program ::= Line


| Line Program


Phrase ::= Line | RUN | LIST | END


Figure 6.2: BASIC Grammar.


| ExpUnr of unr op * expression


| ExpBin of expression * bin op * expression ; ;


# type command =


Rem of string


| Goto of int


| Print of expression


| Input of string


| If of expression * int


| Let of string * expression ; ;


# type line = { num : int ; cmd : command } ; ;


# type program = line list ; ;
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We also define the abstract syntax for the commands for the small program editor:
# type phrase = Line of line | List | Run | PEnd ; ;


It is convenient to allow the programmer to skip some parentheses in arithmetic ex-
pressions. For instance, the expression 1 + 3 ∗ 4 is usually interpreted as 1 + (3 ∗ 4). To
this end, we associate an integer with each operator of the language:
# let priority uop = function NOT → 1 | UMINUS → 7


let priority binop = function


MULT | DIV → 6


| PLUS | MINUS → 5


| MOD → 4


| EQUAL | LESS | LESSEQ | GREAT | GREATEQ | DIFF → 3


| AND | OR → 2 ; ;


val priority_uop : unr_op -> int = <fun>


val priority_binop : bin_op -> int = <fun>


These integers indicate the priority of the operators. They will be used to print and
parse programs.


Program pretty printing


To print a program, one needs to be able to convert abstract syntax program lines into
strings.


Converting operators is easy:
# let pp binop = function


PLUS → "+" | MULT → "*" | MOD → "%" | MINUS → "-"


| DIV → "/" | EQUAL → " = " | LESS → " < "


| LESSEQ → " <= " | GREAT → " > "


| GREATEQ → " >= " | DIFF → " <> " | AND → " & " | OR → " | "


let pp unrop = function UMINUS → "-" | NOT → "!" ; ;


val pp_binop : bin_op -> string = <fun>


val pp_unrop : unr_op -> string = <fun>


Expression printing needs to take into account operator priority to print as few paren-
theses as possible. For instance, parentheses are put around a subexpression at the right
of an operator only if the subexpression’s main operator has a lower priority that the
main operator of the whole expression. Also, arithmetic operators are left-associative,
thus the expression 1− 2− 3 is interpreted as (1− 2)− 3.


To deal with this, we use two auxiliary functions ppl and ppr to print left and right
subtrees, respectively. These functions take two arguments: the tree to print and the
priority of the enclosing operator, which is used to decide if parentheses are necessary.
Left and right subtrees are distinguished to deal with associativity. If the current
operator priority is the same than the enclosing operator priority, left trees do not
need parentheses whereas right ones may require them, as in 1− (2− 3) or 1− (2 + 3).


The initial tree is taken as a left subtree with minimal priority (0). The expression
pretty printing function pp expression is:
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# let parenthesis x = "(" ^ x ^ ")"; ;


val parenthesis : string -> string = <fun>


# let pp expression =


let rec ppl pr = function


ExpInt n → (string of int n)


| ExpVar v → v


| ExpStr s → "\"" ^ s ^ "\""


| ExpUnr (op,e) →
let res = (pp unrop op)^(ppl (priority uop op) e)


in if pr=0 then res else parenthesis res


| ExpBin (e1,op,e2) →
let pr2 = priority binop op


in let res = (ppl pr2 e1)^(pp binop op)^(ppr pr2 e2)


(* parenthesis if priority is not greater *)


in if pr2 >= pr then res else parenthesis res


and ppr pr exp = match exp with


(* right subtrees only differ for binary operators *)


ExpBin (e1,op,e2) →
let pr2 = priority binop op


in let res = (ppl pr2 e1)^(pp binop op)^(ppr pr2 e2)


in if pr2 > pr then res else parenthesis res


| _ → ppl pr exp


in ppl 0 ; ;


val pp_expression : expression -> string = <fun>


Command pretty printing uses the expression pretty printing function. Printing a line
consists of printing the line number before the command.
# let pp command = function


Rem s → "REM " ^ s


| Goto n → "GOTO " ^ (string of int n)


| Print e → "PRINT " ^ (pp expression e)


| Input v → "INPUT " ^ v


| If (e,n) → "IF "^(pp expression e)^" THEN "^(string of int n)


| Let (v,e) → "LET " ^ v ^ " = " ^ (pp expression e) ; ;


val pp_command : command -> string = <fun>


# let pp line l = (string of int l.num) ^ " " ^ (pp command l.cmd) ; ;


val pp_line : line -> string = <fun>


Lexing


Lexing and parsing do the inverse transformation of printing, going from a string to
a syntax tree. Lexing splits the text of a command line into independent lexical units
called lexemes, with Objective Caml type:
# type lexeme = Lint of int


| Lident of string
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| Lsymbol of string


| Lstring of string


| Lend ; ;


A particular lexeme denotes the end of an expression: Lend. It is not present in the
text of the expression, but is created by the lexing function (see the lexer function,
page 165).


The string being lexed is kept in a record that contains a mutable field indicating the
position after which lexing has not been done yet. Since the size of the string is used
several times and does not change, it is also stored in the record:
# type string lexer = {string:string; mutable current:int; size:int } ; ;


This representation lets us define the lexing of a string as the application of a function
to a value of type string lexer returning a value of type lexeme. Modifying the
current position in the string is done as a side effect.


# let init lex s = { string=s; current=0 ; size=String.length s } ; ;


val init_lex : string -> string_lexer = <fun>


# let forward cl = cl.current <- cl.current+1 ; ;


val forward : string_lexer -> unit = <fun>


# let forward n cl n = cl.current <- cl.current+n ; ;


val forward_n : string_lexer -> int -> unit = <fun>


# let extract pred cl =


let st = cl.string and pos = cl.current in


let rec ext n = if n<cl.size && (pred st.[n]) then ext (n+1) else n in


let res = ext pos


in cl.current <- res ; String.sub cl.string pos (res-pos) ; ;


val extract : (char -> bool) -> string_lexer -> string = <fun>


The following functions extract a lexeme from the string and modify the current po-
sition. The two functions extract int and extract ident extract an integer and an
identifier, respectively.
# let extract int =


let is int = function ’0’..’9’ → true | _ → false


in function cl → int of string (extract is int cl)


let extract ident =


let is alpha num = function


’a’..’z’ | ’A’..’Z’ | ’0’ .. ’9’ | ’_’ → true


| _ → false


in extract is alpha num ; ;


val extract_int : string_lexer -> int = <fun>


val extract_ident : string_lexer -> string = <fun>


The lexer function uses the two previous functions to extract a lexeme.
# exception LexerError ; ;


exception LexerError
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# let rec lexer cl =


let lexer char c = match c with


’ ’


| ’\t’ → forward cl ; lexer cl


| ’a’..’z’


| ’A’..’Z’ → Lident (extract ident cl)


| ’0’..’9’ → Lint (extract int cl)


| ’"’ → forward cl ;


let res = Lstring (extract ((<>) ’"’) cl)


in forward cl ; res


| ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’ | ’|’ | ’!’ | ’=’ | ’(’ | ’)’ →
forward cl; Lsymbol (String.make 1 c)


| ’<’


| ’>’ → forward cl;


if cl.current >= cl.size then Lsymbol (String.make 1 c)


else let cs = cl.string.[cl.current]


in ( match (c,cs) with


(’<’,’=’) → forward cl; Lsymbol "<="


| (’>’,’=’) → forward cl; Lsymbol ">="


| (’<’,’>’) → forward cl; Lsymbol "<>"


| _ → Lsymbol (String.make 1 c) )


| _ → raise LexerError


in


if cl.current >= cl.size then Lend


else lexer char cl.string.[cl.current] ; ;


val lexer : string_lexer -> lexeme = <fun>


The lexer function is very simple: it matches the current character of a string and,
based on its value, extracts the corresponding lexeme and modifies the current position
to the start of the next lexeme. The code is simple because, for all characters except
two, the current character defines which lexeme to extract. In the more complicated
cases of ’<’, we need to look at the next character, which might be a ’=’ or a ’>’,
producing two different lexemes. The same problem arises with ’>’.


Parsing


The only difficulty in parsing our language comes from expressions. Indeed, knowing
the beginning of an expression is not enough to know its structure. For instance, having
parsed the beginning of an expression as being 1 + 2 + 3, the resulting syntax tree for
this part depends on the rest of the expression: its structure is different when it is
followed by +4 or ∗4 (see figure 6.3). However, since the tree structure for 1 + 2 is the
same in both cases, it can be built. As the position of +3 in the structure is not fully
known, it is temporarily stored.


To build the abstract syntax tree, we use a pushdown automaton similar to the one
built by yacc (see page 303). Lexemes are read one by one and put on a stack until
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Figure 6.3: Basic: abstract syntax tree examples.


there is enough information to build the expression. They are then removed from the
stack and replaced by the expression. This latter operation is called reduction.


The stack elements have type:
# type exp elem =


Texp of expression (* expression *)


| Tbin of bin op (* binary operator *)


| Tunr of unr op (* unary operator *)


| Tlp (* left parenthesis *) ; ;


Right parentheses are not stored on the stack as only left parentheses matter for
reduction.


Figure 6.4 illustrates the way the stack is used to parse the expression (1 + 2 ∗ 3) + 4.
The character above the arrow is the current character of the string.


We define an exception for syntax errors.
# exception ParseError ; ;


The first step consists of transforming symbols into operators:
# let unr symb = function


"!" → NOT | "-" → UMINUS | _ → raise ParseError


let bin symb = function


"+" → PLUS | "-" → MINUS | "*" → MULT | "/" → DIV | "%" → MOD


| "=" → EQUAL | "<" → LESS | "<=" → LESSEQ | ">" → GREAT


| ">=" → GREATEQ | "<>" → DIFF | "&" → AND | "|" → OR


| _ → raise ParseError


let tsymb s = try Tbin (bin symb s) with ParseError → Tunr (unr symb s) ; ;


val unr_symb : string -> unr_op = <fun>


val bin_symb : string -> bin_op = <fun>


val tsymb : string -> exp_elem = <fun>


The reduce function implements stack reduction. There are two cases to consider,
whether the stack starts with:
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Figure 6.4: Basic: abstract syntax tree construction example.


• an expression followed by a unary operator,


• an expression followed by a binary operator and an expression.


Moreover, reduce takes an argument indicating the minimal priority that an operator
should have to trigger reduction. To avoid this reduction condition, it suffices to give
the minimal value, zero, as the priority.
# let reduce pr = function


(Texp e) :: (Tunr op) :: st when (priority uop op) >= pr


→ (Texp (ExpUnr (op,e))) :: st


| (Texp e1) :: (Tbin op) :: (Texp e2) :: st when (priority binop op) >= pr


→ (Texp (ExpBin (e2,op,e1))) :: st


| _ → raise ParseError ; ;


val reduce : int -> exp_elem list -> exp_elem list = <fun>


Notice that expression elements are stacked as they are read. Thus it is necessary to
swap them when they are arguments of a binary operator.


The main function of our parser is stack or reduce that, according to the lexeme
given in argument, puts it on the stack or triggers a reduction.
# let rec stack or reduce lex stack = match lex , stack with


Lint n , _ → (Texp (ExpInt n)) :: stack


| Lident v , _ → (Texp (ExpVar v)) :: stack
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| Lstring s , _ → (Texp (ExpStr s)) :: stack


| Lsymbol "(" , _ → Tlp :: stack


| Lsymbol ")" , (Texp e) :: Tlp :: st → (Texp e) :: st


| Lsymbol ")" , _ → stack or reduce lex (reduce 0 stack)


| Lsymbol s , _


→ let symbol =


if s<>"-" then tsymb s


(* remove the ambiguity of the ‘‘-’’ symbol *)


(* according to the last exp element put on the stack *)


else match stack


with (Texp _)::_ → Tbin MINUS


| _ → Tunr UMINUS


in ( match symbol with


Tunr op → (Tunr op) :: stack


| Tbin op →
( try stack or reduce lex (reduce (priority binop op)


stack )


with ParseError → (Tbin op) :: stack )


| _ → raise ParseError )


| _ , _ → raise ParseError ; ;


val stack_or_reduce : lexeme -> exp_elem list -> exp_elem list = <fun>


Once all lexemes are defined and stacked, the function reduce all builds the abstract
syntax tree with the elements remaining in the stack. If the expression being parsed is
well formed, only one element should remain in the stack, containing the tree for this
expression.
# let rec reduce all = function


| [] → raise ParseError


| [Texp x] → x


| st → reduce all (reduce 0 st) ; ;


val reduce_all : exp_elem list -> expression = <fun>


The parse exp function is the main expression parsing function. It reads a string,
extracts its lexemes and passes them to the stack or reduce function. Parsing stops
when the current lexeme satisfies a predicate that is given as an argument.
# let parse exp stop cl =


let p = ref 0 in


let rec parse one stack =


let l = ( p:=cl.current ; lexer cl)


in if not (stop l) then parse one (stack or reduce l stack)


else ( cl.current <- !p ; reduce all stack )


in parse one [] ; ;


val parse_exp : (lexeme -> bool) -> string_lexer -> expression = <fun>


Notice that the lexeme that made the parsing stop is not used to build the expression.
It is thus necessary to modify the current position to its beginning (variable p) to parse
it later.
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We can now parse a command line:
# let parse cmd cl = match lexer cl with


Lident s → ( match s with


"REM" → Rem (extract (fun _ → true) cl)


| "GOTO" → Goto (match lexer cl with


Lint p → p


| _ → raise ParseError)


| "INPUT" → Input (match lexer cl with


Lident v → v


| _ → raise ParseError)


| "PRINT" → Print (parse exp ((=) Lend) cl)


| "LET" →
let l2 = lexer cl and l3 = lexer cl


in ( match l2 ,l3 with


(Lident v,Lsymbol "=") → Let (v,parse exp ((=) Lend) cl)


| _ → raise ParseError )


| "IF" →
let test = parse exp ((=) (Lident "THEN")) cl


in ( match ignore (lexer cl) ; lexer cl with


Lint n → If (test,n)


| _ → raise ParseError )


| _ → raise ParseError )


| _ → raise ParseError ; ;


val parse_cmd : string_lexer -> command = <fun>


Finally, we implement the function to parse commands typed by the user:
# let parse str =


let cl = init lex str


in match lexer cl with


Lint n → Line { num=n ; cmd=parse cmd cl }
| Lident "LIST" → List


| Lident "RUN" → Run


| Lident "END" → PEnd


| _ → raise ParseError ; ;


val parse : string -> phrase = <fun>


Evaluation


A Basic program is a list of lines. Execution starts at the first line. Interpreting a
program line consists of executing the task corresponding to its command. There are
three different kinds of commands: input-output (PRINT and INPUT), variable dec-
laration or modification (LET), and flow control (GOTO and IF. . . THEN). Input-
output commands interact with the user and use the corresponding Objective Caml
functions.
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Variable declaration and modification commands need to know how to compute the
value of an arithmetic expression and the memory location to store the result. Expres-
sion evaluation returns an integer, a boolean, or a string. Their type is value.
# type value = Vint of int | Vstr of string | Vbool of bool ; ;


Variable declaration should allocate some memory to store the associated value. Sim-
ilarly, variable modification requires the modification of the associated value. Thus,
evaluation of a Basic program uses an environment that stores the association be-
tween a variable name and its value. It is represented by an association list of tuples
(name,value):
# type environment = (string * value) list ; ;


The variable name is used to access its value. Variable modification modifies the asso-
ciation.


Flow control commands, conditional or unconditional, specify the number of the next
line to execute. By default, it is the next line. To do this, it is necessary to remember
the number of the current line.


The list of commands representing the program being edited under the toplevel is not
an efficient data structure for running the program. Indeed, it is then necessary to look
at the whole list of lines to find the line indicated by a flow control command (If and
goto). Replacing the list of lines with an array of commands allows direct access to the
command following a flow control command, using the array index instead of the line
number in the flow control command. This solution requires some preprocessing called
assembly before executing a RUN command. For reasons that will be detailed shortly, a
program after assembly is not represented as an array of commands but as an array of
lines:
# type code = line array ; ;


As in the calculator example of previous chapters, the interpreter uses a state that is
modified for each command evaluation. At each step, we need to remember the whole
program, the next line to interpret and the values of the variables. The program being
interpreted is not exactly the one that was entered in the toplevel: instead of a list of
commands, it is an array of commands. Thus the state of a program during execution
is:
# type state exec = { line:int ; xprog:code ; xenv:environment } ; ;


Two different reasons may lead to an error during the evaluation of a line: an error
while computing an expression, or branching to an absent line. They must be dealt with
so that the interpreter exits nicely, printing an error message. We define an exception
as well as a function to raise it, indicating the line where the error occurred.
# exception RunError of int


let runerr n = raise (RunError n) ; ;


exception RunError of int


val runerr : int -> ’a = <fun>
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Assembly Assembling a program that is a list of numbered lines (type program) con-
sists of transforming this list into an array and modifying the flow control commands.
This last modification only needs an association table between line numbers and array
indexes. This is easily provided by storing lines (with their line numbers), instead of
commands, in the array: to find the association between a line number and the index
in the array, we look the line number up in the array and return the corresponding
index. If no line is found with this number, the index returned is -1.
# exception Result lookup index of int ; ;


exception Result_lookup_index of int


# let lookup index tprog num line =


try


for i=0 to (Array.length tprog)-1 do


let num i = tprog.(i).num


in if num i=num line then raise (Result lookup index i)


else if num i>num line then raise (Result lookup index (-1))


done ;


(-1 )


with Result lookup index i → i ; ;


val lookup_index : line array -> int -> int = <fun>


# let assemble prog =


let tprog = Array.of list prog in


for i=0 to (Array.length tprog)-1 do


match tprog.(i).cmd with


Goto n → let index = lookup index tprog n


in tprog.(i) <- { tprog.(i) with cmd = Goto index }
| If(c,n) → let index = lookup index tprog n


in tprog.(i) <- { tprog.(i) with cmd = If (c,index) }
| _ → ()


done ;


tprog ; ;


val assemble : line list -> line array = <fun>


Expression evaluation The evaluation function does a depth-first traversal on the
abstract syntax tree, and executes the operations indicated at each node.


The RunError exception is raised in case of type inconsistency, division by zero, or an
undeclared variable.
# let rec eval exp n envt expr = match expr with


ExpInt p → Vint p


| ExpVar v → ( try List.assoc v envt with Not found → runerr n )


| ExpUnr (UMINUS,e) →
( match eval exp n envt e with


Vint p → Vint (-p)


| _ → runerr n )


| ExpUnr (NOT,e) →
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( match eval exp n envt e with


Vbool p → Vbool (not p)


| _ → runerr n )


| ExpStr s → Vstr s


| ExpBin (e1,op,e2)


→ match eval exp n envt e1 , op , eval exp n envt e2 with


Vint v1 , PLUS , Vint v2 → Vint (v1 + v2)


| Vint v1 , MINUS , Vint v2 → Vint (v1 - v2)


| Vint v1 , MULT , Vint v2 → Vint (v1 * v2)


| Vint v1 , DIV , Vint v2 when v2<>0 → Vint (v1 / v2)


| Vint v1 , MOD , Vint v2 when v2<>0 → Vint (v1 mod v2)


| Vint v1 , EQUAL , Vint v2 → Vbool (v1 = v2)


| Vint v1 , DIFF , Vint v2 → Vbool (v1 <> v2)


| Vint v1 , LESS , Vint v2 → Vbool (v1 < v2)


| Vint v1 , GREAT , Vint v2 → Vbool (v1 > v2)


| Vint v1 , LESSEQ , Vint v2 → Vbool (v1 <= v2)


| Vint v1 , GREATEQ , Vint v2 → Vbool (v1 >= v2)


| Vbool v1 , AND , Vbool v2 → Vbool (v1 && v2)


| Vbool v1 , OR , Vbool v2 → Vbool (v1 || v2)


| Vstr v1 , PLUS , Vstr v2 → Vstr (v1 ^ v2)


| _ , _ , _ → runerr n ; ;


val eval_exp : int -> (string * value) list -> expression -> value = <fun>


Command evaluation To evaluate a command, we need a few additional functions.


We add an association to an environment by removing a previous association for the
same variable name if there is one:
# let rec add v e env = match env with


[] → [v,e]


| (w,f) :: l → if w=v then (v,e) :: l else (w,f) :: (add v e l) ; ;


val add : ’a -> ’b -> (’a * ’b) list -> (’a * ’b) list = <fun>


A function that prints the value of an integer or string is useful for evaluation of the
PRINT command.
# let print value v = match v with


Vint n → print int n


| Vbool true → print string "true"


| Vbool false → print string "false"


| Vstr s → print string s ; ;


val print_value : value -> unit = <fun>
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The execution of a command corresponds to a transition from one state to another.
More precisely, the environment is modified if the command is an assignment. Further-
more, the next line to execute is always modified. As a convention, if the next line to
execute does not exist, we set its value to -1
# let next line state =


let n = state.line+1 in


if n < Array.length state.xprog then n else -1 ; ;


val next_line : state_exec -> int = <fun>


# let eval cmd state =


match state.xprog.(state.line).cmd with


Rem _ → { state with line = next line state }
| Print e → print value (eval exp state.line state.xenv e) ;


print newline () ;


{ state with line = next line state }
| Let(v,e) → let ev = eval exp state.line state.xenv e


in { state with line = next line state ;


xenv = add v ev state.xenv }
| Goto n → { state with line = n }
| Input v → let x = try read int ()


with Failure "int_of_string" → 0


in { state with line = next line state;


xenv = add v (Vint x) state.xenv }
| If (t,n) → match eval exp state.line state.xenv t with


Vbool true → { state with line = n }
| Vbool false → { state with line = next line state }
| _ → runerr state.line ; ;


val eval_cmd : state_exec -> state_exec = <fun>


On each call of the transition function eval cmd, we look up the current line, run it,
then set the number of the next line to run as the current line. If the last line of the
program is reached, the current line is given the value -1. This will tell us when to
stop.


Program evaluation We recursively apply the transition function until we reach a
state where the current line number is -1.
# let rec run state =


if state.line = -1 then state else run (eval cmd state) ; ;


val run : state_exec -> state_exec = <fun>


Finishing touches


The only thing left to do is to write a small editor and to plug together all the functions
we wrote in the previous sections.
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The insert function adds a new line in the program at the requested place.
# let rec insert line p = match p with


[] → [line]


| l :: prog →
if l.num < line.num then l :: (insert line prog)


else if l.num=line.num then line :: prog


else line :: l :: prog ; ;


val insert : line -> line list -> line list = <fun>


The print prog function prints the source code of a program.
# let print prog prog =


let print line x = print string (pp line x) ; print newline () in


print newline () ;


List.iter print line prog ;


print newline () ; ;


val print_prog : line list -> unit = <fun>


The one command function processes the insertion of a line or the execution of a com-
mand. It modifies the state of the toplevel loop, which consists of a program and an
environment. This state, represented by the loop state type, is different from the
evaluation state.
# type loop state = { prog:program; env:environment } ; ;


# exception End ; ;


# let one command state =


print string "> " ; flush stdout ;


try


match parse (input line stdin) with


Line l → { state with prog = insert l state.prog }
| List → (print prog state.prog ; state )


| Run


→ let tprog = assemble state.prog in


let xstate = run { line = 0; xprog = tprog; xenv = state.env } in


{state with env = xstate.xenv }
| PEnd → raise End


with


LexerError → print string "Illegal character\n"; state


| ParseError → print string "syntax error\n"; state


| RunError n →
print string "runtime error at line ";


print int n ;


print string "\n";


state ; ;


val one_command : loop_state -> loop_state = <fun>
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The main function is the go function, which starts the toplevel loop of our Basic.
# let go () =


try


print string "Mini-BASIC version 0.1\n\n";


let rec loop state = loop (one command state) in


loop { prog = [] ; env = [] }
with End → print string "See you later...\n"; ;


val go : unit -> unit = <fun>


The loop is implemented by the local function loop. It stops when the End exception
is raised by the one command function.


Example: C+/C-


We return to the example of the C+/C- game described in chapter 3, page 78. Here is
the Basic program corresponding to that Objective Caml program:


10 PRINT "Give the hidden number: "
20 INPUT N
30 PRINT "Give a number: "
40 INPUT R
50 IF R = N THEN 110
60 IF R < N THEN 90
70 PRINT "C-"
80 GOTO 30
90 PRINT "C+"
100 GOTO 30
110 PRINT "CONGRATULATIONS"


And here is a sample run of this program.


> RUN
Give the hidden number:
64
Give a number:
88
C-
Give a number:
44
C+
Give a number:
64
CONGRATULATIONS
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Further work


The Basic we implemented is minimalist. If you want to go further, the following
exercises hint at some possible extensions.


1. Floating-point numbers: as is, our language only deals with integers, strings and
booleans. Add floats, as well as the corresponding arithmetic operations in the
language grammar. We need to modify not only parsing, but also evaluation,
taking into account the implicit conversions between integers and floats.


2. Arrays: Add to the syntax the command DIM var[x] that declares an array var
of size x, and the expression var[i] that references the ith element of the array
var.


3. Toplevel directives: Add the toplevel directives SAVE "file name" and LOAD
"file name" that save a Basic program to the hard disk, and load a Basic pro-
gram from the hard disk, respectively.


4. Sub-program: Add sub-programs. The GOSUB line number command calls a sub-
program by branching to the given line number while storing the line from where
the call is made. The RETURN command resumes execution at the line following
the last GOSUB call executed, if there is one, or exits the program otherwise.
Adding sub-programs requires evaluation to manage not only the environement
but also a stack containing the return addresses of the current GOSUB calls. The
GOSUB command adds the possibility of defining recursive sub-programs.


Minesweeper


Let us briefly recall the object of this game: to explore a mine field without stepping
on one. A mine field is a two dimensional array (a matrix) where some cells contain
hidden mines while others are empty. At the beginning of the game, all the cells are
closed and the player must open them one after another. The player wins when he
opens all the cells that are empty.


Every turn, the player may open a cell or flag it as containing a mine. If he opens
a cell that contains a mine, it blows up and the player loses. If the cell is empty, its
appearance is modified and the number of mines in the 8 neighbor cells is displayed
(thus at most 8). If the player decides to flag a cell, he cannot open it until he removes
the flag.


We split the implementation of the game into three parts.


1. The abstract game, including the internal representation of the mine field as well
as the functions manipulating this representation.


2. The graphical part of the game, including the function for displaying cells.


3. The interaction between the program and the player.
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Figure 6.5: Screenshot.


The abstract mine field


This part deals with the mine field as an abstraction only, and does not address its
display.


Configuration A mine field is defined by its dimensions and the number of mines it
contains. We group these three pieces of data in a record and define a default configu-
ration: 10× 10 cells and 15 mines.
# type config = {


nbcols : int ;


nbrows : int ;


nbmines : int }; ;
# let default config = { nbcols=10; nbrows=10; nbmines=15 } ; ;


The mine field It is natural to represent the mine field as a two dimensional array.
However, it is still necessary to specify what the cells are, and what information their
encoding should provide. The state of a cell should answer the following questions:







178 Chapter 6 : Applications


• is there a mine in this cell?


• is this cell opened (has it been seen)?


• is this cell flagged?


• how many mines are there in neighbor cells?


The last item is not mandatory, as it is possible to compute it when it is needed.
However, it is simpler to do this computation once at the beginning of the game.


We represent a cell with a record that contains these four pieces of data.
# type cell = {


mutable mined : bool ;


mutable seen : bool ;


mutable flag : bool ;


mutable nbm : int


} ; ;


The two dimensional array is an array of arrays of cells:
# type board = cell array array ; ;


An iterator In the rest of the program, we often need to iterate a function over all
the cells of the mine field. To do it generically, we define the operator iter cells that
applies the function f, given as an argument, to each cell of the board defined by the
configuration cf.
# let iter cells cf f =


for i=0 to cf.nbcols-1 do for j=0 to cf.nbrows-1 do f (i,j) done done ; ;


val iter_cells : config -> (int * int -> ’a) -> unit = <fun>


This is a good example of a mix between functional and imperative programming styles,
as we use a higher order function (a function taking another function as an argument)
to iterate a function that operates through side effects (as it returns no value).


Initialization We randomly choose which cells are mines. If c and r are respectively
the number of columns and rows of the mine field, and m the number of mines, we
need to generate m different numbers between 1 and c× r. We suppose that m ≤ c× r
to define the algorithm, but the program using it will need to check this condition.


The straightforward algorithm consists of starting with an empty list, picking a random
number and putting it in the list if it is not there already, and repeating this until the
list contains m numbers. We use the following functions from the Random and Sys
modules:


• Random.int: int -> int, picks a number between 0 and n−1 (n is the argument)
according to a random number generator;


• Random.init: int -> unit, initializes the random number generator;
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• Sys.time: unit -> float, returns the number of milliseconds of processor time
the program used since it started. This function will be used to initialize the
random number generator with a different seed for each game.


The modules containing these functions are described in more details in chapter 8,
pages 216 and 234.


The random mine placement function receives the number of cells (cr) and the number
of mines to place (m), and returns a list of linear positions for the m mines.
# let random list mines cr m =


let cell list = ref []


in while (List.length !cell list) < m do


let n = Random.int cr in


if not (List.mem n !cell list) then cell list := n :: !cell list


done ;


!cell list ; ;


val random_list_mines : int -> int -> int list = <fun>


With such an implementation, there is no upper bound on the number of steps the
function takes to terminate. If the random number generator is reliable, we can only
insure that the probability it does not terminate is zero. However, all experimental uses
of this function have never failed to terminate. Thus, even though it is not guaranteed
that it will terminate, we will use it to generate the list of mined cells.


We need to initialize the random number generator so that each run of the game does
not use the same mine field. We use the processor time since the beginning of the
program execution to initialize the random number generator.
# let generate seed () =


let t = Sys.time () in


let n = int of float (t*.1000.0)


in Random.init(n mod 100000) ; ;


val generate_seed : unit -> unit = <fun>


In practice, a given program very often takes the same execution time, which results
in a similar result for generate seed for each run. We ought to use the Unix.time
function (see chapter 18).


We very often need to know the neighbors of a given cell, during the initialization of
the mine field as well as during the game. Thus we write a neighbors function. This
function must take into account the side and corner cells that have fewer neighbors
than the middle ones (function valid).
# let valid cf (i,j) = i>=0 && i<cf.nbcols && j>=0 && j<cf.nbrows ; ;


val valid : config -> int * int -> bool = <fun>


# let neighbors cf (x,y) =


let ngb = [x-1,y-1; x-1,y; x-1,y+1; x,y-1; x,y+1; x+1,y-1; x+1,y; x+1,y+1]


in List.filter (valid cf) ngb ; ;


val neighbors : config -> int * int -> (int * int) list = <fun>


The initialize board function creates the initial mine field. It proceeds in four steps:
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1. generation of the list of mined cells;


2. creation of a two dimensional array containing different cells;


3. setting of mined cells in the board;


4. computation of the number of mines in neighbor cells for each cell that is not
mined.


The function initialize board uses a few local functions that we briefly describe.


cell init : creates an initial cell value;


copy cell init : puts a copy of the initial cell value in a cell of the board;


set mined : puts a mine in a cell;


count mined adj : computes the number of mines in the neighbors of a given cell;


set count : updates the number of mines in the neighbors of a cell if it is not mined.


# let initialize board cf =


let cell init () = { mined=false; seen=false; flag=false; nbm=0 } in


let copy cell init b (i,j) = b.(i).(j) <- cell init () in


let set mined b n = b.(n / cf.nbrows).(n mod cf.nbrows).mined <- true


in


let count mined adj b (i,j) =


let x = ref 0 in


let inc if mined (i,j) = if b.(i).(j).mined then incr x


in List.iter inc if mined (neighbors cf (i,j)) ;


!x


in


let set count b (i,j) =


if not b.(i).(j).mined


then b.(i).(j).nbm <- count mined adj b (i,j)


in


let list mined = random list mines (cf.nbcols*cf.nbrows) cf.nbmines in


let board = Array.make matrix cf.nbcols cf.nbrows (cell init ())


in iter cells cf (copy cell init board) ;


List.iter (set mined board) list mined ;


iter cells cf (set count board) ;


board ; ;


val initialize_board : config -> cell array array = <fun>


Opening a cell During a game, when the player opens a cell whose neighbors are
empty (none contains a mine), he knows that he can open the neighboring cells without
risk, and he can keep opening cells as long as he opens cells without any mined neighbor.
In order to relieve the player of this boring process (as it is not challenging at all), our
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Minesweeper opens all these cells itself. To this end, we write the function cells to see
that returns a list of all the cells to open when a given cell is opened.


The algorithm needed is simple to state: if the opened cell has some neighbors that
contain a mine, then the list of cells to see consists only of the opened cell; otherwise,
the list of cells to see consists of the neighbors of the opened cell, as well as the lists of
cells to see of these neighbors. The difficulty is in writing a program that does not loop,
as every cell is a neighbor of any of its neighbors. We thus need to avoid processing
the same cell twice.
To remember which cells were processed, we use the array of booleans visited. Its
size is the same as the mine field. The value true for a cell of this array denotes that
it was already visited. We recurse only on cells that were not visited.


We use the auxiliary function relevant that computes two sublists from the list of
neighbors of a cell. Each one of these lists only contains cells that do not contain a mine,
that are not opened, that are not flagged by the player, and that were not visited. The
first sublist is the list of neighboring cells who have at least one neighbor containing a
mine; the second sublist is the list of neighboring cells whose neighbors are all empty.
As these lists are computed, all these cells are marked as visited. Notice that flagged
cells are not processed, as a flag is meant to prevent opening a cell.


The local function cells to see rec implements the recursive search loop. It takes as
an argument the list of cells to visit, updates it, and returns the list of cells to open.
This function is called with the list consisting only of the cell being opened, after it is
marked as visited.
# let cells to see bd cf (i,j) =


let visited = Array.make matrix cf.nbcols cf.nbrows false in


let rec relevant = function


[] → ([],[])


| ((x,y) as c) :: t →
let cell=bd.(x).(y)


in if cell.mined || cell.flag || cell.seen || visited.(x).(y)


then relevant t


else let (l1,l2) = relevant t


in visited.(x).(y) <- true ;


if cell.nbm=0 then (l1,c :: l2) else (c :: l1,l2)


in


let rec cells to see rec = function


[] → []


| ((x,y) as c) :: t →
if bd.(x).(y).nbm<>0 then c :: (cells to see rec t)


else let (l1,l2) = relevant (neighbors cf c)


in (c :: l1) @ (cells to see rec (l2 @ t))


in visited.(i).(j) <- true ;


cells to see rec [(i,j)] ; ;


val cells_to_see :


cell array array -> config -> int * int -> (int * int) list = <fun>
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At first sight, the argument of cells to see rec may grow between two consecutive
calls, although the recursion is based on this argument. It is legitimate to wonder if
this function always terminates.
The way the visited array is used guarantees that a visited cell cannot be in the
result of the relevant function. Also, all the cells to visit come from the result of the
relevant function. As the relevant function marks as visited all the cells it returns,
it returns each cell at most once, thus a cell may be added to the list of cells to visit at
most once. The number of cells being finite, we deduce that the function terminates.


Except for graphics, we are done with our Minesweeper. Let us take a look at the
programming style we have used. Mutable structures (arrays and mutable record fields)
make us use an imperative style of loops and assignments. However, to deal with
auxiliary issues, we use lists that are processed by functions written in a functional
style. Actually, the programming style is a consequence of the data structure that it
manipulates. The function cells to see is a good example: it processes lists, and it
is natural to write it in a functional style. Nevertheless, we use an array to remember
the cells that were already processed, and we update this array imperatively. We could
use a purely functional style by using a list of visited cells instead of an array, and
check if a cell is in the list to see if it was visited. However, the cost of such a choice
is important (looking up an element in a list is linear in the size of the list, whereas
accessing an array element takes constant time) and it does not make the program
simpler.


Displaying the Minesweeper game


This part depends on the data structures representing the state of the game (see
page 177). It consists of displaying the different components of the Minesweeper win-
dow, as shown in figure 6.6. To this end, we use the box drawing functions seen on
page 126.


The following parameters characterize the components of the graphical window.


# let b0 = 3 ; ;


# let w1 = 15 ; ;


# let w2 = w1 ; ;


# let w4 = 20 + 2*b0 ; ;


# let w3 = w4*default config.nbcols + 2*b0 ; ;


# let w5 = 40 + 2*b0 ; ;


# let h1 = w1 ; ;


# let h2 = 30 ; ;


# let h3 = w5+20 + 2*b0 ; ;


# let h4 = h2 ; ;


# let h5 = 20 + 2*b0 ; ;


# let h6 = w5 + 2*b0 ; ;


We use them to extend the basic configuration of our Minesweeper board (value of type
config). Below, we define a record type window config. The cf field contains the basic
configuration. We associate a box with every component of the display: main window
(field main box), mine field (field field box), dialog window (field dialog box) with
two sub-boxes (fields d1 box and d2 box), flagging button (field flag box) and current
cell (field current box).
# type window config = {


cf : config ;
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Figure 6.6: The main window of Minesweeper.


main box : box config ;


field box : box config ;


dialog box : box config ;


d1 box : box config ;


d2 box : box config ;


flag box : box config ;


mutable current box : box config ;


cell : int*int → (int*int) ;


coor : int*int → (int*int)


} ; ;


Moreover, a record of type window config contains two functions:


• cell: takes the coordinates of a cell and returns the coordinates of the corre-
sponding box;


• coor: takes the coordinates of a pixel of the window and returns the coordinates
of the corresponding cell.
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Configuration We now define a function that builds a graphical configuration (of
type window config) according to a basic configuration (of type config) and the pa-
rameters above. The values of the parameters of some components depend on the value
of the parameters of other components. For instance, the global box width depends on
the mine field width, which, in turn, depends on the number of columns. To avoid
computing the same value several times, we incrementally create the components. This
initialization phase of a graphical configuration is always a little tedious when there is
no adequate primitive or tool available.
# let make box x y w h bw r =


{ x=x; y=y; w=w; h=h; bw=bw; r=r; b1 col=gray1; b2 col=gray3; b col=gray2 } ; ;


val make_box : int -> int -> int -> int -> int -> relief -> box_config =


<fun>


# let make wcf cf =


let wcols = b0 + cf.nbcols*w4 + b0


and hrows = b0 + cf.nbrows*h5 + b0 in


let main box = let gw = (b0 + w1 + wcols + w2 + b0)


and gh = (b0 + h1 + hrows + h2 + h3 + h4 + b0)


in make box 0 0 gw gh b0 Top


and field box = make box w1 h1 wcols hrows b0 Bot in


let dialog box = make box ((main box.w - w3) / 2)


(b0+h1+hrows+h2)


w3 h3 b0 Bot


in


let d1 box = make box (dialog box.x + b0) (b0 + h1 + hrows + h2)


((w3-w5)/2-(2*b0)) (h3-(2*b0)) 5 Flat in


let flag box = make box (d1 box.x + d1 box.w)


(d1 box.y + (h3-h6) / 2) w5 h6 b0 Top in


let d2 box = make box (flag box.x + flag box.w)


d1 box.y d1 box.w d1 box.h 5 Flat in


let current box = make box 0 0 w4 h5 b0 Top


in { cf = cf;


main box = main box; field box=field box; dialog box=dialog box;


d1 box=d1 box;


flag box=flag box; d2 box=d2 box; current box = current box;


cell = (fun (i,j) → ( w1+b0+w4*i , h1+b0+h5*j)) ;


coor = (fun (x,y) → ( (x-w1)/w4 , (y-h1)/h5 )) } ; ;


val make_wcf : config -> window_config = <fun>


Cell display We now need to write the functions to display the cells in their different
states. A cell may be open or closed and may contain some information. We always
display (the box corresponding with) the current cell in the game configuration (field
cc bcf).


We thus write two functions modifying the configuration of the current cell; one closing
it, the other opening it.
# let close ccell wcf i j =
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let x,y = wcf.cell (i,j)


in wcf.current box <- {wcf.current box with x=x; y=y; r=Top} ; ;


val close_ccell : window_config -> int -> int -> unit = <fun>


# let open ccell wcf i j =


let x,y = wcf.cell (i,j)


in wcf.current box <- {wcf.current box with x=x; y=y; r=Flat} ; ;


val open_ccell : window_config -> int -> int -> unit = <fun>


Depending on the game phase, we may need to display some information on the cells.
We write, for each case, a specialized function.


• Display of a closed cell:
# let draw closed cc wcf i j =


close ccell wcf i j;


draw box wcf.current box ; ;


val draw_closed_cc : window_config -> int -> int -> unit = <fun>


• Display of an opened cell with its number of neighbor mines:
# let draw num cc wcf i j n =


open ccell wcf i j ;


draw box wcf.current box ;


if n<>0 then draw string in box Center (string of int n)


wcf.current box Graphics.white ; ;


val draw_num_cc : window_config -> int -> int -> int -> unit = <fun>


• Display of a cell containing a mine:
# let draw mine cc wcf i j =


open ccell wcf i j ;


let cc = wcf.current box


in draw box wcf.current box ;


Graphics.set color Graphics.black ;


Graphics.fill circle (cc.x+cc.w/2) (cc.y+cc.h/2) (cc.h/3) ; ;


val draw_mine_cc : window_config -> int -> int -> unit = <fun>


• Display of a flagged cell containing a mine:
# let draw flag cc wcf i j =


close ccell wcf i j ;


draw box wcf.current box ;


draw string in box Center "!" wcf.current box Graphics.blue ; ;


val draw_flag_cc : window_config -> int -> int -> unit = <fun>


• Display of a wrongly flagged cell:
# let draw cross cc wcf i j =


let x,y = wcf.cell (i,j)


and w,h = wcf.current box.w, wcf.current box.h in


let a=x+w/4 and b=x+3*w/4
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and c=y+h/4 and d=y+3*h/4


in Graphics.set color Graphics.red ;


Graphics.set line width 3 ;


Graphics.moveto a d ; Graphics.lineto b c ;


Graphics.moveto a c ; Graphics.lineto b d ;


Graphics.set line width 1 ; ;


val draw_cross_cc : window_config -> int -> int -> unit = <fun>


During the game, the choice of the display function to use is done by:
# let draw cell wcf bd i j =


let cell = bd.(i).(j)


in match (cell.flag, cell.seen , cell.mined ) with


(true,_,_) → draw flag cc wcf i j


| (_,false,_) → draw closed cc wcf i j


| (_,_,true) → draw mine cc wcf i j


| _ → draw num cc wcf i j cell.nbm ; ;


val draw_cell : window_config -> cell array array -> int -> int -> unit =


<fun>


A specialized function displays all the cells at the end of the game. It is slightly different
from the previous one as all the cells are taken as opened. Moreover, a red cross indicates
the empty cells where the player wrongly put a flag.
# let draw cell end wcf bd i j =


let cell = bd.(i).(j)


in match (cell.flag, cell.mined ) with


(true,true) → draw flag cc wcf i j


| (true,false) → draw num cc wcf i j cell.nbm; draw cross cc wcf i j


| (false,true) → draw mine cc wcf i j


| (false,false) → draw num cc wcf i j cell.nbm ; ;


val draw_cell_end : window_config -> cell array array -> int -> int -> unit =


<fun>


Display of the other components The state of the flagging mode is indicated by
a box that is either at the bottom or on top and that contain either the word ON or
OFF:
# let draw flag switch wcf on =


if on then wcf.flag box.r <- Bot else wcf.flag box.r <- Top ;


draw box wcf.flag box ;


if on then draw string in box Center "ON" wcf.flag box Graphics.red


else draw string in box Center "OFF" wcf.flag box Graphics.blue ; ;


val draw_flag_switch : window_config -> bool -> unit = <fun>
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We display the purpose of the flagging button above it:
# let draw flag title wcf =


let m = "Flagging" in


let w,h = Graphics.text size m in


let x = (wcf.main box.w-w)/2


and y0 = wcf.dialog box.y+wcf.dialog box.h in


let y = y0+(wcf.main box.h-(y0+h))/2


in Graphics.moveto x y ;


Graphics.draw string m ; ;


val draw_flag_title : window_config -> unit = <fun>


During the game, the number of empty cells left to be opened and the number of cells
to flag are displayed in the dialog box, to the left and right of the flagging mode button.


# let print score wcf nbcto nbfc =


erase box wcf.d1 box ;


draw string in box Center (string of int nbcto) wcf.d1 box Graphics.blue ;


erase box wcf.d2 box ;


draw string in box Center (string of int (wcf.cf.nbmines-nbfc)) wcf.d2 box


( if nbfc>wcf.cf.nbmines then Graphics.red else Graphics.blue ) ; ;


val print_score : window_config -> int -> int -> unit = <fun>


To draw the initial mine field, we need to draw (number of rows) × (number of columns)
times the same closed cell. It is always the same drawing, but it may take a long time,
as it is necessary to draw a rectangle as well as four trapezoids. To speed up this
initialization, we draw only one cell, take the bitmap corresponding to this drawing,
and paste this bitmap into every cell.
# let draw field initial wcf =


draw closed cc wcf 0 0 ;


let cc = wcf.current box in


let bitmap = draw box cc ; Graphics.get image cc.x cc.y cc.w cc.h in


let draw bitmap (i,j) = let x,y=wcf.cell (i,j)


in Graphics.draw image bitmap x y


in iter cells wcf.cf draw bitmap ; ;


val draw_field_initial : window_config -> unit = <fun>


At the end of the game, we open the whole mine field while putting a red cross on cells
wrongly flagged:
# let draw field end wcf bd =


iter cells wcf.cf (fun (i,j) → draw cell end wcf bd i j) ; ;


val draw_field_end : window_config -> cell array array -> unit = <fun>


Finally, the main display function called at the beginning of the game opens the graph-
ical context and displays the initial state of all the components.
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# let open wcf wcf =


Graphics.open graph ( " " ^ (string of int wcf.main box.w) ^ "x" ^


(string of int wcf.main box.h) ) ;


draw box wcf.main box ;


draw box wcf.dialog box ;


draw flag switch wcf false ;


draw box wcf.field box ;


draw field initial wcf ;


draw flag title wcf ;


print score wcf ((wcf.cf.nbrows*wcf.cf.nbcols)-wcf.cf.nbmines) 0 ; ;


val open_wcf : window_config -> unit = <fun>


Notice that all the display primitives are parameterized by a graphical configuration of
type window config. This makes them independent of the layout of the components
of our Minesweeper. If we wish to modify the layout, the code still works without any
modification, only the configuration needs to be updated.


Interaction with the player


We now list what the player may do:


• he may click on the mode box to change mode (opening or flagging),


• he may click on a cell to open it or flag it,


• he may hit the ’q’ key to quit the game.


Recall that a Graphic event (Graphics.event) must be associated with a record
(Graphics.status) that contains the current information on the mouse and keyboard
when the event occurs. An interaction with the mouse may happen on the mode but-
ton, or on a cell of the mine field. Every other mouse event must be ignored. In order
to differentiate these mouse events, we create the type:
# type clickon = Out | Cell of (int*int) | SelectBox ; ;


Also, pressing the mouse button and releasing it are two different events. For a click
to be valid, we require that both events occur on the same component (the flagging
mode button or a cell of the mine field).
# let locate click wcf st1 st2 =


let clickon of st =


let x = st.Graphics.mouse x and y = st.Graphics.mouse y


in if x>=wcf.flag box.x && x<=wcf.flag box.x+wcf.flag box.w &&


y>=wcf.flag box.y && y<=wcf.flag box.y+wcf.flag box.h


then SelectBox


else let (x2,y2) = wcf.coor (x,y)


in if x2>=0 && x2<wcf.cf.nbcols && y2>=0 && y2<wcf.cf.nbrows


then Cell (x2,y2) else Out


in
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let r1=clickon of st1 and r2=clickon of st2


in if r1=r2 then r1 else Out ; ;


val locate_click :


window_config -> Graphics.status -> Graphics.status -> clickon = <fun>


The heart of the program is the event waiting and processing loop defined in the
function loop. It is similar to the function skel described page 133, but specifies the
mouse events more precisely. The loop ends when:


• the player presses the q or Q key, meaning that he wants to end the game;


• the player opens a cell containing a mine, then he loses;


• the player has opened all the cell that are empty, then he wins the game.


We gather in a record of type minesw cf the information useful for the interface:
# type minesw cf =


{ wcf : window config; bd : cell array array;


mutable nb flagged cells : int;


mutable nb hidden cells : int;


mutable flag switch on : bool } ; ;


The meaning of the fields is:


• wcf: the graphical configuration;


• bd: the board;


• flag switch on: a boolean indicating whether flagging mode or opening mode
is on;


• nb flagged cells: the number of flagged cells;


• nb hidden cells: the number of empty cells left to open;


The main loop is implemented this way:
# let loop d f init f key f mouse f end =


f init () ;


try


while true do


let st = Graphics.wait next event


[Graphics.Button down;Graphics.Key pressed]


in if st.Graphics.keypressed then f key st.Graphics.key


else let st2 = Graphics.wait next event [Graphics.Button up]


in f mouse (locate click d.wcf st st2)


done


with End → f end () ; ;


val loop :


minesw_cf ->


(unit -> ’a) -> (char -> ’b) -> (clickon -> ’b) -> (unit -> unit) -> unit =


<fun>
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The initialization function, cleanup function and keyboard event processing function
are very simple.
# let d init d () = open wcf d.wcf


let d end () = Graphics.close graph ()


let d key c = if c=’q’ || c=’Q’ then raise End; ;


val d_init : minesw_cf -> unit -> unit = <fun>


val d_end : unit -> unit = <fun>


val d_key : char -> unit = <fun>


However, the mouse event processing function requires the use of some auxiliary func-
tions:


• flag cell: when clicking on a cell with flagging mode on.


• ending: when ending the game. The whole mine field is revealed, we display a
message indicating whether the game was won or lost, and we wait for a mouse
or keyboard event to quit the application.


• reveal: when clicking on a cell with opening mode on (i.e. flagging mode off).


# let flag cell d i j =


if d.bd.(i).(j).flag


then ( d.nb flagged cells <- d.nb flagged cells -1;


d.bd.(i).(j).flag <- false )


else ( d.nb flagged cells <- d.nb flagged cells +1;


d.bd.(i).(j).flag <- true );


draw cell d.wcf d.bd i j;


print score d.wcf d.nb hidden cells d.nb flagged cells; ;


val flag_cell : minesw_cf -> int -> int -> unit = <fun>


# let ending d str =


draw field end d.wcf d.bd;


erase box d.wcf.flag box;


draw string in box Center str d.wcf.flag box Graphics.black;


ignore(Graphics.wait next event


[Graphics.Button down;Graphics.Key pressed]);


raise End; ;


val ending : minesw_cf -> string -> ’a = <fun>


# let reveal d i j =


let reveal cell (i,j) =


d.bd.(i).(j).seen <- true;


draw cell d.wcf d.bd i j;


d.nb hidden cells <- d.nb hidden cells -1


in


List.iter reveal cell (cells to see d.bd d.wcf.cf (i,j));


print score d.wcf d.nb hidden cells d.nb flagged cells;


if d.nb hidden cells = 0 then ending d "WON"; ;
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val reveal : minesw_cf -> int -> int -> unit = <fun>


The mouse event processing function matches a value of type clickon.
# let d mouse d click = match click with


Cell (i,j) →
if d.bd.(i).(j).seen then ()


else if d.flag switch on then flag cell d i j


else if d.bd.(i).(j).flag then ()


else if d.bd.(i).(j).mined then ending d "LOST"


else reveal d i j


| SelectBox →
d.flag switch on <- not d.flag switch on;


draw flag switch d.wcf d.flag switch on


| Out → () ; ;


val d_mouse : minesw_cf -> clickon -> unit = <fun>


To create a game configuration, three parameters are needed: the number of columns,
the number of rows, and the number of mines.
# let create minesw nb c nb r nb m =


let nbc = max default config.nbcols nb c


and nbr = max default config.nbrows nb r in


let nbm = min (nbc*nbr) (max 1 nb m) in


let cf = { nbcols=nbc ; nbrows=nbr ; nbmines=nbm } in


generate seed () ;


let wcf = make wcf cf in


{ wcf = wcf ;


bd = initialize board wcf.cf;


nb flagged cells = 0;


nb hidden cells = cf.nbrows*cf.nbcols-cf.nbmines;


flag switch on = false } ; ;


val create_minesw : int -> int -> int -> minesw_cf = <fun>


The launch function creates a configuration according to the numbers of columns, rows,
and mines, before calling the main event processing loop.
# let go nbc nbr nbm =


let d = create minesw nbc nbr nbm in


loop d (d init d) d key (d mouse d) (d end); ;


val go : int -> int -> int -> unit = <fun>


The function call go 10 10 10 builds and starts a game of the same size as the one
depicted in figure 6.5.
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Exercises


This program can be built as a standalone executable program. Chapter 7 explains
how to do this. Once it is done, it is useful to be able to specify the size of the game
on the command line. Chapter 8 describes how to get command line arguments in an
Objective Caml program, and applies it to our minesweeper (see page 236).


Another possible extension is to have the machine play to discover the mines. To do
this, one needs to be able to find the safe moves and play them first, then compute the
probabilities of presence of a mine and open the cell with the smallest probability.
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Development Tools
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We describe the set of elements of the environment included in the language distribu-
tion. There one finds different compilers, numerous libraries, program analysis tools,
lexical and syntactic analysis tools, and an interface with the C language.


Objective Caml is a compiled language offering two types of code generation:


1. bytecode to be executed by a virtual machine;


2. native code to be executed directly by a microprocessor.


The Objective Caml toplevel uses bytecode to execute the phrases submitted to it.
It constitutes the primary development aid, offering the possibility of rapid typing,
compilation and testing of function definitions. Moreover, it offers a trace mechanism
visualizing parameter values and return values of functions.


The other usual development tools are supplied by the distribution as well: file de-
pendency computation, debugging and profiling. The debugger allows one to execute
programs step-by-step, use breakpoints and inspect values. The profiling tool gives
measurements of the number of calls or the amount of time spent in a particular
function or a particular part of the code. These two tools are only available for Unix
platforms.


The richness of a language derives from its core but also from the libraries, sets of
reusable programs, which come with it. Objective Caml is no exception to the rule.
We have already portrayed to a large extent the graphical library that comes with
the distribution. There are many others which we will describe. Libraries bring new
functionality to the language, but they are not without drawbacks. In particular, they
can present some difficulty vis-a-vis the type discipline.


However rich a language’s set of libraries may be, it will always be necessary that
it be able to communicate with another language. The Objective Caml distribution
includes an interface with the C language allowing Objective Caml to call C functions
or be called by them. The difficulty of understanding and implementing this interface
lies in the fact that the memory models of Objective Caml and C are different. The
essential reason for this difference is that an Objective Caml program includes a garbage
collection mechanism.


C as well as Objective Caml allow dynamic memory allocation, and thus fine control
over space according to the needs of a program. This only makes sense if unused space
can be reclaimed for other use during the course of execution. Garbage collection frees
the programmer from responsibility for managing deallocation, a frequent source of
execution errors. This feature constitutes one of the safety elements of the Objective
Caml language.


However, this mechanism has an impact on the representation of data. Also, knowl-
edge of the guiding principles of memory management is indispensable in order to use
communication between the Objective Caml world and the C world correctly.
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Chapter 7 presents the basic elements of the Objective Caml system: virtual ma-
chine, compilers, and execution library. It describes the language’s different compilation
modes and compares their portability and efficiency.


Chapter 8 gives a bird’s-eye view of the set of predefined types, functions, and excep-
tions that come with the system distribution. It does not do away with the need to
read the reference manual ([LRVD99]) which describes these libraries very well. On
the contrary it focuses on the new functionalities supplied by some of them. In partic-
ular we may mention output formatting, persistence of values and interfacing with the
operating system.


Chapter 9 presents different garbage collection methods in order to then describe the
mechanism used by Objective Caml.


Chapter 10 presents debugging tools for Objective Caml programs. Although still some-
what frustrating in some respects, these tools quite often allow one to understand why
a program does not work.


Chapter 11 describes the language’s different approaches to lexical and syntactic anal-
ysis problems: a regular expression library, the ocamlex and ocamlyacc tools, but also
the use of streams.


Chapter 12 describes the interface with the C language. It is no longer possible for a
language to be completely isolated from other languages. This interface lets an Objec-
tive Caml program call a C function, while passing it values from the Objective Caml
world, and vice-versa. The main difficulty with this interface stems from the memory
model. For this reason it is recommended that you read the 9 chapter beforehand.


Chapter 13 covers two applications: an improved graphics library based on a hierarchi-
cal model of graphical components inspired by the JAVA AWT2; and a classic program
to find least-cost paths in a graph using our new graphical interface as well as a cache
memory mechanism.


2. Abstract Windowing Toolkit







7
Compilation and


Portability


The transformation from human readable source code to an executable requires a
number of steps. Together these steps constitute the process of compilation. The com-
pilation process produces an abstract syntax tree (for an example, see page 159) and a
sequence of instructions for a cpu or virtual machine. In Objective Caml, the product of
compilation is linked with the Objective Caml runtime library. The library is provided
with the compiler distribution and is adapted to different host environments (operating
system and CPU). The runtime library contains primitive functions such as operations
over numbers, the interface to the operating system, and memory management.


Objective Caml has two compilers. The first compiler produces bytecode for the Objec-
tive Caml virtual machine. The second compiler generates instructions for a number
of “real” processors, such as the Intel, Motorola, SPARC, HP-PA, Power-PC
and Alpha CPUs. The Objective Caml bytecode compiler produces compact portable
code, while the native-code compiler generates high performance architecture depen-
dent code. The Objective Caml toplevel system, which appeared in the first part of
this book, uses the bytecode compiler; each user input is compiled and executed in the
symbolic environment defined by the current interactive session.


Chapter Overview


This chapter presents the different ways to compile an Objective CAML program
and compares their portability and efficiency. The first section explains the different
steps of Objective Caml compilation. The second section describes the different types
of compilation and the syntax for the production of executables. The third section
shows how to construct standalone executables - programs which are independent of
an installation of the Objective Caml system. Finally the fourth section compares the
different types of compilation with respect to portability and efficiency of execution.
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Steps of Compilation


An executable file is obtained by translating and linking as described in figure 7.1.


Source program


preprocessing ↓
Source program


compiling ↓
Assembly program


assembling ↓
Machine instructions


linking ↓
Executable code


Figure 7.1: Steps in the production of an executable.


To start off, preprocessing replaces certain pieces of text by other text according to
a system of macros. Next, compilation translates the source program into assembly
instructions, which are then converted to machine instructions. Finally, the linking
process establishes a connection to the operating system for primitives. This includes
adding the runtime library, which mainly consists of memory management routines.


The Objective Caml Compilers


The code generation phases of the Objective Caml compiler are detailed in figure
7.2. The internal representation of the code generated by the compiler is called an
intermediate language (IL).


The lexical analysis stage transforms a sequence of characters to a sequence of lexical
elements. These lexical entities correspond principally to integers, floating point num-
bers, characters, strings of characters and identifiers. The message Illegal character
might be generated by this analysis.


The parsing stage constructs a syntax tree and verifies that the sequence of lexi-
cal elements is correct with respect to the grammar of the language. The message
Syntax error indicates that the phrase analyzed does not follow the grammar of the
language.


The semantic analysis stage traverses the syntax tree, checking another aspect of pro-
gram correctness. The analysis consists principally of type inference, which if successful,
produces the most general type of an expression or declaration. Type error messages
may occur during this phase. This stage also detects whether any members of a sequence
are not of type unit. Other warnings may result, including pattern matching analy-
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Sequence of characters


lexical analysis ↓
Sequence of lexical elements


parsing ↓
Syntax tree


semantic analysis ↓
Annotated syntax tree


generation of intermediate code ↓
Sequence of IL


optimization of intermediate code ↓
Sequence of IL


generation of pseudo code ↓
Assembly program


Figure 7.2: Compilation stages.


sis (e.g pattern matching is not exhaustive, part of pattern matching will
not be used).


Generation and the optimization of intermediate code does not produce errors or warn-
ing messages.


The final step in the compilation process is the generation of a program binary. Details
differ from compiler to compiler.


Description of the Bytecode Compiler


The Objective Caml virtual machine is called Zinc (“Zinc Is Not Caml”). Originally
created by Xavier Leroy, Zinc is described in ([Ler90]). Zinc’s name was chosen to
indicate its difference from the first implementation of Caml on the virtual machine
CAM (Categorical Abstract Machine, see [CCM87]).


Figure 7.3 depicts the bytecode compiler. The first part of this figure shows the Zinc
machine interpreter, linked to the runtime library. The second part corresponds to the
Objective Caml bytecode compiler which produces instructions for the Zinc machine.
The third part contains the set of libraries that come with the compiler. They will be
described in Chapter 8. Standard compiler graphical notation is used for describing
the components in figure 7.3. A simple box represents a file written in the language
indicated in the box. A double box represents the interpretation of a language by a
program written in another language. A triple box indicates that a source language
is compiled to a machine language by using a compiler written in a third language.
Figure 7.4 gives the legend of each box.


The legend of figure 7.3 is as follows:
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Figure 7.3: Virtual machine.


interpreter of source language SL written in the implementation language IL


written in the implementation language IL


SL


IL


IL


TLSL


SL program written in source language (SL)


compilation of source language SL towards target language TL


Figure 7.4: Graphical notation for interpreters and compilers.


• BC : Zinc bytecode;


• C : C code;


• .o : object code


• µ : micro-processor;
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• OC (v1 or v2) : Objective Caml code.


Note
The majority of the Objective Caml compiler is written in Objective Caml.
The second part of figure 7.3 shows how to pass from version v1 of a
compiler to version v2.


Compilation


The distribution of a language depends on the processor and the operating system. For
each architecture, a distribution of Objective Caml contains the toplevel system, the
bytecode compiler, and in most cases a native compiler.


Command Names


The figure 7.5 shows the command names of the different compilers in the various Ob-
jective Caml distributions. The first four commands are available for all distributions.


ocaml toplevel loop
ocamlrun bytecode interpreter
ocamlc bytecode batch compiler
ocamlopt native code batch compiler


ocamlc.opt optimized bytecode batch compiler
ocamlopt.opt optimized native code batch compiler


ocamlmktop new toplevel constructor


Figure 7.5: Commands for compiling.


The optimized compilers are themselves compiled with the Objective Caml native com-
piler. They compile faster but are otherwise identical to their unoptimized counterparts.


Compilation Unit


A compilation unit corresponds to the smallest piece of an Objective Caml program
that can be compiled. For the interactive system, the unit of compilation corresponds
to a phrase of the language. For the batch compiler, the unit of compilation is two files:
the source file, and the interface file. The interface file is optional - if it does not exist,
then all global declarations in the source file will be visible to other compilation units.
The construction of interface files is described in the chapter on module programming
(see chapter 14). The two file types (source and interface) are differentiated by separate
file extensions.
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Naming Rules for File Extensions


Figure 7.6 presents the extensions of different files used for Objective CAML and C
programs.


extension meaning
.ml source file
.mli interface file
.cmo object file (bytecode)
.cma library object file (bytecode)
.cmi compiled interface file
.cmx object file (native)
.cmxa library object file (native)
.c C source file
.o C object file (native)
.a C library object file (native)


Figure 7.6: File extensions.


The files example.ml and example.mli form a compilation unit. The compiled inter-
face file (example.cmi) is used for both the bytecode and native code compiler. The
C language related files are used when integrating C code with Objective Caml code.
(see chapter 12).


The Bytecode Compiler


The general form of the batch compiler commands are:


command options file name


For example:


ocamlc -c example.ml


The command-line options for both the native and bytecode compilers follow typical
Unix conventions. Each option is prefixed by the character -. File extensions are inter-
preted in the manner described by figure 7.6. In the above example, the file example.ml
is considered an Objective Caml source file and is compiled. The compiler will produce
the files example.cmo and example.cmi. The option -c informs the compiler to gen-
erate individual object files, which may be linked at a later time. Without this option,
the compiler will produce an executable file named a.out.


The table in figure 7.7 describes the principal options of the bytecode compiler. The
table in figure 7.8 indicates other possible options.
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Principal options
-a construct a runtime library
-c compile without linking
-o name of executable specify the name of the executable
-linkall link with all libraries used
-i display all compiled global declarations
-pp command uses command as preprocessor
-unsafe turn off index checking
-v display the version of the compiler
-w list choose among the list the level of warning message (see


fig. 7.9)
-impl file indicate that file is a Caml source (.ml)
-intf file indicate that file is a Caml interface (.mli)
-I directory add directory in the list of directories


Figure 7.7: Principal options of the bytecode compiler.


Other options
light process -thread (see chapter 19, page 599)
linking -g, -noassert (see chapter 10, page 271)
standalone executable -custom, -cclib, -ccopt, -cc (see page 207)
runtime -make-runtime , -use-runtime
C interface -output-obj (see chapter 12, page 315)


Figure 7.8: Other options for the bytecode compiler.


To display the list of bytecode compiler options, use the option -help.


The different levels of warning message are described in figure 7.9. A message level is
a switch (enable/disable) represented by a letter. An upper case letter activates the
level and a lower case letter disables it.


Principal levels
A/a enable/disable all messages
F/f partial application in a sequence
P/p for incomplete pattern matching
U/u for missing cases in pattern matching
X/x enable/disable all other messages
for hidden object M/m and V/v (see chapter 15)


Figure 7.9: Description of compilation warnings.
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By default, the highest level (A) is chosen by the compiler.


Example usage of the bytecode compiler is given in figure 7.10.


Figure 7.10: Session with the bytecode compiler.


Native Compiler


The native compiler has behavior similar to the bytecode compiler, but produces dif-
ferent types of files. The compilation options are generally the same as those described
in figures 7.7 and 7.8. It is necessary to take out the options related to runtime in
figure 7.8. Options specific to the native compiler are given in figure 7.11. The different
warning levels are same.


-compact optimize the produced code for space
-S keeps the assembly code in a file
-inline level set the aggressiveness of inlining


Figure 7.11: Options specific to the native compiler.


Inlining is an elaborated version of macro-expansion in the preprocessing stage. For
functions whose arguments are fixed, inlining replaces each function call with the body
of the function called. Several different calls produce several copies of the function
body. Inlining avoids the overhead that comes with function call setup and return, at
the expense of object code size. Principal inlining levels are:


• 0 : The expansion will be done only when it will not increase the size of the object
code.


• 1 : This is the default value; it accepts a light increase on code size.


• n > 1 : Raise the tolerance for growth in the code. Higher values result in more
inlining.
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Toplevel Loop


The toplevel loop provides only two command line options.


• -I directory: adds the indicated directory to the list of search paths for compiled
source files.


• -unsafe: instructs the compiler not to do bounds checking on array and string
accesses.


The toplevel loop provides several directives which can be used to interactively modify
its behavior. They are described in figure 7.12. All these directives begin with the
character # and are terminated by ;;.


#quit ;; quit from the toplevel interaction
#directory directory ;; add the directory to the search path
#cd directory ;; change the working directory
#load object file ;; load an object file (.cmo)
#use source file ;; compile and load a source file
#print depth depth ;; modify the depth of printing
#print length width ;; modify the length of printing
#install printer function ;; specify a printing function
#remove printer function ;; remove a printing function
#trace function ;; trace the arguments of the function
#untrace function ;; stop tracing the function
#untrace all ;; stop all tracing


Figure 7.12: Toplevel loop directives.


The directives dealing with directories respect the conventions of the operating system
used.


The loading directives do not have exactly the same behavior. The directive #use reads
the source file as if it was typed directly in the toplevel loop. The directive #load loads
the file with the extension .cmo. In the later case, the global declarations of this file are
not directly accessible. If the file example.ml contains the global declaration f, then
once the bytecode is loaded (#load "example.cmo";;), it is assumed that the value of
f could be accessed by Example.f, where the first letter of the file is capitalized. This
notation comes from the module system of Objective Caml (see chapter 14, page 405).


The directives for the depth and width of printing are used to control the display of
values. This is useful when it is necessary to display the contents of a value in detail.


The directives for printer redefinition are used to install or remove a user defined print-
ing function for values of a specified type. In order to integrate these printer functions
into the default printing procedure, it is necessary to use the Format library(see chapter
8) for the definition.
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The directives for tracing arguments and results of functions are particularly useful for
debugging programs. They will be discussed in the chapter on program analysis (see
chapter 10).


Figure 7.13 shows a session in the toplevel loop.


Figure 7.13: Session with the toplevel loop.


Construction of a New Interactive System


The command ocamlmktop can be used to construct a new toplevel executable which
has specific library modules loaded by default. For example, ocamlmktop is often used
for pulling native object code libraries (typically written in C) into a new toplevel.


ocamlmktop options are a subset of those used by the bytecode compiler (ocamlc):


-cclib libname, -ccopt option, -custom, -I directory -o executable name


The chapter on graphics programming (see chapter 5, page 117) uses this command
for constructing a toplevel system containing the Graphics library in the following
manner:


ocamlmktop -custom -o mytoplevel graphics.cma -cclib \
-I/usr/X11/lib -cclib -lX11


This command constructs an executable with the name mytoplevel, containing the
bytecode library graphics.cma. This standalone executable (-custom, see the following
section) will be linked to the library X11 (libX11.a) which in turn will be looked up
in the path /usr/X11/lib.
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Standalone Executables


A standalone executable is a program that does not depend an Objective Caml instal-
lation to run. This facilitates the distribution of binary applications and robustness
against runtime library changes across Objective Caml versions.


The Objective Caml native compiler produces standalone executables by default. But
without the -custom option, the bytecode compiler produces an executable which
requires the bytecode interpreter ocamlrun. Imagine the file example.ml is as follows:


let f x = x + 1;;
print_int (f 18);;
print_newline();;


Then the following command produces the (approximately 8k) file example.exe:


ocamlc -o example.exe example.ml


This file can be executed by the Objective Caml bytecode interpreter:


$ ocamlrun example.exe
19


The interpreter executes the Zinc machine instructions contained in the file example.exe.


Under Unix, the first line of the file example.exe contains the location of the inter-
preter, for example:


#!/usr/local/bin/ocamlrun


This means the file can be executed directly (without using ocamlrun. Like a shell-
script, executing the file in turn runs the program specified on the first line, which is
then used to interpret the remainder of the file. If ocamlrun can’t be found, execution
will fail and the error message Command not found will be displayed.


The same compilation with the option -custom produces a standalone executable with
name exauto.exe:


ocamlc -custom -o exauto.exe example.ml


This time the file is about 85K, as it contains the Zinc interpreter as well as the program
bytecode. This file can be executed directly or copied to another machine (using the
same CPU/Operating System) for execution.
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Portability and Efficiency


One reason to compile to an abstract machine is to produce an executable independent
of the architecture of the real machine where it runs. A native compiler will produce
more efficient code, but the binary can only be executed on the architecture it was
compiled for.


Standalone Files and Portability


To produce a standalone executable, the bytecode compiler links the bytecode object
file example.cmo with the runtime library, the bytecode interpreter and some C code.
It is assumed that there is a C compiler on the host system. The inclusion of machine
code means that stand-alone bytecode executables are not portable to other systems
or other architectures.


This is not the case for the non-standalone version. Since the Zinc machine is not
included, the only things generated are the platform independent bytecode instructions.
Bytecode programs will run on any platform that has the interpreter. Ocamlrun is
part of the default Objective Caml distribution for Sparc running Solaris, Intel
running Windows, etc. It is always preferable to use the same version of interpreter
and compiler.


The portability of bytecode object files makes it possible to directly distribute Objective
Caml libraries in bytecode form.


Efficiency of Execution


The bytecode compiler produces a sequence of instructions for the Zinc machine, which
at the moment of the execution, will be interpreted by ocamlrun. Interpretation has
a moderately negative linear effect on speed of execution. It is possible to view Zinc’s
bytecode interpretation as a big pattern matching machine (matching match ... with)
where each instruction is a trigger and the computation branch modifies the stack and
the counter (address of the next instruction).


Without testing all parts of the language, the following small example which com-
putes Fibonacci numbers shows the difference in execution time between the bytecode
compiler and the native compiler. Let the program fib.ml as follows:


let rec fib n =
if n < 2 then 1
else (fib (n-1)) + (fib(n-2));;


and the following program main.ml as follows:


for i = 1 to 10 do
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print_int (Fib.fib 30);
print_newline()


done;;


Their compilation is as follows:


$ ocamlc -o fib.exe fib.ml main.ml
$ ocamlopt -o fibopt.exe fib.ml main.ml


These commands produce two executables: fib.exe and fibopt.exe. Using the Unix
command time in Pentium 350 under Linux, we get the following data:


fib.exe (bytecode) fibopt.exe (native)
7 s 1 s


This corresponds to a factor 7 between the two versions of the same program. This
program does not test all characteristics of the language. The difference depends heavily
on the type of application, and is typically much smaller.


Exercises


Creation of a Toplevel and Standalone Executable


Consider again the Basic interpreter. Modify it to make a new toplevel.


1. Split the Basic application into 4 files, each with the extension .ml. The files
will be organized like this: abstract syntax (syntax.ml), printing (pprint.ml),
parsing (alexsynt.ml) and evaluation of instructions (eval.ml). The head of
each file should contain the open statements to load the modules required for
compilation.


2. Compile all files separately.


3. Add a file mainbasic.ml which contains only the statement for calling the main
function.


4. Create a new toplevel with the name topbasic, which starts the Basic interpreter.


5. Create a standalone executable which runs the Basic interpreter.


Comparison of Performance


Try to compare the performance of code produced by the bytecode compiler and by
the native compiler. For this purpose, write an application for sorting lists and arrays.
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1. Write a polymorphic function for sorting lists. The order relation should be passed
as an argument to the sort function. The sort algorithm can be selected by the
reader. For example: bubble sort, or quick sort. Write this function as sort.ml.


2. Create the main function in the file trilist.ml, which uses the previous func-
tion and applies it to a list of integers by sorting it in increasing order, then in
decreasing order.


3. Create two standalone executables - one with the bytecode compiler, and another
with the native compiler. Measure the execution time of these two programs.
Choose lists of sufficient size to get a good idea of the time differences.


4. Rewrite the sort program for arrays. Continue using an order function as argu-
ment. Perform the test on arrays filled in the same manner as for the lists.


5. What can we say about the results of these tests?


Summary


This chapter has shown the different ways to compile an Objective Caml program. The
bytecode compiler is favorable for portable code, allowing for the system independent
distribution of programs and libraries. This property is lost in the case of standalone
bytecode executables. The native compiler trades producing efficient architecture de-
pendent code for a loss of portability.


To Learn More


The techniques to compile for abstract machines were used in the first generation of
SmallTalk, then in the functional languages LISP and ML. The argument that the use
of abstract machines will hinder performance has put a shadow on this technique for a
long time. Now, the JAVA language has shown that the opposite is true. An abstract
machine provides several advantages. The first is to facilitate the porting of a compiler
to different architectures. The part of the compiler related to portability has been
well defined (the abstract machine interpreter and part of runtime library). Another
benefit of this technique is portable code. It is possible to compile an application on
one architecture and execute it on another. Finally, this technique simplifies compiler
construction by adding specific instructions for the type of language to compile. In
the case of functional languages, the abstract machines make it easy to create the
closures (packing environment and code together) by adding the notion of execution
environment to the abstract machine.


To compensate for the loss in efficiency caused by the use of the bytecode interpreter,
one can expand the set of abstract machine instructions to include those of a real
machine at runtime. This type of expansion has been found in the implementation of
Lisp (llm3) and JAVA (JIT). The performance increases, but does not reach the level
of a native C compiler.
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One difficulty of functional language compilation comes from closures. They contain
both the executable code and execution environment (see page 23).
The choice of implementation for the environment and the access of values in the en-
vironment has a significant influence on the performance of the code produced. An
important function of the environment consists of obtaining access to values in con-
stant time; the variables are viewed as indexes in an array containing their values.
This requires the preprocessing of functional expressions. An example can be found in
L. Cardelli’s book - Functional Abstract Machine. Zinc uses this technique. Another
crucial optimization is to avoid the construction of useless closures. Although all func-
tions in ML can be viewed as functions with only one argument, it is necessary to
not create intermediate closures in the case of application on several arguments. For
example, when the function add is applied with two integers, it is not useful to create
the first closure corresponding to the function of applying add to the first argument.
It is necessary to note that the creation of a closure would allocate certain memory
space for the environment and would require the recovery of that memory space in the
future (see chapter 9). Automatic memory recovery is the second major performance
concern, along with environment.


Finally, bootstrapping allows us to write the majority of a compiler with the same
language which it is going to compile. For this reason, like the chicken and the egg,
it is necessary to define the minimal part of the language which can be expanded
later. In fact, this property is hardly appreciable for classifying the languages and their
implementations. This property is also used as a measure of the capability of a language
to be used in the implementation of a compiler. A compiler is a large program, and
bootstrapping is a good test of it’s correctness and performance. The following are
links to the references:


Link: http://caml.inria.fr/camlstone.txt


At that time, Caml was compiled over fifty machines, these were antecedent versions
of Objective Caml. We can get an idea of how the present Objective Caml has been
improved since then.
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8
Libraries


Every language comes with collections of programs that are reusable by the program-
mer, called libraries. The quality and diversity of these programs are often some of the
criteria one uses to assess the ease of use of a language. You could separate libraries
into two categories: those that offer types and functions that are often useful but could
be written in the language, and those that offer functionality that cannot be defined
in the language. The first group saves the programmer the effort of redefining utilities
such as stacks, lists, etc. The second group extends the possible uses of the language
by incorporating new functionality into it.


The Objective Caml language distribution comes with many precompiled libraries. For
the curious reader, the uncompiled version of these libraries comes packaged with the
source code distribution for the language.


In Objective Caml, all the libraries are organized into modules that are also compila-
tion units. Each one contains declarations of globals and types, exceptions and values
that can be used in programs. In this chapter we are not interested in how to create
new modules; we just want to use the existing ones. Chapter 14 will revisit the con-
cepts of the module and the compilation unit while describing the module language of
Objective Caml, including parameterized modules. Regarding the creation of libraries
that incorporate code that is not written in Objective Caml, chapter 12 will describe
how to integrate Objective Caml programs with code written in C.


The Objective Caml distribution contains a preloaded library (the Pervasives mod-
ule), a collection of basic modules called the standard library, and many other libraries
adding functionality to the language. Some of the libraries are briefly shown in this
chapter while others are described in later chapters.
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Chapter Outline


This chapter describes the collection of libraries in the Objective Caml distribution.
Some have been used in previous chapters, such as the Graphics library (see chapter
5), or the Array library. The first section shows the organization of the various libraries.
The second section finishes describing the preloaded Pervasives module. The third
section classifies the set of modules found in the standard library. The fourth section
examines the high precision math libraries and the libraries for dynamically loading
code.


Categorization and Use of the Libraries


The libraries in the Objective Caml distribution fall into three categories. The first
contains preloaded global declarations. The second is called the standard library and
is subdivided into four parts:


• data structures;


• input/output


• system interface;


• lexical and syntactic analysis.


Finally there are the libraries in the third group that generally extend the language,
such as the Graphics library (see chapter 5). In this last group you will find libraries
dealing with the following areas: regular expressions (Str), arbitrary-precision math
(Num), Unix system calls (Unix), lightweight processes (Threads) and dynamic loading
of bytecode (Dynlink).


The I/O and the system interface portions of the standard library are compatible with
different operating systems such as Unix, Windows and MacOS. This is not always
the case with the libraries in the third group (those that extend the language). There
are also many independently written libraries that are not part of the Objective Caml
distribution.


Usage and naming To use modules or libraries in a program, one has to use dot
notation to specify the module name and the object to access. For example if one wants
to use a function f in a library called Name, one qualifies it as Name.f. To avoid having
to prefix everything with the name of the library, it is possible to open the library and
use f directly.


Syntax : open Name


From then on, all the global declarations of the library Name will be considered as if
they belonged to the global environment. If two declarations have the same name in
two distinct open libraries, then only the last declaration is visible. To be able to call
the first, it would be necessary to use the point notation.
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Preloaded Library


The Pervasives library is always preloaded so that it will be available at the toplevel
(interactive) loop or for inline compilation. It is always linked and is the initial envi-
ronment of the language. It contains the declarations of:


• type: basic types (int, char, string, float, bool, unit, exn, ’a array, ’a
list) and the types ’a option (see page 223) and (’a, ’b, ’c) format (see
page 265).


• exceptions: A number of exceptions are raisable by the execution library. Some
of the more common ones are the following:
– Failure of string that is raised by the function failwith applied to a


string.
– Invalid argument of string that indicates that an argument cannot be


handled by the function having raised the exception. The function inv-
alid arg applied to a string starts this exception.


– Sys error of string, for the input/output, typically in attempting to
open a nonexistent file for reading.


– End of file for detecting the end of a file.
– Division by zero for zero divide errors between integers.
As well as internal exceptions like:
– Out of memory and Stack overflow for going beyond the memory of the


heap or the stack. It should be noted that a program cannot recover from
the Out of memory exception. In effect, when it is raised it is too late to
allocate new memory space to continue functioning.
Handling the Stack Overflow exception differs depending on whether the
program was compiled in byte code or native code. In the latter case, it is
not possible to recover.


• functions: there are roughly 140, half of which correspond to the C functions
of the execution library. There you may find mathematical and comparison op-
erators, functions on integer and floating-point numbers, functions on character
strings, on references and input-output. It should be noted that a certain num-
ber of these declarations are in fact synonyms for declarations defined in other
modules. They are nevertheless declared here for historical and implementation
reasons.


Standard Library


The standard library contains a group of stable modules. These are operating system
independent. There are currently 29 modules in the standard library containing 400
functions, 30 types of which half are abstract, 8 exceptions, 10 sub-modules, and 3
parameterized modules. Clearly we will not describe all of the declarations in all of
these modules. Indeed, the reference manual [LRVD99] already does that quite well.
Only those modules presenting a new concept or a real difficulty in use will be detailed.
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The standard library can be divided into four distinct parts:


• linear data structures (15 modules), some of which have already appeared in
the first part;


• input-output (4 modules), for the formatting of output, the persistence and
creation of cryptographic keys;


• parsing and lexical analysis (4 modules). They are described in chapter 11
(page 287);


• system interface that permit communication and examination of parameters
passed to a command, directory navigation and file access.


To these four groups we add a fifth containing some utilities for handling or creating
structures such as functions for text processing or generating pseudo-random numbers,
etc.


Utilities


The modules that we have named ”utilities” concern:


• characters: the Char module primarily contains conversion functions;


• object cloning: OO will be presented in chapter 15 (page 435), on object oriented
programming


• lazy evaluation: Lazy is first presented on page 107;


• random number generator: Random will be described below.


Generation of Random Numbers


The Random module is a pseudo-random number generator. It establishes a random
number generation function starting with a number or a list of numbers called a seed.
In order to ensure that the function does not always return the same list of numbers,
the programmer must give it a different seed each time the generator is initialized.


From this seed the function generates a succession of seemingly random numbers.
Nevertheless, an initialization with the same seed will create the same list. To correctly
initialize the generator, you need to find some outside resource, like the date represented
in milliseconds, or the length of time since the start of the program.


The functions of the module:


• initialization: init of type int -> unit and full init of type int array ->


unit initialize the generator. The second function takes an array of seeds.


• generate random numbers: bits of type unit -> int returns a positive integer,
int of type int -> int returns a positive integer ranging from 0 to a limit given
as a parameter, and float returns a float between 0. and a limit given as a
parameter.







Standard Library 217


Linear Data Structures


The modules for linear data structures are:


• simple modules: Array, String, List, Sort, Stack, Queue, Buffer, Hashtbl
(that is also parameterized) and Weak;


• parameterized modules: Hashtbl (of HashedType parameters), Map and Set (of
OrderedType parameters).


The parameterized modules are built from the other modules, thus making them more
generic. The construction of parameterized modules will be presented in chapter 14,
page 418.


Simple Linear Data Structures


The name of the module describes the type of data structures manipulated by the
module. If the type is abstract, that is to say, if the representation is hidden, the
current convention is to name it t inside the module. These modules establish the
following structures:


• module Array: vectors;


• module List: lists;


• module String: character strings;


• module Hashtbl: hash tables (abstract type);


• module Buffer: extensible character strings (abstract type);


• module Stack: stacks (abstract type);


• module Queue: queues or FIFO (abstract type);


• module Weak: vector of weak pointers (abstract type).


Let us mention one last module that implements linear data structures:


• module Sort: sorting on lists and vectors, merging of lists.


Family of common functions Each of these modules (with the exception of Sort),
has functions for defining structures, creating/accessing elements (such as handler func-
tions), and converting to other types. Only the List module is not physically modi-
fiable. We will not give a complete description of all these functions. Instead, we will
focus on families of functions that one finds in these modules. Then we will detail the
List and Array modules that are the most commonly used structures in functional
and imperative programming.


One finds more or less the following functionality in all these modules:


• a length function that takes the value of a type and calculates an integer corre-
sponding to its length;


• a clear function that empties the linear structure, if it is modifiable;
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• a function to add an element, add in general, but sometimes named differently
according to common practice, (for example, push for stacks);


• a function to access the n-th element, often called get;


• a function to remove an element (often the first) remove or take.


In the same way, in several modules the names of functions for traversal and processing
are the same:


• map: applies a function on all the elements of the structure and returns a new
structure containing the results of these calls;


• iter: like map, but drops successive results, and returns ().


For the structures with indexed elements we have:


• fill: replaces (modifies in place) a part of the structure with a value;


• blit: copies a part of one structure into another structure of the same type;


• sub: copies a part of one structure into a newly created structure.


Modules List and Array


We describe the functions of the two libraries while placing an emphasis on the simi-
larities and the particularities of each one. For the functions common to both modules,
t designates either the ’a list or ’a array type. When a function belongs to one
module, we will use the dot notation.


Common or analogous functionality The first of them is the calculation of length.


List.length : ’a t -> int


Two functions permitting the concatenation of two structures or all the structures of
a list.


List.append : ’a t -> ’a t -> ’a t


List.concat : ’a t list -> ’a t


Both modules have a function to access an element designated by its position in the
structure.


List.nth : ’a list -> int -> ’a


Array.get : ’a array -> int -> ’a


The function to access an element at index i of a vector t, which is frequently used,
has a syntactic shorthand: t.(i).


Two functions allow you to apply an operation to all the elements of a structure.
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iter : (’a -> unit) -> ’a t -> unit


map : (’a -> ’b) -> ’a t -> ’b t


You can use iter to print the contents of a list or a vector.
# let print content iter print item xs =


iter (fun x → print string"("; print item x; print string")") xs;


print newline () ; ;


val print_content : ((’a -> unit) -> ’b -> ’c) -> (’a -> ’d) -> ’b -> unit =


<fun>


# print content List.iter print int [1;2;3;4;5] ; ;


(1)(2)(3)(4)(5)


- : unit = ()


# print content Array.iter print int [|1;2;3;4;5|] ; ;


(1)(2)(3)(4)(5)


- : unit = ()


The map function builds a new structure containing the result of the application. For
example, with vectors whose contents are modifiable:
# let a = [|1;2;3;4|] ; ;


val a : int array = [|1; 2; 3; 4|]


# let b = Array.map succ a ; ;


val b : int array = [|2; 3; 4; 5|]


# a, b; ;


- : int array * int array = [|1; 2; 3; 4|], [|2; 3; 4; 5|]


Two iterators can be used to compose successive applications of a function on all
elements of a structure.


fold left : (’a -> ’b -> ’a) -> ’a -> ’b t -> ’a


fold right : (’a -> ’b -> ’b) -> ’a t -> ’b -> ’b


You have to give these iterators a base case that supplies a default value when the
structure is empty.


fold left f r [v1; v2; ...; vn] = f ... ( f (f r v1) v2 ) ... vn


fold right f [v1; v2; ...; vn] r = f v1 ( f v2 ... (f vn r) ... )


These functions allow you to easily transform binary operations into n-ary operations.
When the operation is commutative and associative, left and right iteration are indis-
tinguishable:
# List.fold left (+) 0 [1;2;3;4] ; ;


- : int = 10


# List.fold right (+) [1;2;3;4] 0 ; ;
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- : int = 10


# List.fold left List.append [0] [[1];[2];[3];[4]] ; ;


- : int list = [0; 1; 2; 3; 4]


# List.fold right List.append [[1];[2];[3];[4]] [0] ; ;


- : int list = [1; 2; 3; 4; 0]


Notice that, for binary concatenation, an empty list is a neutral element to the left and
to the right. We find thus, in this specific case, the equivalence of the two expressions:
# List.fold left List.append [] [[1];[2];[3];[4]] ; ;


- : int list = [1; 2; 3; 4]


# List.fold right List.append [[1];[2];[3];[4]] [] ; ;


- : int list = [1; 2; 3; 4]


We have, in fact, found the List.concat function.


Operations specific to lists. It is useful to have the following list functions that
are provided by the List module:


List.hd : ’a list -> ’a


first element of the list
List.tl : ’a list -> ’a


the list, without its first element
List.rev : ’a list -> ’a list


reversal of a list
List.mem : ’a -> ’a list -> bool


membership test
List.flatten : ’a list list -> ’a list


flattens a list of lists
List.rev append : ’a list -> ’a list -> ’a list


is the same as append (rev l1) l2


The first two functions are partial. They are not defined on the empty list and raise a
Failure exception. There is a variant of mem: memq that uses physical equality.
# let c = (1,2) ; ;


val c : int * int = 1, 2


# let l = [c] ; ;


val l : (int * int) list = [1, 2]


# List.memq (1,2) l ; ;


- : bool = false


# List.memq c l ; ;


- : bool = true


The List module provides two iterators that generalize boolean conjunction and dis-
junction (and / or): List.for all and List.exists that are defined by iteration:
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# let for all f xs = List.fold right (fun x → fun b → (f x) & b) xs true ; ;


val for_all : (’a -> bool) -> ’a list -> bool = <fun>


# let exists f xs = List.fold right (fun x → fun b → (f x) or b) xs false ; ;


val exists : (’a -> bool) -> ’a list -> bool = <fun>


There are variants of the iterators in the List module that take two lists as arguments
and traverse them in parallel (iter2, map2, etc.). If they are not the same size, the
Invalid argument exception is raised.


The elements of a list can be searched using the criteria provided by the following
boolean functions:


List.find : (’a -> bool) -> ’a list -> ’a


List.find all : (’a -> bool) -> ’a list -> ’a list


The find all function has an alias: filter.


A variant of the general search function is the partitioning of a list:


List.partition : (’a -> bool) -> ’a list -> ’a list * ’a list


The List module has two often necessary utility functions permitting the division and
creation of lists of pairs:


List.split : (’a * ’b) list -> ’a list * ’b list


List.combine : ’a list -> ’b list -> (’a * ’b) list


Finally, a structure combining lists and pairs is often used: association lists. They are
useful to store values associated to keys. These are lists of pairs such that the first
entry is a key and the second is the information associated to the key. One has these
data structures to deal with pairs:


List.assoc : ’a -> (’a * ’b) list -> ’b


extract the information associated to a key
List.mem assoc : ’a -> (’a * ’b) list -> bool


test the existence of a key
List.remove assoc : ’a -> (’a * ’b) list -> (’a * ’b) list


deletion of an element corresponding to a key


Each of these functions has a variant using physical equality instead of structural
equality: List.assq, List.mem assq and List.remove assq.


Handlers specific to Vectors. The vectors that imperative programmers often use
are physically modifiable structures. The Array module furnishes a function to change
the value of an element:
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Array.set : ’a array -> int -> ’a -> unit


Like get, the set function has a syntactic shortcut: t.(i) <- a.


There are three vector allocation functions:


Array.create : int -> ’a -> ’a array


creates a vector of a given size whose elements are all
initialized with the same value


Array.make : int -> ’a -> ’a array


alias for create
Array.init : int -> (int -> ’a) -> ’a array


creates a vector of a given size whose elements are each
initialized with the result of the application of a function
to the element’s index


Since they are frequently used, the Array module has two functions for the creation of
matrices (vectors of vectors):


Array.create matrix : int -> int -> ’a -> ’a array array


Array.make matrix : int -> int -> ’a -> ’a array array


The set function is generalized as a function modifying the values on an interval
described by a starting index and a length:


Array.fill : ’a array -> int -> int -> ’a -> unit


One can copy a whole vector or extract a sub-vector (described by a starting index
and a length) to obtain a new structure:


Array.copy : ’a array -> ’a array


Array.sub : ’a array -> int -> int -> ’a array


The copy or extraction can also be done towards another vector:


Array.blit : ’a array -> int -> ’a array -> int -> int -> unit


The first argument is the index into the first vector, the second is the index into the
second vector and the third is the number of values copied. The three functions blit,
sub and fill raise the Invalid argument exception.


The privileged use of indices in the vector manipulation functions leads to the definition
of two specific iterators:
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Array.iteri : (int -> ’a -> unit) -> ’a array -> unit


Array.mapi : (int -> ’a -> ’b) -> ’a array -> ’b array


They apply a function whose first argument is the index of the affected element.
# let f i a = (string of int i) ^ ":" ^ (string of int a) in


Array.mapi f [| 4; 3; 2; 1; 0 |] ; ;


- : string array = [|"0:4"; "1:3"; "2:2"; "3:1"; "4:0"|]


Although the Array module does not have a function to modify the contents of all the
elements in a vector, this effect can be easily obtained using iteri:
# let iter and set f t =


Array.iteri (fun i → fun x → t.(i) <- f x) t ; ;


val iter_and_set : (’a -> ’a) -> ’a array -> unit = <fun>


# let v = [|0;1;2;3;4|] ; ;


val v : int array = [|0; 1; 2; 3; 4|]


# iter and set succ v ; ;


- : unit = ()


# v ; ;


- : int array = [|1; 2; 3; 4; 5|]


Finally, the Array module provides two list conversion functions:


Array.of list : ’a list -> ’a array


Array.to list : ’a array -> ’a list


Input-output


The standard library has four input-output modules:


• module Printf: for the formatting of output;


• Format: pretty-printing facility to format text within “pretty-printing boxes”.
The pretty-printer breaks lines at specified break hints, and indents lines accord-
ing to the box structure.


• module Marshal: implements a mechanism for persistent values;


• module Digest: for creating unique keys.


The description of the Marshal module will be given later in the chapter when we
begin to discuss persistent data structures (see page 228).


Module Printf


The Printf module formats text using the rules of the printf function in the C
language library. The display format is represented as a character string that will be
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decoded according to the conventions of printf in C, that is to say, by specializing the
% character. This character followed by a letter indicates the type of the argument at
this position. The following format "(x=%d, y=%d)" indicates that it should put two
integers in place of the %d in the output string.


Specification of formats. A format defines the parameters for a printed string.
Those, of basic types: int, float, char and string, will be converted to strings and
will replace their occurrence in the printed string. The values 77 and 43 provided to
the format "(x=%d, y=%d)" will generate the complete printed string "(x=77, y=43)".
The principal letters indicating the type of conversion to carry out are given in figure
8.1.


Type Letter Result


integer d or i signed decimal
u unsigned decimal
x unsigned hexadecimal, lower case form
X same, with upper case letters


character c character
string s string
float f decimal


e or E scientific notation
g or G same


boolean b true or false
special a or t functional parameter


of type (out channel -> ’a -> unit) -> ’a -> unit


or out channel -> unit


Figure 8.1: Conversion conventions.


The format also allows one to specify the justification of the conversion, which al-
lows for the alignment of the printed values. One can indicate the size in conversion
characters. For this one places between the % character and the type of conversion an
integer number as in %10d that indicates a conversion to be padded on the right to
ten characters. If the size of the result of the conversion exceeds this limit, the limit
will be discarded. A negative number indicates left justification. For conversions of
floating point numbers, it is helpful to be able to specify the printed precision. One
places a decimal point followed by a number to indicate the number of characters after
the decimal point as in %.5f that indicates five characters to the right of the decimal
point.


There are two specific format letters: a and t that indicate a functional argument.
Typically, a print function defined by the user. This is specific to Objective Caml.
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Functions in the module The types of the five functions in this module are given
in figure 8.2.


fprintf : out channel -> (’a, out channel, unit) format -> ’a


printf : (’a, out channel, unit) format -> ’a


eprintf : (’a, out channel, unit) format -> ’a


sprintf : (’a, unit, string) format -> ’a


bprintf : Buffer.t -> (’a, Buffer.t, string) format -> ’a


Figure 8.2: Printf formatting functions.


The fprintf function takes a channel, a format and arguments of types described in the
format. The printf and eprintf functions are specializations on standard output and
standard error. Finally, sprintf and bprintf do not print the result of the conversion,
but instead return the corresponding string.


Here are some simple examples of the utilization of formats.
# Printf.printf "(x=%d, y=%d)" 34 78 ; ;


(x=34, y=78)- : unit = ()


# Printf.printf "name = %s, age = %d" "Patricia" 18 ; ;


name = Patricia, age = 18- : unit = ()


# let s = Printf.sprintf "%10.5f\n%10.5f\n" (-.12.24) (2.30000008) ; ;


val s : string = " -12.24000\n 2.30000\n"


# print string s ; ;


-12.24000


2.30000


- : unit = ()


The following example builds a print function from a matrix of floats using a given
format.
# let print mat m =


Printf.printf "\n" ;


for i=0 to (Array.length m)-1 do


for j=0 to (Array.length m.(0))-1 do


Printf.printf "%10.3f" m.(i).(j)


done ;


Printf.printf "\n"


done ; ;


val print_mat : float array array -> unit = <fun>


# print mat (Array.create 4 [| 1.2; -.44.22; 35.2 |]) ; ;


1.200 -44.220 35.200


1.200 -44.220 35.200


1.200 -44.220 35.200


1.200 -44.220 35.200


- : unit = ()
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Note on the format type. The description of a format adopts the syntax of char-
acter strings, but it is not a value of type string. The decoding of a format, according
to the preceding conventions, builds a value of type format where the ’a parameter
is instantiated either with unit if the format does not mention a parameter, or by a
functional type corresponding to a function able to receive as many arguments as are
mentioned and returning a value of type unit.


One can illustrate this process by partially applying the printf function to a format:
# let p3 =


Printf.printf "begin\n%d is val1\n%s is val2\n%f is val3\n" ; ;


begin


val p3 : int -> string -> float -> unit = <fun>


One obtains thus a function that takes three arguments. Note that the word begin
had already been printed. Another format would have given another type of function:
# let p2 =


Printf.printf "begin\n%f is val1\n%s is val2\n"; ;


begin


val p2 : float -> string -> unit = <fun>


In providing arguments one by one to p3, one progressively obtains the output.
# let p31 = p3 45 ; ;


45 is val1


val p31 : string -> float -> unit = <fun>


# let p32 = p31 "hello" ; ;


hello is val2


val p32 : float -> unit = <fun>


# let p33 = p32 3.14 ; ;


3.140000 is val3


val p33 : unit = ()


# p33 ; ;


- : unit = ()


From the last obtained value, nothing is printed: it is the value () of type unit.


One cannot build a format using values of type string:
# let f d =


Printf.printf (d^d); ;


Characters 27-30:


This expression has type string but is here used with type


(’a, out_channel, unit) format


The compiler cannot know the value of the string passed as an argument. It thus cannot
know the type that instantiates the ’a parameter of type format.


On the other hand, strings are physically modifiable values, it would thus be possible
to replace, for example, the %d part with another letter, thus dynamically changing the
print format. This conflicts with the static generation of the conversion function.
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Digest Module


A hash function converts a character string of unspecified size into a character string
of fixed length, most often smaller. Hashing functions return a fingerprint (digest) of
their entry.


Such functions are used for the construction of hash tables, as in the Hashtbl module,
permitting one to rapidly test if an element is a member of such a table by directly
accessing the fingerprint. For example the function f mod n, that generates the modulo
n sum of the ASCII codes of the characters in a string, is a hashing function. If one
creates an n by n table to arrange the strings, from the fingerprint one obtains direct
access. Nevertheless two strings can return the same fingerprint. In the case of collisions,
one adds to the hash table an extension to store these elements. If there are too many
collisions, then access to the hash table is not very effective. If the fingerprint has a
length of n bits, then the probability of collision between two different strings is 1/2n.


A non-reversible hash function has a very weak probability of collision. It is thus
difficult, given a fingerprint, to construct a string with this fingerprint. The preceding
function f mod n is not, based on the evidence, such a function. One way hash functions
permit the authentification of a string, that it is for some text sent over the Internet,
a file, etc.


The Digest module uses the MD5 algorithm, short for Message Digest 5. It returns a
128 bit fingerprint. Although the algorithm is public, it is impossible (today) to carry
out a reconstruction from a fingerprint. This module defines the Digest.t type as
an abbreviation of the string type. The figure 8.3 details the main functions of this
module.


string : string -> t


returns the fingerprint of a string
file : string -> t


returns the fingerprint of a file


Figure 8.3: Functions of the Digest module.


We use the string function in the following example on a small string and on a large
one built from the first. The fingerprint is always of fixed length.
# let s = "The small cat is dead..."; ;


val s : string = "The small cat is dead..."


# Digest.string s; ;


- : Digest.t = "xr6\127\171(\134=\238‘\252F\028\t\210$"


# let r = ref s in


for i=1 to 100 do r:= s^ !r done;


Digest.string !r; ;


- : Digest.t = "\232\197|C]\137\180{>\224QX\155\131D\225"
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The creation of a fingerprint for a program allows one to guarantee the contents and
thus avoids the use of a bad version. For example, when code is dynamically loaded
(see page 241), a fingerprint is used to select the binary file to load.
# Digest.file "basic.ml" ; ;


- : Digest.t = "\179\026\191\137\157Ly|^w7\183\164:\167q"


Persistence


Persistence is the conservation of a value outside the running execution of a program.
This is the case when one writes a value in a file. This value is thus accessible to any
program that has access to the file. Writing and reading persistent values requires the
definition of a format for representing the coding of data. In effect, one must know how
to go from a complex structure stored in memory, such as a binary tree, to a linear
structure, a list of bytes, stored in a file. This is why the coding of persistent values is
called linearization 1.


Realization and Difficulties of Linearization


The implementation of a mechanism for the linearization of data structures requires
choices and presents difficulties that we describe below.


• read-write of data structures. Since memory can always be viewed as a vector
of words, one value can always correspond to the memory that it occupies, leaving
us to preserve the useful part by then compacting the value.


• share or copy. Must the linearization of a data structure conserve sharing?
Typically a binary tree having two identical children (in the sense of physical
equality) can indicate, for the second child, that it has already saved the first.
This characteristic influences the size of the saved value and the time taken to do
it. On the other hand, in the presence of physically modifiable values, this could
change the behavior of this value after a recovery depending on whether or not
sharing was conserved.


• circular structures. In the case of a circular value, linearization without sharing
is likely to loop. It will be necessary to conserve sharing.


• functional values. Functional values, or closures, are composed of an environ-
ment part and a code part. The code part corresponds to the entry point (ad-
dress) of the code to execute. What must thus be done with code? It is possible to
uniquely store this address, but thus only the same program will find the correct
meaning of this address. It is also possible to save the list of machine instructions
of this function, but that would require having a mechanism to dynamically load
code.


• guaranteeing the type when reloading. This is the main difficulty of this
mechanism. Static typing guarantees that typed values will not generate type


1. JAVA uses the term serialization
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errors at execution time. But this is not true except for values belonging to
the program during the course of execution. What type can one give to a value
outside the program, that was not seen by the type verifier? Just to verify that
the re-read value has the monomorphic type generated by the compiler, the type
would have to be transmitted at the moment the value was saved, then the type
would have to be checked when the value was loaded. Additionally, a mechanism
to manage the versions of types would be needed to be safe in case a type is
redeclared in a program.


Marshal Module


The linearization mechanism in the Marshal module allows you to choose to keep or
discard the sharing of values. It also allows for the use of closures, but in this case,
only the pointer to the code is saved.


This module is mainly comprised of functions for linearization via a channel or a string,
and functions for recovery via a channel or a string. The linearization functions are
parameterizable. The following type declares two possible options:


type external_flag =
No_sharing


| Closures;;


The No sharing constant constructor indicates that the sharing of values is not to
be preserved, though the default is to keep sharing. The Closures constructor allows
the use of closures while conserving its pointer to the code. Its absence will raise an
exception if one tries to store a functional value.


Warning The Closures constructor is inoperative in interactive
mode. It can only be used in command line mode.


The reading and writing functions in this module are gathered in figure 8.4.


to channel : out channel -> ’a -> extern flag list -> unit


to string : ’a -> extern flag list -> string


to buffer : string -> int -> int -> ’a -> extern flag list -> unit


from channel : in channel -> ’a


from string : string -> int -> ’a


Figure 8.4: Functions of the Marshal module.


The to channel function takes an output channel, a value, and a list of options and
writes the value to the channel. The to string function produces a string correspond-
ing to the linearized value, whereas to buffer accomplishes the same task by modifying
part of a string passed as an argument. The from channel function reads a linearized
value from a channel and returns it. The from string variant takes as input a string
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and the position of the first character to read in the string. Several linearized values
can be stored in the same file or in the same string. For a file, they can be read sequen-
tially. For a string, one must specify the right offset from the beginning of the string
to decode the desired value.


# let s = Marshal.to string [1;2;3;4] [] in String.sub s 0 10; ;


- : string = "\132\149\166\190\000\000\000\t\000\000"


Warning Using this module one loses the safety of static typing
(see infra, page 233).


Loading a persistent object creates a value of indeterminate type:
# let x = Marshal.from string (Marshal.to string [1; 2; 3; 4] [] ) 0; ;


val x : ’_a = <poly>


This indetermination is denoted in Objective Caml by the weakly typed variable ’ a.
You should specify the expected type:
# let l =


let s = (Marshal.to string [1; 2; 3; 4] [] ) in


(Marshal.from string s 0 : int list) ; ;


val l : int list = [1; 2; 3; 4]


We return to this topic on page 233.


Note
The output value function of the preloaded library corresponds to calling
to channel with an empty list of options. The input value function in
the Pervasives module directly calls the from channel function. These
functions were kept for compatibility with old programs.


Example: Backup Screens


We want to save the bitmap, represented as a matrix of colors, of the whole screen. The
save screen function recovers the bitmap, converts it to a table of colors and saves it
in a file whose name is passed as a parameter.
# let save screen name =


let i = Graphics.get image 0 0 (Graphics.size x ())


(Graphics.size y ()) in


let j = Graphics.dump image i in


let oc = open out name in


output value oc j;


close out oc; ;


val save_screen : string -> unit = <fun>


The load screen function does the reverse operation. It opens the file whose name is
passed as a parameter, restores the value stored inside, converts this color matrix into
a bitmap, then displays the bitmap.
# let load screen name =
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let ic = open in name in


let image = ((input value ic) : Graphics.color array array) in


close in ic;


Graphics.close graph () ;


Graphics.open graph (" "^(string of int(Array.length image.(0)))


^"x"^(string of int(Array.length image)));


let image2 = Graphics.make image image in


Graphics.draw image image2 0 0; image2 ; ;


val load_screen : string -> Graphics.image = <fun>


Warning Abstract typed values cannot be made persistent.


