
UNIVERSITÄT PASSAU
Fakultät für Informatik

Code Generation in the Polytope Model
with Non-linear Parameters

Bachelorarbeit

Autor:
Philipp Claÿen

Betreuer:
Priv. Doz. Dr. Martin Griebl
Lehrstuhl für Programmierung

Universität Passau

Passau, April 17, 2007

Acknowledgements

First of all, I would like to thank Martin Griebl for his many valueable remarks and
suggestions, and for proofreading this work.
I also would like to thank Armin Gröÿlinger for explaining the world of quanti�er

elimination and for his great technical support, especially with the logic tools. Without
him, this work would not have been possible.
My �nal thanks goes to my brother Micki.

2

Contents

1. Introduction 4

1.1. Motivation: Example . 5

2. Basics 6

2.1. Why Non-Linear Parameters? . 6
2.2. Decision Trees . 7
2.3. Quilleré's Algorithm for Linear Parameters 9

3. Necessary Non-linear Extensions 12

3.1. Projection . 13
3.2. Partitioning . 15
3.3. Disjoint Union . 16
3.4. Topological Sorting . 18
3.5. Code Generation . 20
3.6. Example . 20

4. Implementation 24

4.1. Simultaneous Matrix/Formula Representation 24
4.2. Simpli�cations . 26
4.3. Experiments . 28

5. Conclusions 30

A. Overview of the most important modules 32

A.1. LMath.Logic.Domain . 32
A.2. LMath.Logic.DomainTree . 32
A.3. LMath.Types.DTree.Merge . 32

B. Target code 32

3

Abstract. The polytope model is a framework for the automatic paral-
lelization of loop nests. Since the model is based on linear programming,
all coe�cients of the polytopes describing the loops, must be rational. Re-
cently, it has been shown that this restriction can be lifted using quanti�er
elimination in the real numbers.
In this work, we will demonstrate that the extended polytope model can

be applied in small practical examples. We will generalize Quilleré's algo-
rithm [Qui00] for target code generation, thus enabling the use of non-linear
parameters.

1. Introduction

As manual parallelization is expensive and error-prone, it seems preferable to have com-
pilers that can automatically transform sequential programs into parallel programs. One
way to achieve this is to use the polytope model [Len93] which is very powerful � if it is
applicable. That is why much of the research concentrates on extensions to the original
model.
One of these restrictions is that the matrices describing the polytopes contain only

rational numbers. Thus, these matrices can only describe inequalities that are linear in
their variables and parameters. By parameters we mean symbolic constants, which are
�rst known at runtime, but cannot be changed thereafter. Suppose i and j are variables
and n is a parameter. The inequality 3i + 4j + 7n + 8 ≥ 0 is (a�ne) linear and can be
described by a rational matrix M :

(
3 4 7 8

)︸ ︷︷ ︸
M

·


i
j
n
1

 ≥ 0

In contrast, the inequality n · i ≥ 0 cannot be expressed as a rational matrix, because
the coe�cient of the variable i is not known at compile time. Note that this restriction
is not caused by the model itself, but by most of the mathematical tools that are being
used. As a consequence, the applicability of some recently developed techniques (e.g.,
tiling) is severely limited.
In his Diploma thesis [Grö03], Armin Gröÿlinger showed that the polytope model

can be extended to allow inequality systems with non-linear parameters, that means
parameters appearing as coe�cients (e.g., n · i ≥ 0) or parameters whose total degree1 is
greater or equal than two (e.g., i + j ≥ n2). The idea is to generalize existing algorithms
by introducing case distinctions on the parameters. As the number of case distinctions
quickly explodes, even though most of them are redundant, it is necessary to simplify the
results. To decide whether a case distinction is redundant, we use quanti�er elimination
in the real numbers. Alternatively, it is possible to develop new algorithms that are

1 The total degree of a monomial Xi1
1 · · ·Xin

n is i1 + . . .+ in, for instance X2Y 3 has a total degree of 5.

4

directly based on quanti�er elimination. This approach is preferable, when the problem
can be elegantly expressed using �rst-order logic.

In this work, we will focus on the target code generation in the extended polytope
model, speci�cally the Quilleré algorithm [Qui00] for loop generation.

1.1. Motivation: Example

Let us illustrate the problem with a simple example:

1 for i=0..5 8 for i=0..M-1

2 S1: A := ... 9 S3: B[i] := B[i-1]

3 end 10 end

4 11

5 for i=6..10 12 for i=M..100

6 S2: A := ... 13 S4: B[i] := B[i-M]

7 end 14 end

Note that this program contains only (a�ne) linear expressions as loop bounds and
array indices. So each loop can be expressed by polytopes represented as matrices with
constant entries. So far, everything corresponds well with the polytope model.
Taking a closer look at the example, only the last loop can be parallelized. It is possible

to execute M computations simultaneously. Note that M is a parameter, which is �rst
known at run time. As the �rst three loops have to be sequential and S4 has to be
scheduled after S3, a suitable schedule would be:

t1, t2, t3, t4 :: Z → Z
t1(i) = i

t2(i) = i

t3(i) = i

t4(i) =
⌊

i

M

⌋
+ M − 1 =

⌊
i

M
+

(M − 1) ·M
M

⌋
=

⌊
i + M2 −M

M

⌋
To get rid of the b.c expression in t4, we introduce a new dimension r which stands for

the remainder of i divided by M . This leads to a multi-dimensional schedule, where the
r dimension can be run in parallel.

t1, t2, t3, t4 :: Z → Z2

t1(i) = (i, 0)
t2(i) = (i, 0)
t3(i) = (i, 0)
t4(i) = (t, r), so that i + M2 −M = M · t + r ∧ 0 ≤ r ≤ M − 1

Finally, we receive these target inequality systems:

5

S1 : 0 ≤ t ≤ 5 ∧ r = 0
S2 : 6 ≤ t ≤ 10 ∧ r = 0
S3 : 0 ≤ t ≤ M − 1 ∧ r = 0
S4 : M ≤ M · t + r −M2 + M ≤ 100 ∧ 0 ≤ r ≤ M − 1

In the last inequality system S4, we obtain two non-linear expression, namely M ·t and
M2. Thus, we cannot use our current methods to generate code. Although it is possible
to avoid this problem by choosing a simpler schedule, for example t4(i) = i, but that
means giving away parallelism unnecessarily. Therefore this solution is not satisfactory.
So our simple example is an interesting case study to examine whether the non-linear

extensions work for small practical examples and to show where the current problems
are. But �rst, let us deal with some necessary basics, before we can concentrate on the
extensions later.

2. Basics

2.1. Why Non-Linear Parameters?

Apart from our introductory example, there are other important bene�ts of allowing
non-linear parameters, for example:

Parametric Tiling Tiling is a technique that can be used for cache optimizations, gain-
ing parallelism or minimizing communication overhead after the space-time map-
ping [GFL04]. However, due to the restrictions of the model, its applicability is
limited, as the size and shape of the tiles has to be known at compile time.

Otherwise it is often desirable to make the tile shape or size dependent on certain
run time parameters like the number of processors, the startup costs for communi-
cations and so on. By allowing non-linear parameters, it is possible to lift some of
these limitations [Grö03].

