
Universität Passau
Fakultät für Mathematik und Informatik

Volume Calculation and
Estimation of Parameterized

Integer Polytopes

Diploma Thesis

by
Tilmann Rabl

30. Januar 2006

Supervisor:
Priv. Doz. Dr. Martin Griebl

Co-Supervisor:
Prof. Christian Lengauer, Ph.D.

Abstract

Mathematical models have proved to be useful abstractions in many divisions of com-
puter science. In automatic parallelization the conversion from concrete loop code
to an abstract model such as a polytope allows the use of techniques such as linear
programming, with the benefits of guaranteed correctness and optimal results. These
techniques are, however, often restricted to fixed sized or at most linearly parameter-
ized polytopes. Recent research has overcome this limitation.
We will explain Chernikova’s algorithm (a method used to compute the extremal ver-
tices and rays of a polytope defined by a set of inequalities and equations) and in-
troduce an extension to process non-linearly parameterized polytopes. Based on the
resulting dual descriptions we will show methods to compute the number of integral
points in linearly parameterized polytopes, an algorithm for computing the volume of
non-linearly parameterized polytopes and its application as an estimate of the number
of integral points in polytopes.

iii

iv

Acknowledgments

I would like to thank the people who made this work possible, first of all my tutor
Priv. Doz. Martin Griebl who aroused my interest in loop parallelization, and made
many valuable suggestions. He also gave up valuable time in order to proofread this
thesis. I would like to thank Armin Größlinger for explaining his fascinating method
of quantifier elimination and quick implementations of auxiliary functions. Thanks to
all members of the LooPo Team for interesting and helpful discussions. Joachim Hofer
also proofread this thesis and I am very grateful for that. Furthermore I have to thank
Neil Highnam for straightening out my abuse of the English language. Finally I would
like to thank my family, my parents for supporting my career in many different ways
and especially for never letting me down and last but not least Maria and Maximilian
for giving me love, strength and understanding.

v

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Polyhedra and Polytopes in Automatic Parallelization 1

1.2 Motivating Example . 2

2 Prerequisites 5
2.1 Polyhedra and Polytopes . 5

3 Chernikova’s Algorithm 9
3.1 How to Compute the Dual Representation 9

3.2 Function of Chernikova’s Algorithm 10

3.2.1 Informal Description . 10

3.2.2 Formal Description . 14

3.3 H. Le Verge’s Improvements . 16

3.3.1 New Criteria . 16

3.3.2 Finding General Solutions 17

3.4 Parameterized Polytopes . 20

3.4.1 Linearly Parameterized Polytopes 21

3.4.2 Non-Linearly Parameterized Polytopes 26

3.5 Implementation Details and Conclusion 32

3.5.1 Simple Version . 33

3.5.2 Version with Le Verge’s Enhancements 34

3.5.3 Version for Non-linear Parameterization 36

vii

viii CONTENTS

4 Enumerator Computation 39

4.1 Clauss’ Method . 39

4.1.1 Ehrhart Polynomials . 39

4.1.2 Clauss’ Method . 41

4.1.3 Algorithm Outline . 43

4.1.4 Review . 43

4.2 Using Barvinok’s Decomposition . 45

4.2.1 Generating Functions . 46

4.2.2 Supporting Cones . 47

4.2.3 Triangulating Non-Simplicial Cones 48

4.2.4 Barvinok’s Decomposition 51

4.2.5 Generating Functions for Unimodular Cones 53

4.2.6 Evaluating Generating Functions 54

4.2.7 Extension to Linear Parameters and Review 56

4.3 Fahringer’s Method . 57

5 Volume Computation 59

5.1 Algorithm for the Volume of Polytopes 59

5.1.1 Volume of a Simplex . 59

5.1.2 Triangulation . 60

5.1.3 Volume . 62

5.2 Comparison of Volume and Number of Integral Points 64

5.3 Non-Linear Parameterized Volume Computation 65

5.3.1 Changes on the Algorithm 65

5.3.2 Implementation Details . 66

6 Conclusions 71

Bibliography 73

Index 77

List of Figures

1.1 Program Code and Corresponding Polytope 2

1.2 Tiling of a One-Dimensional Loop. 3

2.1 Cube and its Dual Octahedron . 8

3.1 2-Dimensional Polytope Defined by 5 Hyperplanes 11

3.2 2-Dimensional Polytope with Negative Vertices 18

3.3 Parameterized Hyperplane . 21

3.4 Different Shapes due to Different Parameter Values 22

3.5 Domain Decomposition . 25

3.6 A Line with Non-Linear Parameterization 26

3.7 Decision Tree Node . 28

3.8 Part of a Decision Tree . 31

3.9 Reduced Decision Tree . 31

3.10 Polytope with the Non-Linear Inequality px− y ≥ 2p− 2. 32

4.1 Linear Parameterized Polytopes . 40

4.2 Matrix Multiplication: Code and Intermediate Accesses 44

4.3 One-dimensional polytope with 5 lattice points 46

4.4 Polytope and its Supporting Cones. 47

4.5 Degenerate Polytope and its Non-Simplicial Supporting Cone. 48

4.6 Triangulation of a Non-Simplicial Cone. 50

4.7 Cone and its Polar. 51

4.8 Fundamental Parallelepiped of a Shifted Unimodular Cone. 53

ix

x LIST OF FIGURES

5.1 Simplices of Dimension 1-4. 60

5.2 Tetrahedron . 60

5.3 Triangulation of a Cube . 61

5.4 3-dimensional Polytope . 62

5.5 Triangulation of a Polytope. 64

Chapter 1

Introduction

1.1 Polyhedra and Polytopes in Automatic Parallelization

Single processor solutions reach the limits of possible performance and hardware de-
signers use ever more multi-processor and multi-core systems to overcome this prob-
lem. As the number of processing units rises, the demand for exploiting parallelism
in software grows. A key concept to producing good parallel software is automatic
parallelization. There are various techniques for transforming a sequential to a parallel
program. A very effective technique is the parallelization on the polyhedron model.
In this model a loop nest is seen as multi-dimensional space and statements within the
loops as polyhedra (cf. figure 1.1). Each loop corresponds to one dimension in the
model space and the executions of a statement form a polyhedron: all transformations
are performed on the polyhedra. The target loop code is generated from the polyhedra.
To distribute the program loops effectively over several processors of a parallel com-
puter, cluster or grid efficiently, it is important to know how many executions each
statement will have. In the polyhedron model this means counting the number of inte-
gral points within a polytope. If the number of iterations is parameterized, the size and
shape of the polytope may vary. There are several techniques that take parameters into
account (in the constants of the equations and inequalities which describe polyhedra)
(e.g. [Cla96], [VSB+04]). For many applications this is sufficient.
However, the parallelism found by the polytope model is very finely grained. Poten-
tially, every operation can be distributed to its own processor. Of course this would
be very inefficient, since dependencies between calculations cause communication. In
general, this is much more expensive than the operations themselves. A good com-
promise between distribution and locality is tiling. By tiling we mean the process of
grouping adjacent operations in the form of parallelepipeds [Gri00]. For a universal
solution we need variable tile sizes, in order not to restrict the code to a certain archi-
tecture. We will see in an example in the next section that this introduces parameters
in the coefficients of the variables of the equations and inequalities.