It is for this reason that the preceding example does not use the abstract Graphics.image
type, but instead uses the concrete color array array type. The abstraction of types
is presented in chapter 14.


Sharing


The loss of sharing in a data structure can make the structure completely lose its
intended behavior. Let us revisit the example of the symbol generator from page 103.
For whatever reason, we want to save the functional values new s and reset s, and
thereafter use the current value of their common counter. We thus write the following
program:
# let reset s,new s =


let c = ref 0 in


( function () → c := 0 ) ,


( function s → c:=!c+1; s^(string of int !c) ) ; ;


# let save =


Marshal.to string (new s,reset s) [Marshal.Closures;Marshal.No sharing] ; ;


# let (new s1,reset s1) =


(Marshal.from string save 0 : ((string → string ) * (unit → unit))) ; ;


# (* 1 *)


Printf.printf "new_s : \%s\n" (new s "X");


Printf.printf "new_s : \%s\n" (new s "X");


(* 2 *)


Printf.printf "new_s1 : \%s\n" (new s1 "X");


(* 3 *)


reset s1 () ;


Printf.printf "new_s1 (after reset_s1) : \%s\n" (new s1 "X") ; ;


Characters 148-154:


Unbound value new_s1
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The first two outputs in (* 1 *) comply with our intent. The output obtained in
(* 2 *) after re-reading the closures also appears correct (after X2 comes X3). But, in
fact, the sharing of the c counter between the re-read functions new s1 and reset s1 is
lost, as the output of X4 attests that one of them set the counter to zero. Each closure
has a copy of the counter and the call to reset s1 does not reset the new s1 counter
to zero. Thus we should not have used the No sharing option during the linearization.


It is generally necessary to conserve sharing. Nevertheless in certain cases where exe-
cution speed is important, the absence of sharing speeds up the process of saving. The
following example demonstrates a function that copies a matrix. In this case it might
be preferable to break the sharing:
# let copy mat f (m : float array array) =


let s = Marshal.to string m [Marshal.No sharing] in


(Marshal.from string s 0 : float array array); ;


val copy_mat_f : float array array -> float array array = <fun>


One can also use it to create a matrix without sharing:
# let create mat f n m v =


let m = Array.create n (Array.create m v) in


copy mat f m; ;


val create_mat_f : int -> int -> float -> float array array = <fun>


# let a = create mat f 3 4 3.14; ;


val a : float array array =


[|[|3.14; 3.14; 3.14; 3.14|]; [|3.14; 3.14; 3.14; 3.14|];


[|3.14; 3.14; 3.14; 3.14|]|]


# a.(1).(2) <- 6.28; ;


- : unit = ()


# a; ;


- : float array array =


[|[|3.14; 3.14; 3.14; 3.14|]; [|3.14; 3.14; 6.28; 3.14|];


[|3.14; 3.14; 3.14; 3.14|]|]


Which is a more common behavior than that of Array.create, and resembles that of
Array.create matrix.


Size of Values


It may be useful to know the size of a persistent value. If sharing is conserved, this
size also reflects the amount of memory occupied by a value. Although the encoding
sometimes optimizes the size of atomic values2, knowing the size of their respective
encodings permits us to compare different implementations of a data structure. In
addition, for programs that will never stop themselves, like embedded systems or even
network servers; watching the size of data structures can help detect memory leaks.


2. Arrays of characters, for example.
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The Marshal module has two functions to calculate the size of a constant. They are
described in figure 8.5. The total size of a persistent value is the same as the size of its


header size : int


data size : string -> int -> int


total size : string -> int -> int


Figure 8.5: Size functions of Marshal.


data structures plus the size of its header.


Below is a small example of the use of MD5 encoding to compare two representations
of binary trees:
# let size x = Marshal.data size (Marshal.to string x [] ) 0; ;


val size : ’a -> int = <fun>


# type ’a bintree1 = Empty1 | Node1 of ’a * ’a bintree1 * ’a bintree1 ; ;


type ’a bintree1 = | Empty1 | Node1 of ’a * ’a bintree1 * ’a bintree1


# let s1 =


Node1(2, Node1(1, Node1(0, Empty1, Empty1), Empty1),


Node1(3, Empty1, Empty1)) ; ;


val s1 : int bintree1 =


Node1


(2, Node1 (1, Node1 (0, Empty1, Empty1), Empty1),


Node1 (3, Empty1, Empty1))


# type ’a bintree2 =


Empty2 | Leaf2 of ’a | Node2 of ’a * ’a bintree2 * ’a bintree2 ; ;


type ’a bintree2 =


| Empty2


| Leaf2 of ’a


| Node2 of ’a * ’a bintree2 * ’a bintree2


# let s2 =


Node2(2, Node2(1, Leaf2 0, Empty2), Leaf2 3) ; ;


val s2 : int bintree2 = Node2 (2, Node2 (1, Leaf2 0, Empty2), Leaf2 3)


# let s1, s2 = size s1, size s2 ; ;


val s1 : int = 13


val s2 : int = 9


The values given by the size function reflect well the intuition that one might have
of the size of s1 and s2.


Typing Problem


The real problem with persistent values is that it is possible to break the type system of
Objective Caml. The creation functions return a monomorphic type (unit or string).
On the other hand unmarshalling functions return a polymorphic type ’a. From the
point of view of types, you can do anything with a persistent value. Here is the usage
that can be done with it (see chapter 2, page 58): create a function magic copy of type
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’a -> ’b.
# let magic copy a =


let s = Marshal.to string a [Marshal.Closures] in


Marshal.from string s 0; ;


val magic_copy : ’a -> ’b = <fun>


The use of such a function causes a brutal halt in the execution of the program.


# (magic_copy 3 : float) +. 3.1;;
Segmentation fault


In interactive mode (under Linux), we even leave the toplevel (interactive) loop with
a system error signal corresponding to a memory violation.


Interface with the System


The standard library has six system interface modules:


• module Sys: for communication between the operating system and the program;


• module Arg: to analyze parameters passed to the program from the command
line;


• module Filename: operations on file names


• module Printexc: for the interception and printing of exceptions;


• module Gc: to control the mechanism that automatically deallocates memory,
described in chapter 9;


• module Callback: to call Objective Caml functions from C, described in chapter
12.


The first four modules are described below.


Module Sys


This module provides quite useful functions for communication with the operating
system, such as handling the signals received by a program. The values in figure 8.6
contain information about the system.


Communication between the program and the system can go through the command
line, the value of an environmental variable, or through running another program.
These functions are described in figure 8.7.


The functions of the figure 8.8 allow us to navigate in the file hierarchy.


Finally, the management of signals will be described in the chapter on system pro-
gramming (see chapter 18).







Standard Library 235


OS type : string


type of system
interactive : bool ref


true if executing at the toplevel
word size : string


size of a word (32 or 64 bits)
max string length : int


maximum size of a string
max array length : int


maximum size of a vector
time : unit -> float


gives the time in seconds since the start of the pro-
gram


Figure 8.6: Information about the system.


argv : string array


contains the vector of parameters
getenv : string -> string


retrieves the value of a variable
command : string -> int


executes the command passed as an argument


Figure 8.7: Communication with the system.


file exists : string -> bool


returns true if the file exists
remove : string -> unit


destroys a file
rename : string -> string -> unit


renames a file
chdir : string -> unit


change the current directory
getcwd : unit -> string


returns the name of the current directory


Figure 8.8: File manipulation.
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Here is a small program that revisits the example of saving a graphics window as an
array of colors. The main function verifies that it is not started from the interactive
loop, then reads from the command line the names of files to display, then tests if they
exist, then displays them (with the load screen function). We wait for a key to be
pressed between displaying two images.
# let main () =


if not (!Sys.interactive) then


for i = 0 to Array.length(Sys.argv) -1 do


let name = Sys.argv.(i) in


if Sys.file exists name then


begin


ignore(load screen name);


ignore(Graphics.read key)


end


done; ;


val main : unit -> unit = <fun>


Module Arg


The Arg module defines a small syntax for command line arguments. With this module,
you can parse arguments and associate actions with them. The various elements of the
command line are separated by one or more spaces. They are the values stored in
the Sys.argv array. In the syntax provided by Arg, certain elements are distinguished
by starting with the minus character (-). These are called command line keywords or
switches. One can associate a specific action with a keyword or take as an argument a
value of type string, int or float. The value of these arguments is initialized with
the value found on the command line just after the keyword. In this case one can call
a function that converts character strings into the expected type. The other elements
on the command line are called anonymous arguments. One associates an action with
them that takes their value as an argument. An undefined option causes the display
of some short documentation on the command line. The documentation’s contents are
defined by the user.


The actions associated with keywords are encapsulated in the type:
type spec =


| Unit of (unit → unit) (* Call the function with unit argument*)


| Set of bool ref (* Set the reference to true*)


| Clear of bool ref (* Set the reference to false*)


| String of (string → unit) (* Call the function with a string


argument *)


| Int of (int → unit) (* Call the function with an int


argument *)


| Float of (float → unit) (* Call the function with a float


argument *)


| Rest of (string → unit) (* Stop interpreting keywords and call the
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function with each remaining argument*)


The command line parsing function is:
# Arg.parse ; ;


- : (string * Arg.spec * string) list -> (string -> unit) -> string -> unit =


<fun>


Its first argument is a list of triples of the form (key, spec, doc) such that:


• key is a character string corresponding to the keyword. It starts with the reserved
character ’ ’.


• spec is a value of type spec specifying the action associated with key.


• doc is a character string describing the option key. It is displayed upon a syntax
error.


The second argument is the function to process the anonymous command line ar-
guments. The last argument is a character string displayed at the beginning of the
command line documentation.


The Arg module also includes:


• Bad: an exception taking as its argument a character string. It can be used by
the processing functions.


• usage: of type (string * Arg.spec * string) list -> string -> unit, this
function displays the command line documentation. One preferably provides it
with the same arguments as those of parse.


• current: of type int ref that contains a reference to the current value of the
index in the Sys.argv array. One can therefore modify this value if necessary.


By way of an example, we show a function read args that initializes the configuration
of the Minesweeper game seen in chapter 6, page 176. The possible options will be
-col, -lin and -min. They will be followed by an integer indicating, respectively: the
number of columns, the number of lines and the number of mines desired. These values
must not be less than the default values, respectively 10, 10 and 15.


The processing functions are:
# let set nbcols cf n = cf := {!cf with nbcols = n} ; ;


# let set nbrows cf n = cf := {!cf with nbrows = n} ; ;


# let set nbmines cf n = cf := {!cf with nbmines = n} ; ;


All three are of type config ref -> int -> unit. The command line parsing function
can be written:
# let read args () =


let cf = ref default config in


let speclist =


[("-col", Arg.Int (set nbcols cf), "number of columns (>=10)");
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("-lin", Arg.Int (set nbrows cf), "number of lines (>=10)");


("-min", Arg.Int (set nbmines cf), "number of mines (>=15)")]


in


let usage msg = "usage : minesweep [-col n] [-lin n] [-min n]" in


Arg.parse speclist (fun s → ()) usage msg; !cf ; ;


val read_args : unit -> config = <fun>


This function calculates a configuration that will be passed as arguments to open wcf,
the function that opens the main window when the game is started. Each option is, as its
name indicates, optional. If it does not appear on the command line, the corresponding
parameter keeps its default value. The order of the options is unimportant.


Module Filename


The Filename module has operating system independant functions to manipulate the
names of files. In practice, the file and directory naming conventions differ greatly
between Windows, Unix and MacOS.


Module Printexc


This very short module (three functions described in figure 8.9) provides a general
exception handler. This is particularly useful for programs executed in command mode3


to be sure not to allow an exception to escape that would stop the program.


catch : (’a -> ’b) -> ’a -> ’b


general exception handler
print : (’a -> ’b) -> ’a -> ’b


print and re-raise the exception
to string : exn -> string


convert an exception to a string


Figure 8.9: Handling exceptions.


The catch function applies its first argument to its second. This launches the main
function of the program. If an exception arrives at the level of catch, that is to say
that if it is not handled inside the program, then catch will print its name and exit
the program. The print function has the same behavior as catch but re-raises the
exception after printing it. Finally the to string function converts an exception into
a character string. It is used by the two preceding functions. If we look again at the
main function for displaying bitmaps, we might thus write an encapsulating function


3. The interactive mode has a general exception handler that prints a message signaling that an
exception was not handled.
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go in the following manner:
# let go () =


Printexc.catch main () ; ;


val go : unit -> unit = <fun>


This permits the normal termination of the program by printing the value of the
uncaptured exception.


Other Libraries in the Distribution


The other libraries provided with the Objective Caml language distribution relate to
the following extensions:


• graphics, with the portable Graphics module that was described in chapter 5;


• exact math, containing many modules, and allowing the use of exact calculations
on integers and rational numbers. Numbers are represented using Objective Caml
integers whenever possible;


• regular expression filtering, allowing easier string and text manipulations.
The Str module will be described in chapter 11;


• Unix system calls, with the Unix module allowing one to make unix system
calls from Objective Caml. A large part of this library is nevertheless compatible
with Windows. This bibliography will be used in chapters 18 and 20;


• light-weight processes, comprising many modules that will largely be de-
scribed and used in chapter 19;


• access to NDBD databases, works only in Unix and will not be described;


• dynamic loading of bytecode, implemented by the Dynlink module.


We will describe the big integer and dynamic loading libraries by using them.


Exact Math


The big numbers library provides exact math functions using integers and rational
numbers. Values of type int and float have two limitations: calculations on integers
are done modulo the greatest positive integer, which can cause unperceived overflow
errors; the results of floating point calculations are rounded, which by propagation can
lead to errors. The library presented here mitigates these defects.


This library is written partly in C. For this reason, you have to build an interactive
loop that includes this code using the command:


ocamlmktop -custom -o top nums.cma -cclib -lnums


The library contains many modules. The two most important ones are Num for all the
operations and Arith status for controlling calculation options. The general type num
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is a variant type gathering three basic types:
type num = Int of int


| Big int of big int


| Ratio of ratio


The types big int and ratio are abstract.


The operations on values of type num are followed by the symbol /. For example the
addition of two num variables is written +/ and will be of type num -> num -> num. It
will be the same for comparisons. Here is the first example that calculates the factorial:


# let rec fact num n =


if Num.(<=/) n (Num.Int 0) then (Num.Int 1)


else Num.( */ ) n (fact num ( Num.(-/) n (Num.Int 1))); ;


val fact_num : Num.num -> Num.num = <fun>


# let r = fact num (Num.Int 100); ;


val r : Num.num = Num.Big_int <abstr>


# let n = Num.string of num r in (String.sub n 0 50) ^ "..." ; ;


- : string = "93326215443944152681699238856266700490715968264381..."


Opening the Num module makes the code of fact num easier to read:
# open Num ; ;


# let rec fact num n =


if n <=/ (Int 0) then (Int 1)


else n */ (fact num ( n -/ (Int 1))) ; ;


val fact_num : Num.num -> Num.num = <fun>


Calculations using rational numbers are also exact. If we want to calculate the number
e by following the following definition:


e = limm→∞


(
1 +


1
m


)m


We should write a function that calculates this limit up to a certain m.
# let calc e m =


let a = Num.(+/) (Num.Int 1) ( Num.(//) (Num.Int 1) m) in


Num.( **/ ) a m; ;


val calc_e : Num.num -> Num.num = <fun>


# let r = calc e (Num.Int 100); ;


val r : Num.num = Ratio <abstr>


# let n = Num.string of num r in (String.sub n 0 50) ^ "..." ; ;


- : string = "27048138294215260932671947108075308336779383827810..."


The Arith status module allows us to control some calculations such as the normaliza-
tion of rational numbers, approximation for printing, and processing null denominators.
The arith status function prints the state of these indicators.
# Arith status.arith status () ; ;
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Normalization during computation --> OFF


(returned by get_normalize_ratio ())


(modifiable with set_normalize_ratio <your choice>)


Normalization when printing --> ON


(returned by get_normalize_ratio_when_printing ())


(modifiable with set_normalize_ratio_when_printing <your choice>)


Floating point approximation when printing rational numbers --> OFF


(returned by get_approx_printing ())


(modifiable with set_approx_printing <your choice>)


Error when a rational denominator is null --> ON


(returned by get_error_when_null_denominator ())


(modifiable with set_error_when_null_denominator <your choice>)


- : unit = ()


They can be modified according to the needs of a calculation. For example, if we want
to print an approximate value for a rational number, we can obtain, for the preceding
calculation:
# Arith status.set approx printing true; ;


- : unit = ()


# Num.string of num (calc e (Num.Int 100)); ;


- : string = "0.270481382942e1"


Calculations with big numbers take longer than those with integers and the values
occupy more memory. Nevertheless, this library tries to use the most economical rep-
resentations whenever possible. In any event, the ability to avoid the propagation of
rounding errors and to do calculations on big numbers justifies the loss of efficiency.


Dynamic Loading of Code


The Dynlink module offers the ability to dynamically load programs in the form of
bytecode. The dynamic loading of code provides the following advantages:


• reduces the size of a program’s code. If certain modules are not used, they are
not loaded.


• allows the choice at execution time of which module to load. According to certain
conditions at execution time you choose to load one module rather than another.


• allows the modification of the behavior of a module during execution. Here again,
under some conditions the program can load a new module and hide the old code.


The interactive loop of Objective Caml already uses such a mechanism. It is convenient
to let the programmer have access to it as well.
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During the loading of an object file (with the .cmo extension), the various expressions
are evaluated. The main program, that initiated the dynamic loading of the code does
not have access to the names of declarations. Therefore it is up to the dynamically
loaded module to update a table of functions used by the main program.


Warning The dynamic loading of code only works for object files
in bytecode.


Description of the Module


For dynamic loading of a bytecode file f.cmo, we need to know the access path to the
file and the names of the modules that it uses. By default, dynamically loaded bytecode
files do not have access to the paths and modules of the libraries in the distribution.
Thus we have to add the path and the name of the required modules to the dynamic
loading of the module.


init : unit -> unit


initialize dynamic loading
add interfaces : string list -> string list -> unit


add the names of modules and paths for load-
ing


loadfile : string -> unit


load a bytecode file
clear avalaible units : unit -> unit


empty the names of loadable modules and
paths


add avalaible units : (string * Digest.t) list -> unit


add the name of a module and a checksum†


for loading without needing the interface file
allow unsafe modules : bool -> unit


allow the loading of files containing external


declarations
loadfile private : string -> unit


the loaded module is not accessible to modules
loaded later


† The checksum of an interface .cmi can be obtained from the extract crc command found in
the catalog of libraries in the distribution.


Figure 8.10: Functions of the Dynlink module.


Many errors can occur during a request to load a module. Not only must the file exist
with the right interface in one of the paths, but the bytecode must also be correct
and loadable. These errors are gathered in the type error used as an argument to the
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Error exception and to the error function of type error -> string that allows the
conversion of an error into a clear description.


Example


To write a small program that allows us to illustrate dynamic loading of bytecode, we
provide three modules:


• F that contains the definition of a reference to a function f;


• Mod1 and Mod2 that modify in different ways the function referenced by F.f.


The F module is defined in the file f.ml:
let g () =


print string "I am the ’f’ function by default\n" ; flush stdout ; ;


let f = ref g ; ;


The Mod1 module is defined in the file mod1.ml:
print string "The ’Mod1’ module modifies the value of ’F.f’\n" ; flush stdout ; ;


let g () =


print string "I am the ’f’ function of module ’Mod1’\n" ;


flush stdout ; ;


F.f := g ; ;


The Mod2 module is defined in the file mod2.ml:
print string "The ’Mod2’ module modifies the value of ’F.f’\n" ; flush stdout ; ;


let g () =


print string "I am the ’f’ function of module ’Mod2’\n" ;


flush stdout ; ;


F.f := g ; ;


Finally we define in the file main.ml, a main program that calls the original function
referenced by F.f, loads the Mod1 module, calls F.f again, then loads the Mod2 module
and calls the F.f function one last time:
let main () =


try


Dynlink.init () ;


Dynlink.add interfaces [ "Pervasives"; "F" ; "Mod1" ; "Mod2" ]


[ Sys.getcwd () ; "/usr/local/lib/ocaml/" ] ;


!(F.f) () ;


Dynlink.loadfile "mod1.cmo" ; !(F.f) () ;


Dynlink.loadfile "mod2.cmo" ; !(F.f) ()


with


Dynlink.Error e → print endline (Dynlink.error message e) ; exit 1 ; ;


main () ; ;
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The main program must, in addition to initializing the dynamic loading, declare by a
call to Dynlink.add interfaces the interface used.


We compile all of these modules:


$ ocamlc -c f.ml
$ ocamlc -o main dynlink.cma f.cmo main.ml
$ ocamlc -c f.cmo mod1.ml
$ ocamlc -c f.cmo mod2.ml


If we execute program main, we obtain:


$ main
I am the ’f’ function by default
The ’Mod1’ module modifies the value of ’F.f’
I am the ’f’ function of module ’Mod1’
The ’Mod2’ module modifies the value of ’F.f’
I am the ’f’ function of module ’Mod2’


Upon the dynamic loading of a module, its code is executed. This is demonstrated in
our example, with the outputs beginning with The ’Mod.... The possible side effects
that it contains are therefore reflected at the level of the program that caused the code
to be loaded. This is why the different calls to F.f call different functions.


The Dynlink library offers the basic mechanism for dynamically loading bytecode. The
programmer still has to manage tables such that the loading will really be effective.


Exercises


Resolution of Linear Systems


This exercise revisits the resolution of linear systems presented as an exercise in the
chapter on imperative programming (see chapter 3).


1. By using the Printf module, write a function print system that aligns the
columns of the system.


2. Test this function on the examples given on page 89.


Search for Prime Numbers


The Sieve of Eratosthenes is an easily programmed algorithm that searches for prime
numbers in a range of integers, given that the lower limit is a prime number. The
method is:


1. Enumerate, in a list, all the values on the range.
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2. Remove from the list all the values that are multiples of the first element.


3. Remove this first element from the list, and keep it as a prime.


4. Restart at step 2 as long as the list is not empty.


Here are the steps to create a program that implements this algorithm:


1. Write a function range that builds a range of integers represented in the form
of a list.


2. Write a function eras that calculates the prime numbers on a range of integers
starting with 2, according to the algorithm of the Sieve of Eratosthenes.
Write a function era go that takes an integer and returns a list of all the prime
numbers smaller than this integer.


3. We want to write an executable primes that one will launch by typing the
command primes n, where n is an integer. This executable will print the prime
numbers smaller than n. For this we must use the Sys module and check whether
a parameter was passed.


Displaying Bitmaps


Bitmaps saved as color array array are bulky. Since 24 bits of color are rarely used,
it is possible to encode a bitmap in less space. For this we will analyze the number of
colors in a bitmap. If the number is small (for example less than 256) we can encode
each pixel in 1 byte, representing the number of the color in the table of colors of this
bitmap.


1. Write a function analyze colors exploring a value of type color array array


and that returns a list of all the colors found in this image.


2. From this list, construct a palette. We will take a vector of colors. The index in
the table will correspond to the order of the color, and the contents are the color
itself. Write the function find index that returns the index of a value stored in
the array.


3. From this table, write a conversion function, encode, that goes from a color


array array to a string. Each pixel is thus represented by a character.


4. Define a type image tdc comprising a table that matches colors to a vector of
strings, allowing the encoding of a bitmap (or color array) using a smaller method.


5. Write the function to image tdc to convert a color array array to this type.


6. Write the function save image tdc to save the values to a file.


7. Compare the size of the file obtained with the saved version of an equivalent
palette.


8. Write the function from image tdc to do the reverse conversion.


9. Use it to display an image saved in a file. The file will be in the form of a value
of type bitmap tdc.
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Summary


This chapter gave an overview of the different Objective Caml libraries presented as
a set of simple modules (or compilation units). The modules for output formatting
(Printf), persistant values (Marshal), the system interface (Sys) and the handling of
exceptions (module Printexc) were detailed. The modules concerning parsing, memory
management, system and network programming and light-weight processes will be
presented in the following chapters.


To Learn More


The overview of the libraries in the distribution of the language showed the richness
of the basic environment. For the Printf module nothing is worth more than reading
a work on the C language, such as [HS94]. In [FW00] a solution is proposed for the
typing of intput-output of values (module Marshal). The MD5 algorithm of the Digest
module is described on the web page of its designer:


Link: http://theory.lcs.mit.edu/˜rivest/homepage.html


In the same way you may find many articles on exact arithmetic used by the num library
on the web page of Valérie Ménissier-Morain :


Link: http://www-calfor.lip6.fr/˜vmm/


There are also other libraries than those in the distribution, developed by the commu-
nity of Objective Caml programmers. Objective Caml. The majority of them are listed
on the “Camel’s hump” site:


Link: http://caml.inria.fr/hump.html


Some of them will be presented and discussed in the chapter on applications develop-
ment (see chapter 22).


To know the exact contents of the various modules, don’t hesitate to read the descrip-
tion of the libraries in the reference manual [LRVD99] or consult the online version in
HTML format (see chapter 1). To enter into the details of the implementations of these
libraries, nothing is better than reading the source code, available in the distribution
of the language (see chapter 1).
Chapter 14 presents the language of Objective Caml modules. This allows you to build
simple modules seen as independent compilation units, which will be similar to the
modules presented in this chapter.







9
Garbage Collection


The execution model of a program on a microprocessor corresponds to that of impera-
tive programming. More precisely, a program is a series of instructions whose execution
modifies the memory state of the machine. Memory consists mainly of values created
and manipulated by the program. However, like any computer resource, available mem-
ory has a finite size; a program trying to use more memory than the system provides
will be in an incoherent state. For this reason, it is necessary to reuse the space of values
that are at a given moment no longer used by future computations during continued
execution. Such memory management has a strong influence on program execution and
its efficiency.


The action of reserving a block of memory for a certain use is called allocation. We
distinguish static allocation, which happens at program load time, i.e. before execution
starts, from dynamic allocation, which happens during program execution. Whereas
statically allocated memory is never reclaimed during execution, dynamically allocated
regions are susceptible to being freed, or to being reused during execution.


Explicit memory management is risky for two reasons:


• if a block of memory is freed while it contains a value still in use, this value may
become corrupted before being accessed. References to such values are called
dangling pointers;


• if the address of a memory block is no longer known to the program, then the
corresponding block cannot be freed before the end of program execution. In such
cases, we speak of a memory leak.


Explicit memory management by the programmer requires much care to avoid these
two possibilities. This task becomes rather difficult if programs manipulate complicated
data structures, and in particular if data structures share common regions of memory.


To free the programmer from this difficult exercise, automatic memory management
mechanisms have been introduced into numerous programming languages. The main
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idea is that at any moment during execution, the only dynamically allocated values
potentially useful to the program are those whose addresses are known by the program,
directly or indirectly. All values that can no longer be reached at that moment cannot
be accessed in the future and thus their associated memory can be reclaimed. This
deallocation can be effected either immediately when a value becomes unreachable, or
later when the program requires more free space than is available.


Objective Caml uses a mechanism called garbage collection (GC) to perform automatic
memory management. Memory is allocated at value construction (i.e., when a construc-
tor is applied) and it is freed implicitly. Most programs do not have to deal with the
garbage collector directly, since it works transparently behind the scenes. However,
garbage collection can have an effect on efficiency for allocation-intensive programs.
In such cases, it is useful to control the GC parameters, or even to invoke the col-
lector explicitly. Moreover, in order to interface Objective Caml with other languages
(see chapter 12), it is necessary to understand what constraints the garbage collector
imposes on data representations.


Chapter Overview


This chapter presents dynamic memory allocation strategies and garbage collection
algorithms, in particular the one used by Objective Caml which is a combination of
the presented algorithms. The first section provides background on different classes of
memory and their characteristics. The second section describes memory allocation and
compares implicit and explicit deallocation. The third section presents the major GC
algorithms. The fourth section details Objective Caml’s algorithm. The fifth section
uses the Gc module to control the heap. The sixth section introduces the use of weak
pointers from the Weak module to implement caches.


Program Memory


A machine code program is a sequence of instructions manipulating values in memory.
Memory consists generally of the following elements:


• processor registers (for direct and fast access),


• the stack,


• a data segment (static allocation region),


• the heap (dynamic allocation region).


Only the stack and the dynamic allocation region can change in size during the execu-
tion of a program. Depending on the programming language used, some control over
these classes of memory can be exercised. Whereas the program instructions (code)
usually reside in static memory, dynamic linking (see page 241) makes use of dynamic
memory.
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Allocation and Deallocation of Memory


Most languages permit dynamic memory allocation, among them C, Pascal, Lisp, ML,
SmallTalk, C++, Java, ADA.


Explicit Allocation


We distinguish two types of allocation:


• a simple allocation reserving a block of memory of a certain size without concern
of its contents;


• an allocation combining the reservation of space with its initialization.


The first case is illustrated by the function new in Pascal or malloc in C. These return
a pointer to a memory block (i.e. its address), through which the value stored in
memory can be read or modified. The second case corresponds to the construction
of values in Objective Caml, Lisp, or in object-oriented languages. Class instances in
object-oriented languages are constructed by combining new with the invocation of a
constructor for the class, which usually expects a number of parameters. In functional
languages, constructor functions are called in places where a structural value (tuple,
list, record, vector, or closure) is defined.


Let’s examine an example of value construction in Objective Caml. The representation
of values in memory is illustrated in Figure 9.1.


’c’ ’a’


ul


’m’


’z’ ’z’


vr p


Figure 9.1: Memory representation of values.


# let u = let l = [’c’; ’a’; ’m’] in List.tl l ; ;


val u : char list = [’a’; ’m’]
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# let v = let r = ( [’z’] , u )


in match r with p → (fst p) @ (snd p) ; ;


val v : char list = [’z’; ’a’; ’m’]


A list element is represented by a tuple of two words, the first containing a character
and the second containing a pointer to the next element of the list. The actual runtime
representation differs slightly and is described in the chapter on interfacing with C (see
page 315).


The first definition constructs a value named l by allocating a cell (constructor ::) for
each element of the list [’c’;’a’;’m’]. The global declaration u corresponds to the
tail of l. This establishes a sharing relationship between l and u, i.e. between the
argument and the result of the function call to List.tl.


Only the declaration u is known after the evaluation of this first statement.


The second statement constructs a list with only one element, then a pair called r
containing this list and the list u. This pair is pattern matched and renamed p by the
matching. Next, the first element of p is concatenated with its second element, which
creates a value [’z’;’a’;’m’] tied to the global identifier v. Notice that the result of
snd (the list [’a’;’m’]) is shared with its argument p whereas the result of fst (the
character ’z’) is copied.


In each case memory allocation is explicit, meaning that it is requested by the pro-
grammer (by a language command or instruction).


Note
Allocated memory stores information on the size of the object allocated
in order to be able to free it later.


Explicit Reclamation


Languages with explicit memory reclamation possess a freeing operator (free in C or
dispose in Pascal) that take the address (a pointer) of the region to deallocate. Using
the information stored at allocation time, the program frees this region and may re-use
it later.


Dynamic allocation is generally used to manipulate data structures that evolve, such as
lists, trees etc.. Freeing the space occupied by such data is not done in one fell swoop,
but instead requires a function to traverse the data. We call such functions destructors.


Although correctly defining destructors is not too difficult, their use is quite delicate.
In fact, in order to free the space occupied by a structure, it is necessary to traverse the
structure’s pointers and apply the language’s freeing operator. Leaving the responsi-
bility of freeing memory to the programmer has the advantage that the latter is sure of
the actions taken. However, incorrect use of these operators can cause an error during
the execution of the program. The principal dangers of explicit memory reclamation
are:
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• dangling pointers: a memory region has been freed while there are still pointers
pointing at it. If the region is reused, access to the region by these pointers risks
being incoherent.


• Inaccessible memory regions (a memory “leak”): a memory region is still allo-
cated, but no longer referenced by any pointer. There is no longer any possibility
of freeing the region. There is a clear loss of memory.


The entire difficulty with explicit memory reclamation is that of knowing the lifetime
of the set of values of a program.


Implicit Reclamation


Languages with implicit memory reclamation do not possess memory-freeing operators.
It is not possible for the programmer to free an allocated value. Instead, an automatic
reclamation mechanism is engaged when a value is no longer referenced, or at the time
of an allocation failure, that is to say, when the heap is full.


An automatic memory reclamation algorithm is in some ways a global destructor.
This characteristic makes its design and implementation more difficult than that of a
destructor dedicated to a particular data structure. But, once this difficulty is overcome,
the memory reclamation function obtained greatly enhances the safety of memory
management. In particular, the risk of dangling pointers disappears.


Furthermore, an automatic memory reclamation mechanism may bring good properties
to the heap:


• compaction: all the recovered memory belongs to a single block, thereby avoiding
fragmentation of the heap, and allowing allocation of objects of the size of the
free space on the heap;


• localization: the different parts of the same value are close to one another from the
point of view of memory address, permitting them to remain in the same memory
pages during use, and thereby avoiding their erasure from cache memory.


Design choices for a garbage collector must take certain criteria and constraints into
account:


• reclamation factor: what percentage of unused memory is available?


• memory fragmentation: can one allocate a block the size of the free memory?


• the slowness of allocation and collection;


• what freedom do we have regarding the representation of values?


In practice, the safety criterion remains primordial, and garbage collectors find a com-
promise among the other constraints.
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Automatic Garbage Collection


We classify automatic memory reclamation algorithms into two classes:


• reference counters: each allocated region knows how many references there are to
it. When this number becomes zero, the region is freed.


• sweep algorithms: starting from a set of roots, the collection of all accessible
values is traversed in a way similar to the traversal of a directed graph.


Sweep algorithms are more commonly used in programming languages. In effect, ref-
erence counting garbage collectors increase the processing costs (through counter up-
dating) even when there is no need to reclaim anything.


Reference Counting


Each allocated region (object) is given a counter. This counter indicates the number of
pointers to the object. It is incremented each time a reference to the object is shared. It
is decremented whenever a pointer to the object disappears. When the counter becomes
zero, the object is garbage collected.


The advantage of such a system comes from the immediate freeing of regions that
are no longer used. Aside from the systematic slowdown of computations, reference
counting garbage collectors suffer from another disadvantage: they do not know how
to process circular objects. Suppose that Objective Caml had such a mechanism. The
following example constructs a temporary value l, a list of characters of where the last
element points to the cell containing ’c’. This is clearly a circular value (figure 9.2).
# let rec l = ’c’ :: ’a’ :: ’m’ :: l in List.hd l ; ;


- : char = ’c’


At the end of the calculation of this expression each element of the list l has a counter


’c’ ’a’


l


’m’


Figure 9.2: Memory representation of a circular list.


equal to one (even the first element, for the tail points to the head). This value is
no longer accessible and yet cannot be reclaimed because its reference counter is not
zero. In languages equipped with memory reclamation via reference counting—such as
Python—and which allow the construction of circular values, it is necessary to add a
memory sweep algorithm.
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Sweep Algorithms


Sweep algorithms allow us to explore the graph of accessible values on the heap. This
exploration uses a set of roots indicating the beginning of the traversal. These roots
are exterior to the heap, stored most often in a stack. In the example in figure 9.1, we
can suppose that the values of u and v are roots. The traversal starting from these
roots constructs the graph of the values to save: the cells and pointers marked with
heavy lines in figure 9.3.


’c’ ’a’


l


’m’


’z’ ’z’


v
r  p


u


Figure 9.3: Memory reclamation after a garbage collection.


The traversal of this graph necessitates knowing how to distinguish immediate values
from pointers in the heap. If a root points to an integer, we must not consider this
value to be the address of another cell. In functional languages, this distinction is made
by using a few bits of each cell of the heap. We call these bits tag bits. This is why
Objective Caml integers only use 31 bits. This option is described in Chapter 12, page
325. We describe other solutions to the problem of distinguishing between pointers and
immediate values in this chapter, page 260.


The two most commonly used algorithms are Mark&Sweep, which constructs the list
of the free cells in the heap, and Stop&Copy, which copies cells that are still alive to a
second memory region.


The heap should be seen as a vector of memory boxes. The representation of the state
of the heap for the example of figure 9.1 is illustrated in figure 9.4.


We use the following characteristics to evaluate a sweep algorithm:


• efficiency: does the time-complexity depend on the size of the heap or only on
the number of the living cells?


• reclamation factor: is all of the free memory usable?
• compactness: is all of the free memory usable in a single block?







254 Chapter 9 : Garbage Collection


’c’ ’a’ ’m’ ’z’ ’z’


u


v


roots


HEAP


Figure 9.4: State of the heap.


• localization: are all of the different cells of a structured value close to one another?


• memory needs: does the algorithm need to use part of the memory when it runs?


• relocation: do values change location following a garbage collection?


Localization avoids changing memory pages when traversing a structured value. Com-
pactness avoids fragmentation of the heap and allows allocations equal to the amount
of available memory. The efficiency, reclamation factor, and supplementary memory
needs are intimately linked to the time and space complexity of the algorithm.


Mark&Sweep


The idea of Mark&Sweep is to keep an up-to-date list of the free cells in the heap
called the free list. If, at the time of an allocation request, the list is empty or no
longer contains a free cell of a sufficient size, then a Mark&Sweep occurs.


It proceeds in two stages:


1. the marking of the memory regions in use, starting from a set of roots (called the
Mark phase); then


2. reclamation of the unmarked memory regions by sequentially sweeping through
the whole heap (called the Sweep phase).


One can illustrate the memory management of Mark&Sweep by using four “colorings”
of the heap cells: white, gray1, black, and hached. The mark phase uses the gray; the
sweep phase, the hached; and the allocation phase, the white.


The meaning of the gray and black used by marking is as follows:


• gray: marked cells whose descendents are not yet marked;


• black: marked cells whose descendents are also marked.


1. In the online version of the book, the gray is slightly bluish.
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It is necessary to keep the collection of grayed cells in order to be sure that everything
has been explored. At the end of the marking each cell is either white or black, with
black cells being those that were reached from the roots. Figure 9.5 shows an interme-
diate marking stage for the example of figure 9.4: the root u has been swept, and the
sweeping of v is about to begin.


’c’ ’a’ ’m’ ’z’ ’z’


u
black


grey


white
v


roots


HEAP


free list


Figure 9.5: Marking phase.


It’s during the sweep phase that the free list is constructed. The sweep phase modifies
the colorings as follows:


• black becomes white, as the cell is alive;


• white becomes hached, and the cell is added to the free list.


Figure 9.6 shows the evolution of the colors and the construction of the free list.
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’c’ ’a’ ’m’ ’z’ ’z’


u
black


grey


white


hatched


HEAP


v


roots


free list


handled part of the heap


Figure 9.6: Sweep phase.


Characteristics of Mark&Sweep are that it:


• depends on the size of the entire heap (Sweep phase);


• reclaims all possible memory;


• does not compact memory;
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• does not guarantee localization;


• does not relocate data.


The marking phase is generally implemented by a recursive function, and therefore
uses space on the execution stack. One can give a completely iterative version of
Mark&Sweep that does not require a stack of indefinite size, but it turns out to be
less efficient than the partially recursive version.


Finally, Mark&Sweep needs to know the size of values. The size is either encoded in
the values themselves, or deduced from the memory address by splitting the heap into
regions that allocate objects of a bounded size. The Mark&Sweep algorithm, imple-
mented since the very first versions of Lisp, is still widely used. A part of the Objective
Caml garbage collector uses this algorithm.


Stop&Copy


The principal idea of this garbage collector is to use a secondary memory in order to
copy and compact the memory regions to be saved. The heap is divided into two parts:
the useful part (called from-space), and the part being re-written (called to-space).


’c’ ’a’ ’m’ ’z’ ’z’


u


from-space


to-space


roots


v


HEAP


already handled free box


Figure 9.7: Beginning of Stop&Copy.


The algorithm is the following. Beginning from a set of roots, each useful part of the
from-space is copied to the to-space; the new address of a relocated value is saved (most
often in its old location) in order to update all of the other values that point to this
value.


The contents of the rewritten cells gives new roots. As long as there are unprocessed
roots the algorithm continues.
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Figure 9.8: Rewriting from from-space into to-space.
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Figure 9.9: New roots.


In the case of sharing, in other words, when attempting to relocate a value that has
already been relocated, it suffices to use the new address.


At the end of garbage collection, all of the roots are updated to point to their new
addresses. Finally, the roles of the two parts are reversed for the next garbage collection.


The principal characteristics of this garbage collector are the following:


• it depends solely on the size of the objects to be kept;
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Figure 9.10: Sharing.
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Figure 9.11: Reversing the two parts.


• only half of the memory is available;


• it compacts memory;


• it may localize values (using breadth-first traversal);


• it does not use extra memory (only from-space+to-space);


• the algorithm is not recursive;


• it relocates values into the new part of memory;
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Other Garbage Collectors


Many other techniques, often derived from the two preceding, have been used: either
in particular applications, e.g., the manipulation of large matrices in symbolic cal-
culations, or in a general way linked to compilation techniques. Generational garbage
collectors allow optimizations based on the age of the values. Conservative garbage col-
lectors are used where there is not an explicit differentiation between immediate values
and pointers (for example, when one translates into C). Finally, incremental garbage
collectors allow us to avoid a noticeable slow-down at the time of garbage collection
activation.


Generational Garbage Collection


Functional programs are, in general, programs that allocate frequently. We notice that
a very large number of values have a very short lifetime2. On the other hand, when a
value has survived several garbage collections, it is quite likely to survive for a while
longer. In order to avoid complete traversal of the heap—as in Mark&Sweep—during
each memory reclamation, we would like to be able to traverse only the values that have
survived one or more garbage collections. Most frequently, it is among the young values
that we will recover the most space. In order to take advantage of this property, we
give objects dates, either a time-stamp or the number of garbage collections survived.
To optimize garbage collection, we use different algorithms according to the age of the
values:


• The garbage collections for young objects should be fast and traverse only the
younger generations.


• The garbage collections for old objects should be rare and do well at collecting
free space from the entire memory.


As a value ages it should take part less and less in the most frequent garbage collec-
tions. The difficulty, therefore, is taking count of only the region of memory occupied
by young objects. In a purely functional language, that is, a language without assign-
ment, younger objects reference older objects, and on the other hand, older objects do
not possess pointers to younger objects because they were created before the young
objects existed. Therefore, these garbage collection techniques lend themselves well to
functional languages, with the exception of those with delayed evaluation which can
in fact evaluate the constituents of a structure after evaluating the structure itself.
On the other hand, for functional languages with assignment it is always possible to
modify part of an older object to refer to a younger object. The problem then is to
save young memory regions referenced only by an older value. For this, it is necessary
to keep an up-to-date table of references from old objects to young objects in order to
have a correct garbage collection. We study the case of Objective Caml in the following
section.


2. Most values do not survive a single garbage collection.
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Conservative Garbage Collectors


To this point, all of the garbage collection techniques presume knowing how to tell a
pointer from an immediate value. Note that in functional languages with parametric
polymorphism values are uniformly represented, and in general occupy one word of
memory3. This is what allows having generic code for polymorphic functions.


However, this restriction on the range for integers may not be acceptable. In this case,
conservative garbage collectors make it possible to avoid marking immediate values
such as integers. In this case, every value uses an entire memory word without any
tag bits. In order to avoid traversing a memory region starting from a root actually
containing an integer, we use an algorithm for discriminating between immediate values
and pointers that relies on the following observations:


• the addresses of the beginning and end of the heap are known so any value outside
of these bounds is an immediate value;


• allocated objects are aligned on a word address. Every value that does not cor-
respond to such an alignment must also be an immediate value.


Thus each heap value that is valid from the point of view of being an address into
the heap is considered to be a pointer and the garbage collector tries to keep this
region, including those cases where the value is in fact an immediate value. These
cases may become very rare by using specific memory pages according to the size of
the objects. It is not possible to guarantee that the entire unused heap is collected.
This is the principal defect of this technique. However, we remain certain that only
unused regions are reclaimed.


In general, conservative garbage collectors are conservative, i.e., they do not relocate
objects. Indeed, as the garbage collector considers some immediate values as pointers,
it would be harmful to change their value. Nevertheless, some refinements can be
introduced for building the sets of roots, which allow to relocate corresponding to
clearly known roots.


Garbage collection techniques for ambiguous roots are often used when compiling a
functional language into C, seen here as a portable assembler. They allow the use of
immediate C values coded in a memory word.


Incremental Garbage Collection


One of the criticisms frequently made of garbage collection is that it stops the execution
of a running program for a time that is perceptible to the user and is unbounded. The
first is embarrassing in certain applications, for instance, rapid-action games where
the halting of the game for a few seconds is too often prejudicial to the player, as
the execution restarts without warning. The latter is a source of loss of control for
applications which must process a certain number of events in a limited time. This is


3. The only exception in Objective Caml relates to arrays of floating point values (see chapter 12,
page 331).
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typically the case for embedded programs which control a physical device such as a
vehicle or a machine tool. These applications, which are real-time in the sense that
they must respond in a bounded time, most often avoid using garbage collectors.


Incremental garbage collectors must be able to be interrupted during any one of their
processing phases and be able to restart while assuring the safety of memory recla-
mation. They give a sufficiently satisfactory method for dealing with the former case,
and can be used in the latter case by enforcing a programming discipline that clearly
isolates the software components that use garbage collection from those that do not.


Let us reconsider the Mark&Sweep example and see what adaptations are necessary in
order to make it incremental. There are essentially two:


1. how to be sure of having marked everything during the marking phase?


2. how to allocate during either the marking phase or the reclamation phase?


If Mark&Sweep is interrupted in the Mark phase, it is necessary to assure that cells
allocated between the interruption of marking and its restart are not unduly reclaimed
by the Sweep that follows. For this, we mark cells allocated during the interruption in
black or gray in anticipation.


If the Mark&Sweep is interrupted during the Sweep phase, it can continue as usual in
re-coloring the allocated cells white. Indeed, as the Sweep phase sequentially traverses
the heap, the cells allocated during the interruption are localized before the point where
the sweep restarts, and they will not be re-examined before the next garbage collection
cycle.


Figure 9.12 shows an allocation during the reclamation phase. The root w is created
by:
# let w = ’f’ :: v; ;


val w : char list = [’f’; ’z’; ’a’; ’m’]


Memory Management by Objective Caml


Objective Caml’s garbage collector combines the various techniques described above.
It works on two generations, the old and the new. It mainly uses a Stop&Copy on the
new generation (a minor garbage collection) and an incremental Mark&Sweep on the
old generation (major garbage collection).


A young object that survives a minor garbage collection is relocated to the old gener-
ation. The Stop&Copy uses the old generation as the to-space. When it is finished,
the entire from-space is completely freed.


When we presented generational garbage collectors, we noted the difficulty presented
by impure functional languages: an old-generation value may reference an object of the
new generation. Here is a small example.
# let older = ref [1] ; ;
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Figure 9.12: Allocation during reclamation.


val older : int list ref = {contents=[1]}


(* ... *)


# let newer = [2;5;8] in


older := newer ; ;


- : unit = ()


The comment (* ... *) replaces a long sequence of code in which older passes into
the older generation. The minor garbage collection must take account of certain old
generation values. Therefore we must keep an up-to-date table of the references from
the old generation to the new that becomes part of the set of roots for the minor
garbage collection. This table of roots grows very little and becomes empty just after
a minor garbage collection.


It is to be noted that the Mark&Sweep of the old generation is incremental, which
means that a part of the major garbage collection happens during each minor garbage
collection. The major garbage collection is a Mark&Sweep that follows the algorithm
presented on page 259. The relevance of this incremental approach is the reduction of
waiting time for a major garbage collection by advancing the marking phase with each
minor garbage collection. When a major garbage collection is activated, the marking
of the unprocessed regions is finished, and the reclamation phase is begun. Finally, as
Mark&Sweep may fragment the old generation significantly, a compaction algorithm
may be activated after a major garbage collection.


Putting this altogether, we arrive at the following stages:


1. minor garbage collection: perform a Stop&Copy on the young generation; age
the surviving objects by having them change zone; and then do part of the
Mark&Sweep of the old generation.
It fails if the zone change fails, in which case we go to step 2.
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2. end of the major garbage collection cycle.
When this fails go on to step 3.


3. another major garbage collection, to see if the objects counted as used during
the incremental phases have become free.
When this fails, go on to step 4.


4. Compaction of the old generation in order to obtain maximal contiguous free
space. If this last step does not succeed, there are no other possibilities, and the
program itself fails.


The GC module allows activation of the various phases of the garbage collector.


A final detail of the memory management of Objective Caml is that the heap space is
not allocated once and for all at the beginning of the program, but evolves with time
(increasing or decreasing by a given size).


Module Gc


The Gc module lets one obtain statistics about the heap and gives control over its
evolution as well as allowing the activation of various garbage collector phases. Two
concrete record types are defined: stat and control. The fields of type control are
modifiable; whereas those of stat are not. The latter simply reflect the state of the
heap at a given moment.


The fields of a stat mainly contain counters indicating:


• the number of garbage collections: minor collections, major collections and
compactions;


• the number of words allocated and transfered since the beginning of the program:
minor words, promoted words, and major words.


The fields of the record control are:


• minor heap size, which defines the size of the zone allotted to the younger gen-
eration;


• major heap increment, which defines the increment applied to the growth of the
region for the older generation;


• space overhead, which defines the percentage of the memory used beyond which
a major garbage collection is begun (the default value is 42);


• max overhead, which defines the connection between free memory and occupied
memory after which compactification is activated. A value of 0 causes a system-
atic compactification after every major garbage collection. The maximal value of
1000000 inhibits compactification.


• verbose is an integer parameter governing the tracing of the activities of the
garbage collector.


Functions manipulating the types stat and control are given in figure 9.13.
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stat unit → stat


print stat out channel → unit


get unit → control


set control → unit


Figure 9.13: Control and statistical functions for the heap.


The following functions, of type unit -> unit, force the execution of one or more
stages of the Objective Caml garbage collector: minor (stage 1), major (stages 1 and 2),
full major (stages 1, 2 and 3) and compact (stages 1, 2, 3 and 4).


Examples


Here is what the Gc.stat call shows:
# Gc.stat () ; ;


- : Gc.stat =


{Gc.minor_words=555677; Gc.promoted_words=61254; Gc.major_words=205249;


Gc.minor_collections=17; Gc.major_collections=3; Gc.heap_words=190464;


Gc.heap_chunks=3; Gc.live_words=157754; Gc.live_blocks=35600;


Gc.free_words=32704; Gc.free_blocks=83; Gc.largest_free=17994;


Gc.fragments=6; Gc.compactions=0}


We see the number of executions of each phase: minor garbage collection, major garbage
collection, compaction, as well as the number of words handled by the different memory
spaces. Calling compact forces the four stages of the garbage collector, causing the heap
statistics to be modified (see the call of Gc.stat).
# Gc.compact () ; ;


- : unit = ()


# Gc.stat () ; ;


- : Gc.stat =


{Gc.minor_words=562155; Gc.promoted_words=62288; Gc.major_words=206283;


Gc.minor_collections=18; Gc.major_collections=5; Gc.heap_words=190464;


Gc.heap_chunks=3; Gc.live_words=130637; Gc.live_blocks=30770;


Gc.free_words=59827; Gc.free_blocks=1; Gc.largest_free=59827;


Gc.fragments=0; Gc.compactions=1}


The fields GC.minor collections and compactions are incremented by 1, whereas the
field Gc.major collections is incremented by 2. All of the fields of type GC.control


are modifiable. For them to be taken into account, we must use the function Gc.set,
which takes a value of type control and modifies the behavior of the garbage collector.


For example, the field verbose may take a value from 0 to 127, controlling 7 different
indicators.
# c.Gc.verbose <- 31; ;
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Characters 1-2:


This expression has type int * int but is here used with type Gc.control


# Gc.set c; ;


Characters 7-8:


This expression has type int * int but is here used with type Gc.control


# Gc.compact () ; ;


- : unit = ()


which prints:


<>Starting new major GC cycle
allocated_words = 329
extra_heap_memory = 0u
amount of work to do = 3285u
Marking 1274 words
!Starting new major GC cycle
Compacting heap...
done.


The different phases of the garbage collector are indicated as well as the number of
objects processed.


Module Weak


A weak pointer is a pointer to a region which the garbage collector may reclaim at
any moment. It may be surprising to speak of a value that might disappear at any
moment. In fact, we must see these weak pointers as a reservoir of values that may
still be available. This turns out to be particularly useful when memory resources are
small compared to the elements to be saved. The classic case is the management of
a memory cache: a value may be lost, but it remains directly accessible as long as it
exists.


In Objective Caml one cannot directly manipulate weak pointers, only arrays of weak
pointers. The Weak module defines the abstract type ’a Weak.t, corresponding to the
type ’a option array, a vector of weak pointers of type ’a. The concrete type ’a


option is defined as follows:


type ’a option = None | Some of ’a;;


The main functions of this module are defined in figure 9.14.


The create function allocates an array of weak pointers, each initialized to None. The
set function puts a value of type ’a option at a specified index. The get function
returns the value contained at index n in a table of weak pointers. The returned
value is then referenced, and no longer reclaimable as long as this reference exists. To
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function type
create int -> ’a t


set ’a t -> int -> ’a option -> unit


get ’a t -> int -> ’a option


check ’a t -> int -> bool


Figure 9.14: Main functions of the Weak module.


verify the effective existence of a value, one uses either the check function or pattern
matching on the ’a option type’s patterns. The former solution does not depend on
the representation choice for weak pointers.


Standard functions for sequential structures also exist: length, for the length, and
fill and blit for copies of parts of the array.


Example: an Image Cache


In an image-processing application, it is not rare to work on several images. When
the user moves from one image to another, the first is saved to a file, and the other
is loaded from another file. In general, only the names of the latest images processed
are saved. In order to avoid overly frequent disk access while at the same time not
using too much memory space, we use a memory cache which contains the last images
loaded. The contents of the cache may be freed if necessary. We implement this with
a table of weak pointers, leaving the decision of when to free the images up to the
garbage collector. To load an image we first search the cache. If the image is there, it
becomes the current image. If not, its file is read.


We define a table of images in the following manner:
# type table of images = {


size : int;


mutable ind : int;


mutable name : string;


mutable current : Graphics.color array array;


cache : ( string * Graphics.color array array) Weak.t } ; ;


The field size gives the size of the table; the field ind gives the index of the current
image; the field name, the name of the current image; the field current, the current
image, and the field cache contains the array of weak pointers to the images. It contains
the last images loaded and their names.


The function init table initializes the table with its first image.
# let open image filename =


let ic = open in filename


in let i = ((input value ic) : Graphics.color array array)


in ( close in ic ; i ) ; ;


val open_image : string -> Graphics.color array array = <fun>
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# let init table n filename =


let i = open image filename


in let c = Weak.create n


in Weak.set c 0 (Some (filename,i)) ;


{ size=n; ind=0; name = filename; current = i; cache = c } ; ;


val init_table : int -> string -> table_of_images = <fun>


The loading of a new image saves the current image in the table and loads the new
one. To do this, we must first try to find the image in the cache.
# exception Found of int * Graphics.color array array ; ;


# let search table filename table =


try


for i=0 to table.size-1 do


if i<>table.ind then match Weak.get table.cache i with


Some (n,img) when n=filename → raise (Found (i,img))


| _ → ()


done ;


None


with Found (i,img) → Some (i,img) ; ;


# let load table filename table =


if table.name = filename then () (* the image is the current image *)


else


match search table filename table with


Some (i,img) →
(* the image found becomes the current image *)


table.current <- img ;


table.name <- filename ;


table.ind <- i


| None →
(* the image isn’t in the cache, need to load it *)


(* find an empty spot in the cache *)


let i = ref 0 in


while (!i<table.size && Weak.check table.cache !i) do incr i done ;


(* if none are free, take a full slot *)


( if !i=table.size then i:=(table.ind+1) mod table.size ) ;


(* load the image here and make it the current one *)


table.current <- open image filename ;


table.ind <- !i ;


table.name <- filename ;


Weak.set table.cache table.ind (Some (filename,table.current)) ; ;


val load_table : string -> table_of_images -> unit = <fun>


The load table function tests to see if the image requested is current. If not, it checks
the cache to see if the image exists; if that fails, the function loads the image from disk.
In either of the latter two cases, it makes the image become the current one.
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To test this program, we use the following cache-printing function:
# let print table table =


for i = 0 to table.size-1 do


match Weak.get table.cache ((i+table.ind) mod table.size) with


None → print string "[] "


| Some (n,_) → print string n ; print string " "


done ; ;


val print_table : table_of_images -> unit = <fun>


Then we test the following program:
# let t = init table 10 "IMAGES/animfond.caa" ; ;


val t : table_of_images =


{size=10; ind=0; name="IMAGES/animfond.caa";


current=


[|[|7372452; 7372452; 7372452; 7372452; 7372452; 7372452; 7372452;


7372452; 7372452; 7372452; 7372452; 7372452; 7505571; 7505571; ...|];


...|];


cache=...}


# load table "IMAGES/anim.caa" t ; ;


- : unit = ()


# print table t ; ;


IMAGES/anim.caa [] [] [] [] [] [] [] [] [] - : unit = ()


This cache technique can be adapted to various applications.


Exercises


Following the evolution of the heap


In order to follow the evolution of the heap, we suggest writing a function that keeps
information on the heap in the form of a record with the following format:
# type tr gc = {state : Gc.stat;


time : float; number : int}; ;
The time corresponds to the number of milliseconds since the program began and
the number serves to distinguish between calls. We use the function Unix.time (see
chapter 18, page 572) which gives the running time in milliseconds.


1. Write a function trace gc that returns such a record.


2. Modify this function so that it can save a value of type tr gc in a file in the
form of a persistant value. This new function needs an output channel in order
to write. We use the Marshal module, described on page 228, to save the record.


3. Write a stand-alone program, taking as input the name of a file containing
records of type of tr gc, and displaying the number of major and minor garbage
collections.
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4. Test this program by creating a trace file at the interactive loop level.


Memory Allocation and Programming Styles


This exercise compares the effect of programming styles on the growth of the heap.
To do this, we reconsider the exercise on prime numbers from chapter 8 page 244. We
are trying to compare two versions, one tail-recursive and the other not, of the sieve
of Eratosthenes.


1. Write a tail-recursive function erart (this name needs fixing) that calculates the
prime numbers in a given interval. Then write a function that takes an integer
and returns the list of smaller prime numbers.


2. By using the preceding functions, write a program (change the name) that takes
the name of a file and a list of numbers on the command line and calculates,
for each number given, the list of prime numbers smaller than it. This function
creates a garbage collection trace in the indicated file. Trace commands from
previous exercice are gathered in file trgc.ml


3. Compile these files and create a stand-alone executable; test it with the following
call, and display the result.


%
erart trace_rt 3000 4000 5000 6000


4. Do the same work for the non tail recursive function.


5. Compare trace results.


Summary


This chapter has presented the principal families of algorithms for automatic memory
reclamation with the goal of detailing those used in Objective Caml. The Objective
Caml garbage collector is an incremental garbage collector with two generations. It
uses Mark&Sweep for the old generation, and Stop&Copy for the young generation.
Two modules directly linked to the garbage collector allow control of the evolution of
the heap. The Gc module allows analysis of the behavior of the garbage collector and
modification of certain parameters with the goal of optimizing specific applications.
With the Weak module one can save in arrays values that are potentially reclaimable,
but which are still accessible. This module is useful for implementing a memory cache.


To Learn More


Memory reclamation techniques have been studied for forty years—in fact, since the
first implementations of the Lisp programming language. For this reason, the literature
in this area is enormous.
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A comprehensive reference is Jones’ book [Jon98]. Paul Wilson’s tutorial [Wil92] is an
excellent introduction to the field, with many references. The following web pages also
provide a good view of the state of the art in memory management.


Link: ftp://ftp.netcom.com/pub/hb/hbaker/home.html


is an introduction to sequential garbage collectors.


Link: http://www.cs.ukc.ac.uk/people/staff/rej/gc.html


contains the presentation of [Jon98] and includes a large searchable bibliography.


Link: http://www.cs.colorado.edu/˜zorn/DSA.html


lists different tools for debugging garbage collection.


Link: http://reality.sgi.com/boehm mti/


offers C source code for a conservative garbage collector for the C language. This
garbage collector replaces the classical allocator malloc by a specialized version GC malloc.
Explicit recovery by free is replaced by a new version that no longer does anything.


Link: http://www.harlequin.com/mm/reference/links.html


maintains a list of links on this subject.


In chapter 12 on the interface between C and Objective Caml we come back to memory
management.







10
Program Analysis


Tools


Program analysis tools provide supplementary information to the programmer in ad-
dition to the feedback from the compiler and the linker. Some of these tools perform
a static analysis, i.e. they look at the code (either as text or in the form of a syntax
tree) and determine certain properties like interdependency of modules or uncaught
exceptions. Other tools perform a dynamic analysis, i.e. they look at the flow of execu-
tion. Analysis tools are useful for determining the number of calls to certain functions,
getting a trace of the flow of arguments, or determining the time spent in certain parts
of the program. Some are interactive, like the tools for debugging. In this case pro-
gram execution is modified to account for user interaction. It is then possible to set
breakpoints, in order to look at values or to restart program execution with different
arguments.


The Objective Caml distribution includes such tools. Some of them have rather un-
usual characteristics, mostly dealing with static typing. It is, in fact, this static typing
that guarantees the absence of type errors during program execution and enables the
compiler to produce efficient code with a small memory footprint. Typing information
is partly lost for constructed Objective Caml values. This creates certain difficulties,
e.g. the impossibility of showing the arguments of polymorphic functions.


Chapter Overview


This short chapter presents the program analysis tools in the Objective Caml distribu-
tion. The first chapter describes the ocamldep command, which finds the dependencies
in a set of Objective Caml files that make up an application.


The second section deals with debugging tools including tracing the execution of func-
tions and the ocamldebug debugger, running under Unix.
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The third section takes a look at the profiler, which can be used to analyze the execution
of a program with an eye towards its optimization.


Dependency Analysis


Dependency analysis of a set of implementation and interface files that make up an
Objective Caml application pursues a double end. The first is to get a global view of
the interdependencies between modules. The second is to use this information in order
to recompile only the absolutely necessary files after modifications of certain files.


The ocamldep command takes a set of .ml and .mli files and outputs the dependencies
between files in Makefile1 format.


These dependencies originate from global declarations in other modules, either by using
dot.notation (e.g. M1.f) or by opening a module (e.g. open M1).


Suppose the following files exist:


dp.ml :
let print vect v =


for i = 0 to Array.length v do


Printf.printf "%f " v.(i)


done;


print newline () ; ;


and d1.ml :
let init n e =


let v = Array.create 4 3.14 in


Dp.print vect v;


v; ;


Given the name of these files, the ocamldep command will output the following depen-
dencies:


$ ocamldep dp.ml d1.ml array.ml array.mli printf.ml printf.mli


dp.cmo: array.cmi printf.cmi


dp.cmx: array.cmx printf.cmx


d1.cmo: array.cmi dp.cmo


d1.cmx: array.cmx dp.cmx


array.cmo: array.cmi


array.cmx: array.cmi


printf.cmo: printf.cmi


printf.cmx: printf.cmi


1. Makefile files are used by the make command for the maintenance of a set of programs or files to
keep everything up to date after modifications to some of them.
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The dependencies are determined for both the bytecode and the native compiler. The
output is to be read in the following manner: production of the file dp.cmo depends
on the files array.cmi and printf.cmi. Files with the extension .cmi depend on files
with the same name and extension .mli. And the same holds by analogy for .ml files
with .cmo and .cmx files.


The object files of the distribution do not show up in the dependency lists. In fact,
if ocamldep does not find the files array.ml and printf.ml in the current directory,
it will find them in the library directory of the installation and produce the following
output:


$ ocamldep dp.ml d1.ml
d1.cmo: dp.cmo
d1.cmx: dp.cmx


To give new file search paths to the ocamldep command, the -I directory option is
used, which adds a directory to the list of include directories.


Debugging Tools


There are two debugging tools. The first is a trace mechanism that can be used on
the global functions in the toplevel loop. The second tool is a debugger that is not
used in the normal toplevel loop. After a first program run it is possible to go back
to breakpoints, and to inspect values or to restart certain functions with different
arguments. This second tool only runs under Unix, because it duplicates the running
process via a fork (see page 582).


Trace


The trace of a function is the list of the values of its parameters together with its result
in the course of a program run.


The trace commands are directives in the toplevel loop. They allow to trace a function,
stop its trace or to stop all active traces. These three directives are shown in the table
below.


#trace name trace function name


#untrace name stop tracing function name


#untrace all stop all traces


Here is a first example of the definition of a function f:
# let f x = x + 1; ;


val f : int -> int = <fun>


# f 4; ;
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- : int = 5


Now we will trace this function, so that its arguments and its return value will be
shown.
# #trace f; ;


f is now traced.


# f 4; ;


f <-- 4


f --> 5


- : int = 5


Passing of the argument 4 to f is shown, then the function f calculates the desired
value and the result is returned and also shown. The arguments of a function call are
indicated by a left arrow and the return value by an arrow to the right.


Functions of Several Arguments


Functions of several arguments (or functions returning a closure) are also traceable.
Each argument passed is shown. To distinguish the different closures, the number
of arguments already passed to the closures is marked with a *. Let the function
verif div take 4 numbers (a, b, q, r) corresponding to the integer division: a = bq +r.


# let verif div a b q r =


a = b*q + r; ;


val verif_div : int -> int -> int -> int -> bool = <fun>


# verif div 11 5 2 1; ;


- : bool = true


Its trace shows the passing of 4 arguments:
# #trace verif div; ;


verif_div is now traced.


# verif div 11 5 2 1; ;


verif_div <-- 11


verif_div --> <fun>


verif_div* <-- 5


verif_div* --> <fun>


verif_div** <-- 2


verif_div** --> <fun>


verif_div*** <-- 1


verif_div*** --> true


- : bool = true


Recursive Functions


The trace gives valuable information about recursive functions, e.g. poor stopping
criteria are easily detected.
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Let the function belongs to which tests whether an integer belongs to a list of integers
be defined in the following manner:
# let rec belongs to (e : int) l = match l with


[] → false


| t :: q → (e = t) || belongs to e q ; ;


val belongs_to : int -> int list -> bool = <fun>


# belongs to 4 [3;5;7] ; ;


- : bool = false


# belongs to 4 [1; 2; 3; 4; 5; 6; 7; 8] ; ;


- : bool = true


The trace of the function invocation belongs to 4 [3;5;7] will show the four calls
of this function and the results returned.
# #trace belongs to ; ;


belongs_to is now traced.


# belongs to 4 [3;5;7] ; ;


belongs_to <-- 4


belongs_to --> <fun>


belongs_to* <-- [3; 5; 7]


belongs_to <-- 4


belongs_to --> <fun>


belongs_to* <-- [5; 7]


belongs_to <-- 4


belongs_to --> <fun>


belongs_to* <-- [7]


belongs_to <-- 4


belongs_to --> <fun>


belongs_to* <-- []


belongs_to* --> false


belongs_to* --> false


belongs_to* --> false


belongs_to* --> false


- : bool = false


At each call of the function belongs to the argument 4 and the list to search in are
passed as arguments. When the list becomes empty, the functions return false as a
return value which is passed along to each waiting recursive invocation.


The following example shows the section of the list when the element searched for
appears:
# belongs to 4 [1; 2; 3; 4; 5; 6; 7; 8] ; ;


belongs_to <-- 4


belongs_to --> <fun>


belongs_to* <-- [1; 2; 3; 4; 5; 6; 7; 8]


belongs_to <-- 4


belongs_to --> <fun>
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belongs_to* <-- [2; 3; 4; 5; 6; 7; 8]


belongs_to <-- 4


belongs_to --> <fun>


belongs_to* <-- [3; 4; 5; 6; 7; 8]


belongs_to <-- 4


belongs_to --> <fun>


belongs_to* <-- [4; 5; 6; 7; 8]


belongs_to* --> true


belongs_to* --> true


belongs_to* --> true


belongs_to* --> true


- : bool = true


As soon as 4 becomes head of the list, the functions return true which gets passed
along to each waiting recursive invocation.


If the sequence of statements around || were changed, the function belongs to would
still return the right result but would always have to go over the complete list.
# let rec belongs to (e : int) = function


[] → false


| t :: q → belongs to e q || (e = t) ; ;


val belongs_to : int -> int list -> bool = <fun>


# #trace belongs to ; ;


belongs_to is now traced.


# belongs to 3 [3;5;7] ; ;


belongs_to <-- 3


belongs_to --> <fun>


belongs_to* <-- [3; 5; 7]


belongs_to <-- 3


belongs_to --> <fun>


belongs_to* <-- [5; 7]


belongs_to <-- 3


belongs_to --> <fun>


belongs_to* <-- [7]


belongs_to <-- 3


belongs_to --> <fun>


belongs_to* <-- []


belongs_to* --> false


belongs_to* --> false


belongs_to* --> false


belongs_to* --> true


- : bool = true


Even though 3 is the first element of the list, it is traversed completely. So, trace also
provides a mechanism for the efficiency analysis of recursive functions.


Polymorphic Functions


The trace does not show the value corresponding to an argument of a parameterized
type. If for example the function belongs to can be written without an explicit type







Debugging Tools 277


constraint:
# let rec belongs to e l = match l with


[] → false


| t :: q → (e = t) || belongs to e q ; ;


val belongs_to : ’a -> ’a list -> bool = <fun>


The type of the function belongs to is now polymorphic, and the trace does no longer
show the value of its arguments but replaces them with the indication (poly).
# #trace belongs to ; ;


belongs_to is now traced.


# belongs to 3 [2;3;4] ; ;


belongs_to <-- <poly>


belongs_to --> <fun>


belongs_to* <-- [<poly>; <poly>; <poly>]


belongs_to <-- <poly>


belongs_to --> <fun>


belongs_to* <-- [<poly>; <poly>]


belongs_to* --> true


belongs_to* --> true


- : bool = true


The Objective Caml toplevel loop can only show monomorphic types. Moreover, it
only keeps the inferred types of global declarations. Therefore, after compilation of
the expression belongs to 3 [2;3;4], the toplevel loop in fact no longer possesses
any further type information about the function belongs to apart form the type ’a


-> ’a list -> bool. The (monomorphic) types of 3 and [2;3;4] are lost, because
the values do not keep any type information: this is static typing. This is the reason
why the trace mechanism attributes the polymorphic types ’a and ’a list to the
arguments of the function belongs to and does not show their values.


It is this absence of typing information in values that entails the impossibility of con-
structing a generic print function of type ’a -> unit.


Local Functions


Local functions cannot be traced for the same reasons as above, relating again to static
typing. Only global type declarations are kept in the environment of the toplevel loop.
Still the following programming style is common:
# let belongs to e l =


let rec bel aux l = match l with


[] → false


| t :: q → (e = t) || (bel aux q)


in


bel aux l; ;


val belongs_to : ’a -> ’a list -> bool = <fun>


The global function only calls on the local function, which does the interesting part of
the work.
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Notes on Tracing


Tracing is actually the only multi-platform debugging tool. Its two weaknesses are the
absence of tracing information for local functions and the inability to show the value
of polymorphic parameters. This strongly restricts its usage, mainly during the first
steps with the language.


Debug


ocamldebug, is a debugger in the usual sense of the word. It permits step-by-step
execution, the insertion of breakpoints and the inspection and modification of values
in the environment.


Single-stepping a program presupposes the knowledge of what comprises a program
step. In imperative programming this is an easy enough notion: a step corresponds
(more or less) to a single instruction of the language. But this definition does not
make much sense in functional programming; one instead speaks of program events.
These are applications, entries to functions, pattern matching, a conditional, a loop,
an element of a sequence, etc.


Warning This tool only runs under Unix.


Compiling with Debugging Mode


The -g compiler option produces a .cmo file that allows the generation of the necessary
instructions for debugging. Only the bytecode compiler knows about this option. It is
necessary to set this option during compilation of the files encompassing an application.
Once the executable is produced, execution in debug mode can be accomplished with
the following ocamldebug command:


ocamldebug [options ] executable [arguments ]


Take the following example file fact.ml which calculates the factorial function:
let fact n =


let rec fact aux p q n =


if n = 0 then p


else fact aux (p+q) p (n-1)


in


fact aux 1 1 n; ;


The main program in the file main.ml goes off on a long recursion after the call of
Fact.fact on −1.
let x = ref 4; ;


let go () =


x := -1;


Fact.fact !x; ;
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go () ; ;


The two files are compiled with the -g option:


$ ocamlc -g -i -o fact.exe fact.ml main.ml
val fact : int -> int
val x : int ref
val go : unit -> int


Starting the Debugger


Once an executable is compiled with debug mode, it can be run in this mode.


$ ocamldebug fact.exe
Objective Caml Debugger version 3.00


(ocd)


Execution Control


Execution control is done via program events. It is possible to go forward and backwards
by n program events, or to go forward or backwards to the next breakpoint (or the nth
breakpoint). A breakpoint can be set on a function or a program event. The choice of
language element is shown by line and column number or the number of characters.
This locality may be relative to a module.


In the example below, a breakpoint is set at the fourth line of module Main:


(ocd) step 0
Loading program... done.
Time : 0
Beginning of program.
(ocd) break @ Main 4
Breakpoint 1 at 5028 : file Main, line 4 column 3


The initialisations of the module are done before the actual program. This is the reason
the breakpoint at line 4 occurs only after 5028 instructions.


We go forward or backwards in the execution either by program elements or by break-
points. run and reverse run the program just to the next breakpoint. The first in the
direction of program execution, the second in the backwards direction. The step com-
mand advanced by 1 or n program elements, entering into functions, next steps over
them. backstep and previous respectively do the same in the backwards direction.
finish finally completes the current functions invocations, whereas start returns to
the program element before the function invocation.
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To continue our example, we go forward to the breakpoint and then execute three
program instructions:


(ocd) run


Time : 6 - pc : 4964 - module Main


Breakpoint : 1


4 <|b|>Fact.fact !x;;


(ocd) step


Time : 7 - pc : 4860 - module Fact


2 <|b|>let rec fact_aux p q n =


(ocd) step


Time : 8 - pc : 4876 - module Fact


6 <|b|>fact_aux 1 1 n;;


(ocd) step


Time : 9 - pc : 4788 - module Fact


3 <|b|>if n = 0 then p


Inspection of Values


At a breakpoint, the values of variables in the activation record can be inspected. The
print and display commands output the values associated with a variable according
to the different depths.


We will print the value of n, then go back three steps to print the contents of x:


(ocd) print n


n : int = -1


(ocd) backstep 3


Time : 6 - pc : 4964 - module Main


Breakpoint : 1


4 <|b|>Fact.fact !x;;


(ocd) print x


x : int ref = {contents=-1}


Access to the fields of a record or via the index of an array is accepted by the printing
commands.


(ocd) print x.contents


1 : int = -1


Execution Stack


The execution stack permits a visualization of the entanglement of function invocations.
The backtrace or bt command shows the stack of calls. The up and down commands
select the next or preceding activation record. Finally, the frame command gives a
description of the current record.
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Profiling


This tool allows measuring a variety of metrics concerning program execution, includ-
ing how many times a particular function or control structure (including conditionals,
pattern matchers and loops) are executed. The results are recorded in a file. By exam-
ining this information, you may be able to locate either algorithmic errors or crucial
locations for optimization.


In order for the profiler to do its work, it is necessary to compile the code using a
special mode that adds profiling instructions. There are two profiling modes: one for
the bytecode compiler, and the other for the native-code compiler. There are also two
commands used to analyze the results. Analysis of native code will retrieve the time
spent in each function.


Profiling an application therefore proceeds in three stages:


1. compilation in profiling mode;


2. program execution;


3. presentation of measurements.


Compilation Commands


The commands to compile in profiling mode are the following:


• ocamlcp -p options for the bytecode compiler;


• ocamlopt -p options for the native-code compiler.


These compilers produce the same type of files as the usual commands (see chapter 7).
The different options are described in figure 10.1.


f function call
i branch of if
l while and for loops
m branches of match
t branches of try
a all options


Figure 10.1: Options of the profiling commands


These indicate which control structures must be taken into account. By default, the
fm options are activated.
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Program Execution


Bytecode Compiler


The execution of a program compiled in profiling mode will, if it terminates, produce
a file named ocamlprof.dump which contains the information wanted.


We resume the example of the product of a list of integers. We write the following file
f1.ml:
let rec interval a b =


if b < a then []


else a :: (interval (a+1) b); ;


exception Found zero ; ;


let mult list l =


let rec mult rec l = match l with


[] → 1


| 0::_ → raise Found zero


| n :: x → n * (mult rec x)


in


try mult rec l with Found zero → 0


; ;


and the file f2.ml which uses the functions of f1.ml:
let l1 = F1.interval 1 30; ;


let l2 = F1.interval 31 60; ;


let l3 = l1 @ (0 :: l2); ;


print int (F1.mult list l1); ;


print newline () ; ;


print int (F1.mult list l3); ;


print newline () ; ;


The compilation of these files in profiling mode is shown in the following:


ocamlcp -i -p a -c f1.ml
val profile_f1_ : int array
val interval : int -> int -> int list
exception Found_zero
val mult_list : int list -> int


With the -p option, the compiler adds a new function (profile f1 ) for the initializa-
tion of the counters in module F1. It is the same for file f2.ml:
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ocamlcp -i -p a -o f2.exe f1.cmo f2.ml
val profile_f2_ : int array
val l1 : int list
val l2 : int list
val l3 : int list


Native Compiler


The native code compilation gives the following result:


$ ocamlopt -i -p -c f1.ml
val interval : int -> int -> int list
exception Found_zero
val mult_list : int list -> int
$ ocamlopt -i -p -o f2nat.exe f1.cmx f2.ml


Only the -p option without argument is used. The execution of f2nat.exe produces
a file named gmon.out which is in a format that can be handled by the usual Unix
commands (see page 284).


Presentation of the Results


Since the information gathered by the two profiling modes differs, their presentation
follows suit. In the first (bytecode) mode comments on the number of passages through
the control structures are added to the program text. In the second (native) mode, the
time spent in its body and the number of calls is associated with each function.


Bytecode Compiler


The ocamlprof command gives the analysis of the measurement results. It uses the
information contained in the file camlprof.dump. This command takes the source of
the program on entry, then reads the measurements file and produces a new program
text with the desired counts added as comments.


For our example this gives:


ocamlprof f1.ml


let rec interval a b =


(* 62 *) if b < a then (* 2 *) []


else (* 60 *) a::(interval (a+1) b);;


exception Found_zero ;;


let mult_list l =


(* 2 *) let rec mult_rec l = (* 62 *) match l with
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[] -> (* 1 *) 1


| 0::_ -> (* 1 *) raise Found_zero


| n::x -> (* 60 *) n * (mult_rec x)


in


try mult_rec l with Found_zero -> (* 1 *) 0


;;


These counters reflect the calculations done in F2 quite well. There are two calls of
mult list and 62 of the auxiliary function mult rec. Examination of the different
branches of the pattern matching show 60 passages through the common case, one
through the pattern [] and the only match where the head is 0, raising an exception,
which can be seen in the counter of the try statement.


The ocamlprof command accepts two options. The first -f file indicates the name of
the file to contain the measurements. The second -F string specifies a string to add
to the comments associated with the control structures treated.


Native Compilation


To get the time spent in the calls of the functions for multiplying the elements of a
list, we write the following file f3.ml:
let l1 = F1.interval 1 30; ;


let l2 = F1.interval 31 60; ;


let l3 = l1 @ (0 :: l2); ;


for i=0 to 100000 do


F1.mult list l1;


F1.mult list l3


done; ;


print int (F1.mult list l1); ;


print newline () ; ;


print int (F1.mult list l3); ;


print newline () ; ;


This is the same file as f2.ml with a loop of 100000 iterations.


Execution of the program creates the file gmon.out. This is in a format readable by
gprof, a command that can be found on Unix systems. The following call to gprof
prints information about the time spent and the call graph. Since the output is rather
long, we show only the first page which contains the name of the functions that are
called at least once and the time spent in each.


$ gprof f3nat.exe


Flat profile:


Each sample counts as 0.01 seconds.


% cumulative self self total


time seconds seconds calls us/call us/call name
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92.31 0.36 0.36 200004 1.80 1.80 F1_mult_rec_45


7.69 0.39 0.03 200004 0.15 1.95 F1_mult_list_43


0.00 0.39 0.00 2690 0.00 0.00 oldify


0.00 0.39 0.00 302 0.00 0.00 darken


0.00 0.39 0.00 188 0.00 0.00 gc_message


0.00 0.39 0.00 174 0.00 0.00 aligned_malloc


0.00 0.39 0.00 173 0.00 0.00 alloc_shr


0.00 0.39 0.00 173 0.00 0.00 fl_allocate


0.00 0.39 0.00 34 0.00 0.00 caml_alloc3


0.00 0.39 0.00 30 0.00 0.00 caml_call_gc


0.00 0.39 0.00 30 0.00 0.00 garbage_collection


...


The main lesson is that almost all of the execution time is spent in the function
F1 mult rec 45, which corresponds to the function F1.mult rec in file f1.ml. On the
other hand we recognize a lot of other functions that are called. The first on the list
are memory management functions in the runtime library (see chapter 9).


Exercises


Tracing Function Application


This exercise shows the evaluation of arguments at the moment of function application.


1. Activate tracing of the function List.fold left and evaluate the following
expression:
List.fold left (-) 1 [2; 3; 4; 5]; ;


What does the trace show you?


2. Define the function fold left int, identical to List.fold left, but with type:
(int → int → int) → int → int list → int.
Trace this function. Why is the output of the trace different?


Performance Analysis


We continue the exercise proposed in chapter 9, page 247, where we compared the
evolution of the heap of two programs (one tail recursive and the other not) for calcu-
lating primes. This time we will compare the execution times of each function with the
profiling tools. This exercise shows the importance of inline expansion (see chapter 7).


1. Compile the two programs erart and eranrt with profiling options using the
bytecode compiler and the native code compiler respectively.


2. Execute the programs passing them the numbers 3000 4000 5000 6000 on the
command line.


3. Visualize the results with the ocamlprof and gprof commands. What can you
say about the results?
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Summary


This chapter presented the different programming support tools that come with the
Objective Caml distribution.


The first tool performs a static analysis in order to determine the dependencies of a
set of compilation units. This information can then be put in a Makefile, allowing for
separate compilation (if you alter one source file in a program, you only have to compile
that file, and the files that have dependencies to it, rather than the entire program).


Other tools give information about the execution of a program. The interactive toplevel
offers a trace of the execution; but, as we have seen, polymorphism imposes quite heavy
restrictions on the observable values. In fact, only the global declarations of monomor-
phic values are visible, which nevertheless includes the arguments of monomorphic
functions and permits tracing of recursive functions.


The last tools are those in the tradition of development under Unix, namely a debugger
and a profiler. With the first, you can execute a program step by step to examine it’s
operation, and the second gives information about its performance. Both are usable
only under Unix.


To Learn More


The results produced by the ocamldep command can be visualized in graphical form
by the ocamldot utility, which can be found on the following page:


Link: http://www.cis.upenn.edu/˜tjim/ocamldot/index.html


ocamldot makes use of an independent program (dot), also downloadable:


Link: http://www.research.att.com/sw/tools/graphviz/


Several generic Makefile templates for Objective Caml have been proposed to ease
the burden of project management:


Link: http://caml.inria.fr/FAQ/Makefile ocaml-eng.html


Link: http://www.ai.univie.ac.at/˜markus/ocaml sources


These integrate the output of ocamldep.


In [HF+96] a performance evaluation of about twenty implementations of functional
languages, among them several ML implementations, can be found. The benchmark is
an example of numerical calculations on large datastructures.







11
Tools for lexical


analysis and parsing


The development of lexical analysis and parsing tools has been an important area of
research in computer science. This work has produced the lexer and parser generators
lex and yacc whose worthy scions camllex and camlyacc are presented in this chapter.
These two tools are the de-facto standard for implementing lexers and parsers, but there
are other tools, like streams or the regular expression library str, that may be adequate
for applications which do not need a powerful analysis.


The need for such tools is especially acute in the area of state-of-the-art programming
languages, but other applications can profit from such tools: for example, database
systems offering the possibility of issuing queries, or spreadsheets defining the contents
of cells as the result of the evaluation of a formula. More modestly, it is common to
use plain text files to store data; for example system configuration files or spreadsheet
data. Even in such limited cases, processing the data involves some amount of lexical
analysis and parsing.


In all of these examples the problem that lexical analysis and parsing must solve is
that of transforming a linear character stream into a data item with a richer structure:
a string of words, a record structure, the abstract syntax tree for a program, etc.


All languages have a set of vocabulary items (lexicon) and a grammar describing how
such items may be combined to form larger items (syntax). For a computer or program
to be able to correctly process a language, it must obey precise lexical and syntac-
tic rules. A computer does not have the detailed semantic understanding required to
resolve ambiguities in natural language. To work around the limitation, computer lan-
guages typically obey clearly stated rules without exceptions. The lexical and syntactic
structure of such languages has received formal definitions that we briefly introduce in
this chapter before introducing their uses.
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Chapter Structure


This chapter introduces the tools of the Objective Caml distribution for lexical analysis
and parsing. The latter normally supposes that the former has already taken place. In
the first section, we introduce a simple tool for lexical analysis provided by module
Genlex. Next we give details about the definition of sets of lexical units by introducing
the formalism of regular expressions. We illustrate their behavior within module Str
and the ocamllex tool. In section two we define grammars and give details about
sentence production rules for a language to introduce two types of parsing: bottom-up
and top-down. They are further illustrated by using Stream and the ocamlyacc tool.
These examples use context-free grammars. We then show how to carry out contextual
analysis with Streams. In the third section we go back to the example of a BASIC
interpreter from page 159, using ocamllex and ocamlyacc to implement the lexical
analysis and parsing functions.


Lexicon


Lexical analysis is the first step in character string processing: it segments character
strings into a sequence of words also known as lexical units or lexemes.


Module Genlex


This module provides a simple primitive allowing the analysis of a string of characters
using several categories of predefined lexical units. These categories are distinguished
by type:


# type token =


Kwd of string


| Ident of string


| Int of int


| Float of float


| String of string


| Char of char ; ;


Hence, we will be able to recognize within a character string an integer (constructor
Int) and to recover its value (constructor argument of type int). Recognizable strings
and characters respect the usual conventions: a string is delimited by two (") characters
and character literals by two (’) characters. A float is represented by using either
floating-point notation (for example 0.01) or exponent-mantissa notation (for example
1E-2).


Constructor Ident designates the category of identifiers. These are the names of vari-
ables or functions in programming languages, for example. They comprise all strings
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of letters and digits including underscore ( ) or apostrophe (’). Such a string should
not start with a digit. We also consider as identifiers (for this module at least) strings
containing operator symbols, such as +, *, > or =. Finally, constructor Kwd defines the
category of keywords containing distinguished identifiers or special characters (specified
by the programmer when invoking the lexer).


The only variant of the token type controlled by parameters is that of keywords. The
following primitive allows us to create a lexical analyser (lexer) taking as keywords the
list passed as first argument to it.


# Genlex.make lexer ; ;


- : string list -> char Stream.t -> Genlex.token Stream.t = <fun>


The result of applying make lexer to a list of keywords is a function taking as input
a stream of characters and returning a stream of lexical units (of type token.)


Thus we can easily obtain a lexer for our BASIC interpreter. We declare the set of
keywords:


# let keywords =


[ "REM"; "GOTO"; "LET"; "PRINT"; "INPUT"; "IF"; "THEN";


"-"; "!"; "+"; "-"; "*"; "/"; "%";


"="; "<"; ">"; "<="; ">="; "<>";


"&"; "|" ] ; ;


With this definition in place, we define the lexer:


# let line lexer l = Genlex.make lexer keywords (Stream.of string l) ; ;


val line_lexer : string -> Genlex.token Stream.t = <fun>


# line lexer "LET x = x + y * 3" ; ;


- : Genlex.token Stream.t = <abstr>


Function line lexer takes as input a string of characters and returns the correspond-
ing stream of lexemes.


Use of Streams


We can carry out the lexical analysis “by hand” by directly manipulating streams.


The following example is a lexer for arithmetical expressions. Function lexer takes
a character stream and returns a stream of lexical units of type lexeme Stream.t1.


1. Type lexeme is defined on page 163
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Spaces, tabs and newline characters are removed. To simplify, we do not consider
variables or negative integers.


# let rec spaces s =


match s with parser


[<’’ ’ ; rest >] → spaces rest


| [<’’\t’ ; rest >] → spaces rest


| [<’’\n’ ; rest >] → spaces rest


| [<>] → () ; ;


val spaces : char Stream.t -> unit = <fun>


# let rec lexer s =


spaces s;


match s with parser


[< ’’(’ >] → [< ’Lsymbol "(" ; lexer s >]


| [< ’’)’ >] → [< ’Lsymbol ")" ; lexer s >]


| [< ’’+’ >] → [< ’Lsymbol "+" ; lexer s >]


| [< ’’-’ >] → [< ’Lsymbol "-" ; lexer s >]


| [< ’’*’ >] → [< ’Lsymbol "*" ; lexer s >]


| [< ’’/’ >] → [< ’Lsymbol "/" ; lexer s >]


| [< ’’0’..’9’ as c;


i,v = lexint (Char.code c - Char.code(’0’)) >]


→ [<’Lint i ; lexer v>]


and lexint r s =


match s with parser


[< ’’0’..’9’ as c >]


→ let u = (Char.code c) - (Char.code ’0’) in lexint (10*r + u) s


| [<>] → r,s


; ;


val lexer : char Stream.t -> lexeme Stream.t = <fun>


val lexint : int -> char Stream.t -> int * char Stream.t = <fun>


Function lexint carries out the lexical analysis for the portion of a stream describing
an integer constant. It is called by function lexer when lexer finds a digit on the
input stream. Function lexint then consumes all consecutive digits to obtain the
corresponding integer value.


Regular Expressions


2


Let’s abstract a bit and consider the problem of lexical units from a more theoretical
point of view.


2. Note of translators: From an academic standpoint, the proper term would have been “Rational
Expressions”; we chose the term “regular” to follow the programmers’ tradition.
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From this point of view, a lexical unit is a word. A word is formed by concatening
items in an alphabet. For our purposes, the alphabet we are considering is a subset
of the ASCII characters. Theoretically, a word may contain no characters (the empty
word3) or just a single character. The theoretical study of the assembly of lexical items
(lexemes) from members of an alphabet has brought about a simple formalism known
as regular expressions.


Definition A regular expression defines a set of words. For example, a regular ex-
pression could specify the set of words that are valid identifiers. Regular expressions
are specified by a few set-theoretic operations. Let M and N be two sets of words.
Then we can specify:


1. the union of M and N , denoted by M | N .


2. the complement of M , denoted by ^M . This is the set of all words not in M .


3. the concatenation of M and N . This is the set of all the words formed by placing
a word from M before a word from N . We denote this set simply by MN .


4. the set of words formed by a finite sequence of words in M , denoted M+.


5. for syntactic convenience, we write M? to denote the set of words in M , with
addition of the empty word.


Individual characters denote the singleton set of words containing just that character.
Expression a | b | c thus describes the set containing three words: a, b ant c. We
will use the more compact syntax [abc] to define such a set. As our alphabet is ordered
(by the ASCII code order) we can also define intervals. For example, the set of digits
can be written: [0-9]. We can use parentheses to group expressions.


If we want to use one of the operator characters as a character in a regular expression,
it should be preceded by the escape character \. For example, (\*)* denotes the set
of sequences of stars.


Example Let’s consider the alphabet comprising digits (0, 1, 2, 3, 4, 5, 6, 7,
8, 9) the plus (+), minus (-) and dot (.) signs and letter E. We can define the set num
of words denoting numbers. Let’s call integers the set defined with [0-9]+. We define
the set unum of unsigned numbers as:


integers?(.integers)?(E(\+|-)?integers)?


The set of signed numbers is thus defined as:


unum | -unum or with −?unum


Recognition While regular expressions are a useful formalism in their own right, we
usually wish to implement a program that determines whether a string of characters (or


3. By convention, the empty word is denoted by the greek character epsilon: ε
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one of its substrings) is a member of the set of words described by a regular expression.
For that we need to translate the formal definition of the set into a recognition and
expression processing program. In the case of regular expressions such a translation can
be automated. Such translation techniques are carried out by module Genlex in library
Str (described in the next section) and by the ocamllex tools that we introduce in
the following two sections.


The Str Library


This module contains an abstract data type regexp which represents regular expres-
sions as well as a function regexp which takes a string describing a regular expression,
more or less following the syntax described above, and returns its abstract representa-
tion.


This module contains, as well, a number of functions which exploit regular expressions
and manipulate strings. The syntax of regular expressions for library Str is given in
figure 11.1.


. any character except \n
* zero or more occurences of the preceding expression
+ one or more occurences of the preceding expression
? zero or one occurences of the preceding expression


[..] set of characters (example [abc])
intervals, denoted by - (example [0-9])
set complements, denoted by ^ (example [^A-Z])


^ start of line (not to be mistaken with the use of ^ as a set complement)
$ end of line
| alternative


(..) grouping of a complex expression (we can later refer to such an ex-
pression by an integer index – see below)


i an integer constant, referring to the string matched by the i-th com-
plex expression


\ escape character (used when matching a reserved character in regular
expressions)


Figure 11.1: Regular expressions.


Example We want to write a function translating dates in anglo-saxon format into
French dates within a data file. We suppose that the file is organised into lines of data
fields and the components of an anglo-saxon date are separated by dots. Let’s define a
function which takes as argument a string (i.e. a line from the file), isolates the date,
decomposes and translates it, then replaces the original with the translation.
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# let french date of d =


match d with


[mm; dd; yy] → dd^"/"^mm^"/"^yy


| _ → failwith "Bad date format" ; ;


val french_date_of : string list -> string = <fun>


# let english date format = Str.regexp "[0-9]+\.[0-9]+\.[0-9]+" ; ;


val english_date_format : Str.regexp = <abstr>


# let trans date l =


try


let i=Str.search forward english date format l 0 in


let d1 = Str.matched string l in


let d2 = french date of (Str.split (Str.regexp "\.") d1) in


Str.global replace english date format d2 l


with Not found → l ; ;


val trans_date : string -> string = <fun>


# trans date "..............06.13.99............" ; ;


- : string = "..............13/06/99............"


The ocamllex Tool


The ocamllex tool is a lexical analyzer generator built for Objective Caml after the
model of the lex tool for the C language. It generates a source Objective Caml file from
a file describing the lexical elements to be recognized in the form of regular expressions.
The programmer can augment each lexical element description with a processing action
known as a semantic action. The generated code manipulates an abstract type lexbuf
defined in module Lexing. The programmer can use this module to control processing
of lexical buffers.


Usually the lexical description files are given the extension .mll. Later, to obtain a
Objective Caml source from a lex file.mll you type the command


ocamllex lex_file.mll


A file lex file.ml is generated containing the code for the corresponding analyzer.
This file can then be compiled with other modules of an Objective Caml application.
For each set of lexical analysis rules there is a corresponding function taking as input a
lexical buffer (of type Lexing.lexbuf) and returning the value defined by the semantic
actions. Consequently, all actions in the same rule must produce values of the same
type.


The general format for an ocamllex file is


{
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header
}


let ident = regexp
...


rule ruleset1 = parse


regexp { action }
| ...
| regexp { action }


and ruleset2 = parse
...


and ...
{


trailer-and-end
}


Both section “header” and “trailer-and-end” are optional. They contain Objective
Caml code defining types, functions, etc. needed for processing. The code in the last
section can use the lexical analysis functions that will be generated by the middle sec-
tion. The declaration list preceding the rule definition allows the user to give names to
some regular expressions. They can later be invoked by name in the definition of rules.


Example Let’s revisit our BASIC example. We will want to refine the type of lexical
units returned. We will once again define function lexer (as we did on page 163) with
the same type of output (lexeme), but taking as input a buffer of type Lexing.lexbuf.


{
let string chars s =


String.sub s 1 ((String.length s)-2) ; ;


}


let op ar = [’-’ ’+’ ’*’ ’%’ ’/’]


let op bool = [’!’ ’&’ ’|’]


let rel = [’=’ ’<’ ’>’]


rule lexer = parse


[’ ’] { lexer lexbuf }


| op ar { Lsymbol (Lexing.lexeme lexbuf) }
| op bool { Lsymbol (Lexing.lexeme lexbuf) }


| "<=" { Lsymbol (Lexing.lexeme lexbuf) }
| ">=" { Lsymbol (Lexing.lexeme lexbuf) }
| "<>" { Lsymbol (Lexing.lexeme lexbuf) }
| rel { Lsymbol (Lexing.lexeme lexbuf) }
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| "REM" { Lsymbol (Lexing.lexeme lexbuf) }
| "LET" { Lsymbol (Lexing.lexeme lexbuf) }
| "PRINT" { Lsymbol (Lexing.lexeme lexbuf) }
| "INPUT" { Lsymbol (Lexing.lexeme lexbuf) }
| "IF" { Lsymbol (Lexing.lexeme lexbuf) }
| "THEN" { Lsymbol (Lexing.lexeme lexbuf) }


| ’-’? [’0’-’9’]+ { Lint (int of string (Lexing.lexeme lexbuf)) }
| [’A’-’z’]+ { Lident (Lexing.lexeme lexbuf) }
| ’"’ [^ ’"’]* ’"’ { Lstring (string chars (Lexing.lexeme lexbuf)) }


The translation of this file by ocamllex returns function lexer of type Lexing.lexbuf
-> lexeme. We will see later how to use such a function in conjunction with syntactic
analysis (see page 305).


Syntax


Thanks to lexical analysis, we can split up input streams into more structured units:
lexical units. We still need to know how to assemble these units so that they amount
to syntactically correct sentences in a given language. The syntactic assembly rules
are defined by grammar rules. This formalism was originally developed in the field of
linguistics, and has proven immensely useful to language-theoretical mathematicians
and computer scientists in that field. We have already seen on page 160 an instance of
a grammar for the Basic language. We will resume this example to introduce the basic
concepts for grammars.


Grammar


Formally, a grammar is made up of four elements:


1. a set of symbols called terminals. Such symbols represent the lexical units of
the language. In Basic, the lexical units (terminals) are: the operator- and arith-
metical and logical relation-symbols (+, &, <, <=, ..), the keywords of the language
(GOTO, PRINT, IF, THEN, ..), integers (integer units) and variables (variable units).


2. A set of symbols called non-terminals. Such symbols stand for syntactic terms of
the language. For example, a Basic program is composed of lines (and thus we
have the term Line), a line may contain and Expression, etc.


3. A set of so-called production rules. These describe how terminal and non-terminals
symbols may be combined to produce a syntactic term. A Basic line is made up
of a number followed by an instruction. This is expressed in the following rule:


Line ::= integer Instruction
For any given term, there may be several alternative ways to form that term. We
separate the alternatives with the symbol — as in
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Instruction ::= LET variable = Expression


— GOTO integer


— PRINT Expression


etc.
4. Finally, we designate a particular non-terminal as the start symbol. The start


symbol identifies a complete translation unit (program) in our language, and the
corresponding production rule is used as the starting point for parsing.


Production and Recognition


Production rules allow recognition that a sequence of lexemes belongs to a particular
language.


Let’s consider, for instance, a simple language for arithmetic expressions:


Exp ::= integer (R1)
— Exp + Exp (R2)
— Exp * Exp (R3)
— ( Exp ) (R4)


where (R1) (R2) (R3) and (R4) are the names given to our rules. After lexical analysis,
the expression 1*(2+3) becomes the sequence of lexemes:


integer * ( integer + integer )


To analyze this sentence and recognize that it really belongs to the language of arith-
metic expressions, we are going to use the rules from right to left: if a subexpression
matches the right-side member of a rule, we replace it with the corresponding left-side
member and we re-run the process until reducing the expression to the non-terminal
start (here Exp). Here are the stages of such an analysis4:


integer * ( integer + integer )
(R1)←− Exp * ( integer + integer )
(R1)←− Exp * ( Exp + integer )
(R1)←− Exp * ( Exp + Exp )
(R2)←− Exp * ( Exp )
(R4)←− Exp * Exp
(R3)←− Exp


Starting from the last line containing only Exp and following the arrows upwards we
read how our expression could be produced from the start rule Exp: therefore it is a
well-formed sentence of the language defined by the grammar.


4. We underline the portion of input processed at each stage and we point out the rule used.
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The translation of grammars into programs capable of recognizing that a sequence
of lexemes belongs to the language defined by a grammar is a much more complex
problem than that of using regular expressions. Indeed, a mathematical result tells us
that all sets (of words) defined by means of a regular expression formalism can also
be defined by another formalism: deterministic finite automata. And these latter are
easy to explain as programs taking as input a sequence of characters. We do not have
a similar result for the case of generic grammars. However, we have weaker results
establishing the equivalence between certain classes of grammars and somewhat richer
automata: pushdown automata. We do not want to enter into the details of such results,
nor give an exact definition of what an automaton is. Still, we need to identify a class
of grammars that may be used with parser-generating tools or parsed directly.


Top-down Parsing


The analysis of the expresion 1*(2+3) introduced in the previous paragraph is not
unique: it could also have started by reducing integers from right to left, which would
have permitted rule (R2) to reduce 2+3 from the beginning instead. These two ways to
proceed constitute two types of analysis: top-down parsing (right-to-left) and bottom-
up parsing (left-to-right). The latter is easily realizable with lexeme streams using
module Stream. Bottom-up parsing is that carried-out by the ocamlyacc tool. It uses
an explicit stack mechanism like the one already described for the parsing of Basic
programs. The choice of parsing type is significant, as top-down analysis may or may
not be possible given the form of the grammar used to specify the language.


A Simple Case


The canonical example for top-down parsing is the prefix notation of arithmetic ex-
pressions defined by:


Expr ::= integer


— + Expr Expr


— * Expr Expr


In this case, knowing the first lexeme is enough to decide which production rule can
be used. This immediate predictability obviates managing the parse stack explicitly
by instead using the stack of recursive calls in the parser. Therefore, it is very easy to
write a program implementing top-down analysis using the features in modules Genlex
and Stream. Function infix of is an example; it takes a prefix expression and returns
its equivalent infix expression.


# let lexer s =


let ll = Genlex.make lexer ["+";"*"]


in ll (Stream.of string s) ; ;


val lexer : string -> Genlex.token Stream.t = <fun>


# let rec stream parse s =
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match s with parser


[<’Genlex.Ident x>] → x


| [<’Genlex.Int n>] → string of int n


| [<’Genlex.Kwd "+"; e1=stream parse; e2=stream parse>] → "("^e1^"+"^e2^")"


| [<’Genlex.Kwd "*"; e1=stream parse; e2=stream parse>] → "("^e1^"*"^e2^")"


| [<>] → failwith "Parse error"


; ;


val stream_parse : Genlex.token Stream.t -> string = <fun>


# let infix of s = stream parse (lexer s) ; ;


val infix_of : string -> string = <fun>


# infix of "* +3 11 22"; ;


- : string = "((3+11)*22)"


One has to be careful, because this parser is rather unforgiving. It is advisable to
introduce a blank between lexical units in the input string systematically.
# infix of "*+3 11 22"; ;


- : string = "*+"


A Less Simple Case


Parsing using streams is predictive. It imposes two conditions on grammars.


1. There must be no left-recursive rules in the grammar. A rule is left-recursive
when a right-hand expression starts with a non-terminal which is the left-hand
member of the expression, as in Exp ::= Exp + Exp;


2. No two rules may start with the same expression.


The usual grammar for arithmetical expressions on page 296 is not directly suitable for
top-down analysis: it does not satisfy any of the above-stated criteria. To be able to use
top-down parsing, we must reformulate the grammar so as to suppress left-recursion
and non-determinism in the rules. For arithmetic expressions, we may use, for instance:


Expr ::= Atom NextExpr


NextExpr ::= + Atom


— - Atom


— * Atom


— / Atom


— ε


Atom ::= integer


— ( Expr )


Note that the use of the empty word ε in the definition of NextExpr is compulsory
if we want a single integer to be an expression.
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Our grammar allows the implementation of the following parser which is a simple
translation of the production rules. This parser produces the abstract syntax tree of
arithmetic expressions.
# let rec rest = parser


[< ’Lsymbol "+"; e2 = atom >] → Some (PLUS,e2)


| [< ’Lsymbol "-"; e2 = atom >] → Some (MINUS,e2)


| [< ’Lsymbol "*"; e2 = atom >] → Some (MULT,e2)


| [< ’Lsymbol "/"; e2 = atom >] → Some (DIV,e2)


| [< >] → None


and atom = parser


[< ’Lint i >] → ExpInt i


| [< ’Lsymbol "("; e = expr ; ’Lsymbol ")" >] → e


and expr s =


match s with parser


[< e1 = atom >] →
match rest s with


None → e1


| Some (op,e2) → ExpBin(e1,op,e2) ; ;


val rest : lexeme Stream.t -> (bin_op * expression) option = <fun>


val atom : lexeme Stream.t -> expression = <fun>


val expr : lexeme Stream.t -> expression = <fun>


The problem with using top-down parsing is that it forces us to use a grammar which is
very restricted in its form. Moreover, when the object language is naturally described
with a left-recursive grammar (as in the case of infix expressions) it is not always trivial
to find an equivalent grammar (i.e. one defining the same language) that satisfies the
requirements of top-down parsing. This is the reason why tools such as yacc and
ocamlyacc use a bottom-up parsing mechanism which allows the definition of more
natural-looking grammars. We will see, however, that not everything is possible with
them, either.


Bottom-up Parsing


On page 165, we introduced intuitively the actions of bottom-up parsing: shift and
reduce. With each of these actions the state of the stack is modified. We can deduce
from this sequence of actions the grammar rules, provided the grammar allows it, as
in the case of top-down parsing. Here, also, the difficulty lies in the non-determinism
of the rules which prevents choosing between shifting and reducing. We are going to
illustrate the inner workings of bottom-up parsing and its failures by considering those
pervasive arithmetic expressions in postfix and prefix notation.


The Good News The simplified grammar for postfix arithmetic expressions is:
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Expr ::= integer (R1)
| Expr Expr + (R2)
| Expr Expr * (R3)


This grammar is dual to that of prefix expressions: it is necessary to wait until the
end of each analysis to know which rule has been used, but then one knows exactly
what to do. In fact, the bottom-up analysis of such expressions resembles quite closely
a stack-based evaluation mechanism. Instead of pushing the results of each calculation,
we simply push the grammar symbols. The idea is to start with an empty stack, then
obtain a stack which contains only the start symbol once the input is used up. The
modifications to the stack are the following: when we shift, we push the present non-
terminal; if we may reduce, it is because the first elements in the stack match the
right-hand member of a rule (in reverse order), in which case we replace these elements
by the corresponding left-hand non-terminal.