Dynamically allocated multidimensional arrays In C/C++ it is not possible to allocate
a multidimensional array whose size is not known at compile time. A common
practice is to allocate a one-dimensional array instead and do the index resolving
manually, for example:

// allocate an array of size MxN ...

int *a = malloc(M * N * sizeof(int));

// ... but instead of a[i][j], we have to write

a[i*N + j] = 42;

Note that the array index i ∗N + j is not a linear expression, so we have just left
the scope of the polytope model.

There are some recent language extensions avoiding this problem, for example,
the new language de�nition of C [C99] introduced Variable Length Arrays (VLA).

6

However, since most compilers do not support it at the moment, you will still �nd
a lot of code as in the example above.

2.2. Decision Trees

Let us suppose, we are interested whether the loops from our introductory example
overlap:

loop1 = {i | 0 ≤ i ≤ 5}, loop2 = {i | 6 ≤ i ≤ 10},
loop3 = {i | 0 ≤ i ≤ M − 1}, loop4 = {i | M ≤ i ≤ 100}

It is easy to verify that the �rst two loops do not overlap, but it becomes more complicated
when parameters are involved. For example, loop4 overlaps with loop1 if and only if
M ≤ 5. That means, in general, the decision has to be postponed until M is known.
However, that is not before run time.
An alternative is to build a tree containing the decisions. Every time when a decision

must be made, we create a branch in the tree; for each possible case, we create one
child associated with the condition that has to be met. Then we continue recursively,
but for each case we can assume that its condition holds and use this information for
optimization.
The advantage is that it becomes possible to make decisions at compile time, although

it requires knowledge only known at run time. However, the resulting decision tree can
grow very large if no simpli�cations are made. This can be problematic for three reasons:

1. The memory usage and computing time for intermediate results is increased (compile-
time overhead)

2. The tree has to be evaluated when the parameters are known (run-time overhead)

3. The tree must not contain in�nite paths, otherwise the termination is not guaran-
teed (concerns correctness of the compiler)

Let us return to the problem of determining all loops that overlap with loop4. There
are three possible cases:

• If M ≤ 5 then loop1 and loop2 overlap with loop4

• If 6 ≤ M ≤ 10 then only loop2 overlaps with loop4

• If M > 10 then no other loop overlaps with loop4

This leads to the decision tree shown in Figure 1. As this tree has been constructed
according to our considerations, it is already simpli�ed.
In contrast, the decision tree shown in Figure 2 is systematically constructed. Note

that �ve of its eight leaves cannot be reached, because of inconsistent conditions. For
example, M ≤ 5 implies that M > 10 is always false, so a complete subtree can be cut.
In general, it can be di�cult to decide whether a given condition holds. But in our

context, most decision problems can be formulated as �rst-order formulas in the real
numbers. These formulas can be decided using quanti�er elimination [Grö03].

7

M≤5 M>5

M>10M≤10

--

loop1
loop2

loop2

Figure 1: A decision tree showing all loops that overlap with loop4

M≤5 M>5

M≤10 M>10 M>10M≤10

loop1
loop2
loop3

--

Does Loop1 overlap with loop4?

M≤M-1 M>M-1

Does Loop2 overlap with loop4?

Does Loop3 overlap with loop4?

loop1
loop2

loop1
loop3

loop1 loop2
loop3

loop2 loop3

M≤M-1 M>M-1 M≤M-1 M>M-1 M≤M-1 M>M-1

Decision 1

Decision 2

Decision 3

Figure 2: A systematically constructed decision tree. Subtrees that can be cut, are drawn
as dashed lines.

8

Let us suppose we want to verify that the subtree guarded by the conditions M ≤ 5
and M > 10 cannot be reached. First, we set up the corresponding formula:

Ψ : ∃M (M ≤ 5 =⇒ M > 10)

Then we use quanti�er elimination to get an equivalent quanti�er-free formula that
can be decided:2

Φ : ⊥, where R |= Ψ ⇐⇒ Φ

The result is that no such M exists, so it is correct to remove the subtree. Finally, when
all inconsistent conditions are removed, we receive the simpli�ed tree shown in Figure 1.
The simpli�cation of decision trees is described in detail in the literature [Grö03,

section 4.2.2].

2.3. Quilleré's Algorithm for Linear Parameters

The �nal step in the polytope model is always code generation, that means generating
loops which enumerate all integral points inside the transformed polyhedra in the lexico-
graphic order. This technique is called scanning. As, in general, we do not have a single
polyhedron, but rather multiple polyhedra, it is more precisely known as the multiple
polyhedra scanning problem. One sophisticated algorithm to solve this problem, has been
proposed by Quilleré [Qui00].
The idea is to partition the union of polyhedra recursively into disjoint regions that

can be scanned using imperfectly nested loops. We start with the outermost dimension �
which is equivalent to the outermost loop � and proceed inwards. For each new dimension,
we take the following steps:

1. Project the polyhedra onto the outermost dimensions.

2. Partition these projections into disjoint polyhedra.

3. Compute a topological order that respects the lexicographic order for the parti-
tions from step 2.

4. Generate target code recursively which are loops that scan the sorted partitions
from step 3.

Let us illustrate the algorithm with a small example. Figure 3 shows a program
consisting of two statements S1 and S2 with the following associated polyhedra:

{i, j | 0 ≤ i ≤ N ∧ 0 ≤ j ≤ 2} :: S1

{i, j | i ≤ N ∧ 0 ≤ j ≤ i− 2} :: S2

One run of the algorithm is illustrated in Figure 4: First, we project S1 and S2 on the
outermost dimension i and separate these projections into disjoint regions. We obtain
one region L1 containing S1, but not S2, and another region L2 that contains both S1

and S2. L1 has to be scanned before L2.
2 Notation: false is denoted by ⊥

9

1 2 3 4 5 i

j

0

1

2

0 N=6

4

3

S1

S2

Figure 3: Quilleré example (N = 6)

1 2 3 4 5 i

j

0

1

2

0 N=6

4

3

L1.1
L2.1

L2.3

L2.2

L1 L2
Figure 4: Partitions with dependencies

10

Proceeding with the next dimension, we recursively generate loops for L1 and L2.
Since L1 contains only one statement, it is more illustrative to examine the recursive call
for L2:
We can skip the projection to the outermost two dimensions, as we are considering the

full space. The partitioning of L2 results in the regions L2.1 (S1), L2.2 (S1, S2) and L2.3
(S2). Next, we determine a textual order for these partitions, where the �rst dimension
i is �xed by the outer loop speci�ed via L2. By testing each combination, we get two
constraints:

• L2.2 99K L2.1 (i.e., L2.2 is scanned before L2.1)
Consider i = 2 �xed, then (2, 0) ∈ L2.2 must be scanned before (2, 1) ∈ L2.1.

• L2.2 99K L2.3
Analogous for i = 5: (5, 2) ∈ L2.2 has to precede (5, 3) ∈ L2.3.

• L2.1 and L2.3 are incomparable
This is no constraint; both L2.1 99K L2.3 and L2.3 99K L2.1 are possible.