1

2 CHAPTER 1. INTRODUCTION

DO i=0,4
 DO j=0,4

 END DO
 A[i,j]=...

END DO

j

i

Figure 1.1: Program Code and Corresponding Polytope

Motivated by this setting, we will present an algorithm to compute the vertices, rays
and lines of polyhedra with non linear parameters in chapter 3, in chapter 4 we will
show existing techniques to compute the number of integral points in linearly param-
eterized polytopes and finally introduce an estimation for this number based on the
volume of polytopes in chapter 5.

1.2 Motivating Example

In the following example we will demonstrate that we have to deal with non-linear
expressions even in the simplest form of parameterized tiling. This example can also be
found in greater detail in Armin Größlinger’s work about non-linear parameterization
[Grö03]. Consider the following loop:

for i:=0 to n do
A[i]:=f(i);

od

We define that n ≥ 0 and f has no side effects. For each i ∈ {0, . . . , n} the loop
evaluates a function call f(i) and then assigns its value to an array. If we now want
to distribute the program to a parallel computer with p ≥ 1 processors, we partition
the array in tiles of size p and allocate one operation per processor per part. This
is a common round robin or cyclic distribution, it is shown in figure 1.2, where t
denotes the tile number and o the processor number. We can describe this tiling by the
following inequality system:

0 ≤ i ≤ n

0 ≤ o ≤ p− 1
i = p · t + o (1.1)

1.2. MOTIVATING EXAMPLE 3

0 1 3 4 6

0 1

0

5 7

01 2 3 2 31

i=

o=

t=

2

Figure 1.2: Tiling of a One-Dimensional Loop.

We are now interested in the number of tiles T to estimate the work each processor
has to do. We can do this by eliminating the variables o and i from the system. Both
have only constant coefficients, so we won’t come across any case distinctions. First
we substitute o by i− p · t:

0 ≤ i ≤ n

0 ≤ i− p · t ≤ p− 1
(1.2)

Then we eliminate i by solving the inequalities for i

0 ≤ i

p · t ≤ i

i ≤ n

i ≤ p · t + p− 1 (1.3)

and then comparing i’s lower and upper bounds

0 ≤ n

0 ≤ p · t + p− 1
p · t ≤ n

p · t ≤ p · t + p− 1 (1.4)

We predefined n ≥ 0 and p ≥ 1 and hence the inequalities 0 ≤ n and p·t ≤ p·t+p−1
are redundant and can be omitted. We can now solve the remaining inequalities for t,
since we assumed p ≥ 1 we get one distinct system:

1
p
− 1 ≤ t ≤ n

p
(1.5)

The example is very simple and the solution is obvious,

T =
∣∣∣∣
{

t

∣∣∣∣
1
p
− 1 ≤ t ≤ n

p

}∣∣∣∣ =
⌈

n

p

⌉
. (1.6)

However, the inequality system is not linear, since it contains fractions. It shows that
non-linear inequalities actually appear even in simple tasks.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Prerequisites

2.1 Polyhedra and Polytopes

Definition 2.1 (Linear equation) A linear equation is an equation of the form

a1x1 + a2x2 + . . . + anxn = b, (2.1)

where x1, . . . , xn are the variables, a1, . . . , an the coefficients and b the additive con-
stant. In the following, three types of linear equations are differentiated:
Equations with

• real coefficients (e.g. 3x1 + 3.14x2 = 5).

• linearly parameterized coefficients (e.g. 2x1 − 27x2 = 3.5b),
where b is a symbolic constant.

• non-linearly parameterized coefficients (e.g. 13a1x1 − a2x2 = 3.3b), where a1,
a2 and b are symbolic constants.

An equation is in homogeneous form, if its right side is equal to zero,

a1x1 + a2x2 + . . . + anxn − b = 0. (2.2)

Definition 2.2 (Linear inequality) Similar to linear equations, linear inequalities are
inequalities of the form

a1x1 + a2x2 + . . . + anxn ≥ b (2.3)

with the same properties and differentiations as in definition 2.1.

5

6 CHAPTER 2. PREREQUISITES

Notation 2.1 An equation can be represented by two inequalities:

a1x1 + a2x2 + . . . + anxn = b ⇐⇒ a1x1 + a2x2 + . . . + anxn ≥ b
a1x1 + a2x2 + . . . + anxn ≤ b

(2.4)

Notation 2.2 A system of m inequalities in homogeneous form can be written as an
m× (n + 1) matrix A,

A ∗ v ≥ 0, (2.5)

where A may contain symbolic constants. Vector v holds n variables and the additional
constant,

v =

x1
...

xn

1

 . (2.6)

Definition 2.3 (Hyperplane) A hyperplane is an affine subspace of codimension 1,
i.e. a d−1-dimensional subspace in a d-dimensional space. It can be described by one
affine equation.

Definition 2.4 (Half-space) A n−1-dimensional hyperplane divides a n-dimensional
space into two half-spaces, therefore a half-space can be represented by one affine
inequality.

Definition 2.5 (Polyhedron) A polyhedron is a finite intersection of half-spaces.
Thus it can be represented by a finite set of inequalities, i.e. a system of inequali-
ties. This is called implicit representation. We will see an other representation below
(def. 2.10).

Definition 2.6 (Polytope) A polytope is a bounded polyhedron.
The hyperplanes that bound the polytope are called supporting hyperplanes.

Definition 2.7 (Line) A line is a one-dimensional space. It is infinitively long and
can be represented by one affine equation. Lines are sometimes also referred to as
bidirectional rays.

Definition 2.8 (Ray) A ray is a half-line, it has an origin and is infinitively long in one
direction. It can be represented by one affine inequality.

2.1. POLYHEDRA AND POLYTOPES 7

Definition 2.9 (Polyhedral cone) A cone is a set C with the following property

x ∈ C, a ∈ R+ ⇒ ax ∈ C. (2.7)

A cone C is convex if

x, y ∈ C, a, b ∈ R+ ⇒ ax + by ∈ C. (2.8)

A cone C is polyhedral if there exits a matrix A with

C = {x|Ax ≥ 0}. (2.9)

A polyhedral cone is a special form of a polyhedron with only one vertex, the origin.
The representation in 2.9 is called implicit representation. Below polyhedral cones
will simply be referred as cones.
There is another representation, which is dual to the above (cf. [Sch86]), the paramet-
ric representation. A cone can be represented by its lines and rays.

C = {x|
n∑

i=1

xiri +
m∑

j=1

xjlj ∧ (∀i : xi ≥ 0)} (2.10)

where {r1 . . . rn} is the set of extremal rays and {l1 . . . rm} the set of extremal lines
of C. It is possible to convert one representation to the other. This principle is called
cone duality
A cone C is pointed if its set of lines is empty.