Figure 11.2 illustrates how bottom-up parsing processes expression: 1 2 + 3 * 4 +.
The input lexical unit is underlined. The end of input is noted with a $ sign.


Action Input Stack


12+3*4+$ []
Shift


2+3*4+$ [1]
Reduce (R1)


2+3*4+$ [Expr]
Shift


+3*4+$ [2Expr]
Reduce (R1)


+3*4+$ [Expr Expr]
Shift, Reduce (R2)


3*4+$ [Expr]
Shift, Reduce (R1)


*4+$ [Expr Expr]
Shift, Reduce (R3)


4+$ [Expr]
Shift, Reduce (R1)


+$ [Expr Expr]
Shift, Reduce (R2)


$ [Expr]


Figure 11.2: Bottom-up parsing example.
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The Bad News The difficulty of migrating the grammar into the recognition pro-
gram is determining which type of action to apply. We will illustrate this difficulty with
three examples which generate three types of indeterminacy.


The first example is a grammar for expressions using only addition:


E0 ::= integer (R1)
| E0 + E0 (R2)


The indeterminacy in this grammar stems from rule (R2). Let’s suppose the following
situation:


Action Input Stack


...
+. . . [E0 + E0 . . . ]


...


In such a case, it is impossible to determine whether we have to shift and push the +
or to reduce using (R2) both E0’s and the + in the stack. We are in the presence of
a shift-reduce conflict. This is because expression integer + integer + integer can be
produced in two ways by right-derivation.


First way: E0
(R2)−→ E0 + E0
(R1)−→ E0 + integer
(R2)−→ E0 + E0 + integer


etc.


Second way: E0
(R2)−→ E0 + E0
(R2)−→ E0 + E0 + E0
(R1)−→ E0 + E0 + integer


etc.


The expressions obtained by each derivation may look similar from the point of view
of expression evaluation:


(integer + integer) + integer and integer + (integer + integer)
but different for building a syntax tree (see figure 6.3 on page 166).


The second instance of a grammar generating a conflict between shifting and reducing
has the same type of ambiguity: an implicit parenthesizing. But contrary to the previous
case, the choice between shifting and reducing modifies the meaning of the parsed
expression. Let’s consider the following grammar:
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E1 ::= integer (R1)
| E1 + E1 (R2)
| E1 * E1 (R3)


We find in this grammar the above-mentioned conflict both for + and for *. But there
is an added conflict between + and *. Here again, an expression may be produced in
two ways. There are two right-hand derivations of


integer + integer * integer


First way: E1
(R3)−→ E1 * E1
(R1)−→ E1 * integer
(R2)−→ E1 + E1 * integer


etc.


Second way: E1
(R2)−→ E1 + E1
(R3)−→ E1 + E1 * E1
(R1)−→ E1 + E1 * integer


etc.


Here both pairs of parenthesis (implicit) are not equivalent:


(integer + integer) * integer 6= integer + (integer * integer)


This problem has already been cited for Basic expressions (see page 165). It was solved
by attributing different precedence to each operator: we reduce (R3) before (R2), which
is equivalent to parenthesizing products.


We can also solve the problem of choosing between + and * by modifying the grammar.
We introduce two new terminals: T (for terms), and F (for factors), which gives:


E ::= E + T (R1)
| T (R2)


T ::= T * F (R3)
| F (R4)


F ::= integer (R5)


There is now but a single way to reach the production sequence integer + integer *
integer: using rule (R1).


The third example concerns conditional instructions in programming languages. A lan-
guage such as Pascal offers two conditionals : if .. then and if .. then .. else.
Let’s imagine the following grammar:


Instr ::= if Exp then Instr (R1)
— if Exp then Instr else Instr (R2)
— etc. . .
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In the following situation:


Action Input Stack


...
else. . . [Instr then Exp if. . . ]


...


We cannot decide whether the first elements in the stack relate to conditional (R1), in
which case it must be reduced, or to the first Instr in rule (R2), in which case it must
be shifted.


Besides shift-reduce conflicts, bottom-up parsing may also generate reduce-reduce con-
flicts.


We now introduce the ocamlyacc tool which uses the bottom-up parsing technique
and may find these conflicts.


The ocamlyacc Tool


The ocamlyacc tools is built with the same principles as ocamllex: it takes as input
a file describing a grammar whose rules have semantic actions attached, and returns
two Objective Caml files with extensions .ml ant .mli containing a parsing function
and its interface.


General format The syntax description files for ocamlyacc use extension .mly by
convention and they have the following structure:


%{
header


}%
declarations


%%


rules
%%


trailer-and-end


The rule format is:
non-terminal : symbol. . . symbol { semantic action }


| . . .
| symbol. . . symbol { semantic action }
;


A symbol is either a terminal or a non-terminal. Sections “header” and “trailer-and-
end” play the same role as in ocamllex with the only exception that the header is only
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visible by the rules and not by declarations. In particular, this implies that module
openings (open) are not taken into consideration in the declaration part and the types
must therefore be fully qualified.


Semantic actions Semantic actions are pieces of Objective Caml code executed
when the parser reduces the rule they are associated with. The body of a semantic
action may reference the components of the right-hand term of the rule. These are
numbered from left to right starting with 1. The first component is referenced by $1,
the second by $2, etc.


Start Symbols We may declare several start symbols in the grammar, by writing
in the declaration section:


%start non-terminal .. non-terminal


For each of them a parsing function will be generated. We must precisely note, always
in the declaration section, the output type of these functions.


%type <output-type> non-terminal


The output-type must be qualified.


Warning
Non-terminal symbols become the name of parsing func-
tions. Therefore, they must not start with a capital let-
ter which is reserved for constructors.


Lexical units Grammar rules make reference to lexical units, the terminals or ter-
minal symbols in the rules.


One (or several) lexemes are declared in the following fashion:


%token PLUS MINUS MULT DIV MOD


Certain lexical units, like identifiers, represent a set of (character) strings. When we
find an identifier we may be interested in recovering its character string. We specify
in the parser that these lexemes have an associated value by enclosing the type of this
value between < and >:


%token <string> IDENT


Warning
After being processed by ocamlyacc all these declara-
tions are transformed into constructors of type token.
Therefore, they must start with a capital letter.


We may use character strings as implicit terminals as in:
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expr : expr "+" expr { ... }
| expr "*" expr { ... }
| ...
;


in which case it is pointless to declare a symbol which represents them: they are directly
processed by the parser without passing through the lexer. In the interest of uniformity,
we do not advise this procedure.


Precedence, associativity We have seen that many bottom-up parsing conflicts
arise from implicit operator association rules or precedence conflicts between operators.
To handle these conflicts, we may declare default associativity rules (left-to-right or
non-associative) for operators as well as precedence rules. The following declaration
states that operators + (lexeme PLUS) and * (lexeme MULT) associate to the right by
default and * has a higher precedence than + because MULT is declared after PLUS.


%left PLUS
%left MULT


Two operators declared on the same line have the same precedence.


Command options ocamlyacc has two options:


• -b name: the generated Objective Caml files are name.ml and name.mli;


• -v: create a file with extension .output contaning rule numeration, the states in
the automaton recognizing the grammar and the sources of conflicts.


Joint usage with ocamllex We may compose both tools ocamllex and ocamlyacc
so that the transformation of a character stream into a lexeme stream is the input to
the parser. To do this, type lexeme should be known to both. This type is defined in
the files with extensions .mli and .ml generated by ocamlyacc from the declaration of
the tokens in the matching file with extension .mly. The .mll file imports this type;
ocamllex translates this file into an Objective Caml function of type Lexing.lexbuf


-> lexeme. The example on page 307 illustrates this interaction and describes the
different phases of compilation.


Contextual Grammars


Types generated by ocamlyacc process languages produced by so-called context-free
grammars. A parser for such a grammar does not depend on previously processed
syntactic values to process the next lexeme. This is not the case of the language L
described by the following formula:
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L ::= wCw | w with w ∈ (A|B)∗


where A, B and C are terminal symbols. We have written wCw (with w ∈ (A|B)∗)
and not simply (A|B)∗C(A|B)∗ because we want the same word to the left and right
of the middle C.


To parse the words in L, we must remember what has already been found before letter
C to verify that we find exactly the same thing afterwards. Here is a solution for this
problem based on “visiting” a stream. The general idea of the algorithm is to build a
stream parsing function which will recognize exactly the subword before the possible
occurrence of C.


We use the type:
# type token = A | B | C ; ;


Function parse w1 builds the memorizing function for the first w under the guise of a
list of atomic stream parsers (i.e. for a single token):


# let rec parse w1 s =


match s with parser


[<’A; l = parse w1 >] → (parser [<’A >] → "a") :: l


| [<’B; l = parse w1 >] → (parser [<’B >] → "b") :: l


| [< >] → [] ; ;


val parse_w1 : token Stream.t -> (token Stream.t -> string) list = <fun>


The result of the function returned by parse w1 is simply the character string contain-
ing the parsed lexical unit.


Function parse w2 takes as argument a list built by parse w1 to compose each of its
elements into a single parsing function:
# let rec parse w2 l =


match l with


p :: pl → (parser [< x = p; l = (parse w2 pl) >] → x^l)


| [] → parser [<>] → "" ; ;


val parse_w2 : (’a Stream.t -> string) list -> ’a Stream.t -> string = <fun>


The result of applying parse w2 will be the string representing subword w. By con-
struction, function parse w2 will not be able to recognize anything but the subword
visited by parse w1.


Using the ability to name intermediate results in streams, we write the recognition
function for the words in the language L:
# let parse L = parser [< l = parse w1 ; ’C; r = (parse w2 l) >] → r ; ;


val parse_L : token Stream.t -> string = <fun>
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Here are two small examples. The first results in the string surrounding C, the second
fails because the words surrounding C are different:
# parse L [< ’A; ’B; ’B; ’C; ’A; ’B; ’B >]; ;


- : string = "abb"


# parse L [< ’A; ’B; ’C; ’B; ’A >]; ;


Uncaught exception: Stream.Error("")


Basic Revisited


We now want to use ocamllex and ocamlyacc to replace function parse on page 169
for Basic by some functions generated from files specifying the lexicon and syntax of
the language.


To do this, we may not re-use as-is the type of lexical units that we have defined. We
will be forced to define a more precise type which permits us to distinguish between
operators, commands and keywords.


We will also need to isolate the type declarations describing abstract syntax within
a file basic types.mli. This will contain the declaration of type sentences and all
types needed by it.


File basic parser.mly


Header The file header imports the types needed for the abstract syntax as well
as two auxiliary functions to convert from character strings to their equivalent in the
abstract syntax.
%{


open Basic types ; ;


let phrase of cmd c =


match c with


"RUN" → Run


| "LIST" → List


| "END" → End


| _ → failwith "line : unexpected command"


; ;


let bin op of rel r =


match r with


"=" → EQUAL


| "<" → INF


| "<=" → INFEQ


| ">" → SUP


| ">=" → SUPEQ


| "<>" → DIFF
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| _ → failwith "line : unexpected relation symbol"


; ;


%}


Declarations contains three sections: lexeme declarations, their rule associativity
and precedence declarations, and the declaration of the start symbol line which stands
for the parsing of a command or program line.


Lexical units are the following:
%token <int> Lint


%token <string> Lident


%token <string> Lstring


%token <string> Lcmd


%token Lplus Lminus Lmult Ldiv Lmod


%token <string> Lrel


%token Land Lor Lneg


%token Lpar Rpar


%token <string> Lrem


%token Lrem Llet Lprint Linput Lif Lthen Lgoto


%token Lequal


%token Leol


Their names are self-explanatory and they are described in file basic lexer.mll (see
page 310).


Precedence rules between operators once again take the values assigned by functions
priority uop and priority binop defined when first giving the grammar for our
Basic (see page 160).
%right Lneg


%left Land Lor


%left Lequal Lrel


%left Lmod


%left Lplus Lminus


%left Lmult Ldiv


%nonassoc Lop


Symbol Lop will be used to process unary minus. It is not a terminal in the grammar,
but a “pseudo non-terminal” which allows overloading of operators when two uses of
an operator should not receive the same precedence depending on context. This is the
case with the minus symbol (-). We will reconsider this point once we have specified
the rules in the grammar.


Since the start symbol is line, the function generated will return the syntax tree for
the parsed line.
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%start line
%type <Basic_types.phrase> line


Grammar rules are decomposed into three non-terminals: line for a line; inst for
an instruction in the language; exp for expressions. The action associated with each
rule simply builds the corresponding abstract syntax tree.
%%


line :


Lint inst Leol { Line {num=$1; inst=$2} }
| Lcmd Leol { phrase of cmd $1 }
;


inst :


Lrem { Rem $1 }
| Lgoto Lint { Goto $2 }
| Lprint exp { Print $2 }
| Linput Lident { Input $2 }
| Lif exp Lthen Lint { If ($2, $4) }
| Llet Lident Lequal exp { Let ($2, $4) }
;


exp :


Lint { ExpInt $1 }
| Lident { ExpVar $1 }
| Lstring { ExpStr $1 }
| Lneg exp { ExpUnr (NOT, $2) }
| exp Lplus exp { ExpBin ($1, PLUS, $3) }
| exp Lminus exp { ExpBin ($1, MINUS, $3) }
| exp Lmult exp { ExpBin ($1, MULT, $3) }
| exp Ldiv exp { ExpBin ($1, DIV, $3) }
| exp Lmod exp { ExpBin ($1, MOD, $3) }
| exp Lequal exp { ExpBin ($1, EQUAL, $3) }
| exp Lrel exp { ExpBin ($1, (bin op of rel $2), $3) }
| exp Land exp { ExpBin ($1, AND, $3) }
| exp Lor exp { ExpBin ($1, OR, $3) }
| Lminus exp %prec Lop { ExpUnr(OPPOSITE, $2) }
| Lpar exp Rpar { $2 }
;


%%


These rules do not call for particular remarks except:


exp :
...
| Lminus exp %prec Lop { ExpUnr(OPPOSITE, $2) }
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It concerns the use of unary -. Keyword %prec that we find in it declares that this rule
should receive the precedence of Lop (here the highest precedence).


File basic lexer.mll


Lexical analysis only contains one rule, lexer, which corresponds closely to the old
function lexer (see page 165). The semantic action associated with the recognition
of each lexical unit is simply the emission of the related constructor. As the type of
lexical units is declared in the syntax rule file, we have to include the file here. We add
a simple auxiliary function that strips double quotation marks from character strings.
{
open Basic parser ; ;


let string chars s = String.sub s 1 ((String.length s)-2) ; ;


}


rule lexer = parse


[’ ’ ’\t’] { lexer lexbuf }


| ’\n’ { Leol }


| ’!’ { Lneg }
| ’&’ { Land }
| ’|’ { Lor }
| ’=’ { Lequal }
| ’%’ { Lmod }
| ’+’ { Lplus }
| ’-’ { Lminus }
| ’*’ { Lmult }
| ’/’ { Ldiv }


| [’<’ ’>’] { Lrel (Lexing.lexeme lexbuf) }
| "<=" { Lrel (Lexing.lexeme lexbuf) }
| ">=" { Lrel (Lexing.lexeme lexbuf) }


| "REM" [^ ’\n’]* { Lrem (Lexing.lexeme lexbuf) }
| "LET" { Llet }
| "PRINT" { Lprint }
| "INPUT" { Linput }
| "IF" { Lif }
| "THEN" { Lthen }
| "GOTO" { Lgoto }


| "RUN" { Lcmd (Lexing.lexeme lexbuf) }
| "LIST" { Lcmd (Lexing.lexeme lexbuf) }
| "END" { Lcmd (Lexing.lexeme lexbuf) }
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| [’0’-’9’]+ { Lint (int of string (Lexing.lexeme lexbuf)) }
| [’A’-’z’]+ { Lident (Lexing.lexeme lexbuf) }
| ’"’ [^ ’"’]* ’"’ { Lstring (string chars (Lexing.lexeme lexbuf)) }


Note that we isolated symbol = which is used in both expressions and assignments.


Only two of these regular expressions need further remarks. The first concerns comment
lines ("REM" [^ ’\n’]*). This rule recognizes keyword REM followed by an arbitrary
number of characters other than ’\n’. The second remark concerns character strings
(’"’ [^ ’"’]* ’"’) considered as sequences of characters different from " and con-
tained between two ".


Compiling, Linking


The compilation of the lexer and parser must be carried out in a definite order. This
is due to the mutual dependency between the declaration of lexemes. To compile our
example, we must enter the following sequence of commands:


ocamlc -c basic_types.mli
ocamlyacc basic_parser.mly
ocamllex basic_lexer.mll
ocamlc -c basic_parser.mli
ocamlc -c basic_lexer.ml
ocamlc -c basic_parser.ml


Which will generate files basic lexer.cmo and basic parser.cmo which may be
linked into an application.


We now have at our disposal all the material needed to reimplement the application.


We suppress all types and all functions in paragraphs “lexical analysis” (on page 163)
and “parsing” ( on page 165) of our Basic application; in function one command (on
page 174), we replace expression


match parse (input line stdin) with


with
match line lexer (Lexing.from string ((input line stdin)^"\n")) with


We need to remark that we must put back at the end of the line the character ’\n’
which function input line had filtered out. This is necessary because the ’\n’ char-
acter indicates the end of a command line (Leol).
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Exercises


Filtering Comments Out


Comments in Objective Caml are hierarchical. We can thus comment away sections of
text, including those containing comments. A comment starts with characters (* and
finishes with *). Here’s an example:
(* comment spread


over several


lines *)


let succ x = (* successor function *)


x + 1; ;


(* level 1 commented text


let old_succ y = (* level 2 successor function level 2 *)


y +1; ;


level 1 *)


succ 2; ;


The aim of this exercise is to create a new text without comments. You are free to
choose whatever lexical analysis tool you wish.


1. Write a lexer able to recognize Objective Caml comments. These start with a
(* and end with a *). Your lexer should ensure comments are balanced, that is
to say the number of comment openings equals the number of comment closings.
We are not interested in other constructions in the language which may contain
characters (* and *).


2. Write a program which takes a file, reads it, filters comments away and writes a
new file with the remaining text.


3. In Objective Caml character strings may contain any character, even the se-
quences (* and *). For example, character string "what(*ever te*)xt" should
not be considered a comment. Modify your lexer to consider character strings.


4. Use this new lexer to remove comments from an Objective Caml program .


Evaluator


We will use ocamlyacc to implement an expression evaluator. The idea is to perform
the evaluation of expressions directly in the grammar rules.


We choose a (completely parenthesized) prefix arithmetic expression language with
variable arity operators. For example, expression (ADD e1 e2 .. en) is equivalent to
e1 + e2 + .. + en. Plus and times operators are right-associative and subtraction
and division are left-associative.


1. Define in file opn parser.mly the parsing and evaluation rules for an expression.
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2. Define in file opn lexer.mll the lexical analysis of expressions.


3. Write a simple main program opn which reads a line from standard input con-
taining an expression and prints the result of evaluating the expression.


Summary


This chapter has introduced several Objective Caml tools for lexical analysis (lexing)
and syntax analysis (parsing). We explored (in order of occurrence):


• module Str to filter rational expressions;


• module Genlex to easily build simple lexers;


• the ocamllex tool, a typed integration of the lex tool;


• the ocamlyacc tool, a typed integration of the yacc tool;


• the use of streams to build top-down parsers, including contextual parsers.


Tools ocamllex and ocamlyacc were used to define a parser for the language Basic
more easily maintained than that introduced in page 159.


To Learn More


The reference book on lexical analysis and parsing is known affectionately as the
“dragon book”, a reference to the book’s cover illustration. Its real name is Compil-
ers: principles, techniques and tools ([ASU86]). It covers all aspects of compiler design
and implementation. It explains clearly the construction of automata matching a given
context-free grammar and the techniques to minimize it. The tools lex and yacc are
described in-depth in several books, a good reference being [LMB92]. The interesting
features of ocamllex and ocamlyac with respect to their original versions are the inte-
gration of the Objective Caml language and, above all, the ability to write typed lexers
and parsers. With regard to streams, the research report by Michel Mauny and Daniel
de Rauglaudre [MdR92] gives a good description of the operational semantics of this
extension. On the other hand, [CM98] shows how to build such an extension. For a
better integration of grammars within the Objective Caml language, or to modify the
grammars of the latter, we may also use the camlp4 tool found at:


Link: http://caml.inria.fr/camlp4/
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12
Interoperability with


C


Developing programs in a given language very often requires one to integrate libraries
written in other languages. The two main reasons for this are:


• to use libraries that cannot be written in the language, thus extending its func-
tionality;


• to use high-performance libraries already implemented in another language.


A program then becomes an assembly of software components written in various lan-
guages, where each component has been written in the language most appropriate
for the part of the problem it addresses. Those software components interoperate by
exchanging values and requesting computations.


The Objective Caml language offers such a mechanism for interoperability with the C
language. This mechanism allows Objective Caml code to call C functions with Caml-
provided arguments, and to get back the result of the computation in Objective Caml.
The converse is also possible: a C program can trigger an Objective Caml computation,
then work on its result.


The choice of C as interoperability language is justified by the following reasons:


• it is a standardized language (ISO C);


• C is a popular implementation language for operating systems (Unix, Windows,
MacOS, etc.);


• a great many libraries are written in C;


• most programming languages offer a C interface, thus it is possible to interface
Objective Caml with these languages by going through C.


The C language can therefore be viewed as the esperanto of programming languages.


Cooperation between C and Objective Caml raises a number of difficulties that we
review below.
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• Machine representation of data
For instance, values of base types (int, char, float) have different machine rep-
resentations in the two languages. This requires conversion between the represen-
tations, in both directions. The same holds for data structures such as records,
sum types1, or arrays.


• The Objective Caml garbage collector
Standard C does not provide garbage collection. (However, garbage collectors are
easily written in C.) Moreover, calling a C function from Objective Caml must
not modify the memory in ways incompatible with the Objective Caml GC.


• Aborted computations
Standard C does not support exceptions, and provides different mechanisms for
aborting computations. This complicates Objective Caml’s exception handling.


• Sharing common resources
For instance, files and other input-output devices are shared between Objective
Caml and C, but each language maintains its own input-output buffers. This may
violate the proper sequencing of input-output operations in mixed programs.


Programs written in Objective Caml benefit from the safety of static typing and au-
tomatic memory management. This safety must not be compromised by improper use
of C libraries and interfacing with other languages through C. The programmer must
therefore adhere to rather strict rules to ensure that both languages coexist peacefully.


Chapter outline


This chapter introduces the tools that allow interoperability between Objective Caml
and C by building executables containing code fragments written in both languages.
These tools include functions to convert between the data representations of each
language, allocation functions using the Objective Caml heap and garbage collector,
and functions to raise Objective Caml exceptions from C.


The first section shows how to call C functions from Objective Caml and how to build
executables and interactive toplevel interpreters including the C code implementing
those functions. The second section explores the C representation of Objective Caml
values. The third section explains how to create and modify Objective Caml values
from C. It discusses the interactions between C allocations and the Objective Caml
garbage collector, and presents the mechanisms ensuring safe allocation from C. The
fourth section describes exception handling: how to raise exceptions and how to handle
them. The fifth section reverses the roles: it shows how to include Objective Caml code
in an application whose main program is written in C.


1. Objective Caml’s sum types are discriminated unions. Refer to chapter 2, page 45 for a full de-
scription.
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Note
This chapter assumes a working knowledge of the C language. Moreover,
reading chapter 9 can be helpful in understanding the issues raised by
automatic memory management.


Communication between C and Objective


Caml


Communication between parts of a program written in C and in Objective Caml is
accomplished by creating an executable (or a new toplevel interpreter) containing both
parts. These parts can be separately compiled. It is therefore the responsibility of the
linking phase2 to establish the connection between Objective Caml function names and
C function names, and to create the final executable. To this end, the Objective Caml
part of the program contains external declarations describing this connection.


Figure 12.1 shows a sample program composed of a C part and an Objective Caml part.
Each part comprises code (function definitions and toplevel expressions for Objective
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  return Val_long( Long_val(x) +
                               Long_val(y) +
                               Long_val(z));
}


external f : int -> int -> int -> int 


let r = f 2 6 9;;


= "f_c"
value f_c (value x, value y, value z) {


C part  Objective Caml part


linking


call


return


dynamic allocation heap garbage collected heap


Figure 12.1: Communication between Objective Caml and C.


Caml) and a memory area for dynamic allocation. Calling the function f with three
Objective Caml integer arguments triggers a call to the C function f c. The body of
the C function converts the three Objective Caml integers to C integers, computes
their sum, and returns the result converted to an Objective Caml integer.


2. Linking is performed differently for the bytecode compiler and the native-code compiler.
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We now introduce the basic mechanisms for interfacing C with Objective Caml: external
declarations, calling conventions for C functions invoked from Objective Caml, and
linking options. Then, we show an example using input-output.


External declarations


External function declarations in Objective Caml associate a C function definition with
an Objective Caml name, while giving the type of the latter.


The syntax is as follows:


Syntax : external caml name : type = "C name"


This declaration indicates that calling the function caml name from Objective Caml
code performs a call to the C function C name with the given arguments. Thus, the
example in figure 12.1 declares the function f as the Objective Caml equivalent of the
C function f c.


An external function can be declared in an interface (i.e., in an .mli file) either as an
external or as a regular value:


Syntax :
external caml name : type = "C name"
val caml name : type


In the latter case, calls to the C function first go through the general function ap-
plication mechanism of Objective Caml. This is slightly less efficient, but hides the
implementation of the function as a C function.


Declaration of the C functions


C functions intended to be called from Objective Caml must have the same number
of arguments as described in their external declarations. These arguments have type
value, which is the C type for Objective Caml values. Since those values have uniform
representations (see chapter 9), a single C type suffices to encode all Objective Caml
values. On page 323, we will present the facilities for encoding and decoding values,
and illustrate them by a function that explores the representations of Objective Caml
values.


The example in figure 12.1 respects the constraints mentioned above. The function
f c, associated with an Objective Caml function of type int -> int -> int -> int,
is indeed a function with three parameters of type value returning a result of type
value.
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The Objective Caml bytecode interpreter evaluates calls to external functions differ-
ently, depending on the number of arguments3. If the number of arguments is less than
or equal to five, the arguments are passed directly to the C function. If the number
of arguments is greater than five, the C function’s first parameter will get an array
containing all of the arguments, and the C function’s second parameter will get the
number of arguments. These two cases must therefore be distinguished for external C
functions that can be called from the bytecode interpreter. On the other hand, the
Objective Caml native-code compiler always calls external functions by passing all the
arguments directly, as function parameters.


External functions with more than five arguments


For external functions with more than five arguments, the programmer must provide
two C functions: one for bytecode and the other for native-code. The syntax of external
declarations allows the declaration of one Objective Caml function associated with two
C functions:


Syntax : external caml name : type = "C name bytecode" "C name native"


The function C name bytecode takes two parameters: an array of values of type value
(i.e. a C pointer of type value*) and an integer giving the number of elements in this
array.


Example


The following C program defines two functions for adding together six integers: plus-
native, callable from native code, and plus bytecode, callable from the bytecode
compiler. The C code must include the file mlvalues.h containing the definitions of C
types, Objective Caml values, and conversion macros.


#include <stdio.h>


#include <caml/mlvalues.h>


value plus_native (value x1,value x2,value x3,value x4,value x5,value x6)


{


printf("<< NATIVE PLUS >>\n") ; fflush(stdout) ;


return Val_long ( Long_val(x1) + Long_val(x2) + Long_val(x3)


+ Long_val(x4) + Long_val(x5) + Long_val(x6)) ;


}


value plus_bytecode (value * tab_val, int num_val)


{


int i;


long res;


3. Recall that a function such as fst, of type ’a * ’b -> ’a, does not have two arguments, but only
one that happens to be a pair; on the other hand, a function of type int -> int -> int has two
arguments.
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printf("<< BYTECODED PLUS >> : ") ; fflush(stdout) ;


for (i=0,res=0;i<num_val;i++) res += Long_val(tab_val[i]) ;


return Val_long(res) ;


}


The following Objective Caml program exOCAML.ml calls these two C functions.
external plus : int → int → int → int → int → int → int


= "plus_bytecode" "plus_native" ; ;


print int (plus 1 2 3 4 5 6) ; ;


print newline () ; ;


We now compile these programs with the two Objective Caml compilers and a C
compiler that we call cc. We must give it the access path for the mlvalues.h include
file.


$ cc -c -I/usr/local/lib/ocaml exC.c


$ ocamlc -custom exC.o exOCAML.ml -o ex_byte_code.exe
$ ex_byte_code.exe
<< BYTECODED PLUS >> : 21


$ ocamlopt exC.o exOCAML.ml -o ex_native.exe
$ ex_native.exe
<< NATIVE PLUS >> : 21


Note
To avoid writing the C function twice (with the same body but different
calling conventions), it suffices to implement the bytecode version as a call
to the native-code version, as in the following sketch:
value prim nat (value x1, ..., value xn) { ... }
value prim bc (value *tbl, int n)


{ return prim nat(tbl[0],tbl[1],...,tbl[n-1]) ; }


Linking with C


The linking phase creates an executable from C and Objective Caml files compiled
with their respective compilers. The result of the native-code compiler is shown in
figure 12.2.


The compilation of the C and Objective Caml sources generates machine code that
is stored in the static allocation area of the program. The dynamic allocation area
contains the execution stack (corresponding to the function calls in progress) and the
heaps for C and Objective Caml.
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void main (int argc, ...


function x -> ...


static allocation
area


dynamic allocation
area


C code


Objective Caml code


C static variables


C heap


Objective Caml heap (with GC)


runtime stack


Figure 12.2: Mixed-language executable.


Run-time libraries


The C functions that can be called from a program using only the standard Objective
Caml library are contained in the execution library of the abstract machine (see figure
7.3 page 200). For such a program, there is no need to provide additional libraries at
link-time. However, when using Objective Caml libraries such as Graphics, Num or Str,
the programmer must explicitly provide the corresponding C libraries at link-time. This
is the purpose of the -custom compiler option (see see chapter 7, page 207). Similarly,
when we wish to call our C functions from Objective Caml, we must provide the object
file containing those C functions at link-time. The following example illustrates this.


The three linking modes


The linking commands differ slightly between the native-code compiler, the bytecode
compiler, and the construction of toplevel interactive loops. The compiler options rel-
evant to these linking modes are described in chapter 7.


To illustrate these linking modes, we consider again the example in figure 12.1. Assume
the Objective Caml source file is named progocaml.ml. It uses the external function
f c defined in the C file progC.c. In turn, the function f c refers to a C library
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a C library.a. Once all these files are compiled separately, we link them together
using the following commands:


• bytecode:
ocamlc -custom -o vbc.exe progC.o a_C_library.a progocaml.cmo


• native code:
ocamlopt progC.o -o vn.exe a_C_library.a progocaml.cmx


We obtain two executable files: vbc.exe for the bytecode version, and vn.exe for the
native-code version.


Building an enriched abstract machine


Another possibility is to augment the run-time library of the abstract machine with new
C functions callable from Objective Caml. This is achieved by the following commands:


ocamlc -make-runtime -o new_ocamlrun progC.o a_C_library.a


We can then build a bytecode executable vbcnam.exe targeted to the new abstract
machine:


ocamlc -o vbcnam.exe -use-runtime new_ocamlrun progocaml.cmo


To run this bytecode executable, either give it as the first argument to the new abstract
machine, as in new_ocaml vbcnam.exe , or run it directly as vbcnam.exe


Note
Linking in -custom mode scans the object files (.cmo) to build a table
of all external functions mentioned. The bytecode required to use them
is generated and added to the bytecode corresponding to the Objective
Caml code.


Building a toplevel interactive loop


To be able to use an external function in the toplevel interactive loop, we must first
build a new toplevel interpreter containing the C code for the function, as well as an
Objective Caml file containing its declaration.


We assume that we have compiled the file progC.c containing the function f c. We
then build the toplevel loop ftop as follows:


ocamlmktop -custom -o ftop progC.o a_C_library.a ex.ml


The file ex.ml contains the external declaration for the function f. The new toplevel
interpreter ftop then knows this function and contains the corresponding C code, as
found in progC.o.
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Mixing input-output in C and in Objective Caml


The input-output functions in C and in Objective Caml do not share their file buffers.
Consider the following C program:


#include <stdio.h>


#include <caml/mlvalues.h>


value hello_world (value v)


{ printf("Hello World !!"); fflush(stdout); return v; }


Writes to standard output must be flushed explicitly (fflush) to guarantee that they
will be printed in the intended order.


# external caml hello world : unit → unit = "hello_world" ; ;


external caml_hello_world : unit -> unit = "hello_world"


# print string "<< " ;


caml hello world () ;


print string " >>\n" ;


flush stdout ; ;


Hello World !!<< >>


- : unit = ()


The outputs from C and from Objective Caml are not intermingled as expected, be-
cause each language buffers its outputs independently. To get the correct behavior, the
Objective Caml part must be rewritten as follows:
# print string "<< " ; flush stdout ;


caml hello world () ;


print string " >>\n" ; flush stdout ; ;


<< Hello World !! >>


- : unit = ()


By flushing the Objective Caml output buffer after each write, we ensure that the
outputs from each language appear in the expected order.


Exploring Objective Caml values from C


The machine representation of Objective Caml values differs from that of C values, even
for fundamental types such as integers. This is because the Objective Caml garbage
collector needs to record additional information in values. Since Objective Caml values
are represented uniformly, their representations all belong to the same C type, named
(unsurprisingly) value.


When Objective Caml calls a C function, passing it one or several arguments, those
arguments must be decoded before using them in the C function. Similarly, the result
of this C function must be encoded before being returned to Objective Caml.
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These conversions (decoding and encoding) are performed by a number of macros and C
functions provided by the Objective Caml runtime system. These macros and functions
are declared in the include files listed in figure 12.3. These include files are part of the
Objective Caml installation, and can be found in the directory where Objective Caml
libraries are installed4


caml/mlvalues.h definition of the value type and basic value conversion macros.
caml/alloc.h functions for allocating Objective Caml values.
caml/memory.h macros for interfacing with the Objective Caml garbage collector.


Figure 12.3: Include files for the C interface.


Classification of Objective Caml representations


An Objective Caml representation, that is, a C datum of type value, is one of:


• an immediate value (represented as an integer);


• a pointer into the Objective Caml heap;


• a pointer pointing outside the Objective Caml heap.


The Objective Caml heap is the memory area that is managed by the Objective Caml
garbage collector. C code can also allocate and manipulate data structures in its own
memory space, and communicate pointers to these data structures to Objective Caml.


Figure 12.4 shows the macros for classifying representations and converting between
C integers and their Objective Caml representation. Note that C offers several integer


Is long(v) is v an Objective Caml integer?
Is block(v) is v an Objective Caml pointer?


Long val(v) extract the integer contained in v, as a C ”long”
Int val(v) extract the integer contained in v, as a C ”int”
Bool val(v) extract the boolean contained in v (0 if false, non-zero if true)


Figure 12.4: Classification of representations and conversion of immediate values.


types of varying sizes (short, int, long, etc), while Objective Caml has only one
integer type, int.


4. Under Unix, this directory is /usr/local/lib/ocaml by default, or sometimes /usr/lib/ocaml.
Under Windows, the default location is C: \OCAML\LIB, or the value of the environment variable
CAMLLIB, if set.
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Accessing immediate values


All Objective Caml immediate values are represented as integers:


• integers are represented by their value;


• characters are represented by their ASCII code5;


• constant constructors are represented by an integer corresponding to their posi-
tion in the datatype declaration: the nth constant constructor of a datatype is
represented by the integer n− 1.


The following program defines a C function inspect that inspects the representation
of its argument:
#include <stdio.h>


#include <caml/mlvalues.h>


value inspect (value v)


{


if (Is_long(v))


printf ("v is an integer (%ld) : %ld", (long) v, Long_val(v));


else if (Is_block(v))


printf ("v is a pointer");


else


printf ("v is neither an integer nor a pointer (???)");


printf(" ");


fflush(stdout) ;


return v ;


}


The function inspect tests whether its argument is an Objective Caml integer. If so,
it prints the integer twice, first viewed as a C long integer (without conversion), then
converted by the Long val macro, which extracts the actual integer represented in the
argument.


On the following example, we see that the machine representation of integers in Ob-
jective Caml differs from that of C:
# external inspect : ’a → ’a = "inspect" ; ;


external inspect : ’a -> ’a = "inspect"


# inspect 123 ; ;


v is an integer (247) : 123 - : int = 123


# inspect max int; ;


v is an integer (2147483647) : 1073741823 - : int = 1073741823


We can also inspect values of other predefined types, such as char and bool:
# inspect ’A’ ; ;


v is an integer (131) : 65 - : char = ’A’


# inspect true ; ;


v is an integer (3) : 1 - : bool = true


5. More precisely, by their ISO Latin-1 code, which is an 8-bit character encoding extending ASCII
with accented letters and signs for Western languages. Objective Caml does not yet handle wider
internationalized character sets such as Unicode.
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# inspect false ; ;


v is an integer (1) : 0 - : bool = false


# inspect [] ; ;


v is an integer (1) : 0 - : ’_a list = []


Consider the Objective Caml type foo defined thus:
# type foo = C1 | C2 of int | C3 | C4 ; ;


The inspect function shows that constant constructors and non-constant constructors
of this type are represented differently:
# inspect C1 ; ;


v is an integer (1) : 0 - : foo = C1


# inspect C4 ; ;


v is an integer (5) : 2 - : foo = C4


# inspect (C2 1) ; ;


v is a pointer - : foo = C2 1


When the function inspect detects an immediate value, it prints first the “physical”
representation of this value (i.e. the representation viewed as a word-sized C integer
of C type long); then it prints the “logical” contents of this value (i.e. the Objective
Caml integer it represents, as returned by the decoding macro Long val). The examples
above show that the “physical” and the “logical” contents differ. This difference is due
to the tag bit6 used by the garbage collector to distinguish immediate values from
pointers (see chapter 9, page 253).


Representation of structured values


Non-immediate Objective Caml values are said to be structured values. Those values
are allocated in the Objective Caml heap and represented as a pointer to the cor-
responding memory block. All memory blocks contain a header word indicating the
kind of the block as well as its size expressed in machine words. Figure 12.5 shows the
structure of a block for a 32-bit machine. The two “color” bits are used by the garbage
collector for walking the memory graph (see chapter 9, page 254). The “tag” field,
or “tag” for short, contains the kind of the block. The “size” field contains the size
of the block, in words, excluding the header. The macros listed in figure 12.6 return
the tag and size of a block. The tag of a memory block can take the values listed in
figure 12.7. Depending on the block tag, different macros are used to access the con-
tents of the blocks. These macros are described in figure 12.8. When the tag is less
than No scan tag, the heap block is structured as an array of Objective Caml value
representations. Each element of the array is called a “field” of the memory block. In
accordance with C and Objective Caml conventions, the first field is at index 0, and
the last field is at index Wosize val(v) - 1.


6. Here, the tag bit is the least significant bit.
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tag


10 9 8 7 031


header


array of value representations


size color


Figure 12.5: Structure of an Objective Caml heap block.


Wosize val(v) return the size of the block v (header excluded)
Tag val(v) return the tag of the block v


Figure 12.6: Accessing header information in memory blocks.


As we did earlier for immediate values, we now define a function to inspect mem-
ory blocks. The C function print block takes an Objective Caml value representa-
tion, tests whether it is an immediate value or a memory block, and in the latter
case prints the kind and contents of the block. It is called from the wrapper function
inspect block, which can be called from Objective Caml.


#include <stdio.h>


#include <caml/mlvalues.h>


void margin (int n)


{ while (n-- > 0) printf("."); return; }


void print_block (value v,int m)


{


int size, i;


from 0 to No scan tag-1 an array of Objective Caml value representations
Closure tag a function closure
String tag a character string
Double tag a double-precision float
Double array tag an array of float
Abstract tag an abstract data type
Final tag an abstract data type equipped with a finalization function


Figure 12.7: Tags of memory blocks.
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Field(v,n) return the nth field of v.
Code val(v) return the code pointer for a closure.
string length(v) return the length of a string.
Byte(v,n) return the n th character of a string, with C type char.
Byte u(v,n) same, but result has C type unsigned char.
String val(v) return the contents of a string with C type (char *).
Double val(v) return the float contained in v.
Double field(v,n) return the n th float contained in the float array v.


Figure 12.8: Accessing the content of a memory block.


margin(m);


if (Is_long(v))


{ printf("immediate value (%d)\n", Long_val(v)); return; };


printf ("memory block: size=%d - ", size=Wosize_val(v));


switch (Tag_val(v))


{


case Closure_tag :


printf("closure with %d free variables\n", size-1);


margin(m+4); printf("code pointer: %p\n",Code_val(v)) ;


for (i=1;i<size;i++) print_block(Field(v,i), m+4);


break;


case String_tag :


printf("string: %s (%s)\n", String_val(v),(char *) v);


break;


case Double_tag:


printf("float: %g\n", Double_val(v));


break;


case Double_array_tag :


printf ("float array: ");


for (i=0;i<size/Double_wosize;i++) printf(" %g", Double_field(v,i));


printf("\n");


break;


case Abstract_tag : printf("abstract type\n"); break;


case Final_tag : printf("abstract finalized type\n"); break;


default:


if (Tag_val(v)>=No_scan_tag) { printf("unknown tag"); break; };


printf("structured block (tag=%d):\n",Tag_val(v));


for (i=0;i<size;i++) print_block(Field(v,i),m+4);


}


return ;


}


value inspect_block (value v)
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{ print_block(v,4); fflush(stdout); return v; }


Each possible tag for a block corresponds to a case of the switch construct. In the
case of a block containing an array of Objective Caml values, we recursively call
print block on each field of the array. We then redefine the inspect function:
# external inspect : ’a → ’a = "inspect_block" ; ;


external inspect : ’a -> ’a = "inspect_block"


We can now explore the representations of Objective Caml structured values. We must
be careful not to apply inspect block to a cyclic value, since the recursive traversal
of the value would then loop indefinitely.


Arrays, tuples, and records


Arrays and tuples are represented by structured blocks. The nth field of the block
contains the representation of the nth element of the array or tuple.
# inspect [| 1; 2; 3 |] ; ;


....memory block: size=3 - structured block (tag=0):


........immediate value (1)


........immediate value (2)


........immediate value (3)


- : int array = [|1; 2; 3|]


# inspect ( 10 , true , () ) ; ;


....memory block: size=3 - structured block (tag=0):


........immediate value (10)


........immediate value (1)


........immediate value (0)


- : int * bool * unit = 10, true, ()


Records are also represented as structured blocks. The values of the record fields appear
in the order given at record declaration time. Mutable fields and immutable fields are
represented identically.
# type foo = { fld1: int ; mutable fld2: int } ; ;


type foo = { fld1: int; mutable fld2: int }


# inspect { fld1=10 ; fld2=20 } ; ;


....memory block: size=2 - structured block (tag=0):


........immediate value (10)


........immediate value (20)


- : foo = {fld1=10; fld2=20}


Warning


Nothing prevents a C function from physically modify-
ing an immutable record field. It is the programmers’
responsibility to make sure that their C functions do
not introduce inconsistencies in Objective Caml data
structures.
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Sum types


We previously saw that constant constructors are represented like integers. A non-
constant constructor is represented by a block containing the constructor’s arguments,
with a tag identifying the constructor. The tag associated with a non-constant construc-
tor represents its position in the type declaration: the first non-constant constructor
has tag 0, the second one has tag 1, and so on.
# type foo = C1 of int * int * int | C2 of int | C3 | C4 of int * int ; ;


type foo = | C1 of int * int * int | C2 of int | C3 | C4 of int * int


# inspect (C1 (1,2,3)) ; ;


....memory block: size=3 - structured block (tag=0):


........immediate value (1)


........immediate value (2)


........immediate value (3)


- : foo = C1 (1, 2, 3)


# inspect (C4 (1,2)) ; ;


....memory block: size=2 - structured block (tag=2):


........immediate value (1)


........immediate value (2)


- : foo = C4 (1, 2)


Note
The type list is a sum type whose declaration is:
type ’a list = [] | :: of ’a * ’a list. This type has only one
non-constant constructor ( :: ). Thus, a non-empty list is represented by a
memory block with tag 0.


Character strings


Characters inside strings occupy one byte each. Thus, the memory block representing
a string uses one word per group of four characters (on a 32-bit machine) or eight
characters (on a 64-bit machine).


Warning


Objective Caml strings can contain the null character
whose ASCII code is 0. In C, the null character repre-
sents the end of a string, and cannot appear inside a
string.


#include <stdio.h>


#include <caml/mlvalues.h>


value explore_string (value v)


{


char *s;


int i,size;


s = (char *) v;


size = Wosize_val(v) * sizeof(value);
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for (i=0;i<size;i++)


{


int p = (unsigned int) s[i] ;


if ((p>31) && (p<128)) printf("%c",s[i]); else printf("(#%u)",p);


}


printf("\n");


fflush(stdout);


return v;


}


The length and position of last character of an Objective Caml string are determined
not by looking for a terminating null character, as in C, but by combining the size
of the memory block that contains the string with the last byte of the last word of
this block, which indicates the number of unused bytes in the last word. The following
examples clarify the role played by this last byte.
# external explore : string → string = "explore_string" ; ;


external explore : string -> string = "explore_string"


# ignore(explore "");


ignore(explore "a");


ignore(explore "ab");


ignore(explore "abc");


ignore(explore "abcd");


ignore(explore "abcd\000") ; ;


(#0)(#0)(#0)(#3)


a(#0)(#0)(#2)


ab(#0)(#1)


abc(#0)


abcd(#0)(#0)(#0)(#3)


abcd(#0)(#0)(#0)(#2)


- : unit = ()


In the last two examples ("abcd" and "abcd\000"), the strings are of length 4 and 5
respectively. This explains why the last byte takes two different values, although the
other bytes of the string representations are identical.


Floats and float arrays


Objective Caml offers only one type (float) of floating-point numbers. This type
corresponds to 64-bit, double-precision floating point numbers in C (type double).
Values of type float are heap-allocated and represented by a memory block of size 2
words (on a 32-bit machine) or 1 word (on a 64-bit machine).
# inspect 1.5 ; ;


....memory block: size=2 - float: 1.5


- : float = 1.5


# inspect 0.0; ;


....memory block: size=2 - float: 0


- : float = 0
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Arrays of floats are represented specially to reduce their memory occupancy: the floats
contained in the array are stored consecutively in the memory block, rather than having
each float heap-allocated separately. Therefore, float arrays possess a specific tag and
specific access macros.
# inspect [| 1.5 ; 2.5 ; 3.5 |] ; ;


....memory block: size=6 - float array: 1.5 2.5 3.5


- : float array = [|1.5; 2.5; 3.5|]


This optimized representation encourages the use of Objective Caml for numerical
computations that manipulate many float arrays: operations on array elements are
much more efficient than if each float was heap-allocated separately.


Warning


When allocating an Objective Caml float array from
C, the size of the block should be the number of
array elements multiplied by Double wosize. The
Double wosize macro represents the number of words
occupied by a double-precision float (2 words on a 32-bit
machine, but only 1 word on a 64-bit machine).


With the exception of float arrays, floating-point numbers contained in other data
structures are always treated as a structured, heap-allocated value. The following ex-
ample shows the representation of a list of floats.
# inspect [ 3.14; 1.2; 7.6]; ;


....memory block: size=2 - structured block (tag=0):


........memory block: size=2 - float: 3.14


........memory block: size=2 - structured block (tag=0):


............memory block: size=2 - float: 1.2


............memory block: size=2 - structured block (tag=0):


................memory block: size=2 - float: 7.6


................immediate value (0)


- : float list = [3.14; 1.2; 7.6]


The list is viewed as a block with size 2, containing its head and its tail. The head of
the list is a float, which is also a block of size 2.


Closures


A function value is represented by the code to be executed when the function is applied,
and by its environment (see chapter 2, page 23). There are two ways to build a function
value: either by explicit abstraction (as in fun x -> x+1) or by partial application of
a curried function (as in (fun x -> fun y -> x+y) 1).


The environment of a closure can contain three kinds of variables: those declared glob-
ally, those declared locally, and the function parameters already instantiated by a
partial application. The implementation treats those three kinds differently. Global
variables are stored in a global environment that is not explicitly part of any clo-
sure. Local variables and instantiated parameters can appear in closures, as we now
illustrate.







Exploring Objective Caml values from C 333


A closure with an empty environment is simply a memory block containing a pointer
to the code of the function:
# let f = fun x y z → x+y+z ; ;


val f : int -> int -> int -> int = <fun>


# inspect f ; ;


....memory block: size=1 - closure with 0 free variables


........code pointer: 0x808c9d4


- : int -> int -> int -> int = <fun>


Functions with free local variables are represented by closures with non-empty envi-
ronments. Here, the closure contains both a pointer to the code of the function, and
the values of its free local variables.
# let g = let x = 1 and y = 2 in fun z → x+y+z ; ;


val g : int -> int = <fun>


# inspect g ; ;


....memory block: size=3 - closure with 2 free variables


........code pointer: 0x808ca38


........immediate value (1)


........immediate value (2)


- : int -> int = <fun>


The Objective Caml virtual machine treats partial applications of functions specially
for better performance. A partial application of an abstraction is represented by a
closure containing a value for each of the instantiated parameters, plus a pointer to
the closure for the initial abstraction.
# let a1 = f 1 ; ;


val a1 : int -> int -> int = <fun>


# inspect (a1) ; ;


....memory block: size=3 - closure with 2 free variables


........code pointer: 0x808c9d0


........memory block: size=1 - closure with 0 free variables


............code pointer: 0x808c9d4


........immediate value (1)


- : int -> int -> int = <fun>


# let a2 = a1 2 ; ;


val a2 : int -> int = <fun>


# inspect (a2) ; ;


....memory block: size=4 - closure with 3 free variables


........code pointer: 0x808c9d0


........memory block: size=1 - closure with 0 free variables


............code pointer: 0x808c9d4


........immediate value (1)


........immediate value (2)


- : int -> int = <fun>


Figure 12.9 depicts the result of the inspection above.


The function f has no free variables, hence the environment part of its closure is empty.
The code pointer for a function with several arguments points to the code that should be
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f
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a2


fun x y z -> ...


code...


1


21


header


header


header


Figure 12.9: Closure representation.


called when all arguments are provided. In the case of f, this is the code corresponding
to x+y+z. Partial applications of this function result in intermediate closures that point
to a shared code (it is the same code pointer for a1 and a2). The role of this code is
to accumulate the arguments and detect when all arguments have been provided. If
so, it pushes all arguments and calls the actual code for the function body; if not,
it creates a new closure. For instance, the application of a1 to 2 fails to provide all
arguments to the function f (the last argument is still missing), hence a closure is
created containing the first two arguments, 1 and 2. Notice that the closures resulting
from partial applications always contain, in the first environment slot, a pointer to
the original closure. The original closure will be called when all arguments have been
gathered.


Mixing local declarations and partial applications results in the following representa-
tion:
# let g x = let y=2 in fun z → x+y+z ; ;


val g : int -> int -> int = <fun>


# let a1 = g 1 ; ;


val a1 : int -> int = <fun>


# inspect a1 ; ;


....memory block: size=3 - closure with 2 free variables


........code pointer: 0x808ca78


........immediate value (1)


........immediate value (2)


- : int -> int = <fun>


Abstract types


Values of an abstract type are represented like those of its implementation type. Ac-
tually, type information is used only during type-checking and compilation. During
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execution, the types are not needed – only the memory representation (tag bits on val-
ues, size and tag fields on memory blocks) needs to be communicated to the garbage
collector.


For instance, a value of the abstract type ’a Stack.t is represented as a reference to
a list, since the type ’a Stack.t is implemented as ’a list ref.
# let p = Stack.create () ; ;


val p : ’_a Stack.t = <abstr>


# Stack.push 3 p; ;


- : unit = ()


# inspect p; ;


....memory block: size=1 - structured block (tag=0):


........memory block: size=2 - structured block (tag=0):


............immediate value (3)


............immediate value (0)


- : int Stack.t = <abstr>


On the other hand, some abstract types are implemented by representations that can-
not be expressed in Objective Caml. Typical examples include arrays of weak pointers
and input-output channels. Often, values of those abstract types are represented as
memory blocks with tag Abstract tag.
# let w = Weak.create 10; ;


val w : ’_a Weak.t = <abstr>


# Weak.set w 0 (Some p); ;


- : unit = ()


# inspect w; ;


....memory block: size=11 - abstract type


- : int Stack.t Weak.t = <abstr>


Sometimes, a finalization function is attached to those values. Finalization functions
are C functions which are called by the garbage collector just before the value is col-
lected. They are very useful to free external resources, such as an input-output buffer,
just before the memory block referring to those resources disappears. For instance,
inspection of the “standard output” channel reveals that the type out channel is rep-
resented by abstract memory blocks with a finalization function:
# inspect (stdout) ; ;


....memory block: size=2 - abstract finalized type


- : out_channel = <abstr>


Creating and modifying Objective Caml


values from C


A C function called from Objective Caml can modify its arguments in place, or return a
newly-created value. This value must match the Objective Caml type for the function
result. For base types, several C macros are provided to convert a C datum to an
Objective Caml value. For structured types, the new value must be allocated in the
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Objective Caml heap, with the correct size, and its fields initialized with values of the
correct types. Considerable care is required here: it is easy to construct bad values from
C, and these bad values may crash the Objective Caml program.


Any allocation in the Objective Caml heap can trigger a garbage collection, which will
deallocate unused memory blocks and may move live blocks. Therefore, any Objective
Caml value manipulated from C must be registered with the Objective Caml garbage
collector, if they are to survive the allocation of a new block. These values must be
treated as extra memory roots by the garbage collector. To this end, several macros
are provided for registering extra roots with the garbage collector.


Finally, C code can allocate Objective Caml heap blocks that contain C data instead
of Objective Caml values. This C data will then benefit from Objective Caml’s auto-
matic memory management. If the C data requires explicit deallocation, a finalization
function can be attached to the heap block.


Modifying Objective Caml values


The following macros allow the creation of immediate Objective Caml values from the
corresponding C data, and the modification of structured values in place.


Val long(l) return the value representing the long integer l
Val int(i) return the value representing the integer l
Val bool(x) return false if x=0, true otherwise
Val true the representation of true
Val false the representation of false
Val unit the representation of ()


Store field(b,n,v) store the value v in the n-th field of block b


Store double field(b,n,d) store the float d in the n-th field of the float array b


Figure 12.10: Creation of immediate values and modification of structured blocks.


Moreover, the macros Byte and Byte u can be used on the left-hand side of an as-
signment to modify the characters of a string. The Field macro can also be used for
assignment on blocks with tag Abstract tag or Final tag; use Store field for blocks
with tag between 0 and No scan tag-1. The following function reverses a character
string in place:


#include <caml/mlvalues.h>


value swap_char(value v, int i, int j)


{ char c=Byte(v,i); Byte(v,i)=Byte(v,j); Byte(v,j)=c; }


value swap_string (value v)


{


int i,j,t = string_length(v) ;
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for (i=0,j=t-1; i<t/2; i++,j--) swap_char(v,i,j) ;


return v ;


}


# external mirror : string → string = "swap_string" ; ;


external mirror : string -> string = "swap_string"


# mirror "abcdefg" ; ;


- : string = "gfedcba"


Allocating new blocks


The functions listed in figure 12.11 allocate new blocks in the Objective Caml heap. The


alloc(n, t) return a new block of size n words and tag t


alloc tuple(n) same, with tag 0
alloc string(n) return an uninitialized string of length n characters
copy string(s) return a string initialized with the C string s


copy double(d) return a block containing the double float d
alloc array(f, a) return a block representing an array, initialized by applying


the conversion function f to each element of the C array of
pointers a, null-terminated.


copy string array(p) return a block representing an array of strings, obtained
from the C string array p (of type char **), null-terminated.


Figure 12.11: Functions for allocating blocks.


function alloc array takes an array of pointers a, terminated by a null pointer, and a
conversion function f taking a pointer and returning a value. The result of alloc array
is an Objective Caml array containing the results of applying f in turn to each pointer in
a. In the following example, the function make str array uses alloc array to convert
a C array of strings.


#include <caml/mlvalues.h>


value make_str (char *s) { return copy_string(s); }


value make_str_array (char **p) { return alloc_array(make_str,p) ; }


It is sometimes necessary to allocate blocks of size 0, for instance to represent an empty
Objective Caml array. Such a block is called an atom.
# inspect [| |] ; ;


....memory block: size=0 - structured block (tag=0):


- : ’_a array = [||]
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Because atoms are allocated statically and do not reside in the dynamic part of the
Objective Caml heap, the allocation functions in figure 12.11 must not be used to
allocate atoms. Instead, atoms are created in C by the macro Atom(t), where t is the
desired tag for the block of size 0.


Storing C data in the Objective Caml heap


It is sometimes convenient to use the Objective Caml heap to store arbitrary C data
that does not respect the constraints imposed by the garbage collector. In this case,
blocks with tag Abstract tag must be used.


A natural example is the manipulation of native C integers (of size 32 or 64 bits) in
Objective Caml. Since these integers are not tagged as the Objective Caml garbage
collector expects, they must be kept in one-word heap blocks with tag Abstract tag.


#include <caml/mlvalues.h>


#include <stdio.h>


value Cint_of_OCAMLint (value v)


{


value res = alloc(1,Abstract_tag) ;


Field(res,0) = Long_val(v) ;


return res ;


}


value OCAMLint_of_Cint (value v) { return Val_long(Field(v,0)) ; }


value Cplus (value v1,value v2)


{


value res = alloc(1,Abstract_tag) ;


Field(res,0) = Field(v1,0) + Field(v2,0) ;


return res ;


}


value printCint (value v)


{


printf ("%d",(long) Field(v,0)) ; fflush(stdout) ;


return Val_unit ;


}


# type cint


external cint of int : int → cint = "Cint_of_OCAMLint"


external int of cint : cint → int = "OCAMLint_of_Cint"


external plus cint : cint → cint → cint = "Cplus"


external print cint : cint → unit = "printCint" ; ;
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We can now work on native C integers, without losing the use of the tag bit, while
remaining compatible with Objective Caml’s garbage collector. However, such integers
are heap-allocated, instead of being immediate values, which renders arithmetic oper-
ations less efficient.
# let a = 1000000000 ; ;


val a : int = 1000000000


# a+a ; ;


- : int = -147483648


# let c = let b = cint of int a in plus cint b b ; ;


val c : cint = <abstr>


# print cint c ; print newline () ; ;


2000000000


- : unit = ()


# int of cint c ; ;


- : int = -147483648


Finalization functions


Abstract blocks can also contain pointers to memory blocks allocated outside the Ob-
jective Caml heap. We know that Objective Caml blocks that are no longer used by
the program are deallocated by the garbage collector. But what happens to a block
allocated in the C heap and referenced by an abstract block that was reclaimed by the
GC? To avoid memory leaks, we can associate a finalization function to the abstract
block; this function is called by the GC before reclaiming the abstract block.


An abstract block with an attached finalization function is allocated via the function
alloc final (n, f, used, max) .


• n is the size of the block, in words. The first word of the block is used to store the
finalization function; hence the size occupied by the user data must be increased
by one word.


• f is the finalization function itself, with type void f (value). It receives the
abstract block as argument, just before this block is reclaimed by the GC.


• used represents the memory space (outside the Objective Caml heap) occupied
by the C data. used must be ¡= max.


• max is the maximum memory space outside the Objective Caml heap that we
tolerate not being reclaimed immediately.


For efficiency reasons, the Objective Caml garbage collector does not reclaim heap
blocks as soon as they become unused, but some time later. The ratio used/max con-
trols the proportion of finalized abstract blocks that the garbage collector may leave
allocated while they are no longer used. A ratio of 0 (that is, used = 0) lets the garbage
collector work at its usual pace; higher ratios (no greater than 1) cause it to work harder
and spend more CPU time finding unused finalized blocks and reclaiming them.


The following program manipulates arrays of C integers allocated in the C heap via
malloc. To allow the Objective Caml garbage collector to reclaim these arrays auto-
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matically, the create function wraps them in a finalized abstract block, containing
both a pointer to the array and the finalization function finalize it.


#include <malloc.h>


#include <stdio.h>


#include <caml/mlvalues.h>


typedef struct {


int size ;


long * tab ; } IntTab ;


IntTab *alloc_it (int s)


{


IntTab *res = malloc(sizeof(IntTab)) ;


res->size = s ;


res->tab = (long *) malloc(sizeof(long)*s) ;


return res ;


}


void free_it (IntTab *p) { free(p->tab) ; free(p) ; }


void put_it (int n,long q,IntTab *p) { p->tab[n] = q ; }


long get_it (int n,IntTab *p) { return p->tab[n]; }


void finalize_it (value v)


{


IntTab *p = (IntTab *) Field(v,1) ;


int i;


printf("reclamation of an IntTab by finalization [") ;


for (i=0;i<p->size;i++) printf("%d ",p->tab[i]) ;


printf("]\n"); fflush(stdout) ;


free_it ((IntTab *) Field(v,1)) ;


}


value create (value s)


{


value block ;


block = alloc_final (2, finalize_it,Int_val(s)*sizeof(IntTab),100000) ;


Field(block,1) = (value) alloc_it(Int_val(s)) ;


return block ;


}


value put (value n,value q,value t)


{


put_it (Int_val(n), Long_val(q), (IntTab *) Field(t,1)) ;


return Val_unit ;


}


value get (value n,value t)


{


long res = get_it (Int_val(n), (IntTab *) Field(t,1)) ;


return Val_long(res) ;


}







Creating and modifying Objective Caml values from C 341


The C functions visible from Objective Caml are: create, put and get.
# type c int array


external cia create : int → c int array = "create"


external cia get : int → c int array → int = "get"


external cia put : int→ int → c int array → unit = "put" ; ;


We can now manipulate our new data structure from Objective Caml:
# let tbl = cia create 10 and tbl2 = cia create 10


in for i=0 to 9 do cia put i (i*2) tbl done ;


for i=0 to 9 do print int (cia get i tbl) ; print string " " done ;


print newline () ;


for i=0 to 9 do cia put (9-i) (cia get i tbl) tbl2 done ;


for i=0 to 9 do print int (cia get i tbl2) ; print string " " done ; ;


0 2 4 6 8 10 12 14 16 18


18 16 14 12 10 8 6 4 2 0 - : unit = ()


We now force a garbage collection to check that the finalization function is called:
# Gc.full major () ; ;


reclaimation of an IntTab by finalization [18 16 14 12 10 8 6 4 2 0 ]


reclaimation of an IntTab by finalization [0 2 4 6 8 10 12 14 16 18 ]


- : unit = ()


In addition to freeing C heap blocks, finalization functions can also be used to close
files, terminate processes, etc.


Garbage collection and C parameters and local
variables


A C function can trigger a garbage collection, either during an allocation (if the heap
is full), or voluntarily by calling void Garbage_collection_function ().


Consider the following example. Can you spot the error?


#include <caml/mlvalues.h>


#include <caml/memory.h>


value identity (value x)


{


Garbage_collection_function() ;


return x;


}


# external id : ’a → ’a = "identity" ; ;


external id : ’a -> ’a = "identity"


# id [1;2;3;4;5] ; ;


- : int list = [538918066; 538918060; 538918054; 538918048; 538918042]
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The list passed as parameter to id, hence to the C function identity, can be moved or
reclaimed by the garbage collector. In the example, we forced a garbage collection, but
any allocation in the Objective Caml heap could have triggered a garbage collection as
well. The anonymous list passed to id was reclaimed by the garbage collector, because
it is not reachable from the set of known roots. To avoid this, any C function that
allocates anything in the Objective Caml heap must tell the garbage collector about
the C function’s parameters and local variables of type value. This is achieved by
using the macros described next.


For parameters, these macros are used within the body of the C function as if they
were additional declarations:


CAMLparam1(v) : for one parameter v of type value


CAMLparam2(v1,v2) : for two parameters
. . . . . .


CAMLparam5(v1,. . .,v5) : for five parameters
CAMLparam0 ; : required when there are no value parameters.


If the C function has more than five value parameters, the first five are declared with
the CAMLparam5 macro, and the remaining parameters with the macros CAMLxparam1,
. . ., CAMLxparam5, used as many times as necessary to list all value parameters.


CAMLparam5(v1,. . .,v5);


CAMLxparam5(v6,. . .,v10);


CAMLxparam2(v11,v12); : for 12 parameters of type value


For local variables, these macros are used instead of normal C declarations of the vari-
ables. Local variables of type value must also be registered with the garbage collector,
using the macros CAMLlocal1, . . ., CAMLlocal5. An array of values is declared with
CAMLlocalN(tbl,n) where n is the number of elements of the array tbl. Finally, to
return from the C function, we must use the macro CAMLreturn instead of C’s return
construct.


Here is the corrected version of the previous example:


#include <caml/mlvalues.h>


#include <caml/memory.h>


value identity2 (value x)


{


CAMLparam1(x) ;


Garbage_collection_function() ;


CAMLreturn x;


}


# external id : ’a → ’a = "identity2" ; ;


external id : ’a -> ’a = "identity2"


# let a = id [1;2;3;4;5] ; ;


val a : int list = [1; 2; 3; 4; 5]
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We now obtain the expected result.


Calling an Objective Caml closure from C


To apply a closure (i.e. an Objective Caml function value) to one or several arguments
from C, we can use the functions declared in the header file callback.h.


callback(f,v) : apply the closure f to the argument v,
callback2(f,v1,v2) : same, to two arguments,
callback3(f,v1,v2,v3) : same, to three arguments,
callbackN(f,n,tbl) : same, to n arguments stored in the array tbl.


All these functions return a value, which is the result of the application.


Registering Objective Caml functions with C


The callback functions require the Objective Caml function to be applied as a closure,
that is, as a value that was passed as an argument to the C function. We can also register
a closure from Objective Caml, giving it a name, then later refer to the closure by its
name in a C function.


The function register from module Callback associates a name (of type string)
with a closure or with any other Objective Caml value (of any type, that is, ’a). This
closure or value can be recovered from C using the C function caml named value,
which takes a character string as argument and returns a pointer to the closure or
value associated with that name, if it exists, or the null pointer otherwise.


An example is in order:
# let plus x y = x + y ; ;


val plus : int -> int -> int = <fun>


# Callback.register "plus3_ocaml" (plus 3); ;


- : unit = ()


#include <caml/mlvalues.h>


#include <caml/memory.h>


#include <caml/callback.h>


value plus3_C (value v)


{


CAMLparam1(v);


CAMLlocal1(f);


f = *(caml_named_value("plus3_ocaml")) ;


CAMLreturn callback(f,v) ;


}


# external plusC : int → int = "plus3_C" ; ;
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external plusC : int -> int = "plus3_C"


# plusC 1 ; ;


- : int = 4


# Callback.register "plus3_ocaml" (plus 5); ;


- : unit = ()


# plusC 1 ; ;


- : int = 6


Do not confuse the declaration of a C function with external and the registration
of an Objective Caml closure with the function register. In the former case, the
declaration is static, the correspondence between the two names is established at link
time. In the latter case, the binding is dynamic: the correspondence between the name
and the closure is performed at run time. In particular, the name–closure binding can
be modified dynamically by registering a different closure with the same name, thus
modifying the behavior of C functions using that name.


Exception handling in C and in Objective


Caml


Different languages have different mechanisms for raising and handling exceptions:
C relies on setjmp and longjmp, while Objective Caml has built-in constructs for
exceptions (try ... with, raise). Of course, these mechanisms are not compatible:
they do not keep the same information when setting up a handler. It is extremely hard
to safely implement the nesting of exception handlers of different kinds, while ensuring
that an exception correctly “jumps over” handlers. For this reason, only Objective
Caml exceptions can be raised and handled from C; setjmp and longjmp in C cannot
be caught from Objective Caml, and must not be used to skip over Objective Caml
code.


All functions and macros introduced in this section are defined in the header file fail.h.


Raising a predefined exception


From a C function, it is easy to raise one of the exceptions Failure, Invalid argument
or Not found from the Pervasives module: just use the following functions.


failwith(s) : raise the exception Failure(s)


invalid argument(s) : raise the exception Invalid argument(s)


raise not found() : raise the exception Not found


In the first two cases, s is a C string (char *) that ends up as the argument to the
exception raised.
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Raising a user-defined exception


A registration mechanism similar to that for closures enables user-defined exceptions
to be raised from C. We must first register the exception using the Callback module’s
register exception function. Then, from C, we retrieve the exception identifier using
the caml named value function (see page 343). Finally, we raise the exception, using
one of the following functions:


raise constant(e) raise the exception e with no argument,
raise with arg(e,v) raise the exception e with the value v as argument,
raise with string(e,s) same, but the argument is taken from the C string s.


Here is an example C function that raises an Objective Caml exception:


#include <caml/mlvalues.h>


#include <caml/memory.h>


#include <caml/fail.h>


value divide (value v1,value v2)


{


CAMLparam2(v1,v2);


if (Long_val(v2) == 0)


raise_with_arg(*caml_named_value("divzero"),v1) ;


CAMLreturn Val_long(Long_val(v1)/Long_val(v2)) ;


}


And here is an Objective Caml transcript showing the use of that C function:


# external divide : int → int → int = "divide" ; ;


external divide : int -> int -> int = "divide"


# exception Division zero of int ; ;


exception Division_zero of int


# Callback.register exception "divzero" (Division zero 0) ; ;


- : unit = ()


# divide 20 4 ; ;


- : int = 5


# divide 22 0 ; ;


Uncaught exception: Division_zero(22)


Catching an exception


In a C function, we cannot catch an exception raised from another C function. How-
ever, we can catch Objective Caml exceptions arising from the application of an Ob-
jective Caml function (callback). This is achieved via the functions callback exn,
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callback2 exn, callback3 exn and callbackN exn, which are similar to the standard
callback functions, except that if the callback raises an exception, this exception is
caught and returned as the result of the callback. The result value of the callback exn
functions must be tested with Is exception result(v); this predicate returns “true”
if the result value represents an uncaught exception, and “false” otherwise. The macro
Extract exception(v) returns the exception value contained in an exceptional result
value.


The C function divide print below calls the Objective Caml function divide using
callback2 exn, and checks whether the result is an exception. If so, it prints a message
and raises the exception again; otherwise it prints the result.


#include <stdio.h>


#include <caml/mlvalues.h>


#include <caml/memory.h>


#include <caml/callback.h>


#include <caml/fail.h>


value divide_print (value v1,value v2)


{


CAMLparam2(v1,v2) ;


CAMLlocal3(div,dbz,res) ;


div = * caml_named_value("divide") ;


dbz = * caml_named_value("div_by_0") ;


res = callback2_exn (div,v1,v2) ;


if (Is_exception_result(res))


{


value exn=Extract_exception(res);


if (Field(exn,0)==dbz) printf("division by 0\n") ;


else printf("other exception\n");


fflush(stdout);


if (Wosize_val(exn)==1) raise_constant(Field(exn,0)) ;


else raise_with_arg(Field(exn,0),Field(exn,1)) ;


}


printf("result = %d\n",Long_val(res)) ;


fflush(stdout) ;


CAMLreturn Val_unit ;


}


# Callback.register "divide" (/) ; ;


- : unit = ()


# Callback.register exception "div_by_0" Division by zero ; ;


- : unit = ()


# external divide print : int → int → unit = "divide_print" ; ;


external divide_print : int -> int -> unit = "divide_print"


# divide print 42 3 ; ;


result = 14


- : unit = ()
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# divide print 21 0 ; ;


division by 0


Uncaught exception: Division_by_zero


As the examples above show, it is possible to raise an exception from C and catch it in
Objective Caml, and also to raise an exception from Objective Caml and catch it in C.
However, a C program cannot by itself raise and catch an Objective Caml exception.


Main program in C


Until now, the entry point of our programs was in Objective Caml; the program could
then call C functions. Nothing prevents us from writing the entry point in C, and
having the C code call Objective Caml functions when desired. To do this, the program
must define the usual C main function. This function will then initialize the Objective
Caml runtime system by calling the function caml main(char **), which takes as
an argument the array of command-line arguments that corresponds to the Sys.argv
array in Objective Caml. Control is then passed to the Objective Caml code using
callbacks (see page 343).


Linking Objective Caml code with C


The Objective Caml compiler can output C object files (with extension .o) instead of
Objective Caml object files (with extension .cmo or .cmx). All we need to do is set the
-output-obj compiler flag.


ocamlc -output-obj files.ml
ocamlopt -output-obj.cmxa files.ml


From the Objective Caml source files, an object file with default name camlprog.o is
produced.


The final executable is obtained by linking, using the C compiler, and adding the
library -lcamlrun if the Objective Caml code was compiled to bytecode, or the library
-lasmrun if it was compiled to native code.


cc camlprog.o filesC.o -lcamlrun
cc camlprog.o filesC.o -lasmrun


Calling Objective Caml functions from the C program is performed as described pre-
viously, via the callback functions. The only difference is that the initialization of the
Objective Caml runtime system is performed via the function caml startup instead
of caml main.







348 Chapter 12 : Interoperability with C


Exercises


Polymorphic Printing Function


We wish to define a printing function print with type ’a -> unit able to print any
Objective Caml value. To this end, we extend and improve the inspect function.


1. In C, write the function print ws which prints Objective Caml as follows:
• immediate values: as C integers;
• strings: between quotes;
• floats: as usual;
• arrays of floats: between [| |]


• closures: as < code, env >


• everything else: as a tuple, between ( )
The function should handle structured types recursively.


2. To avoid looping on circular values, and to display sharing properly, modify this
function to keep track of the addresses of heap blocks it has already seen. If an
address appears several times, name it when it is first printed (v = name), and
just print the name when this address is encountered again.
(a) Define a data structure to record the addresses, determine when they


occur several times, and associate a name with each address.
(b) Traverse the value once first to determine all the addresses it contains and


record them in the data structure.
(c) The second traversal prints the value while naming addresses at their first


occurrences.
(d) Define the function print combining both traversals.


Matrix Product


1. Define an abstract type float matrix for matrices of floating-point numbers.


2. Define a C type for these matrices.


3. Write a C function to convert values of type float array array to values of
type float matrix.


4. Write a C function performing the reverse conversion.


5. Add the C functions computing the sum and the product of these matrices.


6. Interface them with Objective Caml and use them.


Counting Words: Main Program in C


The Unix command wc counts the number of characters, words and lines in a file. The
goal of this exercise is to implement this command, while counting repeated words only
once.
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1. Write the program wc in C. This program will simply count words, lines and
characters in the file whose name is passed on the command line.


2. Write in Objective Caml a function add word that uses a hash table to record
how many times the function was invoked with the same character string as
argument.


3. Write two functions num repeated words and num unique words counting re-
spectively the number of word repetitions and the number of unique words, as
determined from the hash table built by add word.


4. Register the three previous functions so that they can be called from a C pro-
gram.


5. Rewrite the main function of the wc program so that it prints the number of
unique words instead of the number of words.


6. Write the main function and the commands required to compile this program as
an Objective Caml program.


7. Write the main function and the commands required to compile this program as
a C program.


Summary


This chapter introduced the interface between the Objective Caml language and the C
language. This interface allows C functions to operate on Objective Caml values. Using
abstract Objective Caml types, the converse is also possible. An important feature of
this interface is the ability to use the Objective Caml garbage collector to perform
automatic reclamation of values created in C. This interface supports the combination,
in the same program, of components developed in the two languages. Finally, Objective
Caml exceptions can be raised and (with some limitations) handled from C.


To Learn More


For a better understanding of the C language, especially argument passing and data
representations, the book C: a reference manual [HS94] is highly recommended.


Concerning exceptions and garbage collection, several works add these missing features
to C. The technical report [Rob89] describes an implementation of exceptions in C,
based on open macros and on the setjmp and longjmp functions from the C library.
Hans Boehm distributes a conservative collector with ambiguous roots that can be
added (as a library) to any C program:


Link: http://www.hpl.hp.com/personal/Hans Boehm/gc/


Concerning interoperability between Objective Caml and C, the tools described in this
chapter are rather low-level and difficult to use. However, they give the programmer full
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control on copying or sharing of data structures between the two languages. A higher-
level tool called CamlIDL is available; it automatically generates the Objective Caml
“stubs” (encapsulation functions) for calling C functions and converting data types.
The C types and functions are described in a language called IDL (Interface Definition
Language), similar to a subset of C++ and C. This description is then passed through
the CamlIDL compiler, which generates the corresponding .mli, .ml and .c files. This
tool is distributed from the following page:


Link: http://caml.inria.fr/camlidl/


Other interfaces exist between Objective Caml and languages other than C. They are
available on the “Caml hump” page:


Link: http://caml.inria.fr/hump.html


They include several versions of interfaces with Fortran, and also an Objective Caml
bytecode interpreter written in Java.


Finally, interoperability between Objective Caml and other languages can also be
achieved via data exchanges between separate programs, possibly over the network.
This approach is described in the chapter on distributed programming (see chapter
20).







13
Applications


This chapter presents two applications which seek to illustrate the use of the many
different programming concepts presented previously in Part III.


The first application builds a library of graphic components, Awi (Application Window
Interface). Next the library will be applied in a simple Francs to Euros converter. The
components library reacts to user input by calling event handlers. Although this is a
simple application algorithmically, it shows the benefits of using closures to structure
the communication between components. Indeed the various event handlers share cer-
tain values via their environment. To appreciate the construction of Awi it is necessary
to know the base library Graphics (see chapter 5, page 117).


The second application is a search for a least cost path in a directed graph. It uses
Dijkstra’s algorithm which calculates all the least cost paths from a source node to
all the other nodes connected to this source. A cache mechanism implemented using
a table of weak pointers (see page 265) is used to speed the search. The GC can free
the elements of this table at any time but they can be recalculated as necessary. The
graph visualization uses the simple button component of the Awi library for selecting
the origin and destination nodes of the path sought. We then compare the efficiency
of running the algorithm both with and without the cache. To facilitate timing mea-
surements between the two versions a file with the description of the graph and the
origin and destination nodes is passed as an argument to the search algorithm. Finally,
a small graphical interface will be added to the search program.


Constructing a Graphical Interface


The implementation of a graphical interface for a program is a tedious job if the tools
at your disposal are not powerful enough, as this is the case with the Graphics library.
The user-friendliness of a program derives in part from its interface. To ease the task of
creating a graphical interface we will start by creating a new library called Awi which
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sits on top of Graphics and then we will use it as a simple module to help us construct
the interface for an application.


This graphical interface manipulates components. A component is a region of the main
window which can be displayed in a certain graphical context and can handle events
that are sent to it. There are basically two kinds of components: simple components,
such as a confirmation button or a text entry field, and containers which allow other
components to be placed within them. A component can only be attached to a single
container. Thus the interface of an application is built as a tree whose root corresponds
to the main container (the graphics window), the nodes are also containers and the
leaves are simple components or empty containers. This treelike structure helps us to
propagate events arising from user interaction. If a container receives an event it checks
whether one of its children can handle it, if so then it sends the event to that child,
otherwise it deals with the event using its own handler.


The component is the essential element in this library. We define it as a record which
contains details of size, a graphic context, the parent and child components along
with functions for display and for handling events. Containers include a function for
displaying their components. To define the component type, we build the types for the
graphics context, for events and for initialization options. A graphical context is used
to contain the details of “graphical styles” such as the colors of the background and
foreground, the size of the characters, the current location of the component and the
fonts that have been chosen. Then must we define the kinds of events which can be sent
to the component. These are more varied than those in the Graphics library on which
they are based. We include a simple option mechanism which helps us to configure
graphics contexts or components. One implementation difficulty arises in positioning
components within a container.


The general event handling loop receives physical events from the input function of
the Graphics library, decides whether other events should be generated as a result of
these physical events, and then sends them to the root container. We shall consider
the following components: text display, buttons, list boxes, input regions and enriched
components. Next we will show how the components are assembled to construct graph-
ical interfaces, illustrating this with a program to convert between Francs and Euros.
The various components of this application communicate with each other over a shared
piece of state.


Graphics Context, Events and Options


Let’s start by defining the base types along with the functions to initialize and mod-
ify graphics contexts, events and options. There is also an option type to help us
parametrize the functions which create graphical objects.
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Graphics Context


The graphics context allows us to keep track of the foreground and background colors,
the font, its size, the current cursor position, and line width. This results in the following
type.


type g context = {
mutable bcol : Graphics.color;


mutable fcol : Graphics.color;


mutable font : string;


mutable font size : int;


mutable lw : int;


mutable x : int;


mutable y : int }; ;


The make default context function creates a new graphics context containing default
values 1.


# let default font = "fixed"


let default font size = 12


let make default context () =


{ bcol = Graphics.white; fcol = Graphics.black;


font = default font;


font size = default font size;


lw = 1;


x = 0; y = 0;}; ;
val default_font : string = "fixed"


val default_font_size : int = 12


val make_default_context : unit -> g_context = <fun>


Access functions for the individual fields allow us to retrieve their values without know-
ing the implementation of the type itself.


# let get gc bcol gc = gc.bcol


let get gc fcol gc = gc.fcol


let get gc font gc = gc.font


let get gc font size gc = gc.font size


let get gc lw gc = gc.lw


let get gc cur gc = (gc.x,gc.y); ;


val get_gc_bcol : g_context -> Graphics.color = <fun>


val get_gc_fcol : g_context -> Graphics.color = <fun>


val get_gc_font : g_context -> string = <fun>


1. The name of the character font may vary according to the system being used.
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val get_gc_font_size : g_context -> int = <fun>


val get_gc_lw : g_context -> int = <fun>


val get_gc_cur : g_context -> int * int = <fun>


The functions to modify those fields work on the same principle.


# let set gc bcol gc c = gc.bcol <- c


let set gc fcol gc c = gc.fcol <- c


let set gc font gc f = gc.font <- f


let set gc font size gc s = gc.font size <- s


let set gc lw gc i = gc.lw <- i


let set gc cur gc (a,b) = gc.x<- a; gc.y<-b; ;


val set_gc_bcol : g_context -> Graphics.color -> unit = <fun>


val set_gc_fcol : g_context -> Graphics.color -> unit = <fun>


val set_gc_font : g_context -> string -> unit = <fun>


val set_gc_font_size : g_context -> int -> unit = <fun>


val set_gc_lw : g_context -> int -> unit = <fun>


val set_gc_cur : g_context -> int * int -> unit = <fun>


We can thus create new contexts, and read and write various fields of a value of the
g context type.


The use gc function applies the data of a graphic context to the graphical window.


# let use gc gc =


Graphics.set color (get gc fcol gc);


Graphics.set font (get gc font gc);


Graphics.set text size (get gc font size gc);


Graphics.set line width (get gc lw gc);


let (a,b) = get gc cur gc in Graphics.moveto a b; ;


val use_gc : g_context -> unit = <fun>


Some data, such as the background color, are not directly used by the Graphics library
and do not appear in the use gc function.


Events


The Graphics library only contains a limited number of interaction events: mouse
click, mouse movement and key press. We want to enrich the kind of event that arises
from interaction by integrating events arising at the component level. To this end we
define the type rich event:


# type rich event =
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MouseDown | MouseUp | MouseDrag | MouseMove


| MouseEnter | MouseExit | Exposure


| GotFocus | LostFocus | KeyPress | KeyRelease; ;


To create such events it is necessary to keep a history of previous events. The MouseDown
and MouseMove events correspond to mouse events (clicking and moving) which are
created by Graphics. Other mouse events are created by virtue of either the previous
event MouseUp, or the last component which handled a physical event MouseExit.
The Exposure event corresponds to a request to redisplay a component. The concept
of focus expresses that a given component is interested in a certain kind of event.
Typically the input of text to a component which has grabbed the focus means that
this component alone will handle KeyPress and KeyRelease events. A MouseDown event
on a text input component hands over the input focus to it and takes it away from the
component which had it before.


These new events are created by the event handling loop described on page 360.


Options


A graphical interface needs rules for describing the creation options for graphical ob-
jects (components, graphics contexts). If we wish to create a graphics context with a
certain color it is currently necessary to construct it with the default values and then
to call the two functions to modify the color fields in that context. In the case of more
complex graphic objects this soon becomes tedious. Since we want to extend these op-
tions as we build up the components of the library, we need an “extensible” sum type.
The only one provided by Objective Caml is the exn type used for exceptions. Because
usingexn for handling options would affect the clarity of our programs we will only use
this type for real exceptions. Instead, we will simulate an extensible sum type using
pseudo constructors represented by character strings. We define the type opt val for
the values of these options. An option is a tuple whose first element is the name of the
option and the second its value. The lopt type encompasses a list of such options.


# type opt val = Copt of Graphics.color | Sopt of string


| Iopt of int | Bopt of bool; ;


# type lopt = (string * opt val) list ; ;


The decoding functions take as input a list of options, an option name and a default
value. If the name belongs to the list then the associated value is returned, if not then
we get the default value. We show here only the decoding functions for integers and
booleans, the others work on the same principle.


# exception OptErr; ;


exception OptErr


# let theInt lo name default =


try
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match List.assoc name lo with


Iopt i → i


| _ → raise OptErr


with Not found → default; ;


val theInt : (’a * opt_val) list -> ’a -> int -> int = <fun>


# let theBool lo name default =


try


match List.assoc name lo with


Bopt b → b


| _ → raise OptErr


with Not found → default; ;


val theBool : (’a * opt_val) list -> ’a -> bool -> bool = <fun>


We can now write a function to create a graphics context using a list of options in the
following manner:


# let set gc gc lopt =


set gc bcol gc (theColor lopt "Background" (get gc bcol gc));


set gc fcol gc (theColor lopt "Foreground" (get gc fcol gc));


set gc font gc (theString lopt "Font" (get gc font gc));


set gc font size gc (theInt lopt "FontSize" (get gc font size gc));


set gc lw gc (theInt lopt "LineWidth" (get gc lw gc)); ;


val set_gc : g_context -> (string * opt_val) list -> unit = <fun>


This allows us to ignore the order in which the options are passed in.


# let dc = make default context () in


set gc dc [ "Foreground", Copt Graphics.blue;


"Background", Copt Graphics.yellow];


dc; ;


- : g_context =


{bcol=16776960; fcol=255; font="fixed"; font_size=12; lw=1; x=0; y=0}


This results in a fairly flexible system which unfortunately partially evades the type
system. The name of an option is of the type string and nothing prevents the con-
struction of a nonexistant name. The result is simply that the value is ignored.


Components and Containers


The component is the essential building block of this library. We want to be able to
create components and then easily assemble them to construct interfaces. They must
be able to display themselves, to recognize an event destined for them, and to handle
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that event. Containers must be able to receive events from other components or to
hand them on. We assume that a component can only be added to one container.


Construction of Components


A value of type component has a size (w and h), an absolute position in the main window
(x and y), a graphics context used when it is displayed (gc), a flag to show whether it
is a container (container), a parent - if it is itself attached to a container (parent),
a list of child components (children) and four functions to handle positioning of
components. These control how children are positioned within a component (layout),
how the component is displayed (display), whether any given point is considered to
be within the area of the component (mem) and finally a function for event handling
(listener) which returns true if the event was handled and false otherwise. The
parameter of the listener is of type (type rich status) and contains the name of the
event the lowlevel event information coming from the Graphics module, information
on the keyboard focus and the general focus, as well as the last component to have
handled an event. So we arrive at the following mutually recursive declarations:
# type component =


{ mutable info : string;


mutable x : int; mutable y : int;


mutable w :int ; mutable h : int;


mutable gc : g context;


mutable container : bool;


mutable parent : component list;


mutable children : component list;


mutable layout options : lopt;


mutable layout : component → lopt → unit;


mutable display : unit → unit;


mutable mem : int * int → bool;


mutable listener : rich status → bool }
and rich status =


{ re : rich event;


stat : Graphics.status;


mutable key focus : component;


mutable gen focus : component;


mutable last : component}; ;


We access the data fields of a component with the following functions.
# let get gc c = c.gc; ;


val get_gc : component -> g_context = <fun>


# let is container c = c.container; ;


val is_container : component -> bool = <fun>


The following three functions define the default behavior of a component. The function
to test whether a given mouse position applies to a given component (in rect) checks
that the coordinate is within the rectangle defined by the coordinates of the component.
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The default display function (display rect) fills the rectangle of the component with
the background color found in the graphic context of that component. The default
layout function (direct layout) places components relatively within their containers.
Valid options are "PosX" and "PosY", corresponding to the coordinates relative to the
container.
# let in rect c (xp,yp) =


(xp >= c.x) && (xp < c.x + c.w) && (yp >= c.y) && (yp < c.y + c.h) ; ;


val in_rect : component -> int * int -> bool = <fun>


# let display rect c () =


let gc = get gc c in


Graphics.set color (get gc bcol gc);


Graphics.fill rect c.x c.y c.w c.h ; ;


val display_rect : component -> unit -> unit = <fun>


# let direct layout c c1 lopt =


let px = theInt lopt "PosX" 0


and py = theInt lopt "PosY" 0 in


c1.x <- c.x + px; c1.y <- c.y + py ; ;


val direct_layout :


component -> component -> (string * opt_val) list -> unit = <fun>


It is now possible to define a component using the function create component which
takes width and height as parameters and uses the three preceding functions.
# let create component iw ih =


let dc =


{info="Anonymous";
x=0; y=0; w=iw; h=ih;


gc = make default context () ;


container = false;


parent = [] ; children = [] ;


layout options = [] ;


layout = (fun a b → ());


display = (fun () → ());


mem = (fun s → false);


listener = (fun s → false);}
in


dc.layout <- direct layout dc;


dc.mem <- in rect dc;


dc.display <- display rect dc;


dc ; ;


val create_component : int -> int -> component = <fun>


We then define the following empty component:
# let empty component = create component 0 0 ; ;


This is used as a default value when we construct values which need to contain at least
one component (for example a value of type rich status).
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Adding Child Components


The difficult part of adding a component to a container is how to position the compo-
nent within the container. The layout field contains this positioning function. It takes
a component (a child) and a list of options and calculates the new coordinates of the
child within the container. Different options can be used according to the positioning
function. We describe several layout functions when we talk about about the panel
component (see below, page 366). Here we simply describe the mechanism for propa-
gating the display function through the tree of components, coordinate changes, and
propagating events. The propagation of actions makes intensive use of the List.iter
function, which applies a function to all the elements of a list.


The function change coord applies a relative change to the coordinates of a component
and those of all its children.
# let rec change coord c (dx,dy) =


c.x <- c.x + dx; c.y <- c.y + dy;


List.iter (fun s → change coord s (dx,dy) ) c.children; ;


val change_coord : component -> int * int -> unit = <fun>


The add component function checks that the conditions for adding a component have
been met and then joins the parent (c) and the child (c1). The list of positioning
options is retained in the child component, which allows us to reuse them when the
positioning function of the parent changes. The list of options passed to this function
are those used by the positioning function. There are three conditions which need to
be prohibited: the child component is already a parent, the parent is not a container
or the child is too large for parent


# let add component c c1 lopt =


if c1.parent <> [] then failwith "add_component: already a parent"


else


if not (is container c ) then


failwith "add_component: not a container"


else


if (c1.x + c1.w > c.w) || (c1.y + c1.h > c.h)


then failwith "add_component: bad position"


else


c.layout c1 lopt;


c1.layout options <- lopt;


List.iter (fun s → change coord s (c1.x,c1.y)) c1.children;


c.children <- c1 :: c.children;


c1.parent <- [c] ; ;


val add_component : component -> component -> lopt -> unit = <fun>


The removal of a component from some level in the tree, implemented by the following
function, entails both a change to the link between the parent and the child and also
a change to the coordinates of the child and all its own children:
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# let remove component c c1 =


c.children <- List.filter ((!=) c1) c.children;


c1.parent <- List.filter ((!=) c) c1.parent;


List.iter (fun s → change coord s (- c1.x, - c1.y)) c1.children;


c1.x <- 0; c1.y <- 0; ;


val remove_component : component -> component -> unit = <fun>


A change to the positioning function of a container depends on whether it has any
children. If it does not the change is immediate. Otherwise we must first remove the
children of the container, modify the container’s positioning function and then add the
components back in with the same options used when they were originally added.
# let set layout f c =


if c.children = [] then c.layout <- f


else


let ls = c.children in


List.iter (remove component c) ls;


c.layout <- f;


List.iter (fun s → add component c s s.layout options) ls; ;


val set_layout : (component -> lopt -> unit) -> component -> unit = <fun>


This is why we kept the list of positioning options. If the list of options is not recognized
by the new function it uses the defaults.


When a component is displayed, the display event must be propagated to its children.
The container is displayed behind its children. The order of display of the children is
unimportant because they never overlap.
# let rec display c =


c.display () ;


List.iter (fun cx → display cx ) c.children; ;


val display : component -> unit = <fun>


Event Handling


The handling of physical events (mouse click, key press, mouse movement) uses the
Graphics.wait next event function (see page 132) which returns a physical status
(of type Graphics.status) following any user interaction. This physical status is used
to calculate a rich status (of type rich status) containing the event type (of type
rich event), the physical status, the components possessing the keyboard focus and
the general focus along with the last component which successfully handled such an
event. The general focus is a component which accepts all events.


Next we describe the functions for the manipulating of rich events, the propagation
of this status information to components for them to be handled, the creation of the
information and the main event-handling loop.
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Functions used on Status


The following functions read the values of the mouse position and the focus. Functions
on focus need a further parameter: the component which is capturing or losing that
focus.


# let get event e = e.re; ;


# let get mouse x e = e.stat.Graphics.mouse x; ;


# let get mouse y e = e.stat.Graphics.mouse y; ;


# let get key e = e.stat.Graphics.key; ;


# let has key focus e c = e.key focus == c; ;


# let take key focus e c = e.key focus <- c; ;


# let lose key focus e c = e.key focus <- empty component; ;


# let has gen focus e c = e.gen focus == c; ;


# let take gen focus e c = e.gen focus <- c; ;


# let lose gen focus e c = e.gen focus <- empty component; ;


Propagation of Events


A rich event is sent to a component to be handled. Analogous to the display mechanism
discussed earlier, child components have priority over their parents for handling simple
mouse movement. If a component receives status information associated with an event,
it looks to see if it has a child which can handle it. If so, the child returns true otherwise
false. If no child can handle the event, the parent component tries to use the function
in its own listener field.


Status information coming from keyboard activity is propagated differently. The parent
component looks to see if it possesses the keyboard focus, and if so it handles the event,
otherwise it propagates to its children.


Some events are produced as a result of handling an initial event. For example, if one
component captures the focus, then this means another has lost it. Such events are
handled immediately by the target component. This is the same with the entry and
exit events caused when the mouse is moved between different components.


The send event function takes a value of type rich status and a component. It
returns a boolean indicating whether the event was handled or not.
# let rec send event rs c =


match get event rs with


MouseDown | MouseUp | MouseDrag | MouseMove →
if c.mem(get mouse x rs, get mouse y rs) then


if List.exists (fun sun → send event rs sun) c.children then true


else ( if c.listener rs then (rs.last <-c; true) else false )


else false


| KeyPress | KeyRelease →
if has key focus rs c then
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( if c.listener rs then (rs.last<-c; true)


else false )


else List.exists (fun sun → send event rs sun) c.children


| _ → c.listener rs; ;


val send_event : rich_status -> component -> bool = <fun>


Note that the hierarchical structure of the components is really a tree and not a cyclic
graph. This guarantees that the recursion in the send event function cannot cause an
infinite loop.


Event Creation


We differentiate between two kinds of events: those produced by a physical action (such
as a mouse click) and those which arise from some action linked with the previous
history of the system (such as the movement of the mouse cursor out of the screen area
occupied by a component). As a result we define two functions for creating rich events.


The function which deals with the former kind constructs a rich event out of two sets
of physical status information:
# let compute rich event s0 s1 =


if s0.Graphics.button <> s1.Graphics.button then


begin


if s0.Graphics.button then MouseDown else MouseUp


end


else if s1.Graphics.keypressed then KeyPress


else if (s0.Graphics.mouse x <> s1.Graphics.mouse x ) ||


(s0.Graphics.mouse y <> s1.Graphics.mouse y ) then


begin


if s1.Graphics.button then MouseDrag else MouseMove


end


else raise Not found; ;


val compute_rich_event : Graphics.status -> Graphics.status -> rich_event =


<fun>


The function creating the latter kind of event uses the last two rich events:
# let send new events res0 res1 =


if res0.key focus <> res1.key focus then


begin


ignore(send event {res1 with re = LostFocus} res0.key focus);


ignore(send event {res1 with re = GotFocus} res1.key focus)


end;


if (res0.last <> res1.last) &&


(( res1.re = MouseMove) || (res1.re = MouseDrag)) then


begin


ignore(send event {res1 with re = MouseExit} res0.last);


ignore(send event {res1 with re = MouseEnter} res1.last )
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end; ;


val send_new_events : rich_status -> rich_status -> unit = <fun>


We define an initial value for the rich event type. This is used to initialize the history
of the event loop.
# let initial re =


{ re = Exposure;


stat = { Graphics.mouse x=0; Graphics.mouse y=0;


Graphics.key = ’ ’;


Graphics.button = false;


Graphics.keypressed = false };
key focus = empty component;


gen focus = empty component;


last = empty component } ; ;


Event Loop


The event loop manages the sequence of interactions with a component, usually the
ancestor component for all the components of the interface. It is supplied with two
booleans indicating whether the interface should be redisplayed after every physical
event has been handled (b disp) and whether to handle mouse movement (b motion).
The final argument (c), is the root of the component tree.
# let loop b disp b motion c =


let res0 = ref initial re in


try


display c;


while true do


let lev = [Graphics.Button down; Graphics.Button up;


Graphics.Key pressed] in


let flev = if b motion then (Graphics.Mouse motion) :: lev


else lev in


let s = Graphics.wait next event flev


in


let res1 = {!res0 with stat = s} in


try


let res2 = {res1 with


re = compute rich event !res0.stat res1.stat} in


ignore(send event res2 c);


send new events !res0 res2;


res0 := res2;


if b disp then display c


with Not found → ()


done


with e → raise e; ;


val loop : bool -> bool -> component -> unit = <fun>
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The only way out of this loop is when one of the handling routines raises an exception.


Test Functions


We define the following two functions to create by hand status information correspond-
ing to mouse and keyboard events.
# let make click e x y =


{re = e;


stat = {Graphics.mouse x=x; Graphics.mouse y=y;


Graphics.key = ’ ’; Graphics.button = false;


Graphics.keypressed = false};
key focus = empty component;


gen focus = empty component;


last = empty component}


let make key e ch c =


{re = e;


stat = {Graphics.mouse x=0; Graphics.mouse y=0;


Graphics.key = c; Graphics.button = false;


Graphics.keypressed = true};
key focus = empty component;


gen focus = empty component;


last = empty component}; ;
val make_click : rich_event -> int -> int -> rich_status = <fun>


val make_key : rich_event -> ’a -> char -> rich_status = <fun>


We can now simulate the sending of a mouse event to a component for test purposes.


Defining Components


The various mechanisms for display, coordinate change and, propagating event are now
in place. It remains for us to define some components which are both useful and easy
to use. We can classify components into the following three categories:


• simple components which do not handle events, such as text to be displayed;


• simple components which handle events, such as text entry fields;


• containers and their various layout strategies.


Values are passed between components, or between a component and the application by
modification of shared data. The sharing is implemented by closures which contain in
their environment the data to be modified. Moreover, as the behavior of the component
can change as a result of event handling, components also contain an internal state in
the closures of their handling functions. For example the handling function for an input
field has access to text while it is being written. To this end we implement components
in the following manner:
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• define a type to represent the internal state of the component;


• declare functions for the manipulation of this state;


• implement the functions for display, testing whether a coordinate is within the
component and handling events;


• implement the function to create the component, thereby associating those clo-
sures with fields in the component;


• test the component by simulating the arrival of events.


Creation functions take a list of options to configure the graphics context. The calcula-
tion of the size of a component when it is created needs to make use of graphics context
of the graphical window in order to determine the width of the text to be displayed.


We describe the implementation of the following components:


• simple text (label);


• simple container (panel);


• simple button (button);


• choice among a sequence of strings (choice);


• text entry field (textfield);


• rich component (border).


The Label Component


The simplest component, called a label, displays a string of characters on the screen. It
does not handle events. We will start by describing the display function and then the
creation function.


Display must take account of the foreground and background colors and the char-
acter font. It is the job of the display init function to erase the graphical region
of the component, select the foreground color and position the cursor. The function
display label displays the string passed as a parameter immediately after the call to
display init.
# let display init c =


Graphics.set color (get gc bcol (get gc c)); display rect c () ;


let gc= get gc c in


use gc gc;


let (a,b) = get gc cur gc in


Graphics.moveto (c.x+a) (c.y+b)


let display label s c () =


display init c; Graphics.draw string s; ;


val display_init : component -> unit = <fun>


val display_label : string -> component -> unit -> unit = <fun>


As this component is very simple it is not necessary to create any internal state. Only
the function display label knows the string to be displayed, which is passed by the
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creation function.
# let create label s lopt =


let gc = make default context () in set gc gc lopt; use gc gc;


let (w,h) = Graphics.text size s in


let u = create component w h in


u.mem <- (fun x → false); u.display <- display label s u;


u.info <- "Label"; u.gc <- gc;


u; ;


val create_label : string -> (string * opt_val) list -> component = <fun>


If we wish to change the colors of this component, we need to manipulate its graphic
context directly.


The display of label l1 below is depicted in figure 13.1.
# let courier bold 24 = Sopt "*courier-bold-r-normal-*24*"


and courier bold 18 = Sopt "*courier-bold-r-normal-*18*"; ;


# let l1 = create label "Login: " ["Font", courier bold 24;


"Background", Copt gray1]; ;


Figure 13.1: Displaying a label.


The panel Component, Containers and Layout


A panel is a graphical area which can be a container. The function which creates a panel
is very simple. It augments the general function for creating components with a boolean
indicating whether it is a container. The functions for testing location within the panel
and for display are those assigned by default in the create component function.
# let create panel b w h lopt =


let u = create component w h in


u.container <- b;


u.info <- if b then "Panel container" else "Panel";


let gc = make default context () in set gc gc lopt; u.gc <- gc;


u; ;


val create_panel :


bool -> int -> int -> (string * opt_val) list -> component = <fun>


The tricky part with containers lies in the positioning of their child components.
We define two new layout functions: center layout and grid layout. The first,
center layout places a component at the center of a container:
# let center layout c c1 lopt =


c1.x <- c.x + ((c.w -c1.w) /2); c1.y <- c.y + ((c.h -c1.h) /2); ;
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val center_layout : component -> component -> ’a -> unit = <fun>


The second, grid layout divides a container into a grid where each box has the same
size. The layout options in this case are "Col" for the column number and "Row" for
the row number.


# let grid layout (a, b) c c1 lopt =


let px = theInt lopt "Col" 0


and py = theInt lopt "Row" 0 in


if (px >= 0) && (px < a) && ( py >=0) && (py < b) then


let lw = c.w /a


and lh = c.h /b in


if (c1.w > lw) || (c1.h > lh) then


failwith "grid_placement: too big component"


else


c1.x <- c.x + px * lw + (lw - c1.w)/2;


c1.y <- c.y + py * lh + (lh - c1.h)/2;


else failwith "grid_placement: bad position"; ;


val grid_layout :


int * int -> component -> component -> (string * opt_val) list -> unit =


<fun>


It is clearly possible to define more. One can also customize a container by changing
its layout function (set layout). Figure 13.2 shows a panel, declared as a container,
in which two labels have been added and which corresponds to the following program:


Figure 13.2: A panel component.


# let l2 = create label "Passwd: " ["Font", courier bold 24;


"Background", Copt gray1] ; ;


# let p1 = create panel true 150 80 ["Background", Copt gray2] ; ;


# set layout (grid layout (1,2) p1) p1; ;


# add component p1 l1 ["Row", Iopt 1]; ;


# add component p1 l2 ["Row", Iopt 0]; ;


Since the components need at least one parent so that they can be integrated into the
interface, and since the Graphics library only supports one window, we must define a
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principle window which is a container.
# let open main window w h =


Graphics.close graph () ;


Graphics.open graph (" "^(string of int w)^"x"^(string of int h));


let u = create component w h in


u.container <- true;


u.info <- "Main Window";


u; ;


val open_main_window : int -> int -> component = <fun>


The Button Component


A button is a component which displays a text in its graphical region and reacts to
mouse clicks which occur there. To support this behavior it retains a piece of state, a
value of type button state, which contains the text and the mouse handling function.


# type button state =


{ txt : string; mutable action : button state → unit } ; ;


The function create bs creates this state. The set bs action function changes the
handling function and the function get bs text retrieves the text of a button.
# let create bs s = {txt = s; action = fun x → ()}


let set bs action bs f = bs.action <- f


let get bs text bs = bs.txt; ;


val create_bs : string -> button_state = <fun>


val set_bs_action : button_state -> (button_state -> unit) -> unit = <fun>


val get_bs_text : button_state -> string = <fun>


The display function is similar to that used by labels with the exception that the text
derives this time from the state information belonging to the button. By default the
listening function activates the action function when a mouse button is pressed.


# let display button c bs () =


display init c; Graphics.draw string (get bs text bs)


let listener button c bs e = match get event e with


MouseDown → bs.action bs; c.display () ; true


| _ → false; ;


val display_button : component -> button_state -> unit -> unit = <fun>


val listener_button : component -> button_state -> rich_status -> bool =


<fun>


We now have all we need to define the creation function for simple buttons:
# let create button s lopt =
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let bs = create bs s in


let gc = make default context () in


set gc gc lopt; use gc gc;


let w,h = Graphics.text size (get bs text bs) in


let u = create component w h in


u.display <- display button u bs;


u.listener <- listener button u bs;


u.info <- "Button";


u.gc <- gc;


u,bs; ;


val create_button :


string -> (string * opt_val) list -> component * button_state = <fun>


This returns a tuple of which the first element is the button which has been created
and the second is the internal state of the button. The latter value is particularly useful
if we want to change the action function of the button since the button state is not
accessible via the button function.


Figure 13.3 shows a panel to which a button has been added. We have associated an
action function which displays the string contained by the button on the standard
output.


Figure 13.3: Button display and reaction to a mouseclick.


# let b,bs = create button "Validation" ["Font", courier bold 24;


"Background", Copt gray1]; ;


# let p2 = create panel true 150 60 ["Background", Copt gray2]; ;


# set bs action bs (fun bs → print string ( (get bs text bs)^ "...");


print newline ()); ;


# set layout (center layout p2) p2; ;


# add component p2 b [] ; ;


In contrast to labels, a button component knows how to react to a mouse click. To
test this feature we send the event “mouse click” to a central position on the panel p2,
which is occupied by the button. This causes the action associated with the button to
be carried out:
# send event (make click MouseDown 75 30) p2; ;


Validation...