We choose the order L2.2 99K L2.1 99K L2.3. Note that L2.2 99K L2.3 99K L2.1 would
be legal, too.
Figure 5 summarizes the intermediate results so far. It contains the hierarchy of sorted

partitions including their associated statements. The �nal step is to generate the target
code which is shown in Figure 6. In our example, this is fairly straightforward.

L1: {i | 0 <= i <= 1, i <= N} ::

L1.1: {i,j | 0 <= j <= 2} ::

S1;

L2: {i | 2 <= i <= N } ::

L2.2: {i,j | 0 <= j <= 2, j <= i-2} ::

S1;

S2;

L2.1: {i,j | 1 <= j <= 2, i-1 <= j} ::

S1;

L2.3: {i,j | 3 <= j <= N, j <= i-2} ::

S2;

Figure 5: Sorted partitions

⇒

for i=0..min(1, N)

for j=0..2

S1;

end

end

for i=2..N

for j=0..min(2, i-2)

S1;

S2;

end

for j=max(1, i-1)..2

S1;

end

for j=3..min(N, i-2)

S2;

end

end

Figure 6: Target code

11

A general approach is to solve the loop descriptions for the associated loop variable.
The resulting lower and upper bounds de�ne the loop bounds one-to-one. Additional
constraints must be included as additional guards. The body of the loop is a composition
of all its associated statements. Consider this small example:

Li : {i | p− i ≥ 0 ∧ i− 2 ≥ 0 ∧ p = 2i + 1 ∧ p ≥ 3} :: S

is equivalent to
Li : {i | 2 ≤ i ≤ p ∧ p = 2i + 1 ∧ p ≥ 3} :: S

which can be transformed into 3

for i=2..p

if p == 2*i + 1 && p >= 3 then

S;

end

end

Quilleré describes several extensions of the algorithm, for example:

• Elimination of redundant loop bounds implied by the context (i.e., by its surround-
ing loops)

• Elimination of guards (at the expense of increased code size)

• Support for non-unimodular mappings

3. Necessary Non-linear Extensions

In this section, we demonstrate how the basic steps of the Quilleré algorithm can be
generalized to allow non-linear parameters. We start with the projection phase, which
can be solved using quanti�er elimination. After this, we continue by extending the
partitioning step. We will see that decision trees can be often avoided and we will discuss
the assets and drawbacks of this approach. Finally, we present a generalized algorithm
for topological sorting, which turns out to be the most expensive operation.

But �rst, let us agree on some conventions used in this section:

• A domain is a �nite union of polyhedra.

• Our implementation contains a module Domain.hs, which provides basic operations
on domains with non-linear parameters (e.g., intersection, union, complement, dis-
joint union). These operations are needed for the extensions discussed in this
section.

Because there is a danger of confusion, we will use typewriter font (�Domain�) when
we refer to the data type in our implementation and a normal font (�domain�) when
we refer to a �nite union of polyhedra.

3 As the guard p ≥ 3 does not depend on i, it is also possible to move it before the for loop. Note that
this is not possible for the other guard p = 2 · i + 1.

12

3.1. Projection

Given a polyhedron P with n dimensions, we want to project P onto the �rst d dimensions
(where d < n):

proj{1,...,d}(P) = {(c1, . . . , cd) | ∃cd+1 · · · ∃cn ((c1, . . . , cn) ∈ P)}

Even though the result is a polyhedron for every choice of its parameters, these pa-
rameters will generally introduce case distinctions. One way to deal with them, is to use
decision trees. For example, by using an extended version of Fourier-Motzkin elimina-
tion [Grö03, section 4.2.1], it is possible to generate a decision tree where all leaves are
single polyhedra.
The alternative is to relax the restriction that the result must be a polyhedron, but to

allow domains (with possibly empty polytopes in the description) instead. Note that the
above de�nition of the projection of a polyhedron can be directly expressed as �rst-order
formula. After applying quanti�er elimination we obtain a formula describing the result
of the projection.
Since the task of quanti�er elimination is to �nd an arbitrary quanti�er-free formula

that is equivalent to the input formula, it will generally not return a conjunction of
inequalities. That means, the formula does not describe a single polyhedron, but a
domain. No decision tree is generated, as the case distinctions are �hidden� inside the
formula.
The conversion between a domain represented as a �rst-order formula and a system of

inequalities will be discussed in section 4.1. Note that every domain can be represented
as a �rst-order formula, but the reverse direction is not always possible.
However, we should keep clearly in mind that the �nal code generation accepts only

polyhedra. That means, we can use domains for intermediate results as long as the input
of the code generation are polyhedra. For this reason, the overview shown in Figure 7,
contains an additional step, called disjoint union, which follows the partitioning. It will
be discussed in section 3.3.

Remarks:

• Since each domain can be represented as a formula, the projection is not only legal
for polyhedra, but also for domains. Therefore, the input systems of our extended
Quilleré algorithm can be domains as well.

Example:

Consider S2 from the previous Quilleré example (shown in Figure 3):

{i, j | i ≤ N ∧ 0 ≤ j ≤ i− 2} :: S2

Let us project onto the i-dimension of S2 using quanti�er elimination. First, we formu-
late the problem using �rst-order logic. As we want to project onto the dimension i and

13

Input

Projection

Partitioning

all
dimensions

finished

Topological sorting

yes

no

[Domain]

[Domain]

[Polyhedron]

[Polyhedron]

Code generation

Disjoint Union

[Polyhedron]

Figure 7: Illustrates the input and output of each basic step of the extended Quilleré
algorithm. The square brackets denote lists (i.e., [Polyhedron] is a list of poly-
hedra). Only the topological sorting and the code generation will increase the
decision tree.

14

the parameter N , we have to eliminate all other dimensions. That means, the existence
quanti�er has to bind j.

∃j (i ≤ N ∧ 0 ≤ j ∧ j ≤ i− 2)

which is equivalent to
2 ≤ i ≤ N

3.2. Partitioning

Given a list of domains D1, . . . , Dn with non-linear parameters, we want to compute a
partitioning into disjoint domains D̃1, . . . , D̃m, so that:

(i) D̃1 ∪· · · · ∪· D̃m = D1 ∪ · · · ∪Dn

(which implies that {D̃1, . . . , D̃m} are pairwise disjoint)

(ii) ∀i ∈ {1, . . . ,m} ∀j ∈ {1, . . . , n} (D̃i ∩Dj 6= ∅ =⇒ D̃i ⊆ Dj)

Each domain D̃i is associated with a list of all domains that are a superset of D̃i, inde-
pendent of the choice of the parameters. To avoid additional case distinctions, we do not
require D̃i to be non-empty.
Let us illustrate the idea of the extended algorithm with a simpli�ed version (written

in Haskell notation):

partition : : [Domain] −> [(Domain , [ID])]
partition ds = rec i n i tUn i v e r s e ds
where

i n i tUn i v e r s e = unionsD ds
rec un ive r s e [] = [(un iverse , [])]
r e c un ive r s e (x : xs) =

l et withX = un ive r s e ' in te r sec tD ' x
withoutX = un ive r s e ' complementD ' x

in addID (rec withX xs) ++ rec withoutX xs

Explanation:

• Each recursive call of rec processes one Domain x and partitions the universe, which
is initialized with D1 ∪ · · · ∪Dn, into two regions:

1. withX = universe ∩ x

2. withoutX = universe \ x

These regions are partitioned recursively and the results are concatenated.