Definition 2.10 (Polyhedron - parametric representation) Motzkin showed that a
polyhedron P can be uniquely decomposed in a polytope V and a characteristic cone
C [MRTT53],

P = C + V. (2.11)

As described in equation 2.10 a cone can be decomposed in its extremal rays and its
lines. Combined with equation 2.11 this results in another representation for polyhedra

P = L + R + V (2.12)

where L is P ’s lineality-space generated by the set of lines, R is a pointed cone gener-
ated by the extremal rays and V the polytope, which is the convex hull of P ’s vertices.
This representation is again dual to definition 2.5 (cf. [MRTT53]), analogue to cones
it is called parametric representation.
A polyhedron of dimension n is called degenerate if it contains an extremal vertex that
is the intersection of more than n half-spaces.

8 CHAPTER 2. PREREQUISITES

Figure 2.1: Cube and its Dual Octahedron

Definition 2.11 (Dual polyhedron) Every convex polyhedron has a dual. It is a con-
vex polyhedron whose vertices and facets have complementary positions to the original
polytope’s, i.e. vertices of the dual polyhedron correspond to the facets of the original
and vice versa. The dual of the dual is the original polyhedron. Accordingly, the num-
ber of vertices of the dual polyhedron is equal to the number of faces of the original
plus the number of faces the number of vertices.
An example is the duality between cube and octahedron, which is shown in figure 2.11.

1The octahedron is scaled down in the figure to illustrate the relative position of the vertices

Chapter 3

Chernikova’s Algorithm

As explained in definition 2.5, polyhedra, and polytopes respectively, have two, dual
representations. A polytope can be described as the intersection of a finite set of half-
spaces or as combination of its vertices, rays and lines. To transform one form into
the other Chernikova’s algorithm is often used. Although there are other algorithms
for the same problem (see [MR80]), this one is the common choice, for it can also
process polytopes with vertices with negative coordinates without encoding them in
higher dimensional space.
The first part of this chapter explains how to compute the dual polytope representation,
section 3.2 the principle of Chernikova’s algorithm [Che64, Che65, Che68]. Section
3.3 shows the improvements made by H. Le Verge [Ver94] and the last section 3.4
discusses an extension which allows the computation of polytopes with non-linear
parameters.

3.1 How to Compute the Dual Representation

The basic technique used to compute the vertex representation from the half-space re-
presentation is to find the extremal solutions of the system of inequalities containing
the half-space descriptions. So, for a polytope, the following procedure could be used.
The vertices of a polytope always lie on the hyperplanes that border the defining half-
spaces. If the considered polytope is n-dimensional, then at least n hyperplanes meet
at a vertex. So a straightforward approach would be to try out all n-combinations of
the supporting hyperplanes, to calculate the points of intersection and to discard the
outlying, redundant and non-extremal points.
To get the half-space representation from the vertices the same procedure can be used,
because of the duality of both representations (see definition 2.11). The resulting al-
gorithm would of course be much too expensive, so more sophisticated solutions have
to be used.

9

10 CHAPTER 3. CHERNIKOVA’S ALGORITHM

3.2 Function of Chernikova’s Algorithm

Chernikova’s Algorithm was originally designed to compute the non-negative solu-
tions of a system of linear inequalities without parameters [Che64, Che65, Che68].
But it can easily be enhanced for parameterized systems as shown in section 3.4.
The technique used by this algorithm was reinvented several times. It is origi-
nally known as the double description method and was introduced by Motzkin et
al. [MRTT53]. Nevertheless we will refer to it as Chernikova’s algorithm, for the
enhancements shown later (section 3.3) base on Chernikova’s reinvention. In the fol-
lowing we will give an informal explanation of the algorithm and later the formal
procedure as explained in the original paper [Che68].

3.2.1 Informal Description

Because the algorithm is not very intuitive, we will present a more easily understand-
able explanation first. We will only show the computation of the vertex representation
from the half-space representation, the reverse calculation will be explained later in
section 3.2.2. Summarized briefly, the algorithm consists of the following steps:

Initialization the set of vectors, that represent the vertices, is initialized

Iteration we iterate over the given set of constraints, at each iterative step we

• divide the set of vertices into three sets which hold vectors that saturate,
verify and violate the current constraint,

• combine violating and verifying vectors into new saturating vectors,

• discard redundant vectors from the combinations,

• union saturating, verifying and new found vectors as new vertex set

Finalization the set of vertices is transfered to the desired representation

We will explain the single steps in detail in the following.

Initialization The input of our algorithm is an inequality system with n variables,
for example

x1 ≥ 1
x2 ≥ 1
x1 ≤ 5
x2 ≤ 4

x1 − x2 ≥ −1

(3.1)

3.2. FUNCTION OF CHERNIKOVA’S ALGORITHM 11

xx = 1

y

x = 5

y = 1

y = 4

x − y = −1

(3,4)

(1,1)

(5,4)

(5,1)

(1,2)

Figure 3.1: 2-Dimensional Polytope Defined by 5 Hyperplanes

The polytope defined by this system is shown in figure 3.1. For calculation and sim-
plification purposes we will use a matrix A, where each row vector is one inequality
of the system (cf. notation 2.2). To do so we have to transform the inequalities in a ho-
mogeneous form (cf. definition 2.1). We will refer to these inequalities as constraints.

A =

1 0 −1
0 1 −1
−1 0 5
0 −1 4
1 −1 1

(3.2)

The algorithm works on a set of vectors R. Its members are incrementally transformed
and combined, until they represent the vertices and rays of the polytope. We need a set
of vectors that spans the whole space. A possible initial set contains the unit vectors.
Again we will write it as matrix,

R =

1 0 0
0 1 0
0 0 1

 . (3.3)

The vectors can be interpreted in the following way: the first two unit vectors are rays,
where the first points in x direction and the second in y direction. The third vector is a
vertex at the origin. So our initial set is a cone that spans the first quadrant.

12 CHAPTER 3. CHERNIKOVA’S ALGORITHM

Iteration Now the iterative part begins. For each constraint in A we do the follow-
ing:

Vertex Set Splitting We calculate the scalar product of the constraint and each vector
and split the set according to the result in three groups:

• The set of verifying vectors R+ which holds the vectors that have a positive
result,

• the set of saturating vectors R0, where the result of the vectors is 0,
• the set of violating vectors R−, with negative results.

For the first constraint (1 0 -1) this would be the as follows

R+ =
(

1 0 0
)
, R0 =

(
0 1 0

)
, R− =

(
0 0 1

)
(3.4)

These three sets can be interpreted as follows:

• R+ contains the vectors that point into the half-space defined by the con-
straint,

• R0 contains the vectors that lie parallel to the border of the half-space,
• R− contains the vectors that point out of the half-space.