- : bool = true


and returns the value true showing that the event has indeed been handled.
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The choice Component


The choice component allows us to select one of the choices offered using a mouse click.
There is always a current choice. A mouse click on another choice causes the current
choice to change and causes an action to be carried out. We use the same technique we
used previously for simple buttons. We start by defining the state needed by a choice
list:
# type choice state =


{ mutable ind : int; values : string array; mutable sep : int;


mutable height : int; mutable action : choice state → unit } ; ;


The index ind shows which string is to be highlighted in the list of values. The sep
and height fields describe in pixels the distance between two choices and the height
of a choice. The action function takes an argument of type choice state as an input
and does its job using the index.


We now define the function to create a set of status information and the function to
change to way it is handled.
# let create cs sa = {ind = 0; values = sa; sep = 2;


height = 1; action = fun x → ()}
let set cs action cs f = cs.action <- f


let get cs text cs = cs.values.(cs.ind); ;


val create_cs : string array -> choice_state = <fun>


val set_cs_action : choice_state -> (choice_state -> unit) -> unit = <fun>


val get_cs_text : choice_state -> string = <fun>


The display function shows the list of all the possible choices and accentuates the
current choice in inverse video. The event handling function reacts to a release of the
mouse button.


# let display choice c cs () =


display init c;


let (x,y) = Graphics.current point ()


and nb = Array.length cs.values in


for i = 0 to nb-1 do


Graphics.moveto x (y + i*(cs.height+ cs.sep));


Graphics.draw string cs.values.(i)


done;


Graphics.set color (get gc fcol (get gc c));


Graphics.fill rect x (y+ cs.ind*(cs.height+ cs.sep)) c.w cs.height;


Graphics.set color (get gc bcol (get gc c));


Graphics.moveto x (y + cs.ind*(cs.height + cs.sep));


Graphics.draw string cs.values.(cs.ind) ; ;


val display_choice : component -> choice_state -> unit -> unit = <fun>


# let listener choice c cs e = match e.re with


MouseUp →







Constructing a Graphical Interface 371


let x = e.stat.Graphics.mouse x


and y = e.stat.Graphics.mouse y in


let cy = c.y in


let i = (y - cy) / ( cs.height + cs.sep) in


cs.ind <- i; c.display () ;


cs.action cs; true


| _ → false ; ;


val listener_choice : component -> choice_state -> rich_status -> bool =


<fun>


To create a list of possible choices we take a list of strings and a list of options, and
we return the component itself along with its internal state.


# let create choice lc lopt =


let sa = (Array.of list (List.rev lc)) in


let cs = create cs sa in


let gc = make default context () in


set gc gc lopt; use gc gc;


let awh = Array.map (Graphics.text size) cs.values in


let w = Array.fold right (fun (x,y) → max x) awh 0


and h = Array.fold right (fun (x,y) → max y) awh 0 in


let h1 = (h+cs.sep) * (Array.length sa) + cs.sep in


cs.height <- h;


let u = create component w h1 in


u.display <- display choice u cs;


u.listener <- listener choice u cs ;


u.info <- "Choice "^ (string of int (Array.length cs.values));


u.gc <- gc;


u,cs; ;


val create_choice :


string list -> (string * opt_val) list -> component * choice_state = <fun>


The sequence of three pictures in figure 13.4 shows a panel to which a list of choices
has been added. To it we have bound an action function which displays the chosen
string to the standard output. The pictures arise from mouse clicks simulated by the
following program.
# let c,cs = create choice ["Helium"; "Gallium"; "Pentium"]


["Font", courier bold 24;


"Background", Copt gray1]; ;


# let p3 = create panel true 110 110 ["Background", Copt gray2]; ;


# set cs action cs (fun cs → print string ( (get cs text cs)^"...");


print newline ()); ;


# set layout (center layout p3) p3; ;


# add component p3 c [] ; ;
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Figure 13.4: Displaying and selecting from a choice list.


Here also we can test the component straight away by sending several events. The
following changes the selection, as is shown in the central picture in figure 13.4.
# send event (make click MouseUp 60 55 ) p3; ;


Gallium...


- : bool = true


The sending of the following event selects the first element in the choice list
# send event (make click MouseUp 60 90 ) p3; ;


Helium...


- : bool = true


The textfield Component


The text input field, or textfield, is an area which enables us to input a text string. The
text can be aligned to the left or (typically for a calculator) the right. Furthermore a
cursor shows where the next character will be entered. Here we need a more complex
internal state. This includes the text which is being entered, the direction of the justi-
fication, a description of the cursor, a description of how the characters are displayed
and the action function.
# type textfield state =


{ txt : string;


dir : bool; mutable ind1 : int; mutable ind2 : int; len : int;


mutable visible cursor : bool; mutable cursor : char;


mutable visible echo : bool; mutable echo : char;


mutable action : textfield state → unit } ; ;


To create this internal state we need the initial text, the number of characters available
for the text input field and the justification of the text.
# let create tfs txt size dir =


let l = String.length txt in


(if size < l then failwith "create_tfs");


let ind1 = if dir then 0 else size-1-l
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and ind2 = if dir then l else size-1 in


let n txt = (if dir then (txt^(String.make (size-l) ’ ’))


else ((String.make (size-l) ’ ’)^txt )) in


{txt = n txt; dir=dir; ind1 = ind1; ind2 = ind2; len=size;


visible cursor = false; cursor = ’ ’; visible echo = true; echo = ’ ’;


action= fun x → ()}; ;
val create_tfs : string -> int -> bool -> textfield_state = <fun>


The following functions allow us to access various fields, including the displayed text.
# let set tfs action tfs f = tfs.action <- f


let set tfs cursor b c tfs = tfs.visible cursor <- b; tfs.cursor <- c


let set tfs echo b c tfs = tfs.visible echo <- b; tfs.echo <- c


let get tfs text tfs =


if tfs.dir then String.sub tfs.txt tfs.ind1 (tfs.ind2 - tfs.ind1)


else String.sub tfs.txt (tfs.ind1+1) (tfs.ind2 - tfs.ind1); ;


The set tfs text function changes the text within the internal state tfs of the com-
ponent tf with the string txt.
# let set tfs text tf tfs txt =


let l = String.length txt in


if l > tfs.len then failwith "set_tfs_text";


String.blit (String.make tfs.len ’ ’) 0 tfs.txt 0 tfs.len;


if tfs.dir then (String.blit txt 0 tfs.txt 0 l;


tfs.ind2 <- l )


else ( String.blit txt 0 tfs.txt (tfs.len -l) l;


tfs.ind1 <- tfs.len-l-1 );


tf.display () ; ;


val set_tfs_text : component -> textfield_state -> string -> unit = <fun>


Display operations must take account of how the character is echoed and the visibility
of the cursor. The display textfield function calls the display cursor function
which shows where the cursor is.
# let display cursor c tfs =


if tfs.visible cursor then


( use gc (get gc c);


let (x,y) = Graphics.current point () in


let (a,b) = Graphics.text size " " in


let shift = a * (if tfs.dir then max (min (tfs.len-1) tfs.ind2) 0


else tfs.ind2) in


Graphics.moveto (c.x+x + shift) (c.y+y);


Graphics.draw char tfs.cursor); ;


val display_cursor : component -> textfield_state -> unit = <fun>


# let display textfield c tfs () =


display init c;


let s = String.make tfs.len ’ ’
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and txt = get tfs text tfs in


let nl = String.length txt in


if (tfs.ind1 >= 0) && (not tfs.dir) then


Graphics.draw string (String.sub s 0 (tfs.ind1+1) );


if tfs.visible echo then (Graphics.draw string (get tfs text tfs))


else Graphics.draw string (String.make (String.length txt) tfs.echo);


if (nl > tfs.ind2) && (tfs.dir)


then Graphics.draw string (String.sub s tfs.ind2 (nl-tfs.ind2));


display cursor c tfs; ;


val display_textfield : component -> textfield_state -> unit -> unit = <fun>


The event-listener function for this kind of component is more complex. According to
the input direction (left or right justified) we may need to move the string which has
already been input. Capture of focus is achieved by a mouse click in the input zone.
# let listener text field u tfs e =


match e.re with


MouseDown → take key focus e u ; true


| KeyPress →
( if Char.code (get key e) >= 32 then


begin


( if tfs.dir then


( ( if tfs.ind2 >= tfs.len then (


String.blit tfs.txt 1 tfs.txt 0 (tfs.ind2-1);


tfs.ind2 <- tfs.ind2-1) );


tfs.txt.[tfs.ind2] <- get key e;


tfs.ind2 <- tfs.ind2 +1 )


else


( String.blit tfs.txt 1 tfs.txt 0 (tfs.ind2);


tfs.txt.[tfs.ind2] <- get key e;


if tfs.ind1 >= 0 then tfs.ind1 <- tfs.ind1 -1


);


)


end


else (


( match Char.code (get key e) with


13 → tfs.action tfs


| 9 → lose key focus e u


| 8 → if (tfs.dir && (tfs.ind2 > 0))


then tfs.ind2 <- tfs.ind2 -1


else if (not tfs.dir) && (tfs.ind1 < tfs.len -1)


then tfs.ind1 <- tfs.ind1+1


| _ → ()


))); u.display () ; true


| _ → false; ;


val listener_text_field :


component -> textfield_state -> rich_status -> bool = <fun>
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The function which creates text entry fields repeats the same pattern we have seen in
the previous components.
# let create text field txt size dir lopt =


let tfs = create tfs txt size dir


and l = String.length txt in


let gc = make default context () in


set gc gc lopt; use gc gc;


let (w,h) = Graphics.text size (tfs.txt) in


let u = create component w h in


u.display <- display textfield u tfs;


u.listener <- listener text field u tfs ;


u.info <- "TextField"; u.gc <- gc;


u,tfs; ;


val create_text_field :


string ->


int -> bool -> (string * opt_val) list -> component * textfield_state =


<fun>


This function returns a tuple consisting of the component itself, and the internal state
of that component. We can test the creation of the component in figure 13.5 as follows:


# let tf1,tfs1 = create text field "jack" 8 true ["Font", courier bold 24]; ;


# let tf2,tfs2 = create text field "koala" 8 false ["Font", courier bold 24]; ;


# set tfs cursor true ’_’ tfs1; ;


# set tfs cursor true ’_’ tfs2; ;


# set tfs echo false ’*’ tfs2; ;


# let p4 = create panel true 140 80 ["Background", Copt gray2]; ;


# set layout (grid layout (1,2) p4) p4; ;


# add component p4 tf1 ["Row", Iopt 1]; ;


# add component p4 tf2 ["Row", Iopt 0]; ;


Figure 13.5: Text input component.
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Enriched Components


Beyond the components described so far, it is also possible to construct new ones, for
example components with bevelled edges such as those in the calculator on page 136.
To create this effect we construct a panel larger than the component, fill it out in a
certain way and add the required component to the center.
# type border state =


{mutable relief : string; mutable line : bool;


mutable bg2 : Graphics.color; mutable size : int}; ;


The creation function takes a list of options and constructs an internal state.
# let create border state lopt =


{relief = theString lopt "Relief" "Flat";


line = theBool lopt "Outlined" false;


bg2 = theColor lopt "Background2" Graphics.black;


size = theInt lopt "Border_size" 2}; ;
val create_border_state : (string * opt_val) list -> border_state = <fun>


We define the profile of the border used in the boxes of figure 5.6 (page 130) by defining
the options "Top", "Bot" and "Flat".
# let display border bs c1 c () =


let x1 = c.x and y1 = c.y in


let x2 = x1+c.w-1 and y2 = y1+c.h-1 in


let ix1 = c1.x and iy1 = c1.y in


let ix2 = ix1+c1.w-1 and iy2 = iy1+c1.h-1 in


let border1 g = Graphics.set color g;


Graphics.fill poly [| (x1,y1);(ix1,iy1);(ix2,iy1);(x2,y1) |] ;


Graphics.fill poly [| (x2,y1);(ix2,iy1);(ix2,iy2);(x2,y2) |]


in


let border2 g = Graphics.set color g;


Graphics.fill poly [| (x1,y2);(ix1,iy2);(ix2,iy2);(x2,y2) |] ;


Graphics.fill poly [| (x1,y1);(ix1,iy1);(ix1,iy2);(x1,y2) |]


in


display rect c () ;


if bs.line then (Graphics.set color (get gc fcol (get gc c));


draw rect x1 y1 c.w c.h);


let b1 col = get gc bcol ( get gc c)


and b2 col = bs.bg2 in


match bs.relief with


"Top" → (border1 b1 col; border2 b2 col)


| "Bot" → (border1 b2 col; border2 b1 col)


| "Flat" → (border1 b1 col; border2 b1 col)


| s → failwith ("display_border: unknown relief: "^s)


; ;


val display_border : border_state -> component -> component -> unit -> unit =


<fun>
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The function which creates a border takes a component and a list of options, it con-
structs a panel containing that component.
# let create border c lopt =


let bs = create border state lopt in


let p = create panel true (c.w + 2 * bs.size)


(c.h + 2 * bs.size) lopt in


set layout (center layout p) p;


p.display <- display border bs c p;


add component p c [] ; p; ;


val create_border : component -> (string * opt_val) list -> component = <fun>


Now we can test creating a component with a border on the label component and the
text entry field tf1 defined by in our previous tests. The result is show in figure 13.6.
# remove component p1 l1; ;


# remove component p4 tf1; ;


# let b1 = create border l1 [] ; ;


# let b2 = create border tf1 ["Relief", Sopt "Top";


"Background", Copt Graphics.red;


"Border_size", Iopt 4]; ;


# let p5 = create panel true 140 80 ["Background", Copt gray2]; ;


# set layout (grid layout (1,2) p5) p5; ;


# add component p5 b1 ["Row", Iopt 1]; ;


# add component p5 b2 ["Row", Iopt 0]; ;


Figure 13.6: An enriched component.


Setting up the Awi Library


The essential parts of our library have now been written. All declarations 2 of types
and values which we have seen so far in this section can be grouped together in one
file. This library consists of one single module. If the file is called awi.ml then we get


2. except for those used in our test examples
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a module called Awi. The link between the name of the file and that of the module is
described in chapter 14.


Compiling this file will produce a compiled interface file awi.cmi and, depending on
the compiler being used, the bytecode itself awi.cmo or else the native machine code
awi.cmx. To use the bytecode compiler we enter the following command


ocamlc -c awi.ml


To use it at the interactive toplevel, we need to load the bytecode of our new library
with the command #load "awi.cmo";; having also previously ensured that we have
loaded the Graphics library. We can then start calling functions from the module to
create and work with components.


# open Awi;;
# create_component;;
- : int -> int -> Awi.component = <fun>


The result type of this function is Awi.component, chapter 14 explains more about
this.


Example: A Franc-Euro Converter


We will now build a currency converter between Francs and Euros using this new
library. The actual job of conversion is trivial, but the construction of the interface will
show how the components communicate with each other. While we are getting used to
the new currency we need to convert in both directions. Here are the components we
have chosen:


• a list of two choices to describe the direction of the conversion;


• two text entry fields for inputting values and displaying converted results;


• a simple button to request that the calculation be performed;


• two labels to show the meaning of each text entry field.


These different components are shown in figure 13.7.


Communication between the components is implemented by sharing state. For this
purpose we define the type state conv which hold the fields for francs (a), euros (b),
the direction in which the conversion is to be performed (dir) and the conversion
factors (fa and fb).
# type state conv =


{ mutable a:float; mutable b:float; mutable dir : bool;


fa : float; fb : float } ; ;


We define the initial state as follows:
# let e = 6.55957074
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let fe = { a =0.0; b=0.0; dir = true; fa = e; fb = 1./. e}; ;


The conversion function returns a floating result following the direction of the conver-
sion.
# let calculate fe =


if fe.dir then fe.b <- fe.a /. fe.fa else fe.a <- fe.b /. fe.fb; ;


val calculate : state_conv -> unit = <fun>


A mouse click on the list of two choices changes the direction of the conversion. The
text of the choice strings is "->" and "<-".
# let action dir fe cs = match get cs text cs with


"->" → fe.dir <- true


| "<-" → fe.dir <- false


| _ → failwith "action_dir"; ;


val action_dir : state_conv -> choice_state -> unit = <fun>


The action associated with the simple button causes the calculation to be performed
and displays the result in one of the two text entry fields. For this to be possible we
pass the two text entry fields as parameters to the action.
# let action go fe tf fr tf eu tfs fr tfs eu x =


if fe.dir then


let r = float of string (get tfs text tfs fr) in


fe.a <- r; calculate fe;


let sr = Printf.sprintf "%.2f" fe.b in


set tfs text tf eu tfs eu sr


else


let r = float of string (get tfs text tfs eu) in


fe.b <- r; calculate fe;


let sr = Printf.sprintf "%.2f" fe.a in


set tfs text tf fr tfs fr sr; ;


val action_go :


state_conv ->


component -> component -> textfield_state -> textfield_state -> ’a -> unit =


<fun>


It now remains to build the interface. The following function takes a width, a height and
a conversion state and returns the main container with the three active components.


# let create conv w h fe =


let gray1 = (Graphics.rgb 120 120 120) in


let m = open main window w h


and p = create panel true (w-4) (h-4) []


and l1 = create label "Francs" ["Font", courier bold 24;


"Background", Copt gray1]







380 Chapter 13 : Applications


and l2 = create label "Euros" ["Font", courier bold 24;


"Background", Copt gray1]


and c,cs = create choice ["->"; "<-"] ["Font", courier bold 18]


and tf1,tfs1 = create text field "0" 10 false ["Font", courier bold 18]


and tf2,tfs2 = create text field "0" 10 false ["Font", courier bold 18]


and b,bs = create button " Go " ["Font", courier bold 24]


in


let gc = get gc m in


set gc bcol gc gray1;


set layout (grid layout (3,2) m ) m;


let tb1 = create border tf1 []


and tb2 = create border tf2 []


and bc = create border c []


and bb =


create border b


["Border_size", Iopt 4; "Relief", Sopt "Bot";


"Background", Copt gray2; "Background2", Copt Graphics.black]


in


set cs action cs (action dir fe);


set bs action bs (action go fe tf1 tf2 tfs1 tfs2);


add component m l1 ["Col",Iopt 0;"Row",Iopt 1];


add component m l2 ["Col",Iopt 2;"Row",Iopt 1];


add component m bc ["Col",Iopt 1;"Row",Iopt 1];


add component m tb1 ["Col",Iopt 0;"Row",Iopt 0];


add component m tb2 ["Col",Iopt 2;"Row",Iopt 0];


add component m bb ["Col",Iopt 1;"Row",Iopt 0];


m,bs,tf1,tf2; ;


val create_conv :


int ->


int -> state_conv -> component * button_state * component * component =


<fun>


The event handling loop is started on the container m constructed below. The resulting
display is shown in figure 13.7.
# let (m,c,t1,t2) = create conv 420 150 fe ; ;


# display m ; ;


One click on the choice list changes both the displayed text and the direction of the
conversion because all the event handling closures share the same state.


Where to go from here


Closures allow us to register handling methods with graphical components. It is however
impossible to “reopen” these closures to extend an existing handler with additional
behavior. We need to define a completely new handler. We discuss the possibilities for
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Figure 13.7: Calculator window.


extending handlers in chapter 16 where we compare the functional and object-oriented
paradigms.


In our application many of the structures declared have fields with identical names (for
example txt). The last declaration masks all previous occurences. This means that it
becomes difficult to use the field names directly and this is why we have declared a set
of access functions for every type we have defined. Another possibility would be to cut
our library up into several modules. From then on field names could be disambiguated
by using the module names. Nonetheless, with the help of the access functions, we can
already make full use of the library. Chapter 14 returns to the topic of type overlaying
and introduces abstract data types. The use of overlaying can, among other things,
increase robustness by preventing the modification of sensitive data fields, such as
the parent child relationships between the components which should not allow the
construction of a circular graph.


There are many possible ways to improve this library.


One criterion in our design for components was that it should be possible to write
new ones. It is fairly easy to create components of an arbitrary shape by using new
definitions of the mem and display functions. In this way one could create buttons
which have an oval or tear-shaped form.


The few layout algorithms presented are not as helpful as they could be. One could add
a grid layout whose squares are of variable size and width. Or maybe we want to place
components alongside each other so long as there is enough room. Finally we should
anticipate the possibility that a change to the size of a component may be propagated
to its children.


Finding Least Cost Paths


Many applications need to find least cost paths through weighted directed graphs. The
problem is to find a path through a graph in which non-negative weights are associated
with the arcs. We will use Dijkstra’s algorithm to determine the path.


This will be an opportunity to use several previously introduced libraries. In the order
of appearance, the following modules will be used: Genlex and Printf for input and
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output, the module Weak to implement a cache, the module Sys to track the time saved
by a cache, and the Awi library to construct a graphical user interface. The module
Sys is also used to construct a standalone application that takes the name of a file
describing the graph as a command line argument.


Graph Representions


A weighted directed graph is defined by a set of nodes, a set of edges, and a mapping
from the set of edges to a set of values. There are numerous implementations of the
data type weighted directed graph.


• adjacency matrices:
each element (m(i, j)) of the matrix represents an edge from node i to j and the
value of the element is the weight of the edge;


• adjacency lists:
each node i is associated with a list [(j1, w1); ..; (jn, wn)] of nodes and each triple
(i, jk, wk) is an edge of the graph, with weight wk;


• a triple:
a list of nodes, a list of edges and a function that computes the weights of the
edges.


The behavior of the representations depends on the size and the number of edges in
the graph. Since one goal of this application is to show how to cache certain previously
executed computations without using all of memory, an adjacency matrix is used to
represent weighted directed graphs. In this way, memory usage will not be increased
by list manipulations.


# type cost = Nan | Cost of float; ;


# type adj mat = cost array array; ;


# type ’a graph = { mutable ind : int;


size : int;


nodes : ’a array;


m : adj mat}; ;
The field size indicates the maximal number of nodes, the field ind the actual number
of nodes.


We define functions to let us create graphs edge by edge.


The function to create a graph takes as arguments a node and the maximal number of
nodes.
# let create graph n s =


{ ind = 0; size = s; nodes = Array.create s n;


m = Array.create matrix s s Nan } ; ;


val create_graph : ’a -> int -> ’a graph = <fun>
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The function belongs to checks if the node n is contained in the graph g.
# let belongs to n g =


let rec aux i =


(i < g.size) & ((g.nodes.(i) = n) or (aux (i+1)))


in aux 0; ;


val belongs_to : ’a -> ’a graph -> bool = <fun>


The function index returns the index of the node n in the graph g. If the node does
not exist, a Not found exception is thrown.
# let index n g =


let rec aux i =


if i >= g.size then raise Not found


else if g.nodes.(i) = n then i


else aux (i+1)


in aux 0 ; ;


val index : ’a -> ’a graph -> int = <fun>


The next two functions are for adding nodes and edges of cost c to graphs.
# let add node n g =


if g.ind = g.size then failwith "the graph is full"


else if belongs to n g then failwith "the node already exists"


else (g.nodes.(g.ind) <- n; g.ind <- g.ind + 1) ; ;


val add_node : ’a -> ’a graph -> unit = <fun>


# let add edge e1 e2 c g =


try


let x = index e1 g and y = index e2 g in


g.m.(x).(y) <- Cost c


with Not found → failwith "node does not exist" ; ;


val add_edge : ’a -> ’a -> float -> ’a graph -> unit = <fun>


Now it is easy to create a complete weighted directed graph starting with a list of
nodes and edges. The function test aho constructs the graph of figure 13.8:
# let test aho () =


let g = create graph "nothing" 5 in


List.iter (fun x → add node x g) ["A"; "B"; "C"; "D"; "E"];


List.iter (fun (a,b,c) → add edge a b c g)


["A","B",10.;


"A","D",30.;


"A","E",100.0;


"B","C",50.;


"C","E",10.;


"D","C",20.;


"D","E",60.];


for i=0 to g.ind -1 do g.m.(i).(i) <- Cost 0.0 done;


g; ;
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val test_aho : unit -> string graph = <fun>


# let a = test aho () ; ;


val a : string graph =


{ind=5; size=5; nodes=[|"A"; "B"; "C"; "D"; "E"|];


m=[|[|Cost 0; Cost 10; Nan; Cost 30; Cost ...|]; ...|]}


Figure 13.8: The test graph


Constructing Graphs


It is tedious to directly construct graphs in a program. To avoid this, we define a concise
textual representation for graphs. We can define the graphs in text files and construct
them in applications by reading the text files.


The textual representation for a graph consists of lines of the following forms:


• the number of nodes: SIZE number;


• the name of a node: NODE name;


• the cost of an edge: EDGE name1 name2 cost;


• a comment: # comment.


For example, the following file, aho.dat, describes the graph of figure 13.8 :


SIZE 5
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NODE A
NODE B
NODE C
NODE D
NODE E
EDGE A B 10.0
EDGE A D 30.0
EDGE A E 100.0
EDGE B C 50.
EDGE C E 10.
EDGE D C 20.
EDGE D E 60.


To read graph files, we use the lexical analysis module Genlex. The lexical analyser is
constructed from a list of keywords keywords.


The function parse line executes the actions associated to the key words by modifying
the reference to a graph.
# let keywords = [ "SIZE"; "NODE"; "EDGE"; "#"]; ;


val keywords : string list = ["SIZE"; "NODE"; "EDGE"; "#"]


# let lex line l = Genlex.make lexer keywords (Stream.of string l); ;


val lex_line : string -> Genlex.token Stream.t = <fun>


# let parse line g s = match s with parser


[< ’(Genlex.Kwd "SIZE"); ’(Genlex.Int n) >] →
g := create graph "" n


| [< ’(Genlex.Kwd "NODE"); ’(Genlex.Ident name) >] →
add node name !g


| [< ’(Genlex.Kwd "EDGE"); ’(Genlex.Ident e1);


’(Genlex.Ident e2); ’(Genlex.Float c) >] →
add edge e1 e2 c !g


| [< ’(Genlex.Kwd "#") >] → ()


| [<>] → () ; ;


val parse_line : string graph ref -> Genlex.token Stream.t -> unit = <fun>


The analyzer is used to define the function creating a graph from the description in
the file:
# let create graph name =


let g = ref {ind=0; size=0; nodes =[||]; m = [||]} in


let ic = open in name in


try


print string ("Loading "^name^": ");


while true do


print string ".";


let l = input line ic in parse line g (lex line l)


done;


!g


with End of file → print newline () ; close in ic; !g ; ;
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val create_graph : string -> string graph = <fun>


The following command constructs a graph from the file aho.dat.
# let b = create graph "PROGRAMMES/aho.dat" ; ;


Loading PROGRAMMES/aho.dat: ..............


val b : string graph =


{ind=5; size=5; nodes=[|"A"; "B"; "C"; "D"; "E"|];


m=[|[|Nan; Cost 10; Nan; Cost 30; Cost 100|]; ...|]}


Dijkstra’s Algorithm


Dijkstra’s algorithm finds a least cost path between two nodes. The cost of a path
between node n1 and node n2 is the sum of the costs of the edges on that path.
The algorithm requires that costs always be positive, so there is no benefit in passing
through a node more than once.


Dijkstra’s algorithm effectively computes the minimal cost paths of all nodes of the
graph which can be reached from a source node n1. The idea is to consider a set
containing only nodes of which the least cost path to n1 is already known. This set
is enlarged successively, considering nodes which can be accessed directly by an edge
from one of the nodes already contained in the set. From these candidates, the one
with the best cost path to the source node is added to the set.


To keep track of the state of the computation, the type comp state is defined, as well
as a function for creating an initial state:
# type comp state = { paths : int array;


already treated : bool array;


distances : cost array;


source : int;


nn : int}; ;
# let create state () = { paths = [||]; already treated = [||]; distances = [||];


nn = 0; source = 0}; ;
The field source contains the start node. The field already treated indicates the
nodes whose optimal path from the source is already known. The field nn indicates the
total number of the graph’s nodes. The vector distances holds the minimal distances
between the source and the other nodes. For each node, the vector path contains the
preceding node on the least cost path. The path to the source can be reconstructed
from each node by using path.


Cost Functions


Four functions on costs are defined: a cost to test for the existence of an edge,
float of cost to return the floating point value, add cost to add two costs and
less cost to check if one cost is smaller than another.


# let a cost c = match c with Nan → false | _-> true; ;
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val a_cost : cost -> bool = <fun>


# let float of cost c = match c with


Nan → failwith "float_of_cost"


| Cost x → x; ;


val float_of_cost : cost -> float = <fun>


# let add cost c1 c2 = match (c1,c2) with


Cost x, Cost y → Cost (x+.y)


| Nan, Cost y → c2


| Cost x, Nan → c1


| Nan, Nan → c1; ;


val add_cost : cost -> cost -> cost = <fun>


# let less cost c1 c2 = match (c1,c2) with


Cost x, Cost y → x < y


| Cost x, Nan → true


| _, _ → false; ;


val less_cost : cost -> cost -> bool = <fun>


The value Nan plays a special role in the computations and in the comparison. We will
come back to this when we have presented the main function (page 388).


Implementing the Algorithm


The search for the next node with known least cost path is divided into two functions.
The first, first not treated, selects the first node not already contained in the set of
nodes with known least cost paths. This node serves as the initial value for the second
function, least not treated, which returns a node not already in the set with a best
cost path to the source. This path will be added to the set.
# exception Found of int; ;


exception Found of int


# let first not treated cs =


try


for i=0 to cs.nn-1 do


if not cs.already treated.(i) then raise (Found i)


done;


raise Not found;


0


with Found i → i ; ;


val first_not_treated : comp_state -> int = <fun>


# let least not treated p cs =


let ni = ref p


and nd = ref cs.distances.(p) in


for i=p+1 to cs.nn-1 do


if not cs.already treated.(i) then


if less cost cs.distances.(i) !nd then


( nd := cs.distances.(i);


ni := i )


done;


!ni,!nd; ;
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val least_not_treated : int -> comp_state -> int * cost = <fun>


The function one round selects a new node, adds it to the set of treated nodes and
computes the distances for any next candidates.
# exception No way; ;


exception No_way


# let one round cs g =


let p = first not treated cs in


let np,nc = least not treated p cs in


if not(a cost nc ) then raise No way


else


begin


cs.already treated.(np) <- true;


for i = 0 to cs.nn -1 do


if not cs.already treated.(i) then


if a cost g.m.(np).(i) then


let ic = add cost cs.distances.(np) g.m.(np).(i) in


if less cost ic cs.distances.(i) then (


cs.paths.(i) <- np;


cs.distances.(i) <- ic


)


done;


cs


end; ;


val one_round : comp_state -> ’a graph -> comp_state = <fun>


The only thing left in the implementation of Dijkstra’s algorithm is to iterate the
preceding function. The function dij takes a node and a graph as arguments and
returns a value of type comp state, with the information from which the least cost
paths from the source to all the reachable nodes of the graph can be deduced.
# let dij s g =


if belongs to s g then


begin


let i = index s g in


let cs = { paths = Array.create g.ind (-1) ;


already treated = Array.create g.ind false;


distances = Array.create g.ind Nan;


nn = g.ind;


source = i} in


cs.already treated.(i) <- true;


for j=0 to g.ind-1 do


let c = g.m.(i).(j) in


cs.distances.(j) <- c;


if a cost c then cs.paths.(j) <- i


done;


try
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for k = 0 to cs.nn-2 do


ignore(one round cs g)


done;


cs


with No way → cs


end


else failwith "dij: node unknown"; ;


val dij : ’a -> ’a graph -> comp_state = <fun>


Nan is the initial value of the distances. It represents an infinite distance, which con-
forms to the comparison function less cost. In contrast, for the addition of costs
(function add cost), this value is treated as a zero. This allows a simple implementa-
tion of the table of distances.


Now the search with Dijkstra’s algorithm can be tested.
# let g = test aho () ; ;


# let r = dij "A" g; ;


The return values are:
# r.paths; ;


- : int array = [|0; 0; 3; 0; 2|]


# r.distances; ;


- : cost array = [|Cost 0; Cost 10; Cost 50; Cost 30; Cost 60|]


Displaying the Results


To make the results more readable, we now define a display function.


The table paths of the state returned by dij only contains the last edges of the
computed paths. In order to get the entire paths, it is necessary to recursively go back
to the source.
# let display state f (g,st) dest =


if belongs to dest g then


let d = index dest g in


let rec aux is =


if is = st.source then Printf.printf "%a" f g.nodes.(is)


else (


let old = st.paths.(is) in


aux old;


Printf.printf " -> (%4.1f) %a" (float of cost g.m.(old).(is))


f g.nodes.(is)


)


in


if not(a cost st.distances.(d)) then Printf.printf "no way\n"


else (
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aux d;


Printf.printf " = %4.1f\n" (float of cost st.distances.(d))); ;


val display_state :


(out_channel -> ’a -> unit) -> ’a graph * comp_state -> ’a -> unit = <fun>


This recursive function uses the command stack to display the nodes in the right order.
Note that the use of the format "a" requires the function parameter f to preserve the
polymorphism of the graphs for the display.


The optimal path between the nodes ”A” (index 0) and ”E” (index 4) is displayed in
the following way:
# display state (fun x y → Printf.printf "%s!" y) (a,r) "E"; ;


A! -> (30.0) D! -> (20.0) C! -> (10.0) E! = 60.0


- : unit = ()


The different nodes of the path and the costs of each route are shown.


Introducing a Cache


Dijkstra’s algorithm computes all least cost paths starting from a source. The idea of
preserving these least cost paths for the next inquiry with the same source suggests
itself. However, this storage could occupy a considerable amount of memory. This
suggests the use of “weak pointers.” If the results of a computation starting from a
source are stored in a table of weak pointers, it will be possible for the next computation
to check if the computation has already been done. Because the pointers are weak, the
memory occupied by the states can be freed by the garbage collector if needed. This
avoids interrupting the rest of the program through the allocation of too much memory.
In the worst case, the computation has to be repeated for a future inquiry.


Implementing a Cache


A new type ’a comp graph is defined:
# type ’a comp graph =


{ g : ’a graph; w : comp state Weak.t } ; ;


The fields g and w correspond to the graph and to the table of weak pointers, pointing
to the computation states for each possible source.


Such values are constructed by the function create comp graph.
# let create comp graph g =


{ g = g;


w = Weak.create g.ind } ; ;


val create_comp_graph : ’a graph -> ’a comp_graph = <fun>


The function dij quick checks to see if the computation has already been done. If
it has, the stored result is returned. Otherwise, the computation is executed and the
result is registered in the table of weak pointers.
# let dij quick s cg =
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let i = index s cg.g in


match Weak.get cg.w i with


None → let cs = dij s cg.g in


Weak.set cg.w i (Some cs);


cs


| Some cs → cs; ;


val dij_quick : ’a -> ’a comp_graph -> comp_state = <fun>


The display function still can be used:
# let cg a = create comp graph a in


let r = dij quick "A" cg a in


display state (fun x y → Printf.printf "%s!" y) (a,r) "E" ; ;


A! -> (30.0) D! -> (20.0) C! -> (10.0) E! = 60.0


- : unit = ()


Performance Evaluation


We will test the performance of the functions dij and dij quick by iterating each one
on a random list of sources. In this way an application which frequently computes least
cost paths is simulated (for example a railway route planning system).


We define the following function to time the calculations:
# let exe time f g ss =


let t0 = Sys.time () in


Printf.printf "Start (%5.2f)\n" t0;


List.iter (fun s → ignore(f s g)) ss;


let t1 = Sys.time () in


Printf.printf "End (%5.2f)\n" t1;


Printf.printf "Duration = (%5.2f)\n" (t1 -. t0) ; ;


val exe_time : (’a -> ’b -> ’c) -> ’b -> ’a list -> unit = <fun>


We create a random list of 20000 nodes and measure the performance on the graph a:
# let ss =


let ss0 = ref [] in


let i0 = int of char ’A’ in


let new s i = Char.escaped (char of int (i0+i)) in


for i=0 to 20000 do ss0 := (new s (Random.int a.size))::!ss0 done;


!ss0 ; ;


val ss : string list =


["A"; "B"; "D"; "A"; "E"; "C"; "B"; "B"; "D"; "E"; "B"; "E"; "C"; "E"; "E";


"D"; "D"; "A"; "E"; ...]


# Printf.printf"Function dij :\n";


exe time dij a ss ; ;


Function dij :


Start ( 1.09)
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End ( 1.41)


Duration = ( 0.32)


- : unit = ()


# Printf.printf"Function dij_quick :\n";


exe time dij quick (create comp graph a) ss ; ;


Function dij_quick :


Start ( 1.41)


End ( 1.44)


Duration = ( 0.03)


- : unit = ()


The results confirm our assumption. The direct access to a result held in the cache is
considerably faster than a second computation of the result.


A Graphical Interface


We use the Awi library to construct a graphical interface to display graphs. The inter-
face allows selection of the source and destination nodes of the path. When the path is
found, it is displayed graphically. We define the type ’a gg, containing fields describing
the graph and the computation, as well as fields of the graphical interface.


# #load "PROGRAMMES/awi.cmo"; ;


# type ’a gg = { mutable src : ’a * Awi.component;


mutable dest : ’a * Awi.component;


pos : (int * int) array;


cg : ’a comp graph;


mutable state : comp state;


mutable main : Awi.component;


to string : ’a → string;


from string : string → ’a } ; ;


The fields src and dest are tuples (node, component), associating a node and a compo-
nent. The field pos contains the position of each component. The field main is the main
container of the set of components. The two functions to string and from string are
conversion functions between type ’a and strings. The elements necessary to construct
these values are the graph information, the position table and the conversion functions.


# let create gg cg vpos ts fs =


{src = cg.g.nodes.(0),Awi.empty component;


dest = cg.g.nodes.(0),Awi.empty component;


pos = vpos;


cg = cg;


state = create state () ;
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main = Awi.empty component;


to string = ts;


from string = fs}; ;
val create_gg :


’a comp_graph ->


(int * int) array -> (’a -> string) -> (string -> ’a) -> ’a gg = <fun>


Visualisation


In order to display the graph, the nodes have to be drawn, and the edges have to be
traced. The nodes are represented by button components of the Awi library. The edges
are traced directly in the main window. The function display edge displays the edges.
The function display shortest path displays the found path in a different color.


Drawing Edges An edge connects two nodes and has an associated weight. The
connection between two nodes can be represented by a line. The main difficulty is
indicating the orientation of the line. We choose to represent it by an arrow. The
arrow is rotated by the angle the line has with the abscissa (the x-axis) to give it the
proper orientation. Finally, the costs are displayed beside the edge.


To draw the arrow of an edge we define the functions rotate and translate which care
respectively for rotation and shifting. The function display arrow draws the arrow.
# let rotate l a =


let ca = cos a and sa = sin a in


List.map (function (x,y) → ( x*.ca +. -.y*.sa, x*.sa +. y*.ca)) l; ;


val rotate : (float * float) list -> float -> (float * float) list = <fun>


# let translate l (tx,ty) =


List.map (function (x,y) → (x +. tx, y +. ty)) l; ;


val translate :


(float * float) list -> float * float -> (float * float) list = <fun>


# let display arrow (mx,my) a =


let triangle = [(5.,0.); (-3.,3.); (1.,0.); (-3.,-3.); (5.,0.)] in


let tr = rotate triangle a in


let ttr = translate tr (mx,my) in


let tt = List.map (function (x,y) → (int of float x, int of float y)) ttr


in


Graphics.fill poly (Array.of list tt); ;


val display_arrow : float * float -> float -> unit = <fun>


The position of the text indicating the weight of an edge depends on the angle of the
edge.
# let display label (mx,my) a lab =


let (sx,sy) = Graphics.text size lab in


let pos = [ float(-sx/2),float(-sy) ] in


let pr = rotate pos a in
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let pt = translate pr (mx,my) in


let px,py = List.hd pt in


let ox,oy = Graphics.current point () in


Graphics.moveto ((int of float mx)-sx-6)


((int of float my) );


Graphics.draw string lab;


Graphics.moveto ox oy; ;


val display_label : float * float -> float -> string -> unit = <fun>


The preceding functions are now used by the function display edge. Parameters are
the graphical interface gg, the nodes i and j, and the color (col) to use.
# let display edge gg col i j =


let g = gg.cg.g in


let x,y = gg.main.Awi.x,gg.main.Awi.y in


if a cost g.m.(i).(j) then (


let (a1,b1) = gg.pos.(i)


and (a2,b2) = gg.pos.(j) in


let x0,y0 = x+a1,y+b1 and x1,y1 = x+a2,y+b2 in


let rxm = (float(x1-x0)) /. 2. and rym = (float(y1-y0)) /. 2. in


let xm = (float x0) +. rxm and ym = (float y0) +. rym in


Graphics.set color col;


Graphics.moveto x0 y0;


Graphics.lineto x1 y1;


let a = atan2 rym rxm in


display arrow (xm,ym) a;


display label (xm,ym) a


(string of float(float of cost g.m.(i).(j)))); ;


val display_edge : ’a gg -> Graphics.color -> int -> int -> unit = <fun>


Displaying a Path To display a path, all edges along the path are displayed. The
graphical display of a path towards a destination uses the same technique as the textual
display.
# let rec display shortest path gg col dest =


let g = gg.cg.g in


if belongs to dest g then


let d = index dest g in


let rec aux is =


if is = gg.state.source then ()


else (


let old = gg.state.paths.(is) in


display edge gg col old is;


aux old )


in


if not(a cost gg.state.distances.(d)) then Printf.printf "no way\n"


else aux d; ;
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val display_shortest_path : ’a gg -> Graphics.color -> ’a -> unit = <fun>


Displaying a Graph The function display gg displays a complete graph. If the
destination node is not empty, the path between the source and the destination is
traced.
# let display gg gg () =


Awi.display rect gg.main () ;


for i=0 to gg.cg.g.ind -1 do


for j=0 to gg.cg.g.ind -1 do


if i<> j then display edge gg (Graphics.black) i j


done


done;


if snd gg.dest != Awi.empty component then


display shortest path gg Graphics.red (fst gg.dest); ;


val display_gg : ’a gg -> unit -> unit = <fun>


The Node Component


The nodes still need to be drawn. Since the user is allowed to choose the source and
destination nodes, we define a component for nodes.


The user’s main action is choosing the end nodes of the path to be found. Thus a node
must be a component that reacts to mouse clicks, using its state to indicate if it has
been chosen as a source or destination. We choose the button component, which reacts
to mouse clicks.


Node Actions It is necessary to indicate node selection. To show this, the back-
ground color of a node is changed by the function inverse.
# let inverse b =


let gc = Awi.get gc b in


let fcol = Awi.get gc fcol gc


and bcol = Awi.get gc bcol gc in


Awi.set gc bcol gc fcol;


Awi.set gc fcol gc bcol; ;


val inverse : Awi.component -> unit = <fun>


The function action click effects this selection. It is called when a node is clicked
on by the mouse. As parameters it takes the node associated with the button and the
graph to modify the source or the destination of the search. When both nodes are
selected, the function dij quick finds a least cost path.
# let action click node gg b bs =


let (s1,s) = gg.src


and (s2,d) = gg.dest in
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if s == Awi.empty component then (


gg.src <- (node,b); inverse b )


else


if d == Awi.empty component then (


inverse b;


gg.dest <- (node,b);


gg.state <- dij quick s1 gg.cg;


display shortest path gg (Graphics.red) node


)


else (inverse s; inverse d;


gg.dest <- (s2,Awi.empty component);


gg.src <- node,b; inverse b); ;


val action_click : ’a -> ’a gg -> Awi.component -> ’b -> unit = <fun>


Creating an Interface The main function to create an interface takes an interface
graph and a list of options, creates the different components and associates them with
the graph. The parameters are the graph (gg), its dimensions (gw and gh), a list of
graph and node options (lopt) and a list of node border options (lopt2).
# let main gg gg gw gh lopt lopt2 =


let gc = Awi.make default context () in


Awi.set gc gc lopt;


(* compute the maximal button size *)


let vs = Array.map gg.to string gg.cg.g.nodes in


let vsize = Array.map Graphics.text size vs in


let w = Array.fold right (fun (x,y) → max x) vsize 0


and h = Array.fold right (fun (x,y) → max y) vsize 0 in


(* create the main panel *)


gg.main <- Awi.create panel true gw gh lopt;


gg.main.Awi.display <- display gg gg;


(* create the buttons *)


let vb bs =


Array.map (fun x → x,Awi.create button (" "^(gg.to string x)^" ")


lopt)


gg.cg.g.nodes in


let f act b = Array.map (fun (x,(b,bs)) →
let ac = action click x gg b


in Awi.set bs action bs ac) vb bs in


let bb =


Array.map (function (_,(b,_)) → Awi.create border b lopt2) vb bs


in


Array.iteri


(fun i (b) → let x,y = gg.pos.(i) in


Awi.add component gg.main b


["PosX",Awi.Iopt (x-w/2);


"PosY", Awi.Iopt (y-h/2)]) bb;
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() ; ;


val main_gg :


’a gg ->


int ->


int -> (string * Awi.opt_val) list -> (string * Awi.opt_val) list -> unit =


<fun>


The buttons are created automatically. They are positioned on the main window.


Testing the Interface Everything is ready to create an interface now. We use a
graph whose nodes are character strings to simplify the conversion functions. We con-
struct the graph gg as follows:
# let id x = x; ;


# let pos = [| 200, 300; 80, 200 ; 100, 100; 200, 100; 260, 200 |]; ;


# let gg = create gg (create comp graph (test aho ())) pos id id; ;


# main gg gg 400 400 ["Background", Awi.Copt (Graphics.rgb 130 130 130);


"Foreground",Awi.Copt Graphics.green]


[ "Relief", Awi.Sopt "Top";"Border_size", Awi.Iopt 2]; ;


Calling Awi.loop true false gg.main;; starts the interaction loop of the Awi li-
brary.


Figure 13.9: Selecting the nodes for a search
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Figure 13.9 shows the computed path between the nodes "A" and "E". The edges on
the path have changed their color.


Creating a Standalone Application


We will now show the steps needed to construct a standalone application. The appli-
cation takes the name of a file describing the graph as an argument. For standalone
applications, it is not necesary to have an Objective Caml distribution on the execution
machine.


A Graph Description File


The file containes information about the graph as well as information used for the
graphical interface. For the latter information, we define a second format. From this
graphical description, we construct a value of the type g info.
# type g info = {npos : (int * int) array;


mutable opt : Awi.lopt;


mutable g w : int;


mutable g h : int}; ;


The format for the graphical information is described by the four key words of list
key2.
# let key2 = ["HEIGHT"; "LENGTH"; "POSITION"; "COLOR"]; ;


val key2 : string list = ["HEIGHT"; "LENGTH"; "POSITION"; "COLOR"]


# let lex2 l = Genlex.make lexer key2 (Stream.of string l); ;


val lex2 : string -> Genlex.token Stream.t = <fun>


# let pars2 g gi s = match s with parser


[< ’(Genlex.Kwd "HEIGHT"); ’(Genlex.Int i) >] → gi.g h <- i


| [< ’(Genlex.Kwd "LENGTH"); ’(Genlex.Int i) >] → gi.g w <- i


| [< ’(Genlex.Kwd "POSITION"); ’(Genlex.Ident s);


’(Genlex.Int i); ’(Genlex.Int j) >] → gi.npos.(index s g) <- (i,j)


| [< ’(Genlex.Kwd "COLOR"); ’(Genlex.Ident s);


’(Genlex.Int r); ’(Genlex.Int g); ’(Genlex.Int b) >] →
gi.opt <- (s, Awi.Copt (Graphics.rgb r g b)) :: gi.opt


| [<>] → () ; ;


val pars2 : string graph -> g_info -> Genlex.token Stream.t -> unit = <fun>


Creating the Application


The function create graph takes the name of a file as input and returns a couple
composed of a graph and associated graphical information.
# let create gg graph name =


let g = create graph name in
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let gi = {npos = Array.create g.size (0,0); opt=[]; g w =0; g h = 0;} in


let ic = open in name in


try


print string ("Loading (pass 2) " ^name ^" : ");


while true do


print string ".";


let l = input line ic in pars2 g gi (lex2 l)


done ;


g,gi


with End of file → print newline () ; close in ic; g,gi; ;


val create_gg_graph : string -> string graph * g_info = <fun>


The function create app constructs the interface of a graph.
# let create app name =


let g,gi = create gg graph name in


let size = (string of int gi.g w) ^ "x" ^ (string of int gi.g h) in


Graphics.open graph (" "^size);


let gg = create gg (create comp graph g) gi.npos id id in


main gg gg gi.g w gi.g h


[ "Background", Awi.Copt (Graphics.rgb 130 130 130) ;


"Foreground", Awi.Copt Graphics.green ]


[ "Relief", Awi.Sopt "Top" ; "Border_size", Awi.Iopt 2 ] ;


gg; ;


val create_app : string -> string gg = <fun>


Finally, the function main takes the name of the file from the command line, constructs
a graph with an interface and starts the interaction loop on the main component of
the graph interface.
# let main () =


if (Array.length Sys.argv ) <> 2


then Printf.printf "Usage: dij.exe filename\n"


else


let gg = create app Sys.argv.(1) in


Awi.loop true false gg.main; ;


val main : unit -> unit = <fun>


The last expression of that program starts the function main.


The Executable


The motivation for making a standalone application is to support its distribution. We
collect the types and functions described in this section in the file dij.ml. Then we
compile the file, adding the different libraries which are used. Here is the command to
compile it under Linux.
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ocamlc -custom -o dij.exe graphics.cma awi.cmo graphs.ml \
-cclib -lgraphics -cclib -L/usr/X11/lib -cclib -lX11


Compiling standalone applications using the Graphics library is described in chapters
5 and 7.


Final Notes


The skeleton of this application is sufficiently general to be used in contexts other than
the search for traveling paths. Different types of problems can be represented by a
weighted graph. For example the search for a path in a labyrinth can be coded in a
graph where each intersection is a node. Finding a solution corresponds to computing
the shortest path between the start and the goal.


To compare the performance betwen C and Objective Caml, we wrote Dijkstra’s algo-
rithm in C. The C program uses the Objective Caml data structures to perform the
calculations.


To improve the graphical interface, we add a textfield for the name of the file and
two buttons to load and to store a graph. The user may then modify the positions of
the nodes by mouse to improve the appearance.


A second improvement of the graphical interface is the ability to choose the form of
the nodes. To display a button, a function tracing a rectangle is called. The display
functions can be specialized to use polygons for nodes.
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The third part of this work is dedicated to application development and describes
two ways of organizing applications: modules and objects. The goal is to easily struc-
ture an application for incremental and rapid development, maintenance facilitated by
the ability to change gracefully, and the possibility of reusing large parts for future
development.


We have already presented the language’s predefined modules (see chapter 8) viewed
as compilation units. Objective Caml’s module language supports on the one hand the
definition of new simple modules in order to build one’s own libraries, perhaps including
abstract types, and on the other hand the definition of modules parameterized by other
modules, called functors. The advantage of this parameterization lies in being able to
“apply” a module to different argument modules in order to create specialized modules.
Communication between modules is thus explicit, via the parameter module signature,
which contains the types of its global declarations. However, nothing stops you from
applying a functor to a module with a more extended signature, as long as it remains
compatible with the specified parameter signature.


Besides, the Objective Caml language has an object-oriented extension. First of all
object-oriented programming permits structured communication between objects. Ra-
ther than applying a function to some arguments, one sends a message (a request) to an
object which knows how to deal with it. The object, an instance of a class (a structure
gathering together data and methods), then executes the corresponding code. The main
relation between classes is inheritance, which lets one describe subclasses which retain
all the declarations of the ancestor class. Late binding between the name of a message
and the corresponding code within the object takes place during program execution.
Nevertheless Objective Caml typing guarantees that the receiving object will always
have a method of this name, otherwise type inference would have raised a compile-time
error. The second important relation is subtyping, where an object of a certain class
can always be used in place of an object of another class. In this way a new type of
polymorphism is introduced: inclusion polymorphism.


Finally the construction of a graphical interface, begun in chapter 5, uses different event
management models. One puts together in an interface several components with respect
to which the user or the system can produce events. The association of a component
with a handler for one or more events taking place on it allows one to easily add to and
modify such interfaces. The component-event-handler association can be cloaked in
several forms: definition of a function (called a callback), inheritance with redefinition
of handler methods, or finally registration of a handling object (delegation model).


Chapter 14 is a presentation of modular programming. The different prevailing termi-
nologies of abstract data types and module languages are explained and illustrated by
simple modules. Then the module language is detailed. The correspondence between
modules (simple or not) and compilation units is made clear.


Chapter 15 contains an introduction to object-oriented programming. It brings a new
way of structuring Objective Caml programs, an alternative to modules. This chap-
ters shows how the notions of object-oriented programming (simple and multiple in-
heritance, abstract classes, parameterized classes, late binding) are articulated with
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respect to the language’s type system, and extend it by the subtyping relation to
inclusion polymorphism.


Chapter 16 compares the two preceding software models and explains what factors to
consider in deciding between the two, while also demonstrating how to simulate one by
the other. It treats various cases of mixed models. Mixing leads to the enrichment of
each of these two models, in particular with parameterized classes using the abstract
type of a module.


Chapter 17 presents two classes of applications: two-player games, and the construction
of a world of virtual robots. The first example is organized via various parameterized
modules. In particular, a parameterized module is used to represent games for applica-
tion of the minimax αβ algorithm. It is then applied to two specific games: Connect 4
and Stone Henge. The second example uses an object model of a world and of abstract
robots, from which, by inheritence, various simulations are derived. This example is
presented in chapter 21.







14
Programming with


Modules


Modular design and modular programming support the decomposition of a program
into several software units, also called modules, which can be developed largely inde-
pendently. A module can be compiled separately from the other modules comprising
the program. Consequently, the developer of a program that uses a module does not
need access to the source code of the module: the compiled code of the module is
enough for building an executable program. However, the programmer must know the
interface of the modules used, that is, which values, functions, types, exceptions, or
even sub-modules are provided by the module, under which names, and with which
types.


Explicitly writing down the interface of a module hides the details of its implementation
from the programs that use this module. All these programs know about the module
are the names and types of exported definitions; their exact implementations are not
known. Thus, the maintainer of the module has considerable flexibility in evolving the
module implementation: as long as the interface is unchanged and the semantics are
preserved, users of the module will not notice the change in implementation. This can
greatly facilitate the maintenance and evolution of large programs. Like local decla-
rations, a module interface also supports hiding parts of the implementation that the
module designer does not wish to publicize. An important application of this hiding
mechanism is the implementation of abstract data types.


Finally, advanced module systems such as that of Objective Caml support the defini-
tion of parameterized modules, also called generics. These are modules that take other
modules as parameters, thus increasing opportunities for code reuse.


Chapter Outline


Section 1 illustrates Objective Caml modules on the example of the Stack module
from the standard library, and develops an alternate implementation of this module
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with the same interface. Section 2 introduces the module language of Objective Caml
in the case of simple modules, and shows some of its uses. In particular, we discuss
type sharing between modules. Section 3 covers parameterized modules, which are
called functors in Objective Caml. Finally, section 4 develops an extended example of
modular programming: managing bank accounts with multiple views (the bank, the
customer) and several parameters.


Modules as Compilation Units


The Objective Caml distribution includes a number of predefined modules. We saw in
chapter 8 how to use these modules in a program. Here, we will show how users can
define similar modules.


Interface and Implementation


The module Stack from the distribution provides the main functions on stacks, that
is, queues with “last in, first out” discipline.
# let queue = Stack.create () ; ;


val queue : ’_a Stack.t = <abstr>


# Stack.push 1 queue ; Stack.push 2 queue ; Stack.push 3 queue ; ;


- : unit = ()


# Stack.iter (fun n → Printf.printf "%d " n) queue ; ;


3 2 1 - : unit = ()


Since Objective Caml is distributed with full source code, we can look at the actual
implementation of stacks.


ocaml-2.04/stdlib/stack.ml


type ’a t = { mutable c : ’a list }
exception Empty


let create () = { c = [] }
let clear s = s.c <- []


let push x s = s.c <- x :: s.c


let pop s = match s.c with hd :: tl → s.c <- tl; hd | [] → raise Empty


let length s = List.length s.c


let iter f s = List.iter f s.c


We see that the type of stacks (written Stack.t outside the Stack module and just t
inside) is a record with one mutable field containing a list. The list holds the contents
of the stack, with the list head corresponding to the stack top. Stack operations are
implemented as the basic list operations applied to the field of the record.
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Armed with this insider’s knowledge, we could try to access directly the list representing
a stack. However, Objective Caml will not let us do this.
# let list = queue.c ; ;
Characters 12-19:


Unbound label c


The compiler complains as if it did not know that Stack.t is a record type with a
field c. It is actually the case, as we can see by looking at the interface of the Stack
module.


ocaml-2.04/stdlib/stack.mli


(* Module [Stack]: last-in first-out stacks *)


(* This module implements stacks (LIFOs), with in-place modification. *)


type ’a t (* The type of stacks containing elements of type [’a]. *)


exception Empty (* Raised when [pop] is applied to an empty stack. *)


val create: unit → ’a t


(* Return a new stack, initially empty. *)


val push: ’a → ’a t → unit


(* [push x s] adds the element [x] at the top of stack [s]. *)


val pop: ’a t → ’a


(* [pop s] removes and returns the topmost element in stack [s],


or raises [Empty] if the stack is empty. *)


val clear : ’a t → unit


(* Discard all elements from a stack. *)


val length: ’a t → int


(* Return the number of elements in a stack. *)


val iter: (’a → unit) → ’a t → unit


(* [iter f s] applies [f] in turn to all elements of [s],


from the element at the top of the stack to the element at the


bottom of the stack. The stack itself is unchanged. *)


In addition to comments documenting the functions of the module, this file lists explic-
itly the value, type and exception identifiers defined in the file stack.ml that should
be visible to clients of the Stack module. More precisely, the interface declares the
names and type specifications for these exported definitions. In particular, the type
name t is exported, but the representation of this type (that is, as a record with one
c field) is not given in this interface. Thus, clients of the Stack module do not know
how the type Stack.t is represented, and cannot access directly values of this type.
We say that the type Stack.t is abstract, or opaque.


The interface also declares the functions operating on stacks, giving their names and
types. (The types must be provided explicitly so that the type checker can check that
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these functions are correctly used.) Declaration of values and functions in an interface
is achieved via the following construct:


Syntax : val nom : type


Relating Interfaces and Implementations


As shown above, the Stack is composed of two parts: an implementation providing def-
initions, and an interface providing declarations for those definitions that are exported.
All module components declared in the interface must have a matching definition in
the implementation. Also, the types of values and functions as defined in the imple-
mentation must match the types declared in the interface.


The relationship between interface and implementation is not symmetrical. The im-
plementation can contain more definitions than requested by the interface. Typically,
the definition of an exported function can use auxiliary functions whose names will not
appear in the interface. Such auxiliary functions cannot be called directly by a client
of the module. Similarly, the interface can restrict the type of a definition. Consider a
module defining the function id as the identity function (let id x = x). Its interface
can declare id with the type int --> int (instead of the more general ’a --> ’a).
Then, clients of this module can only apply id to integers.


Since the interface of a module is clearly separated from its implementation, it becomes
possible to have several implementations for the same interface, for instance to test
different algorithms or data structures for the same operations. As an example, here is
an alternate implementation for the Stack module, based on arrays instead of lists.


type ’a t = { mutable sp : int; mutable c : ’a array }
exception Empty


let create () = { sp=0 ; c = [||] }
let clear s = s.sp <- 0; s.c <- [||]


let size = 5


let increase s = s.c <- Array.append s.c (Array.create size s.c.(0))


let push x s =


if s.sp >= Array.length s.c then increase s ;
s.c.(s.sp) <- x ;
s.sp <- succ s.sp


let pop s =


if s.sp = 0 then raise Empty


else let x = s.c.(s.sp) in s.sp <- pred s.sp ; x


let length s = s.sp


let iter f s = for i = pred s.sp downto 0 do f s.sc.(i) done


This new implementation satisfies the requisites of the interface file stack.mli. Thus,
it can be used instead of the predefined implementation of Stack in any program.
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Separate Compilation


Like most modern programming languages, Objective Caml supports the decomposi-
tion of programs into multiple compilation units, separately compiled. A compilation
unit is composed of two files, an implementation file (with extension .ml) and an inter-
face file (with extension .mli). Each compilation unit is viewed as a module. Compiling
the implementation file name.ml defines the module named Name1.


Values, types and exceptions defined in a module can be referenced either via the
dot notation (Module.identifier), also known as qualified identifiers, or via the open


construct.


a.ml b.ml


type t = { x:int ; y:int } ; ; let val = { A.x = 1 ; A.y = 2 } ; ;


let f c = c.x + c.y ; ; A.f val ; ;


open A ; ;


f val ; ;


An interface file (.mli file) must be compiled using the ocamlc -c command before
any module that depends on this interface is compiled; this includes both clients of the
module and the implementation file for this module as well.


If no interface file is provided for an implementation file, Objective Caml considers that
the module exports everything; that is, all identifiers defined in the implementation
file are present in the implicit interface with their most general types.


The linking phase to produce an executable file is performed as described in chapter 7:
the ocamlc command (without the -c option), followed by the object files for all
compilation units comprising the program. Warning: object files must be provided on
the command line in dependency order. That is, if a module B references another module
A, the object file a.cmo must precede b.cmo on the linker command line. Consequently,
cross dependencies between two modules are forbidden.


For instance, to generate an executable file from the source files a.ml and b.ml, with
matching interface files a.mli and b.mli, we issue the following commands:


> ocamlc -c a.mli
> ocamlc -c a.ml
> ocamlc -c b.mli
> ocamlc -c b.ml
> ocamlc a.cmo b.cmo


Compilation units, composed of one interface file and one implementation file, sup-
port separate compilation and information hiding. However, their abilities as a gen-
eral program structuring tool are low. In particular, there is a one-to-one connection


1. Both files name.ml and Name.ml result in the same module name.
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between modules and files, preventing a program to use simultaneously several imple-
mentations of a given interface, or also several interfaces for the same implementation.
Nested modules and module parameterization are not supported either. To palliate
those weaknesses, Objective Caml offers a module language, with special syntax and
linguistic constructs, to manipulate modules inside the language itself. The remainder
of this chapter introduces this module language.


The Module Language


The Objective Caml language features a sub-language for modules, which comes in
addition to the core language that we have seen so far. In this module language, the
interface of a module is called a signature and its implementation is called a structure.
When there is no ambiguity, we will often use the word “module” to refer to a structure.


The syntax for declaring signatures and structures is as follows:


Syntax :


module type NAME =


sig


interface declarations
end


Syntax :


module Name =


struct


implementation definitions
end


Warning


The name of a module must start with an uppercase
letter. There are no such case restrictions on names of
signatures, but by convention we will use names in up-
percase for signatures.


Signatures and structures do not need to be bound to names: we can also use anony-
mous signature and structure expressions, writing simply


Syntax : sig declarations end


Syntax : struct definitions end


We write signature and structure to refer to either names of signatures and structures,
or anonymous signature and structure expressions.


Every structure possesses a default signature, computed by the type inference system,
which reveals all the definitions contained in the structure, with their most general
types. When defining a structure, we can also indicate the desired signature by adding
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a signature constraint (similar to the type constraints from the core language), using
one of the following two syntactic forms:


Syntax : module Name : signature = structure


Syntax : module Name = (structure : signature)


When an explicit signature is provided, the system checks that all the components
declared in the signature are defined in the structure structure, and that the types
are consistent. In other terms, the system checks that the explicit signature provided
is “included in”, or implied by, the default signature. If so, Name is viewed in the
remainder of the code with the signature “signature”, and only the components declared
in the signature are accessible to the clients of the module. (This is the same behavior
we saw previously with interface files.)


Access to the components of a module is via the dot notation:


Syntax : Name1.name2


We say that the name name2 is qualified by the name Name1 of its defining module.


The module name and the dot can be omitted using a directive to open the module:


Syntax : open Name


In the scope of this directive, we can use short names name2 to refer to the components
of the module Name. In case of name conflicts, opening a module hides previously
defined entities with the same names, as in the case of identifier redefinitions.


Two Stack Modules


We continue the example of stacks by recasting it in the module language. The signature
for a stack module is obtained by wrapping the declarations from the stack.mli file
in a signature declaration:
# module type STACK =


sig


type ’a t


exception Empty


val create: unit → ’a t


val push: ’a → ’a t → unit


val pop: ’a t → ’a
val clear : ’a t → unit


val length: ’a t → int


val iter: (’a → unit) → ’a t → unit


end ; ;
module type STACK =


sig


type ’a t


exception Empty


val create : unit -> ’a t
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val push : ’a -> ’a t -> unit


val pop : ’a t -> ’a


val clear : ’a t -> unit


val length : ’a t -> int


val iter : (’a -> unit) -> ’a t -> unit


end


A first implementation of stacks is obtained by reusing the Stack module from the
standard library:
# module StandardStack = Stack ; ;
module StandardStack :


sig


type ’a t = ’a Stack.t


exception Empty


val create : unit -> ’a t


val push : ’a -> ’a t -> unit


val pop : ’a t -> ’a


val clear : ’a t -> unit


val length : ’a t -> int


val iter : (’a -> unit) -> ’a t -> unit


end


We then define an alternate implementation based on arrays:
# module MyStack =


struct


type ’a t = { mutable sp : int; mutable c : ’a array }
exception Empty


let create () = { sp=0 ; c = [||] }
let clear s = s.sp <- 0; s.c <- [||]


let increase s x = s.c <- Array.append s.c (Array.create 5 x)


let push x s =


if s.sp >= Array.length s.c then increase s x;
s.c.(s.sp) <- x;
s.sp <- succ s.sp


let pop s =


if s.sp =0 then raise Empty


else (s.sp <- pred s.sp ; s.c.(s.sp))


let length s = s.sp


let iter f s = for i = pred s.sp downto 0 do f s.c.(i) done


end ; ;
module MyStack :


sig


type ’a t = { mutable sp: int; mutable c: ’a array }


exception Empty


val create : unit -> ’a t


val clear : ’a t -> unit


val increase : ’a t -> ’a -> unit


val push : ’a -> ’a t -> unit


val pop : ’a t -> ’a


val length : ’a t -> int


val iter : (’a -> ’b) -> ’a t -> unit
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end


These two modules implement the type t of stacks by different data types.
# StandardStack.create () ; ;
- : ’_a StandardStack.t = <abstr>


# MyStack.create () ; ;
- : ’_a MyStack.t = {MyStack.sp=0; MyStack.c=[||]}


To abstract over the type representation in Mystack, we add a signature constraint by
the STACK signature.
# module MyStack = (MyStack : STACK) ; ;
module MyStack : STACK


# MyStack.create () ; ;
- : ’_a MyStack.t = <abstr>


The two modules StandardStack and MyStack implement the same interface, that is,
provide the same set of operations over stacks, but their t types are different. It is
therefore impossible to apply operations from one module to values from the other
module:
# let s = StandardStack.create () ; ;
val s : ’_a StandardStack.t = <abstr>


# MyStack.push 0 s ; ;
Characters 15-16:


This expression has type ’a StandardStack.t = ’a Stack.t


but is here used with type int MyStack.t


Even if both modules implemented the t type by the same concrete type, constrain-
ing MyStack by the signature STACK suffices to abstract over the t type, rendering it
incompatible with any other type in the system and preventing sharing of values and
operations between the various stack modules.
# module S1 = ( MyStack : STACK ) ; ;
module S1 : STACK


# module S2 = ( MyStack : STACK ) ; ;
module S2 : STACK


# let s = S1.create () ; ;
val s : ’_a S1.t = <abstr>


# S2.push 0 s ; ;
Characters 10-11:


This expression has type ’a S1.t but is here used with type int S2.t


The Objective Caml system compares abstract types by names. Here, the two types
S1.t and S2.t are both abstract, and have different names, hence they are considered
as incompatible. It is precisely this restriction that makes type abstraction effective,
by preventing any access to the definition of the type being abstracted.
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Modules and Information Hiding


This section shows additional examples of signature constraints hiding or abstracting
definitions of structure components.


Hiding Type Implementations


Abstracting over a type ensures that the only way to construct values of this type
is via the functions exported from its definition module. This can be used to restrict
the values that can belong to this type. In the following example, we implement an
abstract type of integers which, by construction, can never take the value 0.
# module Int Star =


( struct


type t = int


exception Isnul


let of int = function 0 → raise Isnul | n → n


let mult = ( * )


end


:


sig


type t


exception Isnul


val of int : int → t


val mult : t → t → t


end


) ; ;
module Int_Star :


sig type t exception Isnul val of_int : int -> t val mult : t -> t -> t end


Hiding Values


We now define a symbol generator, similar to that of page 103, using a signature
constraint to hide the state of the generator.


We first define the signature GENSYM exporting only two functions for generating sym-
bols.
# module type GENSYM =


sig


val reset : unit → unit


val next : string → string


end ; ;


We then implement this signature as follows:
# module Gensym : GENSYM =


struct


let c = ref 0


let reset () = c:=0


let next s = incr c ; s ^ (string of int !c)
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end; ;
module Gensym : GENSYM


The reference c holding the state of the generator Gensym is not accessible outside the
two exported functions.
# Gensym.reset () ; ;
- : unit = ()


# Gensym.next "T"; ;
- : string = "T1"


# Gensym.next "X"; ;
- : string = "X2"


# Gensym.reset () ; ;
- : unit = ()


# Gensym.next "U"; ;
- : string = "U1"


# Gensym.c; ;
Characters 0-8:


Unbound value Gensym.c


The definition of c is essentially local to the structure Gensym, since it is hidden by
the associated signature. The signature constraint achieves more simply the same goal
as the local definition of a reference in the definition of the two functions reset s and
new s on page 103.


Multiple Views of a Module


The module language and its signature constraints support taking several views of
a given structure. For instance, we can have a “super-user interface” for the module
Gensym, allowing the symbol counter to be reset, and a “normal user interface” that
permits only the generation of new symbols, but no other intervention on the counter.
To implement the latter interface, it suffices to declare the signature:
# module type USER GENSYM =


sig


val next : string → string


end; ;
module type USER_GENSYM = sig val next : string -> string end


We then implement it by a mere signature constraint.
# module UserGensym = (Gensym : USER GENSYM) ; ;
module UserGensym : USER_GENSYM


# UserGensym.next "U" ; ;
- : string = "U2"


# UserGensym.reset () ; ;
Characters 0-16:


Unbound value UserGensym.reset
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The UserGensym module fully reuses the code of the Gensym module. In addition, both
modules share the same counter:
# Gensym.next "U" ; ;
- : string = "U3"


# Gensym.reset () ; ;
- : unit = ()


# UserGensym.next "V" ; ;
- : string = "V1"


Type Sharing between Modules


As we saw on page 411, abstract types with different names are incompatible. This
can be problematic when we wish to share an abstract type between several modules.
There are two ways to achieve this sharing: one is via a special sharing construct in
the module language; the other one uses the lexical scoping of modules.


Sharing via Constraints


The following example illustrates the sharing issue. We define a module M providing an
abstract type M.t. We then restrict M on two different signatures exporting different
subsets of operations.
# module M =


(


struct


type t = int ref


let create () = ref 0


let add x = incr x


let get x = if !x>0 then (decr x; 1) else failwith "Empty"


end


:


sig


type t


val create : unit → t


val add : t → unit


val get : t → int


end


) ; ;


# module type S1 =


sig


type t


val create : unit → t


val add : t → unit


end ; ;


# module type S2 =


sig


type t
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val get : t → int


end ; ;
# module M1 = (M:S1) ; ;
module M1 : S1


# module M2 = (M:S2) ; ;
module M2 : S2


As written above, the types M1.t and M2.t are incompatible. However, we would like
to say that both types are abstract but identical. To do this, Objective Caml offers
special syntax to declare a type equality over an abstract type in a signature.


Syntax : NAME with type t1 = t2 and . . .


This type constraint forces the type t1 declared in the signature NAME to be equal to
the type t2.


Type constraints over all types exported by a sub-module can be declared in one
operation with the syntax


Syntax : NAME with module Name1 = Name2


Using these type sharing constraints, we can declare that the two modules M1 and M2
define identical abstract types.
# module M1 = (M:S1 with type t = M.t) ; ;
module M1 : sig type t = M.t val create : unit -> t val add : t -> unit end


# module M2 = (M:S2 with type t = M.t) ; ;
module M2 : sig type t = M.t val get : t -> int end


# let x = M1.create () in M1.add x ; M2.get x ; ;
- : int = 1


Sharing and Nested Modules


Another possibility for ensuring type sharing is to use nested modules. We define two
sub-modules (M1 et M2) sharing an abstract type defined in the enclosing module M.
# module M =


( struct


type t = int ref


module M hide =


struct


let create () = ref 0


let add x = incr x


let get x = if !x>0 then (decr x; 1) else failwith "Empty"


end


module M1 = M hide


module M2 = M hide


end


:


sig


type t
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module M1 : sig val create : unit → t val add : t → unit end


module M2 : sig val get : t → int end


end ) ; ;
module M :


sig


type t


module M1 : sig val create : unit -> t val add : t -> unit end


module M2 : sig val get : t -> int end


end


As desired, values created by M1 can be operated upon by M2, while hiding the repre-
sentation of these values.
# let x = M.M1.create () ; ;
val x : M.t = <abstr>


# M.M1.add x ; M.M2.get x ; ;
- : int = 1


This solution is heavier than the previous solution based on type sharing constraints:
the functions from M1 and M2 can only be accessed via the enclosing module M.


Extending Simple Modules


Modules are closed entities, defined once and for all. In particular, once an abstract
type is defined using the module language, it is impossible to add further operations
on the abstract type that depend on the type representation without modifying the
module definition itself. (Operations derived from existing operations can of course
be added later, outside the module.) As an extreme example, if the module exports
no creation function, clients of the module will never be able to create values of the
abstract type!


Therefore, adding new operations that depend on the type representation requires
editing the sources of the module and adding the desired operations in its signature and
structure. Of course, we then get a different module, and clients need to be recompiled.
However, if the modifications performed on the module signature did not affect the
components of the original signature, the remainder of the program remains correct
and does not need to be modified, just recompiled.


Parameterized Modules


Parameterized modules are to modules what functions are to base values. Just like a
function returns a new value from the values of its parameters, a parameterized module
builds a new module from the modules given as parameters. Parameterized modules
are also called functors.


The addition of functors to the module language increases the opportunities for code
reuse in structures.


Functors are defined using a function-like syntax:
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Syntax : functor ( Name : signature ) –> structure


# module Couple = functor ( Q : sig type t end ) →
struct type couple = Q.t * Q.t end ; ;


module Couple :


functor(Q : sig type t end) -> sig type couple = Q.t * Q.t end


As for functions, syntactic sugar is provided for defining and naming a functor:


Syntax : module Name1 ( Name2 : signature ) = structure


# module Couple ( Q : sig type t end ) = struct type couple = Q.t * Q.t end ; ;
module Couple :


functor(Q : sig type t end) -> sig type couple = Q.t * Q.t end


A functor can take several parameters:


Syntax :


functor ( Name1 : signature1 ) –>
...


functor ( Namen : signaturen ) –>
structure


The syntactic sugar for defining and naming a functor extends to multiple-argument
functors:


Syntax : module Name (Name1 : signature1 ) . . . ( Namen : signaturen ) =


structure


The application of a functor to its arguments is written thus:


Syntax : module Name = functor ( structure1 ) . . . ( structuren )


Note that each parameter is written between parentheses. The result of the application
can be either a simple module or a partially applied functor, depending on the number
of parameters of the functor.


Warning
There is no equivalent to functors at the level of signa-
ture: it is not possible to build a signature by applica-
tion of a “functorial signature” to other signatures.


A closed functor is a functor that does not reference any module except its parameters.
Such a closed functor makes its communications with other modules entirely explicit.
This provides maximal reusability, since the modules it references are determined at
application time only. There is a strong parallel between a closed function (without
free variables) and a closed functor.
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Functors and Code Reuse


The Objective Caml standard library provides three modules defining functors. Two
of them take as argument a module implementing a totally ordered data type, that is,
a module with the following signature:
# module type OrderedType =


sig


type t


val compare: t → t → int


end ; ;
module type OrderedType = sig type t val compare : t -> t -> int end


Function compare takes two arguments of type t and returns a negative integer if the
first is less than the second, zero if both are equal, and a positive integer if the first is
greater than the second. Here is an example of totally ordered type: pairs of integers
equipped with lexicographic ordering.


# module OrderedIntPair =


struct


type t = int * int


let compare (x1,x2) (y1,y2) =


if x1 < y1 then -1


else if x1 > y1 then 1


else if x2 < y2 then -1


else if x2 > y2 then 1


else 0


end ; ;
module OrderedIntPair :


sig type t = int * int val compare : ’a * ’b -> ’a * ’b -> int end


The functor Make from module Map returns a module that implements association tables
whose keys are values of the ordered type passed as argument. This module provides
operations similar to the operations on association lists from module List, but using
a more efficient and more complex data structure (balanced binary trees).


# module AssocIntPair = Map.Make (OrderedIntPair) ; ;
module AssocIntPair :


sig


type key = OrderedIntPair.t


and ’a t = ’a Map.Make(OrderedIntPair).t


val empty : ’a t


val add : key -> ’a -> ’a t -> ’a t


val find : key -> ’a t -> ’a


val remove : key -> ’a t -> ’a t


val mem : key -> ’a t -> bool


val iter : (key -> ’a -> unit) -> ’a t -> unit


val map : (’a -> ’b) -> ’a t -> ’b t


val fold : (key -> ’a -> ’b -> ’b) -> ’a t -> ’b -> ’b
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end


The Make functor allows to construct association tables over any key type for which
we can write a compare function.


The standard library module Set also provides a functor named Make taking an ordered
type as argument and returning a module implementing sets of sets of values of this
type.
# module SetIntPair = Set.Make (OrderedIntPair) ; ;
module SetIntPair :


sig


type elt = OrderedIntPair.t


and t = Set.Make(OrderedIntPair).t


val empty : t


val is_empty : t -> bool


val mem : elt -> t -> bool


val add : elt -> t -> t


val singleton : elt -> t


val remove : elt -> t -> t


val union : t -> t -> t


val inter : t -> t -> t


val diff : t -> t -> t


val compare : t -> t -> int


val equal : t -> t -> bool


val subset : t -> t -> bool


val iter : (elt -> unit) -> t -> unit


val fold : (elt -> ’a -> ’a) -> t -> ’a -> ’a


val cardinal : t -> int


val elements : t -> elt list


val min_elt : t -> elt


val max_elt : t -> elt


val choose : t -> elt


end


The type SetIntPair.t is the type of sets of integer pairs, with all the usual set
operations provided in SetIntPair, including a set comparison function SetIntPair.-
compare. To illustrate the code reuse made possible by functors, we now build sets of
sets of integer pairs.
# module SetofSet = Set.Make (SetIntPair) ; ;


# let x = SetIntPair.singleton (1,2) ; ; (* x = { (1,2) } *)


val x : SetIntPair.t = <abstr>


# let y = SetofSet.singleton SetIntPair.empty ; ; (* y = { {} } *)


val y : SetofSet.t = <abstr>


# let z = SetofSet.add x y ; ; (* z = { {(1,2)} ; {} } *)


val z : SetofSet.t = <abstr>


The Make functor from module Hashtbl is similar to that from the Map module, but
implements (imperative) hash tables instead of (purely functional) balanced trees. The
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argument to Hashtbl.Make is slightly different: in addition to the type of the keys for
the hash table, it must provide an equality function testing the equality of two keys
(instead of a full-fledged comparison function), plus a hash function, that is, a function
associating integers to keys.


# module type HashedType =


sig


type t


val equal: t → t → bool


val hash: t → int


end ; ;
module type HashedType =


sig type t val equal : t -> t -> bool val hash : t -> int end


# module IntMod13 =


struct


type t = int


let equal = (=)


let hash x = x mod 13


end ; ;
module IntMod13 :


sig type t = int val equal : ’a -> ’a -> bool val hash : int -> int end


# module TblInt = Hashtbl.Make (IntMod13) ; ;
module TblInt :


sig


type key = IntMod13.t


and ’a t = ’a Hashtbl.Make(IntMod13).t


val create : int -> ’a t


val clear : ’a t -> unit


val add : ’a t -> key -> ’a -> unit


val remove : ’a t -> key -> unit


val find : ’a t -> key -> ’a


val find_all : ’a t -> key -> ’a list


val mem : ’a t -> key -> bool


val iter : (key -> ’a -> unit) -> ’a t -> unit


end


Local Module Definitions


The Objective Caml core language allows a module to be defined locally to an expres-
sion.


Syntax : let module Name = structure
in expr


For instance, we can use the Set module locally to write a sort function over integer
lists, by inserting each list element into a set and finally converting the set to the sorted
list of its elements.
# let sort l =
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let module M =


struct


type t = int


let compare x y =


if x < y then -1 else if x > y then 1 else 0


end


in


let module MSet = Set.Make(M)


in MSet.elements (List.fold right MSet.add l MSet.empty) ; ;
val sort : int list -> int list = <fun>


# sort [ 5 ; 3 ; 8 ; 7 ; 2 ; 6 ; 1 ; 4 ] ; ;
- : int list = [1; 2; 3; 4; 5; 6; 7; 8]


Objective Caml does not allow a value to escape a let module expression if the type
of the value is not known outside the scope of the expression.
# let test =


let module Foo =


struct


type t


let id x = (x:t)


end


in Foo.id ; ;
Characters 15-101:


This ‘let module’ expression has type Foo.t -> Foo.t


In this type, the locally bound module name Foo escapes its scope


Extended Example: Managing Bank


Accounts


We conclude this chapter by an example illustrating the main aspects of modular
programming: type abstraction, multiple views of a module, and functor-based code
reuse.


The goal of this example is to provide two modules for managing a bank account. One
is intended to be used by the bank, and the other by the customer. The approach is
to implement a general-purpose parameterized functor providing all the needed oper-
ations, then apply it twice to the correct parameters, constraining it by the signature
corresponding to its final user: the bank or the customer.


Organization of the Program


The two end modules BManager and CManager are obtained by constraining the module
Manager. The latter is obtained by applying the functor FManager to the modules
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Date


BManager CManager


Manager


FManager Account
FStatement


FLog


Figure 14.1: Modules dependency graph.


Account, Date and two additional modules built by application of the functors FLog
and FStatement. Figure 14.1 illustrates these dependencies.


Signatures for the Module Parameters


The module for account management is parameterized by four other modules, whose
signatures we now detail.


The bank account. This module provides the basic operations on the contents of
the account.
# module type ACCOUNT = sig


type t


exception BadOperation


val create : float → float → t


val deposit : float → t → unit


val withdraw : float → t → unit


val balance : t → float


end ; ;


This set of functions provide the minimal operations on an account. The creation
operation takes as arguments the initial balance and the maximal overdraft allowed.
Excessive withdrawals may raise the BadOperation exception.


Ordered keys. Operations are recorded in an operation log described in the next
paragraph. Each log entry is identified by a key. Key management functions are de-
scribed by the following signature:
# module type OKEY =
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sig


type t


val create : unit → t


val of string : string → t


val to string : t → string


val eq : t → t → bool


val lt : t → t → bool


val gt : t → t → bool


end ; ;


The create function returns a new, unique key. The functions of string and to string
convert between keys and character strings. The three remaining functions are key com-
parison functions.


History. Logs of operations performed on an account are represented by the following
abstract types and functions:
# module type LOG =


sig


type tkey


type tinfo


type t


val create : unit → t


val add : tkey → tinfo → t → unit


val nth : int → t → tkey*tinfo


val get : (tkey → bool) → t → (tkey*tinfo) list


end ; ;


We keep unspecified for now the types of the log keys (type tkey) and of the associated
data (type tinfo), as well as the data structure for storing logs (type t). We assume
that new informations added with the add function are kept in sequence. Two access
functions are provided: access by position in the log (function nth) and access following
a search predicate on keys (function get).


Account statements. The last parameter of the manager module provides two
functions for editing a statement for an account:
# module type STATEMENT =


sig


type tdata


type tinfo


val editB : tdata → tinfo


val editC : tdata → tinfo


end ; ;


We leave abstract the type of data to process (tdata) as well as the type of informations
extracted from the data (tinfo).
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The Parameterized Module for Managing Accounts


Using only the information provided by the signatures above, we now define the general-
purpose functor for managing accounts.
# module FManager =


functor (C:ACCOUNT) →
functor (K:OKEY) →
functor (L:LOG with type tkey=K.t and type tinfo=float) →
functor (S:STATEMENT with type tdata=L.t and type tinfo


= (L.tkey*L.tinfo) list) →
struct


type t = { accnt : C.t; log : L.t }
let create s d = { accnt = C.create s d; log = L.create () }
let deposit s g =


C.deposit s g.accnt ; L.add (K.create ()) s g.log


let withdraw s g =


C.withdraw s g.accnt ; L.add (K.create ()) (-.s) g.log


let balance g = C.balance g.accnt


let statement edit g =


let f (d,i) = (K.to string d) ^ ":" ^ (string of float i)


in List.map f (edit g.log)


let statementB = statement S.editB


let statementC = statement S.editC


end ; ;
module FManager :


functor(C : ACCOUNT) ->


functor(K : OKEY) ->


functor


(L : sig


type tkey = K.t


and tinfo = float


and t


val create : unit -> t


val add : tkey -> tinfo -> t -> unit


val nth : int -> t -> tkey * tinfo


val get : (tkey -> bool) -> t -> (tkey * tinfo) list


end) ->


functor


(S : sig


type tdata = L.t


and tinfo = (L.tkey * L.tinfo) list


val editB : tdata -> tinfo


val editC : tdata -> tinfo


end) ->


sig


type t = { accnt: C.t; log: L.t }


val create : float -> float -> t


val deposit : L.tinfo -> t -> unit


val withdraw : float -> t -> unit


val balance : t -> float


val statement : (L.t -> (K.t * float) list) -> t -> string list


val statementB : t -> string list







Extended Example: Managing Bank Accounts 427


val statementC : t -> string list


end


Sharing between types. The type constraint over the parameter L of the FManager
functor indicates that the keys of the log are those provided by the K parameter, and
that the informations stored in the log are floating-point numbers (the transaction
amounts). The type constraint over the S parameter indicates that the informations
contained in the statement come from the log (the L parameter). The signature inferred
for the FManager functor reflects the type sharing constraints in the inferred signatures
for the functor parameters.


The type t in the result of FManager is a pair of an account (C.t) and its transaction
log.


Operations. All operations defined in this functor are defined in terms of lower-level
functions provided by the module parameters. The creation, deposit and withdrawal
operations affect the contents of the account and add an entry in its transaction log.
The other functions return the account balance and edit statements.


Implementing the Parameters


Before building the end modules, we must first implement the parameters to the
FManager module.


Accounts. The data structure for an account is composed of a float representing
the current balance, plus the maximum overdraft allowed. The latter is used to check
withdrawals.
# module Account:ACCOUNT =


struct


type t = { mutable balance:float; overdraft:float }
exception BadOperation


let create b o = { balance=b; overdraft=(-. o) }
let deposit s c = c.balance <- c.balance +. s


let balance c = c.balance


let withdraw s c =


let ss = c.balance -. s in


if ss < c.overdraft then raise BadOperation


else c.balance <- ss


end ; ;
module Account : ACCOUNT
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Choosing log keys. We decide that keys for transaction logs should be the date of
the transaction, expressed as a floating-point number as returned by the time function
from module Unix.
# module Date:OKEY =


struct


type t = float


let create () = Unix.time ()
let of string = float of string


let to string = string of float


let eq = (=)


let lt = (<)


let gt = (>)


end ; ;
module Date : OKEY


The log. The transaction log depends on a particular choice of log keys. Hence we
define logs as a functor parameterized by a key structure.
# module FLog (K:OKEY) =


struct


type tkey = K.t


type tinfo = float


type t = { mutable contents : (tkey*tinfo) list }
let create () = { contents = [] }
let add c i l = l.contents <- (c,i) :: l.contents


let nth i l = List.nth l.contents i


let get f l = List.filter (fun (c,_) → (f c)) l.contents


end ; ;
module FLog :


functor(K : OKEY) ->


sig


type tkey = K.t


and tinfo = float


and t = { mutable contents: (tkey * tinfo) list }


val create : unit -> t


val add : tkey -> tinfo -> t -> unit


val nth : int -> t -> tkey * tinfo


val get : (tkey -> bool) -> t -> (tkey * tinfo) list


end


Notice that the type of informations stored in log entries must be consistent with the
type used in the account manager functor.


Statements. We define two functions for editing statements. The first (editB) lists
the five most recent transactions, and is intended for the bank; the second (editC) lists
all transactions performed during the last 10 days, and is intended for the customer.


# module FStatement (K:OKEY) (L:LOG with type tkey=K.t) =
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struct


type tdata = L.t


type tinfo = (L.tkey*L.tinfo) list


let editB h =


List.map (fun i → L.nth i h) [0;1;2;3;4]
let editC h =


let c0 = K.of string (string of float ((Unix.time ()) -. 864000.)) in


let f = K.lt c0 in


L.get f h


end ; ;
module FStatement :


functor(K : OKEY) ->


functor


(L : sig


type tkey = K.t


and tinfo


and t


val create : unit -> t


val add : tkey -> tinfo -> t -> unit


val nth : int -> t -> tkey * tinfo


val get : (tkey -> bool) -> t -> (tkey * tinfo) list


end) ->


sig


type tdata = L.t


and tinfo = (L.tkey * L.tinfo) list


val editB : L.t -> (L.tkey * L.tinfo) list


val editC : L.t -> (L.tkey * L.tinfo) list


end


In order to define the 10-day statement, we need to know exactly the implementation of
keys as floats. This arguably goes against the principles of type abstraction. However,
the key corresponding to ten days ago is obtained from its string representation by
calling the K.of string function, instead of directly computing the internal represen-
tation of this date. (Our example is probably too simple to make this subtle distinction
obvious.)


End modules. To build the modules MBank and MCustomer, for use by the bank and
the customer respectively, we proceed as follows:


1. define a common “account manager” structure by application of the FManager
functor;


2. declare two signatures listing only the functions accessible to the bank or to the
customer;


3. constrain the structure obtained in 1 with the signatures declared in 2.


# module Manager =


FManager (Account)


(Date)
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(FLog(Date))


(FStatement (Date) (FLog(Date))) ; ;
module Manager :


sig


type t =


FManager(Account)(Date)(FLog(Date))(FStatement(Date)(FLog(Date))).t =


{ accnt: Account.t;


log: FLog(Date).t }


val create : float -> float -> t


val deposit : FLog(Date).tinfo -> t -> unit


val withdraw : float -> t -> unit


val balance : t -> float


val statement :


(FLog(Date).t -> (Date.t * float) list) -> t -> string list


val statementB : t -> string list


val statementC : t -> string list


end


# module type MANAGER BANK =


sig


type t


val create : float → float → t


val deposit : float → t → unit


val withdraw : float → t → unit


val balance : t → float


val statementB : t → string list


end ; ;


# module MBank = (Manager:MANAGER BANK with type t=Manager.t) ; ;
module MBank :


sig


type t = Manager.t


val create : float -> float -> t


val deposit : float -> t -> unit


val withdraw : float -> t -> unit


val balance : t -> float


val statementB : t -> string list


end


# module type MANAGER CUSTOMER =


sig


type t


val deposit : float → t → unit


val withdraw : float → t → unit


val balance : t → float


val statementC : t → string list


end ; ;


# module MCustomer = (Manager:MANAGER CUSTOMER with type t=Manager.t) ; ;
module MCustomer :


sig


type t = Manager.t
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val deposit : float -> t -> unit


val withdraw : float -> t -> unit


val balance : t -> float


val statementC : t -> string list


end


In order for accounts created by the bank to be usable by clients, we added the type
constraint on Manager.t in the definition of the MBank and MCustomer structures, to
ensure that their t type components are compatible.


Exercises


Association Lists


In this first simple exercise, we will implement a polymorphic abstract type for associ-
ation lists, and present two different views of the implementation.


1. Define a signature ALIST declaring an abstract type with two type parameters
(one for the keys, the other for the associated values), a creation function, an
add function, a lookup function, a membership test, and a deletion function. The
interface should be functional, i.e. without in-place modifications of the abstract
type.


2. Define a module Alist implementing the signature ALIST


3. Define a signature ADM ALIST for “administrators” of association lists. Adminis-
trators can only create association lists, and add or remove entries from a list.


4. Define a signature USER ALIST for “users” of association lists. Users can only
perform lookups and membership tests.


5. Define two modules AdmAlist and UserAlist for administrators and for users.
Keep in mind that users must be able to access lists created by administrators.


Parameterized Vectors


This exercise illustrates the genericity and code reuse abilities of parameterized mod-
ules. We will define a functor for manipulating two-dimensional vectors (pairs of (x, y)
coordinates) that can be instantiated with different types for the coordinates.


Numbers have the following signature:
# module type NUMBER =


sig


type a


type t


val create : a → t


val add : t → t → t


val string of : t → string
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end ; ;


1. Define the functor FVector, parameterized by a module of signature NUMBER,
and defining a type t of two-dimensional vectors over these numbers, a creation
function, an addition function, and a conversion to strings.


2. Define a signature VECTOR, without parameters, where the types of numbers and
vectors are abstract.


3. Define three structures Rational, Float et Complex implementing the signature
NUMBER.


4. Use these structures to define (by functor application) three modules for vectors
of rationals, reals and complex.


Lexical Trees


This exercise follows up on the lexical trees introduced in chapter 2, page 63. The goal
is to define a generic module for handling lexical trees, parameterized by an abstract
type of words.


1. Define the signature WORD defining an abstract type alpha for letters of the
alphabet, and another abstract type t for words on this alphabet. Declare also
the empty word, the conversion from an alphabet letter to a one-letter word, the
accessor to a letter of a word, the sub-word operation, the length of a word, and
word concatenation.


2. Define the functor LexTree, parameterized by a module implementing WORD, that
defines (as a function of the types and operations over words) the type of lexical
trees and functions exists, insert et select similar to those from chapter 2,
page 63.


3. Define the module Chars implementing the WORD signature for the types alpha


= char and t = string. Use it to obtain a module CharDict implementing
dictionaries whose keys are character strings.


Summary


In this chapter, we introduced all the facilities that the Objective Caml module lan-
guage offers, in particular parameterized modules.


As all module systems, it reflects the duality between interfaces and implementations,
here presented as a duality between signatures and structures. Signatures allow hiding
information about type, value or exception definitions.


By hiding type representation, we can make certain types abstract, ensuring that val-
ues of these types can only be manipulated through the operations provided in the
module signature. We saw how to exploit this mechanism to facilitate sharing of values
hidden in closures, and to offer multiple views of a given implementation. In the latter
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case, explicit type sharing annotations are sometimes necessary to achieve the desired
behavior.


Parameterized modules, also called functors, go one step beyond and support code reuse
through simple mechanisms similar to function abstraction and function application.


To Learn More


Other examples of modules and functors can be found in chapter 4 of the Objective
Caml manual.


The underlying theory and the type checking for modules can be found in a number
of research articles and course notes by Xavier Leroy, at


Link: http://cristal.inria.fr/˜xleroy


The Objective Caml module system follows the same principles as that of its cousin the
SML language. Chapter 22 compares these two languages in more details and provides
bibliographical references for the interested reader.


Other languages feature advanced module systems, in particular Modula-3 (2 and 3),
and ADA. They support the definition of modules parameterized by types and values.
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15
Object-Oriented


Programming


As you may have guessed from the name, Objective Caml supports object-oriented
programming. Unlike imperative programming, in which execution is driven by explicit
sequencing of operations, or functional programming, where it is driven by the required
computations, object-oriented programming can be thought of as data driven. Using
objects introduces a new organization of programs into classes of related objects. A
class groups together data and operations. The latter, also known as methods, define
the possible behaviors of an object. A method is invoked by sending a message to an
object. When an object receives a message, it performs the action or the computation
corresponding to the method specified by the message. This is different from applying
a function to arguments because a message (which contains the method name) is sent
to an object. It is up to the object itself to determine the code that will actually
be executed; such a delayed binding between name and code makes behavior more
adaptable and code easier to reuse.


With object-oriented programming, relations are defined between classes. Classes also
define how objects communicate through message parameters. Aggregation and inher-
itance relations between classes allow new kinds of application modeling. A class that
inherits from another class includes all definitions from the parent’s class. However, it
may extend the set of data and methods and redefine inherited behaviors, provided typ-
ing constraints are respected. We will use a graphical notation1 to represent relations
between classes.


Objective Caml’s object extensions are integrated with the type system of the lan-
guage: a class declaration defines a type with the same name as the class. Two kinds
of polymorphism coexist. One of them is parametric polymorphism, which we have
already seen with parameterized types: parameterized classes. The other one, known
as inclusion polymorphism, uses the subtyping relation between objects and delayed
binding. If the type of the class sc is a subtype of the class c then any object from sc


1. A number of notations exist for describing relations, e.g. UML (Unified Modeling Language).
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may be used in place of an object from c. The subtype constraint must be stated ex-
plicitly. Inclusion polymorphism makes it possible to construct non-homogeneous lists
where the type of each element is a subtype of a type common to all list elements.
Since binding is delayed, sending the same message to all elements of such a list can
activate different methods according to the sub-classes of the actual elements.


On the other hand, Objective Caml does not include the notion of method overloading,
which would allow several definitions for one method name. Without this restriction,
type inference might encounter ambiguous situations requiring additional information
from the programmer.


It should be emphasized that Objective Caml is the only language with an object
extension that provides both parameterized and inclusion polymorphism, while still
being fully statically typed through type inference.


Chapter Plan


This chapter describes Objective Caml’s object extension. This extension does not
change any of the features of the language that we already studied in the previous
chapters. A few new reserved keywords are added for the object-oriented syntax.


The first section describes class declaration syntax, object instantiation, and mes-
sage passing. The second section explains the various relations that may exist be-
tween classes. The third section clarifies the notion of object type and demonstrates
the richness of the object extension, thanks to abstract classes, multiple inheritance,
and generic parameterized classes. The fourth section explains the subtyping relation
and shows its power through inclusion polymorphism. The fifth section deals with a
functional style of object-oriented programming, where the internal state of the object
is not modified, but a modified copy of the receiving object is returned. The sixth sec-
tion clarifies other parts of the object-oriented extension, such as interfaces and local
declarations in classes, which allow class variables to be created.


Classes, Objects, and Methods


The object-oriented extension of Objective Caml is integrated with the functional and
imperative kernels of the language, as well as with its type system. Indeed, this last
point is unique to the language. Thus we have an object-oriented, statically typed
language, with type inference. This extension allows definition of classes and instances,
class inheritance (including multiple inheritance), parameterized classes, and abstract
classes. Class interfaces are generated from their definition, but may be made more
precise through a signature, similarly to what is done for modules.


Object-Oriented Terminology


We summarize below the main object-oriented programming terms.
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class: a class describes the contents of the objects that belong to it: it describes an
aggregate of data fields (called instance variables), and defines the operations
(called methods).


object: an object is an element (or instance) of a class; objects have the behaviors
of their class. The object is the actual component of programs, while the class
specifies how instances are created and how they behave.


method: a method is an action which an object is able to perform.


sending a message sending a message to an object means asking the object to exe-
cute or invoke one of its methods.


Class Declaration


The simplest syntax for defining a class is as follows. We shall develop this definition
throughout this chapter.


Syntax :


class name p1 . . . pn =


object
...


instance variables
...


methods
...


end


p1, . . . , pn are the parameters for the constructor of the class; they are omitted if the
class has no parameters.


An instance variable is declared as follows:


Syntax :
val name = expr
or
val mutable name = expr


When a data field is declared mutable, its value may be modified. Otherwise, the value
is always the one that was computed when expr was evaluated during object creation.


Methods are declared as follows:


Syntax : method name p1 . . . pn = expr


Other clauses than val and method can be used in a class declaration: we shall introduce
them as needed.
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Our first class example. We start with the unavoidable class point:


• the data fields x and y contain the coordinates of the point,


• two methods provide access to the data fields (get x and get y),


• two displacement methods (moveto: absolute displacement) and (rmoveto: rela-
tive displacement),


• one method presents the data as a string (to string),


• one method computes the distance to the point from the origin (distance).


# class point (x init,y init) =


object


val mutable x = x init


val mutable y = y init


method get x = x


method get y = y


method moveto (a,b) = x <- a ; y <- b


method rmoveto (dx,dy) = x <- x + dx ; y <- y + dy


method to string () =


"( " ^ (string of int x) ^ ", " ^ (string of int y) ^")"


method distance () = sqrt (float(x*x + y*y))


end ; ;


Note that some methods do not need parameters; this is the case for get x and get y.
We usually access instance variables with parameterless methods.


After we declare the class point, the system prints the following text:


class point :


int * int ->


object


val mutable x : int


val mutable y : int


method distance : unit -> float


method get_x : int


method get_y : int


method moveto : int * int -> unit


method rmoveto : int * int -> unit


method to_string : unit -> string


end


This text contains two pieces of information. First, the type for objects of the class;
this type will be abbreviated as point. The type of an object is the list of names and
types of methods in its class. In our example, point is an abbreviation for:


< distance : unit → unit; get x : int; get y : int;
moveto : int * int → unit; rmoveto : int * int → unit;
to string : unit → unit >


Next, we have a constructor for instances of class point, whose type is int*int -->
point. The constructor allows us to construct point objects (we´ll just say “points”
to be brief) from the initial values provided as arguments. In this case, we construct a
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point from a pair of integers (meaning the initial position). The constructor point is
used with the keyword new.


It is possible to define class types:
# type simple point = < get x : int; get y : int; to string : unit → unit > ; ;
type simple_point = < get_x : int; get_y : int; to_string : unit -> unit >


Note
Type point does not repeat all the informations shown after a class dec-
laration. Instance variables are not shown in the type. Only methods have
access to these instance variables.


Warning A class declaration is a type declaration. As a conse-
quence, it cannot contain a free type variable.


We will come back to this point later when we deal with type constraints (page 454)
and parameterized classes (page 460).


A Graphical Notation for Classes


We adapt the UML notation for the syntax of Objective Caml types. Classes are
denoted by a rectangle with three parts:


• the top part shows the name of the class,


• the middle part lists the attributes (data fields) of a class instance,


• the bottom part shows the methods of an instance of the class.


Figure 15.1 gives an example of the graphical representation for the class caml.


color
age
eyes


caml


drinks


sleeps


runs


Figure 15.1: Graphical representation of a class.


Type information for the fields and methods of a class may be added.
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Instance Creation


An object is a value of a class, called an instance of the class. Instances are created
with the generic construction primitive new, which takes the class and initialization
values as arguments.


Syntax : new name expr1 . . . exprn


The following example creates several instances of class point, from various initial
values.
# let p1 = new point (0,0); ;
val p1 : point = <obj>


# let p2 = new point (3,4); ;
val p2 : point = <obj>


# let coord = (3,0); ;
val coord : int * int = 3, 0


# let p3 = new point coord; ;
val p3 : point = <obj>


In Objective Caml, the constructor of a class is unique, but you may define your own
specific function make point for point creation:
# let make point x = new point (x,x) ; ;
val make_point : int -> point = <fun>


# make point 1 ; ;
- : point = <obj>


Sending a Message


The notation # is used to send a message to an object. 2


Syntax : obj1#name p1 . . . pn


The message with method name “name” is sent to the object obj. The arguments p1,
. . . , pn are as expected by the method name. The method must be defined by the class
of the object, i.e. visible in the type. The types of arguments must conform to the types
of the formal parameters. The following example shows several queries performed on
objects from the class point.
# p1#get x; ;
- : int = 0


# p2#get y; ;
- : int = 4


# p1#to string () ; ;
- : string = "( 0, 0)"


# p2#to string () ; ;


2. In most object-oriented languages, a dot notation is used. However, the dot notation was already
used for records and modules, so a new symbol was needed.
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- : string = "( 3, 4)"


# if (p1#distance ()) = (p2#distance ())
then print string ("That’s just chance\n")


else print string ("We could bet on it\n"); ;
We could bet on it


- : unit = ()


From the type point of view, objects of type point can be used by polymorphic func-
tions of Objective Caml, just as any other value in the language:
# p1 = p1 ; ;
- : bool = true


# p1 = p2; ;
- : bool = false


# let l = p1::[]; ;
val l : point list = [<obj>]


# List.hd l; ;
- : point = <obj>


Warning Object equality is defined as physical equality.


We shall clarify this point when we study the subtyping relation (page 469).


Relations between Classes


Classes can be related in two ways:


1. An aggregation relation, named Has-a:
class C2 is related by Has-a with class C1 when C2 has a field whose type is that
of class C1. This relation can be generalized as: C2 has at least one field whose
type is that of class C1.


2. An inheritance relation, named Is-a:
class C2 is a subclass of class C1 when C2 extends the behavior of C1. One big
advantage of object-oriented programming is the ability to extend the behavior
of an existing class while reusing the code written for the original class. When a
class is extended, the new class inherits all the fields (data and methods) of the
class being extended.


Aggregation


Class C1 aggregates class C2 when at least one of its instance variables has type C2.
One gives the arity of the aggregation relation when it is known.
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An Example of Aggregation


Let us define a figure as a set of points. Therefore we declare class picture (see figure
15.2), in which one of the fields is an array of points. Then the class picture aggregates
point, using the generalized relation Has-a.
# class picture n =


object


val mutable ind = 0


val tab = Array.create n (new point(0,0))


method add p =


try tab.(ind)<-p ; ind <- ind + 1


with Invalid argument("Array.set")


→ failwith ("picture.add:ind =" ^ (string of int ind))


method remove () = if (ind > 0) then ind <-ind-1


method to string () =


let s = ref "["


in for i=0 to ind-1 do s:= !s ^ " " ^ tab.(i)#to string () done ;
(!s) ^ "]"


end ; ;
class picture :


int ->


object


val mutable ind : int


val tab : point array


method add : point -> unit


method remove : unit -> unit


method to_string : unit -> string


end


To build a figure, we create an instance of class picture, and insert the points as
required.
# let pic = new picture 8; ;
val pic : picture = <obj>


# pic#add p1; pic#add p2; pic#add p3; ;
- : unit = ()


# pic#to string () ; ;
- : string = "[ ( 0, 0) ( 3, 4) ( 3, 0)]"


A Graphical Notation for Aggregation


The relation between class picture and class point is represented graphically in figure
15.2. An arrow with a diamond at the tail represents aggregation. In this example, class
picture has 0 or more points. Furthermore, we show above the arrow the arity of the
relation.
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0..*


remove : unit -> unit


add_point : point -> unit


picture


ind : int
tab : point array


to_string : unit -> string


moveto : (int * int) -> unit


to_string : unit -> string


get_y : int


get_x : int


x : int
y : int


point


rmoveto : (int * int) -> unit


distance : unit -> float


Figure 15.2: Aggregation relation.