• addID:
As withX is included in x, we need to add the identi�cation (ID) of the Domain

x to the result of the partitioning of withX. However, since it does not concern
non-linear extensions, the details are not important in this context.

15

• The algorithm uses three basic operations provided by the Domain module:

� intersectD :: Domain → Domain → Domain

Computes the intersection of two domains.

� complementD :: Domain → Domain → Domain

Computes the complement of two domains.

� unionsD :: [Domain] → Domain

Computes the union of a non-empty set of domains. This function is a gener-
alization of unionD :: Domain → Domain → Domain.

All functions work for domains with non-linear parameters. They can be imple-
mented using the formula representation of the Domains, which is described in sec-
tion 4.1. Let D1, . . . Dn be Domains represented by the formulas Φ(D1), . . . ,Φ(Dn):

D1 `intersectD` D2 ↔ Φ(D1) ∧ Φ(D2)
D1 `complementD` D2 ↔ Φ(D1) ∧ ¬Φ(D2)
unionsD [D1, . . . , Dn] ↔ Φ(D1) ∨ · · · ∨ Φ(Dn)

Remarks:

• The algorithm does not generate a decision tree. As a consequence, the domains
returned by the algorithm might be empty for certain choices of the parameters.
This is not a problem here, as the topological sorting algorithm does not require
that all domains are non-empty.

• Further optimizations are possible, for example, rec can skip the recursive calls if
the universe is already empty. Note that it must be empty for all possible choices
of the parameters. Alternatively, a decision tree could be used to decide whether
the universe is empty.

3.3. Disjoint Union

Before we can proceed with the topological sorting, it is necessary to assure that all
domains returned by the partitioning, are connected. Let us illustrate the problem and
its solution with a small example. Suppose we want to partition two domains D1 and
D2 shown in Figure 8:

D1 : {i | 1 ≤ i ≤ n}, D2 : {i | 3 ≤ i ≤ 4}

By applying the partition algorithm from the previous section, we obtain four parti-
tions:

• A : D1 ∩D2 (containing D1 and D2)

• B : D1 \D2 (containing only D1)

16

1

iD1
D2

2 3 4 n...

partition B partition A partition B

Figure 8: Shows two domains D1 and D2, which are partitioned into the domain A and
the non-connected domain B (context: n ≥ 5).

• C : D2 \D1 (containing only D2)

• D : ∅ (containing neither D1 nor D2)

Obviously, D can be removed, because it is empty for all choices of the parameters. In
this example, we will additionally assume that n ≥ 5 holds, so C can be removed as well,
since the universe becomes 1 ≤ i ≤ n, which is D1. Thus, only A and B remain:

A : {i | 3 ≤ i ≤ 4}, B : {i | 1 ≤ i ≤ 2 ∨ 5 ≤ i ≤ n}

Note that B is not connected. Therefore, it is not possible to determine a legal topological
sorting for A and B. We can verify that by refuting all possible orders:

1. A 99K B is not legal, since 2 ∈ B must be scanned before 3 ∈ A.

2. B 99K A is not legal, since 4 ∈ A must be scanned before 5 ∈ B.

As only connected domains can be topologically sorted, we have to separate B into a
set of connected domains {B1, . . . , Br}, so that B = B1 ∪· · · · ∪· Br. If we additionally
demand that all Bi are polyhedra, we bene�t in two ways:

1. In contrast to domains, a polyhedron is always connected (independent of the
choices of parameters).

2. As pointed out earlier in section 3.1, the �nal code generation accepts only poly-
hedra (i.e., the conversion can only be delayed, but not avoided).

The algorithm to compute a disjoint union for polyhedra with non-linear parameters
can be found in the literature [Grö03, see disj (section 4.3.3)]. It is directly based on
quanti�er elimination and does not generate a decision tree.

Returning to our example, B can be split into two disjoint polyhedra B1 = {i | 1 ≤
i ≤ 2} and B2 = {i | 5 ≤ i ≤ n}, so that B = B1 ∪· B2. As the second partition A is
already a polyhedron, there is no need to separate it.
Now we can compute a topological sorting of the partitions, namely B1 99K A 99K B2.

In the next section, we will present the sorting algorithm.

17

3.4. Topological Sorting

Let {D1, . . . , Dn} be set of partitions with non-linear parameters satisfying the following
preconditions:

(i) Each domain Di must be connected.

(ii) {D1, . . . , Dn} must be pairwise disjoint.

Note that the results of the partitioning 3.2, on which the disjoint union algorithm 3.3
has been applied, satisfy both conditions. (i) holds, as each Di is actually a polyhedron,
in particular it is connected. (ii) holds, because the disjoint union algorithm only re�ned
the results of the partitioning algorithm, thus its output {D1, . . . , Dn} is still a set of
partitions, which is also pairwise disjoint.
Before we can present the generalized algorithm for the topological sorting, we have

to solve the subproblem of deciding whether D1 can be sorted before D2 with respect to
the lexicographic order. Note that we consider only the current dimension d, because we
assume that the previous dimensions 1, . . . , d− 1 are already sorted.

D1 E D2 (i.e., D1 can be sorted before D2) if and only if

∀x1 · · · ∀xd ∀y1 · · · ∀yd(
(Φ(D1)︸ ︷︷ ︸
(x1,...,xd)∈D1

∧ Φ(D2)︸ ︷︷ ︸
(y1,...,yd)∈D2

∧ x1 = y1 ∧ · · · ∧ xd−1 = yd−1) =⇒ xd ≤ yd

)
Then it is possible to compute a topological order for the domains D1 and D2. We
distinguish four cases:

1. D1 E D2 ∧ ¬(D2 E D1) implies D1 99K D2 (i.e., D1 must be scanned before D2)

2. ¬(D1 E D2) ∧ D2 E D1 implies D2 99K D1

3. D1 E D2 ∧ D2 E D1 both orders are valid (D1 99K D2 as well as D2 99K D1)

4. ¬(D1 E D2) ∧ ¬(D2 E D1) cannot be reached

This leads to the decision tree shown in Figure 9. Now we are ready to extend the
algorithm from two domains to n domains D1, . . . , Dn:

Algorithm (Sketch):

1. Generate a decision tree, whose leaves are directed acyclic graphs G = (V,E):

• V = {1, . . . , n} (One vertex for each domain D1, . . . , Dn)

• E = {(i, j) ∈ V 2 | Di E Dj ∧ ¬(Dj E Di)}
(Add an edge from Di to Dj if Di must be scanned before Dj . Note that each
call to E returns a condition, which may lead to a new branch in the tree.)

2. Apply a (standard) topological sorting on each leaf of the decision tree (i.e., on
each graph).

18

D1ED2

D1D2 D1D2

not D1ED2

not D2ED1D2ED1
D2D1

Figure 9: Decision tree to determine a topological order of the domains D1 and D2.