Linear Combination Since the vectors in R+ point into the half-space and the vec-
tors in R− point outwards, we can form linear combinations of the elements
that lie on the border to the half-space. To build all pairs we simply form the
Cartesian product of the two sets. For each pair (v1, v2) ∈ R+ ×R− we build a
linear combination (av1 + bv2) with positive coefficients a, b, that saturates the
current constraint c

(av1 + bv2) • c = 0 (3.5)

Where x • y denotes the inner product of the vectors x and y. The linear combi-
nation can easily be found by this formula

(v1 • c) ∗ v2 − (v2 • c) ∗ v1 (3.6)

Since the coefficients may grow significantly we normalize the vectors, that
means, we divide the coefficients by their greatest common divisor. In our ex-
ample the Cartesian product gives us just one pair

R+ ×R− =
{((

1 0 0
)
,
(

0 0 1
))}

(3.7)

The linear combination of this pair is
((

1 0 0
) • (

1 0 −1
)) ∗ (

0 0 1
)

− ((
0 0 1

) • (
1 0 −1

)) ∗ (
1 0 0

)

=
(

1 0 1
)

(3.8)

The normalization does not change the vector.

3.2. FUNCTION OF CHERNIKOVA’S ALGORITHM 13

Redundancy Check Some of the newly generated vectors may now be redundant.
So we have to test the vectors and keep only the valid ones. This can be done
by deleting the members of the linear combination from the set of vectors and
checking if there is still a vector which saturates the same, and maybe some
more, already processed constraints. If there is, the vector is redundant, or else
it is new. The new vectors are stored in the set R
In the first iteration there is, of course, no processed constraint and hence the
generated vectors are never redundant. To see a more expressive example, we
jump to the last, i.e. the fifth, iteration:

• The current constraint is

c =
(

1 −1 1
)
, (3.9)

• the set of processed constraints Aold is

Aold =

1 0 −1
0 1 −1
−1 0 5
0 −1 4

 , (3.10)

• the sets of verifying, saturating and violating vectors are

R+ =

1 1 1
5 1 1
5 4 1

 , R0 = ∅, R− =

(
1 4 1

)
(3.11)

• The set of pairs and their linear combinations is

R+ R− Rnew

1 1 1 1 4 1 1 2 1
5 1 1 1 4 1 15 22 7
5 4 1 1 4 1 3 4 1

 (3.12)

At this point we have to test if the new vectors are redundant. For each new
vector (av1 + bv2) ∈ Rnew we calculate the set of saturated, processed con-
straints and verify that no other vector v ∈ R \ {v1, v2} saturates a set which
contains this set, where R = R+∪R0∪R−. We do this here only for the vectors
(15 22 7) and (1 2 1)

• the set of saturated, processed constraints for (15 22 7) is ∅, this means the
vector is not extremal and hence is not a valid new vector. This happens,
when the sets of saturated constraints of the combined vectors are disjoint.

14 CHAPTER 3. CHERNIKOVA’S ALGORITHM

• (1 2 1) saturates only one old constraint

(
1 0 −1

)
(3.13)

since neither (5 1 1) nor (5 4 1) saturate the same constraint, this vector is
new.

Union As a last step we have to combine the sets of vectors that we want to keep. The
vectors we need are

• the saturating vectors R0,

• the verifying vectors R+,

• the new, irredundant vectors R.

So our new set of vectors is R0 ∪R+ ∪R.

Finalization After we have processed all constraints the set of vectors should be
exactly the set of vertices of the polytope. Each vector can be read as Cartesian coor-
dinates

(
a1 . . . an b

)
=⇒

(a1

b
, . . . ,

an

b

)
(3.14)

In our example we have

1 1 1
5 1 1
5 4 1
1 2 1
3 4 1

=⇒

(1, 1)
(5, 1)
(5, 4)
(1, 2)
(3, 4)

(3.15)

which can be verified in figure 3.1.

3.2.2 Formal Description

Now we want to describe the algorithm in the form given in Chernikova’s original
paper [Che68]. For an example see section 3.3.2. Again the algorithm consist of three
parts, initialization, iteration and finalization.

3.2. FUNCTION OF CHERNIKOVA’S ALGORITHM 15

Initialization The input of the algorithm is a system of inequalities of the form

a11x1 + . . . + a1nxn ≥ b1

. . .
am1x1 + . . . + amnxn ≥ bm

xi ≥ 0, i ∈ {1, . . . , n}
. (3.16)

If in one of the inequalities all the coefficients of the xi are non-positive and the free
term is positive then we are finished, because the system is inconsistent and hence
unsolvable. If there is no such inequality a matrix of the following form is constructed

1 0 . . . 0 0 a11 . . . am1
...

...
0 0 . . . 1 0 a1n . . . amn

0 0 . . . 0 1 −b1 . . . −bm

 . (3.17)

On the right side of the matrix the constraints are inserted column wise and the left
side is an n + 1-dimensional unit matrix, which represents the ray-space.

Iteration From this matrix the algorithm works incrementally on the constraint
columns. At each step we select one of the columns with at least one negative ele-
ment as reference and transform the matrix according to the following steps:

• we build all pairs of rows which have opposite signs at the reference column.

• for each pair we check if there is a column of the left side or an already processed
column of the right side, where both rows have zeros,

• if there is, we form a linear combination with positive coefficients, such that it
has a zero at the reference column, else we omit the pair,

• to check if the linear combination is redundant, we check if there is no other
verifying or saturating vector, that saturates the same constraints, if there is none
we have a new vector if not, we omit the combination.

The new matrix contains all new linear combinations and all rows that were non-
negative at the reference column.

Finalization After at most m + 1 steps the matrix has either:

1. one negative column on the right side;

2. only non-negative columns at the right side and the last column at the left side
is zero;

16 CHAPTER 3. CHERNIKOVA’S ALGORITHM

3. only non-negative columns at the right side and the last column at the left side
is non-zero.

The first two cases indicate that the inequality system is insolvable, the third gives
the desired result. In this case the left side of the matrix gives us the vertices of the
polytope row-wise. A row can be interpreted as follows:

(di1, . . . , din, di,n+1, a
′
i1, . . . , a

′
im) ⇒

(
di1

di,n+1
, . . . ,

din

di,n+1

)
. (3.18)

If the entry at position n+1 on the left side is equal to zero, the polytope is unbounded
and thus no polytope, but a polyhedron. Since we are only interested in polytopes we
exclude this possibility.

Computing the Inequalities

To do the reverse computation we simply build the inequality system of the dual poly-
tope. This polytope’s supporting hyperplanes have the same equations as the vertices
of the original polytope and vice versa. So a vertex of a polytope would be transformed
to an inequality as follows:

(a1

1
, . . . ,

an

1

)
⇒ (a1x1 + . . . + anxn ≥ 1). (3.19)

3.3 H. Le Verge’s Improvements

The algorithm as proposed in 3.2.2 has some flaws which produce many redundant and
unnecessary computations. Herve Le Verge presented some effective enhancements
[Ver94]. He gathered some new criteria that filter out redundant linear combinations
earlier and he introduced the computation of negative solutions. His algorithm was
integrated in the PolyLib library where it is improved continuously [Wil93].
In this section we will first explain ways to reduce costs of computation. In section
3.3.2 we will show how to additionally find negative solutions.