Inheritance Relation


This is the main relation in object-oriented programming. When class c2 inherits from
class c1, it inherits all fields from the parent class. It can also define new fields, or
redefine inherited methods to specialize them. Since the parent class has not been
modified, the applications using it do not need to be adapted to the changes introduced
in the new class.


The syntax of inheritance is as follows:


Syntax : inherit name1 p1 . . . pn [ as name2 ]


Parameters p1, . . . , pn are what is expected from the constructor of class name1. The
optional keyword as associates a name with the parent class to provide access to its
methods. This feature is particularly useful when the child class redefines a method of
the parent class (see page 445).


An Example of Simple Inheritance


Using the classic example, we can extend class point by adding a color attribute to
the points. We define the class colored point inheriting from class point. The color
is represented by the field c of type string. We add a method get color that returns
the value of the field. Finally, the string conversion method is overridden to recognize
the new attribute.


Note
The x and y variables seen in to string are the fields, not the class
initialization arguments.


# class colored point (x,y) c =


object
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inherit point (x,y)


val mutable c = c


method get color = c


method set color nc = c <- nc


method to string () = "( " ^ (string of int x) ^


", " ^ (string of int y) ^ ")" ^


" [" ^ c ^ "] "


end ; ;
class colored_point :


int * int ->


string ->


object


val mutable c : string


val mutable x : int


val mutable y : int


method distance : unit -> float


method get_color : string


method get_x : int


method get_y : int


method moveto : int * int -> unit


method rmoveto : int * int -> unit


method set_color : string -> unit


method to_string : unit -> string


end


The constructor arguments for colored point are the pair of coordinates required for
the construction of a point and the color for the colored point.


The methods inherited, newly defined or redefined correspond to the behaviors of
instances of the class.
# let pc = new colored point (2,3) "white"; ;
val pc : colored_point = <obj>


# pc#get color; ;
- : string = "white"


# pc#get x; ;
- : int = 2


# pc#to string () ; ;
- : string = "( 2, 3) [white] "


# pc#distance; ;
- : unit -> float = <fun>


We say that the class point is a parent class of class colored point and that the
latter is the child of the former.


Warning When redefining a method in a child class, you must
respect the method type defined in the parent class.


A Graphical Notation for Inheritance


The inheritance relation between classes is denoted by an arrow from the child class to
the parent class. The head of the arrow is a closed triangle. In the graphical represen-
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tation of inheritance, we only show the new fields and methods, and redefined methods
in the child class. Figure 15.3 displays the relation between class colored point and
its parent point.


set_color : string -> unit


get_color : string


to_string : unit -> string


colored_point


moveto : (int * int) -> unit
rmoveto : (int * int) -> unit


distance : unit -> float


to_string : unit -> string


get_y : int


get_x : int


point


x : int
y : int c : string


Figure 15.3: Inheritance Relation.


Since it contains additional methods, type colored point differs from type point.
Testing for equality between instances of these classes produces a long error message
containing the whole type of each class, in order to display the differences.
# p1 = pc; ;
Characters 6-8:


This expression has type


colored_point =


< distance : unit -> float; get_color : string; get_x : int; get_y :


int; moveto : int * int -> unit; rmoveto : int * int -> unit;


set_color : string -> unit; to_string : unit -> string >


but is here used with type


point =


< distance : unit -> float; get_x : int; get_y : int;


moveto : int * int -> unit; rmoveto : int * int -> unit;


to_string : unit -> string >


Only the first object type has a method get_color


Other Object-oriented Features


References: self and super


When defining a method in a class, it may be convenient to be able to invoke a method
from a parent class. For this purpose, Objective Caml allows the object itself, as well
as (the objects of) the parent class to be named. In the former case, the chosen name
is given after the keyword object, and in the latter, after the inheritance declaration.
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For example, in order to define the method to string of colored points, it is better to
invoke the method to string from the parent class and to extend its behavior with a
new method, get color.
# class colored point (x,y) c =


object (self)


inherit point (x,y) as super


val c = c


method get color = c


method to string () = super#to string () ^ " [" ^ self#get color ^ "] "


end ; ;


Arbitrary names may be given to the parent and child class objects, but the names
self and this for the current class and super for the parent are conventional. Choos-
ing other names may be useful with multiple inheritance since it makes it easy to
differentiate the parents (see page 457).


Warning
You may not reference a variable of an instance’s parent
if you declare a new variable with the same name since
it masks the former.


Delayed Binding


With delayed binding the method used when a message is sent is decided at run-
time; this is opposed to static binding where the decision is made at compile time. In
Objective Caml, delayed binding of methods is used; therefore, the exact piece of code
to be executed is determined by the recipient of the message.


The above declaration of class colored point redefines the method to string. This
new definition uses method get color from this class. Now let us define another class
colored point 1, inheriting from colored point; this new class redefines method
get color (testing that the character string is appropriate), but does not redefine
to string.


# class colored point 1 coord c =


object


inherit colored point coord c


val true colors = ["white"; "black"; "red"; "green"; "blue"; "yellow"]


method get color = if List.mem c true colors then c else "UNKNOWN"


end ; ;


Method to string is the same in both classes of colored points; but two objects from
these classes will have a different behavior.
# let p1 = new colored point (1,1) "blue as an orange" ; ;
val p1 : colored_point = <obj>


# p1#to string () ; ;
- : string = "( 1, 1) [blue as an orange] "


# let p2 = new colored point 1 (1,1) "blue as an orange" ; ;
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val p2 : colored_point_1 = <obj>


# p2#to string () ; ;
- : string = "( 1, 1) [UNKNOWN] "


The binding of get color within to string is not fixed when the class colored point


is compiled. The code to be executed when invoking the method get color is de-
termined from the methods associated with instances of classes colored point and
colored point 1. For an instance of colored point, sending the message to string
causes the execution of get color, defined in class colored point. On the other hand,
sending the same message to an instance of colored point 1 invokes the method from
the parent class, and the latter triggers method get color from the child class, con-
trolling the relevance of the string representing the color.


Object Representation and Message Dispatch


An object is split in two parts: one may vary, the other is fixed. The varying part
contains the instance variables, just as for a record. The fixed part corresponds to a
methods table, shared by all instances of the class.


The methods table is a sparse array of functions. Every method name in an application
is given a unique id that serves as an index into the methods table. We assume the
existence of a machine instruction GETMETHOD(o,n), that takes two parameters: an
object o and an index n. It returns the function associated with this index in the
methods table. We write f n for the result of the call GETMETHOD(o,n). Compiling the
message send o#m computes the index n of the method name m and produces the code
for applying GETMETHOD(o,n) to object o. This corresponds to applying function f n
to the receiving object o. Delayed binding is implemented through a call to GETMETHOD
at run time.


Sending a message to self within a method is also compiled as a search for the index
of the message, followed by a call to the function found in the methods table.


In the case of inheritance, since the method name always has the same index, regardless
of redefinition, only the entry in new class’ methods table is changed for redefinitions.
So sending message to string to an instance of class point will apply the conversion
function of a point, while sending the same message to an instance of colored point
will find at the same index the function corresponding to the method which has been
redefined to recognize the color field.


Thanks to this index invariance, subtyping (see page 465) is insured to be coherent
with respect to the execution. Indeed if a colored point is explicitly constrained to be
a point, then upon sending the message to string the method index from class point
is computed, which coincides with that from class colored point. Searching for the
method will be done within the table associated with the receiving instance, i.e. the
colored point table.


Although the actual implementation in Objective Caml is different, the principle of
dynamic search for the method to be used is still the same.
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Initialization


The class definition keyword initializer is used to specify code to be executed during
object construction. An initializer can perform any computation and field access that
is legal in a method.


Syntax : initializer expr


Let us again extend the class point, this time by defining a verbose point that will
announce its creation.
# class verbose point p =


object(self)


inherit point p


initializer


let xm = string of int x and ym = string of int y


in Printf.printf ">> Creation of a point at (%s %s)\n"


xm ym ;
Printf.printf " , at distance %f from the origin\n"


(self#distance ()) ;
end ; ;


# new verbose point (1,1); ;
>> Creation of a point at (1 1)


, at distance 1.414214 from the origin


- : verbose_point = <obj>


An amusing but instructive use of initializers is tracing class inheritance on instance
creation. Here is an example:
# class c1 =


object


initializer print string "Creating an instance of c1\n"


end ; ;


# class c2 =


object


inherit c1


initializer print string "Creating an instance of c2\n"


end ; ;


# new c1 ; ;
Creating an instance of c1


- : c1 = <obj>


# new c2 ; ;
Creating an instance of c1


Creating an instance of c2


- : c2 = <obj>


Constructing an instance of c2 requires first constructing an instance of the parent
class.
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Private Methods


A method may be declared private with the keyword private. It will appear in the
interface to the class but not in instances of the class. A private method can only be
invoked from other methods; it cannot be sent to an instance of the class. However,
private methods are inherited, and therefore can be used in definitions of the hierarchy3.


Syntax : method private name = expr


Let us extend the class point: we add a method undo that revokes the last move. To do
this, we must remember the position held before performing a move, so we introduce
two new fields, old x and old y, together with their update method. Since we do not
want the user to have direct access to this method, we declare it as private. We redefine
the methods moveto and rmoveto, keeping note of the current position before calling
the previous methods for performing a move.
# class point m1 (x0,y0) =


object(self)


inherit point (x0,y0) as super


val mutable old x = x0


val mutable old y = y0


method private mem pos () = old x <- x ; old y <- y


method undo () = x <- old x; y <- old y


method moveto (x1, y1) = self#mem pos () ; super#moveto (x1, y1)


method rmoveto (dx, dy) = self#mem pos () ; super#rmoveto (dx, dy)


end ; ;
class point_m1 :


int * int ->


object


val mutable old_x : int


val mutable old_y : int


val mutable x : int


val mutable y : int


method distance : unit -> float


method get_x : int


method get_y : int


method private mem_pos : unit -> unit


method moveto : int * int -> unit


method rmoveto : int * int -> unit


method to_string : unit -> string


method undo : unit -> unit


end


We note that method mem pos is preceded by the keyword private in type point m1.
It can be invoked from within method undo, but not on another instance. The situation
is the same as for instance variables. Even though fields old x and old y appear in the
results shown by compilation, that does not imply that they may be handled directly
(see page 438).
# let p = new point m1 (0, 0) ; ;


3. The private of Objective Caml corresponds to protected of Objective C, C++ and Java
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val p : point_m1 = <obj>


# p#mem pos () ; ;
Characters 0-1:


This expression has type point_m1


It has no method mem_pos


# p#moveto(1, 1) ; p#to string () ; ;
- : string = "( 1, 1)"


# p#undo () ; p#to string () ; ;
- : string = "( 0, 0)"


Warning A type constraint may make public a method declared
with attribute private.


Types and Genericity


Besides the ability to model a problem using aggregation and inheritance relations,
object-oriented programming is interesting because it provides the ability to reuse
or modify the behavior of classes. However, extending an Objective Caml class must
preserve the static typing properties of the language.


With abstract classes, you can factorize code and group their subclasses into one “com-
munication protocol”. An abstract class fixes the names and types of messages that
may be received by instances of child classes. This technique will be better appreciated
in connection with multiple inheritance.


The notion of an open object type (or simply an open type) that specifies the required
methods allows code to work with instances using generic functions. But you may need
to make the type constraints precise; this will be necessary for parameterized classes,
which provide the genericity of parameterized polymorphism in the context of classes.
With this latter object layer feature, Objective Caml can really be generic.


Abstract Classes and Methods


In abstract classes, some methods are declared without a body. Such methods are called
abstract. It is illegal to instantiate an abstract class; new cannot be used. The keyword
virtual is used to indicate that a class or method is abstract.


Syntax : class virtual name = object . . . end


A class must be declared abstract as soon as one of its methods is abstract. A method
is declared abstract by providing only the method type.


Syntax : method virtual name : type


When a subclass of an abstract class redefines all of the abstract methods of its parent,
then it may become concrete; otherwise it also has to be declared abstract.
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As an example, suppose we want to construct a set of displayable objects, all with a
method print that will display the object’s contents translated into a character string.
All such objects need a method to string. We define class printable. The string
may vary according to the nature of the objects that we consider; therefore method
to string is abstract in the declaration of printable and consequently the class is
also abstract.
# class virtual printable () =


object(self)


method virtual to string : unit → string


method print () = print string (self#to string ())
end ; ;


class virtual printable :


unit ->


object


method print : unit -> unit


method virtual to_string : unit -> string


end


We note that the abstractness of the class and of its method to string is made clear
in the type we obtain.


From this class, let us try to define the class hierarchy of figure 15.4.


2 0..n


printable


colored_point


rectangle point picture


Figure 15.4: Relations between classes of displayable objects.


It is easy to redefine the classes point, colored point and picture by adding to their
declarations a line inherit printable () that provides them with a method print
through inheritance.
# let p = new point (1,1) in p#print () ; ;
( 1, 1)- : unit = ()


# let pc = new colored point (2,2) "blue" in pc#print () ; ;
( 2, 2) with color blue- : unit = ()


# let t = new picture 3 in t#add (new point (1,1)) ;
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t#add (new point (3,2)) ;
t#add (new point (1,4)) ;
t#print () ; ;


[ ( 1, 1) ( 3, 2) ( 1, 4)]- : unit = ()


Subclass rectangle below inherits from printable, and defines method to string.
Instance variables llc (resp. urc) mean the lower left corner point (resp. upper right
corner point) in the rectangle.
# class rectangle (p1,p2) =


object


inherit printable ()
val llc = (p1 : point)


val urc = (p2 : point)


method to string () = "[" ^ llc#to string () ^ "," ^ urc#to string () ^ "]"


end ; ;
class rectangle :


point * point ->


object


val llc : point


val urc : point


method print : unit -> unit


method to_string : unit -> string


end


Class rectangle inherits from the abstract class printable, and thus receives method
print. It has two instance variables of type point: the lower left corner (llc) and upper
right corner. Method to string sends the message to string to its point instance
variables llc and urc.


# let r = new rectangle (new point (2,3), new point (4,5)); ;
val r : rectangle = <obj>


# r#print () ; ;
[( 2, 3),( 4, 5)]- : unit = ()


Classes, Types, and Objects


You may remember that the type of an object is determined by the type of its methods.
For instance, the type point, inferred during the declaration of class point, is an
abbreviation for type:


point =


< distance : unit -> float; get_x : int; get_y : int;


moveto : int * int -> unit; rmoveto : int * int -> unit;


to_string : unit -> string >
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This is a closed type; that is, all methods and associated types are fixed. No addi-
tional methods and types are allowed. Upon a class declaration, the mechanism of
type inference computes the closed type associated with class.


Open Types


Since sending a message to an object is part of the language, you may define a function
that sends a message to an object whose type is still undefined.
# let f x = x#get x ; ;
val f : < get_x : ’a; .. > -> ’a = <fun>


The type inferred for the argument of f is an object type, since a message is sent to x,
but this object type is open. In function f, parameter x must have at least a method
get x. Since the result of sending this message is not used within function f, its type
has to be as general as possible (i.e. a variable of type ’a). So type inference allows
the function f to be used with any object having a method get x. The double points
(..) at the end of the type < get x : ’a; .. > indicate that the type of x is open.


# f (new point(2,3)) ; ;
- : int = 2


# f (new colored point(2,3) "emerald") ; ;
- : int = 2


# class c () =


object


method get x = "I have a method get_x"


end ; ;
class c : unit -> object method get_x : string end


# f (new c ()) ; ;
- : string = "I have a method get_x"


Type inference for classes may generate open types, particularly for initial values in
instance construction. The following example constructs a class couple, whose initial
values a and b have a method to string.
# class couple (a,b) =


object


val p0 = a


val p1 = b


method to string () = p0#to string () ^ p1#to string ()
method copy () = new couple (p0,p1)


end ; ;
class couple :


(< to_string : unit -> string; .. > as ’a) *


(< to_string : unit -> string; .. > as ’b) ->


object


val p0 : ’a


val p1 : ’b


method copy : unit -> couple


method to_string : unit -> string
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end


The types of both a and b are open types, with method to string. We note that
these two types are considered to be different. They are marked “as ’a” and “as ’b”,
respectively. Variables of types ’a and ’b are constrained by the generated type.


We use the sharp symbol to indicate the open type built from a closed type obj type:


Syntax : #obj type


The type obtained contains all of the methods of type obj type and terminates with
a double point.


Type Constraints.


In the chapter on functional programming (see page 28), we showed how an expression
can be constrained to have a type more precise than what is produced by inference.
Object types (open or closed) can be used to enhance such constraints. One may want
to open a priori the type of a defined object, in order to apply it to a forthcoming
method. We can use an open object constraint:


Syntax : (name:#type )


Which allows us to write:
# let g (x : #point) = x#message; ;
val g :


< distance : unit -> float; get_x : int; get_y : int; message : ’a;


moveto : int * int -> unit; print : unit -> unit;


rmoveto : int * int -> unit; to_string : unit -> string; .. > ->


’a = <fun>


The type constraint with #point forces x to have at least all of the methods of point,
and sending message “message” adds a method to the type of parameter x.


Just as in the rest of the language, the object extension of Objective Caml provides
static typing through inference. When this mechanism does not have enough informa-
tion to determine the type of an expression, a type variable is assigned. We have just
seen that this process is also valid for typing objects; however, it sometimes leads to
ambiguous situations which the user must resolve by explicitly giving type information.


# class a point p0 =


object


val p = p0


method to string () = p#to string ()
end ; ;


Characters 6-89:


Some type variables are unbound in this type:


class a_point :


(< to_string : unit -> ’b; .. > as ’a) ->


object val p : ’a method to_string : unit -> ’b end


The method to_string has type unit -> ’a where ’a is unbound
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We resolve this ambiguity by saying that parameter p0 has type #point.
# class a point (p0 : #point) =


object


val p = p0


method to string () = p#to string ()
end ; ;


class a_point :


(#point as ’a) -> object val p : ’a method to_string : unit -> string end


In order to set type constraints in several places in a class declaration, the following
syntax is used:


Syntax : constraint type1 = type2


The above example can be written specifying that parameter p0 has type ’a, then
putting a type constraint upon variable ’a.
# class a point (p0 : ’a) =


object


constraint ’a = #point


val p = p0


method to string () = p#to string ()
end ; ;


class a_point :


(#point as ’a) -> object val p : ’a method to_string : unit -> string end


Several type constraints can be given in a class declaration.


Warning An open type cannot appear as the type of a method.


This strong restriction exists because an open type contains an uninstantiated type
variable coming from the rest of the type. Since one cannot have a free variable type
in a type declaration, a method containing such a type is rejected by type inference.
# class b point p0 =


object


inherit a point p0


method get = p


end ; ;
Characters 6-77:


Some type variables are unbound in this type:


class b_point :


(#point as ’a) ->


object val p : ’a method get : ’a method to_string : unit -> string end


The method get has type #point where .. is unbound


In fact, due to the constraint “constraint ’a = #point”, the type of get is the open
type #point. The latter contains a free variable type noted by a double point (..),
which is not allowed.
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Inheritance and the Type of self


There exists an exception to the prohibition of a type variable in the type of methods:
a variable may stand for the type of the object itself (self). Consider a method testing
the equality between two points.
# class point eq (x,y) =


object (self : ’a)
inherit point (x,y)


method eq (p:’a) = (self#get x = p#get x) && (self#get y = p#get y)


end ; ;
class point_eq :


int * int ->


object (’a)


val mutable x : int


val mutable y : int


method distance : unit -> float


method eq : ’a -> bool


method get_x : int


method get_y : int


method moveto : int * int -> unit


method print : unit -> unit


method rmoveto : int * int -> unit


method to_string : unit -> string


end


The type of method eq is ’a -> bool, but the type variable stands for the type of the
instance at construction time.


You can inherit from the class point eq and redefine the method eq, whose type is
still parameterized by the instance type.
# class colored point eq (xc,yc) c =


object (self : ’a)
inherit point eq (xc,yc) as super


val c = (c:string)


method get c = c


method eq (pc : ’a) = (self#get x = pc#get x) && (self#get y = pc#get y)


&& (self#get c = pc#get c)


end ; ;
class colored_point_eq :


int * int ->


string ->


object (’a)


val c : string


val mutable x : int


val mutable y : int


method distance : unit -> float


method eq : ’a -> bool


method get_c : string


method get_x : int


method get_y : int


method moveto : int * int -> unit


method print : unit -> unit


method rmoveto : int * int -> unit
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method to_string : unit -> string


end


The method eq from class colored point eq still has type ’a -> bool; but now the
variable ’a stands for the type of an instance of class colored point eq. The definition
of eq in class colored point eq masks the inherited one. Methods containing the type
of the instance in their type are called binary methods. They will cause some limitations
in the subtyping relation described in page 465.


Multiple Inheritance


With multiple inheritance, you can inherit data fields and methods from several classes.
When there are identical names for fields or methods, only the last declaration is
kept, according to the order of inheritance declarations. Nevertheless, it is possible to
reference a method of one of the parent classes by associating different names with
the inherited classes. This is not true for instance variables: if an inherited class masks
an instance variable of a previously inherited class, the latter is no longer directly
accessible. The various inherited classes do not need to have an inheritance relation.
Multiple inheritance is of interest because it increases class reuse.


Let us define the abstract class geometric object, which declares two virtual methods
compute area and compute peri for computing the area and perimeter.
# class virtual geometric object () =


object


method virtual compute area : unit → float


method virtual compute peri : unit → float


end; ;


Then we redefine class rectangle as follows:
# class rectangle 1 ((p1,p2) :’a) =


object


constraint ’a = point * point


inherit printable ()
inherit geometric object ()
val llc = p1


val urc = p2


method to string () =


"["^llc#to string ()^","^urc#to string ()^"]"
method compute area () =


float ( abs(urc#get x - llc#get x) * abs(urc#get y - llc#get y))


method compute peri () =


float ( (abs(urc#get x - llc#get x) + abs(urc#get y - llc#get y)) * 2)


end; ;
class rectangle_1 :


point * point ->


object


val llc : point


val urc : point
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method compute_area : unit -> float


method compute_peri : unit -> float


method print : unit -> unit


method to_string : unit -> string


end


This implementation of classes respects the inheritance graph of figure 15.5.


geometric_objectprintable


rectangle_2


Figure 15.5: Multiple inheritance.


In order to avoid rewriting the methods of class rectangle, we may directly inherit
from rectangle, as shown in figure 15.6.


printable


rectangle geometric_object


rectangle_3


Figure 15.6: Multiple inheritance (continued).


In such a case, only the abstract methods of the abstract class geometric object must
be defined in rectangle 2.
# class rectangle 2 (p2 :’a) =


object


constraint ’a = point * point


inherit rectangle p2


inherit geometric object ()
method compute area () =
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float ( abs(urc#get x - llc#get x) * abs(urc#get y - llc#get y))


method compute peri () =


float ( (abs(urc#get x - llc#get x) + abs(urc#get y - llc#get y)) * 2)


end; ;


Continuing in the same vein, the hierarchies printable and geometric object could
have been defined separately, until it became useful to have a class with both behaviors.
Figure 15.7 displays the relations defined in this way.


printable geometric_object


printable_rect geometric_rect


rectangle_4


Figure 15.7: Multiple inheritance (end).


If we assume that classes printable rect and geometric rect define instance vari-
ables for the corners of a rectangle, we get class rectangle 3 with four points (two
per corner).
class rectangle 3 (p1,p2) =


inherit printable rect (p1,p2) as super print


inherit geometric rect (p1,p2) as super geo


end; ;


In the case where methods of the same type exist in both classes ... rect, then only
the last one is visible. However, by naming parent classes (super ...), it is always
possible to invoke a method from either parent.


Multiple inheritance allows factoring of the code by integrating methods already writ-
ten from various parent classes to build new entities. The price paid is the size of
constructed objects, which are bigger than necessary due to duplicated fields, or inher-
ited fields useless for a given application. Furthermore, when there is duplication (as in
our last example), communication between these fields must be established manually
(update, etc.). In the last example for class rectangle 3, we obtain instance variables
of classes printable rect and geometric rect. If one of these classes has a method
which modifies these variables (such as a scaling factor), then it is necessary to prop-
agate these modifications to variables inherited from the other class. Such a heavy
communication between inherited instance variables often signals a poor modeling of
the given problem.
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Parameterized Classes


Parameterized classes let Objective Caml’s parameterized polymorphism be used in
classes. As with the type declarations of Objective Caml, class declarations can be
parameterized with type variables. This provides new opportunities for genericity and
code reuse. Parameterized classes are integrated with ML-like typing when type infer-
ence produces parameterized types.


The syntax differs slightly from the declaration of parameterized types; type parameters
are between brackets.


Syntax : class [’a, ’b, . . . ] name = object . . . end


The Objective Caml type is noted as usual: (’a,’b,...) name.


For instance, if a class pair is required, a naive solution would be to set:
# class pair x0 y0 =


object


val x = x0


val y = y0


method fst = x


method snd = y


end ; ;
Characters 6-106:


Some type variables are unbound in this type:


class pair :


’a ->


’b -> object val x : ’a val y : ’b method fst : ’a method snd : ’b end


The method fst has type ’a where ’a is unbound


One again gets the typing error mentioned when class a point was defined (page 452).
The error message says that type variable ’a, assigned to parameter x0 (and therefore
to x and fst), is not bound.


As in the case of parameterized types, it is necessary to parameterize class pair with
two type variables, and force the type of construction parameters x0 and y0 to obtain
a correct typing:
# class [’a,’b] pair (x0:’a) (y0:’b) =


object


val x = x0


val y = y0


method fst = x


method snd = y


end ; ;
class [’a, ’b] pair :


’a ->


’b -> object val x : ’a val y : ’b method fst : ’a method snd : ’b end


Type inference displays a class interface parameterized by variables of type ’a and ’b.


When a value of a parameterized class is constructed, type parameters are instantiated
with the types of the construction parameters:
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# let p = new pair 2 ’X’; ;
val p : (int, char) pair = <obj>


# p#fst; ;
- : int = 2


# let q = new pair 3.12 true; ;
val q : (float, bool) pair = <obj>


# q#snd; ;
- : bool = true


Note
In class declarations, type parameters are shown between brackets, but in
types, they are shown between parentheses.


Inheritance of Parameterized Classes


When inheriting from a parameterized class, one has to indicate the parameters of the
class. Let us define a class acc pair that inherits from (’a,’b) pair; we add two
methods for accessing the fields, get1 and get2,
# class [’a,’b] acc pair (x0 : ’a) (y0 : ’b) =


object


inherit [’a,’b] pair x0 y0


method get1 z = if x = z then y else raise Not found


method get2 z = if y = z then x else raise Not found


end; ;
class [’a, ’b] acc_pair :


’a ->


’b ->


object


val x : ’a


val y : ’b


method fst : ’a


method get1 : ’a -> ’b


method get2 : ’b -> ’a


method snd : ’b


end


# let p = new acc pair 3 true; ;
val p : (int, bool) acc_pair = <obj>


# p#get1 3; ;
- : bool = true


We can make the type parameters of the inherited parameterized class more precise,
e.g. for a pair of points.
# class point pair (p1,p2) =


object


inherit [point,point] pair p1 p2


end; ;
class point_pair :


point * point ->


object
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val x : point


val y : point


method fst : point


method snd : point


end


Class point pair no longer needs type parameters, since parameters ’a and ’b are
completely determined.


To build pairs of displayable objects (i.e. having a method print), we reuse the abstract
class printable (see page 451), then we define the class printable pair which inherits
from pair.
# class printable pair x0 y0 =


object


inherit [printable, printable] acc pair x0 y0


method print () = x#print () ; y#print ()
end; ;


This implementation allows us to construct pairs of instances of printable, but it
cannot be used for objects of another class with a method print.


We could try to open type printable used as a type parameter for acc pair:
# class printable pair (x0 ) (y0 ) =


object


inherit [ #printable, #printable ] acc pair x0 y0


method print () = x#print () ; y#print ()
end; ;


Characters 6-149:


Some type variables are unbound in this type:


class printable_pair :


(#printable as ’a) ->


(#printable as ’b) ->


object


val x : ’a


val y : ’b


method fst : ’a


method get1 : ’a -> ’b


method get2 : ’b -> ’a


method print : unit -> unit


method snd : ’b


end


The method fst has type #printable where .. is unbound


This first attempt fails because methods fst and snd contain an open type.


So we shall keep the type parameters of the class, while constraining them to the open
type #printable.
# class [’a,’b] printable pair (x0 ) (y0 ) =


object


constraint ’a = #printable


constraint ’b = #printable
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inherit [’a,’b] acc pair x0 y0


method print () = x#print () ; y#print ()
end; ;


class [’a, ’b] printable_pair :


’a ->


’b ->


object


constraint ’a = #printable


constraint ’b = #printable


val x : ’a


val y : ’b


method fst : ’a


method get1 : ’a -> ’b


method get2 : ’b -> ’a


method print : unit -> unit


method snd : ’b


end


Then we construct a displayable pair containing a point and a colored point.
# let pp = new printable pair


(new point (1,2)) (new colored point (3,4) "green"); ;
val pp : (point, colored_point) printable_pair = <obj>


# pp#print () ; ;
( 1, 2)( 3, 4) with color green- : unit = ()


Parameterized Classes and Typing


From the point of view of types, a parameterized class is a parameterized type. A value
of such a type can contain weak type variables.
# let r = new pair [] [] ; ;
val r : (’_a list, ’_b list) pair = <obj>


# r#fst; ;
- : ’_a list = []


# r#fst = [1;2]; ;
- : bool = false


# r; ;
- : (int list, ’_a list) pair = <obj>


A parameterized class can also be viewed as a closed object type; therefore nothing
prevents us from also using it as an open type with the sharp notation.
# let compare nothing ( x : (’a, ’a) #pair) =


if x#fst = x#fst then x#mess else x#mess2; ;
val compare_nothing :


< fst : ’a; mess : ’b; mess2 : ’b; snd : ’a; .. > -> ’b = <fun>


This lets us construct parameterized types that contain weak type variables that are
also open object types.
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# let prettytype x ( y : (’a, ’a) #pair) = if x = y#fst then y else y; ;
val prettytype : ’a -> ((’a, ’a) #pair as ’b) -> ’b = <fun>


If this function is applied to one parameter, we get a closure, whose type variables are
weak. An open type, such as #pair, still contains uninstantiated parts, represented by
the double point (..). In this respect, an open type is a partially known type parameter.
Upon weakening such a type after a partial application, the displayer specifies that the
type variable representing this open type has been weakened. Then the notation is
#pair.


# let g = prettytype 3; ;
val g : ((int, int) _#pair as ’a) -> ’a = <fun>


Now, if function g is applied to a pair, its weak type is modified.
# g (new acc pair 2 3); ;
- : (int, int) acc_pair = <obj>


# g; ;
- : (int, int) acc_pair -> (int, int) acc_pair = <fun>


Then we can no longer use g on simple pairs.
# g (new pair 1 1); ;
Characters 4-16:


This expression has type (int, int) pair = < fst : int; snd : int >


but is here used with type


(int, int) acc_pair =


< fst : int; get1 : int -> int; get2 : int -> int; snd : int >


Only the second object type has a method get1


Finally, since parameters of the parameterized class can also get weakened, we obtain
the following example.
# let h = prettytype [] ; ;
val h : ((’_b list, ’_b list) _#pair as ’a) -> ’a = <fun>


# let h2 = h (new pair [] [1;2]); ;
val h2 : (int list, int list) pair = <obj>


# h; ;
- : (int list, int list) pair -> (int list, int list) pair = <fun>


The type of the parameter of h is no longer open. The following application cannot be
typed because the argument is not of type pair.
# h (new acc pair [] [4;5]); ;
Characters 4-25:


This expression has type


(’a list, int list) acc_pair =


< fst : ’a list; get1 : ’a list -> int list; get2 : int list -> ’a list;


snd : int list >


but is here used with type
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(int list, int list) pair = < fst : int list; snd : int list >


Only the first object type has a method get1


Note
Parameterized classes of Objective Caml are absolutely necessary as soon
as one has methods whose type includes a type variable different from the
type of self.


Subtyping and Inclusion Polymorphism


Subtyping makes it possible for an object of some type to be considered and used as
an object of another type. An object type ot2 could be a subtype of ot1 if:


1. it includes all of the methods of ot1,


2. each method of ot2 that is a method of ot1 is a subtype of the ot1 method.


The subtype relation is only meaningful between objects: it can only be expressed be-
tween objects. Furthermore, the subtype relation must always be explicit. It is possible
to indicate either that a type is a subtype of another, or that an object has to be
considered as an object of a super type.


Syntax :
(name : sub type :> super type )


(name :> super type )


Example


Thus we can indicate that an instance of colored point can be used as an instance
of point:
# let pc = new colored point (4,5) "white"; ;
val pc : colored_point = <obj>


# let p1 = (pc : colored point :> point); ;
val p1 : point = <obj>


# let p2 = (pc :> point); ;
val p2 : point = <obj>


Although known as a point, p1 is nevertheless a colored point, and sending the method
to string will trigger the method relevant for colored points:
# p1#to string () ; ;
- : string = "( 4, 5) with color white"


This way, it is possible to build lists containing both points and colored points:
# let l = [new point (1,2) ; p1] ; ;
val l : point list = [<obj>; <obj>]


# List.iter (fun x → x#print () ; print newline ()) l; ;
( 1, 2)







466 Chapter 15 : Object-Oriented Programming


( 4, 5) with color white


- : unit = ()


Of course, the actions that can be performed on the objects of such a list are restricted
to those allowed for points.
# p1#get color () ; ;
Characters 1-3:


This expression has type point


It has no method get_color


The combination of delayed binding and subtyping provides a new form of polymor-
phism: inclusion polymorphism. This is the ability to handle values of any type having
a subtype relation with the expected type. Although static typing information guaran-
tees that sending a message will always find the corresponding method, the behavior
of the method depends on the actual receiving object.


Subtyping is not Inheritance


Unlike mainstream object-oriented languages such as C++, Java, and SmallTalk, sub-
typing and inheritance are different concepts in Objective Caml. There are two main
reasons for this.


1. Instances of the class c2 may have a type that is a subtype of the object type
c1 even if the class c2 does not inherit from the class c1. Indeed, the class
colored point can be defined independently from the class point, provided the
type of its instances are constrained to the object type point.


2. Class c2 may inherit from the class c1 but have instances whose type is not a
subtype of the object type c1. This is illustrated in the following example, which
uses the ability to define an abstract method that takes an as yet undetermined
instance as an argument of the class being defined. In our example, this is method
eq of class equal.


# class virtual equal () =


object(self:’a)
method virtual eq : ’a → bool


end; ;
class virtual equal : unit -> object (’a) method virtual eq : ’a -> bool end


# class c1 (x0:int) =


object(self)


inherit equal ()
val x = x0


method get x = x


method eq o = (self#get x = o#get x)


end; ;
class c1 :


int ->


object (’a) val x : int method eq : ’a -> bool method get_x : int end
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# class c2 (x0:int) (y0:int) =


object(self)


inherit equal ()
inherit c1 x0


val y = y0


method get y = y


method eq o = (self#get x = o#get x) && (self#get y = o#get y)


end; ;
class c2 :


int ->


int ->


object (’a)


val x : int


val y : int


method eq : ’a -> bool


method get_x : int


method get_y : int


end


We cannot force the type of an instance of c2 to be the type of instances of c1:
# let a = ((new c2 0 0) :> c1) ; ;
Characters 11-21:


This expression cannot be coerced to type


c1 = < eq : c1 -> bool; get_x : int >;


it has type c2 = < eq : c2 -> bool; get_x : int; get_y : int >


but is here used with type < eq : c1 -> bool; get_x : int; get_y : int >


Type c2 = < eq : c2 -> bool; get_x : int; get_y : int >


is not compatible with type c1 = < eq : c1 -> bool; get_x : int >


Only the first object type has a method get_y


Types c1 and c2 are incompatible because the type of eq in c2 is not a subtype of the
type of eq in c1. To see why this is true, let o1 be an instance of c1. If o21 were an
instance of c2 subtyped to c1, then since o21 and o1 would both be of type c1 the type
of eq in c2 would be a subtype of the type of eq in c1 and the expression o21#eq(o1)
would be correctly typed. But at run-time, since o21 is an instance of class c2, the
method eq of c2 would be triggered. But this method would try to send the message
get y to o1, which does not have such a method; our type system would have failed!


For our type system to fulfill its role, the subtyping relation must be defined less näively.
We do this in the next paragraph.


Formalization


Subtyping between objects. Let t =< m1 : τ1; . . . mn : τn > and t′ =< m1 : σ1 ;
. . . ; mn : σn;mn+1 : σn+1; etc . . . > we shall say that t′ is a subtype of t, denoted by
t′ ≤ t, if and only if σi ≤ τi for i ∈ {1, . . . , n}.
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Function call. If f : t → s, and if a : t′ and t′ ≤ t then (fa) is well typed, and has
type s.


Intuitively, a function f expecting an argument of type t may safely receive ‘an argu-
ment of a subtype t′ of t.


Subtyping of functional types. Type t′ → s′ is a subtype of t → s, denoted by
t′ → s′ ≤ t → s, if and only if


s′ ≤ s and t ≤ t′


The relation s′ ≤ s is called covariance, and the relation t ≤ t′ is called contravari-
ance. Although surprising at first, this relation between functional types can easily be
justified in the context of object-oriented programs with dynamic binding.


Let us assume that two classes c1 and c2 both have a method m. Method m has type
t1 → s1 in c1, and type t2 → s2 in c2. For the sake of readability, let us denote
by m(1) the method m of c1 and m(2) that of c2. Finally, let us assume c2 ≤ c1,
i.e. t2 → s2 ≤ t1 → s1, and let us look at a simple example of the covariance and
contravariance relations.


Let g : s1 → α, and h (o : c1) (x : t1) = g(o#m(x))


Covariance: function h expects an object of type c1 as its first argument. Since
c2 ≤ c1, it is legal to pass it an object of type c2. Then the method invoked
by o#m(x) is m(2), which returns a value of type s2. Since this value is passed
to g which expects an argument of type s1, clearly we must have s2 ≤ s1.


Contravariance: for its second argument, h requires a value of type t1. If, as above,
we give h a first argument of type c2, then method m(2) is invoked. Since it
expects an argument of type t2, t1 ≤ t2.


Inclusion Polymorphism


By “polymorphism” we mean the ability to apply a function to arguments of any
“shape” (type), or to send a message to objects of various shapes.


In the context of the functional/imperative kernel of the language, we have already seen
parameterized polymorphism, which enables you to apply a function to arguments of
arbitrary type. The polymorphic parameters of the function have types containing
type variables. A polymorphic function will execute the same code for various types of
parameters. To this end, it will not depend on the structure of these arguments.


The subtyping relation, used in conjunction with delayed binding, introduces a new
kind of polymorphism for methods: inclusion polymorphism. It lets the same message
be sent to instances of different types, provided they have been constrained to the
same subtype. Let us construct a list of points where some of them are in fact colored
points treated as points. Sending the same message to all of them triggers the execution
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of different methods, depending on the class of the receiving instance. This is called
inclusion polymorphism because it allows messages from class c, to be sent to any
instance of class sc that is a subtype of c (sc :> c) that has been constrained to c.
Thus we obtain a polymorphic message passing for all classes of the tree of subtypes
of c. Contrary to parameterized polymorphism, the code which is executed may be
different for these instances.


Thanks to parameterized classes, both forms of polymorphism can be used together.


Equality between Objects


Now we can explain the somewhat surprising behavior of structural equality between
objects which was presented on page 441. Two objects are structurally equal when
they are physically the same.
# let p1 = new point (1,2); ;
val p1 : point = <obj>


# p1 = new point (1,2); ;
- : bool = false


# p1 = p1; ;
- : bool = true


This comes from the subtyping relation. Indeed we can try to compare an instance o2
of a class sc that is a subtype of c, constrained to c, with an instance of o1 from class
c. If the fields which are common to these two instances are equal, then these objects
might be considered as equal. This is wrong from a structural point of view because
o2 could have additional fields. Therefore Objective Caml considers that two objects
are structurally different when they are physically different.


# let pc1 = new colored point (1,2) "red"; ;
val pc1 : colored_point = <obj>


# let q = (pc1 :> point); ;
val q : point = <obj>


# p1 = q; ;
- : bool = false


This restrictive view of equality guarantees that an answer true is not wrong, but an
answer false guarantees nothing.


Functional Style


Object-oriented programming usually has an imperative style. A message is sent to an
object that physically modifies its internal state (i.e. its data fields). It is also possible to
use a functional approach to object-oriented programming: sending a message returns
a new object.







470 Chapter 15 : Object-Oriented Programming


Object Copy


Objective Caml provides a special syntactic construct for returning a copy of an object
self with some of the fields modified.


Syntax : {< name1=expr1;. . . ; namen=exprn >}


This way we can define functional points where methods for relative moves have no
side effect, but instead return a new point.
# class f point p =


object


inherit point p


method f rmoveto x (dx) = {< x = x + dx >}


method f rmoveto y (dy) = {< y = y + dy >}


end ; ;
class f_point :


int * int ->


object (’a)


val mutable x : int


val mutable y : int


method distance : unit -> float


method f_rmoveto_x : int -> ’a


method f_rmoveto_y : int -> ’a


method get_x : int


method get_y : int


method moveto : int * int -> unit


method print : unit -> unit


method rmoveto : int * int -> unit


method to_string : unit -> string


end


With the new methods, movement no longer modifies the receiving object; instead a
new object is returned that reflects the movement.
# let p = new f point (1,1) ; ;
val p : f_point = <obj>


# print string (p#to string ()) ; ;
( 1, 1)- : unit = ()


# let q = p#f rmoveto x 2 ; ;
val q : f_point = <obj>


# print string (p#to string ()) ; ;
( 1, 1)- : unit = ()


# print string (q#to string ()) ; ;
( 3, 1)- : unit = ()


Since these methods construct an object, it is possible to send a message directly to
the result of the method f rmoveto x.
# print string ((p#f rmoveto x 3)#to string ()) ; ;
( 4, 1)- : unit = ()
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The result type of the methods f rmoveto x and f rmoveto y is the type of the instance
of the defined class, as shown by the ’a in the type of f rmoveto x.
# class f colored point (xc, yc) (c:string) =


object


inherit f point(xc, yc)


val color = c


method get c = color


end ; ;
class f_colored_point :


int * int ->


string ->


object (’a)


val color : string


val mutable x : int


val mutable y : int


method distance : unit -> float


method f_rmoveto_x : int -> ’a


method f_rmoveto_y : int -> ’a


method get_c : string


method get_x : int


method get_y : int


method moveto : int * int -> unit


method print : unit -> unit


method rmoveto : int * int -> unit


method to_string : unit -> string


end


Sending f rmoveto x to an instance of f colored point returns a new instance of
f colored point.
# let fpc = new f colored point (2,3) "blue" ; ;
val fpc : f_colored_point = <obj>


# let fpc2 = fpc#f rmoveto x 4 ; ;
val fpc2 : f_colored_point = <obj>


# fpc2#get c; ;
- : string = "blue"


One can also obtain a copy of an arbitrary object, using the the primitive copy from
module Oo:
# Oo.copy ; ;
- : (< .. > as ’a) -> ’a = <fun>


# let q = Oo.copy p ; ;
val q : f_point = <obj>


# print string (p#to string ()) ; ;
( 1, 1)- : unit = ()


# print string (q#to string ()) ; ;
( 1, 1)- : unit = ()


# p#moveto(4,5) ; ;
- : unit = ()


# print string (p#to string ()) ; ;
( 4, 5)- : unit = ()
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# print string (q#to string ()) ; ;
( 1, 1)- : unit = ()


Example: a Class for Lists


A functional method may use the object itself, self, to compute the value to be
returned. Let us illustrate this point by defining a simple hierarchy of classes for rep-
resenting lists of integers.


First we define the abstract class, parameterized by the type of list elements.
# class virtual [’a] o list () =


object


method virtual empty : unit → bool


method virtual cons : ’a → ’a o list


method virtual head : ’a
method virtual tail : ’a o list


end; ;


We define the class of non empty lists.
# class [’a] o cons (n ,l) =


object (self)


inherit [’a] o list ()
val car = n


val cdr = l


method empty () = false


method cons x = new o cons (x, (self : ’a #o list :> ’a o list))


method head = car


method tail = cdr


end; ;
class [’a] o_cons :


’a * ’a o_list ->


object


val car : ’a


val cdr : ’a o_list


method cons : ’a -> ’a o_list


method empty : unit -> bool


method head : ’a


method tail : ’a o_list


end


We should note that method cons returns a new instance of ’a o cons. To this effect,
the type of self is constrained to ’a #o list, then subtyped to ’a o list. With-
out subtyping, we would obtain an open type (’a #o list), which appears in the
type of the methods, and is strictly forbidden (see page 456). Without the additional
constraint, the type of self could not be a subtype of ’a o list.


This way we obtain the expected type for method cons. So now we know the trick and
we define the class of empty lists.
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# exception EmptyList ; ;
# class [’a] o nil () =


object(self)


inherit [’a] o list ()
method empty () = true


method cons x = new o cons (x, (self : ’a #o list :> ’a o list))


method head = raise EmptyList


method tail = raise EmptyList


end ; ;


First of all we build an instance of the empty list, and then a list of integers.
# let i = new o nil () ; ;
val i : ’_a o_nil = <obj>


# let l = new o cons (3,i); ;
val l : int o_list = <obj>


# l#head; ;
- : int = 3


# l#tail#empty () ; ;
- : bool = true


The last expression sends the message tail to the list containing the integer 3, which
triggers the method tail from the class ’a o cons. The message empty(), which
returns true, is sent to this result. You can see that the method which has been
executed is empty from the class ’a o nil.


Other Aspects of the Object Extension


In this section we describe the declaration of “object” types and local declarations in
classes. The latter can be used for class variables by making constructors that reference
the local environment.


Interfaces


Class interfaces are generally infered by the type system, but they can also be defined
by a type declaration. Only public methods appear in this type.


Syntax :


class type name =
object


...
val namei : typei


...
method namej : typej


...
end
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Thus we can define the class point interface:
# class type interf point =


object


method get x : int


method get y : int


method moveto : (int * int ) → unit


method rmoveto : (int * int ) → unit


method to string : unit → string


method distance : unit → float


end ; ;


This declaration is useful because the defined type can be used as a type constraint.
# let seg length (p1:interf point) (p2:interf point) =


let x = float of int (p2#get x - p1#get x)


and y = float of int (p2#get y - p1#get y) in


sqrt ((x*.x) +. (y*.y)) ; ;
val seg_length : interf_point -> interf_point -> float = <fun>


Interfaces can only mask fields of instance variables and private methods. They cannot
mask abstract or public methods.


This is a restriction in their use, as shown by the following example:
# let p = ( new point m1 (2,3) : interf point); ;
Characters 11-29:


This expression has type


point_m1 =


< distance : unit -> float; get_x : int; get_y : int;


moveto : int * int -> unit; rmoveto : int * int -> unit;


to_string : unit -> string; undo : unit -> unit >


but is here used with type


interf_point =


< distance : unit -> float; get_x : int; get_y : int;


moveto : int * int -> unit; rmoveto : int * int -> unit;


to_string : unit -> string >


Only the first object type has a method undo


Nevertheless, interfaces may use inheritance. Interfaces are especially useful in com-
bination with modules: it is possible to build the signature of a module using object
types, while only making available the description of class interfaces.


Local Declarations in Classes


A class declaration produces a type and a constructor. In order to make this chapter
easier to read, we have been presenting constructors as functions without an environ-
ment. In fact, it is possible to define constructors which do not need initial values to
create an instance: that means that they are no longer functional. Furthermore one







Other Aspects of the Object Extension 475


can use local declarations in the class. Local variables captured by the constructor are
shared and can be treated as class variables.


Constant Constructors


A class declaration does not need to use initial values passed to the constructor. For
example, in the following class:
# class example1 =


object


method print () = ()
end ; ;


class example1 : object method print : unit -> unit end


# let p = new example1 ; ;
val p : example1 = <obj>


The instance constructor is constant. The allocation does not require an initial value
for the instance variables. As a rule, it is better to use an initial value such as (), in
order to preserve the functional nature of the constructor.


Local Declarations for Constructors


A local declaration can be written directly with abstraction.
# class example2 =


fun a →
object


val mutable r = a


method get r = r


method plus x = r <- r + x


end; ;
class example2 :


int ->


object val mutable r : int method get_r : int method plus : int -> unit end


Here it is easier to see the functional nature of the constructor. The constructor is a
closure which may have an environment that binds free variables to an environment
of declarations. The syntax for class declarations allows local declarations in this func-
tional expression.


Class Variables


Class variables are declarations which are known at class level and therefore shared
by all instances of the class. Usually these class variables can be used outside of any
instance creation. In Objective Caml, thanks to the functional nature of a constructor
with a non-empty environment, we can make these values (particularly the modifiable
ones) shared by all instances of a class.


We illustrate this facility with the following example, which allows us to keep a register
of the number of instances of a class. To do this we define a parameterized abstract
class ’a om.
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# class virtual [’a] om =


object


method finalize () = ()
method virtual destroy : unit → unit


method virtual to string : unit → string


method virtual all : ’a list


end; ;


Then we declare class ’a lo, whose constructor contains local declarations for n, which
associates a unique number with each instance, and for l, which contains the list of
pairs (number, instance) of still active instances.
# class [’a] lo =


let l = ref []
and n = ref 0 in


fun s →
object(self:’b )


inherit [’a] om


val mutable num = 0


val name = s


method to string () = s


method print () = print string s


method print all () =


List.iter (function (a,b) →
Printf.printf "(%d,%s) " a (b#to string ())) !l


method destroy () = self#finalize () ;
l:= List.filter (function (a,b) → a <> num) !l; ()


method all = List.map snd !l


initializer incr n; num <- !n; l:= (num, (self :> ’a om) ) :: !l ; ()
end; ;


class [’a] lo :


string ->


object


constraint ’a = ’a om


val name : string


val mutable num : int


method all : ’a list


method destroy : unit -> unit


method finalize : unit -> unit


method print : unit -> unit


method print_all : unit -> unit


method to_string : unit -> string


end


At each creation of an instance of class lo, the initializer increments the reference n
and adds the pair (number, self) to the list l. Methods print and print all display
respectively the receiving instance and all the instances containing in l.


# let m1 = new lo "start"; ;
val m1 : (’a om as ’a) lo = <obj>
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# let m2 = new lo "between"; ;
val m2 : (’a om as ’a) lo = <obj>


# let m3 = new lo "end"; ;
val m3 : (’a om as ’a) lo = <obj>


# m2#print all () ; ;
(3,end) (2,between) (1,start) - : unit = ()


# m2#all; ;
- : (’a om as ’a) list = [<obj>; <obj>; <obj>]


Method destroy removes an instance from the list of instances, and calls method
finalize to perform a last action on this instance before it disappears from the list.
Method all returns all the instances of a class created with new.
# m2#destroy () ; ;
- : unit = ()


# m1#print all () ; ;
(3,end) (1,start) - : unit = ()


# m3#all; ;
- : (’a om as ’a) list = [<obj>; <obj>]


We should note that instances of subclasses are also kept in this list. Nothing prevents
you from using the same technique by specializing some of these subclasses. On the
other hand, the instances obtained by a copy (Oo.copy or {< >}) are not tracked.


Exercises


Stacks as Objects


Let us reconsider the stacks example, this time in object oriented style.


1. Define a class intstack using Objective Caml’s lists, implementing methods
push, pop, top and size.


2. Create an instance containing 3 and 4 as stack elements.


3. Define a new class stack containing elements answering the method
print : unit -> unit.


4. Define a parameterized class [’a] stack, using the same methods.


5. Compare the different classes of stacks.


Delayed Binding


This exercise illustrates how delayed binding can be used in a setting other than sub-
typing.


Given the program below:
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1. Draw the relations between classes.


2. Draw the different messages.


3. Assuming you are in character mode without echo, what does the program dis-
play?


exception CrLf; ;
class chain read (m) =


object (self)


val msg = m


val mutable res = ""


method char read =


let c = input char stdin in


if (c != ’\n’) then begin


output char stdout c; flush stdout


end;
String.make 1 c


method private chain read aux =


while true do


let s = self#char read in


if s = "\n" then raise CrLf


else res <- res ^ s;
done


method private chain read aux2 =


let s = self#lire char in


if s = "\n" then raise CrLf


else begin res <- res ^ s; self#chain read aux2 end


method chain read =


try


self#chain read aux


with End of file → ()
| CrLf → ()


method input = res <- ""; print string msg; flush stdout;
self#chain read


method get = res


end; ;


class mdp read (m) =


object (self)


inherit chain read m


method char read = let c = input char stdin in


if (c != ’\n’) then begin


output char stdout ’*’; flush stdout


end;
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let s = " " in s.[0] <- c; s


end; ;


let login = new chain read("Login : "); ;
let passwd = new mdp read("Passwd : "); ;
login#input; ;
passwd#input; ;
print string (login#get); ;print newline () ; ;
print string (passwd#get); ;print newline () ; ;


Abstract Classes and an Expression Evaluator


This exercise illustrates code factorization with abstract classes.


All constructed arithmetic expressions are instances of a subclass of the abstract class
expr ar.


1. Define an abstract class expr ar for arithmetic expressions with two abstract
methods: eval of type float, and print of type unit, which respectively eval-
uates and displays an arithmetic expression.


2. Define a concrete class constant, a subclass of expr ar.


3. Define an abstract subclass bin op of expr ar implementing methods eval and
print using two new abstract methods oper, of type (float * float) -> float


(used by eval) and symbol of type string (used by print).


4. Define concrete classes add and mul as subclasses of bin op that implement the
methods oper and symbol.


5. Draw the inheritance tree.


6. Write a function that takes a sequence of Genlex.token, and constructs an object
of type expr ar.


7. Test this program by reading the standard input using the generic lexical analyzer
Genlex. You can enter the expressions in post-fix form.


The Game of Life and Objects.


Define the following two classes:


• cell : for the cells of the world, with the method isAlive : unit -> bool


• world : with an array of cell, and the messages:
display : unit -> unit
nextGen : unit -> unit
setCell : int * int -> cell -> unit
getCell : int * int -> cell


1. Write the class cell.
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2. Write an abstract class absWorld that implements the abstract methods display,
getCell and setCell. Leave the method nextGen abstract.


3. Write the class world, a subclass of absWorld, that implements the method
nextGen according to the growth rules.


4. Write the main program which creates an empty world, adds some cells, and
then enters an interactive loop that iterates displaying the world, waiting for an
interaction and computing the next generation.


Summary


This chapter described the object extension of the language Objective Caml. The
class organization is an alternative to modules that, thanks to inheritance and delayed
binding, allows object modeling of an application, as well as reusability and adaptability
of programs. This extension is integrated with the type system of Objective Caml and
adds the notion of subtype, which allows instances to be used as a subtype in any place
where a value of this type is expected. By combining subtyping and delayed binding,
we obtain inclusion polymorphism, which, for instance, allows us to build homogeneous
lists from the point of view of types, albeit non-homogeneous with regard to behavior.


To Learn More


There are a huge number of publications on object-oriented programming. Each lan-
guage implements a different model.


A general introduction (still topical for the first part) is “Langages à Objets ” ([MNC+91])
which explains the object-oriented approach. A more specialized book, “Langages et
modèles à objets” [DEMN98], gives the examples in this domain.


For modeling, the book “Design patterns” ([GHJV95]) gives a catalogue of design
patterns that show how reusability is possible.


The reference site for the UML notation is Rational:


Link: http://www.rational.com/uml/resources


For functional languages with an object extension, we mention the “Lisp” objects,
coming from the SMALLTALK world, and CLOS (meaning Common Lisp Object Sys-
tem), as well as a number of Scheme’s implementing generic functions similar to those
in CLOS.


Other proposals for object-oriented languages have been made for statically typed func-
tional languages, such as Haskell, a pure functional language which has parameterized
and ad hoc polymorphism for overloading.


The paper [RV98] presents the theoretical aspects of the object extension of Objective
Caml.
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To learn more on the static object typing in Objective Caml, you can look at several
lectures available online.


Lectures by Maŕıa-Virginia Aponte:


Link: http://tulipe.cnam.fr/personne/aponte/ocaml.html


A short presentation of objects by Didier Rémy:


Link: http://pauillac.inria.fr/˜remy/objectdemo.html


Lectures by Didier Rémy at Magistère MMFAI:


Link: http://pauillac.inria.fr/˜remy/classes/magistere/


Lectures by Roberto Di Cosmo at Magistère MMFAI:


Link: http://www.dmi.ens.fr/users/dicosmo/CourseNotes/OO/
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16
Comparison of the


Models of
Organisation


Chapters 14 and 15 respectively presented two models of application organisation: The
functional/modular model and the object model. These two models address, each in
its own way, the needs of application development:


• logical organisation of a program: module or class;


• separate compilation: simple module;


• abstract data types: module (abstract type) or object;


• reuse of components: functors/sharing of types with parametric polymorphism
or inheritance/subtyping with parameterized classes;


• modifiability of components: late binding (object).


The development of a modular application begins by dividing it into logical units:
modules. This is followed by the actualization of their specification by writing their
signature, and finally by implementation. During the implementation of a module, it
may be necessary to modify its signature or that of its parameters; it is then necessary
to modify their sources. This is unsatisfactory if the same module is already used by
another application. Nevertheless, this process offers a strict and reassuring framework
for the programmer.


In the object model, the analysis of a problem results in the description of the relations
between classes. If, later on, a class does not provide the required functionality, it is
always possible to extend it by subclassing. This process permits the reuse of large
hierarchies of classes without modifying their sources, and thus not modifying the
behavior of an application that uses them, either. Unfortunately, this technique leads
to code bloat, and poses difficulties of duplication with multiple inheritance.


Many problems necessitate recursive data types and operations which manipulate val-
ues of these types. It often happens that the problem evolves, sometimes in the course
of implementation, sometimes during maintenance, requiring an extension of the types
and operations. Neither of these two models permits extension in both ways. In the
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functional/modular model, types are not extensible, but one can create new functions
(operations) on the types. In the object model, one can extend the objects, but not
the methods (by creating a new subclass on an abstract class which implements its
methods.) In this respect, the two models are duals.


The advantage of uniting these two models in the same language is to be able to choose
the most appropriate model for the resolution of the problem in question, and to mix
them in order to overcome the limitations of each model.


Plan of the Chapter


The first section compares the functional/modular model and the object model. This
comparison brings out the particular features of each model, in order to show how
many of them may be translated by hand into the other model. One can thus simulate
inheritance with modules and use classes to implement simple modules. The limitations
of each model are then reviewed. The second section is concerned with the problem of
extensibility for data structures and methods, and proposes a solution which mixes the
two models. The third section describes some other combinations of the two models by
the use of abstract module types for objects.


Comparison of Modules and Objects


The main difference between modular programming and object programming in Objec-
tive Caml comes from the type system. In effect, programming with modules remains
within the ML type system (i.e. parametric polymorphism code is executed for different
types of parameter), while programming with objects entails an ad hoc polymorphism
(in which the sending of a message to an object triggers the application of different
pieces of code). This is particularly clear with subtyping. This extension of the ML
type system can not be simulated in pure ML. It will always be impossible to con-
struct heterogeneous lists without breaking the type system.


Modular programming and object programming are two safe (thanks to typing) ap-
proaches to the logical organisation of a program, permitting the reusability and the
modifiability of software components. Programming with objects in Objective Caml
allows parametric polymorphism (parameterized classes) and inclusion/subtype poly-
morphism (sending of messages) thanks to late binding and subtyping, with restrictions
due to equality, facilitating incremental programming. Modular programming allows
one to restrict parametric polymorphism and use immediate binding, which can be
useful for conserving efficiency of execution.


The modular programming model permits the easy extension of functions on non-
extensible recursive data types. If one wishes to add a case in a variant type, it will be
necessary to modify a large part of the sources.
The object model of programming defines a set of recursive data types using classes.
One interprets a class as a case of the data type.
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Efficiency of Execution


Late binding corresponds to an indirection in the method table (see page 447). Just
as the access to an instance variable from outside the class goes through a message
dispatch, this accumulation of indirections can prove to be costly.


To show this loss of efficiency, we construct the following class hierarchy:
# class virtual test () =


object


method virtual sum : unit → int


method virtual sum2 : unit → int


end; ;
# class a x =


object(self)


inherit test ()
val a = x


method a = a


method sum () = a


method sum2 () = self#a


end; ;
# class b x y =


object(self)


inherit a x as super


val b = y


method b = b


method sum () = b + a


method sum2 () = self#b + super#sum2 ()
end; ;


Now, we compare the execution time, on one hand of the dispatch of messages sum and
sum2 to an instance of class b, and on the other hand of a call to the following function
f.
# let f a b = a + b ; ;
# let iter g a n = for i = 1 to n do ignore(g a) done ; g a ; ;
# let go i j = match i with


1 → iter (fun x → x#sum ()) (new b 1 2) j


| 2 → iter (fun x → x#sum2 ()) (new b 1 2) j


| 3 → iter (fun x → f 1 x) 2 j ; ;


# go (int of string (Sys.argv.(1))) (int of string (Sys.argv.(2))) ; ;


For 10 million iterations, we get the following results:


bytecode native
case 1 07,5 s 0,6 s
case 2 15,0 s 2,3 s
case 3 06,0 s 0,3 s
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This example has been constructed in order to show that late binding has a cost relative
to the standard static binding. This cost depends on the quantity of calculation relative
to the number of message dispatches in a function. The use of the native compiler
reduces the calculation component without changing the indirection component of the
test. We can see in case 2 that the multiple indirections at the dispatch of message
sum2 have an “incompressible” cost.


Example: Graphical Interface


The AWI graphical library (see page 377) was designed using the functional/imperative
core of the language. It is very easy to adapt it into module form. Each component
becomes an independent module, thus permitting a harmonization of function names.
To add a component, it is necessary to know the concrete type of its components. It
is up to the new module to modify the fields necessary to describe its appearance and
its behaviors.


The library can also be rewritten as an object. For this we construct the hierarchy of
classes shown in figure 16.1.


panelchoice


button


textfield


1
component


containerlabel


option


graphics


event


Figure 16.1: Class hierarchy for AWI.


It is easier to add new components, thanks to inheritance, than when using modules;
however, the absence of overloading still requires options to be encoded as method
parameters. The use of the subtyping relation makes it easy to construct a list of the
constituents of a container. Deferred linking selects the methods appropriate to the
component. The interest of the object model also comes from the possibility of extend-
ing or modifying the graphics context, and the other types that are used, again thanks
to inheritance. This is why the principal graphics libraries are organised according to
the object model.
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Translation of Modules into Classes


A simple module which only declares one type and does not have any type-independent
polymorphic functions can be translated into a class. According to the nature of the
type used (record type or variant type) one translates the module into a class in a
different way.


Type Declarations


Record type. A record type can be written directly in the form of a class in which
every field of the record type becomes an instance variable.


Variant type. A variant type translates into many classes, using the conceptual
model of a “composite”. An abstract class describes the operations (functions) on
this type. Every branch of the variant type thus becomes a subclass of the abstract
class, and implements the abstract methods for its branch. We no longer have pattern
matching but instead choose the method specific to the branch.


Parameterized types. Parameterized types are implemented by parameterized classes.


Abstract types. We can consider a class as an abstract type. At no time is the
internal state of the class visible outside its hierarchy. Nevertheless, nothing prevents
us from defining a subclass in order to access the variables of the instances of a class.


Mutually recursive types. The declarations of mutually recursive types are trans-
lated into declarations of mutually recursive classes.


Function Declarations


Those functions with parameters dependent on the module type, t, are translatable
into methods. Functions in which t does not appear may be declared private inasmuch
as their membership of the module is not directly linked to the type t. This has the
added advantage that there is no problem if type variables appear in the type of the
parameters. We are left with the problem of functions in which one parameter is of
type t and another is of type ’a. These functions are very rare in the modules of the
standard library. We can identify “peculiar” modules like Marshal or Printf which
have non-standard typing, and modules (that operate) on linear structures like List.
For this last, the function fold left, of type (’a -> ’b -> ’a) -> ’a -> ’b list


-> ’a is difficult to translate, especially in a method of the class [’b] list because
the type variable ’a is free and may not appear in the type of the method. Rather than
adding a type parameter to the list class, it is preferable to break these functions out
into new classes, parameterized by two type variables and having a list field.
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Binary methods. Binary methods do not pose any problem, outside subtyping.


Other declarations. Declarations of non-functional values. We can accept the dec-
laration of non-functional values outside classes. This is also true for exceptions.


Example: Lists with Iterator. We are trying to translate a module with the fol-
lowing signature LIST into an object.


# module type LIST = sig


type ’a list = C0 | C1 of ’a * ’a list


val add : ’a list → ’a → ’a list


val length : ’a list → int


val hd : ’a list → ’a
val tl : ’a list → ’a list


val append : ’a list → ’a list → ’a list


val fold left : (’a → ’b → ’a) → ’a → ’b list → ’a
end ; ;


First of all, we declare the abstract class ’a list corresponding to the definition of
the type.
# class virtual [’a] list () =


object (self : ’b)
method virtual add : ’a → ’a list


method virtual empty : unit → bool


method virtual hd : ’a
method virtual tl : ’a list


method virtual length : unit → int


method virtual append : ’a list → ’a list


end ; ;


Then we define the two subclasses c1 list and c0 list for each constituent of the
variant type. Each of these classes should define the methods of the ancestor abstract
class
# class [’a] c1 list (t, q) =


object (self )


inherit [’a] list () as super


val t = t


val q = q


method add x = new c1 list (x, (self : ’a #list :> ’a list))


method empty () = false


method length () = 1 + q#length ()
method hd = t


method tl = q


method append l = new c1 list (t,q#append l)


end ; ;
# class [’a] c0 list () =


object (self)
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inherit [’a] list () as super


method add x = new c1 list (x, (self : ’a #list :> ’a list))


method empty () = true


method length () = 0


method hd = failwith "c0_list : hd"


method tl = failwith "c0_list : tl"


method append l = l


end ; ;
# let l = new c1 list (4, new c1 list (7, new c0 list ())) ; ;
val l : int list = <obj>


The function LIST.fold left has not been incorporated into the list class to avoid
introducing a new type parameter. We prefer to define the class fold left to imple-
ment this method. For this, we use a functional instance variable (f).
# class virtual [’a,’b] fold left () =


object(self)


method virtual f : ’a → ’b → ’a
method iter r (l : ’b list) =


if l#empty () then r else self#iter (self#f r (l#hd)) (l#tl)


end ; ;
# class [’a,’b] gen fl f =


object


inherit [’a,’b] fold left ()
method f = f


end ; ;


Thus we construct an instance of the class gen fl for addition:
# let afl = new gen fl (+) ; ;
val afl : (int, int) gen_fl = <obj>


# afl#iter 0 l ; ;
- : int = 11


Simulation of Inheritance with Modules


Thanks to the relation of inheritance between classes, we can retrieve in a subclass the
collection of variable declarations and methods of the ancestor class. We can simulate
this relation by using modules. The subclass which inherits is transformed into a pa-
rameterized module, of which the parameter is the ancestor class. Multiple inheritance
increases the number of parameters of the module. We revisit the classic example of
points and colored points, described in chapter 15, to translate it into modules.


The class point becomes the module Point with the following signature POINT.
# module type POINT =


sig


type point


val new point : (int * int) → point


val get x : point → int
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val get y : point → int


val moveto : point → (int * int) → unit


val rmoveto : point → (int * int) → unit


val display : point → unit


val distance : point → float


end ; ;


The class colored point is transformed into a parameterized module ColoredPoint
which has the signature POINT as its parameter.
# module ColoredPoint = functor (P : POINT) →


struct


type colored point = {p:P.point;c:string}
let new colored point p c = {p=P.new point p;c=c}
let get c self = self.c


(* begin *)


let get x self = let super = self.p in P.get x super


let get y self = let super = self.p in P.get y super


let moveto self = let super = self.p in P.moveto super


let rmoveto self = let super = self.p in P.rmoveto super


let display self = let super = self.p in P.display super


let distance self = let super = self.p in P.distance super


(* end *)


let display self =


let super = self.p in P.display super; print string ("has color "^ self.c)


end ; ;


The burden of “inherited” declarations can be lightened by an automatic translation
procedure, or an extension of the language. Recursive method declarations can be
written with a single let rec ... and. Multiple inheritance leads to functors with
many parameters. The cost of redefinition is not greater than that of late binding.


Late binding is not implemented in this simulation. To achieve it, it is necessary to
define a record in which each field corresponds to the type of its functions/methods.


Limitations of each Model


The functional/modular module offers a reassuring but rigid framework for the modi-
fiability of code. Objective Caml’s object model suffers from “double vision” of classes:
structuring and type, implying the absence of overloading and the impossibility of
imposing type constraints from an ancestor type on a descendant type.


Modules


The principal limitations of the functional/modular model arise from the difficulty of
extending types. Although abstract types allow us to get away from the concrete rep-
resentation of a type, their use in parameterized modules requires that type equalities
between modules be indicated by hand, complicating the writing of signatures.
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Recursive dependencies. The dependence graph of the modules in an application
is a directed acyclic graph (DAG). This implies on the one hand that there are no
types that are mutually recursive between two modules, and on the other prevents the
declaration of mutually recursive values.


Difficulties in writing signatures. One of the attractions of type inference is that
it is not necessary to specify the types of function parameters. The specification of
signatures sacrifices this convenience. It becomes necessary to specify the types of the
declarations of the signature “by hand.” One can use the -i option of the compiler
ocamlc to display the type of all the global declarations in a .ml file and use this
information to construct the signature of a module. In this case, we lose the “software
engineering” discipline which consists of specifying the module before implementing it.
In addition, if the signature and module undergo large changes, we will have to go back
to editing the signature. Parameterized modules need signatures for their parameters
and those should also be written by hand. Finally if we associate a functional signature
with a parameterized module, it is impossible to recove the signature resulting from the
application of the functor. This obliges us to mostly write non-functional signatures,
leaving it until later to assemble them to construct a functional signature.


Import and export of modules. The importation of the declarations of a simple
module is achieved either by dot notation (Module.name) or directory by the name
of a declaration (name) if the model has been opened (open Module). The declaration
of the interface of the imported module is not directly exportable at the level of the
module in process of being defined. It has access to these declarations, but they are not
considered as declarations of the module. In order to do this it is necessary to declare,
in the same way as the simulation of inheritance, imported values. The same is true for
parameterized modules. The declarations of the module parameters are not considered
as declarations of the current module.


Objects


The principle limitations of the Objective Caml object model arise from typing.


• no methods containing parameters of free type;


• difficulty of escaping from the type of a class in one of its methods;


• absence of type constraint from the ancestor type on its descendant;


• no overloading;


The most disconcerting point when you start with the object extension of Objective
Caml is the impossibility of constructing methods containing a parameterized type in
which the type parameter is free. The declaration of a class can be seen as the definition
of a new type, and hence arises the general rule forbidding the presence of variables
with free type in the declaration of a type. For this reason, parameterized classes are
indispensable in the Objective Caml object model because they permit the linking of
their type variables.
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Absence of overloading. The Objective Caml object model does not allow method
overloading. As the type of an object corresponds to types of its methods, the fact of
possessing many methods with the same name but different types would result in
numerous ambiguities, due to parametric polymorphism, which the system could only
resolve dynamically. This would be contradictory to the vision of totally static typing.
We take a class example which has two message methods, the first having an integer
parameter, and the second a float parameter. Let e be an instance of this class and f
be the following function:
# let f x a = x#message a ; ;


The calls f e 1 et f e 1.1 cannot be statically resolved because there is no information
about the class example in the code of the function f.


An immediate consequence of this absence is the uniqueness of instance constructors.
The declaration of a class indicates the parameters to supply to the creation function.
This constructor is unique.


Initialization. The initialization of instance variables declared in a class can be
problematic when it should be calculated based on the values passed to the constructor.


Equality between instances. The only equality which applies to objects is physical
equality. Structural equality always returns false when it is applied to two physically
different objects. This can be surprising inasmuch as two instances of the same class
share the same method table. One can imagine a physical test on the method table and
a structural test on the values (val) of objects. These are the implementation choices
of the linear pattern-matching style.


Class hierarchy. There is no class hierarchy in the language distribution. In fact
the collection of libraries are supplied in the form of simple or parameterized modules.
This demonstrates that the object extension of the language is still stabilizing, and
makes little case for its extensive use.


Extending Components


We call a collection of data and methods on the data a component. In the func-
tional/modular model, a component consists of the definition of a type and some func-
tions which manipulate the type. Similarly a component in the object model consists
of a hierarchy of classes, inheriting from one (single) class and therefore having all of
its behaviors. The problem of the extensibility of components consists of wanting on
the one hand to extend the behaviors and on the other to extend the data operated on,
and all this without modifying the initial program sources. For example a component
image can be either a rectangle or a circle which one can draw or move.
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rectangle circle group
draw X X
move X X


grow


We might wish to extend the image component with the method grow and create
groups of images. The behavior of the two models differs depending on the direction
of the extension: data or methods. First we define, in each model, the common part of
the image component, and then we try to extend it.


In the Functional Model


We define the type image as a variant type which contains two cases. The methods
take a parameter of type image and carry out the required action.
# type image = Rect of float | Circle of float ; ;
# let draw = function Rect r → ... | Circle c → ... ; ;
# let move = ... ; ;


Afterwards, we could encapsulate these global declarations in a simple module.


Extension of Methods


The extension of the methods depends on the representation of the type image in the
module. If this type is abstract, it is no longer possible to extend the methods. In the
case where the type remains concrete, it is easy to add a grow function which changes
the scale of an image by choosing a rectangle or a circle by pattern matching.


Extension of Data Types


The extension of data types cannot be achieved with the type image. In fact Objective
Caml types are not extensible, except in the case of the type exn which represents
exceptions. It is not possible to extend data while keeping the same type, therefore it
is necessary to define a new type n image in the following way:


type n_image = I of image | G of n_image * n_image;;


Thus we should redefine the methods for this new type, simulating a kind of inheritance.
This becomes complex when there are many extensions.


In the Object Model


We define the classes rectangle and circle, subclasses of the abstract class image
which has two abstract methods, draw and move.
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# class virtual image () =


object(self:’a)
method virtual draw : unit → unit


method virtual move : float * float → unit


end; ;
# class rectangle x y w h =


object


inherit image ()
val mutable x = x


val mutable y = y


val mutable w = w


val mutable h = h


method draw () = Printf.printf "R: (%f,%f) [%f,%f]" x y w h


method move (dx,dy) = x <- x +. dx; y <- y +. dy


end; ;
# class circle x y r =


object


val mutable x = x


val mutable y = y


val mutable r = r


method draw () = Printf.printf "C: (%f,%f) [%f]" x y r


method move (dx, dy) = x <- x +. dx; y <- y +. dy


end; ;


The following program constructs a list of images and displays it.
# let r = new rectangle 1. 1. 3. 4.; ;
val r : rectangle = <obj>


# let c = new circle 1. 1. 4.; ;
val c : circle = <obj>


# let l = [ (r :> image); (c :> image)]; ;
val l : image list = [<obj>; <obj>]


# List.iter (fun x → x#draw () ; print newline ()) l; ;
R: (1.000000,1.000000) [3.000000,4.000000]


C: (1.000000,1.000000) [4.000000]


- : unit = ()


Extension of Data Types


The data are easily extended by adding a subclass of the class image in the following
way.
# class group i1 i2 =


object


val i1 = (i1:#image)


val i2 = (i2:#image)


method draw () = i1#draw () ; print newline () ; i2#draw ()
method move p = i1#move p; i2#move p


end; ;
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We notice now that the “type” image becomes recursive because the class group de-
pends outside inheritance on the class image.
# let g = new group (r:>image) (c:>image); ;
val g : group = <obj>


# g#draw () ; ;
R: (1.000000,1.000000) [3.000000,4.000000]


C: (1.000000,1.000000) [4.000000]- : unit = ()


Extension of Methods


We define an abstract subclass of image which contains a new method.
# class virtual e image () =


object


inherit image ()
method virtual surface : unit → float


end; ;


We can define classes e rectangle and e circle which inherit from e image and from
rectangle and circle respectively. We can then work on extended image to use this
new method. There is a remaining difficulty with the class group. This contains two
fields of type image, so even when inheriting from the class e image it will not be
possible to send the grow message to the image fields. It is thus possible to extend the
methods, except in the case of subclasses corresponding to recursive types.


Extension of Data and Methods


To implement extension in both ways, it is necessary to define recursive types in the
for of a parameterized class. We redefine the class group.
# class [’a] group i1 i2 =


object


val i1 = (i1:’a)
val i2 = (i2:’a)
method draw () = i1#draw () ; i2#draw ()
method move p = i1#move p; i2#move p


end; ;


We then carry on the same principle for the class e image.
# class virtual ext image () =


object


inherit image ()
method virtual surface : unit → float


end; ;
# class ext rectangle x y w h =


object


inherit ext image ()
inherit rectangle x y w h
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method surface () = w *. h


end; ;
# class ext circle x y r=


object


inherit ext image ()
inherit circle x y r


method surface () = 3.14 *. r *.r


end; ;


The extension of the class group thus becomes
# class [’a] ext group ei1 ei2 =


object


inherit image ()
inherit [’a] group ei1 ei2


method surface () = ei1#surface () +. ei2#surface ()
end; ;


We get the following program which constructs a list le of the type ext image.
# let er = new ext rectangle 1. 1. 2. 4. ; ;
val er : ext_rectangle = <obj>


# let ec = new ext circle 1. 1. 8.; ;
val ec : ext_circle = <obj>


# let eg = new ext group er ec; ;
val eg : ext_rectangle ext_group = <obj>


# let le = [ (er:>ext image); (ec :> ext image); (eg :> ext image)]; ;
val le : ext_image list = [<obj>; <obj>; <obj>]


# List.map (fun x → x#surface ()) le; ;
- : float list = [8; 200.96; 208.96]


Generalization


To generalize the extension of the methods it is preferable to integrate some functions
in a method handler and to construct a parameterized class with the return type of
the method. For this we define the following class:
# class virtual [’a] get image (f: ’b → unit → ’a) =


object(self:’b)
inherit image ()
method handler () = f(self) ()


end; ;


The following classes then possess an additional functional parameter for the construc-
tion of their instances.
# class [’a] get rectangle f x y w h =


object(self:’b)
inherit [’a] get image f


inherit rectangle x y w h


method get = (x,y,w,h)







Mixed Organisations 497


end; ;
# class [’a] get circle f x y r=


object(self:’b)
inherit [’a] get image f


inherit circle x y r


method get = (x,y,r)


end; ;


The extension of the class group thus takes two type parameters:
# class [’a,’c] get group f eti1 eti2 =


object


inherit [’a] get image f


inherit [’c] group eti1 eti2


method get = (i1,i2)


end; ;


We get the program which extends the method of the instance of get image.
# let etr = new get rectangle


(fun r () → let (x,y,w,h) = r#get in w *. h) 1. 1. 2. 4. ; ;
val etr : float get_rectangle = <obj>


# let etc = new get circle


(fun c () → let (x,y,r) = c#get in 3.14 *. r *. r) 1. 1. 8.; ;
val etc : float get_circle = <obj>


# let etg = new get group


(fun g () → let (i1,i2) = g#get in i1#handler () +. i2#handler ())
(etr :> float get image) (etc :> float get image); ;


val etg : (float, float get_image) get_group = <obj>


# let gel = [ (etr :> float get image) ; (etc :> float get image) ;
(etg :> float get image) ]; ;


val gel : float get_image list = [<obj>; <obj>; <obj>]


# List.map (fun x → x#handler ()) gel; ;
- : float list = [8; 200.96; 208.96]


The extension of data and methods is easier in the object model when it is combined
with the functional model.


Mixed Organisations


The last example of the preceding section showed the advantages that there are in
mixing the two models for the problem of the extensibility of components. We now
propose to mix parameterized modules and late binding to benefit from the power of
these two features. The application of the functor will produce new modules containing
classes which use the type and functions of the parameterized module. If, moreover,
the signature obtained is compatible with the signature of the parameterized module,
it is then possible to re-apply the parameterized module to the resulting module, thus
making it possible to construct new classes automatically.
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A concrete example is given in the last part of this book which is dedicated to concur-
rent and/or distributed programs (page 651). We use a functor to generate a communi-
cation protocol starting from a data type; a second functor permits us to then deduce
from this protocol a class which implements a generic server which handles requests
expressed in the protocol. Inheritance can then be used to specialize the server into
the service that is actually required.


Exercises


Classes and Modules for Data Structures


We wish to construct class hierarchies based on the application of functors for classical
data structures.


We define the following structures


# module type ELEMENT =


sig


class element :


string →
object


method to string : unit → string


method of string : string → unit


end


end ; ;


# module type STRUCTURE =


sig


class [’a] structure :


object


method add : ’a → unit


method del : ’a → unit


method mem : ’a → bool


method get : unit → ’a
method all : unit → ’a list


method iter : (’a → unit) → unit


end


end ; ;


1. Write a module with 2 parameters M1 and M2 of types ELEMENT and STRUCTURE,
constructing a sub-class of [’a] structure in which ’a is constrained to M1.-


element.


2. Write a simple module Integer which respects the signature ELEMENT.


3. Write a simple moduleStack which respects the signature STRUCTURE.


4. Apply the functor to its two parameters.
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5. Modify the functor by adding the methods to string and of string.


6. Apply the functor again , and then apply it to the result .


Abstract Types


Continuing from the previous exercise, we wish to implement a module with signature
ELEMENT of which the class element uses one instance variable of abstract type.


We define the following parameterized type:
# type ’a t = {mutable x : ’a t; f : ’a t → unit}; ;


1. Write the functions apply, from string and to string. These last two functions
will use the Marshal module.


2. Write a signature S which corresponds to the signature previously inferred by
abstracting the type t.


3. Write a functor which takes a parameter with signature S and returns a module
of which the signature is compatible with ELEMENT.


4. Use the resulting module as the parameter of the module from the previous
exercise.


Summary


This chapter has compared the respective merits of the functional/modular and object
models of organisation. Each tries to address in its own way the problems of reusability
and modifiability of software. The main differences come from their type systems,
equality of types between parameters of functors and sub-typing in the object model,
and the evaluation of objects with late binding. The two models do not succeed on
their own in resolving the problem of the extensibility of components, from whence we
get the idea of a mixed organization. This organization mix also permits new ways of
structuring.


To Learn More


The modular model suffers from weak code reuse and difficulties for incremental de-
velopment. The article ”Modular Programming with overloading and delayed linking”
([AC96]) describes a simple extension of the module language, allowing the extension of
a module as well as overloading. The choice of code for an overloaded function derives
from the techniques used for generic functions in CLOS. The correction of the type
system to accommodate these extended modules has not been established.


The issues of mixing the models are well discussed in the article ”Modular Object-
Oriented Programming with Units and Mixing”([FF98]), in terms of the ease with
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which code can be reused. The problem of extensibility of components is described in
detail.


This article is available in HTML at the following address:


Link: http://www.cs.rice.edu/CS/PLT/Publications/icfp98-ff/paper.shtml


We can see in these concepts that there is still some dynamic typing involved in type
constraints and/or the resolution of type conflicts. It is probably not unreasonable
to relax static typing to obtain languages that are ”primarily” statically typed in
the pursuit of increasing the reusability of the code by facilitating its incremental
development.







17
Applications


This chapter illustrates program structure via two examples: the first uses a modular
model; the second, an object model.


The first application provides a set of parametric modules for two player games. A
functor implements the minimax-αβ algorithm for the evaluation of a search tree. A
second functor allows modifying the human/machine interface for the game. These
parametric modules are then applied to two games: a vertical tic-tac-toe game, and
another involving the construction of mystic ley-lines.


The second application constructs a world where robots evolve. The world and robots
are structured as classes. The different behaviors of robots are obtained by inheritance
from a common abstract class. It is then easy to define new behaviors. There, too, the
human/machine interface may be modified.


Each of the applications, in its structure, contains reusable components. It is easy to
construct a new two player game with different rules that uses the same base classes.
Similarly, the general mechanism for the motion of robots in a world may be applied
to new types of robots.


Two Player Games


The application presented in this section pursues two objectives. On the one hand, it
seeks to resolve problems related to the complexity in searching state spaces, as well
as showing that Objective Caml provides useful tools for dealing with symbolic appli-
cations. On the other hand, it also explores the benefits of using parametric modules
to define a generic scheme for constructing two player games, providing the ability to
factor out one part of the search, and making it easy to customize components such as
functions for evaluating or displaying a game position.
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We first present the problem of games involving two players, then describe the minimax-
αβ algorithm which provides an efficient search of the tree of possible moves. We
present a parametric model for two player games. Then, we apply these functors to
implement two games: “Connect Four” (a vertical tic-tac-toe), and Stonehenge (a game
that involves constructing ley-lines).


The Problem of Two Player Games


Games involving two players represent one of the classic applications of symbolic pro-
gramming and provide a good example of problem solving for at least two reasons:


• The large number of solutions to be analyzed to obtain the best possible move
necessitates using methods other than brute force.
For instance, in the game of chess, the number of possible moves typically is
around 30, and a game often involves around 40 moves per player. This would
require a search tree of around 3080 positions just to explore the complete tree
for one player.


• The quality of a solution is easily verifiable. In particular, it is possible to test
the quality of a proposed solution from one program by comparing it to that of
another.


First, assume that we are able to explore the total list of all possible moves, given, as a
starting point, a specific legal game position. Such a program will require a function to
generate legal moves based on a starting position, as well as a function to evaluate some
“score” for each resulting position. The evaluation function must give a maximum score
to a winning position, and a minimal score to a losing position. After picking an initial
position, one may then construct a tree of all possible variations, where each node
corresponds to a position, the adjacent siblings are obtained by having played a move
and with leaves having positions indicating winning, losing, or null results. Once the
tree is constructed, its exploration permits determining if there exists a route leading
to victory, or a null position, failing that. The shortest path may then be chosen to
attain the desired goal.


As the overall size of such a tree is generally too large for it to be fully represented, it is
typically necessary to limit what portions of the tree are constructed. A first strategy
is to limit the “depth” of the search, that is, the number of moves and responses that
are to be evaluated. One thus reduces the breadth of the tree as well as its height. In
such cases, leaf nodes will seldom be found until nearly the end of the game.


On the other hand, we may try to limit the number of moves selected for additional
evaluation. For this, we try to avoid evaluating any but the most favorable moves, and
start by examining the moves that appear to be the very best. This immediately elim-
inates entire branches of the tree. This leads to the minimax αβ algorithm presented
in the next subsection.







Two Player Games 503


Minimax αβ


We present the minimax search and describe a variant optimized using αβ cuts. The
implementation of this algorithm uses a parametric module, FAlphabeta along with
a representation of the game and its evaluation function. We distinguish between the
two players by naming them A and B.


Minimax


The minimax algorithm is a depth-first search algorithm with a limit on the depth to
which search is done. It requires:


• a function to generate legal moves based on a position, and


• a function to evaluate a game position.


Starting with some initial game position, the algorithm explores the tree of all legal
moves down to the requested depth. Scores associated with leaves of the tree are cal-
culated using an evaluation function. A positive score indicates a good position for
player A, while a negative score indicates a poor position for player A, and thus a
good position for player B. For each player, the transition from one position to another
is either maximized (for player A) or minimized (for player B). Each player tries to
select his moves in a manner that will be most profitable for him. In searching for the
best play for player A, a search of depth 1 tries to determine the immediate move that
maximizes the score of the new position.


O


P2 P3 P4P1


C2C1 C4C3


(5) (8) (-6) (1)


(8)


maximizing step


Figure 17.1: Maximizing search at a given location.


In figure 17.1, player A starts at position O, finds four legal moves, constructs these
new configurations, and evaluates them. Based on these scores, the best position is
P2, with a score of 8. This value is propagated to position O, indicating that this
position provides a move to a new position, giving a score of 8 when the player moves
to C2. The search of depth 1 is, as a general rule, insufficient, as it does not consider
the possible response of an adversary. Such a shallow search results in programs that
search greedily for immediate material gains (such as the prize of a queen, in chess)
without perceiving that the pieces are protected or that the position is otherwise a
losing one (such as a gambit of trading one’s queen for a mate). A deeper exploration
to depth 2 permits perceiving at least the simplest such countermoves.
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Figure 17.2 displays a supplementary analysis of the tree that takes into consideration
the possible responses of player B. This search considers B’s best moves. For this, the
minimax algorithm minimizes scores of depth 2.


O


P2 P3 P4P1


(0)(0) (1) (-10) (-4) (-1) (3)(-1)


Q1 Q2 Q4 Q6 Q7 Q8 Q9Q3


mimimizing step(-10) (-4)


(-1)


(-1)


(-3)


D2 D3D1 D5D4 D6 D8 D9D7


Q5


(-3)


C2C1 C3 C4


maximizing step


Figure 17.2: Maximizing and minimizing in depth-2 search.


Move P2, which provided an immediate position score of 8, leads to a position with
a score of -3. In effect, if B plays D5, then the score of Q5 will be -3. Based on this
deeper examination, the move C1 limits the losses with a score of -1, and is thus the
preferred move.


In most games, it is possible to try to confuse the adversary, making him play forced
moves, trying to muddle the situation in the hope that he will make a mistake. A
shallow search of depth 2 would be completely inadequate for this sort of tactic. These
sorts of strategies are rarely able to be well exploited by a program because it has no
particular vision as to the likely evolution of the positions towards the end of the game.


The difficulty of increased depth of search comes in the form of a combinatorial “explo-
sion.” For example, with chess, the exploration of two additional levels adds a factor
of around a thousand times more combinations (30 × 30). Thus, if one searches to a
depth of 10, one obtains around 514 positions, which represents too much to search.
For this reason, you must try to somehow trim the search tree.


One may note in figure 17.2 that it may be useless to search the branch P3 insofar as
the score of this position at depth 1 is poorer than that found in branch P1. In addition
the branch P4 does not need to be completely explored. Based on the calculation of Q7,
one obtains a score inferior to that of P1, which has already been completely explored.
The calculations for Q8 and Q9 cannot improve this situation even if their scores are
better than Q7. In a minimizing mode, the poorest score is dropped. The player knows
then that these branches provide no useful new options. The minimax variant αβ uses
this approach to decrease the number of branches that must be explored.
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Minimax-αβ


We call the α cut the lower limit of a maximizing node, and cut β the upper limit of a
minimizing node. Figure 17.3 shows the cuts carried out in branches P3 and P4 based
on knowing the lower limit -1 of P1.


O


P2 P3 P4P1


(0)(0) (1) (-4)(-1)


Q1 Q2 Q4 Q7Q3


mimimizing step


(-1)


D2 D3D1 D5D4 D7


Q5


(-3)


C2C1 C3 C4


maximizing step


(-6) (-4)


(-1)


(-3)


Figure 17.3: Limit α to one level max-min.


As soon as the tree gets broader or deeper the number of cuts increases, thus indicating
large subtrees.


A Parametric Module for αβ Minimax


We want to produce a parametric module, FAlphabeta, implementing this algorithm,
which will be generically reusable for all sorts of two player games. The parameters
correspond, on the one hand, to all the information about the proceedings of moves in
the game, and on the other hand, to the evaluation function.


Interfaces. We declare two signatures: REPRESENTATION to represent plays; and EVAL
to evaluate a position.


# module type REPRESENTATION =


sig


type game


type move


val game start : unit → game


val legal moves: bool → game → move list


val play: bool → move → game → game


end ; ;
module type REPRESENTATION =


sig


type game


and move


val game_start : unit -> game
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val legal_moves : bool -> game -> move list


val play : bool -> move -> game -> game


end


# module type EVAL =


sig


type game


val evaluate: bool → game → int


val moreI : int


val lessI: int


val is leaf: bool → game → bool


val is stable: bool → game → bool


type state = G | P | N | C


val state of : bool → game → state


end ; ;
module type EVAL =


sig


type game


val evaluate : bool -> game -> int


val moreI : int


val lessI : int


val is_leaf : bool -> game -> bool


val is_stable : bool -> game -> bool


type state = | G | P | N | C


val state_of : bool -> game -> state


end


Types game and move represent abstract types. A player is represented by a boolean
value. The function legal moves takes a player and position, and returns the list of
possible moves. The function play takes a player, a move, and a position, and returns
a new position. The values moreI and lessI are the limits of the values returned by
function evaluate. The predicate is leaf verifies if a player in a given position can
play. The predicate is stable indicates whether the position for the player represents
a stable position. The results of these functions influence the pursuit of the exploration
of moves when one attains the specified depth.


The signature ALPHABETA corresponds to the signature resulting from the complete
application of the parametric module that one wishes to use. These hide the different
auxiliary functions that we use to implement the algorithm.


# module type ALPHABETA = sig


type game


type move


val alphabeta : int → bool → game → move


end ; ;
module type ALPHABETA =


sig type game and move val alphabeta : int -> bool -> game -> move end
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The function alphabeta takes as parameters the depth of the search, the player, and
the game position, returning the next move.


We then define the functional signature FALPHABETA which must correspond to that of
the implementation of the functor.


# module type FALPHABETA = functor (Rep : REPRESENTATION)


→ functor (Eval : EVAL with type game = Rep.game)


→ ALPHABETA with type game = Rep.game


and type move = Rep.move ; ;
module type FALPHABETA =


functor(Rep : REPRESENTATION) ->


functor


(Eval : sig


type game = Rep.game


val evaluate : bool -> game -> int


val moreI : int


val lessI : int


val is_leaf : bool -> game -> bool


val is_stable : bool -> game -> bool


type state = | G | P | N | C


val state_of : bool -> game -> state


end) ->


sig


type game = Rep.game


and move = Rep.move


val alphabeta : int -> bool -> game -> move


end


Implementation. The parametric module FAlphabetaO makes explicit the partition
of the type game between the two parameters Rep and Eval. This module has six
functions and two exceptions. The player true searches to maximize the score while
the player false seeks to minimize the score. The function maxmin iter calculates the
maximum of the best score for the branches based on a move of player true and the
pruning parameter α.


The function maxmin takes four parameters: depth, which indicates the actual calcula-
tion depth, node, a game position, and α and β, the pruning parameters. If the node
is a leaf of the tree or if the maximum depth is reached, the function will return its
evaluation of the position. If this is not the case, the function applies maxmin iter to
all of the legal moves of player true, passing it the search function, diminishing the
depth remaining (minmax). The latter searches to minimize the score resulting from
the response of player false.


The movements are implemented using exceptions. If the move β is found in the itera-
tion across the legal moves from the function maxmin, then it is returned immediately,
the value being propagated using an exception. The functions minmax iter and minmax
provide the equivalents for the other player. The function search determines the move
to play based on the best score found in the lists of scores and moves.
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The principal function alphabeta of this module calculates the legal moves from a
given position for the requested player, searches down to the requested depth, and
returns the best move.


# module FAlphabetaO


(Rep : REPRESENTATION) (Eval : EVAL with type game = Rep.game) =


struct


type game = Rep.game


type move = Rep.move


exception AlphaMovement of int


exception BetaMovement of int


let maxmin iter node minmax cur beta alpha cp =


let alpha resu =


max alpha (minmax cur (Rep.play true cp node) beta alpha)


in if alpha resu >= beta then raise (BetaMovement alpha resu)


else alpha resu


let minmax iter node maxmin cur alpha beta cp =


let beta resu =


min beta (maxmin cur (Rep.play false cp node) alpha beta)


in if beta resu <= alpha then raise (AlphaMovement beta resu)


else beta resu


let rec maxmin depth node alpha beta =


if (depth < 1 & Eval.is stable true node)


or Eval.is leaf true node


then Eval.evaluate true node


else


try let prev = maxmin iter node (minmax (depth - 1)) beta


in List.fold left prev alpha (Rep.legal moves true node)


with BetaMovement a → a


and minmax depth node beta alpha =


if (depth < 1 & Eval.is stable false node)


or Eval.is leaf false node


then Eval.evaluate false node


else


try let prev = minmax iter node (maxmin (depth - 1)) alpha


in List.fold left prev beta (Rep.legal moves false node)


with AlphaMovement b → b


let rec search a l1 l2 = match (l1,l2) with


(h1 :: q1, h2 :: q2) → if a = h1 then h2 else search a q1 q2


| ([], [] ) → failwith ("AB: "^(string of int a)^" not found")


| (_ , _) → failwith "AB: length differs"


(* val alphabeta : int -> bool -> Rep.game -> Rep.move *)


let alphabeta depth player level =


let alpha = ref Eval.lessI and beta = ref Eval.moreI in


let l = ref [] in


let cpl = Rep.legal moves player level in
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let eval =


try


for i = 0 to (List.length cpl) - 1 do


if player then


let b = Rep.play player (List.nth cpl i) level in


let a = minmax (depth-1) b !beta !alpha


in l := a :: !l ;
alpha := max !alpha a ;
(if !alpha >= !beta then raise (BetaMovement !alpha))


else


let a = Rep.play player (List.nth cpl i) level in


let b = maxmin (depth-1) a !alpha !beta


in l := b :: !l ;
beta := min !beta b ;
(if !beta <= !alpha then raise (AlphaMovement !beta))


done ;
if player then !alpha else !beta


with


BetaMovement a → a


| AlphaMovement b → b


in


l := List.rev !l ;
search eval !l cpl


end ; ;
module FAlphabetaO :


functor(Rep : REPRESENTATION) ->


functor


(Eval : sig


type game = Rep.game


val evaluate : bool -> game -> int


val moreI : int


val lessI : int


val is_leaf : bool -> game -> bool


val is_stable : bool -> game -> bool


type state = | G | P | N | C


val state_of : bool -> game -> state


end) ->


sig


type game = Rep.game


and move = Rep.move


exception AlphaMovement of int


exception BetaMovement of int


val maxmin_iter :


Rep.game ->


(Rep.game -> int -> int -> int) -> int -> int -> Rep.move -> int


val minmax_iter :


Rep.game ->


(Rep.game -> int -> int -> int) -> int -> int -> Rep.move -> int


val maxmin : int -> Eval.game -> int -> int -> int


val minmax : int -> Eval.game -> int -> int -> int


val search : int -> int list -> ’a list -> ’a


val alphabeta : int -> bool -> Rep.game -> Rep.move
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end


We may close module FAlphabetaO by associating with it the following signature:


# module FAlphabeta = (FAlphabetaO : FALPHABETA) ; ;
module FAlphabeta : FALPHABETA


This latter module may be used with many different game representations and functions
to play different games.


Organization of a Game Program


The organization of a program for a two player game may be separated into a portion
specific to the game in question as well as a portion applicable to all sorts of games. For
this, we propose using several parametric modules parameterized by specific modules,
permitting us to avoid the need to rewrite the common portions each time. Figure 17.4
shows the chosen organization.


J_Main


FMain


J_Alphabeta


FAlphabeta


J_Eval


J_Repr


J_Aff


FSkeleton


Skeleton


Figure 17.4: Organization of a game application.


The modules with no highlighting correspond to the common parts of the application.
These are the parametric modules. We see again the functor FAlphabeta. The modules
with gray highlighting are the modules designed specifically for a given game. The
three principal modules are the representation of the game (J Repr), display of the
game (J Disp), and the evaluation function (J Eval). The modules with rounded gray
borders are obtained by applying the parametric modules to the simple modules specific
to the game.
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The module FAlphabeta has already been described. The two other common modules
are FMain, containing the main loop, and FSkeleton, that manages the players.


Module FMain


Module FMain contains the main loop for execution of a game program. It is parame-
terized using the signature module SKELETON, describing the interaction with a player
using the following definition:


# module type SKELETON = sig


val home: unit → unit


val init: unit → ((unit → unit) * (unit → unit))


val again: unit → bool


val exit: unit → unit


val won: unit → unit


val lost: unit → unit


val nil: unit → unit


exception Won


exception Lost


exception Nil


end ; ;
module type SKELETON =


sig


val home : unit -> unit


val init : unit -> (unit -> unit) * (unit -> unit)


val again : unit -> bool


val exit : unit -> unit


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


exception Won


exception Lost


exception Nil


end


The function init constructs a pair of action functions for each player. The other
functions control the interactions. Module FMain contains two functions: play game
which alternates between the players, and main which controls the main loop.


# module FMain (P : SKELETON) =


struct


let play game movements = while true do (fst movements) () ;
(snd movements) () done


let main () = let finished = ref false


in P.home () ;
while not !finished do


( try play game (P.init ())
with P.Won → P.won ()
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| P.Lost → P.lost ()
| P.Nil → P.nil () );
finished := not (P.again ())


done ;
P.exit ()


end ; ;
module FMain :


functor(P : SKELETON) ->


sig


val play_game : (unit -> ’a) * (unit -> ’b) -> unit


val main : unit -> unit


end


Module FSkeleton


Parametric module FSkeleton controls the moves of each player according to the rules
provided at the start of the section based on the nature of the players (automated or
not) and the order of the players. It needs various parameters to represent the game,
game states, the evaluation function, and the αβ search as described in figure 17.4.


We start with the signature needed for game display.


# module type DISPLAY = sig


type game


type move


val home: unit → unit


val exit: unit → unit


val won: unit → unit


val lost: unit → unit


val nil: unit → unit


val init: unit → unit


val position : bool → move → game → game → unit


val choice : bool → game → move


val q player : unit → bool


val q begin : unit → bool


val q continue : unit → bool


end ; ;
module type DISPLAY =


sig


type game


and move


val home : unit -> unit


val exit : unit -> unit


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


val init : unit -> unit


val position : bool -> move -> game -> game -> unit


val choice : bool -> game -> move


val q_player : unit -> bool
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val q_begin : unit -> bool


val q_continue : unit -> bool


end


It is worth noting that the representation of the game and of the moves must be shared
by all the parametric modules, which constrain the types. The two principal functions
are playH and playM, respectively controlling the move of a human player (using the
function Disp.choice) and that of an automated player. The function init determines
the nature of the players and the sorts of responses for Disp.q player.


# module FSkeleton


(Rep : REPRESENTATION)


(Disp : DISPLAY with type game = Rep.game and type move = Rep.move)


(Eval : EVAL with type game = Rep.game)


(Alpha : ALPHABETA with type game = Rep.game and type move = Rep.move) =


struct


let depth = ref 4


exception Won


exception Lost


exception Nil


let won = Disp.won


let lost = Disp.lost


let nil = Disp.nil


let again = Disp.q continue


let play game = ref (Rep.game start ())
let exit = Disp.exit


let home = Disp.home


let playH player () =


let choice = Disp.choice player !play game in


let old game = !play game


in play game := Rep.play player choice !play game ;
Disp.position player choice old game !play game ;
match Eval.state of player !play game with


Eval.P → raise Lost


| Eval.G → raise Won


| Eval.N → raise Nil


| _ → ()


let playM player () =


let choice = Alpha.alphabeta !depth player !play game in


let old game = !play game


in play game := Rep.play player choice !play game ;
Disp.position player choice old game !play game ;
match Eval.state of player !play game with


Eval.G → raise Won


| Eval.P → raise Lost


| Eval.N → raise Nil


| _ → ()
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let init () =


let a = Disp.q player () in


let b = Disp.q player ()
in play game := Rep.game start () ;
Disp.init () ;
match (a,b) with


true,true → playM true, playM false


| true,false → playM true, playH false


| false,true → playH true, playM false


| false,false → playH true, playH false


end ; ;
module FSkeleton :


functor(Rep : REPRESENTATION) ->


functor


(Disp : sig


type game = Rep.game


and move = Rep.move


val home : unit -> unit


val exit : unit -> unit


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


val init : unit -> unit


val position : bool -> move -> game -> game -> unit


val choice : bool -> game -> move


val q_player : unit -> bool


val q_begin : unit -> bool


val q_continue : unit -> bool


end) ->


functor


(Eval : sig


type game = Rep.game


val evaluate : bool -> game -> int


val moreI : int


val lessI : int


val is_leaf : bool -> game -> bool


val is_stable : bool -> game -> bool


type state = | G | P | N | C


val state_of : bool -> game -> state


end) ->


functor


(Alpha : sig


type game = Rep.game


and move = Rep.move


val alphabeta : int -> bool -> game -> move


end) ->


sig


val depth : int ref


exception Won


exception Lost


exception Nil


val won : unit -> unit
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val lost : unit -> unit


val nil : unit -> unit


val again : unit -> bool


val play_game : Disp.game ref


val exit : unit -> unit


val home : unit -> unit


val playH : bool -> unit -> unit


val playM : bool -> unit -> unit


val init : unit -> (unit -> unit) * (unit -> unit)


end


The independent parts of the game are thus implemented. One may then begin pro-
gramming different sorts of games. This modular organization facilitates making mod-
ifications to the movement scheme or to the evaluation function for a game as we shall
soon see.


Connect Four


We will next examine a simple game, a vertical tic-tac-toe, known as Connect Four.
The game is represented by seven columns each consisting of six lines. In turn, a player
places on a column a piece of his color, where it then falls down to the lowest free
location in this column. If a column is completely filled, neither player is permitted to
play there. The game ends when one of the players has built a line of four pieces in a
row (horizontal, vertical, or diagonal), at which point this player has won, or when all
the columns are filled with pieces, in which the outcome is a draw. Figure 17.5 shows
a completed game.


Figure 17.5: An example of Connect Four.


Note the “winning” line of four gray pieces in a diagonal, going down and to the right.
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Game Representation: module C4 rep. We choose for this game a matrix-based
representation. Each element of the matrix is either empty, or contains a player’s piece.
A move is numbered by the column. The legal moves are the columns in which the
final (top) row is not filled.


# module C4 rep = struct


type cell = A | B | Empty


type game = cell array array


type move = int


let col = 7 and row = 6


let game start () = Array.create matrix row col Empty


let legal moves b m =


let l = ref [] in


for c = 0 to col-1 do if m.(row-1).(c) = Empty then l := (c+1) :: !l done;
!l


let augment mat c =


let l = ref row


in while !l > 0 & mat.(!l-1).(c-1) = Empty do decr l done ; !l + 1


let player gen cp m e =


let mj = Array.map Array.copy m


in mj.((augment mj cp)-1).(cp-1) <- e ; mj


let play b cp m = if b then player gen cp m A else player gen cp m B


end ; ;
module C4_rep :


sig


type cell = | A | B | Empty


and game = cell array array


and move = int


val col : int


val row : int


val game_start : unit -> cell array array


val legal_moves : ’a -> cell array array -> int list


val augment : cell array array -> int -> int


val player_gen : int -> cell array array -> cell -> cell array array


val play : bool -> int -> cell array array -> cell array array


end


We may easily verify if this module accepts the constraints of the signature REPRESEN-
TATION.