Remarks:

• The termination of the algorithm is guaranteed, as there are at most n2 edges to
test and each test can only lead to one additional decision (add edge: yes/no).
Thus, the resulting decision tree cannot contain in�nite paths.

• As the second step is signi�cantly faster than the �rst step, it is important to
minimize the number of comparisons (i.e., calls to E).

• Some simple optimizations used in our implementation:

� Combine the test, whether the edge Di 99K Dj , Dj 99K Di or none of them
should be added (as illustrated in the decision tree from Figure 9).

� Use the transitivity of the edges to reduce the number of tests.

� Exclude all edges that would lead to a cycle when added.

Nevertheless, the complexity of the algorithm remains O(n2) calls of E, where n is
the number of domains. The worst case occurs when the resulting graph contains
no edges, because none of the above-mentioned optimization will work.

19

• If the graph contains only a few nodes, it becomes likely that two arbitrary domains
are incomparable, that means every order is legal. This could be used to apply a
divide-and-conquer approach:

1. Partition the set of domains {D1, . . . , Dn} into two sets P1 = {Di1 , . . . , Dir}
and P2 = {Dir+1 , . . . , Din}, so that each X ∈ P1 is incomparable to each
Y ∈ P2, that means X E Y and Y E X.

2. Sort P1 and P2 independently and concatenate the results.

For example, if r = n
2 then the number of comparisons reduces from n2 to 2 · r2,

which is n2

2 . It approximates n · log n if applied recursively (assuming r = n
2 on

average).

Since sparse graphs occurred frequently in our tests, future work might examine
heuristics to �nd such a partition e�ciently.

3.5. Code Generation

The �nal step is to generate code for the resulting loop nests. The original approach
was to solve each loop description for its associated loop variable, which yields the loop's
upper and lower bounds.
However, as the coe�cients of the variables are no longer constants, it is more di�cult

to solve the inequalities, because it is necessary to know the sign of the coe�cient. By
using a decision tree, we can avoid this problem.
Let us illustrate it with a small example:

L.1 : {i | 0 ≤ i ≤ 10, n · i ≤ m} :: S

To solve L.1 for the variable i, we have to divide the second inequality by the parameter
n (or substitute n if it is zero). Thus, we have to distinguish three cases (n > 0, n = 0,
n < 0) leading to the decision tree shown in Figure 10.

3.6. Example

Let us test our implementation of the extended Quilleré algorithm with the introductory
example 1.1, which contains one parameter M . First, we will make no assumptions on
M . The result is a decision tree with 12 leaves, where each leaf contains the loop nests
for that speci�c case. However, in practice you often have additional knowledge, for
instance, M ≥ 1, which we will call the context. It can be used to reduce the number
of leaves and simplify their included inequality systems. This will also be discussed in
section 4.2.
Suppose we know that M is an integer between 1 and 100. We obtain the simpli�ed

decision tree illustrated in Figure 11.

20

0≤i≤10,
0≤m

n>0 n=0

0≤i≤10,
i≤⌊ ⌋

n<0

m
n—

0≤i≤10,
i≥⌈ ⌉mn—

↓
for i=0..min(10,floor(m/n))

S;

↓
if (m >= 0) {

for i=0..10

S;

}

↓
for i=max(0,ceil(m/n)..10)

S;

Figure 10: The decision tree, which resulted from solving the loop description L.1 for the
variable i. Each of the leaves can be straightforward translated to the target
code shown below.

21

M≥6 M<6

M≥7 M=6 M>1M=1

M≤10 M>10
654

M=11M≥12

32

1

Figure 11: The simpli�ed decision tree for the introductory example (simpli�ed with the
context M ∈ {1, . . . , 100}). Each box contains the loop nests resulting from
the extended Quilleré algorithm.

Interpretation (of the decision tree shown in Figure 11):

• The decision tree distinguishes six classes (depending on the parameter M):

� 1 if M ∈ {7, 8, 9, 10}

� 2 if M ∈ {12, . . . , 100}

� 3 if M = 11

� 4 if M = 6

� 5 if M = 1

� 6 if M ∈ {2, 3, 4, 5}

• Let us take a closer look at the content of box 1 . Its inequality systems have been
simpli�ed using its associated context M ∈ {7, 8, 9, 10}.

L1: {t | 0 <= t <= 5} ::

L1.1: {t,r | r = 0} ::

S1;

S3;

22

0 5 6 M-1 M 10 11 floor(100/M) + M-1

100 mod M

M-1

t

r

L1.1 (S1,S3) L2.1 (S2,S3) L3.1 (S2,S4)

L4.1 (S4)L3.3 (S4)

1

Figure 12: Illustration of the resulting loop nests with their statements for the context
M ∈ {7, 8, 9, 10}.

L2: {t | 6 <= t <= M-1 } ::

L2.1: {t,r | r = 0} ::

S2;

S3;

L3: {t | M <= t <= 10 } ::

L3.1: {t,r | r = 0} ::

S2;

S4;

L3.2: {t,r | false } ::

S2;

L3.3: {t,r | 1 <= r <= M-1 } ::

S4;

L4: {t | 11 <= t <= floor(100/M) + M-1 } ::

L4.1: {t,r | 0 <= r <= M-1, r <= M^2 - M + 100 - M*t} ::

S4;

Note that the last inequality r ≤ M2 − M + 100 − M · t is only relevant if t is
maximal, which is when t =

⌊
100
M

⌋
+ M − 1. In that case, the inequality could be

further simpli�ed:

r ≤ M2 −M + 100−M · t

= M2 −M + 100−M ·
(⌊

100
M

⌋
+ M − 1

)
= M2 −M + 100−M ·

⌊
100
M

⌋
−M2 + M

= 100−M ·
⌊

100
M

⌋
= 100 mod M

23

The complete target code is shown in Appendix B. However, it is less optimized than
the loop descriptions in this section, which were manually simpli�ed to improve the
readability. Thus, many of the guards and bounds in the code could be removed.

4. Implementation

4.1. Simultaneous Matrix/Formula Representation

Each Domain stores two equivalent descriptions of their associated domain internally:

1. List of matrices (i.e., inequality systems representing a union of polyhedra4)

2. Logical formula

It depends on the situation, which representation is more useful. In general, we use
formulas for intermediate results, especially when the external logic tools are involved
(which is most of the time). But on some occasions, when we need more control, it is
preferable to work on the list of matrices. For instance, during the topological sorting,
where all domains must be connected, we assure that each domain is a polyhedron (i.e.,
its list of matrices has only a single entry).
First, let us illustrate how to convert between these two representations. As a conven-

tion, we name variables x1, . . . , xn and parameters p1, . . . , pm.

List of matrices → Formula Suppose we want to compute a describing formula Φ(D)
for a given domain D. As a domain is a �nite union of polyhedra, we can break
down the problem:

Φ(D) = Φ(P1 ∪ · · · ∪ Pr) = Φ(P1) ∨ · · · ∨ Φ(Pr)

Each polyhedron can be described by a conjunction of inequalities. Note that the
resulting formula Φ(D) is in disjunctive normal form (DNF) without negations and
contains only weak inequalities.