3.3.1 New Criteria

A bad influence on the algorithms efficiency is the effect of redundant vectors. The
way they are dealt with reveals much of the algorithm’s performance. The most prim-
itive form to handle redundant vectors is to remove them at the end of the algorithm,
which results in an explosion of vector combinations in the iteration. It is already a
huge advantage to remove them at each iteration. A straightforward way to do so is
described in section 3.2.1. At each step we have to check all rays of V for each element

3.3. H. LE VERGE’S IMPROVEMENTS 17

of V + × V −, where V grows in general exponentially.
An obvious idea to reduce computational costs further is to prevent the occurrence
of redundant vectors. After each iterative step of the algorithm there are no redun-
dant vectors, so they can only be generated by a linear combination. The challenge
is to identify properties of the combined rays that indicate that the new vector will be
redundant.

Chernikova’s Criterion The original algorithm already uses a rule, to ensure that
a new ray will be an extremal ray of the polytope [Che65]. If the sets of saturated
constraints S(y1), S(y2) of the two combined rays y1, y2 are disjoint the new ray will
not belong to the boundary of the convex cone and hence not create an extremal vertex.
If |S(y1) ∩ S(y2)| ≥ 1 holds the linear combination will be generated and we have to
prove that there is no other ray that saturates the same constraints, that means there is
no ray yi ∈ V/{y1, y2} such that S(y1) ∩ S(y2) ⊆ S(yi).

New Criterion Chernikova’s criterion was extended, so that far more combinations
can be rejected, without calculation. Le Verge showed that in an n-dimensional space
only combinations that saturate n−2 constraints are extremal [Ver94]. By this criterion
in general far more rays are omitted than by the first criterion.

3.3.2 Finding General Solutions

Unlike algorithms basing on the simplex method, Chernikova’s algorithm does not
need to encode polytopes in higher dimensional space to find non-negative and nega-
tive solutions. We only have to differentiate between unidirectional and bidirectional
rays, i.e. lines. We will first explain the changes and then illustrate them with an ex-
ample, which can be seen in figure 3.2. We use a set of lines L to span the initial space,
which we restrict more and more by iteratively processing the constraints. But instead
of one distinct iterative step we have two cases, depending on the current set of lines.
The initial set L0 is the set of basis vectors and the initial set of rays V = ∅. At each
step we choose one way of proceeding:

• If there is a line lk which does not saturate the current constraint c, that means
c ∗ lk 6= 0,

– we project all li on the defining hyperplane of c along the positive part l′k

18 CHAPTER 3. CHERNIKOVA’S ALGORITHM

x

y

x − y = −4

y = 5

y = −1

(−2,2)

x = 6

(6,−1)

x = −2

(−2,−1)

(6,5)(1,5)

Figure 3.2: 2-Dimensional Polytope with Negative Vertices

of line lk

l′k = ±lk

c ∗ l′k > 0
l′i = λli + µl′k, ∀i 6= k

c ∗ l′i = 0, ∀i 6= k

L′ = {z′1, . . . , z′k−1, z
′
k+1, . . . , z

′
m} (3.20)

– we do the same with all rays vj and add the positive part l′k to the set of
rays:

v′i = λvi + µl′k, λ > 0
c ∗ v′i = 0

V ′ = {v′1, . . . , v′r} ∪ {l′j} (3.21)

• if all lines are such that c ∗ lk = 0, E is not changed and we do the same
transformations of V as in the original algorithm, but with the new criterion. A
linear combination can be avoided if the set of common saturated constraints
contains at most n −m − 3 constraints, where n is the dimension of the space
and m is the number of lines.

3.3. H. LE VERGE’S IMPROVEMENTS 19

Now we will consider the example in figure 3.2. The polytope shown has the implicit
representation:

A =

1 0 2
0 1 1

−1 0 6
0 1 5
1 −1 4

. (3.22)

In the following we will refer to the lines and rays by their row numbers, i.e. line l1 is
the line in row 1 in the lineality-space matrix. As a first step, we initialize our matrix
for the lineality-space and the ray-space:

L =

1 0 0 1 0 −1 0 1
0 1 0 0 1 0 −1 −1
0 0 1 2 1 6 5 4

 V = () (3.23)

The matrix for the lineality-space also contains all of the constraints as columns. We
will now process the constraints one by one in the order above. We will not use the
original constraints below, since we extended the vectors in L with the according di-
mension of the constraints. If we want to test if a vector satisfies the ith constraint, we
only have to check if the 3 + ith column of the vector is equal to zero. This is valid
because we use all transformations on the complete vector and so the relationship be-
tween the vector and all constraints is always correct. As we can see the first constraint
(1 0 2) is not saturated by l1 and l3, so we have the first case. We pick l1 and build
a linear combination with the other lines so that all saturate the constraint and add its
positive part to the rays. Since l2 saturates the constraint we only have to combine l1
and l3, as coefficients we choose the entries in the constraint column, so the new line
will result from l3 − 2l1. We don’t have to combine the rays since there are none yet.
As new lineality- and ray-spaces we get:

L =
(

0 1 0 0 1 0 −1 −1
−2 0 1 0 1 8 5 2

)
V =

(
1 0 0 1 0 −1 0 1

)

(3.24)

The next constraint is not saturated by l1 and l2, we pick l1, combine it with l2 and add
it to the rays. r1 saturates this constraint, so we don’t have to build a linear combination
here.

L =
(−2 −1 1 0 0 8 6 3

)
V =

(
1 0 0 1 0 −1 0 1
0 1 0 0 1 0 −1 −1

)

(3.25)

The third constraint is again not saturated by l1, but since no other line is left, we only
have to build combinations of rays. We combine 8r1 + l1. r2 saturates the constraint

20 CHAPTER 3. CHERNIKOVA’S ALGORITHM

and, therefore, doesn’t need to be changed.

L = () V =

0 1 0 0 1 0 −1 −1
6 −1 1 8 0 0 6 11

−2 −1 1 0 0 8 6 3

 (3.26)

Now we have no more lines left and so are always in the second case, in which only
the rays are processed. The forth constraint is verified by r2 and r3, while r1 violates
the constraint. So we build the following linear combinations, r2 + 6r1 and r3 + 6r1.

L = () V =

6 −1 1 8 0 0 6 11
−2 −1 1 0 0 8 6 3
−2 5 1 0 6 8 0 −3

6 5 1 8 6 0 0 5

 (3.27)

The last constraint is saturated by r1, r2 and r4 and violated by r3. This time we can
omit one combination, r1 and r3 have no common saturated constraint and, therefore,
their linear combination will not produce an extremal ray. We build the combinations,
r2 + r3 and 3r4 + 5r3.

L = () V =

6 −1 1 8 0 0 6 11
−2 −1 1 0 0 8 6 3

6 5 1 8 6 0 0 5
−4 4 2 0 6 16 6 0

8 40 8 24 48 40 0 0

(3.28)

After normalizing we get the reduced ray-space

V ∗ =

6 −1 1
−2 −1 1

6 5 1
−2 2 1

1 5 1

⇐⇒

(6,−1)
(−2,−1)

(6, 5)
(−2, 2)

(1, 5)

, (3.29)

which can be verified in figure 3.2.