# module C4 rep T = (C4 rep : REPRESENTATION) ; ;
module C4_rep_T : REPRESENTATION
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Game Display: Module C4 text. Module C4 text describes a text-based interface
for the game Connect Four that is compatible with the signature DISPLAY. It it is not
particularly sophisticated, but, nonetheless, demonstrates how modules are assembled
together.


# module C4 text = struct


open C4 rep


type game = C4 rep.game


type move = C4 rep.move


let print game mat =


for l = row - 1 downto 0 do


for c = 0 to col - 1 do


match mat.(l).(c) with


A → print string "X "


| B → print string "O "


| Empty → print string ". "


done;
print newline ()


done ;
print newline ()


let home () = print string "C4 ...\n"


let exit () = print string "Bye for now ... \n"


let question s =


print string s;
print string " y/n ? " ;
read line () = "y"


let q begin () = question "Would you like to begin?"


let q continue () = question "Play again?"


let q player () = question "Is there to be a machine player ?"


let won ()= print string "The first player won" ; print newline ()
let lost () = print string "The first player lost" ; print newline ()
let nil () = print string "Stalemate" ; print newline ()


let init () =


print string "X: 1st player O: 2nd player";
print newline () ; print newline () ;
print game (game start ()) ; print newline ()


let position b c aj j = print game j


let is move = function ’1’..’7’ → true | _ → false


exception Move of int


let rec choice player game =


print string ("Choose player" ^ (if player then "1" else "2") ^ " : ") ;
let l = legal moves player game


in try while true do


let i = read line ()
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in ( if (String.length i > 0) && (is move i.[0])


then let c = (int of char i.[0]) - (int of char ’0’)


in if List.mem c l then raise (Move c) );
print string "Invalid move - try again"


done ;
List.hd l


with Move i → i


| _ → List.hd l


end ; ;
module C4_text :


sig


type game = C4_rep.game


and move = C4_rep.move


val print_game : C4_rep.cell array array -> unit


val home : unit -> unit


val exit : unit -> unit


val question : string -> bool


val q_begin : unit -> bool


val q_continue : unit -> bool


val q_player : unit -> bool


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


val init : unit -> unit


val position : ’a -> ’b -> ’c -> C4_rep.cell array array -> unit


val is_move : char -> bool


exception Move of int


val choice : bool -> C4_rep.cell array array -> int


end


We may immediately verify that this conforms to the constraints of the signature
DISPLAY


# module C4 text T = (C4 text : DISPLAY) ; ;
module C4_text_T : DISPLAY


Evaluation Function: module C4 eval. The quality of a game player depends
primarily on the position evaluation function. Module C4 eval defines evaluate, which
evaluates the value of a position for the specified player. This function calls eval bloc
for the four compass directions as well as the diagonals. eval bloc then calls eval four
to calculate the number of pieces in the requested line. Table value provides the value
of a block containing 0, 1, 2, or 3 pieces of the same color. The exception Four is raised
when 4 pieces are aligned.


# module C4 eval = struct open C4 rep type game = C4 rep.game


let value =


Array.of list [0; 2; 10; 50]


exception Four of int
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exception Nil Value


exception Arg invalid


let lessI = -10000


let moreI = 10000


let eval four m l dep c dep delta l delta c =


let n = ref 0 and e = ref Empty


and x = ref c dep and y = ref l dep


in try


for i = 1 to 4 do


if !y<0 or !y>=row or !x<0 or !x>=col then raise Arg invalid ;
( match m.(!y).(!x) with


A → if !e = B then raise Nil Value ;
incr n ;
if !n = 4 then raise (Four moreI) ;
e := A


| B → if !e = A then raise Nil Value ;
incr n ;
if !n = 4 then raise (Four lessI);
e := B;


| Empty → () ) ;
x := !x + delta c ;


y := !y + delta l


done ;
value.(!n) * (if !e=A then 1 else -1)


with


Nil Value | Arg invalid → 0


let eval bloc m e cmin cmax lmin lmax dx dy =


for c=cmin to cmax do for l=lmin to lmax do


e := !e + eval four m l c dx dy


done done


let evaluate b m =


try let evaluation = ref 0


in (* evaluation of rows *)


eval bloc m evaluation 0 (row-1) 0 (col-4) 0 1 ;
(* evaluation of columns *)


eval bloc m evaluation 0 (col-1) 0 (row-4) 1 0 ;
(* diagonals coming from the first line (to the right) *)


eval bloc m evaluation 0 (col-4) 0 (row-4) 1 1 ;
(* diagonals coming from the first line (to the left) *)


eval bloc m evaluation 1 (row-4) 0 (col-4) 1 1 ;
(* diagonals coming from the last line (to the right) *)


eval bloc m evaluation 3 (col-1) 0 (row-4) 1 (-1) ;
(* diagonals coming from the last line (to the left) *)


eval bloc m evaluation 1 (row-4) 3 (col-1) 1 (-1) ;
!evaluation


with Four v → v


let is leaf b m = let v = evaluate b m


in v=moreI or v=lessI or legal moves b m = []
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let is stable b j = true


type state = G | P | N | C


let state of player m =


let v = evaluate player m


in if v = moreI then if player then G else P


else if v = lessI then if player then P else G


else if legal moves player m = [] then N else C


end ; ;
module C4_eval :


sig


type game = C4_rep.game


val value : int array


exception Four of int


exception Nil_Value


exception Arg_invalid


val lessI : int


val moreI : int


val eval_four :


C4_rep.cell array array -> int -> int -> int -> int -> int


val eval_bloc :


C4_rep.cell array array ->


int ref -> int -> int -> int -> int -> int -> int -> unit


val evaluate : ’a -> C4_rep.cell array array -> int


val is_leaf : ’a -> C4_rep.cell array array -> bool


val is_stable : ’a -> ’b -> bool


type state = | G | P | N | C


val state_of : bool -> C4_rep.cell array array -> state


end


Module C4 eval is compatible with the constraints of signature EVAL.


# module C4 eval T = (C4 eval : EVAL) ; ;
module C4_eval_T : EVAL


To play two evaluation functions against one another, it is necessary to modify evaluate
to apply the proper evaluation function for each player.


Assembly of the modules All the components needed to realize the game of Con-
nect Four are now implemented. We only need assemble them together based on the
schema of diagram 17.4. First, we construct C4 skeleton, which is the application of
parameter module FSkeleton to modules C4 rep, C4 text, C4 eval and the result of
the application of parametric module FAlphaBeta to C4 rep and C4 eval.


# module C4 skeleton =
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FSkeleton (C4 rep) (C4 text) (C4 eval) (FAlphabeta (C4 rep) (C4 eval)) ; ;
module C4_skeleton :


sig


val depth : int ref


exception Won


exception Lost


exception Nil


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


val again : unit -> bool


val play_game : C4_text.game ref


val exit : unit -> unit


val home : unit -> unit


val playH : bool -> unit -> unit


val playM : bool -> unit -> unit


val init : unit -> (unit -> unit) * (unit -> unit)


end


We then obtain the principal module C4 main by applying parametric module FMain
on the result of the preceding application C4 skeleton


# module C4 main = FMain(C4 skeleton) ; ;
module C4_main :


sig


val play_game : (unit -> ’a) * (unit -> ’b) -> unit


val main : unit -> unit


end


The game is initiated by the application of function C4 main.main on ().


Testing the Game. Once the general game skeleton has been written, games may
be played in various ways. Two human players may play against each other, with
the program merely verifying the validity of the moves; a person may play against a
programmed player; or programs may play against each other. While this last mode
might not be interesting for the human, it does make it easy to run tests without having
to wait for a person’s responses. The following game demonstrates this scenario.


# C4_main.main () ;;
C4 ...
Is there to be a machine player ? y/n ? y
Is there to be a machine player ? y/n ? y
X: 1st player O: 2nd player


. . . . . . .


. . . . . . .


. . . . . . .
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. . . . . . .


. . . . . . .


. . . . . . .


Once the initial position is played, player 1 (controlled by the program) calculates its
move which is then applied.


. . . . . . .


. . . . . . .


. . . . . . .


. . . . . . .


. . . . . . .


. . . . . X .


Player 2 (always controlled by the program) calculates its response and the game
proceeds, until a game-ending move is found. In this example, player 1 wins the game
based on the following final position:


. O O O . O .


. X X X . X .
X O O X . O .
X X X O . X .
X O O X X O .
X O O O X X O
Player 1 wins
Play again(y/n) ? n
Good-bye ...
- : unit = ()


Graphical Interface. To improve the enjoyment of the game, we define a graphical
interface for the program, by defining a new module, C4 graph, compatible with the
signature DISPLAY, which opens a graphical window, controlled by mouse clicks. The
text of this module may be found in the subdirectory Applications on the CD-ROM
(see page 1).


# module C4 graph = struct


open C4 rep


type game = C4 rep.game


type move = C4 rep.move


let r = 20 (* color of piece *)


let ec = 10 (* distance between pieces *)


let dec = 30 (* center of first piece *)


let cote = 2*r + ec (* height of a piece looked at like a checker *)


let htexte = 25 (* where to place text *)


let width = col * cote + ec (* width of the window *)


let height = row * cote + ec + htexte (* height of the window *)
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let height of game = row * cote + ec (* height of game space *)


let hec = height of game + 7 (* line for messages *)


let lec = 3 (* columns for messages *)


let margin = 4 (* margin for buttons *)


let xb1 = width / 2 (* position x of button1 *)


let xb2 = xb1 + 30 (* position x of button2 *)


let yb = hec - margin (* position y of the buttons *)


let wb = 25 (* width of the buttons *)


let hb = 16 (* height of the buttons *)


(* val t2e : int -> int *)


(* Convert a matrix coordinate into a graphical coordinate *)


let t2e i = dec + (i-1)*cote


(* The Colors *)


let cN = Graphics.black (* trace *)


let cA = Graphics.red (* Human player *)


let cB = Graphics.yellow (* Machine player *)


let cF = Graphics.blue (* Game Background color *)


(* val draw_table : unit -> unit : Trace an empty table *)


let draw table () =


Graphics.clear graph () ;
Graphics.set color cF;
Graphics.fill rect 0 0 width height of game;
Graphics.set color cN;
Graphics.moveto 0 height of game;
Graphics.lineto width height of game;
for l = 1 to row do


for c = 1 to col do


Graphics.draw circle (t2e c) (t2e l) r


done


done


(* val draw_piece : int -> int -> Graphics.color -> unit *)


(* ’draw_piece l c co’ draws a piece of color co at coordinates l c *)


let draw piece l c col =


Graphics.set color col;
Graphics.fill circle (t2e c) (t2e l) (r+1)


(* val augment : Rep.item array array -> int -> Rep.move *)


(* ’augment m c’ redoes the line or drops the piece for c in m *)


let augment mat c =


let l = ref row in


while !l > 0 & mat.(!l-1).(c-1) = Empty do


decr l


done;
!l


(* val conv : Graphics.status -> int *)


(* convert the region where player has clicked in controlling the game *)


let conv st =
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(st.Graphics.mouse x - 5) / 50 + 1


(* val wait_click : unit -> Graphics.status *)


(* wait for a mouse click *)


let wait click () = Graphics.wait next event [Graphics.Button down]


(* val choiceH : Rep.game -> Rep.move *)


(* give opportunity to the human player to choose a move *)


(* the function offers possible moves *)


let rec choice player game =


let c = ref 0 in


while not ( List.mem !c (legal moves player game) ) do


c := conv ( wait click () )


done;
!c


(* val home : unit -> unit : home screen *)


let home () =


Graphics.open graph


(" " ^ (string of int width) ^ "x" ^ (string of int height) ^ "+50+50");
Graphics.moveto (height/2) (width/2);
Graphics.set color cF;
Graphics.draw string "C4";
Graphics.set color cN;
Graphics.moveto 2 2;
Graphics.draw string "by Romuald COEFFIER & Mathieu DESPIERRE";
ignore (wait click ());
Graphics.clear graph ()


(* val end : unit -> unit , the end of the game *)


let exit () = Graphics.close graph ()


(* val draw_button : int -> int -> int -> int -> string -> unit *)


(* ’draw_button x y w h s’ draws a rectangular button at coordinates *)


(* x,y with width w and height h and appearance s *)


let draw button x y w h s =


Graphics.set color cN;
Graphics.moveto x y;
Graphics.lineto x (y+h);
Graphics.lineto (x+w) (y+h);
Graphics.lineto (x+w) y;
Graphics.lineto x y;
Graphics.moveto (x+margin) (hec);
Graphics.draw string s


(* val draw_message : string -> unit * position message s *)


let draw message s =


Graphics.set color cN;
Graphics.moveto lec hec;
Graphics.draw string s


(* val erase_message : unit -> unit erase the starting position *)
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let erase message () =


Graphics.set color Graphics.white;
Graphics.fill rect 0 (height of game+1) width htexte


(* val question : string -> bool *)


(* ’question s’ poses the question s, the response being obtained by *)


(* selecting one of two buttons, ’yes’ (=true) and ’no’ (=false) *)


let question s =


let rec attente () =


let e = wait click () in


if (e.Graphics.mouse y < (yb+hb)) & (e.Graphics.mouse y > yb) then


if (e.Graphics.mouse x > xb1) & (e.Graphics.mouse x < (xb1+wb)) then


true


else


if (e.Graphics.mouse x > xb2) & (e.Graphics.mouse x < (xb2+wb)) then


false


else


attente ()
else


attente () in


draw message s;
draw button xb1 yb wb hb "yes";
draw button xb2 yb wb hb "no";
attente ()


(* val q_begin : unit -> bool *)


(* Ask, using function ’question’, if the player wishes to start *)


(* (yes=true) *)


let q begin () =


let b = question "Would you like to begin ?" in


erase message () ;
b


(* val q_continue : unit -> bool *)


(* Ask, using function ’question’, if the player wishes to play again *)


(* (yes=true) *)


let q continue () =


let b = question "Play again ?" in


erase message () ;
b


let q player () =


let b = question "Is there to be a machine player?" in


erase message () ;
b


(* val won : unit -> unit *)


(* val lost : unit -> unit *)


(* val nil : unit -> unit *)


(* Three functions for these three cases *)


let won () =


draw message "I won :-)" ; ignore (wait click ()) ; erase message ()
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let lost () =


draw message "You won :-("; ignore (wait click ()) ; erase message ()
let nil () =


draw message "Stalemate" ; ignore (wait click ()) ; erase message ()


(* val init : unit -> unit *)


(* This is called at every start of the game for the position *)


let init = draw table


let position b c aj nj =


if b then


draw piece (augment nj c) c cA


else


draw piece (augment nj c) c cB


(* val drawH : int -> Rep.item array array -> unit *)


(* Position when the human player chooses move cp in situation j *)


let drawH cp j = draw piece (augment j cp) cp cA


(* val drawM : int -> cell array array -> unit*)


(* Position when the machine player chooses move cp in situation j *)


let drawM cp j = draw piece (augment j cp) cp cB


end ; ;
module C4_graph :


sig


type game = C4_rep.game


and move = C4_rep.move


val r : int


val ec : int


val dec : int


val cote : int


val htexte : int


val width : int


val height : int


val height_of_game : int


val hec : int


val lec : int


val margin : int


val xb1 : int


val xb2 : int


val yb : int


val wb : int


val hb : int


val t2e : int -> int


val cN : Graphics.color


val cA : Graphics.color


val cB : Graphics.color


val cF : Graphics.color


val draw_table : unit -> unit


val draw_piece : int -> int -> Graphics.color -> unit


val augment : C4_rep.cell array array -> int -> int


val conv : Graphics.status -> int
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val wait_click : unit -> Graphics.status


val choice : ’a -> C4_rep.cell array array -> int


val home : unit -> unit


val exit : unit -> unit


val draw_button : int -> int -> int -> int -> string -> unit


val draw_message : string -> unit


val erase_message : unit -> unit


val question : string -> bool


val q_begin : unit -> bool


val q_continue : unit -> bool


val q_player : unit -> bool


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


val init : unit -> unit


val position : bool -> int -> ’a -> C4_rep.cell array array -> unit


val drawH : int -> C4_rep.cell array array -> unit


val drawM : int -> C4_rep.cell array array -> unit


end


We may also create a new skeleton (C4 skeletonG) which results from the application
of parametric module FSkeleton.


# module C4 skeletonG =


FSkeleton (C4 rep) (C4 graph) (C4 eval) (FAlphabeta (C4 rep) (C4 eval)) ; ;


Only the display parameter differs from the text version application of FSkeleton.
We may thereby create a principal module for Connect Four with a graphical user
interface.


# module C4 mainG = FMain(C4 skeletonG) ; ;
module C4_mainG :


sig


val play_game : (unit -> ’a) * (unit -> ’b) -> unit


val main : unit -> unit


end


The evaluation of the expression C4 mainG.main() opens a graphical window as in
figure 17.5 and controls the interaction with the user.


Stonehenge


Stonehenge, created by Reiner Knizia, is a game involving construction of “ley-lines.”
The rules are simple to understand but our interest in the game lies in its high number
of possible moves. The rules may be found at:
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Link: http://www.cix.co.uk/˜convivium/files/stonehen.htm


The initial game position is represented in figure 17.6.


Game Presentation


The purpose of the game is to win at least 8 “ley-lines” (clear lines) out of the 15
available. One gains a line by positioning pieces (or megaliths) on gray positions along
a ley-line.


Figure 17.6: Initial position of Stonehenge.


In turn, each player places one of his 9 pieces, numbered from 1 to 6, on one of the
18 gray internal positions. They may not place a piece on a position that is already
occupied. Each time a piece is placed, one or several ley-lines may be won or lost.


A ley-line is won by a player if the total of the values of his pieces on the line is greater
than the total of the pieces for the other player. There may be empty spaces left if the
opponent has no pieces left that would allow winning the line.


For example in figure 17.7, the black player starts by placing the piece of value 3, the
red player his “2” piece, then the black player plays the “6” piece, winning a line.


Red then plays the “4” piece, also winning a ley-line. This line has not been completely
filled, but red has won because there is no way for black to overcome red’s score.
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Note that the red player might just as well have played “3” rather than “4,” and still
won the line. In effect, there is only one free case for this ley-line where the strongest
black piece has a value of 5, and so black cannot beat red for this particular line.


Figure 17.7: Position after 4 moves.


In the case where the scores are equal across a full line, whoever placed the last piece
without having beaten his adversary’s score, loses the line. Figure 17.8 demonstrates
such a situation.


The last red move is piece “4”. On the full line where the “4” is placed, the scores
are equal. Since red was the last player to have placed a piece, but did not beat his
adversary, red loses the line, as indicated by a black block.


We may observe that the function play fills the role of arbitrating and accounting for
these subtleties in the placement of lines.


There can never be a tie in this game. There are 15 lines, each of which will be accounted
for at some point in the game, at which point one of the players will have won at least
8 lines.


Search Complexity


Before completely implementing a new game, it is important to estimate the number
of legal moves between two moves in a game, as well as the number of possible moves
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Figure 17.8: Position after 6 moves.


for each side. These values may be used to estimate a reasonable maximum depth for
the minimax-αβ algorithm.


In the game Stonehenge, the number of moves for each side is initially based on the
number of pieces for the two players, that is, 18. The number of possible moves dimin-
ishes as the game progresses. At the first move, the player has 6 different pieces and
18 positions free. At the second move, the second player has 6 different pieces, and 17
positions in which they may be placed (102 legal moves). Moving from a depth of 2 to
4 for the initial moves of the game results in the number of choices going from about
104 to about 108.


On the other hand, near the end of the game, in the final 8 moves, the complexity is
greatly reduced. If we take a pessimistic calculation (where all pieces are different), we
obtain about 23 million possibilities:


4 ∗ 8 ∗ 4 ∗ 7 ∗ 3 ∗ 6 ∗ 3 ∗ 5 ∗ 2 ∗ 4 ∗ 2 ∗ 3 ∗ 1 ∗ 2 ∗ 1 ∗ 1 = 23224320


It might seem appropriate to calculate with a depth of around 2 for the initial set of
moves. This may depend on the evaluation function, and on its ability to evaluate the
positions at the start of the game, when there are few pieces in place. On the other
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hand, near the end of the game, the depth may readily be increased to around 4 or 6,
but this would probably be too late a point to recover from a weak position.


Implementation


We jump straight into describing the game representation and arbitration so that we
may concentrate on the evaluation function.


The implementation of this game follows the architecture used for Connect Four, de-
scribed in figure 17.4. The two principal difficulties will be to follow the game rules for
the placement of pieces, and the evaluation function, which must be able to evaluate
positions as quickly as possible while remaining useful.


Game Representation. There are four notable data structures in this game:


• the pieces of the players (type piece),


• the positions (type placement),


• the 15 ley-lines,


• the 18 locations where pieces may be placed.


We provide a unique number for each location:


1---2
/ \ / \
3---4---5


/ \ / \ / \
6---7---8---9


/ \ / \ / \ / \
10--11--12--13--14
\ / \ / \ / \ /
15--16--17--18


Each location participates in 3 ley-lines. We also number each ley-line. This description
may be found in the declaration of the list lines, which is converted to a vector
(vector l). A location is either empty, or contains a piece that has been placed, and
the piece’s possessor. We also store, for each location, the number of the lines that pass
through it. This table is calculated by lines per case and is named num line per -
case.


The game is represented by the vector of 18 cases, the vector of 15 ley-lines either won
or not, and the lists of pieces left for the two players. The function game start creates
these four elements.


The calculation of a player’s legal moves resolves into a Cartesian product of the pieces
available against the free positions. Various utility functions allow counting the score
of a player on a line, calculating the number of empty locations on a line, and verifying
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if a line has already been won. We only need to implement play which plays a move
and decides which pieces to place. We write this function at the end of the listing of
module Stone rep.


# module Stone rep = struct


type player = bool


type piece = P of int


let int of piece = function P x → x


type placement = None | M of player


type case = Empty | Occup of player*piece


let value on case = function


Empty → 0


| Occup (j, x) → int of piece x


type game = J of case array * placement array * piece list * piece list


type move = int * piece


let lines = [


[0;1]; [2;3;4]; [5; 6; 7; 8;]; [9; 10; 11; 12; 13]; [14; 15; 16; 17];
[0; 2; 5; 9]; [1; 3; 6; 10; 14]; [4; 7; 11; 15]; [8; 12; 16]; [13; 17];
[9; 14]; [5; 10; 15]; [2; 6; 11; 16]; [0; 3; 7; 12; 17]; [1; 4; 8; 13] ]


let vector l = Array.of list lines


let lines per case v =


let t = Array.length v in


let r = Array.create 18 [||] in


for i = 0 to 17 do


let w = Array.create 3 0


and p = ref 0 in


for j=0 to t-1 do if List.mem i v.(j) then (w.(!p) <- j; incr p)


done;
r.(i) <- w


done;
r


let num line per case = lines per case vector l


let rec lines of i i l = List.filter (fun t → List.mem i t) l


let lines of cases l =


let a = Array.create 18 l in


for i=0 to 17 do


a.(i) <- (lines of i i l)


done; a


let ldc = lines of cases lines


let game start ()= let lp = [6; 5; 4; 3; 3; 2; 2; 1; 1] in


J ( Array.create 18 Empty, Array.create 15 None,


List.map (fun x → P x) lp, List.map (fun x → P x) lp )


let rec unicity l = match l with
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[] → []
| h :: t → if List.mem h t then unicity t else h :: (unicity t)


let legal moves player (J (ca, m, r1, r2)) =


let r = if player then r1 else r2 in


if r = [] then []
else


let l = ref [] in


for i = 0 to 17 do


if value on case ca.(i) = 0 then l:= i :: !l


done;
let l2 = List.map (fun x→


List.map (fun y→ x,y) (List.rev(unicity r)) ) !l in


List.flatten l2


let copy board p = Array.copy p


let carn copy m = Array.copy m


let rec play piece stone l = match l with


[] → []
| x :: q → if x=stone then q


else x :: (play piece stone q)


let count case player case = match case with


Empty → 0


| Occup (j,p) → if j = player then (int of piece p) else 0


let count line player line pos =


List.fold left (fun x y → x + count case player pos.(y)) 0 line


let rec count max n = function


[] → 0


| t :: q →
if (n>0) then


(int of piece t) + count max (n-1) q


else


0


let rec nbr cases free ca l = match l with


[] → 0


| t :: q → let c = ca.(t) in


match c with


Empty → 1 + nbr cases free ca q


| _ → nbr cases free ca q


let a placement i ma =


match ma.(i) with


None → false


| _ → true


let which placement i ma =


match ma.(i) with
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None → failwith "which_placement"


| M j → j


let is filled l ca = nbr cases free ca l = 0


(* function play : arbitrates the game *)


let play player move game =


let (c, i) = move in


let J (p, m, r1, r2) = game in


let nr1,nr2 = if player then play piece i r1,r2


else r1, play piece i r2 in


let np = copy board p in


let nm = carn copy m in


np.(c)<-Occup(player,i); (* on play le move *)


let lines of the case = num line per case.(c) in


(* calculation of the placements of the three lines *)


for k=0 to 2 do


let l = lines of the case.(k) in


if not (a placement l nm) then (


if is filled vector l.(l) np then (


let c1 = count line player vector l.(l) np


and c2 = count line (not player) vector l.(l) np in


if (c1 > c2) then nm.(l) <- M player


else ( if c2 > c1 then nm.(l) <- M (not player)


else nm.(l) <- M (not player ))))


done;


(* calculation of other placements *)


for k=0 to 14 do


if not (a placement k nm ) then


if is filled vector l.(k) np then failwith "player"


else


let c1 = count line player vector l.(k) np


and c2 = count line (not player) vector l.(k) np in


let cases free = nbr cases free np vector l.(k) in


let max1 = count max cases free


(if player then nr1 else nr2)


and max2 = count max cases free


(if player then nr2 else nr1) in


if c1 >= c2 + max2 then nm.(k) <- M player


else if c2 >= c1 + max1 then nm.(k) <- M (not player)


done;
J(np,nm,nr1,nr2)


end ; ;
module Stone_rep :


sig


type player = bool


and piece = | P of int


val int_of_piece : piece -> int


type placement = | None | M of player


and case = | Empty | Occup of player * piece
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val value_on_case : case -> int


type game = | J of case array * placement array * piece list * piece list


and move = int * piece


val lines : int list list


val vector_l : int list array


val lines_per_case : int list array -> int array array


val num_line_per_case : int array array


val lines_of_i : ’a -> ’a list list -> ’a list list


val lines_of_cases : int list list -> int list list array


val ldc : int list list array


val game_start : unit -> game


val unicity : ’a list -> ’a list


val legal_moves : bool -> game -> (int * piece) list


val copy_board : ’a array -> ’a array


val carn_copy : ’a array -> ’a array


val play_piece : ’a -> ’a list -> ’a list


val count_case : player -> case -> int


val count_line : player -> int list -> case array -> int


val count_max : int -> piece list -> int


val nbr_cases_free : case array -> int list -> int


val a_placement : int -> placement array -> bool


val which_placement : int -> placement array -> player


val is_filled : int list -> case array -> bool


val play : player -> int * piece -> game -> game


end


The function play decomposes into three stages:


1. Copying the game position and placing a move onto this position;


2. Determination of the placement of a piece on one of the three lines of the case
played;


3. Treatment of the other ley-lines.


The second stage verifies that, of the three lines passing through the position of the
move, none has already been won, and then checks if they are able to be won. In
the latter case, it counts scores for each player and determines which strictly has the
greatest score, and attributes the line to the appropriate player. In case of equality, the
line goes to the most recent player’s adversary. In effect, there are no lines with just
one case. A filled line has at least two pieces. Thus if the player which just played has
just matched the score of his adversary, he cannot expect to win the line which then
goes to his adversary. If the line is not filled, it will be analyzed by “stage 3.”


The third stage verifies for each line not yet attributed that it is not filled, and then
checks if a player cannot be beaten by his opponent. In this case, the line is immediately
given to the opponent. To perform this test, it is necessary to calculate the maximum
total potential score of a player on the line (that is, by using his best pieces). If the
line is still under dispute, nothing more is done.
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Evaluation. The evaluation function must remain simple due to the large number
of cases to deal with near the beginning of the game. The idea is not to excessively
simplify the game by immediately playing the strongest pieces which would then leave
the remainder of the game open for the adversary to play his strong pieces.


We will use two criteria: the number of lines won and an estimate of the potential of
future moves by calculating the value of the remaining pieces. We may use the following
formula for player 1:


score = 50 ∗ (c1 − c2) + 10 ∗ (pr1 − pr2)


where ci is the number of lines won, and pri is the sum of the pieces remaining for
player i.


The formula returns a positive result if the differences between won lines (c1− c2) and
the potentials (pr1 − pr2) turn to the advantage of player 1. We may see thus that a
placement of piece 6 is not appropriate unless it provides a win of at least 2 lines. The
gain of one line provides 50, while using the “6” piece costs 10× 6 points, so we would
thus prefer to play “1” which results in the same score, namely a loss of 10 points.


# module Stone eval = struct


open Stone rep


type game = Stone rep.game


exception Done of bool


let moreI = 1000 and lessI = -1000


let nbr lines won (J(ca, m,r1,r2)) =


let c1,c2 = ref 0,ref 0 in


for i=0 to 14 do


if a placement i m then if which placement i m then incr c1 else incr c2


done;
!c1,!c2


let rec nbr points remaining lig = match lig with


[] → 0


| t :: q → (int of piece t) + nbr points remaining q


let evaluate player game =


let (J (ca,ma,r1,r2)) = game in


let c1,c2 = nbr lines won game in


let pr1,pr2 = nbr points remaining r1, nbr points remaining r2 in


match player with


true → if c1 > 7 then moreI else 50 * (c1 - c2) + 10 * (pr1 - pr2)


| false → if c2 > 7 then lessI else 50 * (c1 - c2) + 10 * (pr1 - pr2)


let is leaf player game =


let v = evaluate player game in


v = moreI or v = lessI or legal moves player game = []
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let is stable player game = true


type state = G | P | N | C


let state of player m =


let v = evaluate player m in


if v = moreI then if player then G else P


else


if v = lessI


then if player then P else G


else


if legal moves player m = [] then N else C


end; ;
module Stone_eval :


sig


type game = Stone_rep.game


exception Done of bool


val moreI : int


val lessI : int


val nbr_lines_won : Stone_rep.game -> int * int


val nbr_points_remaining : Stone_rep.piece list -> int


val evaluate : bool -> Stone_rep.game -> int


val is_leaf : bool -> Stone_rep.game -> bool


val is_stable : ’a -> ’b -> bool


type state = | G | P | N | C


val state_of : bool -> Stone_rep.game -> state


end


# module Stone graph = struct


open Stone rep


type piece = Stone rep.piece


type placement = Stone rep.placement


type case = Stone rep.case


type game = Stone rep.game


type move = Stone rep.move


(* brightness for a piece *)


let brightness = 20


(* the colors *)


let cBlack = Graphics.black


let cRed = Graphics.rgb 165 43 24


let cYellow = Graphics.yellow


let cGreen = Graphics.rgb 31 155 33 (*Graphics.green*)


let cWhite = Graphics.white


let cGray = Graphics.rgb 128 128 128


let cBlue = Graphics.rgb 196 139 25 (*Graphics.blue*)


(* width and height *)


let width = 600


let height = 500


(* the border at the top of the screen from which drawing begins *)


let top offset = 30
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(* height of foundaries *)


let bounds = 5


(* the size of the border on the left side of the virtual table *)


let virtual table xoffset = 145


(* left shift for the black pieces *)


let choice black offset = 40


(* left shift for the red pieces *)


let choice red offset = 560


(* height of a case for the virtual table *)


let virtual case size = 60


(* corresp : int*int -> int*int *)


(* establishes a correspondence between a location in the matrix *)


(* and a position on the virtual table servant for drawing *)


let corresp cp =


match cp with


0 → (4,1)


| 1 → (6,1)


| 2 → (3,2)


| 3 → (5,2)


| 4 → (7,2)


| 5 → (2,3)


| 6 → (4,3)


| 7 → (6,3)


| 8 → (8,3)


| 9 → (1,4)


| 10 → (3,4)


| 11 → (5,4)


| 12 → (7,4)


| 13 → (9,4)


| 14 → (2,5)


| 15 → (4,5)


| 16 → (6,5)


| 17 → (8,5)


| _ → (0,0)


let corresp2 ((x,y) as cp) =


match cp with


(0,0) → 0


| (0,1) → 1


| (1,0) → 2


| (1,1) → 3


| (1,2) → 4


| (2,0) → 5


| (2,1) → 6


| (2,2) → 7
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| (2,3) → 8


| (3,0) → 9


| (3,1) → 10


| (3,2) → 11


| (3,3) → 12


| (3,4) → 13


| (4,0) → 14


| (4,1) → 15


| (4,2) → 16


| (4,3) → 17


| (x,y) → print string "Err ";
print int x;print string " ";
print int y; print newline () ; 0


let col = 5


let lig = 5


(* draw_background : unit -> unit *)


(* draw the screen background *)


let draw background () =


Graphics.clear graph () ;
Graphics.set color cBlue ;
Graphics.fill rect bounds bounds width (height-top offset)


(* draw_places : unit -> unit *)


(* draw the pieces at the start of the game *)


let draw places () =


for l = 0 to 17 do


let cp = corresp l in


if cp <> (0,0) then


begin


Graphics.set color cBlack ;
Graphics.draw circle


((fst cp)*30 + virtual table xoffset)


(height - ((snd cp)*55 + 25)-50) (brightness+1) ;
Graphics.set color cGray ;
Graphics.fill circle


((fst cp)*30 + virtual table xoffset)


(height - ((snd cp)*55 + 25)-50) brightness


end


done


(* draw_force_lines : unit -> unit *)


(* draws ley-lines *)


let draw force lines () =


Graphics.set color cYellow ;
let lst = [((2,1),(6,1)); ((1,2),(7,2)); ((0,3),(8,3));


((-1,4),(9,4)); ((0,5),(8,5)); ((5,0),(1,4));
((7,0),(2,5)); ((8,1),(4,5)); ((9,2),(6,5));
((10,3),(8, 5)); ((3,6),(1,4)); ((5,6),(2,3));
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((7,6),(3,2)); ((9,6),(4,1)); ((10,5),(6,1))] in


let rec lines l =


match l with


[] → ()
| h :: t → let deb = fst h and complete = snd h in


Graphics.moveto


((fst deb) * 30 + virtual table xoffset)


(height - ((snd deb) * 55 + 25) -50) ;
Graphics.lineto


((fst complete) * 30 + virtual table xoffset)


(height - ((snd complete) * 55 + 25) -50) ;
lines t


in lines lst


(* draw_final_places : unit -> unit *)


(* draws final cases for each ley-line *)


(* coordinates represent in the virtual array


used for positioning *)


let draw final places () =


let lst = [(2,1); (1,2); (0,3); (-1,4); (0,5); (3,6); (5,6);
(7,6); (9,6); (10,5); (10,3); (9,2); (8,1); (7,0);
(5,0)] in


let rec final l =


match l with


[] → ()
| h :: t → Graphics.set color cBlack ;


Graphics.draw circle


((fst h)*30 + virtual table xoffset)


(height - ((snd h)*55 + 25)-50) (brightness+1) ;
Graphics.set color cGreen ;
Graphics.fill circle


((fst h)*30 + virtual table xoffset)


(height - ((snd h)*55 + 25)-50) brightness ;
final t


in final lst


(* draw_table : unit -> unit *)


(* draws the whole game *)


let draw table () =


Graphics.set color cYellow ;
draw background () ;
Graphics.set line width 5 ;
draw force lines () ;
Graphics.set line width 2 ;
draw places () ;
draw final places () ;
Graphics.set line width 1


(* move -> couleur -> unit *)
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let draw piece player (n case,P cp) = (* (n_caOccup(c,v),cp) col =*)


Graphics.set color (if player then cBlack else cRed); (*col;*)


let co = corresp n case in


let x = ((fst co)*30 + 145) and y = (height - ((snd co)*55 + 25)-50) in


Graphics.fill circle x y brightness ;
Graphics.set color cWhite ;
Graphics.moveto (x - 3) (y - 3) ;
let dummy = 5 in


Graphics.draw string (string of int cp) (*;*)


(* print_string "---";print_int n_case; print_string " "; print_int cp ;print_newline() *)


(* conv : Graphics.status -> int *)


(* convert a mouse click into a position on a virtual table permitting *)


(* its drawing *)


let conv st =


let xx = st.Graphics.mouse x and yy = st.Graphics.mouse y in


let y = (yy+10)/virtual case size - 6 in


let dec =


if y = ((y/2)*2) then 60 else 40 in


let offset = match (-1*y) with


0 → -2


| 1 → -1


| 2 → -1


| 3 → 0


| 4 → -1


| _ → 12 in


let x = (xx+dec)/virtual case size - 3 + offset in


(-1*y, x)


(* line_number_to_aff : int -> int*int *)


(* convert a line number into a polition on the virtual table serving *)


(* for drawing *)


(* the coordinate returned corresponds to the final case for the line *)


let line number to aff n =


match n with


0 → (2,1)


| 1 → (1,2)


| 2 → (0,3)


| 3 → (-1,4)


| 4 → (0,5)


| 5 → (5,0)


| 6 → (7,0)


| 7 → (8,1)


| 8 → (9,2)


| 9 → (10,3)


| 10 → (3,6)


| 11 → (5,6)


| 12 → (7,6)


| 13 → (9,6)


| 14 → (10,5)


| _ → failwith "line" (*raise Rep.Out_of_bounds*)
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(* draw_lines_won : game -> unit *)


(* position a marker indicating the player which has taken the line *)


(* this is done for all lines *)


let drawb l i =


match l with


None → failwith "draw"


| M j → let pos = line number to aff i in


(* print_string "’’’’";


print_int i;


print_string "---";


Printf.printf "%d,%d\n" (fst pos) (snd pos);


*) Graphics.set color (if j then cBlack else cRed);
Graphics.fill rect ((fst pos)*30 + virtual table xoffset-bounds)


(height - ((snd pos)*55 + 25)-60) 20 40


let draw lines won om nm =


for i=0 to 14 do


if om.(i) <> nm.(i) then drawb nm.(i) i


done


(*********************


let black_lines = Rep.lines_won_by_player mat Rep.Noir and


red_lines = Rep.lines_won_by_player mat Rep.Rouge


in


print_string "black : "; print_int (Rep.list_size black_lines);


print_newline () ;


print_string "red : "; print_int (Rep.list_size red_lines);


print_newline() ;


let rec draw l col =


match l with


[] -> ()


| h::t -> let pos = line_number_to_aff h in


Graphics.set_color col ;


Graphics.fill_rect ((fst pos)*30 + virtual_table_xoffset-bounds)


(height - ((snd pos)*55 + 25)-60) 20 40 ;


draw t col


in draw black_lines cBlack ;


draw red_lines cRed


***************************************************)


(* draw_poss : item list -> int -> unit *)


(* draw the pieces available for a player based on a list *)


(* the parameter "off" indicates the position at which to place the list *)


let draw poss player lst off =


let c = ref (1) in


let rec draw l =


match l with


[] → ()
| v :: t → if player then Graphics.set color cBlack


else Graphics.set color cRed;
let x = off and
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y = 0+(!c)*50 in


Graphics.fill circle x y brightness ;
Graphics.set color cWhite ;
Graphics.moveto (x - 3) (y - 3) ;
Graphics.draw string (string of int v) ;
c := !c + 1 ;
draw t


in draw (List.map (function P x → x) lst)


(* draw_choice : game -> unit *)


(* draw the list of pieces still available for each player *)


let draw choice (J (ca,ma,r1,r2)) =


Graphics.set color cBlue ;
Graphics.fill rect (choice black offset-30) 10 60


(height - (top offset + bounds)) ;
Graphics.fill rect (choice red offset-30) 10 60


(height - (top offset + bounds)) ;
draw poss true r1 choice black offset ;
draw poss false r2 choice red offset


(* wait_click : unit -> unit *)


(* wait for a mouse click *)


let wait click () = Graphics.wait next event [Graphics.Button down]


(* item list -> item *)


(* return, for play, the piece chosen by the user *)


let select pion player lst =


let ok = ref false and


choice = ref 99 and


pion = ref (P(-1))


in


while not !ok do


let st = wait click () in


let size = List.length lst in


let x = st.Graphics.mouse x and y = st.Graphics.mouse y in


choice := (y+25)/50 - 1 ;
if !choice <= size && ( (player && x < 65 )


|| ( (not player) && (x > 535))) then ok := true


else ok := false ;
if !ok then


try


pion := (List.nth lst !choice) ;
Graphics.set color cGreen ;
Graphics.set line width 2 ;
Graphics.draw circle


(if player then choice black offset else choice red offset)


((!choice+1)*50) (brightness + 1)


with _ → ok := false ;
done ;
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!pion


(* choiceH : game -> move *)


(* return a move for the human player.


return the choice of the number, the case, and the piece *)


let rec choice player game = match game with (J(ca,ma,r1,r2)) →
let choice = ref (P(-1))


and c = ref (-1, P(-1)) in


let lcl = legal moves player game in


while not (List.mem !c lcl) do


print newline () ;print string "CHOICE";
List.iter (fun (c,P p) → print string "["; print int c;print string " ";


print int p;print string "]")


(legal moves player game);
draw choice game;
choice := select pion player (if player then r1 else r2) ;


(* print_string "choice "; print_piece !choice;*)


c := (corresp2 (conv (wait click ())), !choice)


(* let (x,y) = !c in


(print_string "...";print_int x; print_string " "; print_piece y;


print_string " -> ";


print_string "END_CHOICE";print_newline())


*) done ;
!c (* case, piece *)


(* home : unit -> unit *)


(* place a message about the game *)


let home () =


Graphics.open graph


(" " ^ (string of int (width + 10)) ^ "x" ^ (string of int (height + 10))


^ "+50+50") ;
Graphics.moveto (height / 2) (width / 2) ;
Graphics.set color cBlue ;
Graphics.draw string "Stonehenge" ;
Graphics.set color cBlack ;
Graphics.moveto 2 2 ;
Graphics.draw string "Mixte Projets Maı̂trise & DESS GLA" ;
wait click () ;
Graphics.clear graph ()


(* exit : unit -> unit *)


(* close everything ! *)


let exit () =


Graphics.close graph ()


(* draw_button : int -> int -> int -> int -> string -> unit *)


(* draw a button with a message *)


let draw button x y w h s =


Graphics.set line width 1 ;
Graphics.set color cBlack ;
Graphics.moveto x y ;
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Graphics.lineto x (y+h) ;
Graphics.lineto (x+w) (y+h) ;
Graphics.lineto (x+w) y ;
Graphics.lineto x y ;
Graphics.moveto (x+bounds) (height - (top offset/2)) ;
Graphics.draw string s


(* draw_message : string -> unit *)


(* position a message *)


let draw message s =


Graphics.set color cBlack;
Graphics.moveto 3 (height - (top offset/2)) ;
Graphics.draw string s


(* erase_message : unit -> unit *)


(* as the name indicates *)


let erase message () =


Graphics.set color Graphics.white;
Graphics.fill rect 0 (height-top offset+bounds) width top offset


(* question : string -> bool *)


(* pose the user a question, and wait for a yes/no response *)


let question s =


let xb1 = (width/2) and xb2 = (width/2 + 30) and wb = 25 and hb = 16


and yb = height - 20 in


let rec attente () =


let e = wait click () in


if (e.Graphics.mouse y < (yb+hb)) & (e.Graphics.mouse y > yb) then


if (e.Graphics.mouse x > xb1) & (e.Graphics.mouse x < (xb1+wb)) then


true


else


if (e.Graphics.mouse x > xb2) & (e.Graphics.mouse x < (xb2+wb)) then


false


else


attente ()
else


attente () in


draw message s;
draw button xb1 yb wb hb "yes";
draw button xb2 yb wb hb "no";
attente ()


(* q_begin : unit -> bool *)


(* Ask if the player wishes to be the first player or not *)


let q begin () =


let b = question "Would you like to play first ?" in


erase message () ;
b


(* q_continue : unit -> bool *)


(* Ask if the user wishes to play the game again *)
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let q continue () =


let b = question "Play again ?" in


erase message () ;
b


(* won : unit -> unit *)


(* a message indicating the machine has won *)


let won () = draw message "I won :-)"; wait click () ; erase message ()


(* lost : unit -> unit *)


(* a message indicating the machine has lost *)


let lost () = draw message "You won :-("; wait click () ; erase message ()


(* nil : unit -> unit *)


(* a message indicating stalemate *)


let nil () = draw message "Stalemate"; wait click () ; erase message ()


(* init : unit -> unit *)


(* draw the initial game board *)


let init () = let game = game start () in


draw table () ;
draw choice game


(* drawH : move -> game -> unit *)


(* draw a piece for the human player *)


(* let drawH cp j = draw_piece cp cBlack ;


draw_lines_won j


*)


(* drawM : move -> game -> unit *)


(* draw a piece for the machine player *)


(* let drawM cp j = draw_piece cp cRed ;


draw_lines_won j


*)


let print placement m = match m with


None → print string "None "


| M j → print string ("Pl "^(if j then "1 " else "2 "))


let position player move


(J(ca1,m1,r11,r12))


(J(ca2,m2,r21,r22) as new game) =


draw piece player move;
draw choice new game;


(* print_string "_______OLD___________________\n";


Array.iter print_placement m1; print_newline();


List.iter print_piece r11; print_newline();


List.iter print_piece r12; print_newline();


print_string "_______NEW___________________\n";


Array.iter print_placement m2; print_newline();


List.iter print_piece r21; print_newline();


List.iter print_piece r22; print_newline();


*) draw lines won m1 m2


(*
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if player then draw_piece move cBlack


else draw_piece move cRed


*)


let q player () =


let b = question "Is there a machine playing?" in


erase message () ;
b


end; ;
Characters 11114-11127:


Warning: this expression should have type unit.


Characters 13197-13209:


Warning: this expression should have type unit.


Characters 13345-13357:


Warning: this expression should have type unit.


Characters 13478-13490:


Warning: this expression should have type unit.


module Stone_graph :


sig


type piece = Stone_rep.piece


and placement = Stone_rep.placement


and case = Stone_rep.case


and game = Stone_rep.game


and move = Stone_rep.move


val brightness : int


val cBlack : Graphics.color


val cRed : Graphics.color


val cYellow : Graphics.color


val cGreen : Graphics.color


val cWhite : Graphics.color


val cGray : Graphics.color


val cBlue : Graphics.color


val width : int


val height : int


val top_offset : int


val bounds : int


val virtual_table_xoffset : int


val choice_black_offset : int


val choice_red_offset : int


val virtual_case_size : int


val corresp : int -> int * int


val corresp2 : int * int -> int


val col : int


val lig : int


val draw_background : unit -> unit


val draw_places : unit -> unit


val draw_force_lines : unit -> unit


val draw_final_places : unit -> unit


val draw_table : unit -> unit


val draw_piece : bool -> int * Stone_rep.piece -> unit


val conv : Graphics.status -> int * int


val line_number_to_aff : int -> int * int


val drawb : Stone_rep.placement -> int -> unit
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val draw_lines_won :


Stone_rep.placement array -> Stone_rep.placement array -> unit


val draw_poss : bool -> Stone_rep.piece list -> int -> unit


val draw_choice : Stone_rep.game -> unit


val wait_click : unit -> Graphics.status


val select_pion : bool -> Stone_rep.piece list -> Stone_rep.piece


val choice : bool -> Stone_rep.game -> int * Stone_rep.piece


val home : unit -> unit


val exit : unit -> unit


val draw_button : int -> int -> int -> int -> string -> unit


val draw_message : string -> unit


val erase_message : unit -> unit


val question : string -> bool


val q_begin : unit -> bool


val q_continue : unit -> bool


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


val init : unit -> unit


val print_placement : Stone_rep.placement -> unit


val position :


bool ->


int * Stone_rep.piece -> Stone_rep.game -> Stone_rep.game -> unit


val q_player : unit -> bool


end


Assembly. We thus write module Stone graph which describes a graphical inter-
face compatible with signature DISPLAY. We construct Stone skeletonG similar to
C4 skeletonG, passing in the arguments appropriate for the Stonehenge game, apply-
ing the parametric module FSkeleton.


# module Stone skeletonG = FSkeleton (Stone rep)


(Stone graph)


(Stone eval)


(FAlphabeta (Stone rep) (Stone eval)) ; ;
module Stone_skeletonG :


sig


val depth : int ref


exception Won


exception Lost


exception Nil


val won : unit -> unit


val lost : unit -> unit


val nil : unit -> unit


val again : unit -> bool


val play_game : Stone_graph.game ref


val exit : unit -> unit


val home : unit -> unit


val playH : bool -> unit -> unit
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val playM : bool -> unit -> unit


val init : unit -> (unit -> unit) * (unit -> unit)


end


We may thus construct the principal module Stone mainG.
# module Stone mainG = FMain(Stone skeletonG) ; ;
module Stone_mainG :


sig


val play_game : (unit -> ’a) * (unit -> ’b) -> unit


val main : unit -> unit


end


Launching Stone mainG.main () opens the window shown in figure 17.6. After dis-
playing a dialogue to show who is playing, the game begins. A human player will select
a piece and place it.


To Learn More


This organization of these applications involves using several parametric modules that
permit direct reuse of FAlphabeta and FSkeleton for the two games we have written.
With Stonehenge, some of the functions from Stone rep, needed for play, which do
not appear in REPRESENTATION, are used by the evaluation function. That is why the
module Stone rep was not closed immediately by REPRESENTATION. This partitioning
of modules for the specific aspects of games allows incremental development without
making the game schema dependencies (presented in figure 17.4) fragile.


A first enhancement involves games where given a position and a move, it is easy to
determine the preceding position. In such cases, it may be more efficient to not bother
making a copy of the game for function play, but rather to conserve a history of moves
played to allow backtracking. This is the case for Connect 4, but not for Stonehenge.


A second improvement is to capitalize on a player’s response time by evaluating future
positions while the other player is selecting his next move. For this, one may use threads
(see chapter 19), which allow concurrent calculation. If the player’s response is one that
has already been explored, the gain in time will be immediate, if not we must start
again from the new position.


A third enhancement is to build and exploit dictionaries of opening moves. We have
been able to do so with Stonehenge, but it is also useful for many other games where
the set of legal moves to explore is particularly large and complex at the start of the
game. There is much to be gained from estimating and precalculating some “best”
moves from the starting positions and retaining them in some sort of database. One
may add a bit of “spice” (and perhaps unpredictability) to the games by introducing
an element of chance, by picking randomly from a set of moves with similar or identical
values.
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A fourth view is to not limit the search depth to a fixed depth value, but rather to
limit the search by a calculation time period that is not to be exceeded. In this manner,
the program will be able to efficiently search to deeper depths when the number of
remaining moves becomes limited. This modification requires slight modification to
minmax in order to be able to re-examine a tree to increase its depth.


A game-dependent heuristic, parameterized by minmax, may be to choose which branches
in the search should be pursued and which may be quickly abandoned.


There are also many other games that require little more than to be implemented or
reimplemented. We might cite many classic games: Checkers, Othello, Abalone, . . . ,
but also many lesser-known games that are, nevertheless, readily playable by computer.
You may find on the web various student projects including Checkers or the game Nuba.


Link: http://www.gamecabinet.com/rules/Nuba.html


Games with stochastic qualities, such as card games and dice games, necessitate a
modification of the minimax-αβ algorithm in order to take account of the probabilities
of the selections.


We will return to the interfaces of games in chapter 21 in constructing web-based in-
terfaces, providing without further cost the ability to return to the last move. This also
allows further benefits from the modular organization that allows modifying no more
than just an element, here the game state and interactions, to extend the functionality
to support two player games.


Fancy Robots


The example in this section illustrates the use of objects from the graphics library.
We will revisit the concepts of simple inheritance, overriding methods and dynamic
dispatch. We also see how parametric classes may be profitably used.


The application recognizes two principal categories of objects: a world and robots. The
world represents a state space within which the robots evolve. We will have various
classes of robots, each possessing its own strategy to move around in the world.


The principle of interaction between robots and the world here is extremely simple.
The world is completely in control of the game: it asks, turn by turn, each of the robots
if they know their next position. Each robot determines its next position fairly blindly.
They do not know the geometry of the world, nor what other robots may be present.
If the position requested by a robot is legal and open, the world will place the robot
at that position.


The world displays the evolution of the robots via an interface. The (relative) com-
plexity of the conception and development of this example is in the always-necessary
separation between a behavior (here the evolution of the robots) and its interface (here
the tracking of this evolution).
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General Description The application is developed in two stages.


1. A group of definitions providing pure calculation classes for the world and for
the diverse set of envisaged robots.


2. A group of definitions using the preceding set, adding whatever is necessary to
add in an interface.
We provide two examples of such interfaces: a rudimentary text-based interface,
and a more elaborate one using a graphical library.


In the first section, we provide the abstract definitions for the robots. Then (page 553),
we provide the pure abstract definition for the world. In the next section (page 554),
we introduce the text interface for the robots, and in the fourth section (page 556), the
interface for the world. On page 559 we introduce a graphical interface for the robots
and finally (page 562) we define a world for the graphical interface.


“Abstract” Robots


The first thing to do is to examine robots abstractly, independent of any consideration
of the environment in which they will move, that is to say, the interface that displays
them.


# class virtual robot (i0:int) (j0:int) =


object


val mutable i = i0


val mutable j = j0


method get pos = (i,j)


method set pos (i’, j’) = i <- i’; j <- j’


method virtual next pos : unit → (int * int)


end ; ;


A robot is an entity which knows, or believes it knows, its position (i and j), is
capable of communicating that position to a requester (get pos), is able to modify
this knowledge if it knows precisely where it should be (set pos) and may decide to
move towards a new position (next pos).


To improve the readability of the program, we define relative movements based on
absolute directions:


# type dir = North | East | South | West | Nothing ; ;


# let walk (x,y) = function


North → (x,y+1) | South → (x,y-1)


| West → (x-1,y) | East → (x+1,y)


| Nothing → (x,y) ; ;
val walk : int * int -> dir -> int * int = <fun>


# let turn right = function
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crazy_robot obstinate_robot
wanted_pos, dir


set_wanted
change_dir


interactive_robot


get_move


robot
i, j


get_pos
set_pos
next_pos


fix_robot


Figure 17.9: Hierarchy of pure robot classes


North → East | East → South | South → West | West → North | x → x ; ;
val turn_right : dir -> dir = <fun>


The schema is shown by the virtual class robots from which we define four distinct
species of robots (see figure 17.9) to more precisely see their manner of motion:


• Fixed robots which never move:
# class fix robot i0 j0 =


object


inherit robot i0 j0


method next pos () = (i,j)


end ; ;


• Crazy robots which move at random:
# class crazy robot i0 j0 =


object


inherit robot i0 j0


method next pos () = ( i+(Random.int 3)-1 , j+(Random.int 3)-1 )


end ; ;


• Obstinate robots which keep trying to advance in one direction whenever they
are able to do so,


# class obstinate robot i0 j0 =


object(self)


inherit robot i0 j0


val mutable wanted pos = (i0,j0)


val mutable dir = West


method private set wanted pos d = wanted pos <- walk (i,j) d


method private change dir = dir <- turn right dir
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method next pos () = if (i,j) = wanted pos


then let np = walk (i,j) dir in ( wanted pos <- np ; np )


else ( self#change dir ; wanted pos <- (i,j) ; (i,j) )


end ; ;


• Interactive robots which obey the commands of an exterior operator:


# class virtual interactive robot i0 j0 =


object(self)


inherit robot i0 j0


method virtual private get move : unit → dir


method next pos () = walk (i,j) (self#get move ())
end ; ;


The case of the interactive robot is different from the others in that its behavior is
controlled by an interface that permits communicating orders to it. To deal with this,
we provide a virtual method to communicate this order. As a consequence, the class
interactive robot remains abstract.


Note that not only do the four specialized robot classes inherit from class robot, but
also any others that have the same type. In effect, the only methods that we have
added are the private methods that therefore do not appear in the type signatures of
the instances of these classes (see page 449). This property is indispensable if we wish
to consider all the robots to be objects of the same type.


Pure World


A pure world is a world that is independent of an interface. It is understood as the state
space of positions which a robot may occupy. It takes the form of a grid of size l × h,
with a method is legal to assure that a coordinate is a valid position in the world,
and a method is free indicates whether or not a robot occupies a given position.


In practice, a world manages the list of robots present on its surface while a method,
add, allows new robots to enter the world.


Finally, a world is made visible by the method run, allowing the world to come to life.


# class virtual [’robot type] world (l0:int) (h0:int) =


object(self)


val l = l0


val h = h0


val mutable robots = ( [] : ’robot type list )


method add r = robots <- r :: robots
method is free p = List.for all (fun r → r#get pos <> p) robots


method virtual is legal : (int * int) → bool


method private run robot r =


let p = r#next pos ()
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in if (self#is legal p) & (self#is free p) then r#set pos p


method run () =


while true do List.iter (function r → self#run robot r) robots done


end ; ;
class virtual [’a] world :


int ->


int ->


object


constraint ’a =


< get_pos : int * int; next_pos : unit -> int * int;


set_pos : int * int -> unit; .. >


val h : int


val l : int


val mutable robots : ’a list


method add : ’a -> unit


method is_free : int * int -> bool


method virtual is_legal : int * int -> bool


method run : unit -> unit


method private run_robot : ’a -> unit


end


The Objective Caml type system does not permit leaving the types of robots undeter-
mined (see page 460). To resolve this problem, we might consider restraining the type
to those of the class robot. But that would forbid populating a world with objects
other than those having exactly the same type as robot. As a result, we have instead
decided to parameterize world with the type of the robots that populate it. We may
thereby instantiate this type parameter with textual robots or graphical robots.


Textual Robots


Text Objects To obtain robots controllable via a textual interface, we define a class
of text objects (txt object).


# class txt object (s0:string) =


object


val name = s0


method get name = name


end ; ;


An Interface Class: Abstract Textual Robots By double inheritance from robots
and txt object, we obtain the abstract class txt robot of textual robots.


# class virtual txt robot i0 j0 =


object
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inherit robot i0 j0


inherit txt object "Anonymous"


end ; ;
class virtual txt_robot :


int ->


int ->


object


val mutable i : int


val mutable j : int


val name : string


method get_name : string


method get_pos : int * int


method virtual next_pos : unit -> int * int


method set_pos : int * int -> unit


end


This class defines a world with a textual interface (see page 556). The inhabitants of
this world will not be objects of txt robot (since this class is abstract) nor inheritors of
this class. The class txt robot is, in a way, an interface classe permitting the compiler
to identify the method types (calculations and interfaces) of the inhabitants of the text
interface world. The use of such a specification class provides the separation we wish
to maintain between calculations and interface.


Concrete Text Robots These are simply obtained via double inheritance; figure
17.10 shows the hierarchy of classes.


# class fix txt robot i0 j0 =


object


inherit fix robot i0 j0


inherit txt object "Fix robot"


end ; ;


# class crazy txt robot i0 j0 =


object


inherit crazy robot i0 j0


inherit txt object "Crazy robot"


end ; ;


# class obstinate txt robot i0 j0 =


object


inherit obstinate robot i0 j0


inherit txt object "Obstinate robot"


end ; ;


The interactive robots require, for a workable implementation, defining their method
of interacting with the user.
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txt_object
name


get_name


robot
...


...


txt_robot


fix_robot fix_txt_robot


crazy_robot crazy_txt_robot


obstinate_robot
...


...


obstinate_txt_robot


interactive_robot


...


interactive_txt_robot


Figure 17.10: Hierarchy of classes for text mode robots


# class interactive txt robot i0 j0 =


object


inherit interactive robot i0 j0


inherit txt object "Interactive robot"


method private get move () =


print string "Which dir : (n)orth (e)ast (s)outh (w)est ? ";
match read line () with


"n" → North | "s" → South


| "e" → East | "w" → West


| _ → Nothing


end ; ;


Textual World


The text interface world is derived from the pure world by:


1. Inheritance from the generic class world by instantiating its type parameter with
the class specified by txt robot, and


2. Redefinition of the method run to include the different textual methods.
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# class virtual txt world (l0:int) (h0:int) =


object(self)


inherit [txt robot] world l0 h0 as super


method private display robot pos r =


let (i,j) = r#get pos in Printf.printf "(%d,%d)" i j


method private run robot r =


let p = r#next pos ()
in if (self#is legal p) & (self#is free p)


then


begin


Printf.printf "%s is moving from " r#get name ;
self#display robot pos r ;
print string " to " ;
r#set pos p;
self#display robot pos r ;


end


else


begin


Printf.printf "%s is staying at " r#get name ;
self#display robot pos r


end ;
print newline () ;
print string"next - ";
ignore (read line ())


method run () =


let print robot r =


Printf.printf "%s is at " r#get name ;
self#display robot pos r ;
print newline ()


in


print string "Initial state :\n";
List.iter print robot robots;
print string "Running :\n";
super#run () (* 1 *)


end ; ;


We direct the reader’s attention to the call to run of the ancestor class (this method
call is marked (* 1 *) in the code) in the redefinition of the same method. There we
have an illustration of the two possible types of method dispatch: static or dynamic
(see page 446). The call to super#run is static. This is why we name the superclass: to
be able to call the methods when they are redefined. On the other hand, in super#run


we find a call to self#run robot. This is a dynamic dispatch; the method defined in
class txt world is executed, not that of world. Were the method from world executed,
nothing would be displayed, and the method in txt world would remain useless.
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The planar rectangular text world is obtained by implementing the final method
that still remains abstract: is legal.


# class closed txt world l0 h0 =


object(self)


inherit txt world l0 h0


method is legal (i,j) = (0<=i) & (i<l) & (0<=j) & (j<h)


end ; ;


l, h, robots


add
is_free
is_legal


run_robot
run


display_robot_pos


[’a] world


txt_world


closed_txt_world


txt_robot


Figure 17.11: Hierarchy of classes in the textual planar rectangular world


We may proceed with a small essay in typing:
let w = new closed txt world 5 5


and r1 = new fix txt robot 3 3


and r2 = new crazy txt robot 2 2


and r3 = new obstinate txt robot 1 1


and r4 = new interactive txt robot 0 0


in w#add r1; w#add r2; w#add r3; w#add r4; w#run () ; ;


We may skip, for the moment, the implementation of a graphical interface for our world
of robots. In due course, we will obtain an application having an appearance like figure
17.12.
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Figure 17.12: The graphical world of robots


Graphical Robots


We may implement robots in a graphical mode by following the same approach as with
the text mode:


1. define a generic graphical object,


2. define an abstract class of graphical robots by double inheritance from robots
and graphical objects (analogous to the interface class of page 554),


3. define, through double inheritance, the particular behavior of robots.


Generic Graphical Objects


A simple graphical object is an object possessing a display method which takes, as
arguments, the coordinates of a pixel and displays it.


# class virtual graph object =


object


method virtual display : int → int → unit


end ; ;


From this specification, it would be possible to implement graphical objects with ex-
tremely complex behavior. We will content ourselves for now with a class graph item,
displaying a bitmap that serves to represent the object.


# class graph item x y im =


object (self)
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val size box x = x


val size box y = y


val bitmap = im


val mutable last = None


method private erase = match last with


Some (x,y,img) → Graphics.draw image img x y


| None → ()


method private draw i j = Graphics.draw image bitmap i j


method private keep i j =


last <- Some (i,j,Graphics.get image i j size box x size box y) ;


method display i j = match last with


Some (x,y,img) → if x<>i || y<>j


then ( self#erase ; self#keep i j ; self#draw i j )


| None → ( self#keep i j ; self#draw i j )


end ; ;


An object of graph item stores the portion of the image upon which it is drawn in
order to restore it in subsequent redraws. In addition, if the image has not been moved,
it will not be redrawn.


# let foo bitmap = [|[| Graphics.black |]|] ; ;
# class square item x col =


object


inherit graph item x x (Graphics.make image foo bitmap)


method private draw i j =


Graphics.set color col ;
Graphics.fill rect (i+1) (j+1) (x-2) (x-2)


end ; ;


# class disk item r col =


object


inherit graph item (2*r) (2*r) (Graphics.make image foo bitmap)


method private draw i j =


Graphics.set color col ;
Graphics.fill circle (i+r) (j+r) (r-2)


end ; ;


# class file bitmap item name =


let ch = open in name


in let x = Marshal.from channel ch


in let y = Marshal.from channel ch


in let im = Marshal.from channel ch


in let () = close in ch


in object


inherit graph item x y (Graphics.make image im)


end ; ;
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We specialize the graph item with instances of crosses, disks, and other bitmaps, read
from a file.


The abstract graphical robot is both a robot and a graphical object.


# class virtual graph robot i0 j0 =


object


inherit robot i0 j0


inherit graph object


end ; ;


Graphical robots that are fixed, crazy, and obstinate are specialized graphical
objects.


# class fix graph robot i0 j0 =


object


inherit fix robot i0 j0


inherit disk item 7 Graphics.green


end ; ;


# class crazy graph robot i0 j0 =


object


inherit crazy robot i0 j0


inherit file bitmap item "crazy_bitmap"


end ; ;


# class obstinate graph robot i0 j0 =


object


inherit obstinate robot i0 j0


inherit square item 15 Graphics.black


end ; ;


The interactive graphical robot uses the primitives key pressed and read key
of module Graphics to determine its next move. We again see the key presses 8, 6, 2
and 4 on the numeric keypad (NumLock button active). In this manner, the user is not
obliged to provide direction at each step in the simulation.


# class interactive graph robot i0 j0 =


object


inherit interactive robot i0 j0


inherit file bitmap item "interactive_bitmap"


method private get move () =


if not (Graphics.key pressed ()) then Nothing


else match Graphics.read key () with
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’8’ → North | ’2’ → South | ’4’ → West | ’6’ → East | _ → Nothing


end ; ;


Graphical World


We obtain a world with a graphical interface by inheriting from the pure world, instan-
tiating the parameter ’a_robot with the graphical robot abstract class graph robot.
As with the text mode world, the graphical world provides its own method, run robot,
to implement the robot’s behavior as well as the general activation method run.


# let delay x = let t = Sys.time () in while (Sys.time ()) -. t < x do () done ; ;


# class virtual graph world l0 h0 =


object(self)


inherit [graph robot] world l0 h0 as super


initializer


let gl = (l+2)*15 and gh = (h+2)*15 and lw=7 and cw=7


in Graphics.open graph (" "^(string of int gl)^"x"^(string of int gh)) ;
Graphics.set color (Graphics.rgb 170 170 170) ;
Graphics.fill rect 0 lw gl lw ;
Graphics.fill rect (gl-2*lw) 0 lw gh ;
Graphics.fill rect 0 (gh-2*cw) gl cw ;
Graphics.fill rect lw 0 lw gh


method run robot r = let p = r#next pos ()
in delay 0.001 ;


if (self#is legal p) & (self#is free p)


then ( r#set pos p ; self#display robot r)


method display robot r = let (i,j) = r#get pos


in r#display (i*15+15) (j*15+15)


method run () = List.iter self#display robot robots ;
super#run ()


end ; ;


Note that the graphical window is created at the time that an object of this class is
initialized.


The rectangular planar graphical world is obtained in much the same manner
as with the rectangular planar textual world.


# class closed graph world l0 h0 =


object(self)


inherit graph world l0 h0
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method is legal (i,j) = (0<=i) & (i<l) & (0<=j) & (j<h)


end ; ;
class closed_graph_world :


int ->


int ->


object


val h : int


val l : int


val mutable robots : graph_robot list


method add : graph_robot -> unit


method display_robot : graph_robot -> unit


method is_free : int * int -> bool


method is_legal : int * int -> bool


method run : unit -> unit


method run_robot : graph_robot -> unit


end


We may then test the graphical application by typing in:


let w = new closed graph world 10 10 ; ;
w#add (new fix graph robot 3 3) ; ;
w#add (new crazy graph robot 2 2) ; ;
w#add (new obstinate graph robot 1 1) ; ;
w#add (new interactive graph robot 5 5) ; ;
w#run () ; ;


To Learn More


The implementation of the method run robot in different worlds suggests that the
robots are potentially able to move to any point on the world the moment it is empty
and legal. Unfortunately, nothing prevents a robot from modifying its position arbitrar-
ily; the world cannot prevent it. One remedy would consist of having robot positions
being controlled by the world; when a robot attempts to move, the world verifies not
only that the new position is legal, but also that it constitutes an authorized move.
In that case, the robot must be capable of asking the world its actual position, with
the result that the robot class must become dependent on the world’s class. The robot
class would take, as a type parameter, the world class.


This modification permits defining robots capable of querying the world in which they
run, thus behaving as dependents of the world. We may then implement robots which
follow or avoid other robots, try to block them, and so forth.


Another extension would be to permit robots to communicate with one another, ex-
changing information, perhaps constituting themselves into teams of robots.


The chapters of the next section allow making execution of robots independent from
one another: by making use of Threads (see page 599), each may execute as a distinct
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process. They may profit from the possibilities of distributed computing (see 623)
where the robots become clients executing on remote machines that announce their
movements or request other information from a world that behaves as a server. This
problem is dealt with on page 656.







Part IV


Concurrency and distribution


565
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The fourth part introduces the concepts of parallel programming and presents models
for shared and distributed memory. It is not necessary to have access to a parallel super-
computer to express concurrent algorithms or to implement distributed applications.
In this preamble we define the different terms used in the following chapters.


In sequential programming, one instruction is executed after another. This is called
causal dependency. Sequential programs have the property of being deterministic. For
the same input, one program will always terminate or never terminate. In the case of
termination, always the same result will be produced. Determinism implies that the
same circumstances will always lead to the same effects. The only exceptions, which
we have already met in Objective Caml, are provided by functions taking external
information as input, such as the function Sys.time.


In parallel programming, a program is split into several active processes. Each process
is sequential, but several instructions, belonging to different processes, are executed
in parallel, “at the same time.” The sequence is transformed into concurrency. This is
called causal independence. The same circumstances may lead to different, mutually
exclusive effects (only one effect is produced). An immediate consequence is the loss
of determinism: the same program with the same input may or may not terminate. In
the case of termination different results may be produced.


In order to control the execution of a parallel program, it is necessary to introduce two
new notions:


• synchronization, which introduces a conditional wait to several processes;


• communication through the passing of messages between processes.


From the point of view of causality, synchronization assures that several independent
circumstances have to be reproduced before an effect may take place. Communications
have a temporal constraint: a message can not be received before it is sent. Communi-
cation can occur in different variants: communication directed from one process to one
other (point-to-point) or as distribution (one-to-all, or all-to-all).


The two models of parallel programming described by figure 17.13 differ in execution
control by the forms of synchronization and communication.


Each process Pi corresponds to a sequential process. The set of these processes, inter-
acting via shared memory (M) or via a medium, constitutes a parallel application.


Shared Memory Model Communication is implicit in the shared memory model.
An information is given through writing into a zone of the shared memory. It is received
when another process reads this zone. The synchronization, in contrast, has to be
explicit. Constructs of mutual exclusion and waiting conditions are used.


This model is used when shared resources are used in a concurrent way. The construc-
tion of operating systems can be cited as an example.
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Shared Memory Distributed Memory
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Figure 17.13: Models of parallelism


Distributed Memory Model In this model each sequential process Pi has a private
memory Mi, to which no other process has access. The processes have to communicate
in order to transmit information through a medium. The difficulties in this model arise
from the implementation of the medium. The programs which care for this are called
protocols.


Protocols are organized in layers. The higher-level protocols implement more elaborate
services, using the lower-level services.


There exist several types of communication. They depend on the capability of the
medium to store information and of the blocking, respectively non-blocking character
of sender and receiver. We talk about synchronous communication when the transfer of
information is not possible before a global synchronization between sender and receiver
takes place. In his case both sender and receiver may be blocked.


If the medium has the storage capabilities, it can store messages for a later transmis-
sion. Therefore the communication can be asynchronous and non-blocking. It may be
necessary to indicate the storage capacity of the medium, the order of transmission,
the delay and the reliability of transmissions.


Finally, if the transmission is non-blocking with a medium not able to store messages,
a volatile communication results: only the receiving processes which are ready will
receive the sent message, which is lost for the other processes.


In the model of distributed memory the communication is explicit, but the synchro-
nization is implicit (Synchronization is produced by communication). It is dual to the
model of shared memory.


Physical and Logical Parallelism The model of distributed memory is valid in
the case of physical and logical parallelism. Physical parallelism refers for example to a
computer network. Examples for logical parallelism are Unix processes communicating
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via pipes, or lightweight processes communicating via channels. There are no common
global values known by all proceses like, for example, a global clock.


The model of distributed memory is closer to physical parallelism, where there is no
effectively shared memory. Nevertheless, shared memory can be simulated across a
computer nerwork.


The fourth part will show how to construct parallel applications with Objective Caml
using the two presented models. It relies on the Unix library, which interfaces Unix sys-
tem calls to Objective Caml, and on the Thread library, which implements lightweight
processes. A major part of the Unix library is ported to Windows, especially the func-
tions on file descriptors. These are used to read and to write on files, but also for
communication pipes and for sockets of computer networks.


Chapter 18 describes essential concepts of the Unix library. It concentrates on the
communication of a process with it’s exterior and with other processes. The notion of
process in this chapter is that of a “heavyweight process” as in Unix. They are created
by the fork system call which duplicates the execution context and the memory for the
data, producing a chain of processes. The interaction between processes is implemented
by signals or by communication pipes.


Chapter 19 concentrates on the notion of lightweight processes of the Thread library.
In contrast to the heavy processes mentioned before, they duplicate nothing but the
execution context of an existing process. The memory is shared between the creator and
the thread. Depending on the programming style, the light Objective Caml processes
permit to use the parallelism model of shared memory (imperative style) or the model
of separated memory (purely functional style). The Thread library contains several
modules allowing to start and stop threads, to manage locks for mutual exclusion, to
wait for a condition and to communicate between threads via channels. In this model,
there is no gain in execution time, not even for multi-processor machines. But the
formulation of parallel algorithms is made easier.


Chapter 20 is devoted to the construction of distributed Internet applications. The
Internet is presented from the point of view of low-level protocols. With the help of
communication sockets several processes running on different machines are able to
communicate with each other. The communication through sockets is an asynchronous
point-to-point communication. The role of the different processes taking part in the
communication of a distributed application is in general asymmetrical. This is the case
for client-server architectures. The server is a process accepting requests and trying to
respond. The other process, the client, sends a request to the server and waits for a
response. Many services accessible in the Internet follow this architecture.


Chapter 21 presents a library and two complete applications. The library allows to
define the communication between clients and servers starting from a given protocol.
The first application revisits the robots of chapter 17 to give a distributed version. The
second application constructs an HTTP server to manage a request form taking up
again the management of associations presented in chapter 6.
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18
Communication and


Processes


This chapter approaches two important aspects of the interface between a programming
language and the operating system: communication and processes. The Sys module
presented in chapter 8 has already shown how to pass values to a program and how to
start a program from another one. The goal of this chapter is to discuss the notions of
processes and communication between processes.


The term “process” is used for an executing program. Processes are the main compo-
nents of a parallel application. We introduce processes in the classical way originating
from the Unix system. In this context a process is created by another process, estab-
lishing a parent-child relationship between them. This relationship allows the parent to
wait for the child to terminate, as well as to set up privileged communications between
the two. The underlying model of parallelism is that of distributed memory.


The term “communication” covers three aspects:


• input and output via file descriptors. The notion of file descriptors under Unix
has a much broader meaning than the simple reading or writing of data from or
to a storage medium. We will see this in chapter 20, where programs running on
different machines are communicating via such descriptors;


• the use of pipes between processes which allow the exchange of data using the
principle of waiting queues;


• the generation and handling of signals, which allow a simple interaction between
processes.


The functions presented in this chapter are similar to those in the Unix module which
accompanies the Objective Caml distribution. The terminology and the notions come
from the Unix world. But many of the functions of this module can also be used under
Windows. Later we will indicate the applicability of the presented functions.
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Chapter Overview


The first section indicates how to use the Unix module. We will talk about the handling
of errors specific to that module and about the portability of system calls to Windows.


The second section presents file descriptors in the Unix sense, and their use for input
and output operations of a lower level than those provided by the preloaded module
Pervasives.


Processes are introduced in the third section. We talk about their creation, their disap-
pearance and about the way in which all processes support their descendence relation
in the Unix model.


The fourth section describes the basic means of communications between processes:
pipes and signals.


The two last sections will be continued in chapters 19 and 20 by the presentation of
lightweight processes and sockets.


The Unix Module


This module contains the interfaces to the most important Unix library functions.
Much of this module has been ported to Windows and can be used there. Whenever
necessary we will indicate the restrictions in the use of the presented functions. A table
resuming the restrictions is given by figure 18.1.


The Unix library belongs to the Objective Caml non-standard libraries which have to
be bound by the -custom compiler command (see chapter 7, page 197). Depending on
the desired form of the program, one of the following commands is used under Unix to
produce bytecode, native code or an interaction loop:


$ ocamlc -custom unix.cma fichiers.ml -cclib -lunix


$ ocamlopt unix.cma fichiers.ml -cclib -lunix


$ ocamlmktop -custom -o unixtop unix.cma -cclib -lunix


The purpose of constructing an interaction loop (of which the name will be unixtop)
is to support an incremental development style. Each function can be compiled quickly
from its type declaration. It is also possible to execute functional tests.


Depending on the version of Unix in use, the system library may not be located at the
default place. If necessary the access path of the libraries may be indicated with the
option -ccopt (see chapter 7).


Under Windows the commands to compile become:


$ ocamlc -custom unix.cma fichiers.ml %CAMLLIB%\libunix.lib wsock32.lib


$ ocamlopt unix.cma fichiers.ml %CAMLLIB%\libunix.lib wsock32.lib


$ ocamlmktop -custom -o unixtop.exe unix.cma %CAMLLIB%\libunix.lib wsock32.lib
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The name of the obtained interaction loop is unixtop.exe.


Error Handling


Errors produced by system calls throw Unix error exceptions, which can be han-
dled by the Objective Caml program. Such errors contain three arguments: a value
of type Unix.error which can be transformed into a character string by the function
error message, a string containing the name of the function producing the error and
optionally, a string containing the argument of the function when the argument is of
type string.


It is possible to define a generic calling function with error treatment:
# let wrap unix funct arg =


try (funct arg) with


Unix.Unix error (e,fm,argm) →
Printf.printf "%s %s %s" (Unix.error message e) fm argm ; ;


val wrap_unix : (’a -> unit) -> ’a -> unit = <fun>


The function wrap unix takes a function and its argument, and applies one to the
other. If a Unix error occurs, an explaining message is printed. An equivalent function
is defined in the Unix module:


# Unix.handle unix error ; ;
- : (’a -> ’b) -> ’a -> ’b = <fun>


Portability of System Calls


Figure 18.1 indicates which of the communication and process handling functions pre-
sented in this chapter are accessible under Windows. The main shortcoming is the lack
of the two functions fork and kill to create new processes and to send signals.


Furthermore, the function wait waiting for the end of a child process is not imple-
mented, because fork is not.


File Descriptors


In chapter 3 we have seen functions from the standard module Pervasives. These
functions allow us to access files via input / output channels. There is also a lower-
level way to access files, using their descriptors.


A file descriptor is an abstract value of type Unix.file descr, containing information
necessary to use a file: a pointer to the file, the access rights, the access modes (read
or write), the current position in the file, etc.


Three descriptors are predefined. They correspond to standard input, standard output,
and standard error.
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Fonction Unix Windows Comment


openfile × ×
close × ×
dup × ×
dup2 × ×
read × ×
write × ×
lseek × ×
execv × ×
execve × ×
execvp × ×
execvpe × ×
fork × use create process


getpid × ×
sleep × ×
wait ×
waitpid × × only for a given


number of processes
create process × ×
create process env × ×
kill ×
pipe × ×
mkfifo ×
open process × use the interpretation of


/bin/sh commands
close process ×


Figure 18.1: Portability of the module Unix functions used in this chapter.


# ( Unix.stdin , Unix.stdout , Unix.stderr ) ; ;
- : Unix.file_descr * Unix.file_descr * Unix.file_descr =


<abstr>, <abstr>, <abstr>


Be careful not to confuse them with the corresponding input / output channels:


# ( Pervasives.stdin , Pervasives.stdout , Pervasives.stderr ) ; ;
- : in_channel * out_channel * out_channel = <abstr>, <abstr>, <abstr>
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The conversion functions between channels and file descriptors are described at page
577.


File Access Rights. Under Unix each file has an associated owner and group. The
rights to read, write and execute are attached to each file according to three categories
of users: the owner of a file, the members of the file’s group1 and all other users.


The access rights of a file are represented by 9 bits divided into three groups of three
bits each. The first group represents the rights of the owner, the second the rights of
the members of the owner’s group, and the last the rights of all other users. In each
group of three bits, the first bit represents the right to read, the second bit the right
to write and the third bit the right to execute. It is common to abbreviate these three
rights by the letters r, w and x. The absence of the rights is represented in each case
by a dash (-). For exampple, the right to read for all and the right to write only for
the owner is written as rw-r--r--. This corresponds to the integer 420 (which is the
binary number 0b110100100). Frequently the more comfortable octal notation 0o644
is used. These file access rights are not used under Windows.


REVIEWER’S QUESTION: IS THIS STILL TRUE UNDER WIN2K?


File Manipulation


Opening a file. Opening a file associates the file to a file descriptor. Depending
on the intended use of the file there are several modes to open a file. Each mode
corresponds to a value of type open flag described by figure 18.2.


O RDONLY read only
O WRONLY write only
O RDWR reading and writing
O NONBLOCK non-blocking opening
O APPEND appending at the end of the file
O CREAT create a new file if it does not exist
O TRUNC set the file to 0 if it exists
O EXCL chancel, if the file already exists


Figure 18.2: Values of type open flag.


These modes can be combined. In consequence, the function openfile takes as argu-
ment a list of values of type open flag.
# Unix.openfile ; ;
- : string -> Unix.open_flag list -> Unix.file_perm -> Unix.file_descr =


1. Under Unix each user belongs to one or more user groups, which allows the organization of their
rights.
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<fun>


The first argument is the name of the file. The last is an integer2 coding the rights to
attach to the file in the case of creation.


Here is an example of how to open a file for reading, or to create it with the rights
rw-r--r-- if it does not exist:
# let file = Unix.openfile "test.dat" [Unix.O RDWR; Unix.O CREAT] 0o644 ; ;
val file : Unix.file_descr = <abstr>


Closing a file. The function Unix.close closes a file. It is applied to the descriptor
of the file to close.
# Unix.close ; ;
- : Unix.file_descr -> unit = <fun>


# Unix.close file ; ;
- : unit = ()


Redirecting file descriptors. It is possible to attach several file descriptors to one
input / output. If there is only one file descriptor available and another one is desired
we can use:
# Unix.dup ; ;
- : Unix.file_descr -> Unix.file_descr = <fun>


If we have two file descriptors and we want to assign to the second the input / output
of the first, we can use the function:
# Unix.dup2 ; ;
- : Unix.file_descr -> Unix.file_descr -> unit = <fun>


For example, the error output can be directed to a file in the following way:
# let error output = Unix.openfile "err.log" [Unix.O WRONLY;Unix.O CREAT] 0o644 ; ;
val error_output : Unix.file_descr = <abstr>


# Unix.dup2 Unix.stderr error output ; ;
- : unit = ()


Data written to the standard error output will now be directed to the file err.log.


Input / Output on Files


The functions to read and to write to a file Unix.read and Unix.write use a character
string as medium between the file and the Objective Caml program.
# Unix.read ; ;
- : Unix.file_descr -> string -> int -> int -> int = <fun>


# Unix.write ; ;


2. The type file perm is an alias for the type int.
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- : Unix.file_descr -> string -> int -> int -> int = <fun>


In addition to the file descriptor and the string the functions take two integers as argu-
ments. One is the index of the first character and the other the number of characters
to read or to write. The returned integer is the number of characters effectively read
or written.
# let mode = [Unix.O WRONLY;Unix.O CREAT;Unix.O TRUNC] in


let fl = Unix.openfile "file" mode 0o644 in


let str = "012345678901234565789" in


let n = Unix.write fl str 4 5


in Printf.printf "We wrote %s to the file\n" (String.sub str 4 n) ;
Unix.close fl ; ;


We wrote 45678 to the file


- : unit = ()


Reading a file works the same way:
# let fl = Unix.openfile "file" [Unix.O RDONLY] 0o644 in


let str = String.make 20 ’.’ in


let n = Unix.read fl str 2 10 in


Printf.printf "We read %d characters" n;
Printf.printf " and got the string %s\n" str;
Unix.close fl ; ;


We read 5 characters and got the string ..45678.............


- : unit = ()


Access to a file always takes place at the current position of its descriptor. The current
position can be modified by the function:
# Unix.lseek ; ;
- : Unix.file_descr -> int -> Unix.seek_command -> int = <fun>


The first argument is the file descriptor. The second specifies the displacement as
number of characters. The third argument is of type Unix.seek command and indicates
the origin of the displacement. The third argument may take one of three posssible
values:


• SEEK SET: relative to the beginning of the file,


• SEEK CUR: relative to the current position,


• SEEK END: relative to the end of the file.


A function call with an erronous position will either raise an exception or return a
value equal to 0.


Input / output channels. The Unix module provides conversion functions between
file descriptors and the input / output channels of module Pervasives:
# Unix.in channel of descr ; ;
- : Unix.file_descr -> in_channel = <fun>
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# Unix.out channel of descr ; ;
- : Unix.file_descr -> out_channel = <fun>


# Unix.descr of in channel ; ;
- : in_channel -> Unix.file_descr = <fun>


# Unix.descr of out channel ; ;
- : out_channel -> Unix.file_descr = <fun>


It is necessary to indicate whether the input / output channels obtained by the con-
version transfer binary data or character data.
# set binary mode in ; ;
- : in_channel -> bool -> unit = <fun>


# set binary mode out ; ;
- : out_channel -> bool -> unit = <fun>


In the following example we create a file by using the functions of module Unix. We
read using the opening function of module Unix and the higher-level input function
input line.
# let mode = [Unix.O WRONLY;Unix.O CREAT;Unix.O TRUNC] in


let f = Unix.openfile "file" mode 0o666 in


let s = "0123456789\n0123456789\n" in


let n = Unix.write f s 0 (String.length s)


in Unix.close f ; ;
- : unit = ()


# let f = Unix.openfile "file" [Unix.O RDONLY;Unix.O NONBLOCK] 0 in


let c = Unix.in channel of descr f in


let s = input line c


in print string s ;
close in c ; ;


0123456789- : unit = ()


Availability. A program may have to work with multiple inputs and outputs. Data
may not always be available on a given channel, and the program cannot afford to wait
for one channel to be available while ignoring the others. The following function lets
you determine which of a given list of inputs/outputs is available for use at a given
time:
# Unix.select ; ;
- : Unix.file_descr list ->


Unix.file_descr list ->


Unix.file_descr list ->


float ->


Unix.file_descr list * Unix.file_descr list * Unix.file_descr list


= <fun>


The first three arguments represent lists of respectively inputs, of outputs and error--
outputs. The last argument indicates a delay in seconds. A negative value means the
null delay. The results are the lists of available input, output and error-output.


Warning select is not implemented under Windows
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Processes


Unix associates a process with each execution of a program. In [CDM98] Card, Dumas
and Mével describe the difference between a program and a process: “a program itself
is not a process: a program is a passive entity (an executable file on a disc), while a
process is an active entity with a counter specifying the next instruction to execute
and a set of associated resources.”


Unix is a multi-task operating system: many processes may be executed at the same
time. It is preemptive, which means that the execution of processes is entrusted to a
particular process. A process is therefore not totally master of its resources. Especially
a process can not determine the time of its execution. A process has to be created.


Each process has his own private memory space. Processes can communicate via files
or communication channels. Thus the distributed memory model of parallelism is sim-
ulated on a single machine.


The system gives each process a unique identifier: the PID (Process IDentifier). Under
Unix each process, except the initial process, is created by another process, which is
called its parent.


The set of all active processes can be listed by the Unix command ps3:


$ ps -f
PID PPID CMD
1767 1763 csh
2797 1767 ps -f


The use of the option -f adds for each active process its identifier (PID), that of its
parent (PPID) and the name of the started program (CMD). Here we have two processes,
the command line interpreter csh and the command ps itself. It can be seen that ps
has been started from the command line interpreter csh. The parent of its process is
the process associated with the execution of csh.


Executing a Program


Execution Context


Three values are associated with an executing program, which is started from the
command line:


1. The command line used to start it. It is contained in the value Sys.argv.


2. The environment variables of the command line interpreter. These can be ac-
cessed by the command Sys.getenv.


3. The options and the behavior of this command are not standardized. The given example may not
be reproducible.
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3. An execution status until the program is terminated.


Command line. The command line allows you to read arguments or options of a
program call. The behavior of the program may depend from these values. Here is a
small example. We write the following program into the file argv ex.ml:


if Array.length Sys.argv = 1 then


Printf.printf "Hello world\n"


else if Array.length Sys.argv = 2 then


Printf.printf "Hello %s\n" Sys.argv.(1)


else Printf.printf "%s : too many arguments\n" Sys.argv.(0)


We compile it:


$ ocamlc -o argv_ex argv_ex.ml


And we execute it:


$ argv_ex
Hello world
$ argv_ex reader
Hello reader
$ argv_ex dear reader
./argv_ex : too many arguments


Environment variables. Environment variables may contain values necessary for
execution. The number and the names of these variables depend on the operating
system and on the user configuration. The values of these variables can be accessed
by the function getenv, which takes as argument the name of a variable in form of a
character string:
# Sys.getenv "HOSTNAME"; ;
- : string = "zinc.pps.jussieu.fr"


Execution Status


The return value of a program is generally a fixed integer, indicating if the program
did terminate with an error or not. The exact values may differ from one operating
system to another. The programer can always explicitly stop his program and return
the execution status value with the function call:
# Pervasives.exit ; ;
- : int -> ’a = <fun>
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Process Creation


A program is started by another process, which is called the current process. The
executed program becomes a new process. There are three different relations between
the two processes:


• The two processes are independent from each other and can be executed concur-
rently.


• The parent process is waiting for the child process to terminate.


• The created process replaces the parent process, which terminates.


It is also possible to duplicate the current process to obtain two instances. The two
instances of the process do not differ but in their PID. This is the famous fork which
we will describe later.


Independent Processes


The Unix module offers a portable function to create a process.
# Unix.create process ; ;
- : string ->


string array ->


Unix.file_descr -> Unix.file_descr -> Unix.file_descr -> int


= <fun>


The first argument is the name of the program (it may be a path). The second is the
array of arguments for the program. The last three arguments are the descriptors indi-
cating the standard input, standard output and standard error output of the process.
The return value is the PID of the created process.


There also exists a variant of this function which allows you to indicate the values of
environment variables:
# Unix.create process env ; ;
- : string ->


string array ->


string array ->


Unix.file_descr -> Unix.file_descr -> Unix.file_descr -> int


= <fun>


These two functions can be used under Unix and Windows.


GGH


Process Stacks


It is not always useful for a created process to be of concurrent nature. The parent
process may have to wait for the created process to terminate. The two following
functions take as argument the name of a command and execute it.
# Sys.command; ;
- : string -> int = <fun>


# Unix.system; ;
- : string -> Unix.process_status = <fun>
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They differ in the type of the return code. The type process status is explained in
more detail on page 586. During the execution of the command the parent process is
blocked.


Replacement of Current Processes


The replacement of current processes by freshly created processes allows you to limit
the number of concurrently executed processes. The four following functions allow this:


# Unix.execv ; ;
- : string -> string array -> unit = <fun>


# Unix.execve ; ;
- : string -> string array -> string array -> unit = <fun>


# Unix.execvp ; ;
- : string -> string array -> unit = <fun>


# Unix.execvpe ; ;
- : string -> string array -> string array -> unit = <fun>


Their first argument is the name of the program. Using execvp or execvpe, this name
may indicate a path in the file system. The second argument contains the program
arguments. The last argument of the functions execve and execvpe additionally allows
you to indicate the values of system variables.


Creation of Processes by Duplication


The original system call to create processes under Unix is:
# Unix.fork ; ;
- : unit -> int = <fun>


The function fork starts a new process, not a new program. Its effect is to duplicate
the calling process. The code of the new process is the same as that of its parent. Under
Unix the same code can be shared by several processes, each process possessing its own
execution context. Therefore we speak about reentrant code.


Let’s look at the following small program (we use the function getpid which returns
the PID of the process associated with the execution):
Printf.printf "before fork : %d\n" (Unix.getpid ()) ; ;
flush stdout ; ;
Unix.fork () ; ;
Printf.printf "after fork : %d\n" (Unix.getpid ()) ; ;
flush stdout ; ;


We obtain the following output:
before fork : 10529


after fork : 10529


after fork : 10530


After the execution of fork, two processes execute the code. This leads to the output
of two PID’s “after” the fork. We note that one process has kept the PID of the
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beginning (the parent). The other one has a new PID (the child), which corresponds
to the return value of the fork call. For the parent process the return value of fork is
the PID of the child, while for the child, it is 0.


It is this difference in the return value of fork which allows in one program source to
decide which code shall be executed by the child and which by the parent:
Printf.printf "before fork : %d\n" (Unix.getpid ()) ; ;
flush stdout ; ;
let pid = Unix.fork () ; ;
if pid=0 then (* -- Code of the child *)


Printf.printf "I am the child: %d\n" (Unix.getpid ())
else (* -- Code of the father *)


Printf.printf "I am the father: %d of child: %d\n" (Unix.getpid ()) pid ; ;
flush stdout ; ;


Here is the trace of the execution of this program:
before fork : 10539


I am the father: 10539 of child: 10540


I am the child: 10540


It is also possible to use the return value for matching:
match Unix.fork () with


0 → Printf.printf "I am the child: %d\n" (Unix.getpid ())
| pid → Printf.printf "I am the father: %d of child: %d\n"


(Unix.getpid ()) pid ; ;


The fertility of a process may be very big. Therefore the number of descendents of a
process is limited by the configuration of the operating system. The following example
creates two generations of processes with grandparent, parents, uncles and cousins.
let pid0 = Unix.getpid () ; ;
let print generation1 pid ppid =


Printf.printf "I am %d, son of %d\n" pid ppid;
flush stdout ; ;


let print generation2 pid ppid pppid =


Printf.printf "I am %d, son of %d, grandson of %d\n"


pid ppid pppid;
flush stdout ; ;


match Unix.fork () with


0 → let pid01 = Unix.getpid ()
in ( match Unix.fork () with


0 → print generation2 (Unix.getpid ()) pid01 pid0


| _ → print generation1 pid01 pid0)


| _ → match Unix.fork () with


0 → ( let pid02 = Unix.getpid ()
in match Unix.fork () with


0 → print generation2 (Unix.getpid ()) pid02 pid0


| _ → print generation1 pid02 pid0 )


| _ → Printf.printf "I am %d, father and grandfather\n" pid0 ; ;
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We obtain:
I am 10644, father and grandfather


I am 10645, son of 10644


I am 10648, son of 10645, grandson of 10644


I am 10646, son of 10644


I am 10651, son of 10646, grandson of 10644


Order and Moment of Execution


A sequence of process creations without synchronization may lead to surprising effects.
This is illustrated by the following poem writing program à la M. Jourdain4:
match Unix.fork () with


0 → Printf.printf "fair Marquise " ; flush stdout


| _ → match Unix.fork () with


0 → Printf.printf "your beautiful eyes " ; flush stdout


| _ → match Unix.fork () with


0 → Printf.printf "make me die " ; flush stdout


| _ → Printf.printf "of love\n" ; flush stdout ; ;


It may produce the following result:
of love


fair Marquise your beautiful eyes make me die


We usually want our program to be able to assure the order of execution of its processes.
More generally speaking, an application which makes use of several processes may have
to synchronize them. Depending on the model of parallelism in use, the synchronization
is realized by communication between the processes or by waiting conditions. This
subject is presented more profoundly by the two following chapters. For the moment,
we can improve our poem writing program in two ways:


• Give the child the time to write its phrase before writing the own.


• Wait for the termination of the child, which will then have written its phrase,
before writing our own phrase.


Delays. A process can suspend its activity by calling the function:
# Unix.sleep ; ;
- : int -> unit = <fun>


The argument provides the number of seconds during which the process wants to
suspend its activities.


Using this function, we write:


4. Molière, Le Bourgeois Gentilhome, Acte II, scène 4.


Link: http://www.site-moliere.com/pieces/bourgeoi.htm
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match Unix.fork () with


0 → Printf.printf "fair Marquise " ; flush stdout


| _ → Unix.sleep 1 ;
match Unix.fork () with


0 → Printf.printf"your beautiful eyes "; flush stdout


| _ → Unix.sleep 1 ;
match Unix.fork () with


0 → Printf.printf"make me die "; flush stdout


| _ → Unix.sleep 1 ; Printf.printf "of love\n" ; flush stdout ; ;


And we can obtain:
fair Marquise your beautiful eyes make me die of love


Nevertheless, this method is not sure. In theory, it would be possible that the system
gives enough time to one of the processes to sleep and to write its output at the same
turn. Therefore we prefer the following method for assuring the execution order of our
processes.


GGH


Waiting for the termination of the child. A parent process may wait for his
child to terminate through a call to the function:
# Unix.wait ; ;
- : unit -> int * Unix.process_status = <fun>


The execution of the parent is suspended until one of its children terminates. If wait
is called by a process not having any children, a Unix error is thrown. We will discuss
later the return value of wait. For the moment, we will just use the command to
pronounce our poem:
match Unix.fork () with


0 → Printf.printf "fair Marquise " ; flush stdout


| _ → ignore (Unix.wait ()) ;
match Unix.fork () with


0 → Printf.printf "your beautiful eyes " ; flush stdout


| _ → ignore (Unix.wait ()) ;
match Unix.fork () with


0 → Printf.printf "make me die " ; flush stdout


| _ → ignore (Unix.wait ()) ;
Printf.printf "of love\n" ;
flush stdout


Indeed, we obtain:
fair Marquise your beautiful eyes make me die of love


Warning fork is proprietary to the Unix system
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Descendence, Death and Funerals of Processes


The function wait is useful not only to wait for the termination of a child. It also has
the responsibility to complete the death of the child process.


Whenever a process is created, the system adds an entry in a table. The table serves to
keep track of all processes. When a process terminates, the entry does not disappear
automatically in the table. It is the responsibility of the parent to assure the deletion
by the call of wait. If this is not done, the child process keeps an entry in the table.
This is called a zombie process.


When the system is started, a first process called init is started. After the initialization
of some parameters, the essential role of this “forefather” is to take care of orphan
processes and to call the wait which deletes them from the process table after their
termination.


Waiting for the Termination of a Given Process


There is a variation of the function wait, named waitpid. This command is supported
on Unix and Windows:
# Unix.waitpid ; ;
- : Unix.wait_flag list -> int -> int * Unix.process_status = <fun>


The first argument specifies the waiting modalities. The second indicates which process
or which group of processes are treated.


After the termination of a process, two pieces of information can be accessed by its
parent as a result of the function calls wait or waitpid: the number of the ter-
minated process and its exit status. The status is represented by a value of type
Unix.process status. This type has three constructors. Each of them takes an integer
as argument.


• WEXITED n: the process has terminated normally with the return code n.


• WSIGNALED n: the process has been killed by the signal n.


• WSTOPPED n: the process has been stopped by the signal n.


The last value only makes sense for the function waitpid which can listen for such
signals as indicated by its first argument. We will discuss signals and their treatment
at page 590.


Managing of Waiting by Ancestors


In order to avoid having to care for the termination of child processes oneself, it is
possible to delegate this responsibility to an ancestor process. “Double fork” allows a
process not to take care of the funerals of all its child processes, but to delegate this
responsibility to the init process. Here is the principle: a process P0 creates a process
P1, which in turn creates a third process P2. Then P1 terminates. So P2 is orphan and
will be adopted by init, which waits for its termination. The initial process P0 can
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execute a wait for P1 which will be of short duration. The idea is to delegate to the
grandchild the work which otherwise would have been for the child.


The schema is the following:
# match Unix.fork () with (* P0 creates P1 *)


0 → if Unix.fork () = 0 then exit 0 ; (* P1 creates P2 and terminates *)


Printf.printf "P2 did its work\n" ;
exit 0


| pid → ignore (Unix.waitpid [] pid) ; (* P0 waits for P1 to terminate *)


Printf.printf "P0 can do other things without waiting\n" ; ;
P2 did its work


P0 can do other things without waiting


- : unit = ()


We will apply this principle to handle requests sent to a server in chapter 20.


Communication Between Processes


The use of processes in application development allows you to delegate work. Never-
theless, these jobs may not be independent and it may be necessary for the processes
to communicate with each other.


We introduce two methods of communication between processes: communication pipes
and signals. This chapter does not discuss all possibilities of process communication.
It is only a first approach to the applications developed in chapters 19 and 20.


Communication Pipes


It is possible for processes to communicate directly between each other in a file oriented
style.


Pipes are something like virtual files from which it is possible to read and to write with
the input / output functions read and write. They are of limited size, the exact limit
depending from the system. They behave like queues: the first input is also the first
output. Whenever data is read from a pipe, it is also removed from it.


This queue behavior is realized by the association of two descriptors with a pipe: one
corresponding to the end of the pipe where new entries are written and one for the end
where they are read. A pipe is created by the function:
# Unix.pipe ; ;
- : unit -> Unix.file_descr * Unix.file_descr = <fun>


The first component of the resulting pair is the exit of the pipe used for reading. The
second is the entry of the pipe used for writing. All processes knowing them can close
the descriptors.


Reading from a pipe is blocking, unless all processes knowing its input descriptor (and
therefore able to write to it) have closed it; in the latter case, the function read returns
0. If a process tries to write to a full pipe, it is suspended until another process has done
a read operation. If a process tries to write to a pipe while no other process is available
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to read from it (all having closed their output descriptors), the process trying to write
receives the signal sigpipe, which, if not indicated otherwise, leads to its termination.


The following example shows a use of pipes in which grandchildren tell their process
number to their grandparents.
let output, input = Unix.pipe () ; ;


let write pid input =


try


let m = "(" ^ (string of int (Unix.getpid ())) ^ ")"


in ignore (Unix.write input m 0 (String.length m)) ;
Unix.close input


with


Unix.Unix error(n,f,arg) →
Printf.printf "%s(%s) : %s\n" f arg (Unix.error message n) ; ;


match Unix.fork () with


0 → for i=0 to 5 do


match Unix.fork () with


0 → write pid input ; exit 0


| _ → ()
done ;
Unix.close input


| _ → Unix.close input;
let s = ref "" and buff = String.create 5


in while true do


match Unix.read output buff 0 5 with


0 → Printf.printf "My grandchildren are %s\n" !s ; exit 0


| n → s := !s ^ (String.sub buff 0 n) ^ "."


done ; ;


We obtain the trace:
My grandchildren are (1067.3).(1067.4).(1067.8).(1067.7).(1067.6).(1067.5).


We have introduced points between each part of the sequence read. This way it is pos-
sible to read from the trace the succession of contents of the pipe. Note how the reading
is desynchronized: whenever an entry is made, even a partial one, it is consumed.


Named pipes. Some Unix systems support named pipes, which look as if they were
normal files. It is possible then to communicate between two processes without a de-
scendence relation using the name of the pipe. The following function allows you to
create such a pipe.
# Unix.mkfifo ; ;
- : string -> Unix.file_perm -> unit = <fun>


The file descriptors necessary to use the pipe are obtained by openfile, as for usual
files, but their behavior is that of pipes. In particular, the command lseek can not be
used, since we have waiting lines.
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Warning mkfifo is not implemented for Windows.


Communication Channels


The Unix module provides a high level function allowing you to start a program asso-
ciating with it input or output channels of the calling program:
# Unix.open process ; ;
- : string -> in_channel * out_channel = <fun>


The argument is the name of the program, or more precisely the calling path of the
program, as we would write it to a command line interpreter. The string may contain
arguments for the program to execute. The two output values are file descriptors as-
sociated with the standard input / output of the started program. It will be executed
in parallel with the calling program.


Warning


The program started by open process is executed via
a call to the Unix command line interpreter /bin/sh.
The use of that function is therefore only possible for
systems that have this interpreter.


We can end the execution of a program started by open process by using:
# Unix.close process ; ;
- : in_channel * out_channel -> Unix.process_status = <fun>


The argument is the pair of channels associated with a process we want to close. The
return value is the execution status of the process whose termination we wait.


There are variants of that functions, opening and closing only one input or output
channel:
# Unix.open process in ; ;
- : string -> in_channel = <fun>


# Unix.close process in ; ;
- : in_channel -> Unix.process_status = <fun>


# Unix.open process out ; ;
- : string -> out_channel = <fun>


# Unix.close process out ; ;
- : out_channel -> Unix.process_status = <fun>


Here is a nice small example for the use of open process: we start ocaml from ocaml!


# let n print string s = print string s ; print string "(* <-- *)" ; ;
val n_print_string : string -> unit = <fun>


# let p () =


let oc in, oc out = Unix.open process "/usr/local/bin/ocaml"


in n print string (input line oc in) ; print newline () ;
n print string (input line oc in) ; print newline () ;
print char (input char oc in) ;
print char (input char oc in) ;
flush stdout ;
let s = input line stdin


in output string oc out s ;
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output string oc out "#quit\n" ;
flush oc out ;
let r = String.create 250 in


let n = input oc in r 0 250


in n print string (String.sub r 0 n) ;
print string "Thank you for your visit\n" ;
flush stdout ;
Unix.close process (oc in, oc out) ; ;


val p : unit -> Unix.process_status = <fun>


The call of the function p starts a toplevel of Objective Caml. We note that it is version
2.03 which is in directory /usr/local/bin. The first four read operations allow us to
get the header, which is shown by toplevel. The line let x = 1.2 +. 5.6;; is read
from the keybard, then sent to oc out (the output channel bound to the standard
input of the new process). This one evaluates the passed Objective Caml expression
and writes the result to the standard output which is bound to the input channel
oc in. This result is read and written to the output by the function input. Also the
string "Thank you for your visit" is written to the output. We send the command
#quit; ; to exit the new process.