Formula → List of matrices The opposite direction is more complicated, as formulas
are more expressive than our inequality systems, resulting in two necessary restric-
tions for the input formula Φ:

1. The variables x1, . . . , xn may only appear as linear expressions. So all terms
in the original formula Φ can be written as α0 + α1x1 + · · ·+ αnxn, where αi

are arbitrary polynomials in the parameters.

Note that αi must not contain variables. As a consequence, the terms x2
1 and

x1 · x2 are invalid, but p2
1p

3
2x1 + p2x2 + 3p2 is permitted.

4 We neither require that the polyhedra are pairwise disjoint nor that each polyhedron is non-empty.

24

2. We consider only integral points. That allows us to eliminate strict inequalities
(without introducing additional negations), since z > 0 ⇐⇒ z ≥ 1 holds
for z ∈ Z.
If there are monomials with rational coe�ents, we �rst have to make them
integral (by multiplying the inequality with their least common denominator).
For example, 3

2x1 + 4
3x2 > 0 will be transformed to 9x1 + 8x2 ≥ 1.

Returning to the problem, we compute a disjunctive normal form for Φ and elim-
inate all negations and strict inequalities. Note that this expanded formula is of
the same form as Φ(D) resulting from the previous conversion List of matrices

→ Formula. By reversing the steps above, we obtain the associated domain D.

It is possible that the logic tools that we are using, produce formulas, which are not
according to the restrictions above, even though they describe a domain. That means
there exists an equivalent formula respecting the restrictions.
For example, the formulas x = 1 ∨ x = −1 and x2 = 1 are equivalent in R, but only

the �rst formula is linear in x. But as the second formula is smaller, it may be preferred
by the external tools. To solve that problem, we use a tool named Slfq [SLFQ], which
is a simpli�er and degree decreaser. It guarantees that the polynomials in the simpli�ed
formula are of minimal degree (i.e., a formula with linear variables). In our example, the
formula found by Slfq is x ≥ −1 ∧ x ≤ 1 ∧ (x = 1 ∨ x = −1), which can be further
simpli�ed to x = 1 ∨ x = −1.

Remarks:

• We use lazy evaluation to eliminate the maintenance overhead, that means each
representation is only evaluated when it is actually needed. Let us illustrate this
idea with an example, which describes a common scenario:

1. Initialize a Domain X1 with a list of matrices.

2. Apply a sequence of operations that work only on the formula representation
(e.g., partitioning, simpli�cation, projection).

Let Xn be the �nal result and X2, . . . , Xn−1 the intermediate results, which
are not used elsewhere.

3. Apply an operation that requires the list of matrices of Xn (e.g., display them).

X1 and Xn require that both representations have to be evaluated, but the inter-
mediate results X2, . . . , Xn−1 do not use their list of matrices, consequently these
are not evaluated. This behavior is shown in Table 1.

• The computation of a disjunctive normal form can theoretically lead to an expo-
nential growth of the resulting formula. Although we have not observed it in our
examples, it is still preferable to avoid switching between di�erent representations
too often.

25

representation X1 X2 · · · Xn−1 Xn

list of matrices initialization not evaluated not evaluated conversion
↓ ↑

formula conversion → computation→ · · · → computation→ computation

Table 1: Shows which representations of the Domains X1, . . . , Xn have to be evaluated
(either by initialization, conversion or computation). Arrays denote the �ow of
control.

• Some operations can be e�ciently computed in both representations, which can be
used as an optimization to save conversions.

For example, let D1 and D2 be two Domains, which are represented

� by their formulas Φ(D1) and Φ(D2).

� by their list of inequality systems represented as matrices {P (1)
1 , . . . , P

(1)
n } and

{P (2)
1 , . . . , P

(2)
m }.

The union D1 ∪D2 will be simultaneously (but lazy) computed in both represen-
tations:

Formula Φ(D1) ∨ Φ(D2)

List of matrices {P (1)
1 , . . . , P

(1)
n , P

(2)
1 , . . . , P

(2)
m }

• Each decision tree, whose leaves are Domains, can be expressed as a single �rst-
order formula, which can in turn be converted to a Domain. Although this is not
practical, as the resulting formula grows too big, it explains how decisions can be
�hidden� inside a Domain (cmp. section 3.1).

4.2. Simpli�cations

As we have seen in the previous section, formulas are used for intermediate results. It is
important to simplify them, since the external logic tools work well on small formulas, but
may fail if the formulas grow too big. The quality of the simpli�cation can be improved,
when we have additional context information. In this section, we will examine two basic
strategies:

1. Simpli�cation of the intermediate results.

2. Simpli�cation of the �nal decision tree (i.e., reducing its size).

Note that both strategies are not mutually exclusive, but they can be combined. Let us
now discuss each strategy on its own, starting with the �rst one.
Suppose we have a domain D, which is represented by a logical formula Φ(D), and a

context C. This context is represented as a conjunction of logical formulas containing
information about the parameters used in D (e.g., p > 0 ∧ p ≤ q).

26

Although simplifying the intermediate results involves additional cost, it can help to
reduce overall consumed time. But much depends on the simpli�er that is being used,
so it is di�cult to make general statements. The main criterion for a suited simpli�er is
that it simpli�es fast, whereas it is less important that it simpli�es smart.
Simpli�ers that are degree decreasers (e.g., Slfq) should be handled with care, as it

is possible that they increase the number of polyhedra in the intermediate results. For
instance, let D be a domain that can be described by a single polyhedron P1 (where x is
variable and p is a parameter):

Φ(D) = Φ(P1) = {x | x = p ∧ p2 = 1}

which is equivalent to

Ψ = {x = p ∧ (p = 1 ∨ p = −1)} = {x | (x = 1 ∧ p = 1) ∨ (x = −1 ∧ p = −1)}

Although the second formula Ψ could be considered �easier� than the original formula
Φ(D), it is no longer a conjunction. That means the algorithm from the previous sec-
tion 4.1 would convert it into a domain D̃ consisting of two polyhedra P̃1 and P̃2:

D̃ = P̃1 ∪ P̃2, where P̃1 = {x | x = 1 ∧ p = 1} and P̃2 = {x | x = −1 ∧ p = −1}

As the topological sorting 3.4, which is the most time consuming part of the extended
Quilleré, involves O(n2) comparisons with n being the number of polyhedra, we end
up with additional comparisons. It is likely that it also leads to additional leaves in the
decision tree. The consequence could be a worse performance than without simpli�cation.
However, if we have the non-empty context C = {p > 0}, we could simplify the

original formula Φ(D) to {x | x = 1}, which is certainly the best possible representation
in that case. Note that this last simpli�cation is not trivial, so you cannot expect that a
simpli�er, which is optimized for speed, is able to �nd it.
Nevertheless, it is advantageous to reduce the degree of the polynomials in the formula

when it improves the performance of the logic tools. For instance, there are specialized
algorithms for quanti�er elimination of linear [Wei88] and quadratic formulas [Wei97].
In the linear case, we could even use some functionality of PolyLib [PolyLib], which is
a library for linear-parameterized polyhedra and therefore an order of magnitude faster
than the general-purpose logic tools.