3.4 Parameterized Polytopes

The algorithms in the preceding sections only covered polytopes of fixed sizes, but
since mathematical and computational problems are often parameterized we need to
extend the algorithm so that it can cope with these.
We will show how to process two levels of parameterization, first linear and later non-
linear parameters.

3.4. PARAMETERIZED POLYTOPES 21

y

x − y = p

p = 0

p = 1

p = 5

p = −5

x

p = −2

p = 6

Figure 3.3: Parameterized Hyperplane

3.4.1 Linearly Parameterized Polytopes

A linearly parameterized polytope can be described by an inequality system as follows

Ax + Bn ≥ b (3.30)

where x is the vector of variables, n the vector of parameters and b the constant vector.
As we don’t know about the values of the parameters, we can simply also treat them
as variables. This leads to a simpler representation

Ax ≥ b, (3.31)

which is the same as for non-parameterized polytopes. And, once again, we can build
a homogeneous form by encoding the constant vector in matrix A.
The following example explains this, we will use a similar polytope to that in section
3.2:

x ≥ 1
y ≥ 1
x ≤ 5
y ≤ 4

x− y ≥ p

(3.32)

This polytope has one parameterized inequality, x − y ≤ p. The border of the cor-
responding half-space depends on the value of p. Figure 3.3 shows the bounding hy-
perplane for some values. Depending on the value of the parameter, the polytope may

22 CHAPTER 3. CHERNIKOVA’S ALGORITHM

x

y

y = 1

y = 5

(6,5)

x = 6x = 1

(6,1)

p = −5

x − y = p

(1,1)

(1,5)

x

y

y = 1

y = 5

(6,5)

x = 6x = 1

(6,1)

x − y = p

p = −2

(1,3)

(3,5)

(1,1)

x

y

y = 1

y = 5

(6,5)

x = 6x = 1

(6,1)

p = 0

(5,5)

x − y = p

(1,1)

x

y

y = 1

y = 5

x = 6x = 1

(6,1)

p = 1

(2,1)

(6,5)
x − y = p

x

y

y = 1

y = 5

x = 6x = 1
x − y = p

p = 5

(6,1)

x

y

y = 1

y = 5

x = 6x = 1

p = 6

x − y = p

Figure 3.4: Different Shapes due to Different Parameter Values

have different shapes (cf. figure 3.4). This is no problem for the algorithm; as we treat
the parameters like variables, the algorithm itself does not change. The input matrix
for the inequality system above would look as follows:

A =

1 0 0 −1
0 1 0 −1
−1 0 0 6
0 −1 0 5
1 −1 −1 0

(3.33)

The corresponding output is:

R =

more

0 0 −1 0
6 1 5 1
1 1 0 1
1 5 −4 1
6 5 1 1

(3.34)

The computed lineality- and ray-spaces are independent of the parameters, since a
linear parameter may shift a ray or a line, but it will never change its direction (cf.
[LW97]). As a result, they need no further processing. Vertices, on the other hand,
may only be defined over certain domains. Consider the vertex (1, 5) of the polytope
in equation 3.32, as shown in figure 3.4. It is only existent for p ≥ 4.

3.4. PARAMETERIZED POLYTOPES 23

Computing the Vertices

As mentioned before, vertices that are dependent on parameters vi(p) are only defined
for fixed domains, thus we need a representation that takes this fact into account. We
will use a tuple of a vector and a domain [vi, domi]. The definition in homogeneous
space is

v(p) =
{

v if p ∈ dom
0 else

(3.35)

To compute the set of parameter dependent vertices V (p) we need the implicit and the
parametric representation. Then we do the following steps:

• We compute the m-faces of the homogeneous polytope, where m is the number
of parameters. A m-face is a m-dimensional facet of a polytope. Each m-face
Fm

i is represented by a set of rays Ri and lines L and can be written as a matrix
Mi = [L|Ri]. The m-face algorithm is shown below.

• For each m-face we build a projection to the parameters Projp(Mi), which is
simply deleting the rows of Mi which correspond to variable coefficients. We
try to compute its right inverse Projp(Mi)−R. If this is not possible the m-face
does not describe a single vertex. If it is possible we also build the projection
to the variables Projd(Mi) and compute the coordinate describing matrix Ti =
Projd(Mi)Projp(Mi)−R. Ti is the homogeneous matrix representation of vi,
it has m + 1 columns and n + 1 rows, where n is the dimensionality of the
polytope.

• We compute the validity domain for each m-face by projecting it to the parame-
ter space Projp(Fm

i). Again Projp(Fm
i) is the homogeneous matrix represen-

tation of domi.

• We combine the coordinate vector and domain [vi, domi].

m-Face Algorithm To find m-dimensional faces of a polytope of dimension d we
process the following steps (cf. [LW97]):

1. We build all combinations of d − m constraints. If there are equations among
the constraints, they are always included.

2. If we don’t already have, we build a saturation matrix (see below) and intersect
the rows that correspond to the constraints to be combined.

3. We count the number of "ones" in the intersections, which is the number of
saturated vertices, rays and lines. If it is greater than m we have a non-empty
m-face.

24 CHAPTER 3. CHERNIKOVA’S ALGORITHM

4. To eliminate redundant faces, we check if any other face saturates the same set
of vertices, rays and lines. If so, the face is redundant.

Saturation Matrix In order to compute only the set of saturated constraints of a
vector once, we can store the result. To keep things simple we use a boolean matrix,
which has a row for every constraint and a column for every vector. We call this matrix
saturation or incidence matrix. The elements xi,j of the matrix are defined as follows:

xi,j =
{

True, if constraint i is saturated by vector j
False, constraint i is verified by vector j

(3.36)

The saturation matrix does not have to be computed in a separate step, it can also be
a part of the result of Chernikova’s algorithm, since the matrix it works on contains
essentially this data (see equation 3.16). For efficiency reasons we can additionally
store the transpose of this matrix, as done in the Parma Polyhedra Library [BHRZ03].
Consider the polytope P in figure 3.4, its implicit and parametric representation can be
seen in equation 3.33 and 3.34. In order to compute the vertices, we first have to find
the 1-faces of P , since the number of parameters is 1. To do so we need the incidence
matrix I ,

I =

1 0 1 1 0
1 1 1 0 0
1 1 0 0 1
1 0 0 1 1
0 1 1 1 1

(3.37)

To find the 1-faces, we build all possible combinations of d −m constraints, where d
is the dimension of the polytope in homogeneous form, i.e. 3. So we build all com-
binations of 2 constraints and intersect their rows in the incidence matrix. When the
constraints have more than m rays, lines or vertices in common, the m-face describes
a single vertex. We will do this for (c1, c2) and (c1, c3), where ci is the constraint in
row i. The first row and the second row of the incidence matrix have the first and the
third vertex/ray in common. So we have a valid face with the matrix representation

M1 =

0 1
0 1

−1 0
0 1

 . (3.38)

(c1, c3) have only the first ray/vertex in common and, therefore, do not generate a
single vertex. When we do this for all combinations, we get 8 1-faces. For each face
we compute the projection to the parameters Projp(Mi) and the right inverse of that
Projp(Mi)−R and the projection to the domain Projd(Mi). For M1 we get

Projp(M1) =
(−1 0

0 1

)
= Projp(M1)−R, P rojd(M1) =

0 1
0 1
0 1

 . (3.39)

3.4. PARAMETERIZED POLYTOPES 25

v8

v7

v6

v5

v4

v3

v2

v1

0 1 5−4

p

Figure 3.5: Domain Decomposition

Now we can compute T1 = Projd(M1)× Projp(M1)−R

T1 =

0 1
0 1
0 1

 (3.40)

with T1 we can compute the vertex’ coordinates by multiplying it with
(
p
1

)
, the result

is the vertex in homogeneous form. In coordinates it is v1 = (1, 1). The domain of v1

can be calculated from Projp(M1)−R, for vi we have the domain p ≤ 0 and 1 ≥ 0.
The other vertices are computed accordingly.