# p();;
Objective Caml version 2.03


# let x = 1.2 +. 5.6;;
val x : float = 6.8
Thank you for your visit
- : Unix.process_status = Unix.WSIGNALED 13
#


Signals under Unix


One possibility to communicate with a process is to send it a signal. A signal may
be received at any moment during the execution of a program. Reception of a signal
causes a logical interruption. The execution of a program is interrupted to treat the
received signal. Then the execution continues at the point of interruption. The number
of signals is quite restricted (32 under Linux). The information carried by a signal is
quite rudimentary: it is only the identity (the number) of the signal. The processes
have a predefined reaction to each signal. However, the reactions can be redefined for
most of the signals.


The data and functions to handle signals are distributed between the modules Sys and
Unix. The module Sys contains signals conforming to the POSIX norm (described
in [Ste92]) as well as some functions to handle signals. The module Unix defines the
function kill to send a signal. The use of signals under Windows is restricted to
sigint.


A signal may have several sources: the keyboard, an illegal attempt to access memory,
etc. A process may send a signal to another by calling the function
# Unix.kill ; ;
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- : int -> int -> unit = <fun>


Its first parameter is the PID of the receiver. The second is the signal which we want
to send.


Handling Signals


There are three categories of reactions associated with a signal. For each category there
is a constructor of type signal behavior:


• Signal default: the default behavior defined by the system. In most of the
cases this is the termination of the process, with or without the creation of a file
describing the process state (core file).


• Signal ignore: the signal is ignored.


• Signal handle: the behavior is redefined by an Objective Caml function of type
int -> unit which is passed as an argument to the constructor. For the modified
handling of the signal, the number of the signal is passed to the handling function.


On reception of a signal, the execution of the receiving process is diverted to the func-
tion handling the signal. The function allowing you to redefine the behavior associated
with a signal is provided by the module Sys:
# Sys.set signal; ;
- : int -> Sys.signal_behavior -> unit = <fun>


The first argument is the signal to redefine. The second is the associated behavior.


The module Sys provides another modification function to handle signals:
# Sys.signal ; ;
- : int -> Sys.signal_behavior -> Sys.signal_behavior = <fun>


It behaves like set signal, except that it returns in addition the value associated with
the signal before the modification. So we can write a function returning the behavioral
value associated with a signal. This can be done even without changing this value:
# let signal behavior s =


let b = Sys.signal s Sys.Signal default


in Sys.set signal s b ; b ; ;
val signal_behavior : int -> Sys.signal_behavior = <fun>


# signal behavior Sys.sigint; ;
- : Sys.signal_behavior = Sys.Signal_handle <fun>


However, the behavior associated with some signals can not be changed. Therefore our
function can not be used for all signals:
# signal behavior Sys.sigkill ; ;
Uncaught exception: Sys_error("Invalid argument")


Some Signals


We illustrate the use of some essential signals.
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sigint. This signal is generally associated with the key combination CTRL-C. In the
following small example we modify the reaction to this signal so that the receiving
process is not interrupted until the third occurence of the signal.


We create the following file ctrlc.ml:
let sigint handle =


let n = ref 0


in function _ → incr n ;
match !n with


1 → print string "You just pushed CTRL-C\n"


| 2 → print string "You pushed CTRL-C a second time\n"


| 3 → print string "If you insist ...\n" ; exit 1


| _ → () ; ;
Sys.set signal Sys.sigint (Sys.Signal handle sigint handle) ; ;
match Unix.fork () with


0 → while true do () done


| pid → Unix.sleep 1 ; Unix.kill pid Sys.sigint ;
Unix.sleep 1 ; Unix.kill pid Sys.sigint ;
Unix.sleep 1 ; Unix.kill pid Sys.sigint ; ;


This program simulates the push of the key combination CTRL-C by sending the signal
sigint. We obtain the following execution trace:


$ ocamlc -i -o ctrlc ctrlc.ml
val sigint_handle : int -> unit
$ ctrlc
You just pushed CTRL-C
You pushed CTRL-C a second time
If you insist ...


sigalrm. Another frequently used signal is sigalrm, which is associated with the
system clock. It can be sent by the function
# Unix.alarm ; ;
- : int -> int = <fun>


The argument specifies the number of seconds to wait before the sending of the sig-
nal sigalrm. The return value indicates the number of remaining seconds before the
sending of a second signal, or if there is no alarm set.


We use this function and the associated signal to define the function timeout, which
starts the execution of another function and interrupts it if neccessary, when the in-
dicated time is elapsed. More precisely, the function timeout takes as arguments a
function f, the argument arg expected by f, the duration (time) of the “timeout” and
the value (default value) to be returned when the duration time has elapsed.


A timeout is handled as follows:


1. We modify the behavior associated with the signal sigalrm so that a Timeout
exception is thrown.
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2. We take care to remember the behavior associated originally with sigalrm, so
that it can be restored.


3. We start the clock.


4. We distinguish two cases:
(a) If everything goes well, we restore the original state of sigalrm and return


the value of the calculation.
(b) If not, we restore sigalrm, and if the duration has elapsed, we return the


default value.


Here are the corresponding definitions and a small example:
# exception Timeout ; ;
exception Timeout


# let sigalrm handler = Sys.Signal handle (fun _ → raise Timeout) ; ;
val sigalrm_handler : Sys.signal_behavior = Sys.Signal_handle <fun>


# let timeout f arg time default value =


let old behavior = Sys.signal Sys.sigalrm sigalrm handler in


let reset sigalrm () = Sys.set signal Sys.sigalrm old behavior


in ignore (Unix.alarm time) ;
try let res = f arg in reset sigalrm () ; res


with exc → reset sigalrm () ;
if exc=Timeout then default value else raise exc ; ;


val timeout : (’a -> ’b) -> ’a -> int -> ’b -> ’b = <fun>


# let iterate n = for i = 1 to n do () done ; n ; ;
val iterate : int -> int = <fun>


Printf.printf "1st execution : %d\n" (timeout iterate 10 1 (-1));
Printf.printf "2nd execution : %d\n" (timeout iterate 100000000 1 (-1)) ; ;


1st execution : 10
2nd execution : -1
- : unit = ()


sigusr1 and sigusr2. These two signals are provided only for the programer. They
are not used by the operating system.


In this example, reception of the signal sigusr1 by the child triggers the output of the
content of variable i.
let i = ref 0 ; ;
let write i s = Printf.printf "signal received (%d) -- i=%d\n" s !i ;


flush stdout ; ;
Sys.set signal Sys.sigusr1 (Sys.Signal handle write i) ; ;


match Unix.fork () with


0 → while true do incr i done


| pid → Unix.sleep 0 ; Unix.kill pid Sys.sigusr1 ;
Unix.sleep 3 ; Unix.kill pid Sys.sigusr1 ;
Unix.sleep 1 ; Unix.kill pid Sys.sigkill
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Here is the trace of a program execution:
signal received (10) -- i=0


signal received (10) -- i=167722808


When we examine the trace, we can see that after having executed the code associated
with signal sigusr1 the first time, the child process continues to execute the loop and
to increment i.


sigchld. This signal is sent to a parent on termination of a process. We will use it to
make a parent more attentive to the evolution of its children. Here’s how:


1. We define a function handling the signal sigchld. It handles all terminated
children on reception of this signal5 and terminates the parent when he does not
have any more children (exception Unix error). In order not to block the parent
if not all his children are dead, we use waitpid instead of wait.


2. The main program, after having redefined the reaction associated with sigchld,
loops to create five children. After this, the parent does something else (loop
while true) until his children have terminated.


let rec sigchld handle s =


try let pid, _ = Unix.waitpid [Unix.WNOHANG] 0


in if pid <> 0


then ( Printf.printf "%d is dead and buried at signal %d\n" pid s ;
flush stdout ;
sigchld handle s )


with Unix.Unix error(_, "waitpid", _) → exit 0 ; ;


let i = ref 0


in Sys.set signal Sys.sigchld (Sys.Signal handle sigchld handle) ;
while true do


match Unix.fork () with


0 → let pid = Unix.getpid ()
in Printf.printf "Creation of %d\n" pid ; flush stdout ;


Unix.sleep (Random.int (5+ !i)) ;
Printf.printf "Termination of %d\n" pid ; flush stdout ;
exit 0


| _ → incr i ; if !i = 5 then while true do () done


done ; ;


We obtain the trace:
Creation of 10658


Creation of 10659


Creation of 10662


Creation of 10661


5. We recall that the signals are handled in an asynchronous way. So, if two children die one after the
other, it is possible that the signal of the first has not been handled.
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Creation of 10660


Termination of 10662


10662 is dead and buried at signal 17


Termination of 10658


10658 is dead and buried at signal 17


Termination of 10660


Termination of 10659


10660 is dead and buried at signal 17


10659 is dead and buried at signal 17


Termination of 10661


10661 is dead and buried at signal 17


Exercises


The three proposed exercises manipulate file descriptors, processes, respectively pipes
and signals. The first two exercises stem from Unix system programming. The Objective
Caml code can be compared with the C code in the Unix or Linux distributions.


Counting Words: the wc Command


We want to (re)program the Unix wc command, which counts the number of lines,
words or characters contained in a text file. Words are separated by a space character,
a tab, or a carriage return. We do not count the separators.


1. Write a first version (wc1) of the command, which only handles a single file. The
name of the file is passed as an argument on the command line.


2. Write a more elaborated version (wc2), which can handle the three options -l,
-c, -w as well as several file names. The options indicate if we want to count the
number of lines, characters or words. The output of each result shall be preceded
by the name of the file.


Pipes for Spell Checking


This exercise uses pipes to concatenate a suite of actions. Each action takes the result of
the preceding action as argument. The communication is realized by pipes, connecting
the output of one process to the input of the following, in the style of the Unix command
line symbol | .


1. Write a function pipe two progs of type string * string list -> string *


string list -> unit such that pipe two progs (p1,[a1; ...; an]) (p2,[b1;
...; bp]) starts the programs p1 a1 ... an and p2 b1 ... bp, redirecting the
standard output of p1 to the standard input of p2. ai and bi are the command
line arguments of each program.


2. We revisit the spell checker function from the exercise on page 115 to write a
first program. Modify it so that the list of faulty words is sent without treatment
in the form of one line per word to the standard output.
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3. The second program takes a sequence of character strings from its standard input
and sorts it in lexicographical order. The function Sort.list can be used, which
sorts a list in an order defined by a given predicate. The sorted list is written to
the standard output.


4. Test the function pipe two progs with the two programs.


5. Write a function pipe n progs to connect a list of programs.


6. Write a program to suppress multiple occurrences of elements in a list.


7. Test the function pipe n progs with these three programs.


Interactive Trace


In a complex calculation it may be useful to interact with the program to verify the
progression. For this purpose we revisit the exercise on page 244 on the computation
of prime numbers contained in an interval.


1. Modify the program so that a global variable result always contains the last
prime number found.


2. Write a function sigint handle which handles the signal sigint and writes the
content of result to the output.


3. Modify the default signal handling of sigint by associating with it the preceding
function sigint handle.


4. Compile the program, then start the executable with an upper bound for the com-
putation time. During the computation, send the signal sigint to the process,
by the Unix kill command as well as by the key combination CTRL-C.


Summary


This chapter presented the main system interface functions provided by the Unix mod-
ule. Despite of its name, the module offers a large number of functions which can be
used under Windows as well (see figure 18.1).
In the area of process creation, we did concentrate on the possibilities of communica-
tion between several Objective Caml programs running at the same time on the same
machine. Operations handling lower level file access, signals and communication pipes
have been discussed in detail.


To Learn More


The Unix module provides functions of the Unix system library. Most of the underlying
programming paradigms are not described in Objective Caml. The reader may refer to
standard books about system programming. We cite [Ste92], or [CDM98], more specific
to Linux.
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Further, the excellent lecture notes from Xavier Leroy [Ler92] have for subject system
programming in Caml-Light. They can be accessed under the following address:


Link: http://pauillac.inria.fr/˜xleroy/publi/unix-in-caml.ps.gz


The implementation of the Unix module is a good example for the cooperation between
C and Objective Caml. A large number of functions are just calls to C system functions,
with the additional type transcription of the data. The implementation sources are
good examples of how to interface an Objective Caml program with a C library. The
programs can be found in the directories otherlibs/unix and otherlibs/win32unix
of the Objective Caml distribution.


The chapter did present several functionalities of the Unix module. Some more points
will be approached in chapter 20 about communication sockets and Internet addresses.
Other notions, like that of terminals, of file systems, etc. are not discussed in this book.
They can be explored in one of the books mentioned above.







598 Chapter 18 : Communication and Processes







19
Concurrent


Programming


Concurrency is the word used to describe causal independence between a number of
actions, such as the execution of a number of instructions “at the same time”. This is
also the definition which we give of the term “parallel” in the introduction of this fourth
part. The processes of the Unix library presented in the preceding chapter could be
considered as concurrent to the extent that the Unix system provides the appearance
of their simultaneous execution on a uniprocessor machine. But the notion of process
and concurrency does not apply only to those obtained by the fork system call.


The Objective Caml language possesses a library for lightweight processes (threads.)
The principle difference between a thread and a process is in the sharing or non-sharing
of memory between the different child processes of the same program. Only the context
of execution differs between two threads: the code and memory sections of the data are
shared. Threads do not improve the execution time of an application. Their principal
attraction is to make it possible to express the programming of concurrent algorithms
within a language.


The nature of the chosen language, imperative or functional, affects the model of con-
currency. For an imperative program, as every thread can modify the communal/shared
memory, we are in a shared memory model. Communication between processes can be
achieved by values written and read in this memory. For a purely functional program,
that is to say, without side effects, even though the memory is shared, the calculations
which each process executes do not act on this shared memory. In this case, the model
used is that of separate memory and interaction between processes must be achieved
by communication of values though channels.


The Objective Caml language implements both models in its thread library. The
Thread module makes it possible to start new processes corresponding to a function
call with its argument. Modules Mutex and Condition provide the synchronization
tools for mutual exclusion and waiting on a condition. The Event model implements a
means of communication of language values by events. These values can themselves be
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functional, thus making it possible to exchange calculations to be carried out between
threads. As always in Objective Caml it is possible to mix the two models.


This library is portable to the different systems where OCAML runs. Unlike the Unix
module, the Thread library facilitates the use of processes on machines that are not
running Unix.


Plan of the Chapter


The first section details the possible interactions between threads, and proceeds with
describing module Thread, and showing how to execute many processes in the same
application.


The second part deals with the synchronization between threads by mutual exclusion
(Mutex module), and with waiting for conditions (Condition module). Two complete
examples show the difficulties inherent to this module.


The third section explains the mode of communication by events provided by the Event
module and the new possibilities which is provides.


The fourth section concludes the chapter with the implementation of a shared queue
for the different counters at a post office.


Concurrent Processes


With an application composed of many concurrent processes, we lose the convenience
offered by the determinism of sequential programs. For processes sharing the same zone
of memory, the result of the following program cannot be deduced from reading it.


main program
let x = ref 1; ;


process P process Q


x := !x + 1; ; x := !x * 2; ;


At the end of the execution of P and Q, the reference x can point to 2, 3 or 4, depending
on the order of execution of each process.


This indeterminism applies also to terminations. When the memory state depends on
the execution of each parallel process, an application can fail to terminate on a partic-
ular execution, and terminate on another. To provide some control over the execution,
the processes must be synchronized.


For processes using distinct memory areas, but communicating between each other,
their interaction depends on the type of communication. We introduce for the follow-
ing example two communication primitives: send which sends a value, showing the
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destination, and receive which receives a value from a process. Let P and Q be two
communicating processes:


process P process Q


let x = ref 1; ; let y = ref 1; ;
send(Q,!x); y := !y + 3;
x := !x * 2; y := !y + receive(P);
send(Q,!x); send(P,!y);
x := !x + receive(Q); y := !y + receive(P);


In the case of a transient communication, process Q can miss the messages of P . We
fall back into the non-determinism of the preceding model.


For an asynchronous communication, the medium of the communication channel stores
the different values that have been transmitted. Only reception is blocking. Process P
can be waiting for Q, even if the latter has not yet read the two messages from P .
However, this does not prevent it from transmitting.


We can classify concurrent applications into five categories according to the program
units that compose them:


1. unrelated;


2. related, but without synchronization;


3. related, with mutual exclusion;


4. related, with mutual exclusion and communication;


5. related, without mutual exclusion, and with synchronous communication.


The difficulty of implementation comes principally from these last categories. Now we
will see how to resolve these difficulties by using the Objective Caml libraries.


Compilation with Threads


The Objective Caml thread library is divided into five modules, of which the first four
each define an abstract type:


• module Thread: creation and execution of threads. (type Thread.t);


• module Mutex: creation, locking and release of mutexes. (type Mutex.t);


• module Condition: creation of conditions (signals), waiting and waking up on a
condition (type Condition.t);


• module Event: creation of communication channels (type ’a Event.channel),
the values which they carry (type ’a Event.event), and communication func-
tions.


• module ThreadUnix: redefinitions of I/O functions of module Unix so that they
are not blocking.
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This library is not part of the execution library of Objective Caml. Its use requires the
option -custom both for compiling programs and for constructing a new toplevel by
using the commands:


$ ocamlc -thread -custom threads.cma files.ml -cclib -lthreads
$ ocamlmktop -tread -custom -o threadtop thread.cma -cclib -lthreads


The Threads library is not usable with the native compiler unless the platform im-
plements threads conforming to the POSIX 10031. Thus we compile executables by
adding the libraries unix.a and pthread.a:


$ ocamlc -thread -custom threads.cma files.ml -cclib -lthreads \
-cclib -lunix -cclib -lpthread


$ ocamltop -thread -custom threads.cma files.ml -cclib -lthreads \
-cclib -lunix -cclib -lpthread


$ ocamlcopt -thread threads.cmxa files.ml -cclib -lthreads \
-cclib -lunix -cclib -lpthread


Module Thread


The Objective Caml Thread module contains the primitives for creation and man-
agement of threads. We will not make an exhaustive presentation, for instance the
operations of file I/O have been described in the preceding chapter.


A thread is created through a call to:
# Thread.create ; ;
- : (’a -> ’b) -> ’a -> Thread.t = <fun>


The first argument, of type ’a -> ’b, corresponds to the function executed by the cre-
ated process; the second argument, of type ’a, is the argument required by the executed
function; the result of the call is the descriptor associated with the process. The process
thus created is automatically destroyed when the associated function terminates.


Knowing its descriptor, we can ask for the execution of a process and wait for it to
finish by using the function join. Here is a usage example:
# let f proc1 () = for i=0 to 10 do Printf.printf "(%d)" i; flush stdout done;


print newline () ; ;
val f_proc1 : unit -> unit = <fun>


# let t1 = Thread.create f proc1 () ; ;
val t1 : Thread.t = <abstr>


# Thread.join t1 ; ;
(0)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)


- : unit = <unknown constructor>


1. In this case, the Objective Caml compilers should have been constructed to indicate that they used
the library furnished by the platform, and not the one provided by the distribution.
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Warning
The result of the execution of a process is not recovered
by the parent process, but lost when the child process
terminates.


We can also brutally interrupt the execution of a process of which we know the de-
scriptor with the function kill. For instance, we create a process which is immediately
interrupted:
# let n = ref 0 ; ;
val n : int ref = {contents=0}


# let f proc1 () = while true do incr n done ; ;
val f_proc1 : unit -> unit = <fun>


# let go () = n := 0 ;
let t1 = Thread.create f proc1 ()
in Thread.kill t1 ;


Printf.printf "n = %d\n" !n ; ;
val go : unit -> unit = <fun>


# go () ; ;
n = 0


- : unit = ()


A process can put an end to its own activity by the function:
# Thread.exit ; ;
- : unit -> unit = <fun>


It can suspend its activity for a given time by a call to:
# Thread.delay ; ;
- : float -> unit = <fun>


The argument stands for the number of seconds to wait.


Let us consider the previous example, and add timing. We create a first process t1 of
which the associated function f proc2 creates in its turn a process t2 which executes
f proc1, then f proc2 delays for d seconds, and then terminates t2. On termination
of t1, we print the contents of n.
# let f proc2 d =


n := 0 ;
let t2 = Thread.create f proc1 ()
in Thread.delay d ;


Thread.kill t2 ; ;
val f_proc2 : float -> unit = <fun>


# let t1 = Thread.create f proc2 0.25


in Thread.join t1 ; Printf.printf "n = %d\n" !n ; ;
n = 132862


- : unit = ()
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Synchronization of Processes


In the setting of processes sharing a common zone of memory, the word “concurrency”
carries its full meaning: the various processes involved are compete for access to the
unique resource of the memory2. To the problem of division of resources, is added that
of the lack of control of the alternation and of the execution times of the concurrent
processes.


The system which manages the collection of processes can at any moment interrupt
a calculation in progress. Thus when two processes cooperate, they must be able to
guarantee the integrity of the manipulations of certain shared data. For this, a process
should be able to remain owner of these data as long as it has not completed a calcu-
lation or any other operation (for example, an acquisition of data from a peripheral).
To guarantee the exclusivity of access to the data to a single process, we set up a
mechanism called mutual exclusion.


Critical Section and Mutual Exclusion


The mechanisms of mutual exclusion are implemented with the help of particular data
structures called mutexes. The operations on mutexes are limited to their creation,
their setting, and their disposal. A mutex is the smallest item of data shared by a
collection of concurrent processes. Its manipulation is always exclusive. To the notion
of exclusivity of manipulation of a mutex is added that of exclusivity of possession:
only the process which has taken a mutex can free it; if other processes wish to use the
mutex, then they must wait for it to be released by the process that is holding it.


Mutex Module


Module Mutex is used to create mutexes between processes related by mutual exclusion
on an area of memory. We will illustrate their use with two small classic examples of
concurrency.


The functions of creation, locking, and unlocking of mutexes are:
# Mutex.create ; ;
- : unit -> Mutex.t = <fun>


# Mutex.lock ; ;
- : Mutex.t -> unit = <fun>


# Mutex.unlock ; ;
- : Mutex.t -> unit = <fun>


There exists a variant of mutex locking that is non-blocking:
# Mutex.try lock; ;
- : Mutex.t -> bool = <fun>


2. In a more general sense, we can be in contention for other resources such as I/O peripherals
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If the mutex is already locked, the function returns false. Otherwise, the function
locks the mutex and returns true.


The Dining Philosophers


This little story, due to Dijkstra, illustrates a pure problem of resource allocation. It
goes as follows:


“Five oriental philosophers divide their time between study and coming to the refectory
to eat a bowl of rice. The room devoted to feeding the philosophers contains nothing
but a single round table on which there is a large dish of rice (always full), five bowls,
and five chopsticks.”


Figure 19.1: The Table of the Dining Philosophers


As we can see in the figure 19.1, a philosopher who takes his two chopsticks beside
his bowl stops his neighbours from doing the same. When he puts down one of his
chopsticks, his neighbour, famished, can grab it. If needs be, this latter should wait until
the other chopstick is available. Here the chopsticks are the resources to be allocated.


To simplify things, we suppose that each philosopher habitually comes to the same
place at the table. We model the five chopsticks as five mutexes stored in a vector b.
# let b =


let b0 = Array.create 5 (Mutex.create ()) in


for i=1 to 4 do b0.(i) <- Mutex.create () done;
b0 ; ;


val b : Mutex.t array = [|<abstr>; <abstr>; <abstr>; <abstr>; <abstr>|]


Eating and meditation are simulated by a suspension of processes.
# let meditation = Thread.delay


and eating = Thread.delay ; ;
val meditation : float -> unit = <fun>


val eating : float -> unit = <fun>
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We model a philosopher by a function which executes an infinite sequence of actions
from Dijsktra’s story. Taking a chopstick is simulated by the acquisition of a mutex,
thus a single philosopher can hold a given chopstick at a time. We introduce a little
time of reflection between taking and dropping of each of the two chopsticks while a
number of output commands track the activity of the philosopher.


# let philosopher i =


let ii = (i+1) mod 5


in while true do


meditation 3. ;
Mutex.lock b.(i);
Printf.printf "Philosopher (%d) takes his left-hand chopstick" i ;
Printf.printf " and meditates a little while more\n";
meditation 0.2;
Mutex.lock b.(ii);
Printf.printf "Philosopher (%d) takes his right-hand chopstick\n" i;
eating 0.5;
Mutex.unlock b.(i);
Printf.printf "Philosopher (%d) puts down his left-hand chopstick" i;
Printf.printf " and goes back to meditating\n";
meditation 0.15;
Mutex.unlock b.(ii);
Printf.printf "Philosopher (%d) puts down his right-hand chopstick\n" i


done ; ;
val philosopher : int -> unit = <fun>


We can test this little program by executing:
for i=0 to 4 do ignore (Thread.create philosopher i) done ;
while true do Thread.delay 5. done ; ;


We suspend, in the infinite loop while, the main process in order to increase the
chances of the philosopher processes to run. We use randomly chosen delays in the
activity loop with the aim of creating some disparity in the parallel execution of the
processes.


Problems of the näıve solution. A terrible thing can happen to our philosophers:
they all arrive at the same time and seize the chopstick on their left. In this case we
are in a situation of dead-lock. None of the philosophers can eat! We are in a situation
of starvation.


To avoid this, the philosophers can put down a chopstick if they do not manage to take
the second one. This is highly courteous, but still allows two philosophers to gang up
against a third to stop him from eating, by not letting go of their chopsticks, except
the ones that their other neighbour has given them. There exist numerous solutions to
this problem. One of them is the object of the exercise on page 619.
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Producers and Consumers I


The pair of producers-consumers is a classic example of concurrent programming. A
group of processes, designated the producers, are in charge of storing data in a queue:
a second group, the consumers, is in charge of removing it. Each intervening party
excludes the others.


We implement this scheme using a queue shared between the producers and the con-
sumers. To guarantee the proper operation of the system, the queue is manipulated in
mutual exclusion in order to guarantee the integrity of the operations of addition and
removal.


f is the shared queue, and m is the mutex.
# let f = Queue.create () and m = Mutex.create () ; ;
val f : ’_a Queue.t = <abstr>


val m : Mutex.t = <abstr>


We divide the activity of a producer into two parts: creating a product (function
produce) and storing a product (fonction store). Only the operation of storage needs
the mutex.
# let produce i p d =


incr p ;
Thread.delay d ;
Printf.printf "Producer (%d) has produced %d\n" i !p ;
flush stdout ; ;


val produce : int -> int ref -> float -> unit = <fun>


# let store i p =


Mutex.lock m ;
Queue.add (i,!p) f ;
Printf.printf "Producer (%d) has added its %dth product\n" i !p ;
flush stdout ;
Mutex.unlock m ; ;


val store : int -> int ref -> unit = <fun>


The code of the producer is an endless loop of creation and storage. We introduce a
random delay at the end of each iteration in order to desynchronize the execution.
# let producer i =


let p = ref 0 and d = Random.float 2.


in while true do


produce i p d ;
store i p ;
Thread.delay (Random.float 2.5)


done ; ;
val producer : int -> unit = <fun>


The only operation of the consumer is the retrieval of an element of the queue, taking
care that the product is actually there.
# let consumer i =
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while true do


Mutex.lock m ;
( try


let ip, p = Queue.take f


in Printf.printf "The consumer(%d) " i ;
Printf.printf "has taken product (%d,%d)\n" ip p ;
flush stdout ;


with


Queue.Empty →
Printf.printf "The consumer(%d) " i ;
print string "has returned empty-handed\n" ) ;


Mutex.unlock m ;
Thread.delay (Random.float 2.5)


done ; ;
val consumer : int -> unit = <fun>


The following test program creates four producers and four consumers.
for i = 0 to 3 do


ignore (Thread.create producer i);
ignore (Thread.create consumer i)


done ;
while true do Thread.delay 5. done ; ;


Waiting and Synchronization


The relation of mutual exclusion is not “fine” enough to describe synchronization be-
tween processes. It is not rare that the work of a process depends on the completion
of an action by another process, thus modifying a certain condition. It is therefore
desirable that the processes should be able to communicate the fact that this condition
might have changed, indicating to the waiting processes to test it again. The different
processes are thus in a relation of mutual exclusion with communication.


In the preceding example, a consumer, rather than returning empty-handed, could
wait until a producer came to resupply the stock. This last could signal to the waiting
consumer that there is something to take. The model of waiting on a condition to take
a mutex is known as semaphore.


Semaphores. A semaphore is an integral variable s which can only take non negative
values. Once s is initialised, the only operations allowed are: wait(s) and signal(s),
written P (s) and V (s), respectively. They are defined thus, s corresponding to the
number of resources of a given type.


• wait(s): if s > 0 then s := s− 1, otherwise the process, having called wait(s), is
suspended.


• signal(s): if a process has been suspended after a prior invocation of wait(s),
then wake it up, otherwise s := s + 1.
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A semaphore which only takes the values 0 or 1 is called a binary semaphore.


Condition Module


The functions of the module Condition implement the primitives of putting to sleep
and waking up processes on a signal. A signal, in this case, is a variable shared by a
collection of processes. Its type is abstract and the manipulation functions are:


create : unit -> Condition.t which creates a new signal.


signal : Condition.t -> unit which wakes up one of the processes waiting on a
signal.


broadcast : Condition.t -> unit which wakes up all of the processes waiting on a
signal.


wait : Condition.t -> Mutex.t -> unit which suspends the calling process on the
signal passed as the first argument. The second argument is a mutex used to
protect the manipulation of the signal. It is released, and then reset at each
execution of the function.


Producers and Consumers (2)


We revisit the example of producers and consumeres by using the mechanism of con-
dition variables to put to sleep a consumer arriving when the storehouse is empty.


To implement synchronization between waiting consumers and production, we declare:


# let c = Condition.create () ; ;
val c : Condition.t = <abstr>


We modify the storage function of the producer by adding to it the sending of a signal:


# let store2 i p =


Mutex.lock m ;
Queue.add (i,!p) f ;
Printf.printf "Producer (%d) has added its %dth product\n" i !p ;
flush stdout ;
Condition.signal c ;
Mutex.unlock m ; ;


val store2 : int -> int ref -> unit = <fun>


# let producer2 i =


let p = ref 0 in


let d = Random.float 2.


in while true do


produce i p d;
store2 i p;
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Thread.delay (Random.float 2.5)


done ; ;
val producer2 : int -> unit = <fun>


The activity of the consumer takes place in two phases: waiting until a product is
available, then taking the product. The mutex is taken when the wait is finished and
it is released when the consumer has taken its product. The wait takes place on the
variable c.
# let wait2 i =


Mutex.lock m ;
while Queue.length f = 0 do


Printf.printf "Consumer (%d) is waiting\n" i ;
Condition.wait c m


done ; ;
val wait2 : int -> unit = <fun>


# let take2 i =


let ip, p = Queue.take f in


Printf.printf "Consumer (%d) " i ;
Printf.printf "takes product (%d, %d)\n" ip p ;
flush stdout ;
Mutex.unlock m ; ;


val take2 : int -> unit = <fun>


# let consumer2 i =


while true do


wait2 i;
take2 i;
Thread.delay (Random.float 2.5)


done ; ;
val consumer2 : int -> unit = <fun>


We note that it is no longer necessary, once a consumer has begun to wait in the queue,
to check for the existence of a product. Since the end of its wait corresponds to the
locking of the mutex, it does not run the risk of having the new product stolen before
it takes it.


Readers and Writers


Here is another classic example of concurrent processes in which the agents do not have
the same behaviour with respect to the shared data.


A writer and some readers operate on some shared data. The action of the first may
cause the data to be momentarily inconsistent, while the second group only have a
passive action. The difficulty arises from the fact that we do not wish to prohibit
multiple readers from examining the data simultaneously. One solution to this problem
is to keep a counter of the number of readers in the processes of accessing the data.
Writing is not allowed except if the number of readers is 0.


The data is symbolized by the integer data which takes the value 0 or 1. The value 0
indicates that the data is ready for reading:
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# let data = ref 0 ; ;
val data : int ref = {contents=0}


Operations on the counter n are protected by the mutex m:
# let n = ref 0 ; ;
val n : int ref = {contents=0}


# let m = Mutex.create () ; ;
val m : Mutex.t = <abstr>


# let cpt incr () = Mutex.lock m ; incr n ; Mutex.unlock m ; ;
val cpt_incr : unit -> unit = <fun>


# let cpt decr () = Mutex.lock m ; decr n ; Mutex.unlock m ; ;
val cpt_decr : unit -> unit = <fun>


# let cpt signal () = Mutex.lock m ;
if !n=0 then Condition.signal c ;
Mutex.unlock m ; ;


val cpt_signal : unit -> unit = <fun>


The readers update the counter and emit the signal c when no more readers are present.
This is how they indicate to the writer that it may come into action.


# let c = Condition.create () ; ;
val c : Condition.t = <abstr>


# let read i =


cpt incr () ;
Printf.printf "Reader (%d) read (data=%d)\n" i !data ;
Thread.delay (Random.float 1.5) ;
Printf.printf "Reader (%d) has finished reading\n" i ;
cpt decr () ;
cpt signal () ; ;


val read : int -> unit = <fun>


# let reader i = while true do read i ; Thread.delay (Random.float 1.5) done ; ;
val reader : int -> unit = <fun>


The writer needs to block the counter to prevent the readers from accessing the shared
data. But it can only do so if the counter is 0, otherwise it waits for the signal indicating
that this is the case.
# let write () =


Mutex.lock m ;
while !n<>0 do Condition.wait c m done ;
print string "The writer is writing\n" ; flush stdout ;
data := 1 ; Thread.delay (Random.float 1.) ; data := 0 ;
Mutex.unlock m ; ;


val write : unit -> unit = <fun>


# let writer () =


while true do write () ; Thread.delay (Random.float 1.5) done ; ;
val writer : unit -> unit = <fun>
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We create a reader and six writers to test these functions.
ignore (Thread.create writer ());
for i=0 to 5 do ignore(Thread.create reader i) done;
while true do Thread.delay 5. done ; ;


This solution guarantees that the writer and the readers cannot have access to the
data at the same time. On the contrary, nothing guarantees that the writer could ever
“fufill his officé’, there we are confronted again with a case of starvation.


Synchronous Communication


Module Event from the thread library implements the communication of assorted val-
ues between two processes through particular “communication channels”. The effective
communication of the value is synchronized through send and receive events.


This model of communication synchronized by events allows the transfer through typed
channels of the values of the language, including closures, objects, and events.


It is described in [Rep99].


Synchronization using Communication Events


The primitive communication events are:


• send c v sends a value v on the channel c;


• receive c receives a value on the channel c


So as to implement the physical action with which they are associated, two events
should be synchronized. For this purpose, we introduce an operation of synchroniza-
tion (sync) on events. The sending and receiving of a value are not effective unless
the two communicating processes are in phase. If a single process wishes to synchro-
nize itself, the operation gets blocked, waiting for the second process to perform its
synchronization. This implies that a sender wishing to synchronize the sending of a
value (sync (send c v)) can find itself blocked waiting for a synchronization from a
receiver (sync (receive c)).


Transmitted Values


The communication channels through which the exchanged values travel are typed:
Nothing prevents us from creating multiple channels for communicating each type of
value. As this communication takes place between Objective Caml threads, any value
of the language can be sent on a channel of the same type. This is useful for closures,
objects, and also events, for a “relayed” synchronization request.
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Module Event


The values encapsulated in communication events travel through communication chan-
nels of the abstract data type ’a channel. The creation function for channels is:
# Event.new channel ; ;
- : unit -> ’a Event.channel = <fun>


Send and receive events are created by a function call:
# Event.send ; ;
- : ’a Event.channel -> ’a -> unit Event.event = <fun>


# Event.receive ; ;
- : ’a Event.channel -> ’a Event.event = <fun>


We can consider the functions send and receive as constructors of the abstract type
’a event. The event constructed by send does not preserve the information about
the type of the value to transmit (type unit Event.event). On the other hand, the
receive event takes account of it to recover the value during a synchronization. These
functions are non-blocking in the sense that the transmission of a value does not take
place until the time of the synchronization of two processes by the function:
# Event.sync ; ;
- : ’a Event.event -> ’a = <fun>


This function may be blocking for the sender and the receiver.


There is a non-blocking version:
# Event.poll ; ;
- : ’a Event.event -> ’a option = <fun>


This function verifies that another process is waiting for synchronization.


If this is the case, it performs the transmissions, and returns the value Some v, if
v is the value associated with the event, and None otherwise. The received message,
extracted by the function sync, can be the result of a more or less complicated process,
triggering other exchanges of messages.


Example of synchronization. We define three threads. The first, t1, sends a chain
of characters on channel c (function g) shared by all the processes. The two others t2
and t3 wait for a value on the same channel. Here are the functions executed by the
different processes:


# let c = Event.new channel () ; ;
val c : ’_a Event.channel = <abstr>


# let f () =


let ids = string of int (Thread.id (Thread.self ()))
in print string ("-------- before -------" ^ ids) ; print newline () ;


let e = Event.receive c


in print string ("-------- during -------" ^ ids) ; print newline () ;
let v = Event.sync e
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in print string (v ^ " " ^ ids ^ " ") ;
print string ("-------- after -------" ^ ids) ; print newline () ; ;


val f : unit -> unit = <fun>


# let g () =


let ids = string of int (Thread.id (Thread.self ()))
in print string ("Start of " ^ ids ^ "\n");


let e2 = Event.send c "hello"


in Event.sync e2 ;
print string ("End of " ^ ids) ;
print newline () ; ;


val g : unit -> unit = <fun>


The three processes are created and executed:
# let t1,t2,t3 = Thread.create f (), Thread.create f (), Thread.create g () ; ;
val t1 : Thread.t = <abstr>


val t2 : Thread.t = <abstr>


val t3 : Thread.t = <abstr>


# Thread.delay 1.0; ;
Start of 5


-------- before -------6


-------- during -------6


hello 6 -------- after -------6


-------- before -------7


-------- during -------7


End of 5


- : unit = <unknown constructor>


The transmission may block. The trace of t1 is displayed after the synchronization
traces of t2 and t3. Only one of the two processes t1 or t2 is really terminated, as
the following calls show:
# Thread.kill t1; ;
- : unit = ()


# Thread.kill t2; ;
Uncaught exception: Failure("Thread.kill: killed thread")


Example: Post Office


We present, to end this chapter, a slightly more complete example of a concurrent
program: modelling a common queue at a number of counters at a post office.


As always in concurrent programming the problems are posed metaphorically, but
replace the counters of the post office by a collection of printers and you have the
solution to a genuine problem in computing.


Here the policy of service that we propose; it is well tried and tested, rather than
original: each client takes a number when he arrives; when a clerk has finished serving
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a client, he calls for a number. When his number is called, the client goes to the
corresponding counter.


Organization of development. We distinguish in our development resources, and
agents. The former are: the number dispenser, the number announcer, and the windows.
The latter are: the clerks and the clients. The resources are modeled by objects which
manage their own mutual exclusion mechanisms. The agents are modelled by functions
executed by a thread. When an agent wishes to modify or examine the state of an
object, it does not itself have to know about or manipulate mutexes, which allows a
simplified organization for access to sensitive data, and avoids oversights in the coding
of the agents.


The Components


The Dispenser. The number dispenser contains two fields: a counter and a mutex.
The only method provided by the distributor is the taking of a new number.


# class dispenser () =


object


val mutable n = 0


val m = Mutex.create ()
method take () = let r = Mutex.lock m ; n <- n+1 ; n


in Mutex.unlock m ; r


end ; ;
class dispenser :


unit ->


object val m : Mutex.t val mutable n : int method take : unit -> int end


The mutex prevents two clients from taking a number at the same time. Note the way
in which we use an intermediate variable (r) to guarantee that the number calculated
in the critical section is the same as the one return by the method call.


The Announcer. The announcer contains three fields: an integer (the client number
being called); a mutex and a condition variable. The two methods are: (wait) which
reads the number, and (call), which modifies it.


# class announcer () =


object


val mutable nclient = 0


val m = Mutex.create ()
val c = Condition.create ()


method wait n =


Mutex.lock m;
while n > nclient do Condition.wait c m done;
Mutex.unlock m;
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method call () =


let r = Mutex.lock m ;
nclient <- nclient+1 ;
nclient


in Condition.broadcast c ;
Mutex.unlock m ;
r


end ; ;


The condition variable is used to put the clients to sleep, waiting for their number.
They are all woken up when the method call is invoked. Reading or writing access to
the called number is protected by the mutex.


The window. The window consists of five fields: a fixed window number (variable
ncounter); the number of the client being waited for (variable nclient); a boolean
(variable available); a mutex, and a condition variable.


It offers eight methods, of which two are private: two simple access methods (methods
get ncounter and get nclient): a group of three methods simulating the waiting
period of the clerk between two clients (private method wait and public methods
await arrival, await departure); a group of three methods simulate the occupation
of the window (private method set available and methods arrive, depart).


# class counter (i:int) =


object(self)


val ncounter = i


val mutable nclient = 0


val mutable available = true


val m = Mutex.create ()
val c = Condition.create ()


method get ncounter = ncounter


method get nclient = nclient


method private wait f =


Mutex.lock m ;
while f () do Condition.wait c m done ;
Mutex.unlock m


method wait arrival n = nclient <- n ; self#wait (fun () → available)


method wait departure () = self#wait (fun () → not available)


method private set available b =


Mutex.lock m ;
available <- b ;
Condition.signal c ;
Mutex.unlock m


method arrive () = self#set available false


method leave () = self#set available true







Example: Post Office 617


end ; ;


A post office. We collect these three resources in a record type:


# type office = { d : dispenser ; a : announcer ; cs : counter array } ; ;


Clients and Clerks


The behaviour of the system as a whole will depend on the three following parameters:


# let service delay = 1.7 ; ;
# let arrival delay = 1.7 ; ;
# let counter delay = 0.5 ; ;


Each represents the maximum value of the range from which each effective value will
be randomly chosen. The first parameter models the time taken to serve a client; the
second, the delay between the arrival of clients in the post office; the last, the time it
takes a clerk to call a new client after the last one has left.


The Clerk. The work of a clerk consists of looping indefinitely over the following
sequence:


1. Call for a number.


2. Wait for the arrival of a client holding the called number.


3. Wait for the departure of the client occupying his counter.


Adding some output, we get the function:
# let clerk ((a:announcer), (c:counter)) =


while true do


let n = a#call ()
in Printf.printf "Counter %d calls %d\n" c#get ncounter n ;


c#wait arrival n ;
c#wait departure () ;
Thread.delay (Random.float counter delay)


done ; ;
val clerk : announcer * counter -> unit = <fun>


The Client. A client executes the following sequence:


1. Take a waiting number.
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2. Wait until his number is called.


3. Go to the window having called for the number to obtain service.


The only slightly complex activity of the client is to find the counter where they are
expected.


We give, for this, the auxiliary function:
# let find counter n cs =


let i = ref 0 in while cs.(!i)#get ncounter <> n do incr i done ; !i ; ;
val find_counter : ’a -> < get_ncounter : ’a; .. > array -> int = <fun>


Adding some output, the principal function of the client is:
# let client o =


let n = o.d#take ()
in Printf.printf "Arrival of client %d\n" n ; flush stdout ;


o.a#wait n ;
let ic = find counter n o.cs


in o.cs.(ic)#arrive () ;
Printf.printf "Client %d occupies window %d\n" n ic ;
flush stdout ;
Thread.delay (Random.float service delay) ;
o.cs.(ic)#leave () ;
Printf.printf "Client %d leaves\n" n ; flush stdout ; ;


val client : office -> unit = <fun>


The System


The main programme of the application creates a post office and its clerks (each clerk
is a process) then launches a process which creates an infinite stream of clients (each
client is also a process).


# let main () =


let o =


{ d = new dispenser () ;
a = new announcer () ;
cs = (let cs0 = Array.create 5 (new counter 0) in


for i=0 to 4 do cs0.(i) <- new counter i done;
cs0)


}
in for i=0 to 4 do ignore (Thread.create clerk (o.a, o.cs.(i))) done ;


let create clients o = while true do


ignore (Thread.create client o) ;
Thread.delay (Random.float arrival delay)


done


in ignore (Thread.create create clients o) ;
Thread.sleep () ; ;


val main : unit -> unit = <fun>
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The last instruction puts the process associated with the program to sleep in order to
pass control immediately to the other active processes of the application.


Exercises


The Philosophers Disentangled


To solve the possible deadlock of the dining philosophers, it suffices to limit access to
the table to four at once. Implement this solution.


More of the Post Office


We suggest the following modification to the post office described on page 614: some
impatient clients may leave before there number has been called.


1. Add a method wait (with type int -> unit) to the class dispenser which
causes the caller to wait while the last number distributed is less than or equal
to the parameter of the method (it is necessary to modify take so that it emits
a signal).


2. Modify the method await arrival of class counter, so that it returns the
boolean value true if the expected client arrives, and false if the client has not
arrived at the end of a certain time.


3. Modify the class announcer by passing it a number dispenser as a parameter
and:
(a) adding a method wait until which returns true if the expected number


has been called during a given waiting period, and false otherwise;
(b) modifying the method call to take a counter as parameter and update the


field nclient of this counter (it is necessary to add an update method in
the counter class).


4. Modify the function clerk to take fruitless waits into account.


5. Write a function impatient client which simulates the behaviour of an impa-
tient client.


Object Producers and Consumers


This exercise revisits the producer-consumer algorithm with the following variation: the
storage warehouse is of finite size (i.e. a table rather than a list managed as a FIFO).
Also, we propose to make an implementation that uses objects to model resources, like
the post office.


1. Define a class product with signature:
class product : string →


object
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val name : string


method name : string


end


2. Define a class shop such that:
class show : int →


object


val mutable buffer : product array


val c : Condition.t


val mutable ic : int


val mutable ip : int


val m : Mutex.t


val mutable np : int


val size : int


method dispose : product → unit


method acquire : unit → product


end


The indexes ic and ip are manipulated by the producers and the consumers,
respectively. The index ic holds the index of the last product taken and ip that
of the last product stored. The counter np gives the number of products in stock.
Mutual exclusion and control of the waiting of producers and consumers will be
managed by the methods of this class.


3. Define a function consumer: shop → string → unit.


4. Define a function create product of type string -> product. The name given
to a product will be composed of the string passed as an argument concatenated
with a product number incremented at every invocation of the function.
Use this function to define producer: shop → string → unit.


Summary


This chapter tackled the topic of concurrent programming in which a number of pro-
cesses interact, either through shared memory, or by synchronous communication. The
first case represents concurrency for imperative programming. In particular, we have
detailed the mechanisms of mutual exclusion whose use permits the synchronization
of processes for access to shared memory. Synchronous communication offers a model
for concurrency in functional programming. In particular, the possibility of sending
closures and synchronization events on communication channels facilitates the compo-
sition of calculations carried out in different processes.


The processes used in this chapter are the threads of the Objective Caml Thread
module.
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To Learn More


The first requirements for concurrent algorithms arose from systems programming. For
this application, the imperative model of shared memory is the most widely used. For
example, the relation of mutual exclusion and semaphores are used to manage shared
resources. The different low-level mechanisms of managing processes accessing shared
memory are described in [Ari90].


Nonetheless, the possibility of expressing concurrent algorithms in one’s favorite lan-
guages makes it possible to investigate this kind of algorithm, as presented in [And91].
It may be noted that while the concepts of such algorithms can simplify the solution
of certain problems, the production of the corresponding programs is quite hard work.


The model of synchronous communication presented by CML, and followed by the
Event module, is fully described in [Rep99]. The online version is at the following
address:


Link: http://cm.bell-labs.com/cm/cs/who/jhr/index.html


An interesting example is the threaded graphical library EXene, implemented in CML
under X-Windows. The preceding link contains a pointer to this library.
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20
Distributed


Programming


With distributed programming, you can build applications running on several machines
that work together through a network to accomplish a task. The computation model
described here is parallel programming with distributed memory. Local and remote
programs communicate using a network protocol. The best-known and most widely-
used of these is IP (Internet protocol) and its TCP and UDP layers. Beginning with
these low-level layers, many services are built on the client-server model, where a server
waits for requests from different clients, processes those requests, and sends responses.
As an example, the HTTP protocol allows communication between Web browsers and
Web servers. The distribution of tasks between clients and servers is suitable for many
different software architectures.


The Objective Caml language offers, through its Unix library, various means of com-
munication between programs. Sockets allow communication through the TCP/IP and
UDP/IP protocols. This part of the Unix library has been ported to Windows. Be-
cause you can create “heavyweight” processes with Unix.fork as well as lightweight
processes with Thread.create, you can create servers that accept many requests at
once. Finally, an important point when creating a new service is the definition of a
protocol appropriate to the application.


Outline of the Chapter


This chapter presents the basic elements of the Internet, sockets, for the purpose of
building distributed applications (particularly client-server applications) while detail-
ing the problems in designing communications protocols.


The first section briefly explains the Internet, its addressing system and its main ser-
vices.
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The second section illustrates communications through sockets between different Ob-
jective Caml processes, both local and remote.


The third section describes the client-server model, while presenting server programs
and universal clients.


The fourth section shows the importance of communications protocols for building
network services.


This chapter is best read after the chapters on systems programming (Chapter 18) and
on concurrent programming (Chapter 19).


The Internet


The Internet is a network of networks. Their interconnection is organized as a hierarchy
of domains, subdomains, and so on, through interfaces. An interface is the hardware in a
computer that allows it to be connected (typically, an Ethernet card). Some computers
may have several interfaces. Each interface has a unique IP address that respects, in
general, the interconnection hierarchy. Message routing is also organized hierarchically:
from domain to domain; then from domain to subdomains, and so on, until a message
reaches its destination interface. Besides their interface addresses, computers usually
also have a name, as do domains and subdomains. Some machines have a particular
role in the network:


bridges connect one network to another;


routers use their knowledge of the topology of the Internet to route data;


name servers track the correspondence between machine names and network ad-
dresses.


The purpose of the Internet protocol (i.e., of the IP) is to make the network of networks
into a single entity. This is why one can speak of the Internet. Any two machines
connected via the Internet can communicate. Many kinds of machines and systems
coexist on the Internet. All of them use IP protocols and most of them, the UDP and
TCP layers.


The different protocols and services used by the Internet are described in RFC’s (Re-
quests For Comments), which can be found on the Jussieu mirror site:


Link: ftp://ftp.lip6.fr/pub/rfc


Internet Protocols and Services


The unit of transfer used by the IP protocol is the datagram or packet. This protocol
in unreliable: it does not assure proper order, safe arrival, or non-duplication of trans-
mitted packets. It only deals with correct routing of packets and signaling of errors
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when a packet is unable to reach its destination. Addresses are coded into 32 bits in
the current version of the protocol: IPv4. These 32 bits are divided into four fields,
each containing values between 0 and 255. IP addresses are written with the four fields
separated by periods, for example: 132.227.60.30.


The IP protocol is in the midst of an important change made necessary by the ex-
haustion of address space and the growing complexity of routing problems due to the
expansion of the Internet. The new version of the IP protocol is IPv6, which is de-
scribed in [Hui97].


Above IP, two protocols allow higher-level transmissions: UDP (User Datagram Pro-
tocol, and TCP (Transfer Control Protocol). These two protocols use IP for com-
munication between machines, also allowing communication between applications (or
programs) running on those machines. They deal with correct transmission of informa-
tion, independent of contents. The identification of applications on a machine is done
via a port number.


UDP is a connectionless, unreliable protocol: it is to applications as IP is to interfaces.
TCP is a connection-oriented, reliable protocol: it manages acknowledgement, retrans-
mission, and ordering of packets. Further, it is capable of optimizing transmission by
a windowing technique.


The standard services (applications) of the Internet most often use the client-server
model. The server manages requests by clients, offering them a specific service. There
is an asymmetry between client and server. The services establish high-level protocols
for keeping track of transmitted contents. Among the standard services, we note:


• FTP (File Transfer Protocol);


• TELNET (Terminal Protocol);


• SMTP (Simple Mail Transfer Protocol);


• HTTP (Hypertext Transfer Protocol).


Other services use the client-server model:


• NFS (Network File System);


• X-Windows


• Unix services: rlogin, rwho . . .


Communication between applications takes place via sockets. Sockets allow communi-
cation between processes residing on possibly different machines. Different processes
can read and write to sockets.


The Unix Module and IP Addressing


The Unix library defines the abstract type inet addr representing Internet addresses,
as well as two conversion functions between an internal representation of addresses and
strings:
# Unix.inet addr of string ; ;
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- : string -> Unix.inet_addr = <fun>


# Unix.string of inet addr ; ;
- : Unix.inet_addr -> string = <fun>


In applications, Internet addresses and port numbers for services (or service numbers)
are often replaced by names. The correspondence between names and address or num-
ber is managed using databases. The Unix library provides functions to request data
from these databases and provides datatypes to allow storage of the obtained informa-
tion. We briefly describe these functions below.


Address tables. The table of addresses (hosts database) contains the assocation
between machine name(s) and interface address(es). The structure of entries in the
address table is represented by:
# type host entry =


{ h name : string;
h aliases : string array;
h addrtype : socket domain;
h addr list : inet addr array } ; ;


The first two fields contain the machine name and its aliases; the third contains the
address type (see page 627); the last contains a list of machine addresses.


A machine name is obtained by using the function:
# Unix.gethostname ; ;
- : unit -> string = <fun>


# let my name = Unix.gethostname () ; ;
val my_name : string = "estephe.inria.fr"


The functions that query the address table require an entry, either the name or the
machine address.
# Unix.gethostbyname ; ;
- : string -> Unix.host_entry = <fun>


# Unix.gethostbyaddr ; ;
- : Unix.inet_addr -> Unix.host_entry = <fun>


# let my entry byname = Unix.gethostbyname my name ; ;
val my_entry_byname : Unix.host_entry =


{Unix.h_name="estephe.inria.fr"; Unix.h_aliases=[|"estephe"|];


Unix.h_addrtype=Unix.PF_INET; Unix.h_addr_list=[|<abstr>|]}


# let my addr = my entry byname.Unix.h addr list.(0) ; ;
val my_addr : Unix.inet_addr = <abstr>


# let my entry byaddr = Unix.gethostbyaddr my addr ; ;
val my_entry_byaddr : Unix.host_entry =


{Unix.h_name="estephe.inria.fr"; Unix.h_aliases=[|"estephe"|];


Unix.h_addrtype=Unix.PF_INET; Unix.h_addr_list=[|<abstr>|]}


# let my full name = my entry byaddr.Unix.h name ; ;
val my_full_name : string = "estephe.inria.fr"


These functions raise the Not found exception in case the request fails.
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Table of services. The table of services contains the correspondence between service
names and port numbers. The majority of Internet services are standardized. The
structure of entries in the table of services is:
# type service entry =


{ s name : string;
s aliases : string array;
s port : int;
s proto : string } ; ;


The first two fields are the service name and its eventual aliases; the third field contains
the port number; the last field contains the name of the protocol used.


A service is in fact characterized by its port number and the underlying protocol. The
query functions are:
# Unix.getservbyname ; ;
- : string -> string -> Unix.service_entry = <fun>


# Unix.getservbyport ; ;
- : int -> string -> Unix.service_entry = <fun>


# Unix.getservbyport 80 "tcp" ; ;
- : Unix.service_entry =


{Unix.s_name="www"; Unix.s_aliases=[|"http"|]; Unix.s_port=80;


Unix.s_proto="tcp"}


# Unix.getservbyname "ftp" "tcp" ; ;
- : Unix.service_entry =


{Unix.s_name="ftp"; Unix.s_aliases=[||]; Unix.s_port=21; Unix.s_proto="tcp"}


These functions raise the Not found exception if they cannot find the service requested.


Sockets


We saw in chapters 18 and 19 two ways to perform interprocess communication, namely,
pipes and channels. These first two methods use a logical model of concurrency. In
general, they do not give better performance to the degree that the communicating
processes share resources, in particular, the same processor. The third possibility, which
we present in this section, uses sockets for communication. This method originated in
the Unix world. Sockets allow communication between processes executing on the same
machine or on different machines.


Description and Creation


A socket is responsible for establishing communication with another socket, with the
goal of transferring information. We enumerate the different situations that may be
encountered as well as the commands and datatypes that are used by TCP/IP sockets.
The classic metaphor is to compare sockets to telephone sets.


• In order to work, the machine must be connected to the network (socket).


• To receive a call, it is necessary to possess a number of the type sock addr (bind).


• During a call, it is possible to receive another call if the configuration allows it
(listen).
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• It is not necessary to have one’s own number to call another set, once the con-
nection is established in both directions (connect).


Domains. Sockets belong to different domains, according to whether they are meant
to communicate internally or externally. The Unix library defines two possible domains
corresponding to the type constructors:
# type socket domain = PF UNIX | PF INET; ;


The first domain corresponds to local communication, and the second, to communica-
tion over the Internet. These are the principal domains for sockets.


In the following, we use sockets belonging only to the Internet domain.


Types and protocols. Regardless of their domain, sockets define certain commu-
nications properties (reliability, ordering, etc.) represented by the type constructors:


# type socket type = SOCK STREAM | SOCK DGRAM | SOCK SEQPACKET | SOCK RAW ; ;


According to the type of socket used, the underlying communications protocol obeys
definite characteristics. Each type of communication is associated with a default pro-
tocol.


In fact, we will only use the first kind of communication — SOCK STREAM — with
the default protocol TCP. This guarantees reliability, order, prevents duplication of
exchanged messages, and works in connected mode.


For more information, we refer the reader to the Unix literature, for example [Ste92].


Creation. The function to create sockets is:
# Unix.socket ; ;
- : Unix.socket_domain -> Unix.socket_type -> int -> Unix.file_descr = <fun>


The third argument allows specification of the protocol associated with communication.
The value 0 is interpreted as “the default protocol” associated with the pair (domain,
type) argument used for the creation of the socket. The value returned by this function
is a file descriptor. Thus such a value can be used with the standard input-output
functions in the Unix library.


We can create a TCP/IP socket with:
# let s descr = Unix.socket Unix.PF INET Unix.SOCK STREAM 0 ; ;
val s_descr : Unix.file_descr = <abstr>


Warning


Even though the socket function returns a value of type
file descr, the system distinguishes descriptors for a
files and those associated with sockets. You can use the
file functions in the Unix library with descriptors for
sockets; but an exception is raised when a classical file
descriptor is passed to a function expecting a descriptor
for a socket.
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Closing. Like all file descriptors, a socket is closed by the function:
# Unix.close ; ;
- : Unix.file_descr -> unit = <fun>


When a process finishes via a call to exit, all open file descriptors are closed automat-
ically.


Addresses and Connections


A socket does not have an address when it is created. In order to setup a connection
between two sockets, the caller must know the address of the receiver.


The address of a socket (TCP/IP) consists of an IP address and a port number. A
socket in the Unix domain consists simply of a file name.


# type sockaddr =


ADDR UNIX of string | ADDR INET of inet addr * int ; ;


Binding a socket to an address. The first thing to do in order to receive calls
after the creation of a socket is to bind the socket to an address. This is the job of the
function:
# Unix.bind ; ;
- : Unix.file_descr -> Unix.sockaddr -> unit = <fun>


In effect, we already have a socket descriptor, but the address that is associated with
it at creation is hardly useful, as shown by the following example:
# let (addr in, p num) =


match Unix.getsockname s descr with


Unix.ADDR INET (a,n) → (a,n)


| _ → failwith "not INET" ; ;
val addr_in : Unix.inet_addr = <abstr>


val p_num : int = 0


# Unix.string of inet addr addr in ; ;
- : string = "0.0.0.0"


We need to create a useful address and to associate it with our socket. We reuse our
local address my addr as described on page 626 and choose port 12345 which, in general,
is unused.
# Unix.bind s descr (Unix.ADDR INET(my addr, 12345)) ; ;
- : unit = ()


Listening and accepting connections. It is necessary to use two operations before
our socket is completely operational to receive calls: define its listening capacity and
allow it to accept connections. Those are the respective roles of the two functions:
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# Unix.listen ; ;
- : Unix.file_descr -> int -> unit = <fun>


# Unix.accept ; ;
- : Unix.file_descr -> Unix.file_descr * Unix.sockaddr = <fun>


The second argument to the listen function gives the maximum number of connec-
tions. The call to the accept function waits for a connection request. When accept
finishes, it returns the descriptor for a socket, the so-called service socket. This ser-
vice socket is automatically linked to an address. The accept function may only be
applied to sockets that have called listen, that is, to sockets that have setup a queue
of connection requests.


Connection requests. The function reciprocal to accept is;
# Unix.connect ; ;
- : Unix.file_descr -> Unix.sockaddr -> unit = <fun>


A call to Unix.connect s descr s addr establishes a connection between the local
socket s descr (which is automatically bound) and the socket with address s addr


(which must exist).


Communication. From the moment that a connection is established between two
sockets, the processes owning them can communicate in both directions. The input-
output functions are those in the Unix module, described in Chapter 18.


Client-server


Interprocess communication between processes on the same machine or on different
machines through TCP/IP sockets is a mode of point-to-point asynchronous commu-
nication. The reliability of such transmissions is assured by the TCP protocol. It is
nonetheless possible to simulate the broadcast to a group of processes through point-
to-point communication to all receivers.


The roles of different processes communicating in an application are asymmetric, as a
general rule. That description holds for client-server architectures. A server is a process
(or several processes) accepting requests and trying to respond to them. The client,
itself a process, sends a request to the server, hoping for a response.


Client-server Action Model


A server provides a service on a given port by waiting for connections from future
clients. Figure 20.1 shows the sequence of principal tasks for a server and a client.
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socket creation (socket) : TCP/UDP


socket binding (bind) : ADR_IP,PORT


service opening (listen) : number


waiting for connection (accept)


process creation (fork or thread)


connection (connect) : ADR_IPserv,PORT


communication with the server


finish


handling the request


socket creation (socket) : TCP/UDP


successproblem


Server Client


Figure 20.1: Model of a server and client


A client can connect to a service once the server is ready to accept connections
(accept). In order to make a connection, the client must know the IP number of the
server machine and the port number of the service. If the client does not know the IP
number, it needs to request name/number resolution using the function gethostbyname.
Once the connection is accepted by the server, each program can communicate via
input-output channels over the sockets created at both ends.


Client-server Programming


The mechanics of client-server programming follows the model described in Figure 20.1.
These tasks are always performed. For these tasks, we write generic functions param-
eterized by particular functions for a given server. As an example of such a program,
we describe a server that accepts a connection from a client, waits on a socket until a
line of text has been received, converting the line to CAPITALS, and sending back the
converted text to the client.


Figure 20.2 shows the communication between the service and different clients1.


Certain tasks run on the same machine as the server, while others are found on remote
machines.


We will see


1. Note of translator: “boulmich” is a colloquial abbreviation for “Boulevard Saint-Michel”, one the
principal avenues of Quartier Latin in Paris...
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client_seq


client_seq


boulmich


tolbiac


client_par


uppercase service


Figure 20.2: CAPITAL service and its clients


1. How to write the code for a “generic server” and instantiate it for our particular
capitalization service.


2. How to test the server, without writing the client, by using the telnet program.


3. How to create two types of clients:
• a sequential client, which waits for a response after sending a request;
• a parallel client, which separates the send and receive tasks.
Therefore, there are two processes for this client.


Code for the Server


A server may be divided into two parts: waiting for a connection and the following
code to handle the connection.


A Generic Server


The generic server function establish server described below takes as its first argu-
ment a function for the service (server fun) that handles requests, and as its second
argument, the address of the socket in the Internet domain that listens for requests.
This function uses the auxiliary function domain of, which extracts the domain of a
socket from its address.


In fact, the function establish server is made up of high-level functions from the
Unix library. This function sets up a connection to a server.


# let establish server server fun sockaddr =


let domain = domain of sockaddr in


let sock = Unix.socket domain Unix.SOCK STREAM 0
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in Unix.bind sock sockaddr ;
Unix.listen sock 3;
while true do


let (s, caller) = Unix.accept sock


in match Unix.fork () with


0 → if Unix.fork () <> 0 then exit 0 ;
let inchan = Unix.in channel of descr s


and outchan = Unix.out channel of descr s


in server fun inchan outchan ;
close in inchan ;
close out outchan ;
exit 0


| id → Unix.close s; ignore(Unix.waitpid [] id)


done ; ;
val establish_server :


(in_channel -> out_channel -> ’a) -> Unix.sockaddr -> unit = <fun>


To finish building a server with a standalone executable that takes a port number
parameter, we write a function main server which takes a parameter indicating a
service. The function uses the command-line parameter as the port number of a service.
The auxiliary function get my addr, returns the address of the local machine.
# let get my addr () =


(Unix.gethostbyname(Unix.gethostname ())).Unix.h addr list.(0) ; ;
val get_my_addr : unit -> Unix.inet_addr = <fun>


# let main server serv fun =


if Array.length Sys.argv < 2 then Printf.eprintf "usage : serv_up port\n"


else try


let port = int of string Sys.argv.(1) in


let my address = get my addr ()
in establish server serv fun (Unix.ADDR INET(my address, port))


with


Failure("int_of_string") →
Printf.eprintf "serv_up : bad port number\n" ; ;


val main_server : (in_channel -> out_channel -> ’a) -> unit = <fun>


Code for the Service


The general mechanism is now in place. To illustrate how it works, we need to define
the service we’re interested in. The service here converts strings to upper-case. It waits
for a line of text over an input channel, converts it, then writes it on the output channel,
flushing the output buffer.
# let uppercase service ic oc =


try while true do


let s = input line ic in


let r = String.uppercase s


in output string oc (r^"\n") ; flush oc


done


with _ → Printf.printf "End of text\n" ; flush stdout ; exit 0 ; ;
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val uppercase_service : in_channel -> out_channel -> unit = <fun>


In order to correctly recover from exceptions raised in the Unix library, we wrap the
initial call to the service in an ad hoc function from the Unix library:
# let go uppercase service () =


Unix.handle unix error main server uppercase service ; ;
val go_uppercase_service : unit -> unit = <fun>


Compilation and Testing of the Service


We group the functions in the file serv up.ml, adding an actual call to the function
go uppercase service. We compile this file, indicating that the Unix library is linked
in


ocamlc -i -custom -o serv_up.exe unix.cma serv_up.ml -cclib -lunix


The transcript from this compilation (using the option -i) gives:


val establish_server :
(in_channel -> out_channel -> ’a) -> Unix.sockaddr -> unit


val main_server : (in_channel -> out_channel -> ’a) -> unit
val uppercase_service : in_channel -> out_channel -> unit
val go_uppercase_service : unit -> unit


We launch the server by writing:


serv_up.exe 1400


The port chosen here is 1400. Now the machine where the server was launched will
accept connections on this port.


Testing with telnet


We can now begin to test the server by using an existing client to send and receive lines
of text. The telnet utility, which normally is a client of the telnetd service on port
23, and used to control a remote connection, can be diverted from this role by passing
a machine name and a different port number. This utility exists on several operating
systems. To test our server under Unix, we type:


$ telnet boulmich 1400
Trying 132.227.89.6...
Connected to boulmich.ufr-info-p6.jussieu.fr.
Escape character is ’^]’.
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The IP address for boulmich is 132.227.89.6 and its complete name, which contains its
domain name, is boulmich.ufr-info-p6.jussieu.fr. The text displayed by telnet
indicates a successful connection to the server. The client waits for us to type on the
keyboard, sending the characters to the server that we have launched on boulmich on
port 1400. It waits for a response from the server and displays:


The little cat is dead.
THE LITTLE CAT IS DEAD.
We obtained the expected result.
WE OBTAINED THE EXPECTED result.


The phrases entered by the user are in lower-case and those sent by the server are in
upper-case. This is exactly the role of this service, to perform this conversion.


To exit from the client, we need to close the window where it was run, by executing
the kill command. This command will close the client’s socket, causing the server’s
socket to close as well. When the server displays the message “End of text,” the
process associated with the service terminates.


The Client Code


While the server is naturally parallel (we would like to handle a particular request
while accepting others, up to some limit), the client may or may not be so, according
to the nature of the application. Below we give two versions of the client. Beforehand,
we present two functions that will be useful for writing these clients.


The function open connection from the Unix library allows us to obtain a couple of
input-output channels for a socket.


The following code is contained in the language distribution.
# let open connection sockaddr =


let domain = domain of sockaddr in


let sock = Unix.socket domain Unix.SOCK STREAM 0


in try Unix.connect sock sockaddr ;
(Unix.in channel of descr sock , Unix.out channel of descr sock)


with exn → Unix.close sock ; raise exn ; ;
val open_connection : Unix.sockaddr -> in_channel * out_channel = <fun>


Similarly, the function shutdown connection closes down a socket.
# let shutdown connection inchan =


Unix.shutdown (Unix.descr of in channel inchan) Unix.SHUTDOWN SEND ; ;
val shutdown_connection : in_channel -> unit = <fun>


A Sequential Client


From these functions, we can write the main function of a sequential client. This
client takes as its argument a function for sending requests and receiving responses.
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This function analyzes the command line arguments to obtain connection parameters
before actual processing.
# let main client client fun =


if Array.length Sys.argv < 3


then Printf.printf "usage : client server port\n"


else let server = Sys.argv.(1) in


let server addr =


try Unix.inet addr of string server


with Failure("inet_addr_of_string") →
try (Unix.gethostbyname server).Unix.h addr list.(0)


with Not found →
Printf.eprintf "%s : Unknown server\n" server ;
exit 2


in try


let port = int of string (Sys.argv.(2)) in


let sockaddr = Unix.ADDR INET(server addr,port) in


let ic,oc = open connection sockaddr


in client fun ic oc ;
shutdown connection ic


with Failure("int_of_string") → Printf.eprintf "bad port number";
exit 2 ; ;


val main_client : (in_channel -> out_channel -> ’a) -> unit = <fun>


All that is left is to write the function for client processing.
# let client fun ic oc =


try


while true do


print string "Request : " ;
flush stdout ;
output string oc ((input line stdin)^"\n") ;
flush oc ;
let r = input line ic


in Printf.printf "Response : %s\n\n" r;
if r = "END" then ( shutdown connection ic ; raise Exit) ;


done


with


Exit → exit 0


| exn → shutdown connection ic ; raise exn ; ;
val client_fun : in_channel -> out_channel -> unit = <fun>


The function client fun enters an infinite loop which reads from the keyboard, sends
a string to the server, gets back the transformed upper-case string, and displays it.
If the string is "END", then the exception Exit is raised in order to exit the loop. If
another exception is raised, typically if the server has shut down, the function ceases
its calculations.


The client program thus becomes:
# let go client () = main client client fun ; ;
val go_client : unit -> unit = <fun>
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We place all these functions in a file named client seq.ml, adding a call to the
function go client. We compile the file with the following command line:


ocamlc -i -custom -o client_seq.exe unix.cma client_seq.ml -cclib -lunix


We run the client as follows:


$ client_seq.exe boulmich 1400
Request : The little cat is dead.
Response: THE LITTLE CAT IS DEAD.


Request : We obtained the expected result.
Response: WE OBTAINED THE EXPECTED RESULT.


Request : End
Response: END


The Parallel Client with fork


The parallel client mentioned divides its tasks between two processes: one for send-
ing, and the other for receiving. The processes share the same socket. The functions
associated with each of the processes are passed to them as parameters.


Here is the modified program:
# let main client client parent fun client child fun =


if Array.length Sys.argv < 3


then Printf.printf "usage : client server port\n"


else


let server = Sys.argv.(1) in


let server addr =


try Unix.inet addr of string server


with Failure("inet_addr_of_string")


→ try (Unix.gethostbyname server).Unix.h addr list.(0)


with Not found →
Printf.eprintf "%s : unknown server\n" server ;
exit 2


in try


let port = int of string (Sys.argv.(2)) in


let sockaddr = Unix.ADDR INET(server addr,port) in


let ic,oc = open connection sockaddr


in match Unix.fork () with


0 → if Unix.fork () = 0 then client child fun oc ;
exit 0


| id → client parent fun ic ;
shutdown connection ic ;
ignore (Unix.waitpid [] id)


with


Failure("int_of_string") → Printf.eprintf "bad port number" ;
exit 2 ; ;
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val main_client : (in_channel -> ’a) -> (out_channel -> unit) -> unit = <fun>


The expected behavior of the parameters is: the (grand)child sends the request and
the parent receives the response.


This architecture has the effect that if the child needs to send several requests, then
the parent receives the responses to requests as each is processed. Consider again the
preceding example for capitalizing strings, modifying the client side program. The
client reads the text from one file, while writing the response to another file. For this
we need a function that copies from one channel, ic, to another, oc, respecting our
little protocol (that is, it recognizes the string "END").
# let copy channels ic oc =


try while true do


let s = input line ic


in if s = "END" then raise End of file


else (output string oc (s^"\n"); flush oc)


done


with End of file → () ; ;
val copy_channels : in_channel -> out_channel -> unit = <fun>


We write the two functions for the child and parent using the parallel client model:
# let child fun in file out sock =


copy channels in file out sock ;
output string out sock ("FIN\n") ;
flush out sock ; ;


val child_fun : in_channel -> out_channel -> unit = <fun>


# let parent fun out file in sock = copy channels in sock out file ; ;
val parent_fun : out_channel -> in_channel -> unit = <fun>


Now we can write the main client function. It must collect two extra command line
parameters: the names of the input and output files.
# let go client () =


if Array.length Sys.argv < 5


then Printf.eprintf "usage : client_par server port filein fileout\n"


else let in file = open in Sys.argv.(3)


and out file = open out Sys.argv.(4)


in main client (parent fun out file) (child fun in file) ;
close in in file ;
close out out file ; ;


val go_client : unit -> unit = <fun>


We gather all of our material into the file client par.ml (making sure to include a
call to go client), and compile it. We create a file toto.txt containing the text to be
converted:


The little cat is dead.
We obtained the expected result.


We can test the client by typing:
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client_par.exe boulmich 1400 toto.txt result.txt


The file result.txt contains the text:


$ more result.txt
THE LITTLE CAT IS DEAD.
WE OBTAINED THE EXPECTED RESULT.


When the client finishes, the server always displays the message "End of text".


Client-server Programming with Lightweight


Processes


The preceding presentation of code for a generic server and a parallel client created
processes via the fork primitive in the Unix library. This works well under Unix;
many Unix services are implemented by this technique. Unfortunately, the same cannot
be said for Windows. For portability, it is preferable to write client-server code with
lightweight processes, which were presented in Chapter 19. In this case, it becomes
necessary to examine the interactions among different server processes.


Threads and the Unix Library


The simultaneous use of lightweight processes and the Unix library causes all active
threads to block if a system call does not return immediately. In particular, reads on
file descriptors, including those created by socket, are blocking.


To avoid this problem, the ThreadUnix library reimplements most of the input-output
functions from the Unix library. The functions defined in that library will only block the
thread which is actually making the system call. As a consequence, input and output is
handled with the low-level functions read and write found in the ThreadUnix library.


For example, the standard function for reading a string of characters, input line, is
redefined in such a way that it does not block other threads while reading a line.
# let my input line fd =


let s = " " and r = ref ""


in while (ThreadUnix.read fd s 0 1 > 0) && s.[0] <> ’\n’ do r := !r ^s done ;
!r ; ;


val my_input_line : Unix.file_descr -> string = <fun>


Classes for a Server with Threads


Now let us recycle the example of the CAPITALIZATION service, this time giving
a version using lightweight processes. Shifting to threads poses no problem for our
little application on either the server side or the client side, which start processes
independently.
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Earlier, we built a generic server parameterized over a service function. We were able
to achieve this kind of abstraction by relying on the functional aspect of the Objective
Caml language. Now we are about to use the object-oriented extensions to the language
to show how objects allow us to achieve a comparable abstraction.


The server is organized into two classes: serv socket and connection. The first of
these handles the service startup, and the second, the service itself. We have introduced
some print statements to trace the main stages of the service.


The serv socket class. has two instance variables: port, the port number for the
service, and socket, the socket for listening. When constructing such an object, the
initializer opens the service and creates this socket. The run method accepts connec-
tions and creates a new connection object for handling requests. The serv socket


uses the connection class described in the following paragraph. Usually, this class
must be defined before the serv socket class.


# class serv socket p =


object (self)


val port = p


val mutable sock = ThreadUnix.socket Unix.PF INET Unix.SOCK STREAM 0


initializer


let my address = get my addr ()
in Unix.bind sock (Unix.ADDR INET(my address,port)) ;


Unix.listen sock 3


method private client addr = function


Unix.ADDR INET(host,_) → Unix.string of inet addr host


| _ → "Unexpected client"


method run () =


while(true) do


let (sd,sa) = ThreadUnix.accept sock in


let connection = new connection(sd,sa)


in Printf.printf "TRACE.serv: new connection from %s\n\n"


(self#client addr sa) ;
ignore (connection#start ())


done


end ; ;
class serv_socket :


int ->


object


val port : int


val mutable sock : Unix.file_descr


method private client_addr : Unix.sockaddr -> string


method run : unit -> unit


end


It is possible to refine the server by inheriting from this class and redefining the run
method.
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The connection class. The instance variables in this class, s descr and s addr,
are initialized to the descriptor and the address of the socket created by accept. The
methods are start, run, and stop. The start creates a thread calling the two other
methods, and returns its thread identifier, which can be used by the calling instance
of serv socket. The run method contains the core functionality of the service. We
have slightly modified the termination condition for the service: we exit on receipt of
an empty string. The stop service just closes the socket descriptor for the service.


Each new connection has an associated number obtained by calling the auxiliary func-
tion gen num when the instance is created.


# let gen num = let c = ref 0 in (fun () → incr c; !c) ; ;
val gen_num : unit -> int = <fun>


# exception Done ; ;
exception Done


# class connection (sd,sa) =


object (self)


val s descr = sd


val s addr = sa


val mutable number = 0


initializer


number <- gen num () ;
Printf.printf "TRACE.connection : object %d created\n" number ;
print newline ()


method start () = Thread.create (fun x → self#run x ; self#stop x) ()


method stop () =


Printf.printf "TRACE.connection : object finished %d\n" number ;
print newline () ;
Unix.close s descr


method run () =


try


while true do


let line = my input line s descr


in if (line = "") or (line = "\013") then raise Done ;
let result = (String.uppercase line)^"\n"


in ignore (ThreadUnix.write s descr result 0 (String.length result))


done


with


Done → ()
| exn → print string (Printexc.to string exn) ; print newline ()


end ; ;
class connection :


Unix.file_descr * ’a ->


object


val mutable number : int


val s_addr : ’a


val s_descr : Unix.file_descr
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method run : unit -> unit


method start : unit -> Thread.t


method stop : unit -> unit


end


Here again, by inheritance and redefinition of the run method, we can define a new
service.


We can test this new version of the server by running the protect serv function.
# let go serv () = let s = new serv socket 1400 in s#run () ; ;
# let protect serv () = Unix.handle unix error go serv () ; ;


Multi-tier Client-server Programming


Even though the client-server relation is asymmetric, nothing prevents a server from
being the client of another service. In this way, we have a communication hierarchy. A
typical client-server application might be the following:


• a mail client presents a friendly user interface;


• a word-processing program is run, followed by an interaction with the user;


• the word-processing program accesses a database.


One of the goals of client-server applications is to alleviate the processing of centralized
machines. Figure 20.3 shows two client-server architectures with three tiers.


Each tier may run on a different machine. The user interface runs on the machine
running the user mail application. The processing part is handled by a machine shared
by a collection of users, which itself sends requests to a remote database server. With
this application, a particular piece of data may be sent to the user mail application or
to the database server.


Some Remarks on the Client-server Programs


In the preceding sections, we constructed servers for a simple CAPITALIZATION ser-
vice. Each server used a different approach for its implementation. The first such server
used the Unix fork mechanism. Once we built that server, it became possible to test
it with the telnet client supplied with the Unix, Windows, and MacOS operating sys-
tems. Next, we built a simple first client. We were then able to test the client and
server together. Clients may have tasks to manage between communications. For this
purpose, we built the client par.exe client, which separates reading from writing
by using forks. A new kind of server was built using threads to clearly show the rel-
ative independence of the server and the client, and to bring input-output into this
setting. This server was organized into two easily-reused classes. We note that both
functional programming and object-oriented programming support the separation of
“mechanical,” reusable code from code for specialized processing.
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Figure 20.3: Different client-server architectures


Communication Protocols


The various client-server communications described in the previous section consisted
of sending a string of characters ending in a carriage-return and receiving another.
However simple, this communication pattern defines a protocol. If we wish to com-
municate more complex values, such as floats, matrices of floats, a tree of arithmetic
expressions, a closure, or an object, we introduce the problem of encoding these values.
Many solutions exist according to the nature of the communicating programs, which
can be characterized by the implementation language, the machine architecture, and
in certain cases, the operating system. Depending on the machine architecture, inte-
gers can be represented in many different ways (most significant bits on the left, on
the right, use of tag bits, and size of a machine word). To communicate a value be-
tween different programs, it is necessary to have a common representation of values,
referred to as the external representation2. More structured values, such as records,
just as integers, must have an external representation. Nonetheless, there are problems
when certain languages allow constructs, such as bit-fields in C, which do not exist in
other languages. Passing functional objects or objects, which contain pieces of code,
poses a new difficulty. Is the code byte-compatible between the sender and receiver,
and does there exist a mechanism for dynamically loading the code? As a general rule,
the problem is simplified by supposing that the code exists on both sides. It is not the


2. Such as the XDR representation (eXternal Data Representation), which was designed for C pro-
grams.
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code itself that is transmitted, but information that allows it to be retrieved. For an
object, the instance variables are communicated along with the object’s type, which
allows retrieval of the object’s methods. For a closure, the environment is sent along
with the address of its code. This implies that the two communicating programs are
actually the same executable.


A second difficulty arises from the complexity of linked exchanges and the necessity of
synchronizing communications involving many programs.


We first present text protocols, later discussing acknowledgements and time limits
between requests and responses. We also mention the difficulty of communicating in-
ternal values, in particular as it relates to interoperability between programs written
in different languages.


Text Protocol


Text protocols, that is, communication in ASCII format, are the most common because
they are the simplest to implement and the most portable. When a protocol becomes
complicated, it may become difficult to implement. In this setting, we define a grammar
to describe the communication format. This grammar may be rich, but it will be up to
the communicating programs to handle the work of coding and interpreting the text
strings sent and received.


As a general rule, a network application does not allow viewing the different layers of
protocols in use. This is typified by the case of the HTTP protocol, which allows a
browser to communicate with a Web site.


The HTTP Protocol


The term “HTTP” is seen frequently in advertising. It corresponds to the communi-
cation protocol used by Web applications. The protocol is completely described on the
page of the W3 Consortium:


Link: http://www.w3.org


This protocol is used to send requests from browsers (Communicator, Internet Explorer,
Opera, etc.) and to return the contents of requested pages. A request made by a browser
contains the name of the protocol (HTTP), the name of the machine (www.ufr-info-
p6.jussieu.fr), and the path of the requested page (/Public/Localisation/index.html).
Together these components define a URL (Uniform Resource Locator):


http://www.ufr-info-p6.jussieu.fr/Public/Localisation/index.html


When such a URL is requested by a browser, a connection over a socket is established
between the browser and the server running on the indicated server, by default on port
80. Then the browser sends a request in the HTTP format, like the following:


GET /index.html HTTP/1.0
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The server responds in the protocol HTTP, with a header:


HTTP/1.1 200 OK
Date: Wed, 14 Jul 1999 22:07:48 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 AuthMySQL/2.20
Last-Modified: Thu, 10 Jun 1999 12:53:46 GMT


Accept-Ranges: bytes
Content-Length: 3663
Connection: close
Content-Type: text/html


This header indicates that the request has been accepted (code 200 OK), the kind of
server, the modification date for the page, the length of the send page and the type of
content which follows. Using the GET commmand in the protocol (HTTP/1.0), only
the HTML page is transferred. The following connection with telnet allows us to see
what is actually transmitted:


$ telnet www.ufr-info-p6.jussieu.fr 80
Trying 132.227.68.44...
Connected to triton.ufr-info-p6.jussieu.fr.
Escape character is ’^]’.
GET


<!-- index.html -->
<HTML>
<HEAD>
<TITLE>Serveur de l’UFR d’Informatique de Pierre et Marie Curie</TITLE>
</HEAD>
<BODY>


<IMG SRC="/Icons/upmc.gif" ALT="logo-P6" ALIGN=LEFT HSPACE=30>
Unit&eacute; de Formation et de Recherche 922 - Informatique<BR>
Universit&eacute; Pierre et Marie Curie<BR>
4, place Jussieu<BR>
75252 PARIS Cedex 05, France<BR><P>
....
</BODY>
</HTML>
<!-- index.html -->


Connection closed by foreign host.


The connection closes once the page has been copied. The base protocol is in text mode
so that the language may be interpreted. Note that images are not transmitted with
the page. It is up to the browser, when analyzing the syntax of the HTML page, to
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observe anchors and images (see the IMG tags in the transmitted page). At this time,
the browser sends a new request for each image encountered in the HTML source;
there is a new connection for each image. The images are displayed when they are
received. For this reason, images are often displayed in parallel.


The HTTP protocol is simple enough, but it transports information in the HTML
language, which is more complex.


Protocols with Acknowledgement and Time Limits


When a protocol is complex, it is useful that the receiver of a message indicate to
the sender that it has received the message and that it is grammatically correct. The
client blocks while waiting for a response before working on its tasks. If the part of the
server handling this request has a difficulty interpreting the message, the server must
indicate this fact to the client rather than ignoring the request. The HTTP protocol
has a system of error codes. A correct request results in the code 200. A badly-formed
request or a request for an unauthorized page results in an error code 4xx or 5xx
according to the nature of the error. These error codes allow the client to know what
to do and allow the server to record the details of such incidents in its log files.


When the server is in an inconsistent state, it can always accept a connection from a
client, but risks never sending it a response over the socket. For avoiding these blocking
waits, it is useful to fix a limit to the time for transmission of the response. After this
time has elapsed, the client supposes that the server is no longer responding. Then the
client can close this connection in order to go on to its other work. This is how WWW
browsers work. When a request has no response after a certain time, the browser decides
to indicate that to the user. Objective Caml has input-output with time limits. In the
Thread library, the functions wait time read and wait time write suspend execution
until a character can be read or written, within a certain time limit. As input, these
function take a file descriptor and a time limit in seconds: Unix.file descr -> float


-> bool. If the time limit has passed, the function returns false, otherwise the I/O
is processed.


Transmitting Values in their Internal
Representation


The interest in transmission of internal values comes from simplifying the protocol.
There is no longer any need to encode and decode data in a textual format. The
inherent difficulty in sending and receiving values in their internal representation are
the same as those encountered for persistent values (see the Marshal library, page 228).
In effect, reading or writing a value in a file is equivalent to receiving the same value
over a socket.
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Functional Values


In the case of transmitting a closure between two Objective Caml programs, the code
in the closure is not sent, only its environment and its code pointer (see figure 12.9
page 334). For this strategy to work, it is necessary that the server possess the same
code in the same memory location. This implies that the same program is running on
the server as on the client. Nothing, however, prevents the two programs from running
different parts of the code at the same time. We adapt the matrix calculation service
by sending a closure with an environment containing the data for calculation. When it
is received, the server applies this closure to () and the calculation begins.


Interoperating with Different Languages


The interest in text protocols is that they are independent of implementation languages
for clients and servers. In effect, the ASCII code is always known by programming
languages. Therefore, it is up to the client and to the server to analyze syntactically
the strings of characters transmitted. An example of such an open protocol is the
simulation of soccer players called RoboCup.


Soccer Robots


A soccer team plays against another team. Each member of the team is a client of a
referee server. The players on the same team cannot communicate directly with each
other. They must send information through the server, which retransmits the dialog.
The server shows a part of the field, according to the player’s position. All these
communications follow a text protocol. A Web page that describes the protocol, the
server, and certain clients:


Link: http://www.robocup.org/


The server is written in C. The clients are written in different languages: C, C++,
SmallTalk, Objective Caml, etc. Nothing prevents a team from fielding players written
in different languages.


This protocol responds to the interoperability needs between programs in different
implementation languages. It is relatively simple, but it requires a particular syntax
analyzer for each family of languages.


Exercises


The suggested exercises allow you to try different types of distributed applications. The
first offers a new network service for setting the time on client machines. The second
exercise shows how to use resources on different machines to distribute a calculation.
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Service: Clock


This exercise consists of implementing a “clock” service that gives the time to any
client. The idea is to have a reference machine to set the time for different machines
on a network.


1. Define a protocol for transmitting a date containing the day, month, hour, minute,
and second.


2. Write the function or the class for the service reusing one of the generic servers
presented in the Chapter. The service sends date information over each accepted
connection, then closes the socket.


3. Write the client , which sets the clock every hour.


4. Keep track of time differences when requests are sent.


A Network Coffee Machine


We can build a little service that simulates a beverage vending machine. A summary
description of the protocol between the client and service is as follows:


• when it makes a connection, the client receives a list of available drinks;


• it then sends to the server its beverage choice;


• the server returns the price of the beverage;


• the client sends the requested price, or some other sum;


• the server responds with the name of the chosen beverage and shows the change
tendered.


The server may also respond with an error message if it has not understood a request,
does not have enough change, etc. A client request always contains just one piece of
information.


The exchanges between client and server are in the form of strings of characters. The
different components of a message are separated by two periods and all strings end in
:$\n.


The service function communicates with the coffee machine by using a file to pass
commands and a hash table for recovering drinks and change.


This exercise will make use of sockets, lightweight processes with a little concurrency,
and objects.


1. Rewrite the function establish server using the primitives in ThreadUnix.


2. Write two functions, get request and send answer. The first function reads and
encodes a request and the second formats and sends a response beginning with
a list of strings of characters.


3. Write a class cmd fifo to manage pending commands. Each new command is
assigned a unique number. For this purpose, implement a class num cmd gen.
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4. Write a class ready table for stocking the machine with drinks.


5. Write the class machine that models the coffee machine. The class contains a
method run that loops through the sequence: wait for a command, then execute
it, as long as there remain drinks available. Define a type drink descr indicating,
for each drink: its name, the quantity in stock, the quantity that will remain after
satisying pending commands, and its price. We can use an auxiliary function
array index which returns the index of the first element in a table satisfying a
criterion passed as a parameter.


6. Write the service function waiter.


7. Write the principal function main that obtains a port number for the service from
the command line and performs a number of initialization tasks. In particular,
the coffee machine executes in a process.


Summary


This chapter presented the new possibilities offered by distributed programming. Com-
munication between programs is accomplished with the fundamental mechanism of
sockets, used by low-level Internet protocols. The action models used by clients and
servers are asymmetric. Communication between clients and servers use some notion
of protocol, most often using plain text. Functional programming and object-oriented
programming allow us to easily build distributed applications. The client-server model
lends itself to different software architectures, with two or three tiers, according to the
distribution of tasks between them.


To Learn More


Communication between distant Objective Caml programs can be rich. Use of text
protocols is greatly facilitated by utilities for syntactic analysis (see Chapter 11). The
persistence mechanism offered by the Marshal library (see Chapter 8) allows sending
complex data in its internal format including functional values if the two communicat-
ing programs are the same. The main deficiency of that mechanism is the inability to
send instances of classes. One solution to that problem is to use an ORB (Object Re-
quest Broker) to transmit objects or invoke remote methods. This architecture already
exists in many object-oriented languages in the form of the CORBA (Common ORB
Architecture) standard. This standard from the OMG (Object Management Group),
which debuted in 1990, allows the use of remote objects, and is independent of the
implementation language used to create classes.


Link: http://www.omg.org


The two principal functions of CORBA are the ability to send objects to a remote
program and, especially, the ability to use the same object at many locations in a
network, in order to call methods which can modify its instance variables. Further, this
standard is independent of the language used to implement these remote objects. To
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that end, an ORB furnishes a description language for interfaces called IDL (Interface
Definition Language), in the manner of CAMLIDL for the interface between Objective
Caml and C. For the moment, there is no ORB that works with Objective Caml, but
it is possible to build one, since the IDL language is an abstraction of object-oriented
languages with classes. To simplify, CORBA furnishes a software bus (IIOP) that
allows transferring and addressing remote data.


The ability to reference the same object at many points in a network simulates dis-
tributed shared memory, which is not without problems for automatic garbage collec-
tion.


The ability to reference a remote object does not cause code to be transferred. One can
only receive a copy of an instance of a class if the class exists on the server. For certain
client-server applications, it may be necessary to use dynamic loading of code (such as
in Java applets) and even to migrate processes along with their code. An interesting
example of dynamic loading of remote code is the MMM browser built in Objective
Caml by François Rouaix:


Link: http://caml.inria.fr/˜rouaix/mmm/


This browser can be used conventionally to view Web pages, but can also load Objec-
tive Caml applets from a server and run them in a graphical window.
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Applications


The first application is really a toolbox to facilitate the construction of client-server
applications which transmit Objective Caml values. To build an application using the
toolbox, one need only implement serialization functions for the values to be trans-
mitted, then apply a functor to obtain an abstract class for the server, then add the
application’s processing function by means of inheritance.


The second application revisits the robot simulation, presented on page 550, and adapts
it to the client-server model. The server represents the world in which the robot clients
move around. We thus simulate distributed memory shared by a group of clients pos-
sibly located on various machines on the network.


The third application is an implementation of some small HTTP servers (called servlets).
A server knows how to respond to an HTTP request such as a request to retrieve an
HTML page. Moreover, it is possible to pass values in these requests using the CGI
format of HTTP servers. We will use this functionality right away to construct a server
for requests on the association database, described on page 148. As a client, we will
use a Web browser to which we will send an initial page containing the query form.


Client-server Toolbox


We present a collection of modules to enable client-server interactions among Objective
Caml programs. This toolbox will be used in the two applications that follow.


A client-server application differs from others in the protocol that it uses and in the
processing that it associates with the protocol. Otherwise, all such applications use very
similar mechanisms: waiting for a connection, starting a separate process to handle the
connection, and reading and writing sockets.


Taking advantage of Objective Caml’s ability to combine modular genericity and ex-
tension of objects, we will create a collection of functors which take as argument a
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communications protocol and produce generic classes implementing the mechanisms of
clients and of servers. We can then subclass these to obtain the particular processing
we need.


Protocols


A communications protocol is a type of data that can be translated into a sequence
of characters and transmitted from one machine to another via a socket. This can be
described using a signature.
# module type PROTOCOL =


sig


type t


val to string : t → string


val of string : string → t


end ; ;


The signature requires that the data type be monomorphic; yet we can choose a data
type as complex as we wish, as long as we can translate it to a sequence of characters
and back. In particular, nothing prevents us from using objects as our data.
# module Integer =


struct


class integer x =


object


val v = x


method x = v


method str = string of int v


end


type t = integer


let to string o = o#str


let of string s = new integer (int of string s)


end ; ;


By making some restrictions on the types of data to be manipulated, we can use the
module Marshal, described on page 229, to define the translation functions.
# module Make Protocol = functor ( T : sig type t end ) →


struct


type t = T.t


let to string (x:t) = Marshal.to string x [Marshal.Closures]


let of string s = (Marshal.from string s 0 : t)


end ; ;


Communication


Since a protocol is a type of value that can be translated into a sequence of characters,
we can make these values persistent and store them in a file.
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The only difficulty in reading such a value from a file when we do not know its type
is that a priori we do not know the size of the data in question. And since the file in
question is in fact a socket, we cannot simply check an end of file marker. To solve this
problem, we will write the size of the data, as a number of characters, before the data
itself. The first twelve characters will contain the size, padded with spaces.


The functor Com takes as its parameter a module with signature PROTOCOL and defines
the functions for transmitting and receiving values encoded using the protocol.


# module Com = functor (P : PROTOCOL) →
struct


let send fd m =


let mes = P.to string m in


let l = (string of int (String.length mes)) in


let buffer = String.make 12 ’ ’ in


for i=0 to (String.length l)-1 do buffer.[i] <- l.[i] done ;
ignore (ThreadUnix.write fd buffer 0 12) ;
ignore (ThreadUnix.write fd mes 0 (String.length mes))


let receive fd =


let buffer = String.make 12 ’ ’


in


ignore (ThreadUnix.read fd buffer 0 12) ;
let l = let i = ref 0


in while (buffer.[!i]<>’ ’) do incr i done ;
int of string (String.sub buffer 0 !i)


in


let buffer = String.create l


in ignore (ThreadUnix.read fd buffer 0 l) ;
P.of string buffer


end ; ;
module Com :


functor(P : PROTOCOL) ->


sig


val send : Unix.file_descr -> P.t -> unit


val receive : Unix.file_descr -> P.t


end


Note that we use the functions read and write from module ThreadUnix and not
those from module Unix; this will permit us to use our functions in a thread without
blocking the execution of other processes.


Server


A server is built as an abstract class parameterized by the type of data in the proto-
col. Its constructor takes as arguments a port number and the maximum number of
simultaneous connections allowed. The method for processing a request is abstract; it
must be implemented in a subclass of server to obtain a concrete class.
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# module Server = functor (P : PROTOCOL) →
struct


module Com = Com (P)


class virtual [’a] server p np =


object (s)


constraint ’a = P.t


val port num = p


val nb pending = np


val sock = ThreadUnix.socket Unix.PF INET Unix.SOCK STREAM 0


method start =


let host = Unix.gethostbyname (Unix.gethostname ()) in


let h addr = host.Unix.h addr list.(0) in


let sock addr = Unix.ADDR INET(h addr, port num) in


Unix.bind sock sock addr ;
Unix.listen sock nb pending ;
while true do


let (service sock, client sock addr) = ThreadUnix.accept sock


in ignore (Thread.create s#process service sock)


done


method send = Com.send


method receive = Com.receive


method virtual process : Unix.file descr → unit


end


end ; ;


In order to show these ideas in use, let us revisit the capital service, adding the
capability of sending lists of strings.
# type message = Str of string | LStr of string list ; ;
# module Cap Protocol = Make Protocol (struct type t=message end) ; ;
# module Cap Server = Server (Cap Protocol) ; ;


# class cap server p np =


object (self)


inherit [message] Cap Server.server p np


method process fd =


match self#receive fd with


Str s → self#send fd (Str (String.uppercase s)) ;
Unix.close fd


| LStr l → self#send fd (LStr (List.map String.uppercase l)) ;
Unix.close fd


end ; ;
class cap_server :


int ->


int ->


object


val nb_pending : int


val port_num : int


val sock : Unix.file_descr


method process : Unix.file_descr -> unit
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method receive : Unix.file_descr -> Cap_Protocol.t


method send : Unix.file_descr -> Cap_Protocol.t -> unit


method start : unit


end


The processing consists of receiving a request, examining it, processing it and sending
the result. The functor allows us to concentrate on this processing while constructing
the server; the rest is generic. However, if we wanted a different mechanism, such as
for example using acknowledgements, nothing would prevent us from redefining the
inherited methods for communication.


Client


To construct clients using a given protocol, we define three general-purpose functions:


• connect: establishes a connection with a server; it takes the address (IP ad-
dress and port number) and returns a file descriptor corresponding to a socket
connected to the server.


• emit simple: opens a connection, sends a message and closes the connection.


• emit answer: same as emit simple, but waits for the server’s response before
closing the connection.


# module Client = functor (P : PROTOCOL) →
struct


module Com = Com (P)


let connect addr port =


let sock = ThreadUnix.socket Unix.PF INET Unix.SOCK STREAM 0


and in addr = (Unix.gethostbyname addr).Unix.h addr list.(0)


in ThreadUnix.connect sock (Unix.ADDR INET(in addr, port)) ;
sock


let emit simple addr port mes =


let sock = connect addr port


in Com.send sock mes ; Unix.close sock


let emit answer addr port mes =


let sock = connect addr port


in Com.send sock mes ;
let res = Com.receive sock


in Unix.close sock ; res


end ; ;
module Client :


functor(P : PROTOCOL) ->


sig


module Com :


sig


val send : Unix.file_descr -> P.t -> unit
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val receive : Unix.file_descr -> P.t


end


val connect : string -> int -> Unix.file_descr


val emit_simple : string -> int -> P.t -> unit


val emit_answer : string -> int -> P.t -> P.t


end


The last two functions are of a higher level than the first: the mechanism linking the
client and the server does not appear. The caller of emit answer does not even need
to know that the computation it is requesting is carried out by a remote machine. As
far as the caller is concerned, it invokes a function that is represented by an address
and port, with an argument which is the message to be sent, and a value is returned
to it. The distributed aspect can seem entirely hypothetical.


A client of the capital service is extremely easy to construct. Assume that the
boulmich machine provides the service on port number 12345; then the function
list uppercase can be defined by means of a call to the service.
# let list uppercase l =


let module Cap client = Client (Cap Protocol)


in match Cap client.emit answer "boulmich" 12345 (LStr l)


with Str x → [x]


| LStr x → x ; ;
val list_uppercase : string list -> string list = <fun>


To Learn More


The first improvement to be made to our toolbox is some error handling, which has been
totally absent so far. Recovery from exceptions which arise from a broken connection,
and a mechanism for retrying, would be most welcome.


In the same vein, the client and the server would benefit from a timeout mechanism
which would make it possible to limit the time to wait for a response.


Because we have constructed the generic server as a class, which moreover is param-
eterized by the type of data to be transmitted over the network, it is easy to extend it
to augment or modify its behavior in order to implement any desired improvements.


Another approach is to enrich the communication protocols. One can for example
add requests for acknowledgement to the protocol, or accompany each request by a
checksum allowing verification that the network has not corrupted the data.


The Robots of Dawn


As we promised in the last application of the third part (page 550), we will now revisit
the problem of robots in order to treat it in a distributed framework where the world
is a server and where each robot is an independent process capable of being executed
on a remote machine.
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This application is a good summary of the possibilities of the Objective Caml language
because we will utilize and combine the majority of its features. In addition to the dis-
tributed model which is imposed on us by the exercise, we will make use of concurrency
to construct a server in which multiple connections will be handled independently while
all sharing a single memory representation of the “world”. All access to and modifica-
tion of the state of affairs of the world will therefore have to be protected by critical
sections.


In order to reuse as much as possible the code that we have already built for robots in
one section, and the client-server architecture of another section, we will use functors
and inheritance of classes at the same time.


This application is quite minimal, but we will see that its architecture lends itself
particularly well to extensions in multiple directions.


World-Server


We take a representation of the world similar to that which we developed in Part III.
The world is a grid of finite size, and each cell of the grid can be occupied by only one
robot. A robot is identified by its name and by its position; the world is determined
by its size and by the robots that live in it. This information is represented by the
following types:


# type position = { x:int ; y:int } ; ;


# type robot info = { name : string ; mutable pos : position }
type world info = { length : int ; width : int ;


mutable robots : robot info list } ; ;


The world will have to serve two sorts of clients:


• passive clients which simply observe the positions of various robots. They will
allow us to build the clients in charge of displays. We will call them spies.


• active clients, able to ask the server to move robots and thus modify its state.


These two categories of clients and their behavior will determine the collection of
messages exchanged by the server and clients.


When a client connects, it declares itself passive (Spy) or active (Enter). A spy receives
as response to its connection the global state of the world. Then, it is kept informed
of all changes. However, it cannot submit any requests. A robot which connects must
supply its characteristics (its name and its initial position); the world then confirms
its arrival. Then, it can request information: its own position (GetPos) or the list of
robots that surround it (Look). It can also instruct the world to move it. The protocol
of requests to the world from distributed robots is represented by the following type:
# type query =


| Spy (* initial declaration requests *)


| Enter of robot info
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| Move of position (* robot requests *)


| GetPos


| Look of int


| World of world info (* messages delivered by the world *)


| Pos of robot info


| Exit of robot info ; ;


From this protocol, using the functors from the “distributed toolbox” of the previous
chapter, we immediately derive the generic server.
# module Pquery = Make Protocol (struct type t = query end ) ; ;
# module Squery = Server (Pquery) ; ;


Now we need only specify the behavior of the server by implementing the method
process to handle both the data that represent the world and the data for managing
connections.


More precisely, the server contains a variable world (of type world info) which is
protected by the lock sem (of type Mutex.t). It also contains a variable spies which is
a list of queues of messages to send to observers, with one queue per spy. To activate
the processes in charge of sending these messages, the server also maintains a signal
(of type Condition.t).


We provide an auxiliary function dist to calculate the distance between two positions:


# let dist p q = max (abs (p.x-q.x)) (abs (p.y-q.y)) ; ;
val dist : position -> position -> int = <fun>


The function critical encapsulates the calculation of a value within a critical section:


# let critical m f a =


Mutex.lock m ; let r = f a in Mutex.unlock m ; r ; ;
val critical : Mutex.t -> (’a -> ’b) -> ’a -> ’b = <fun>


Here is the definition of the class server implementing the world-server. It is long, but
we will follow it up with a step-by-step explanation.
# class server l w n np =


object (self)


inherit [query] Squery.server n np


val world = { length=l ; width=w ; robots=[] }
val sem = Mutex.create ()
val mutable spies = []
val signal = Condition.create ()


method lock = Mutex.lock sem


method unlock = Mutex.unlock sem
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method legal pos p = p.x>=0 && p.x<l && p.y>=0 && p.y<w


method free pos p =


let is not here r = r.pos.x<>p.x || r.pos.y<>p.y


in critical sem (List.for all is not here) world.robots


method legal move r p =


let dist1 p = (dist r.pos p) <= 1


in (critical sem dist1 p) && self#legal pos p && self#free pos p


method queue message mes =


List.iter (Queue.add mes) spies ;
Condition.broadcast signal


method trace loop s q =


let foo = Mutex.create () in


let f () =


try


spies <- q :: spies ;
self#send s (World world) ;
while true do


while Queue.length q = 0 do Condition.wait signal foo done ;
self#send s (Queue.take q)


done


with _ → spies <- List.filter ((!=) q) spies ;
Unix.close s


in ignore (Thread.create f ())


method remove robot r =


self#lock ;
world.robots <- List.filter ((<>) r) world.robots ;
self#queue message (Exit {r with name=r.name}) ;
self#unlock


method try move robot r p =


if self#legal move r p


then begin


self#lock ;
r.pos <- p ;
self#queue message (Pos {r with name=r.name}) ;
self#unlock


end


method process robot s r =


let f () =


try


world.robots <- r :: world.robots ;
self#send s (Pos r) ;
self#queue message (Pos r) ;
while true do
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Thread.delay 0.5 ;
match self#receive s with


Move p → self#try move robot r p


| GetPos → self#send s (Pos r)


| Look d →
self#lock ;
let dist p = max (abs (p.x-r.pos.x)) (abs (p.y-r.pos.y)) in


let l = List.filter (fun x → (dist x.pos)<=d) world.robots


in self#send s (World { world with robots = l }) ;
self#unlock


| _ → ()
done


with _ → self#unlock ;
self#remove robot r ;
Unix.close s


in ignore (Thread.create f ())


method process s =


match self#receive s with


Spy → self#trace loop s (Queue.create ())
| Enter r →


( if not (self#legal pos r.pos && self#free pos r.pos) then


let i = ref 0 and j = ref 0 in


( try


for x=0 to l do


for y=0 to w do


let p = { x=x ; y=y }
in if self#legal pos p && self#free pos p


then ( i:=x ; j:=y; failwith "process" )


done done ;
Unix.close s


with Failure "process" → r.pos <- { x= !i ; y= !j } )) ;
self#process robot s r


| _ → Unix.close s


end ; ;
class server :


int ->


int ->


int ->


int ->


object


val nb_pending : int


val port_num : int


val sem : Mutex.t


val signal : Condition.t


val sock : Unix.file_descr


val mutable spies : Pquery.t Queue.t list


val world : world_info


method free_pos : position -> bool


method legal_move : robot_info -> position -> bool


method legal_pos : position -> bool
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method lock : unit


method process : Unix.file_descr -> unit


method process_robot : Unix.file_descr -> robot_info -> unit


method queue_message : Pquery.t -> unit


method receive : Unix.file_descr -> Pquery.t


method remove_robot : robot_info -> unit


method send : Unix.file_descr -> Pquery.t -> unit


method start : unit


method trace_loop : Unix.file_descr -> Pquery.t Queue.t -> unit


method try_move_robot : robot_info -> position -> unit


method unlock : unit


end


The method process starts out by distinguishing between the two types of client.
Depending on whether the client is active or passive, it invokes a processing method
called: trace loop for an observer, process robot for a robot. In the second case, it
checks that the initial position proposed by the client is compatible with the state of
the world; if not, it finds a valid initial position. The remainder of the code can be
divided into four categories:


1. General methods: these are methods which we developed in Part III for general
worlds. Mainly, it is a matter of verifying that a displacement is legal for a given
robot.