Next, let us analyze the second strategy, which concerns the simpli�cation of the �nal
decision tree by removing irrelevant subtrees (see section 2.2). From every eliminated
subtree, we bene�t in two ways:

1. The overall computation time is reduced, since no code has to be generated for the
removed subtrees. The time needed for deciding whether a subtree can be cut is
not relevant (compared to the total time).

2. The generated target code becomes more e�cient, because the decision tree con-
tains less case distinctions, which would otherwise be evaluated at runtime.

27

Note that only the �nal decision tree needs to be simpli�ed, which requires that the
evaluation of the intermediate decision trees is delayed (lazy evaluation).
In contrast to the simpli�cation of the intermediate results, the simpli�cation of the

�nal decision tree is generally not time critical. As each removed subtree will drasti-
cally reduce the total time, we should use all available context information to detect all
branches that can be eliminated.

Further background information on the simpli�cation of quanti�er-free formulas can
be found in the literature [DS97].

4.3. Experiments

In this section, we will present the results of our experiments on our introductory ex-
ample 1.1. To get a better understanding of the impact of the logic tools, we tested the
extended Quilleré algorithm with di�erent simpli�ers and context information. We ran
the experiments on a Dual Core AMD OpteronTM with 2200 MHz and 2 GB RAM. The
results are collected in Table 2, which reads from left to right as follows:

� context 1 is the context that is available to the simpli�er of the intermediate results.
It will be ignored if the simpli�cation of the intermediate results is turned o�.

� context 2 is used by the tree simpli�er to reduce the size of the �nal decision tree
by eliminating all leaves that are redundant in terms of this context. Note that
the tree simpli�er should not be confused with the simpli�er of the intermediate
results.

� The formula simpli�er that is used to simplify the intermediate and �nal results:
Redlog 3.0 In combination with Reduce 3.8
Slfq 1.9 In combination with Qepcad B 1.44
none Turns o� the simpli�cation of intermediate results

(but not the simpli�cation of the decision tree)

� The total computation time.

� The number of leaves of the �nal decision tree.

� The number of lines of target code.

� expr counts the number of expressions in the target code, which is the sum of all
lower and upper bounds and the number of guards.

The experiments show that the tree simpli�er pro�ts from additional context informa-
tion reducing both the total computation time and the complexity of the target code.
It is also important use a formula simpli�er, at least once before the code generation.
Otherwise the target code contains a lot of redundant lower and upper bounds.
Surprisingly, the simpli�cation of the intermediate results is less e�ective when the

simpli�ers are called with a non-empty context. The problem is that it depends on the

28

context 1 context 2 formula time #leaves #lines #expr
simpli�er

� � none 447 sec 12 468 1753
� � Redlog 625 sec 12 468 902
� � Slfq 496 sec 12 474 603
� M ≥ 1 none 379 sec 10 427 1658
� M ≥ 1 Redlog 555 sec 10 427 847
� M ≥ 1 Slfq 425 sec 10 431 554

M ≥ 1 M ≥ 1 Redlog 635 sec 13 586 1079
M ≥ 1 M ≥ 1 Slfq 588 sec 13 562 732
� 1 ≤ M ≤ 100 none 340 sec 9 401 1573
� 1 ≤ M ≤ 100 Redlog 514 sec 9 401 807
� 1 ≤ M ≤ 100 Slfq 380 sec 9 403 521

1 ≤ M ≤ 100 1 ≤ M ≤ 100 Redlog 598 sec 12 512 984
1 ≤ M ≤ 100 1 ≤ M ≤ 100 Slfq 543 sec 12 512 688

� M ∈ {1, . . . , 100} none 388 sec 6 258 1013
� M ∈ {1, . . . , 100} Redlog 506 sec 6 258 515
� M ∈ {1, . . . , 100} Slfq 378 sec 6 260 337

M ∈ {1, . . . , 100} M ∈ {1, . . . , 100} Redlog 699 sec 6 274 534
M ∈ {1, . . . , 100} M ∈ {1, . . . , 100} Slfq time-out � � �

� M = 7 none 84 sec 1 45 185
� M = 7 Redlog 115 sec 1 45 95
� M = 7 Slfq 101 sec 1 45 61

M = 7 M = 7 Redlog 39 sec 1 55 98
M = 7 M = 7 Slfq 60 sec 1 55 71

Table 2: A summary of experiments with our introductory example. Context 1 is the
context information that is available to the simpli�er of the intermediate results,
while context 2 is used to reduce the size of the �nal decision tree. Each line
shows the elapsed time, the number of leaves of the �nal decision tree, the
number of lines of target code and the number of expressions in this code.

29

application, whether a formula Φ1 is �simpler� than an equivalent formula Φ2. Some so-
phisticated simpli�cations can even be harmful if they increase the number of polyhedra
(e.g., degree reduction), as the number of case distinctions might increase as well. How-
ever, since we used general-purpose formula simpli�ers, we cannot conclude that context
information is a disadvantage for the simpli�cation of the intermediate results.

Remarks:

• At �rst glance, a context like M = 7 does not seem to be realistic in a scenario
with non-linear parameters. However, it might appear deep inside the decision tree,
where we have additional context information from the conditions of the tree.

For example, in order to solve the inequality i · (M − 7) > 0 for i, we obtain three
new branches: M > 7, M < 7 and M = 7. The latter branch can be simpli�ed
under the context M = 7 (e.g., by substituting all occurrences of M by 7).

• The context M ∈ {1, . . . , 100} implies that M ∈ Z, thus it is more restrictive than
1 ≤ M ≤ 100, which requires only that M ∈ R. Since M ∈ Z cannot be expressed
by �rst-order formulas in the real numbers, we used a �nite case distinction instead,
namely M = 1 ∨ · · · ∨M = 100. However, the resulting formula is very big, so it
does not work with Slfq.

Although this approach is not recommendable for real-work examples, it shows that
the results could be improved when the tree simpli�er can use the fact that M is
an integer. The reason is that decision trees typically contain redundant leaves,
which can only be reached if at least one of the parameters is not an integer.5

5. Conclusions

This work shows that it is feasible to extend the polytope model to allow inequality sys-
tems with non-linear parameters. We demonstrated how an algorithm, which is restricted
to linear parameters, can be extended. We gave the Quilleré algorithm as an example,
but other components of the polytope framework could also be extended, using the same
techniques.
Although our examples are very simple, since they involved only a few variables and

parameters, further optimizations are possible to increase the range of application. As
pointed out in the introduction, there are two basic approaches to extend algorithms.
In this work, we expressed the critical steps of the algorithm directly using �rst-order
logic. Note that we deviated from the original algorithm, as we generate domains in the
projection phase, but not polyhedra.6 From an abstract point of view, this is only an

5 It is not possible to construct a general tree simpli�er that is capable of eliminating all redundant
leaves, because it is undecidable whether a given condition, which can be any Diophantine equation
of the form f(p1, . . . , pn) = 0, has an integral solution (Hilbert's tenth problem).

6 As pointed out in section 3.1, it is also possible to use an extended version of Fourier-Motzkin for the
projection. In that case, we would receive a decision tree of polyhedra instead of a single domain.
Although we are closer to the original Quilleré algorithm, it is likely that the �nal target code will
contain more case distinctions.