Domain Decomposition

The algorithm above gives a set of parameterized vertices and the parameter space
where they are valid. For further use we can partition the parameter space so that we
get distinct vertex sets, i.e. all vertices in one set are valid for all parameter values in
that partition. Consider the example above; when we calculate all vertices, we get

v1 = (1, 1) p ≤ 0
v2 = (1, 5) p ≤ −4
v3 = (1, 1− p) p ≥ −4, p ≤ 0
v4 = (6, 1) p ≤ 5
v5 = (p + 1, 1) p ≥ 0, p ≤ 5
v6 = (6, 5) p ≤ 1
v7 = (6, 6− p) p ≥ 1, p ≤ 5
v8 = (p + 5, 5) p ≤ 1, p ≥ −4

(3.41)

We can now get a partition by comparing the parameter domains and divide the space,
into the overlapping and disjoint parts. For example v1 and v2 are both valid for p ≤
−4 and only v1 is valid for−4 ≤ p ≤ 0, so we get 2 partitions. If we continue with the
other domains we get the desired partition, which is shown in figure 3.5. The domain
partitions are also referred to as chambers.

26 CHAPTER 3. CHERNIKOVA’S ALGORITHM

y

y = p * x + 1 − p

x

p = 0

p = −1 p = −0.5

p = 1
p = 2

Figure 3.6: A Line with Non-Linear Parameterization

3.4.2 Non-Linearly Parameterized Polytopes

As shown before, polytopes with linear parameters can mostly be handled like un-
parameterized polytopes. Non-linear polytopes, however, are not so easy to process,
since the orientation of rays and lines changes with the parameters (compare figure 3.3
and figure 3.6) and therefore we have to deal with many complex case distinctions. We
transformed Chernikova’s algorithm with a method introduced by Armin Größlinger,
which uses quantifier elimination to simplify the arising case distinctions[Grö03]. We
will very briefly explain the transformation and then show where and how the algo-
rithm has to be changed and how we implemented it.

Processing Non-linear Parameters using Quantifier Elimination

In the preceding sections we represented polytopes by inequality systems with con-
stant coefficients. This was also possible for linearly parameterized inequalities, for
we treated the parameters like variables. To process non-linear parameters, we use
fractions of polynomials as coefficients instead. So an inequality in our new represen-
tation has the following form:

c1x1 + . . . + cnxn + d ≥ 0 (3.42)

The domain of c1, . . . , cn is denoted by Q(p1, . . . , pm), with

Q(p1, . . . , pm) := {a

b
|a, b ∈ Q[p1, . . . , pm], b 6= 0} (3.43)

where Q[p1, . . . , pm] denotes the ring of polynomials with indeterminates p1, . . . , pm

overQ. A simple example, taken from [GGL04], for such an inequality is p∗x−1 ≥ 0.

3.4. PARAMETERIZED POLYTOPES 27

As mentioned before, when we are using non-linear parameters we have to deal with
case distinctions. The solution of p ∗ x− 1 ≥ 0 for x gives us three cases:

• x ≥ 1
p if p > 0

• false if p = 0

• x ≤ 1
p if p < 0

Armin Größlinger proposed a decision tree to represent such inequalities. It is defined
by the following datatype:

data Tree α = Leaf α
| SCond Polynomial (Tree α) (Tree α) (Tree α)
| EqCond Polynomial (Tree α) (Tree α)
| GeCond Polynomial (Tree α) (Tree α)
| FCond QfFormula (Tree α) (Tree α)

(3.44)

The interpretation is:

• Leaf x represents a result with value x

• SCond fp b− b0 b+ a case distinction over the sign of the fraction of polynomi-
als fp ∈ Q(p1, . . . , pm). If fp < 0 then branch b− is chosen, if fp = 0 branch
b0 and finally if fp > 0 then branch b−.

• EqCond and GeCond are used just like SCond, they are simply binary case
distinctions over fp = 0 against fp 6= 0 (EqCond), and fp < 0 against fp ≥ 0

• FCond qf btrue bfalse is a case distinction over the quantifier free logical for-
mula qf , where btrue is applied if qf = true and bfalse otherwise.

For the previous example p ∗ x− 1 ≥ 0 the solution would be represented as:

SCond p (Leaf x ≤ 1
p
) (Leaf false) (Leaf x ≥ 1

p
) (3.45)

With this datatype, we can transform algorithms that rely on solving equations so that
they can handle non-linear parameters. These changes have to be made:

• Whenever a decision over a sign is made, we use the SCond constructor to
build a new branching in the resulting data structure. In the same way we use
the EqCond, GeCond and FCond constructors.

• Every expression e which leads to a final result is replaced by Leaf e.

28 CHAPTER 3. CHERNIKOVA’S ALGORITHM

v<0 v=0 v>0.........

v>1
...

Figure 3.7: Decision Tree Node

• If a function f :: α → β is applied to an expression e, that has, due to the
transformation, changed its type from α to Tree α, we have to apply the function
to every leaf of the expression. Armin Größlinger provided a function fmap,
which does this1.

With these transformations it is surprisingly easy to enhance existing algorithms, so
that they can process non-linear parameters.
Fortunately, many (probably most) case distinctions are either redundant or superflu-
ous and can be eliminated. One way to simplify the decision tree is quantifier elim-
ination. At every decision the domain of the current branch is narrowed and maybe
some cases even become impossible because of the context. If we have a branch with
context v > 1 and a case distinction, as shown in figure 3.7, we can set up the formulas
∀v(v > 1 → v < 0), ∀v(v > 1 → v = 0) and ∀v(v > 1 → v > 0). The quantifier
elimination determines that only the last is true and hence p > 0 is the only possible
case.
For further information about this method we refer to [Grö03] and [GGL04].

Changes on Chernikova’s Algorithm for Non-linear Parameterized Polytopes

To process non-linearly parameterized polytopes several changes have to be made to
the Chernikova algorithm. Let us recapitulate the phases of the algorithm:

Initialization the necessary data structures are initialized.