2. Management of observers: each observer is associated with a socket through
which it is sent data, with a queue containing all the messages which have not
yet been sent to it, and with a process. The method trace loop is an infinite
loop that empties the queue of messages by sending them; it goes to sleep when
the queue is empty. The queues are filled, all at the same time, by the method
queue message. Note that after appending a message, the activation signal is
sent to all processes.


3. Management of robots: here again, each robot is associated with a dedicated
process. The method process robot is an infinite loop: it waits for a request,
processes it, and responds if necessary. Then it resumes waiting for the next
request. Note that it is these robot-management methods which issue calls to the
method queue message when the state of the world has been modified. If the
connection with a robot is lost—that is, if an exception is raised while waiting
for a request—the robot is considered to have terminated and its departure is
signaled to the observers.


4. Inherited methods: these are the methods of the generic server obtained by
application of the functor Server to the protocol of our application.


Observer-client


The functor Client gives us generic functions for connecting with a server according
to the particular protocol that concerns us here.
# module Cquery = Client (Pquery) ; ;
module Cquery :
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sig


module Com :


sig


val send : Unix.file_descr -> Pquery.t -> unit


val receive : Unix.file_descr -> Pquery.t


end


val connect : string -> int -> Unix.file_descr


val emit_simple : string -> int -> Pquery.t -> unit


val emit_answer : string -> int -> Pquery.t -> Pquery.t


end


The behavior of a spy is simple: it connects to the server and displays the information
that the server sends it. The spy includes three display functions which we provide
below:
# let display robot r =


Printf.printf "The robot %s is located at (%d,%d)\n" r.name r.pos.x r.pos.y ;
flush stdout ; ;


val display_robot : robot_info -> unit = <fun>


# let display exit r = Printf.printf "The robot %s has terminated\n" r.name ;
flush stdout ; ;


val display_exit : robot_info -> unit = <fun>


# let display world w =


Printf.printf "The world is a grid of size %d by %d \n" w.length w.width ;
List.iter display robot w.robots ;
flush stdout ; ;


val display_world : world_info -> unit = <fun>


The primary function of the spy-client is:
# let trace client name port =


let sock = Cquery.connect name port


in Cquery.Com.send sock Spy ;
( match Cquery.Com.receive sock with


World w → display world w


| _ → failwith "the server did not follow the protocol" ) ;
while true do


match Cquery.Com.receive sock with


Pos r → display robot r


| Exit r → display exit r


|_ → failwith "the server did not follow the protocol"


done ; ;
val trace_client : string -> int -> unit = <fun>


There are two ways of constructing a graphical display. The first is simple but not
very efficient: since the server sends the complete set of information when a connection
is established, one can simply open a new connection at regular intervals, display the
world in its entirety, and close the connection. The other approach involves using the
information sent by the server to maintain a copy of the state of the world. It is then
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easy to display only the modifications to the state upon reception of messages. It is
this second solution which we have implemented.


Robot-Client


As we defined them in the previous chapter (cf. page 550), the robots conform to the
following signature.


# module type ROBOT =


sig


class robot : int → int →
object


val mutable i : int


val mutable j : int


method get pos : int * int


method next pos : unit → int * int


method set pos : int * int → unit


end


end ; ;


The part that we wish to save from the various classes is that which necessarily varies
from one type of robot to another and which defines its behavior: the method next pos.


In addition, we need a method for connecting the robot to the world (start) and a
loop that alternately calculates a new position and communicates with the server to
submit the chosen position.


We define a functor which, when given a class implementing a virtual robot (that is,
conforming to the signature ROBOT), creates, by inheritance, a new class containing the
proper methods to make an autonomous client out of the robot.


# module RobotClient (R : ROBOT) =


struct


class robot robname x y hostname port =


object (self)


inherit R.robot x y as super


val mutable socket = Unix.stderr


val mutable rob = { name=robname ; pos={x=x;y=y} }


method private adjust pos r =


rob.pos <- r.pos ; i <- r.pos.x ; j <- r.pos.y


method get pos =


Cquery.Com.send socket GetPos ;
match Cquery.Com.receive socket with


Pos r → self#adjust pos r ; super#get pos


| _ → failwith "the server did not follow the protocol"
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method set pos =


failwith "the method set_pos cannot be used"


method start =


socket <- Cquery.connect hostname port ;
Cquery.Com.send socket (Enter rob) ;
match Cquery.Com.receive socket with


Pos r → self#adjust pos r ; self#run


| _ → failwith "the server did not follow the protocol"


method run =


while true do


let (x,y) = self#next pos ()
in Cquery.Com.send socket (Move {x=x;y=y}) ;


ignore (self#get pos)


done


end


end ; ;
module RobotClient :


functor(R : ROBOT) ->


sig


class robot :


string ->


int ->


int ->


string ->


int ->


object


val mutable i : int


val mutable j : int


val mutable rob : robot_info


val mutable socket : Unix.file_descr


method private adjust_pos : robot_info -> unit


method get_pos : int * int


method next_pos : unit -> int * int


method run : unit


method set_pos : int * int -> unit


method start : unit


end


end


Notice that the method get pos has been redefined as a query to the server: the
instance variables i and j are not reliable, because they can be modified without the
consent of the world. For the same reason, the use of set pos has been made invalid:
calling it will always raise an exception. This policy may seem severe, but it’s a good bet
that if this method were used by next pos then a discrepancy would appear between
the real position (as known by the server) and the supposed position (as known by the
client).
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We use the functor RobotClient to create various classes corresponding to the various
robots.


# module Fix = RobotClient (struct class robot = fix robot end) ; ;
# module Crazy = RobotClient (struct class robot = crazy robot end) ; ;
# module Obstinate = RobotClient (struct class robot = obstinate robot end) ; ;


The following small program provides a way to launch the server and the various clients
from the command line. The argument passed to the program specifies which one to
launch.
# let port = 1200 in


if Array.length Sys.argv >=2 then


match Sys.argv.(1) with


"1" → let s = new server 25 30 port 10 in s#start


| "2" → trace client "localhost" port


| "3" → let o = new Fix.robot "fix" 10 10 "localhost" port in o#start


| "4" → let o = new Crazy.robot "crazy" 10 10 "localhost" port in o#start


| "5" → let o = new Obstinate.robot "obstinate" 10 10 "localhost" port


in o#start


| _ → () ; ;


To Learn More


The world of robots stimulates the imagination. With the elements already given here,
one can easily create an “intelligent robot” which is both a robot and a spy. This allows
the various inhabitants of the world to cooperate. One can then extend the application
to obtain a small action game like “chickens-foxes-snakes” in which the foxes chase the
chickens, the snakes chase the foxes and the chickens eat the snakes.


HTTP Servlets


A servlet is a “module” that can be integrated into a server application to respond
to client requests. Although a servlet need not use a specific protocol, we will use the
HTTP protocol for communication (see figure 21.1). In practice, the term servlet refers
to an HTTP servlet.


The classic method of constructing dynamic HTML pages on a server is to use CGI
(Common Gateway Interface) commands. These take as argument a URL which can
contain data coming from an HTML form. The execution then produces a new HTML
page which is sent to the client. The following links describe the HTTP and CGI
protocols.


Link: http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1945.html


Link: http://hoohoo.ncsa.uiuc.edu/docs/cgi/overview.html
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It is a slightly heavyweight mechanism because it launches a new program for each
request.


HTTP servlets are launched just once, and can can decode arguments in CGI format
to execute a request. Servlets can take advantage of the Web browser’s capabilities to
construct a graphical interface for an application.


http://boulmich


text


forms


HTML pageHTTP request


(in Objective Caml)
mini server HTTP


Browser


Figure 21.1: communication between a browser and an Objective Camlserver


In this section we will define a server for the HTTP protocol. We will not handle
the entire specification of the protocol, but instead will limit ourselves to those func-
tions necessary for the implementation of a server that mimics the behavior of a CGI
application.


At an earlier time, we defined a generic server module Gsd. Now we will give the code
to create an application of this generic server for processing part of the HTTP protocol.


HTTP and CGI Formats


We want to obtain a server that imitates the behavior of a CGI application. One of the
first tasks is to decode the format of HTTP requests with CGI extensions for argument
passing.


The clients of this server can be browsers such as Netscape or Internet Explorer.


Receiving Requests


Requests in the HTTP protocol have essentially three components: a method, a URL
and some data. The data must follow a particular format.


In this section we will construct a collection of functions for reading, decomposing and
decoding the components of a request. These functions can raise the exception:
# exception Http error of string ; ;
exception Http_error of string
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Decoding The function decode, which uses the helper function rep xcode, attempts
to restore the characters which have been encoded by the HTTP client: spaces (which
have been replaced by +), and certain reserved characters which have been replaced by
their hexadecimal code.


# let rec rep xcode s i =


let xs = "0x00" in


String.blit s (i+1) xs 2 2;
String.set s i (char of int (int of string xs));
String.blit s (i+3) s (i+1) ((String.length s)-(i+3));
String.set s ((String.length s)-2) ’\000’;
Printf.printf"rep_xcode1(%s)\n" s ; ;


val rep_xcode : string -> int -> unit = <fun>


# exception End of decode of string ; ;
exception End_of_decode of string


# let decode s =


try


for i=0 to pred(String.length s) do


match s.[i] with


’+’ → s.[i] <- ’ ’


| ’%’ → rep xcode s i


| ’\000’ → raise (End of decode (String.sub s 0 i))


| _ → ()
done;
s


with


End of decode s → s ; ;
val decode : string -> string = <fun>


String manipulation functions The module String plus contains some functions
for taking apart character strings:


• prefix and suffix, which extract the substrings to either side of an index;


• split, which returns the list of substrings determined by a separator character;


• unsplit, which concatenates a list of strings, inserting separator characters be-
tween them.


# module String plus =


struct


let prefix s n =


try String.sub s 0 n


with Invalid argument("String.sub") → s
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let suffix s i =


try String.sub s i ((String.length s)-i)


with Invalid argument("String.sub") → ""


let rec split c s =


try


let i = String.index s c in


let s1, s2 = prefix s i, suffix s (i+1) in


s1 :: (split c s2)


with


Not found → [s]


let unsplit c ss =


let f s1 s2 = match s2 with "" → s1 | _ → s1^(Char.escaped c)^s2 in


List.fold right f ss ""


end ; ;


Decomposing data from a form Requests typically arise from an HTML page
containing a form. The contents of the form are transmitted as a character string
containing the names and values associated with the fields of the form. The function
get field pair transforms such a string into an association list.
# let get field pair s =


match String plus.split ’=’ s with


[n;v] → n,v


| _ → raise (Http error ("Bad field format : "^s)) ; ;
val get_field_pair : string -> string * string = <fun>


# let get form content s =


let ss = String plus.split ’&’ s in


List.map get field pair ss ; ;
val get_form_content : string -> (string * string) list = <fun>


Reading and decomposing The function get query extracts the method and the
URL from a request and stores them in an array of character strings. One can thus use
a standard CGI application which retrieves its arguments from the array of command-
line arguments. The function get query uses the auxiliary function get. We arbitrarily
limit requests to a maximum size of 2555 characters.
# let get =


let buff size = 2555 in


let buff = String.create buff size in


(fun ic → String.sub buff 0 (input ic buff 0 buff size)) ; ;
val get : in_channel -> string = <fun>


# let query string http frame =


try


let i0 = String.index http frame ’ ’ in
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let q0 = String plus.prefix http frame i0 in


match q0 with


"GET"


→ begin


let i1 = succ i0 in


let i2 = String.index from http frame i1 ’ ’ in


let q = String.sub http frame i1 (i2-i1) in


try


let i = String.index q ’?’ in


let q1 = String plus.prefix q i in


let q = String plus.suffix q (succ i) in


Array.of list (q0 :: q1 :: (String plus.split ’ ’ (decode q)))


with


Not found → [|q0;q|]
end


| _ → raise (Http error ("Unsupported method: "^q0))


with e → raise (Http error ("Unknown request: "^http frame)) ; ;
val query_string : string -> string array = <fun>


# let get query string ic =


let http frame = get ic in


query string http frame; ;
val get_query_string : in_channel -> string array = <fun>


The Server


To obtain a CGI pseudo-server, able to process only the GET method, we write the class
http servlet, whose argument fun serv is a function for processing HTTP requests
such as might have been written for a CGI application.
# module Text Server = Server (struct type t = string


let to string x = x


let of string x = x


end); ;


# module P Text Server (P : PROTOCOL) =


struct


module Internal Server = Server (P)


class http servlet n np fun serv =


object(self)


inherit [P.t] Internal Server.server n np


method receive h fd =


let ic = Unix.in channel of descr fd in


input line ic


method process fd =


let oc = Unix.out channel of descr fd in (


try


let request = self#receive h fd in
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let args = query string request in


fun serv oc args;
with


Http error s → Printf.fprintf oc "HTTP error : %s <BR>" s


| _ → Printf.fprintf oc "Unknown error <BR>" );
flush oc;
Unix.shutdown fd Unix.SHUTDOWN ALL


end


end; ;


As we do not expect the servlet to communicate using Objective Caml’s special internal
values, we choose the type string as the protocol type. The functions of string and
to string do nothing.
# module Simple http server =


P Text Server (struct type t = string


let of string x = x


let to string x = x


end); ;
Finally, we write the primary function to launch the service and construct an instance
of the class http servlet.
# let cgi like server port num fun serv =


let sv = new Simple http server.http servlet port num 3 fun serv


in sv#start; ;
val cgi_like_server : int -> (out_channel -> string array -> unit) -> unit =


<fun>


Testing the Servlet


It is always useful during development to be able to test the parts that are already built.
For this purpose, we build a small HTTP server which sends the file specified in the
HTTP request as is. The function simple serv sends the file whose name follows the
GET request (the second element of the argument array). The function also displays
all of the arguments passed in the request.
# let send file oc f =


let ic = open in bin f in


try


while true do


output byte oc (input byte ic)


done


with End of file → close in ic; ;
val send_file : out_channel -> string -> unit = <fun>


# let simple serv oc args =


try


Array.iter (fun x → print string (x^" ")) args;
print newline () ;
send file oc args.(1)


with _ → Printf.printf "error\n"; ;
val simple_serv : out_channel -> string array -> unit = <fun>
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# let run n = cgi like server n simple serv; ;
val run : int -> unit = <fun>


The command run 4003 launches this servlet on port 4003. In addition, we launch a
browser to issue a request to load the page baro.html on port 4003. The figure 21.2
shows the display of the contents of this page in the browser.


Figure 21.2: HTTP request to an Objective Caml servlet


The browser has sent the request GET /baro.html to load the page, and then the
request GET /canard.gif to load the image.


HTML Servlet Interface


We will use a CGI-style server to build an HTML-based interface to the database of
chapter 6 (see page 148).


The menu of the function main will now be displayed in a form on an HTML page,
providing the same selections. The responses to requests are also HTML pages, gen-
erated dynamically by the servlet. The dynamic page construction makes use of the
utilities defined below.


Application Protocol


Our application will use several elements from several protocols:


1. Requests are transmitted from a Web browser to our application server in the
HTTP request format.


2. The data items within a request are encoded in the format used by CGI appli-
cations.


3. The response to the request is presented as an HTML page.
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4. Finally, the nature of the request is specified in a format specific to the applica-
tion.


We wish to respond to three kinds of request: queries for the list of mail addresses,
queries for the list of email addresses, and queries for the state of received fees between
two given dates. We give these query types respectively the names:
mail_addr, email_addr and fees_state. In the last case, we will also transmit two
character strings containing the desired dates. These two dates correspond to the values
of the fields start and end on an HTML form.


When a client first connects, the following page is sent. The names of the requests are
encoded within it in the form of HTML anchors.


<HTML>
<TITLE> association </TITLE>
<BODY>
<HR>
<H1 ALIGN=CENTER>Association</H1>
<P>
<HR>
<UL>
<LI>List of
<A HREF="http://freres-gras.ufr-info-p6.jussieu.fr:12345/mail_addr">
mail addresses
</A>
<LI>List of
<A HREF="http://freres-gras.ufr-info-p6.jussieu.fr:12345/email_addr">
email addresses
</A>
<LI>State of received fees<BR>
<FORM
method="GET"
action="http://freres-gras.ufr-info-p6.jussieu.fr:12345/fees_state">


Start date : <INPUT type="text" name="start" value="">
End date : <INPUT type="text" name="end" value="">
<INPUT name="action" type="submit" value="Send">
</FORM>
</UL>
<HR>
</BODY>
</HTML>


We assume that this page is contained in the file assoc.html.


HTML Primitives


The HTML utility functions are grouped together into a single class called print. It
has a field specifying the output channel. Thus, it can be used just as well in a CGI
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application (where the output channel is the standard output) as in an application
using the HTTP server defined in the previous section (where the output channel is a
network socket).


The proposed methods essentially allow us to encapsulate text within HTML tags.
This text is either passed directly as an argument to the method in the form of a
character string, or produced by a function. For example, the principal method page
takes as its first argument a string corresponding to the header of the page1, and as
its second argument a function that prints out the contents of the page. The method
page produces the tags corresponding to the HTML protocol.


The names of the methods match the names of the corresponding HTML tags, with
additional options added in some cases.
# class print (oc0:out channel) =


object(self)


val oc = oc0


method flush () = flush oc


method str =


Printf.fprintf oc "%s"


method page header (body:unit → unit) =


Printf.fprintf oc "<HTML><HEAD><TITLE>%s</TITLE></HEAD>\n<BODY>" header;
body () ;
Printf.fprintf oc "</BODY>\n</HTML>\n"


method p () =


Printf.fprintf oc "\n<P>\n"


method br () =


Printf.fprintf oc "<BR>\n"


method hr () =


Printf.fprintf oc "<HR>\n"


method hr () =


Printf.fprintf oc "\n<HR>\n"


method h i s =


Printf.fprintf oc "<H%d>%s</H%d>" i s i


method h center i s =


Printf.fprintf oc "<H%d ALIGN=\"CENTER\">%s</H%d>" i s i


method form url (form content:unit → unit) =


Printf.fprintf oc "<FORM method=\"post\" action=\"%s\">\n" url;
form content () ;
Printf.fprintf oc "</FORM>"


method input text =


Printf.fprintf oc


"<INPUT type=\"text\" name=\"%s\" size=\"%d\" value=\"%s\">\n"


method input hidden text =


Printf.fprintf oc "<INPUT type=\"hidden\" name=\"%s\" value=\"%s\">\n"


method input submit =


Printf.fprintf oc "<INPUT name=\"%s\" type=\"submit\" value=\"%s\">"


method input radio =


Printf.fprintf oc "<INPUT type=\"radio\" name=\"%s\" value=\"%s\">\n"


method input radio checked =


1. This header is generally displayed in the title bar of the browser window.
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Printf.fprintf oc


"<INPUT type=\"radio\" name=\"%s\" value=\"%s\" CHECKED>\n"


method option =


Printf.fprintf oc "<OPTION> %s\n"


method option selected opt =


Printf.fprintf oc "<OPTION SELECTED> %s" opt


method select name options selected =


Printf.fprintf oc "<SELECT name=\"%s\">\n" name;
List.iter


(fun s → if s=selected then self#option selected s else self#option s)


options;
Printf.fprintf oc "</SELECT>\n"


method options selected =


List.iter


(fun s → if s=selected then self#option selected s else self#option s)


end ; ;


We will assume that these utilities are provided by the module Html frame.


Dynamic Pages for Managing the Association


Database


For each of the three kinds of request, the application must construct a page in response.
For this purpose we use the utility module Html frame given above. This means that
the pages are not really constructed, but that their various components are emitted
sequentially on the output channel.
We provide an additional (virtual) page to be returned in response to a request that
is invalid or not understood.


Error page The function print error takes as arguments a function for emitting
an HTML page (i.e., an instance of the class print) and a character string containing
the error message.


# let print error (print:Html frame.print) s =


let print body () =


print#str s; print#br ()
in


print#page "Error" print body ; ;
val print_error : Html_frame.print -> string -> unit = <fun>


All of our functions for emitting responses to requests will take as their first argument
a function for emitting an HTML page.


List of mail addresses To obtain the page giving the response to a query for the list
of mail addresses, we will format the list of character strings obtained by the function
mail addresses, which was defined as part of the database (see page 157). We will
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assume that this function, and all others directly involving requests to the database,
have been defined in a module named Assoc.


To emit this list, we use a function for outputting simple lines:
# let print lines (print:Html frame.print) ls =


let print line l = print#str l; print#br () in


List.iter print line ls ; ;
val print_lines : Html_frame.print -> string list -> unit = <fun>


The function for responding to a query for the list of mail addresses is:
# let print mail addresses print db =


print#page "Mail addresses"


(fun () → print lines print (Assoc.mail addresses db))


; ;
val print_mail_addresses : Html_frame.print -> Assoc.data_base -> unit =


<fun>


In addition to the parameter for emitting a page, the function print mail addresses
takes the database as its second parameter.


List of email addresses This function is built on the same principles as that giving
the list of mail addresses, except that it calls the function email addresses from the
module Assoc:
# let print email addresses print db =


print#page "Email addresses"


(fun () → print lines print (Assoc.email addresses db)) ; ;
val print_email_addresses : Html_frame.print -> Assoc.data_base -> unit =


<fun>


State of received fees The same principle also governs the definition of this func-
tion: retrieving the data corresponding to the request (which here is a pair), then
emitting the corresponding character strings.
# let print fees state print db d1 d2 =


let ls, t = Assoc.fees state db d1 d2 in


let page body () =


print lines print ls;
print#str ("Total : "^(string of float t));
print#br ()
in


print#page "State of received fees" page body ; ;
val print_fees_state :


Html_frame.print -> Assoc.data_base -> string -> string -> unit = <fun>
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Analysis of Requests and Response


We define two functions for producing responses based on an HTTP request. The
first (print get answer) responds to a request presumed to be formulated using the
GET method of the HTTP protocol. The second alters the production of the answer
according to the actual method that the request used.


These two functions take as their second argument an array of character strings contain-
ing the elements of the HTTP request as analyzed by the function get query string
(see page 668). The first element of the array contains the method, the second the
name of the database request.
In the case of a query for the state of received fees, the start and end dates for the
request are contained in the two fields of the form associated with the query. The data
from the form are contained in the third field of the array, which must be decomposed
by the function get form content (see page 668).


# let print get answer print q db =


match q.(1) with


| "/mail_addr" → print mail addresses print db


| "/email_addr" → print email addresses print db


| "/fees_state"


→ let nvs = get form content q.(2) in


let d1 = List.assoc "start" nvs


and d2 = List.assoc "end" nvs in


print fees state print db d1 d2


| _ → print error print ("Unknown request: "^q.(1)) ; ;
val print_get_answer :


Html_frame.print -> string array -> Assoc.data_base -> unit = <fun>


# let print answer print q db =


try


match q.(0) with


"GET" → print get answer print q db


| _ → print error print ("Unsupported method: "^q.(0))


with


e


→ let s = Array.fold right (^) q "" in


print error print ("Something wrong with request: "^s) ; ;
val print_answer :


Html_frame.print -> string array -> Assoc.data_base -> unit = <fun>


Main Entry Point and Application


The application is a standalone executable that takes the port number as a parameter.
It reads in the database before launching the server. The main function is obtained from
the function print answer defined above and from the generic HTTP server function
cgi like server defined in the previous section (see page 670). The latter function is
located in the module Servlet.
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# let get port num () =


if (Array.length Sys.argv) < 2 then 12345


else


try int of string Sys.argv.(1)


with _ → 12345 ; ;
val get_port_num : unit -> int = <fun>


# let main () =


let db = Assoc.read base "assoc.dat" in


let assoc answer oc q = print answer (new Html frame.print oc) q db in


Servlet.cgi like server (get port num ()) assoc answer ; ;
val main : unit -> unit = <fun>


To obtain a complete application, we combine the definitions of the display functions
into a file httpassoc.ml. The file ends with a call to the function main:


main() ;;


We can then produce an executable named assocd using the compilation command:


ocamlc -thread -custom -o assocd unix.cma threads.cma \
gsd.cmo servlet.cmo html_frame.cmo string_plus.cmo assoc.cmo \
httpassoc.ml -cclib -lunix -cclib -lthreads


All that’s left is to launch the server, load the HTML page2 contained in the file
assoc.html given at the beginning of this section (page 672), and click.


The figure 21.3 shows an example of the application in use. The browser establishes
an initial connection with the servlet, which sends it the menu page. Once the entry
fields are filled in, the user sends a new request which contains the data entered. The
server decodes the request and calls on the association database to retrieve the desired
information. The result is translated into HTML and sent to the client, which then
displays this new page.


To Learn More


This application has numerous possible enhancements. First of all, the HTTP protocol
used here is overly simple compared to the new versions, which add a header supplying
the type and length of the page being sent. Likewise, the method POST, which allows
modification of the server, is not supported.3


To be able to describe the type of a page to be returned, the servlet would have to
support the MIME convention, which is used for describing documents such as those
attached to email messages.


2. . . . taking care to update the URL according to your machine
3. Nothing prevents one from using GET for this, but that does not correspond to the standard.
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Figure 21.3: HTTP request to an Objective Caml servlet


The transmission of images, such as in figure 21.2, makes it possible to construct
interfaces for 2-player games (see chapter 17), where one associates links with drawings
of positions to be played. Since the server knows which moves are legal, only the valid
positions are associated with links.


The MIME extension also allows defining new types of data. One can thus support
a private protocol for Objective Caml values by defining a new MIME type. These
values will be understandable only by an Objective Caml program using the same
private protocol. In this way, a request by a client for a remote Objective Caml value
can be issued via HTTP. One can even pass a serialized closure as an argument within
an HTTP request. This, once reconstructed on the server side, can be executed to
provide the desired result.
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Developing


applications with
Objective Caml


Having reached this point, the reader should no longer doubt the richness of Objec-
tive Caml. This language rests on a functional and imperative core, and it integrates
the two major application organization models: modules and objects. While presented
as libraries, threads are an attractive part of the language. The system primitives,
portable for the most part, complete the language with all the possibilities offered by
distributed programming. These different programming paradigms are shaped within
the general framework of static typing with inference. For all that, these elements do
not, in themselves, settle the question of Objective Caml’s relevance for developing
applications, or more prosaically, “is it a good language?”


None of the following classic arguments can be used in its favor:


• (marketing development) “it’s a good language because clients buy it”;


• (historical development) “it’s a good language because thousands of lines of code
have already been written in it”;


• (systems development) “it’s a good language because the Unix or Windows sys-
tems are written in it”;


• (beacon application development) “it’s a good language because such-and-such
application is written in it”;


• (standardization development) “it’s a good language because it has an ISO spec-
ification”.


We’ll review one last time the various features of the language, but this time from the
angle of its relevance for answering a development team’s needs. The criteria selected
to make up the elements of our evaluation take into account the intrinsic qualities of
the language, its development environment, the contributions of its community and
the significant applications which have been achieved. Finally we’ll compare Objective
Caml with several similar functional languages as well as the object-oriented language
Java in order to underscore the main differences.
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Elements of the evaluation


The Objective Caml distribution supplies two online compilers, one generating byte-
codes and the other producing instructions for the most modern processors. The
toplevel uses the bytecode compiler. Beyond that, the distribution offers numerous
libraries in the form of modules and some tools for calculating dependencies between
modules, for profiling, and for debugging. Finally, thanks to its interface with the C
language, it is possible to link Objective Caml programs to C programs. Languages
which similarly offer an interface with C, such as the JNI (Java Native Interface) of
Java, become accessible in this way.


The reference manual gives the language syntax, and describes the development tools
and the library signatures. This set (language, tools, libraries, documentation) makes
up a development environment.


Language


Specification and implementation


There are two ways to approach a new language. A first way is to read the language
specification to have a global vision. A second is to plunge into the language’s user
manual, following the concepts illustrated by the examples. Objective Caml has neither
one, which makes a self-taught approach to it relatively difficult. The absence of a
formal specification (such as SML has) or a descriptive one (such as ADA’s) is a
handicap for understanding how a program works. Another consequence of the lack of
a specification is the impossibility of getting a language standard issued by ISO, ANSI,
or IEEE. This strongly limits the construction of new implementations tailored for
other environments. Fortunately INRIA’s implementation is of high quality and best
of all, the sources of the distribution can be downloaded.


Syntax


The particulars of syntax are a non-negligible difficulty in approaching Objective Caml.
They can be explained by the functional origin of the language, but also by historical,
that is to say anecdotal, factors.


The syntax of application of a function to its arguments is defined by simple juxtapo-
sition, as in f 1 2. The lack of parentheses bothers the neophyte as much as the C
programmer or the confirmed Lisp programmer. Nevertheless, this difficulty only arises
when reading the code of a programmer who’s stingy with parentheses. Nothing stops
the neophyte Objective Caml programmer from using more explicit parenthesization
and writing (f 1 2).


Beyond the functional core, Objective Caml adopts a syntax sometimes at odds with
customary usage: access to array elements uses the notation t.(i) and not the usual
brackets; method invocation is noted by a pound (# character) and not a dot, etc.
These idiosyncrasies don’t make it easier to get a grip on Objective Caml.
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Finally, the syntax of Objective Caml and its ancestor Caml has undergone numerous
modifications since their first implementation. Which hasn’t pleaded in favor of the
enduring nature of the developed applications.


To end on a more positive note, the pattern-matching syntax, inherited from the
ML family, which Objective Caml incorporates, structures function definitions by case
pleasingly and with simplicity.


Static typing


The fundamental character of the Objective Caml language resides in the language’s
static typing of expressions and declarations. This guarantees that no type error sur-
faces during program execution. Static type inference was conceived for the functional
languages of the ML family, and Objective Caml has been able to maintain the greater
part of this type discipline for the imperative and object-oriented extensions. How-
ever, in the object-oriented case, the programmer must sometimes give type inference
a hand through explicit type constraints. Still, Objective Caml preserves static typing
of expressions, and definitions, which provides an unsurpassed measure of execution
safety: an Objective Caml program, will not return the “method not found” exception,
which is not the case for dynamically typed object-oriented languages.


Objective Caml’s parametric polymorphism of types allows the implementation of gen-
eral algorithms. It is channeled into the object-oriented layer where parametric classes
produce generic code, and not an expansion of code as generated by the templates
of other languages. In itself, parametric polymorphism is an important component of
code reusability.


The object-oriented extension adds a notion of inclusion polymorphism which is ob-
tained by specifying subtyping relationships between objects. It reconciles code reusabil-
ity, which constitutes the strength of the inheritance relationship between classes, with
the security of static typing.


Libraries and tools


The libraries supplied with the distribution cover great needs. The programmer finds
there, as a standard, the implementation of the most usual data structures with their
basic functions. For example: stacks, queues, hash tables, AVL trees. More advanced
tools can be found there as well, such as the treatment of data streams. These libraries
are enriched in the course of successive language versions.


The Unix library allows lower-level programming as much for I/O as for process man-
agement. It is not identical for all platforms, which limits its use to some extent.


The exact arithmetic library and the regular expression library facilitate the develop-
ment of specific applications.


Unfortunately the portable graphics library offers little functionality to support the
construction of graphical user interfaces.
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C libraries can easily be interfaced with the Objective Caml language. Here, the free
availability of well-structured and duly commented sources definitely unlocks the po-
tential for contact with the outside world and the various and sundry libraries to be
found there.


Among the supplied tools, those for lexical and syntactic analysis, indispensable when-
ever dealing with complex textual data, are especially noteworthy. Based on the classic
lex and yacc, they integrate perfectly with sum types and the functionality of Objec-
tive Caml, thus making them simpler to use than their predecessors.


Finally, no matter what soundness its features may bring, use of a language “in ac-
tual practice” never avoids the debugging phase of a program. The Objective Caml
2.04 distribution does not supply an IDE. Certainly, using the toplevel allows one to
proceed rapidly to compilation and unit tests of functions (which is an undeniable ad-
vantage), but this usage will vary by platform and by programmer: cut-and-paste under
X-Windows, calling the shell under emacs, requesting evaluation of a buffer under Win-
dows. The next version (see appendix B) provides for the first time an environment for
Unix containing a browser for interfaces and modules and a structured editor linked
to the toplevel. Finally the distribution’s debugger remains hard to use (in particular,
because of the functional aspect and the language’s parametric polymorphism) and
limited to the Unix system.


Documentation


The documentation of the distribution consists of the reference manual in printable
(PostScript) and online (HTML) format. This manual is not in any case an introduction
to the language. On the contrary it is indispensable for finding out what’s in the libraries
or what parameters the commands take. Some pedagogical material can be found on
Inria’s Caml page, but it is mostly regarding the Caml-Light language. Thus the
language is missing a complete tutorial manual, we hope that this book fills this gap.


Other development tools


We have restricted ourselves up to now to the Objective Caml distribution. Never-
theless the community of developers using this language is active, as demonstrated
by the number of messages on the caml-list@inria.fr mailing list. Numerous tools,
libraries, and extensions are used to facilitate development. In the following we detail
the use of tools for editing, syntax extension, interfacing with other languages and
parallel programming. We mention as well the numerous graphical interface libraries.
Most of these contributions can be found on the “Caml Hump” site:


Link: http://caml.inria.fr/hump.html
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Editing tools


There are several modes recognizing Objective Caml syntax for the emacs editor. These
modes are used to automatically indent text in the course of entering it, making it more
readable. This is an alternative to the interaction window under Windows. Since emacs
runs under Windows, the Objective Caml toplevel can be launched within one of its
windows.


Syntax extension


The lexical and syntactic analysis tools provided by the distribution are already quite
complete, but they don’t support extending the syntax of the language itself. The
camlp4 tool (see the link on page 313) is used in place and instead of Objective Caml’s
syntactic analyzer. The latter’s compilers have only to proceed to typing and code
generation. This tool allows the user to extend the syntax of the language, or to change
to the original syntax. Moreover it offers pretty-printing facilities for the generated
syntax trees. In this way it becomes easy to write a new toplevel for any Objective
Caml syntax extension, or even another language implemented in Objective Caml.


Interoperability with other languages


Chapter 12 detailed how to interface the Objective Caml language with C. A multi-
language application takes advantage of the features of each one, all while making
different codes sharing a single memory space live in harmony. Nevertheless encapsu-
lating C functions to make them callable from Objective Caml requires some tedious
work. To simplify it, the camlIDL tool (see the link on page 350) supplies an interface
generator and tools for importing COM (Windows) components into Objective Caml.
The interfaces are generated from an IDL interface description file.


Graphical interfaces


The Graphics library allows the development of drawings and simple interactions, but
it can’t be considered a graphical interface worthy of the name. Chapter 13 has shown
how this library could be extended to construct graphical components responding to
some interactions. Using Graphics as a base allows us to preserve the portability of
the interface between different platforms (X-Windows, Windows, MacOS), but limits
its use to the low level of events and graphics contexts.


Several projects attempt to fill this gap, unfortunately none succeeds in being complete,
portable, documented, and simple to use. Here is a list (extracted from the “Caml
Hump”) of the main projects:


• OlibRt: under this sweet name, it is a veritable toolbox, constructed under X-
Windows, but not documented. Its distribution contains complete examples and
in particular numerous games.
Link: http://cristal.inria.fr/˜ddr/
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• camlTk is a complete and well documented interface to the Tk toolkit. Its weak
point is its dependency on particular versions of Tcl/Tk, which makes it difficult
to install. It was used to build the web browser mmm [Rou96] written in Objective
Caml.
Link: http://caml.inria.fr/˜rouaix/camltk-readme.html


• The Xlib library has been rewritten in Objective Caml. Efuns, a mini-clone of
emacs, was developed using it. Xlib is not really a toolbox, and is not portable
to graphical systems other than X-Windows.


• mlGtk is an interface built on Gtk. It is in development and has no documenta-
tion. Its interest lies in being portable under Unix and Windows (because Gtk
is) in a simpler fashion than Tk. Besides it uses Objective Caml’s object-oriented
layer—which doesn’t happen without sometimes posing some problems.


• LabTk is an interface to Tcl/Tk, for Unix, using extensions to Objective Caml
which will be integrated into the next version (see appendix B). It includes its
own Tcl/Tk distribution which installs easily.


Despite the efforts of the community, there is a real lack of tools for constructing
portable interfaces. It may be hoped that LabTk becomes portable to different systems.


Parallel programming and distribution


Threads and sockets already offer basic mechanisms for concurrent and distributed
programming. Interfacing with the C language allows the use of classic parallel pro-
gramming libraries. The only thing missing is an interface with CORBA for invoking
methods of remote objects. On the other hand, there are numerous libraries and lan-
guage extensions which use different models of parallelism.


Libraries


The two main parallel programming libraries, MPI (Message Passing Interface) and PVM
(Parallel Virtual Machine), are interfaced with Objective Caml. Documentation, links,
and sources for these libraries can be found on the site


Link: http://www.netlib.org


The “Caml Hump” contains the various HTTP addresses from which the versions
interfaced with Objective Caml can be downloaded.


Extensions


Numerous parallel extensions of Caml-Light or Objective Caml have been developed:


• Caml-Flight ([FC95]) is a SPMD (Simple Program Multiple Data) extension of
the Caml-Light language. A program executes a copy of itself on a fixed number
of processes. Communications are explicit, there is only one communication oper-
ation get which can only be executed from within the synchronization operation
sync.
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Link:
http://www.univ-orleans.fr/SCIENCES/LIFO/Members/ghains/caml-flight.html


• BSML [BLH00] is an extension by BSP operations. The language preserves com-
positionality and allows precise predictions of performance if the number of pro-
cessors is fixed.
Link:


http://www.univ-orleans.fr/SCIENCES/LIFO/Members/loulergu/bsml.html


• OCAMLP3 [DDLP98] is a parallel programming environment based on the skele-
ton model of the P3L language. The various predefined skeletons can overlap.
Programs may be tested either in sequential mode or parallel mode, thus sup-
porting reuse of Objective Caml’s own tools.
Link: http://www.di.unipi.it/˜susanna/projects.html


• JoCAML [CL99] is based on the join-calculus model which supports high-level
operations for concurrency, communication, and synchronization in the presence
of distributed objects and mobile code, all while preserving automatic memory
management.
Link: http://pauillac.inria.fr/jocaml/


• Lucid Synchrone ([CP95]) is a language dedicated to the implemenation of reac-
tive systems. It combines the functionality of Objective Caml and the features of
data-flow synchronous languages.
Link: http://www-spi.lip6.fr/˜pouzet/lucid-synchrone/


Applications developed in Objective Caml


A certain number of applications have been developed in Objective Caml. We will only
speak of “public” applications, that is, those which anyone can use either freely or by
buying them.


Like other functional languages, Objective Caml is a good compiler implementation
language. The bootstrap1 of the ocaml compiler is a convincing example. As well,
numerous language extensions have been contributed, as seen previously for parallel
programming, but also for typing such as O’Labl (part of which is in the process of
being integrated into Objective Caml, see appendix B) or for physical units. Links to
these applications can be found on the “Caml Hump”.


Objective Caml’s second specialty concerns proof assistants. The major development in
this area is the program Coq which accompanies the evolution of Caml almost since its
origin. Historically, ML was conceived as the command language of the LCF (Logic for
Computable Functions) system, before becoming independent of this application. It is
thus natural to find it as the implementation language of an important theorem-proving
program.


1. Bootstrapping is the compilation of a compiler by the compiler itself. Arrival at a fixed point, that
is to say the compiler and the generated executable are identical, is a good test of compiler correctness.
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A third application domain concerns parallelism (see page 684) and communication of
which a good example is the Ensemble system.


Link: http://www.cs.cornell.edu/Info/Projects/Ensemble/


A list, not exhaustive, of significant applications developed in Objective Caml is main-
tained on Inria’s Caml site:


Link: http://caml.inria.fr/users programs-eng.html


Let us mention in particular hevea which is a LATEX to HTML translator which we have
used to create the HTML version of this book found on the accompanying CD-ROM.


Link: http://pauillac.inria.fr/˜maranget/hevea/


While of importance, the applications we’ve just mentioned don’t represent what, at
the beginning of this chapter, we christened a “beacon application”. Moreover, they
don’t explore a new specialized domain demonstrating the relevance of using Objective
Caml. It is not clear that this example can be issued from academia. It is more likely
that it will come from industry, whether in conjunction with language standardization
(and so its formal specification), or for the needs of applications having to integrate
different programming and program organization styles.


Similar functional languages


There are several languages similar to Objective Caml, whether through the functional
aspect, or through typing. Objective Caml is descended from the ML family, and thus
it has cousins of which the closest are across the Atlantic and across the channel in
the lineage of SML (Standard ML). The Lisp family, and in particular the Scheme
language, differs from ML mainly by its dynamic typing. Two lazy languages, Miranda
and Haskell, take up or extend ML’s typing in the framework of delayed evaluation.
Two functional languages, Erlang and SCOL, developed by the Ericsson and Cryo-
Networks corporations respectively, are directed towards communication.


ML family


The ML family comprises two main branches: Caml (Categorical Abstract Machine
Language) and its derivatives Caml-Light and Objective Caml, SML (Standard ML)
and its descendants SML/NJ and mosml. Caml, the ancestor, was developed between
1986 and 1990 by INRIA’s FORMEL project in collaboration with University Paris 7
and the École Normale Supérieure. Its implementation was based on Le Lisp’s runtime.
It integrated within the language the definition of grammars and pretty-printers, which
allowed communication of values between the language described and Caml. Its type
system was more restrictive for mutable values, insofar as it did not allow such values
to be polymorphic. Its first descendant, Caml-Light, no longer used the CAM machine,
but instead used Zinc for its implementation. The name was nevertheless retained to
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show its ancestry. It contributed a more lightweight implementation while optimizing
the allocation of closures and using an optimizing GC as a precursor to the actual
GC. This streamlining allowed it to be used on the PC’s of the time. The various
Caml-Light versions evolved towards actual typing of imperative features and were
enriched with numerous libraries. The following offshoot, Caml Special Light or CSL,
introduced parameterized modules and a native-code compiler. Finally the baby is
actually Objective Caml which mainly adds the object-oriented extension to CSL.
Since there has never been a complete specification of the Caml languages, these various
changes have been able to take place in complete freedom.


The SML approach has been the opposite. The formal specification [MTH97] was
given before the first implementation. It is difficult to read, and a second book gives a
commentary ([MT91]) on it. This method, specification then implementation, has al-
lowed the development of several implementations, of which the best-known is SML/NJ
(Standard ML of New Jersey) from Lucent (ex-AT&T). Since its origin, SML has inte-
grated parameterized modules. Its initial type system was different from that of Caml
for imperative features, introducing a level of weakness for type variables. The differ-
ences between the two languages are detailed in [CKL96]. These differences are being
effaced with time. The two families have the same type system for the functional and
imperative core, Objective Caml now has parameterized modules. SML has also un-
dergone changes, bringing it closer to Objective Caml, such as for record types. If the
two languages don’t merge, this mainly derives from their separate development. It is
to be noted that there is a commercial development environment for SML, MLWorks,
from Harlequin:


Link: http://www.harlequin.com/products/


An SML implementation, mosml, based on Caml-Light’s runtime, has also been imple-
mented.


Scheme


The Scheme language (1975) is a dialect of the Lisp language (1960). It has been
standardized (IEEE Std 1178-1990). It is a functional language with strict evaluation,
equipped with imperative features, dynamically typed. Its syntax is regular and par-
ticular about the use of parentheses. The principal data structure is the dotted pair
(equivalent to an ML pair) with which possibly heterogeneous lists are constructed.
The main loop of a Scheme toplevel is written (print (eval (read))). The read
function reads standard input and constructs a Scheme expression. The eval function
evaluates the constructed expression and the print function prints the result. Scheme
has a very useful macro-expansion system which, in association with the eval function,
permits the easy construction of language extensions. It not only supports interrupting
computation (exceptions) but also resuming computation thanks to continuations. A
continuation corresponds to a point of computation. The special form call cc launches
a computation with the possibility of resuming this one at the level of the current con-
tinuation, that is to say of returning to this computation. There are many Scheme
implementations. It is even used as a macro language for the GIMP image manipula-
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tion software. Scheme is an excellent experimental laboratory for the implementation
of new sequential or parallel programming concepts (thanks to continuations).


Languages with delayed evaluation


In contrast with ML or Lisp, languages with delayed evaluation do not compute the
parameters of function calls when they are passed, but when evaluation of the body of
the function requires it. There is a “lazy” version of ML called Lazy ML but the main
representatives of this language family are Miranda and Haskell.


Miranda


Miranda([Tur85]) is a pure functional language. That is to say, without side effects. A
Miranda program is a sequence of equations defining functions and data structures.


Link:
http://www.engin.umd.umich.edu/CIS/course.des/cis400/miranda/miranda.html


For example the fib function is defined in this way:


fib a = 1, a=0
= 1, a=1
= fib(a-1) + fib(a-2), a>1


Equations are chosen either through guards (conditional expressions) as above, or by
pattern-matching as in the example below:


fib 0 = 1
fib 1 = 1
fib a = fib(a-1)+ fib(a-2)


These two methods can be mixed.


Functions are higher order and can be partially evaluated. Evaluation is lazy, no subex-
pression is computed until the moment when its value becomes necessary. Thus, Mi-
randa lists are naturally streams.


Miranda has a concise syntax for infinite structures (lists, sets): [1..] represents the
list of all the natural numbers. The list of values of the Fibonacci function is written
briefly: fibs = [a | (a,b) <- (1,1),(b,a+b)..]. Since values are only computed
when used, the declaration of fibs costs nothing.


Miranda is strongly typed, using a Hindley-Milner type system. Its type discipline is
essentially the same as ML’s. It accepts the definition of data by the user.


Miranda is the archetype of pure lazy functional languages.
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Haskell


The main Haskell language website contains reports of the definition of the language
and its libraries, as well as its main implementations.


Link: http://www.haskell.org


Several books are dedicated to functional programming in Haskell, one of the most
recent is [Tho99].


This is a language which incorporates almost all of the new concepts of functional
languages. It is pure (without side effects), lazy (not strict), equipped with an ad hoc
polymorphism (for overloading) as well as parametric polymorphism à la ML.


Ad hoc polymorphism This system is different from the polymorphism seen up
to now. In ML a polymorphic function disregards its polymorphic arguments. The
treatment is identical for all types. In Haskell it is the opposite. A polymorphic function
may have a different behavior according to the type of its polymorphic arguments. This
allows function overloading.


The basic idea is to define type classes which group together sets of overloaded func-
tions. A class declaration defines a new class and the operations which it permits. A
(class) instance declaration indicates that a certain type is an instance of some class.
It includes the definition of the overloaded operations of this class for this type.


For example the Num class has the following declaration:


class Num a where
(+) :: a -> a -> a
negate :: a -> a


Now an instance Int of the class Num can be declared in this way:


instance Num Int where
x + y = addInt x y
negate x = negateInt x


And the instance Float:


instance Num Float where
x + y = addFloat x y
negate x = negateFloat x


The application of negate Num will have a different behavior if the argument is an
instance of Int or Float.
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The other advantage of classes derives from inheritance between classes. The descen-
dant class recovers the functions declared by its ancestor. Its instances can modify their
behavior.


Other characteristics The other characteristics of the Haskell language are mainly
the following:


• a purely functional I/O system using monads;


• arrays are built lazily;


• views permit different representations of a single data type.


In fact it contains just about all the high-strung features born of research in the func-
tional language domain. This is its advantage and its disadvantage.


Communication languages


ERLANG


ERLANG is a dynamically typed functional language for concurrent programming.
It was developed by the Ericsson corporation in the context of telecommunications
applications. It is now open source. The main site for accessing the language is the
following:


Link: http://www.erlang.org


It was conceived so that the creation of processes and their communication might be
easy. Communications take place by message passing and they can be submitted with
delays. It is easy to define protocols via ports. Each process possesses its own definition
dictionary. Error management uses an exception mechanism and signals can propagate
among processes. Numerous telephony applications have been developed in Erlang,
yielding non-negligible savings of development time.


SCOL


The SCOL language is a communication language for constructing 3D worlds. It was
developed by the Cryo Networks corporation:


Link: http://www.cryo-networks.com


Its core is close to that of Caml: it is functional, statically typed, parametrically poly-
morphic with type inference. It is “multimedia” thanks to its API’s for sound, 2D, and
3D. The 3D engine is very efficient. SCOL’s originality comes from communication be-
tween virtual machines by means of channels. A channel is an (environment, network
link) pair. The link is a (TCP or UDP) socket.


SCOL’s originality lies in having resolved simply the problem of securing downloaded
code: only the text of programs circulates on the network. The receiving machine types
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the passed program, then executes it, guaranteeing that the code produced does indeed
come from an official compiler. To implement such a solution, without sacrificing speed
of transmission and reception, the choice of a statically typed functional language was
imposed by the conciseness of source code which it supports.


Object-oriented languages: comparison


with Java


Although Objective Caml sprang from the functional world, it is necessary to compare
its object-oriented extension to an important representative of the object-oriented lan-
guages. We pick the Java language which, while similar from the point of view of its
implementation, differs strongly in its object model and its type system.


The Java language is an object-oriented language developed by the SUN corporation.
The main site for access to the language is the following:


Link: http://java.sun.com


Main characteristics


The Java language is a language with classes. Inheritance is simple and allows redefi-
nition or overloading of inherited methods. Typing is static. An inherited class is in a
subtyping relationship with its ancestor class.


Java does not have parameterized classes. One gets two types of polymorphism: ad hoc
by overloading, and of inclusion by redefinition.


It is multi-threading and supports the development of distributed application whether
using sockets or by invoking methods of remote objects (Remote Method Invocation).


The principles of its implementation are close to those of Objective Caml. A Java
program is compiled to a virtual machine (JVM). The loading of code is dynamic. The
code produced is independent of machine architectures, being interpreted by a virtual
machine. The basic datatypes are specified in such a way as to guarantee the same
representation on all architectures. The runtime is equipped with a GC.


Java has important class libraries (around 600 with the JDK, which are supplemented
by many independent developments). The main libraries concern graphical interfaces
and I/O operations integrating communication between machines.


Differences with Objective Caml


The main differences between Java and Objective Caml come from their type system,
from redefinition and from overloading of methods. Redefinition of an inherited method
must use parameters of exactly the same type. Method overloading supports switching
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the method to use according to the types of the method call parameters. In the following
example class B inherits from class A. Class B redefines the first version of the to string
method, but overloads the second version. Moreover the eq method is overloaded since
the type of the parameter (here B) is not equal to the type of the parameter of the
inherited method (here A). In the end class B has two eq methods and two to string
methods.


class A {
boolean eq (A o) { return true;}
String to_string (int n ) { }


}


class B extends A {
boolean eq (B o) { return true;}
String to_string (int n ) { }
String to_string (float x, float y)


}


Although binding is late, overload resolution, that is determination of the type of the
method to use, is carried out on compilation.


The second important difference derives from the possibility of casting the type of
an object, as would be done in C. In the following example, two objects a and b are
defined, of class A and B respectively. Then three variables c, d and e are declared while
imposing a type constraint on the affected values.


{
A a = new A ();
B b = new B ();
A c = (A) b;
B d = (B) c;
B e = (B) a;


}


Since the type of b is a subtype of the type of a, the cast from b to c is accepted. In
this case the type constraint may be omitted. On the other hand the two following
constraints require a dynamic type test to be carried out to guarantee that the values
in c and in a do in fact correspond to objects of class B. In this program this is true
for c, but false for a. So this last case raises an exception. While this is useful, in
particular for graphical interfaces, these type constraints can lead to exceptions being
raised during exception due to erroneous use of types. In this Java is a language typed
partly statically and partly dynamically. Moreover the absence of parameterized classes
quite often obliges one to use this feature to write generic classes.
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Future of Objective Caml development


It is difficult for a new language to exist if it is not accompanied by the important de-
velopment of an application (like Unix for C) or considerable commercial and industrial
support (like SUN for JAVA). The intrinsic qualities of the language are rarely enough.
Objective Caml has numerous qualities and some defects which we have described in
the course of this chapter. For its part, Objective Caml is sustained by INRIA where
it was conceived and implemented in the bosom of the CRISTAL project. Born of aca-
demic research, Objective Caml is used there as an experimental laboratory for testing
new programming paradigms, and an implementation language. It is widely taught in
various university programs and preparatory classes. Several thousand students each
year learn the concepts of the language and practice it. In this way the Objective Caml
language has an important place in the academic world. The teaching of computer
science, in France, but also in the United States, creates numerous programmers in
this language on a practical as well as a theoretical level.


On the other hand, in industry the movement is less dynamic. To our knowledge, there
is not a single commercial application, developed in Objective Caml, sold to the general
public and advertising its use of Objective Caml. The only example coming close is
that of the SCOL language from Cryo-Networks. There is however a slight agitation in
this direction. The first appeals for funding for Objective Caml application startups are
appearing. Without hoping for a rapid snowball effect, it is significant that a demand
exists for this type of language. And without hoping for a very short-term return on
investment either, it is important to take notice of it.


It is now for the language and its development environment to show their relevance.
To accompany this phenomenon, it is no doubt necessary to provide certain guarantees
as to the evolution of the language. In this capacity, Objective Caml is only just now
emerging and must make the choice to venture further out of academia. But this “entry
into the world” will only take place if certain rules are followed:


• guaranteeing the survival of developments by assuring upward compatibility in
future versions of the language (the difficulty being stability of new elements
(objects, etc.));


• specifying the language in conjunction with real developers with a view to future
standardization (which will permit the development of several implementations
to guarantee the existence of several solutions);


• conceiving a development environment containing a portable graphical interface,
a CORBA bus, database interfaces, and especially a more congenial debugging
environment.


Some of the points brought up, in particular standardization, can remain within the
jurisdiction of academia. Others are only of advantage to industry. Thus everthing
will depend on their degree of cooperation. There is a precedent demonstrating that a
language can be “free” and still be commercially maintained, as this was the case for
the gnat compiler of the ADA language and the ACT corporation.


Link: http://www.act-europe.fr
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Conclusion


Although computer science has become an industrial activity, in many respects the
success of a programming language is a subjective affair. If “the heart has its reasons
of which reason knows nothing,” then Objective Caml is a reasonable choice for a lover
of heart.


It is based on solid theoretical foundations, all while providing a wide spectrum of
programming paradigms. If one adds the simplicity of interaction with the language
which the toplevel supports, that makes it a language perfectly adapted for teaching.


• Structured types and abstract types support approaching algorithmic problems
and their complex data structures, all while abstracting away from problems of
memory representation and allocation.


• The functional theoretical model underlying the language supplies a precise intro-
duction to the notions of evaluation and typing which, as a “true programmer”,
one owes it to oneself to be taught.


• The various programming models can be approached independently of one an-
other: from modular or object-oriented program structure to low-level systems
programming, there are few areas where Objective Caml is not useful.


• Its suitability for symbolic programming makes it an excellent support for theo-
retical courses such as compiling or artifical intelligence.


For these qualities, Objective Caml is often used as the basis of the introductory com-
puter science curriculum as well as for advanced programming courses which make
explicit the link between the language’s high level of abstraction and its execution.
Many teachers have been and remain seduced by the pedagogical advantages of Objec-
tive Caml and, by way of consequence, many computer scientists have been schooled
in it.


One of the first causes for satisfaction in Objective Caml development is how comfort-
able it is to use. The compiler loads rapidly and its static type inference lets nothing
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escape. Other static analyses of the code give the programmer precious indices of
anomalies if not errors: incomplete pattern-matching is signaled, partial application of
a function in a sequence is detected, etc. To this first cause of satisfaction is added a
second: the compiler very rapidly generates efficient code.


Compiler performance, conciseness of expression of functional programming, quality
and diversity of libraries make Objective Caml a language perfectly adapted to the
needs of “disposable software”. But it would be diminishing it to restrict it to this sin-
gle application domain. For these same reasons, Objective Caml is a precious tool for
experimentation and application prototyping. Moreover, when the structuring mecha-
nisms of modules and objects come to be added to the features already mentioned, the
language opens the way to the conception and development of finished applications.


Finally, Objective Caml and its developer community form a milieu which reacts
quickly to innovation in the area of programming. The free availability and the dis-
tribution of the source code of the language offer emerging concepts a terrain for
experimentation.


Learning Objective Caml requires a certain effort from the programmer familiar with
other languages. And this, as well as the object of study is in constant evolution. We
hope that without masking the complexity of certain concepts, this book will facilitate
this phase of learning and can thus accelerate the return on investment for the Objective
Caml application developer.
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A
Cyclic Types


Objective Caml’s type system would be much simpler if the language were purely
functionnal. Alas, language extensions entail extensions to the type language, and to
the inference mechanism, of which we saw the illustration with the weak type variables
(see page 74), made unavoidable by imperative extensions.


Object typing introduces the notion of cyclic type, associated with the keyword as


(see page 454), which can be used independently of any concept of object oriented
programming. The present appendix describes this extension of the type language,
available through an option of the compiler.


Cyclic types


In Objective Caml, it is possible to declare recursive data structures: such a structure
may contain a value with precisely the same structure.


# type sum ex1 = Ctor of sum ex1 ; ;
type sum_ex1 = | Ctor of sum_ex1


# type record ex1 = { field : record ex1 } ; ;
type record_ex1 = { field: record_ex1 }


How to build values with such types is not obvious, since we need a value before
building one! The recursive declaration of values allows to get out of this vicious circle.


# let rec sum val = Ctor sum val ; ;
val sum_val : sum_ex1 = Ctor (Ctor (Ctor (Ctor (Ctor ...))))


# let rec val record 1 = { field = val record 2 }







700 Cyclic Types


and val record 2 = { field = val record 1 } ; ;
val val_record_1 : record_ex1 = {field={field={field={field={field=...}}}}}


val val_record_2 : record_ex1 = {field={field={field={field={field=...}}}}}


Arbitrary planar trees can be represented by such a data structure.


# type ’a tree = Vertex of ’a * ’a tree list ; ;
type ’a tree = | Vertex of ’a * ’a tree list


# let height 1 = Vertex (0,[]) ; ;
val height_1 : int tree = Vertex (0, [])


# let height 2 = Vertex (0,[ Vertex (1,[]); Vertex (2,[]); Vertex (3,[]) ]) ; ;
val height_2 : int tree =


Vertex (0, [Vertex (1, []); Vertex (2, []); Vertex (3, [])])


# let height 3 = Vertex (0,[ height 2; height 1 ]) ; ;
val height_3 : int tree =


Vertex


(0,


[Vertex (0, [Vertex (...); Vertex (...); Vertex (...)]); Vertex (0, [])])


(* same with a record *)


# type ’a tree rec = { label:’a ; sons:’a tree rec list } ; ;
type ’a tree_rec = { label: ’a; sons: ’a tree_rec list }


# let hgt rec 1 = { label=0; sons=[] } ; ;
val hgt_rec_1 : int tree_rec = {label=0; sons=[]}


# let hgt rec 2 = { label=0; sons=[hgt rec 1] } ; ;
val hgt_rec_2 : int tree_rec = {label=0; sons=[{label=0; sons=[]}]}


We might think that an enumerated type with only one constructor is not useful, but
by default, Objective Caml does not accept recursive type abbreviations.
# type ’a tree = ’a * ’a tree list ; ;
Characters 7-34:


The type abbreviation tree is cyclic


We can define values with such a structure, but they do not have the same type.
# let tree 1 = (0,[]) ; ;
val tree_1 : int * ’a list = 0, []


# let tree 2 = (0,[ (1,[]); (2,[]); (3,[]) ]) ; ;
val tree_2 : int * (int * ’a list) list = 0, [1, []; 2, []; 3, []]


# let tree 3 = (0,[ tree 2; tree 1 ]) ; ;
val tree_3 : int * (int * (int * ’a list) list) list =


0, [0, [...; ...; ...]; 0, []]


In the same way, Objective Caml is not able to infer a type for a function whose
argument is a value of this form.
# let max list = List.fold left max 0 ; ;
val max_list : int list -> int = <fun>
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# let rec height = function


Vertex (_,[]) → 1


| Vertex (_,sons) → 1 + (max list (List.map height sons)) ; ;
val height : ’a tree -> int = <fun>


# let rec height2 = function


(_,[]) → 1


| (_,sons) → 1 + (max list (List.map height2 sons)) ; ;
Characters 95-99:


This expression has type ’a list but is here used with type


(’b * ’a list) list


The error message tells us that the function height2 could be typed, if we had type
equality between ’a and ’b * ’a list, and precisely this equality was denied to us
in the declaration of the type abbreviation tree.


However, object typing allows to build values, whose type is cyclic. Let us consider the
following function, and try to guess its type.
# let f x = x#copy = x ; ;
The type of x is a class with method copy. The type of this method should be the
same as that of x, since equality is tested between them. So, if foo is the type of x, it
has the form: < copy : foo ; .. >. From what has been said above, the type of this
function is cyclic, and it should be rejected; but it is not:
# let f x = x#copy = x ; ;
val f : (< copy : ’a; .. > as ’a) -> bool = <fun>


Objective Caml does accept this function, and notes the type cyclicity using as, which
identifies ’a with a type containing ’a.


In fact, the problems are the same, but by default, Objective Caml will not accept
such types unless objects are concerned. The function height is typable if it gives a
cyclicity on the type of an object.


# let rec height a = match a#sons with


[] → 1


| l → 1 + (max list (List.map height l)) ; ;
val height : (< sons : ’a list; .. > as ’a) -> int = <fun>


Option -rectypes


With a compiler option, we can avoid this restriction to objects in cyclic types.


$ ocamlc -rectypes ...
$ ocamlopt -rectypes ...
$ ocaml -rectypes







702 Cyclic Types


If we take up the above examples in a toplevel started with this option, here is what
we get.


# type ’a tree = ’a * ’a tree list ; ;
type ’a tree = ’a * ’a tree list


# let rec height = function


(_,[]) → 1


| (_,sons) → 1 + (max list (List.map height sons)) ; ;
val height : (’b * ’a list as ’a) -> int = <fun>


The values tree 1, tree 2 and tree 3 previously defined don’t have the same type,
but they all have a type compatible with that of height.


# height tree 1 ; ;
- : int = 1


# height tree 2 ; ;
- : int = 2


# height tree 3 ; ;
- : int = 3


The keyword as belongs to the type language, and as such, it can be used in a type
declaration.


Syntax : type nom = typedef as ’var ;;


We can use this syntax to define type tree.
# type ’a tree = ( ’a * ’vertex list ) as ’vertex ; ;
type ’a tree = ’a * ’a tree list


Warning
If this mode may be useful in some cases, it tends to
accept the typing of too many values, giving them types
that are not easy to read.


Without the option -rectypes, the function below would have been rejected by the
typing system.
# let inclus l1 l2 =


let rec mem x = function


[] → false


| a :: l → (l=x) || (mem x a) (* an error on purpose: a and l inverted *)


in List.for all (fun x → mem x l2) l1 ; ;
val inclus : (’a list as ’a) list list -> (’b list as ’b) -> bool = <fun>


Although a quick examination of the type allows to conclude to an error, we no longer
have an error message to help us locating this error.







B
Objective Caml 3.04


Independently of the development of Objective Caml, several extensions of the language
appeared. One of these, named Olabl, was integrated with Objective Caml, starting
with version 3.00.


This appendix describes briefly the new features offered in the current version of Ob-
jective Caml at the time of this writing, that is. Objective Caml 3.04. This version can
be found on the CD-ROM accompanying this book. The new features include:


• labels;


• optional arguments;


• polymorphic constructors;


• the ocamlbrowser IDE;


• the LablTk library.


The reader is referred to the Objective Caml reference manual for a more detailed
description of these features.


Language Extensions


Objective Caml 3.04 brings three language extensions to Objective Caml: labels, op-
tional arguments, and polymorphic constructors. These extensions preserve backward
compatibility with the original language: a program written for version 2.04 keeps the
same semantics in version 3.04.
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Labels


A label is an annotation for the arguments of a function in its declaration and its
application. It is presented as a separate identifier of the function parameter (formal
or actual), enclosed between an initial symbol ’~’ and a final symbol ’:’.


Labels can appear in the declarations of functions:


Syntax : let f ~label:p = exp


in the anonymous declarations with the keyword fun :


Syntax : fun ~label:p -> exp


and in the actual parameter of a function:


Syntax : ( f ~label:exp )


Labels in types The labels given to arguments of a functional expression appear in
its type and annotate the types of the arguments to which they refer. (The ’~’ symbol
in front of the label is omitted in types.)
# let add ~op1:x ~op2:y = x + y ; ;
val add : op1:int -> op2:int -> int = <fun>


# let mk triplet ~arg1:x ~arg2:y ~arg3:z = (x,y,z) ; ;
val mk_triplet : arg1:’a -> arg2:’b -> arg3:’c -> ’a * ’b * ’c = <fun>


If one wishes to give the same identifier to the label and the variable, as in ~x:x, it is
unnecessary to repeat the identifier; the shorter syntax ~x can be used instead.


Syntax : fun ~p –> exp


# let mk triplet ~arg1 ~arg2 ~arg3 = (arg1,arg2,arg3) ; ;
val mk_triplet : arg1:’a -> arg2:’b -> arg3:’c -> ’a * ’b * ’c = <fun>


It is not possible to define labels in a declaration of a function by pattern matching;
consequently the keyword function cannot be used for a function with a label.


# let f = function ~arg:x → x ; ;
Toplevel input:


#


let f = function ~arg:x -> x ;;


^^^^^


Syntax error


# let f = fun ~arg:x → x ; ;
val f : arg:’a -> ’a = <fun>
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Labels in function applications When a function is defined with labeled param-
eters, applications of this function require that matching labels are provided on the
function arguments.
# mk triplet ~arg1:’1’ ~arg2:2 ~arg3:3.0 ; ;
- : char * int * float = ’1’, 2, 3


# mk triplet ’1’ 2 3.0 ; ;
- : char * int * float = ’1’, 2, 3


A consequence of this requirement is that the order of arguments having a label does
not matter, since one can identify them by their label. Thus, labeled arguments to a
function can be “commuted”, that is, passed in an order different from the function
definition.


# mk triplet ~arg2:2 ~arg1:’1’ ~arg3:3.0 ; ;
- : char * int * float = ’1’, 2, 3


This feature is particularly useful for making a partial application on an argument that
is not the first in the declaration.
# let triplet 0 0 = mk triplet ~arg2:0 ~arg3:0 ; ;
val triplet_0_0 : arg1:’a -> ’a * int * int = <fun>


# triplet 0 0 ~arg1:2 ; ;
- : int * int * int = 2, 0, 0


Arguments that have no label, or that have the same label as another argument, do
not commute. In such a case, the application uses the first argument that has the given
label.


# let test ~arg1:_ ~arg2:_ _ ~arg2:_ _ = () ; ;
val test : arg1:’a -> arg2:’b -> ’c -> arg2:’d -> ’e -> unit = <fun>


# test ~arg2: () ; ; (* the first arg2: in the declaration *)


- : arg1:’a -> ’b -> arg2:’c -> ’d -> unit = <fun>


# test () ; ; (* the first unlabeled argument in the declaration *)


- : arg1:’a -> arg2:’b -> arg2:’c -> ’d -> unit = <fun>


Legibility of code Besides allowing re-ordering of function arguments, labels are
also very useful to make the function interface more explicit. Consider for instance the
String.sub standard library function.
# String.sub ; ;
- : string -> int -> int -> string = <fun>


In the type of this function, nothing indicates that the first integer argument is a
character position, while the second is the length of the string to be extracted. Objective
Caml 3.04 provides a “labelized” version of this function, where the purpose of the
different function arguments have been made explicit using labels.
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# StringLabels.sub ; ;
- : string -> pos:int -> len:int -> string = <fun>


Clearly, the function StringLabels.sub takes as arguments a string, the position of
the first character, and the length of the string to be extracted.


Objective Caml 3.04 provides “labelized” versions of many standard library functions in
the modules ArrayLabels, ListLabels, StringLabels, UnixLabels, and MoreLabels.
Table B.1 gives the labeling conventions that were used.


label significance
pos: a position in a string or array
len: a length
buf: a string used as buffer
src: the source of an operation
dst: the destination of an operation
init: the initial value for an iterator
cmp: a comparison function
mode: an operation mode or a flag list


Figure B.1: Conventions for labels


Optional arguments


Objective Caml 3.04 allows the definition of functions with labeled optional arguments.
Such arguments are defined with a default value (the value given to the parameter if
the application does not give any other explicitly).


Syntax : fun ?name: ( p = exp1) –> exp2


As in the case of regular labels, the argument label can be omitted if it is identical to
the argument identifier:


Syntax : fun ?( name = exp1) –> exp2


Optional arguments appear in the function type prefixed with the ? symbol.


# let sp incr ?inc:(x=1) y = y := !y + x ; ;
val sp_incr : ?inc:int -> int ref -> unit = <fun>


The function sp incr behaves like the function incr from the Pervasives module.
# let v = ref 4 in sp incr v ; v ; ;
- : int ref = {contents = 5}


However, one can specify a different increment from the default.
# let v = ref 4 in sp incr ~inc:3 v ; v ; ;
- : int ref = {contents = 7}
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A function is applied by giving the default value to all the optional parameters until
the actual parameter is passed by the application. If the argument of the call is given
without a label, it is considered as being the first non-optional argument of the function.


# let f ?(x1=0) ?(x2=0) x3 x4 = 1000*x1+100*x2+10*x3+x4 ; ;
val f : ?x1:int -> ?x2:int -> int -> int -> int = <fun>


# f 3 ; ;
- : int -> int = <fun>


# f 3 4 ; ;
- : int = 34


# f ~x1:1 3 4 ; ;
- : int = 1034


# f ~x2:2 3 4 ; ;
- : int = 234


An optional argument can be given without a default value, in this case it is considered
in the body of the function as being of the type ’a option; None is its default value.


Syntax : fun ?name:p –> exp


# let print integer ?file:opt f n =


match opt f with


None → print int n


| Some f → let fic = open out f in


output string fic (string of int n) ;
output string fic "\n" ;
close out fic ; ;


val print_integer : ?file:string -> int -> unit = <fun>


By default, the function print integer displays its argument on standard output. If
it receives a file name with the label file, it outputs its integer argument to that file
instead.


Note
If the last parameter of a function is optional, it will have to be applied
explicitly.


# let test ?x ?y n ?a ?b = n ; ;
val test : ?x:’a -> ?y:’b -> ’c -> ?a:’d -> ?b:’e -> ’c = <fun>


# test 1 ; ;
- : ?a:’_a -> ?b:’_b -> int = <fun>


# test 1 ~b:’x’ ; ;
- : ?a:’_a -> int = <fun>


# test 1 ~a: () ~b:’x’ ; ;
- : int = 1
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Labels and objects


Labels can be used for the parameters of a method or an object’s constructor.


# class point ?(x=0) ?(y=0) (col : Graphics.color) =


object


val pos = (x,y)


val color = col


method print ?dest:(file=stdout) () =


output string file "point (" ;
output string file (string of int (fst pos)) ;
output string file "," ;
output string file (string of int (snd pos)) ;
output string file ")\n"


end ; ;
class point :


?x:int ->


?y:int ->


Graphics.color ->


object


method print : ?dest:out_channel -> unit -> unit


val color : Graphics.color


val pos : int * int


end


# let obj1 = new point ~x:1 ~y:2 Graphics.white


in obj1#print () ; ;
point (1,2)


- : unit = ()


# let obj2 = new point Graphics.black


in obj2#print () ; ;
point (0,0)


- : unit = ()


Labels and optional arguments provide an alternative to method and constructor over-
loading often found in object-oriented languages, but missing from Objective Caml.


This emulation of overloading has some limitations. In particular, it is necessary that
at least one of the arguments is not optional. A dummy argument of type unit can
always be used.


# class number ?integer ?real () =


object


val mutable value = 0.0


method print = print float value


initializer


match (integer,real) with


(None,None) | (Some _,Some _) → failwith "incorrect number"


| (None,Some f) → value <- f
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| (Some n,None) → value <- float of int n


end ; ;
class number :


?integer:int ->


?real:float ->


unit -> object method print : unit val mutable value : float end


# let n1 = new number ~integer:1 () ; ;
val n1 : number = <obj>


# let n2 = new number ~real:1.0 () ; ;
val n2 : number = <obj>


Polymorphic variants


The variant types of Objective Caml have two principal limitations. First, it is not
possible to extend a variant type with a new constructor. Also, a constructor can
belong to only one type. Objective Caml 3.04 features an alternate kind of variant
types, called polymorphic variants that do not have these two constraints.


Constructors for polymorphic variants are prefixed with a ‘ (backquote) character, to
distinguish them from regular constructors. Apart from this, the syntactic constraints
on polymorphic constructors are the same as for other constructors. In particular, the
identifier used to build the constructor must begin with a capital letter.


Syntax : ‘Name


ou


Syntax : ‘Name type


A group of polymorphic variant constructors forms a type, but this type does not need
to be declared before using the constructors.


# let x = ‘Integer 3 ; ;
val x : [> ‘Integer of int] = ‘Integer 3


The type of x with the symbol [> indicates that the type contains at least the con-
structor ‘Integer int.


# let int of = function


‘Integer n → n


| ‘Real r → int of float r ; ;
val int_of : [< ‘Integer of int | ‘Real of float] -> int = <fun>


Conversely, the symbol [< indicates that the argument of int of belongs to the type
that contains at most the constructors ‘Integer int and ‘Real float.
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It is also possible to define a polymorphic variant type by enumerating its constructors:


Syntax : type t = [ ‘Name1 | ‘Name2 | . . . | ‘Namen ]


or for parameterized types:


Syntax : type (’a,’b,...) t = [ ‘Name1 | ‘Name2 | . . . | ‘Namen ]


# type value = [ ‘Integer of int | ‘Real of float ] ; ;
type value = [ ‘Integer of int | ‘Real of float]


Constructors of polymorphic variants can take arguments of different types.
# let v1 = ‘Number 2


and v2 = ‘Number 2.0 ; ;
val v1 : [> ‘Number of int] = ‘Number 2


val v2 : [> ‘Number of float] = ‘Number 2


However, v1 and v2 have different types.
# v1=v2 ; ;
Toplevel input:


#


v1=v2 ;;


^^


This expression has type [> ‘Number of float] but is here used with type


[> ‘Number of int]


More generally, the constraints on the type of arguments for polymorphic variant con-
structors are accumulated in their type by the annotation &.


# let test nul integer = function ‘Number n → n=0


and test nul real = function ‘Number r → r=0.0 ; ;
val test_nul_integer : [< ‘Number of int] -> bool = <fun>


val test_nul_real : [< ‘Number of float] -> bool = <fun>


# let test nul x = (test nul integer x) || (test nul real x) ; ;
val test_nul : [< ‘Number of float & int] -> bool = <fun>


The type of test nul indicates that the only values accepted by this function are those
with the constructor ‘Number and an argument which is at the same time of type int
and of float. That is, the only acceptable values are of type ’a!
# let f () = test nul (failwith "returns a value of type ’a") ; ;
val f : unit -> bool = <fun>


The types of the polymorphic variant constructor are themselves likely to be polymor-
phic.
# let id = function ‘Ctor → ‘Ctor ; ;
val id : [< ‘Ctor] -> [> ‘Ctor] = <fun>


The type of the value returned from id is “the group of constructors that contains at
least ‘Ctor” therefore it is a polymorphic type which can instantiate to a more precise
type. In the same way, the argument of id is “the group of constructors that contains
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no more than ‘Ctor” which is also likely to be specified. Consequently, they follow the
general polymorphic type mechanism of Objective Caml knowing that they are likely
to be weakened.
# let v = id ‘Ctor ; ;
val v : _[> ‘Ctor] = ‘Ctor


v, the result of the application is not polymorphic (as denoted by the character in
the name of the type variable).
# id v ; ;
- : _[> ‘Ctor] = ‘Ctor


v is monomorphic and its type is a sub-type of “contains at least the constructor
‘Ctor”. Applying it with id will force its type to be a sub-type of“contains no more
than the constructor ‘Ctor”. Logically, it must now have the type “contains exactly
‘Ctor”. Let us check.
# v ; ;
- : [ ‘Ctor] = ‘Ctor


As with object types, the types of polymorphic variant constructors can be open.
# let is integer = function


‘Integer (n : int) → true


| _ → false ; ;
val is_integer : [> ‘Integer of int] -> bool = <fun>


# is integer (‘Integer 3) ; ;
- : bool = true


# is integer ‘Other ; ;
- : bool = false


All the constructors are accepted, but the constructor ‘Integer must have an integer
argument.
# is integer (‘Integer 3.0) ; ;
Toplevel input:


#


is_integer (‘Integer 3.0) ;;


^^^^^^^^^^^^


This expression has type [> ‘Integer of float] but is here used with type


[> ‘Integer of int]


As with object types, the type of a constructor can be cyclic.
# let rec long = function ‘Rec x → 1 + (long x) ; ;
val long : ([< ‘Rec of ’a] as ’a) -> int = <fun>


Finally, let us note that the type can be at the same time a sub-group and one of a
group of constructors. Starting with a a simple example:
# let ex1 = function ‘C1 → ‘C2 ; ;
val ex1 : [< ‘C1] -> [> ‘C2] = <fun>


Now we identify the input and output types of the example by a second pattern.
# let ex2 = function ‘C1 → ‘C2 | x → x ; ;
val ex2 : ([> ‘C2 | ‘C1] as ’a) -> ’a = <fun>


We thus obtain the open type which contains at least ‘C2 since the return type contains
at least ‘C2.
# ex2 ( ‘C1 : [> ‘C1 ] ) ; ; (* is a subtype of [<‘C2|‘C1| .. >‘C2] *)
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- : _[> ‘C2 | ‘C1] = ‘C2


# ex2 ( ‘C1 : [ ‘C1 ] ) ; ; (* is not a subtype of [<‘C2|‘C1| .. >‘C2] *)


Toplevel input:


# ex2 ( ‘C1 : [ ‘C1 ] ) ;; (* is not a subtype of [<‘C2|‘C1| .. >‘C2] *)


^^^


This expression has type [ ‘C1] but is here used with type [> ‘C2 | ‘C1]


LablTk Library


The interface to Tcl/Tk was integrated in the distribution of Objective Caml 3.04,
and is available for Unix and Windows. The installation provides one new command:
labltk, which launches a toplevel interactive loop integrating the LablTk library.


The LablTk library defines a large number of modules, and heavily uses the language
extensions of Objective Caml 3.04. A detailed presentation of this module falls out-
side the scope of this appendix, and we invite the interested reader to refer to the
documentation of Objective Caml 3.04.


There is also an interface with Gtk, written in class-based style, but it is not yet part
of the Objective Caml distribution. It should be compatible with Unix and Windows.


OCamlBrowser


OcamlBrowser is a code browser for Objective Caml, providing a LablTk-based graph-
ical user interface. It integrates a “navigator” allowing to browse various modules, to
look at their contents (names of values and types), and to edit them.


When launching OCamlBrowser by the command ocamlbrowser, the list of all the
compiled modules available (see figure B.2) is displayed. One can add more modules
by specifying a path to find them. From the menu File, one can launch a toplevel
interactive loop or an editor in a new window.


When one of the modules is clicked on, a new window opens to display its contents
(see figure B.3). By selecting a value, its type appears in bottom of the window.


In the main window, one can search on the name of a function. The result appears in
a new window. The figure B.4 shows the result of a search on the word create.


There are other possibilities that we let the user discover.
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Figure B.2: OCamlBrowser : the main window


Figure B.3: OCamlBrowser : module contents


Figure B.4: OCamlBrowser : search for create
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— O —
object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436


copy . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
creation . . . . . . . . . . . . . . . . . . . . . . . . 440


OCamlBrowser . . . . . . . . . . . . . . . . . . . . . 712
operator


associativity . . . . . . . . . . . . . . . . . . . 305
declaration . . . . . . . . . . . . . . . . . . . . . . 25
precedence . . . . . . . . . . . . . . . . . . . . . 305


optional (argument) . . . . . . . . . . . . . . . . 706


— P —
pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
parsing


bottom-up . . . . . . . . . . . . . . . . . . . . . 299
conflict . . . . . . . . . . . . . . . . . . . . 300, 305


shift-reduce . . . . . . . . . . . . . . . . . . 301
ocamlyacc . . . . . . . . . . . . . . . . . . . . . 303
stream . . . . . . . . . . . . . . . . . . . . 297, 305
top-down . . . . . . . . . . . . . . . . . . . . . . 297


pattern
character interval . . . . . . . . . . . . . . . 39
combining . . . . . . . . . . . . . . . . . . . . . . 36
guard . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
matching . . . . . . . . . . . . . . . . . . . . . . . 34


naming . . . . . . . . . . . . . . . . . . . . . . . . . 38
wildcard . . . . . . . . . . . . . . . . . . . . . 34, 35


pattern matching . . . . . . . . . see matching
persistence . . . . . . . . . . . . . . . . . . . . . . . . . 228
persistent


value . . . . . . . . . . . . . . . . . . . . . . . . . . 228
pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74


weak . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
polymorphism . . . . . . . . . . . . . . . . . . . . . . . 28


inclusion . . . . . . . . . . . . . . . . . . . . . . . 465
portabilité . . . . . . . . . . . . . . . . . . . . . . . . . . 208
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
processus


création . . . . . . . . . . . . . . . . . . . 581, 602
léger . . . . . . . . . . . . . . . . . . . . . . . . . . . 600


producteur-consommateur . . . . . . . . . . 607
production rule . . . . . . . . . . . see grammar
profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281


bytecode . . . . . . . . . . . . . . . . . . 282, 283
natif . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
native . . . . . . . . . . . . . . . . . . . . . . . . . 284


protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
http . . . . . . . . . . . . . . . . . . . . . . . . . . . 644


— R —
reader-writer . . . . . . . . . . . . . . . . . . . . . . . 610
record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43


mutable field . . . . . . . . . . . . . . . . . . . . 73
reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252


— S —
scope of a variable . . . . . . . . . . . . . . . . . . . 26
self . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . 608
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
signature . . . . . . . . . . . . . . . . . . . . . . . . . . . 410


constraint . . . . . . . . . . . . . . . . . . . . . . 411
socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
standalone executable . . . . . . . . . . . . . . 207
Stop&Copy . . . . . . . . . . . . . . . . . . . . . . . . . 256
stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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lexical analysis . . . . . . . . . . . . . . . . . 289
parsing . . . . . . . . . . . . . . . . . . . 297, 305


strict (language) . . . . . . . . . . . . . . . . . . . . . 97
string . . . . . . . . . . . . . . see character string
strings


representation . . . . . . . . . . . . . . . . . 330
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
subtyping-typage . . . . . . . . . . . . . . . . . . . 465
super . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
synchronization . . . . . . . . . . . . . . . . . . . . . 604
syntax analysis . . . . . . . . . . . . . . . . . . . . . 295


— T —
tag bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
thread . . . . . . . . . . . . . . . see processus léger
toplevel . . . . . . . . . see boucle d’interaction
Toplevel loop


directives . . . . . . . . . . . . . . . . . . . . . . 205
trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
tuple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
type


abstract . . . . . . . . . . . . . . . . . . . . . . . 407
constraint . . . . . . . . 30, 417, 454, 455
constructor . . . . . . . . . . . . . . . . . . . . . 34
declaration . . . . . . . . . . . . . . . . . . . . . . 41
enumerated . . . . . . . . . . . . . . . . . . . . . 45
function . . . . . . . . . . . . . . . . . . . . . . . . 49
functional . . . . . . . . . . . . . . . . . . . . . . . 21
mutually recursive . . . . . . . . . . . . . . 42
object . . . . . . . . . . . . . . . . . . . . . . . . . 450
open . . . . . . . . . . . . . . . . . . . . . . 450, 453
parameterized . . . . . . . . . . . 30, 42, 48
product . . . . . . . . . . . . . . . . . . . . . . . . . 41
record . . . . . . . . . . . . . . . . . . . . . . . . . . 43
recursive . . . . . . . . . . . . . . . . . . . . . . . . 47
sum . . . . . . . . . . . . . . . . . . . . . . . . . 41, 45
sum types


representation . . . . . . . . . . . . . . . 330
union . . . . . . . . . . . . . . . . . . . . . . . . . . . 45


— U —
UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439


— V —


value
atomic . . . . . . . . . . . . . . . . . . . . . . . . . . 70
construction . . . . . . . . . . . . . . . . . . . 249
declaration . . . . . . . . . . . . . . . . . . . . . . 19
exploration . . . . . . . . . . . . . . . . . . . . 323
function . . . . . . . . . . . . . . . . . . . . . . . 332
global declaration . . . . . . . . . . . . . . . 19
immediate . . . . . . . . . . . . . . . . . . . . . 325
inspection . . . . . . . . . . . . . . . . . . . . . 280
local declaration . . . . . . . . . . . . . . . . 19
persistent


type . . . . . . . . . . . . . . . . . . . . . . . . . 233
representation . . . . . . . . . . . . . . . . . 323


in C . . . . . . . . . . . . . . . . . . . . . . . . . 318
sharing . . . . . . . . . . . . . . . . . . . . . . . . . 69
structured . . . . . . . . . . . . . . . . . . 70, 326


variable
bound . . . . . . . . . . . . . . . . . . . . . . . . . . 26
free . . . . . . . . . . . . . . . . . . . . . . . . . 23, 26
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
weak type . . . . . . . . . . . . . . . . . . . . . . . 75


variants
polymorphic . . . . . . . . . . . . . . . . . . . 709


vector . . . . . . . . . . . . . . . . . . . . . . . . . see array
virtual


class . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
method . . . . . . . . . . . . . . . . . . . . . . . . 450


— Z —
Zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199


interpreter . . . . . . . . . . . . . . . . . . . . . 207
zombie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
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— Symboles —
& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
&& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
[> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 17
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
-¿ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
:: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
:= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
:¿ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 704
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
¡- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 72, 73
¡= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
¡¿ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
¡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
== . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
¿= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16


¿} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
¿ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
@ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
[] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440, 454
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
ˆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704


{ ¡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
—— . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15


— A —
accept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
acos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
add available units . . . . . . . . . . . . 242
add interfaces . . . . . . . . . . . . . . . . . . 242
alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
alloc.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
allow unsafe modules . . . . . . . . . . 242
and (keyword) . . . . . . . . . . . . . . . . . . . 20, 42
append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Arg (module) . . . . . . . . . . . . . . . . . . . . . . . 236
argv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Arith status (module) . . . . . . . . . . . 240
Array (module) . . . . . . . 68, 217, 218, 221
array (type) . . . . . . . . . . . . . . . . . . . . . . . . 68
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as (keyword) . . . . . . . . . . . . . . 38, 454, 699
asin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
assoc . . . . . . . . . . . . . . . . . . . . . . . . . 151, 221
assq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
atan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14


— B —
background . . . . . . . . . . . . . . . . . . . . . . . . 120
big int (type) . . . . . . . . . . . . . . . . . . . . 240
bind . . . . . . . . . . . . . . . . . . . . . . . . . . 627, 629
blit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
blit image . . . . . . . . . . . . . . . . . . . . . . . 125
bool (type) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
bprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
broadcast . . . . . . . . . . . . . . . . . . . . . . . . . 609
Buffer (module) . . . . . . . . . . . . . . . . . . . 217
button down . . . . . . . . . . . . . . . . . . . . . . 133


— C —
Callback (module) . . . . . . . . . . . . . . . . . 343
catch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
ceil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
char (type) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
char of int . . . . . . . . . . . . . . . . . . . . . . 15
chdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
class (keyword) . . . . . . . . . . . . . . . . . . . 437
clear available units . . . . . . . . . 242
clear graph . . . . . . . . . . . . . . . . . . . . . . 119
close . . . . . . . . . . . . . . . . . . . . . . . . . 576, 629
close graph . . . . . . . . . . . . . . . . . . . . . . 119
close in . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
close out . . . . . . . . . . . . . . . . . . . . . . . . . . 77
close process . . . . . . . . . . . . . . . . . . . . 589
color (type) . . . . . . . . . . . . . . . . . . . . . . . 120
combine . . . . . . . . . . . . . . . . . . . . . . . 151, 221
command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
concat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Condition (module) . . . . . . . . . . . . . . . . 609
connect . . . . . . . . . . . . . . . . . . . . . . . 627, 630
constraint (keyword) . . . . . . . . . . . . . 455
copy . . . . . . . . . . . . . . . . . . . . . . . . . . 222, 471
cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
create . . . . . . 68, 222, 265, 602, 604, 609
create image . . . . . . . . . . . . . . . . . . . . . 125


create process . . . . . . . . . . . . . . . . . . 581
current point . . . . . . . . . . . . . . . . . . . . 120


— D —
delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Delayed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
descr of in channel . . . . . . . . . . . 577
descr of out channel . . . . . . . . . . 577
Digest (module) . . . . . . . . . . . . . . 223, 227
do (keyword) . . . . . . . . . . . . . . . . . . . . . . . . 81
done (keyword) . . . . . . . . . . . . . . . . . . . . . . 81
downto (keyword) . . . . . . . . . . . . . . . . . . . 81
draw arc . . . . . . . . . . . . . . . . . . . . . . . . . . 121
draw circle . . . . . . . . . . . . . . . . . . . . . . 121
draw ellipse . . . . . . . . . . . . . . . . . . . . . 121
draw image . . . . . . . . . . . . . . . . . . . . . . . 125
dump image . . . . . . . . . . . . . . . . . . . . . . . 125
dup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
dup2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Dynlink (module) . . . . . . . . . . . . . . . . . . 241


— E —
else (keyword) . . . . . . . . . . . . . . . . . . . . . . 18
end (keyword) . . . . . . . . . . . . . . . . . 410, 437
End of file . . . . . . . . . . . . . . . . . . . . . . 76
eprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
error (type) . . . . . . . . . . . . . . . . . . . . . . . 573
error message . . . . . . . . . . . . . . . . . . . . 573
establish server . . . . . . . . . . . . . . . . 633
Event (module) . . . . . . . . . . . . . . . . . . . . 612
event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
exception (keyword) . . . . . . . . . . . . . . . . 55
exists . . . . . . . . . . . . . . . . . . . . . . . . . 51, 220
exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
exn (type) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
external (keyword) . . . . . . . . . . . . . . . . 318


— F —
failwith . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
file exists . . . . . . . . . . . . . . . . . . . . . . 234
Filename (module) . . . . . . . . . . . . . . . . . 238
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fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
fill poly . . . . . . . . . . . . . . . . . . . . . . . . 121
fill rect . . . . . . . . . . . . . . . . . . . . . . . . 121
filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
find . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
find all . . . . . . . . . . . . . . . . . . . . . . . . . . 221
flatten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
float (type) . . . . . . . . . . . . . . . . . . . . . . . . 13
float of string . . . . . . . . . . . . . . . . . . 15
floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
fold left . . . . . . . . . . . . . . . . . . . . . 51, 219
fold right . . . . . . . . . . . . . . . . . . . . . . . 219
for (keyword) . . . . . . . . . . . . . . . . . . . . . . . 81
for all . . . . . . . . . . . . . . . . . . . . . . . 26, 220
force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
foreground . . . . . . . . . . . . . . . . . . . . . . . . 120
Format (module) . . . . . . . . . . . . . . . . . . . 223
format (type) . . . . . . . . . . . . . . . . . 224, 226
fprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
from channel . . . . . . . . . . . . . . . . . . . . . 229
from string . . . . . . . . . . . . . . . . . . . . . . 229
fst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
full major . . . . . . . . . . . . . . . . . . . . . . . 263
fun (keyword) . . . . . . . . . . . . . . . . . . . . . . . 23
function (keyword) . . . . . . . . . . . . . . . . . 21
functor (keyword) . . . . . . . . . . . . . . . . . 418


— G —
Gc (module) . . . . . . . . . . . . . . . . . . . . . . . . 263
Genlex (module) . . . . . . . . . . . . . . . . . . . 288
get . . . . . . . . . . . . . . . . . . . . . . . 218, 263, 265
get image . . . . . . . . . . . . . . . . . . . . . . . . 125
getcwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
getenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
gethostbyaddr . . . . . . . . . . . . . . . . . . . . . 626
gethostbyname . . . . . . . . . . . . . . . . . . . . . 626
gethostname . . . . . . . . . . . . . . . . . . . . . . . 626
getservbyname . . . . . . . . . . . . . . . . . . . . . 627
getservbyport . . . . . . . . . . . . . . . . . . . . . 627
global replace . . . . . . . . . . . . . . . . . . 292
Graphics (module) . . . . . . . . . . . . . . . . . 117


— H —
handle error . . . . . . . . . . . . . . . . . . . . . 573
Hashtbl (module) . . . . . . . . . . . . . 217, 227
hd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 220


host entry (type) . . . . . . . . . . . . . . . . 626


— I —
if (keyword) . . . . . . . . . . . . . . . . . . . . . . . . 18
ignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
in (keyword) . . . . . . . . . . . . . . . . . . . . . . . . 20
in channel . . . . . . . . . . . . . . . . . . . . . . . . 76
in channel of descr . . . . . . . . . . . 577
inet addr (type) . . . . . . . . . . . . . . . . . . 625
inet addr of string . . . . . . . . . . . 626
init . . . . . . . . . . . . . . . . . . . . . . . . . . 178, 242
initializer (keyword) . . . . . . . . . . . . 448
input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
input line . . . . . . . . . . . . . . . . . . . . . . . . 77
int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
int (type) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
int of char . . . . . . . . . . . . . . . . . . . . . . 15
int of string . . . . . . . . . . . . . . . . . . . . 15
interactive . . . . . . . . . . . . . . . . . . . . . . . 234
iter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
iter2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
iteri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222


— K —
key pressed . . . . . . . . . . . . . . . . . . . . . . 133
kill . . . . . . . . . . . . . . . . . . . . . . . . . . 590, 603


— L —
labltk (command) . . . . . . . . . . . . . . . . . 712
Lazy (module) . . . . . . . . . . . . . . . . . . . . . 108
lazy (keyword) . . . . . . . . . . . . . . . . . . . . . 108
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
let (keyword) . . . . . . . . . . . . . . . . . . . 19, 20
lexbuf (type) . . . . . . . . . . . . . . . . . . . . . . 293
Lexing (module) . . . . . . . . . . . . . . . . . . . 293
lineto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
List (module) . . . . . . . . 18, 217, 218, 220
list (type) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
listen . . . . . . . . . . . . . . . . . . . . . . . . 627, 630
loadfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
loadfile private . . . . . . . . . . . . . . . . 242
lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
log10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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lseek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577


— M —
major . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
make image . . . . . . . . . . . . . . . . . . . . . . . 125
make lexer . . . . . . . . . . . . . . . . . . . . . . . 289
make matrix . . . . . . . . . . . . . . . . . . . . . . 222
Map (module) . . . . . . . . . . . . . . . . . . . . . . . 420
map . . . . . . . . . . . . . . . . . . . . . . . . . 26, 51, 218
map2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
mapi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Marshal (module) . . . . . . . . . . . . . 223, 229
match (keyword) . . . . . . . . . . . . . . . . 34, 111
Match Failure . . . . . . . . . . . . . . . . . . . . . 36
matched string . . . . . . . . . . . . . . . . . . 292
max array length . . . . . . . . . . . . . . . 234
mem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53, 220
mem assoc . . . . . . . . . . . . . . . . . . . . . . . . 221
mem assq . . . . . . . . . . . . . . . . . . . . . . . . . . 221
memory.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
memq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53, 220
method (keyword) . . . . . . . . . . . . . . . . . . 437
minor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
mkfifo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
mlvalues.h . . . . . . . . . . . . . . . . . . . . . . . . 323
mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
module (keyword) . . . . . . . . . . . . . . . . . . 410
module type (keyword) . . . . . . . . . . . . 410
mouse pos . . . . . . . . . . . . . . . . . . . . . . . . 133
moveto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
mutable (keyword) . . . . . . . . . . . . . . . . . . 73
Mutex (module) . . . . . . . . . . . . . . . . . . . . 604


— N —
new (keyword) . . . . . . . . . . . . . . . . . . . . . . 440
next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
None . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
nth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Num (module) . . . . . . . . . . . . . . . . . . . . . . . 239
num (type) . . . . . . . . . . . . . . . . . . . . . . . . . . 240


— O —
object (keyword) . . . . . . . . . . . . . . . . . . 437


ocaml (command) . . . . . . . . . . . . . 201, 205
ocamlbrowser (command) . . . . . . . . . . 712
ocamlc (command) . . . . . . . 201, 202, 204
ocamlc.opt (command) . . . . . . . . . . . . 201
ocamldebug (command) . . . . . . . . . . . . 278
ocamldep (command) . . . . . . . . . . . . . . 272
ocamllex (command) . . . . . . . . . . 293, 311
ocamlmktop (command) . . 118, 201, 206
ocamlopt (command) . . . . . . . . . . . . . . 201
ocamlopt.opt (command) . . . . . . . . . . 201
ocamlrun (command) . . . . . . . . . . 201, 207
ocamlyacc (command) . . . . . . . . 303, 311
of (keyword) . . . . . . . . . . . . . . . . . . . . . . . . 45
of channel . . . . . . . . . . . . . . . . . . . . . . . 111
of list . . . . . . . . . . . . . . . . . . . . . . 150, 223
of string . . . . . . . . . . . . . . . . . . . . . . . . 111
open (keyword) . . . . . . . . . . . . . . . . 214, 409
open connection . . . . . . . . . . . . . . . . . 635
open flag (type) . . . . . . . . . . . . . . . . . . 575
open graph . . . . . . . . . . . . . . . . . . . . . . . 119
open in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
open out . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
open process . . . . . . . . . . . . . . . . . . . . . 589
openfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
option (type) . . . . . . . . . . . . . . . . . . . . . . 265
or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
OS type . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
out channel . . . . . . . . . . . . . . . . . . . . . . . 76
out channel of descr . . . . . . . . . . 577
output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77


— P —
parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
parser (keyword) . . . . . . . . . . . . . 111, 290
partition . . . . . . . . . . . . . . . . . . . . . . . . . 221
Pervasives (module) . . . . . . . . . . . . . . 215
pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
point color . . . . . . . . . . . . . . . . . . . . . . 120
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
print newline . . . . . . . . . . . . . . . . . . . . . 78
print stat . . . . . . . . . . . . . . . . . . . . . . . 263
print string . . . . . . . . . . . . . . . . . . . . . . 78
Printexc (module) . . . . . . . . . . . . . . . . . 238
Printf (module) . . . . . . . . . . . . . . . . . . . 223
printf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
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private (keyword) . . . . . . . . . . . . . . . . . 449
process status (type) . . . . . . . . . . . . 586


— Q —
Queue (module) . . . . . . . . . . . . . . . . . . . . 217


— R —
raise (keyword) . . . . . . . . . . . . . . . . . . . . 56
Random (module) . . . . . . . . . . . . . . . . . . . 216
ratio (type) . . . . . . . . . . . . . . . . . . . . . . . 240
read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
read key . . . . . . . . . . . . . . . . . . . . . . . . . . 133
read line . . . . . . . . . . . . . . . . . . . . . . . . . . 78
rec (keyword) . . . . . . . . . . . . . . . . . . . . . . . 27
receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
-rectypes . . . . . . . . . . . . . . . . . . . . . . . . . 701
ref (type) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
regexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
register . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
remove assoc . . . . . . . . . . . . . . . . . . . . . 221
remove assq . . . . . . . . . . . . . . . . . . . . . . 221
rename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
rev append . . . . . . . . . . . . . . . . . . . . . . . 220
rgb (type) . . . . . . . . . . . . . . . . . . . . . . . . . . 120


— S —
search forward . . . . . . . . . . . . . . . . . . 292
seek command (type) . . . . . . . . . . . . . . 577
send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
service entry (type) . . . . . . . . . . . . . 627
Set (module) . . . . . . . . . . . . . . . . . . . . . . . 420
set . . . . . . . . . . . . . . . . . . . . . . . 221, 263, 265
set binary mode in . . . . . . . . . . . . 577
set binary mode out . . . . . . . . . . . 577
set color . . . . . . . . . . . . . . . . . . . . . . . . 120
set font . . . . . . . . . . . . . . . . . . . . . . . . . . 120
set line . . . . . . . . . . . . . . . . . . . . . . . . . . 120
set signal . . . . . . . . . . . . . . . . . . . . . . . 591
set text size . . . . . . . . . . . . . . . . . . . 120
shutdown connection . . . . . . . . . . . . . 635
sig (keyword) . . . . . . . . . . . . . . . . . . . . . . 410
sigalrm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
sigchld . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594


sigint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
signal . . . . . . . . . . . . . . . . . . . . . . . . 591, 609
signal behavior (type) . . . . . . . . . . 591
sigusr1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
sigusr2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
snd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SOCK STREAM . . . . . . . . . . . . . . . . . . . . . . 628
sockaddr (type) . . . . . . . . . . . . . . . . . . . . 629
socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
socket (type) . . . . . . . . . . . . . . . . . . . . . . 627
socket domain (type) . . . . . . . . . . . . . 628
socket type (type) . . . . . . . . . . . . . . . 628
Some . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Sort (module) . . . . . . . . . . . . . . . . . . . . . 217
split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
sprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Stack (module) . . . . . . . . . . . . . . . . 217, 406
Stack overflow (exception) . . . . . . . . 95
stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
stderr . . . . . . . . . . . . . . . . . . . . . . . . . 76, 573
stdin . . . . . . . . . . . . . . . . . . . . . . . . . . 76, 573
stdout . . . . . . . . . . . . . . . . . . . . . . . . . 76, 573
Str (module) . . . . . . . . . . . . . . . . . . . . . . . 292
Stream (module) . . . . . . . . . . . . . . . . . . . 110
stream (type) . . . . . . . . . . . . . . . . . . . . . . 110
String (module) . . . . . . . . . . . . . . . . . . . 217
string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
string (type) . . . . . . . . . . . . . . . . . . . . . . . 15
string of float . . . . . . . . . . . . . . . . . . 15
string of inet addr . . . . . . . . . . . 626
string of int . . . . . . . . . . . . . . . . . . . . 15
struct (keyword) . . . . . . . . . . . . . . . . . . 410
sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
Sys (module) . . . . . . . . . . . . . . . . . . . . . . . 234
Sys error . . . . . . . . . . . . . . . . . . . . . . . . . . 77


— T —
tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
then (keyword) . . . . . . . . . . . . . . . . . . . . . . 18
Thread (module) . . . . . . . . . . . . . . . . . . . 602
ThreadUnix (module) . . . . . . . . . . . . . . 639
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time . . . . . . . . . . . . . . . . . . . . . . . . . . 178, 234
tl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 220
to (keyword) . . . . . . . . . . . . . . . . . . . . . . . . 81
to buffer . . . . . . . . . . . . . . . . . . . . . . . . 229
to channel . . . . . . . . . . . . . . . . . . . . . . . 229
to list . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
to string . . . . . . . . . . . . . . . . . . . . 229, 238
token (type) . . . . . . . . . . . . . . . . . . . . . . . 288
#trace (directive) . . . . . . . . . . . . . . . . . . 273
true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
try (keyword) . . . . . . . . . . . . . . . . . . . . . . . 56
try lock . . . . . . . . . . . . . . . . . . . . . . . . . . 604
type (keyword) . . . . . . . . . . . . . . . . . . . . . . 41


— U —
unit (type) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Unix (module) . . . . . . . . . . . . . . . . . . . . . 572
Unix error . . . . . . . . . . . . . . . . . . . . . . . 573
unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
#untrace (directive) . . . . . . . . . . . . . . . . 273
#untrace all (directive) . . . . . . . . . . 273


— V —
val (keyword) . . . . . . . . . . . . . . . . . 408, 437
val mutable (keyword) . . . . . . . . . . . . 437
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
value . . . . . . . . . . . . . . . . . . . . . . . . . 318, 324
virtual (keyword) . . . . . . . . . . . . . . . . . 450


— W —
wait . . . . . . . . . . . . . . . . . . . . . . . . . . 585, 609
wait next event . . . . . . . . . . . . . . . . 132
wait time read . . . . . . . . . . . . . . . . . . 646
wait time write . . . . . . . . . . . . . . . . 646
waitpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
Weak (module) . . . . . . . . . . . . . . . . . 217, 265
when (keyword) . . . . . . . . . . . . . . . . . . . . . . 38
while (keyword) . . . . . . . . . . . . . . . . . . . . 81
with (keyword) . . . . . 34, 44, 56, 111, 417
word size . . . . . . . . . . . . . . . . . . . . . . . . 234
write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576







Liste de diffusion par messagerie électronique


Si vous souhaitez recevoir périodiquement les annonces de nouveaux produits O’Reilly
en français, il vous suffit de souscrire un abonnement à la liste d’annonces


parutions-oreilly


Merci d’expédier en ce cas un message électronique à majordomo@ora.de contenant
(dans le corps du message) :


subscribe parutions-oreilly votre_adresse_email


Exemple :


subscribe parutions-oreilly jean.dupond@ici.fr


Cette liste ne véhicule que des annonces et non des discussions, vous ne pourrez par
conséquent pas y poster. Son volume ne dépasse pas quatre messages par mois.


En cas de problème technique écrire à


parutions-oreilly-owner@ora.de


Site Web


Notre site Web http://www.editions-oreilly.fr/ diffuse diverses informations :


• le catalogue des produits proposés par les éditions O’Reilly,


• les errata de nos ouvrages,


• des archives abritant les exemples,


• la liste des revendeurs.