30

implementation detail, as we revert to polyhedra after the partitioning. The advantage
is that between these two steps we are able to use the full expressiveness of the �rst-order
logic, so we can take more advantage of the logic tools.
The alternative would be to strive for an accurate translation of each step of the linear

algorithm and to insert a case distinction, whenever information about the parameters
are needed that are unknown at compile time [Grö03, section 4.2]. But as the original
algorithm was tuned for linear parameters, it is assumed that some optimizations are no
longer e�ective in the generalized algorithm.
In both cases, the performance depends heavily on the logic tools that are being used.

Since they were mainly developed for general purpose use, they cannot take advantage
of the speci�c situation. For instance, the tools could distinguish between variables
and parameters to assure that all variables appear only as linear expressions. This
would eliminate the need for external degree decreasers. Additionally, a more specialized
simpli�er could minimize the number of polyhedra by producing formulas that are in
disjunctive normal formula, where the number of disjunctions is minimal. As you can
expect further improvements in the area of symbolic computing, it seems realistic that
the generalized polytope model with non-linear parameters could be applied in future
parallelizing compilers.

31

A. Overview of the most important modules

This section contains only a brief overview of some modules that are used in this work.
Further information can be found in the documentation.

A.1. LMath.Logic.Domain

Provides the Domain data type, which represents a union of polyhedra with non-linear
parameters. Here is a overview of the operations that are frequently used in this work:

• Basic operations

� Union of two Domains (unionD)

� Union of a non-empty set of Domains (unionsD)

� Intersection of two Domains (intersectD)

� Complement of two Domains (complementD)

� Simpli�cation of one Domain (simplifyD)

• Extended operations

� Partitioning of a set of Domains (lPartitionD)

� Disjoint union of a Domain into a set of polyhedra (disjointUnionD)

� Topological sorting of a set of Domains (lTopSortD)

� Conversion of a �rst-order formula to a Domain (formulaToDomain)

� Extract the �rst-order formula from a Domain (domainToFormula)

A.2. LMath.Logic.DomainTree

Extends the operations de�ned in LMath.Logic.Domain, which mostly work on Domains,
to expect decision trees of Domains as input.

A.3. LMath.Types.DTree.Merge

Provides functions to merge several decision trees, using a given merge operation (e.g.,
concatenation).

B. Target code

This section contains the target code from example 3.6. The �nal loop descriptions have
been simpli�ed using Slfq, but there are still redundant guards (if-statements) and
upper and lower bounds left, which could be removed as well.

32

for (int t = 0; t <= min(M - 1, 5); t++) {

if (-t + 5 >= 0 && t >= 0) {

for (int r = 0; r <= 0; r++) {

S1;

S3;

}

}

}

for (int t = 6; t <= min(M - 1, 10); t++) {

if (-t + M - 1 >= 0 && t - 6 >= 0) {

for (int r = 0; r <= 0; r++) {

S2;

S3;

}

}

}

if (M - 1 >= 0) {

for (int t = max(ceildiv(M*M - M + 1, M), 6); t <= 10; t++) {

if (t - M >= 0 && -t + 10 >= 0) {

for (int r = 0; r <= 0; r++) {

S2;

S4;

}

}

if (t*M - M*M + M - 1 >= 0 && -t + M - 1 >= 0 && -t + 10 >= 0) {

for (int r = 0; r <= 0; r++) {

S2;

}

}

if (t*M - M*M + M - 1 >= 0 && -t + 10 >= 0) {

for (int r = max(-t*M + M*M, 1); r <= M - 1; r++) {

S4;

}

}

}

}

33

if (M - 1 >= 0 && -M + 100 >= 0) {

for (int t = max(ceildiv(M*M - M + 1, M), 11);

t <= floordiv(M*M - M + 100, M); t++) {

if (-t*M + M*M - M + 100 >= 0 && t - 11 >= 0) {

for (int r = 0; r <= min(-t*M + M*M - M + 100, M - 1); r++) {

S4;

}

}

}

}

34

References

[DS97] Andreas Dolzmann and Thomas Sturm. Simpli�cation of quanti�er-free
formulae over ordered �elds. Journal of Symbolic Computation, 24(2):209-
231, August 1997.

[GFL04] Martin Griebl, Peter Faber and Christian Lengauer. Space-time mapping
and tiling: a helpful combination. Concurrency and Computation: Practice
and Experience, 16(3):221�246, March 2004.

[Grö03] Armin Gröÿlinger. Extending the Polyhedron Model to Inequality Sys-
tems with Non-linear Parameters using Quanti�er Elimination. Diploma
thesis, Universität Passau, September 2003. http://www.infosun.fmi.
uni-passau.de/cl/arbeiten/groesslinger.ps.gz.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In Eike
Best, editor, CONCUR'93, LNCS 715, pages 398-416. Springer-Verlag,
1993.

[Qui00] F. Quilleré and S. Rajopadhye and D. Wilde. Generation of e�cient
nested loops from polyhedra. International Journal of Parallel Program-
ming, 28(5):469�498, October 2000.

[Wei88] Volker Weispfenning, The complexity of linear problems in �elds. Journal
of Symbolic Computation, 5(1&2):3�27, 1988.

[Wei97] Volker Weispfenning, Quanti�er Elimination for Real Algebra � the
Quadratic Case and Beyond. Applicable Algebra in Engineering, Com-
munication and Computing, 8(2):85�101, February 1997.

[PolyLib] http://icps.u-strasbg.fr/polylib/

[QEPCAD] http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

[Redlog] http://www.fmi.uni-passau.de/~redlog/

[Reduce] http://www.zib.de/Symbolik/reduce/

[SLFQ] http://www.cs.usna.edu/~qepcad/SLFQ/Home.html

[C99] ISO/IEC 9899:1999/Cor.1:2001 (E), IO/IEC, 2001.

35

http://www.infosun.fmi.uni-passau.de/cl/arbeiten/groesslinger.ps.gz
http://www.infosun.fmi.uni-passau.de/cl/arbeiten/groesslinger.ps.gz
http://icps.u-strasbg.fr/polylib/
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
http://www.fmi.uni-passau.de/~redlog/
http://www.zib.de/Symbolik/reduce/
http://www.cs.usna.edu/~qepcad/SLFQ/Home.html

	1 Introduction
	1.1 Motivation: Example

	2 Basics
	2.1 Why Non-Linear Parameters?
	2.2 Decision Trees
	2.3 Quilleré's Algorithm for Linear Parameters

	3 Necessary Non-linear Extensions
	3.1 Projection
	3.2 Partitioning
	3.3 Disjoint Union
	3.4 Topological Sorting
	3.5 Code Generation
	3.6 Example

	4 Implementation
	4.1 Simultaneous Matrix/Formula Representation
	4.2 Simplifications
	4.3 Experiments

	5 Conclusions
	A Overview of the most important modules
	A.1 LMath.Logic.Domain
	A.2 LMath.Logic.DomainTree
	A.3 LMath.Types.DTree.Merge

	B Target code