Iteration the constraints are processed one after the other, and for each we check if
there is a line that does not saturate the current constraint. If there is we

• take the positive half of the line

• combine all other lines with that half-line, so that they lie on the hyperplane
defined by the inequality

1In the later implementation the function was renamed to cmapDTree, in our text we will, however,
stick to the naming of the paper [Grö03]

3.4. PARAMETERIZED POLYTOPES 29

• combine all rays in the same manner

• and add the new ray to the other rays

else we

• split the set of rays into the sets of saturating, verifying and violating rays

• build linear combinations of verifying and violating rays

• discard redundant combinations

• union saturating, verifying and new rays

Finalization we transform the set of lines and rays to our desired representation

We will now see where and what kind of case distinctions will be introduced.

Initialization Only slight changes have to be made to the initialization. Since we
don’t need to compute anything, there is no need to incorporate any case distinctions.
What we need is an enhanced datatype to represent our inequality systems and rays.
As explained above, rational coefficients are insufficient and we use fractions of poly-
nomials instead. Again, we initialize our lineality-space with unit vectors and our
ray-space as empty.

Iteration We iterate over the set of constraints. At each step we have two options
to proceed with. If there is a line which does not saturate the current constraint we
project lines and rays (case A), or else we split and combine rays (case B). To make
this decision for a constraint c and a lineality-space L, we solve c ∗ l = 0 for every
l ∈ L. This gives us the following branching:

EqCond (c ∗ ln)
(EqCond (c ∗ ln−1)

(. . . (EqCond (c ∗ l1)
(Leaf case A)
(Leaf case B)) . . .)

(case B))
(case B)

(3.46)

This should not be mistaken as being an ordinary case-statement because it is a part of
the resulting data structure. The case A and case B parts are the intermediate results
that have to be further processed in the following steps.

case A We have a line l that does not saturate the current constraint c:

30 CHAPTER 3. CHERNIKOVA’S ALGORITHM

• Firstly, we have to identify the positive directed half-line which produces
a case distinction over the sign of the result of l ∗ c. We can represent this
with an GeCond node.

• The projection of the lines and rays along the current constraint does not
necessarily produce any case distinctions, but as we want to keep our cal-
culations simple and normalize the intermediate results we get additional
branches here.

• Adding the positive half of l to the ray space does not require any case
distinctions.

case B All lines saturate the current constraint c, so we only process the ray space:

• We split the set of rays R into sets of verifying, saturating and violating
rays, this is done by the sign of the calculation c ∗ r, r ∈ R. Thus we get
an SCond node.

• We build linear combinations of violating and verifying rays. Again only
the normalization produces new branchings.

• To identify redundant vectors, we can use the EqCond node type.

• The union does not produce new branches.

Finalization The result type of our algorithm is now a decision tree, with the single
results at its leaves. Without processing they are represented as inequalities in
homogeneous form. If we want any other representation we have to apply a
transformation with the fmap function. The decision tree may also be trans-
formed into other data structures such as a list of domains.

We will now illustrate the procedure in an example. In order to keep the intermediate
steps simple, we will omit some calculations that have no effect on the result. Consider
a non-linearly parameterized polytope P = {(x, y)|0 ≤ x ≤ 4, 0 ≤ y ≤ 4, px− y ≥
2p− 2}, the according matrix representation is

L =

1 0 0 1 0 −1 0 p
0 1 0 0 1 0 −1 −1
0 0 1 0 0 4 4 2− 2p

 V = (). (3.47)

The first 4 constraints are not parameterized at all, so we can process them as in exam-
ples before (cf. equation 3.23). After processing them we have the following matrices:

L = () V =

0 0 1 0 0 4 4 2− 2p
4 0 1 4 0 0 4 2 + 2p
0 4 1 0 1 4 0 −2− 2p
4 4 1 4 4 0 0 −2 + 2p

 (3.48)

When processing the last constraint, we have to make several case distinctions. First

3.4. PARAMETERIZED POLYTOPES 31

−2+2p

0 +−

−2+2p

0 +−

−2+2p

0 +−

−2−2p

0 +−

−2+2p

0 +−

−2+2p

0 +−

−2+2p

0 +−

−2−2p

0 +−

− 0

2+2p

...

2p−2

...

...

Figure 3.8: Part of a Decision Tree

0 +−

2−2p

0 +−

2+2p

Figure 3.9: Reduced Decision Tree

we group the vectors in saturating, verifying and violating rays. Part of the resulting
decision tree can be seen in figure 3.8. For each of the 4 vectors we get one SCond
node and hence we have 34 = 81 possible solutions, of course many are redundant and
invalid. If we reduce the tree, we get a much simpler result:

p > 1 : V + = {v2, v4}, V 0 = {}, V − = {v1, v3}
p = 1 : V + = {v2}, V 0 = {v1, v4}, V − = {v3}

−1 < p < 1 : V + = {v1, v2}, V 0 = {}, V − = {v3, v4}
p = −1 : V + = {v1}, V 0 = {v2, v3}, V − = {v4}
p < −1 : V + = {v1, v2}, V 0 = {}, V − = {v3, v4} (3.49)

The tree representation of the case distinctions can be seen in figure 3.9. We will do
the following computations only for the parameter values p > 1, the other domains are
treated accordingly. As the next step, we build combinations of violating and verifying
rays and normalize the results. Although we get new case distinctions through the
normalization, they are invalid. For p > 1 we have V − = {v1, v3} and V + = {v2, v4}
and, therefore, we could build combinations of the tuples (v1, v2),(v1, v4),(v3, v2)
and (v3, v4), but since only (v1, v2) and (v3, v4) saturate enough common constraints
we can omit the other two:

V new =

(
1 0 p

2p−2 1 0 p+1
p−1

2p
p−1 0

1 2p
p+1

p
2p+2 1 5p+3

4p+4
p−1
p+1 0 0

)
(3.50)

32 CHAPTER 3. CHERNIKOVA’S ALGORITHM

(0,2) (4,2)

(4,4)(0,4)

(0,0) (4,0) x

y

p = 0

(0,4)

(4,0) x

y

p = 1

(0,0)

(4,4)
(4,4)(0,4)

(0,0) (4,0) x

y

p > 1

((2p−2)/p,0)

(4,4)(0,4)

(0,0) (4,0) x

y

(4,4)(0,4)

(0,0) (4,0) x

y

p < −1

(4,4)(0,4)

(0,0) (4,0) x

y

p > −1

(4,4)

(0,0) x

y

(4,2p+2)

0 < p < 1 p = −1

((2p+2)/p,4)

(4,2p+2)

(0,2−2p)

(0,4)

(4,0)

(0,2−2p)

((2p+2)/2,4)

((2p−2)/p,0)

Figure 3.10: Polytope with the Non-Linear Inequality px− y ≥ 2p− 2.

Together with the vectors in v+ we for p > 1 have the vertices (4, 0), (4, 4), ((2p −
2)/p, 0) and ((2p + 2)/p, 4). For all shapes the polytope takes see figure 3.10

3.5 Implementation Details and Conclusion

We implemented Chernikova’s algorithm in three stages:

1. similar to the informal description (cf. section 3.2.1)

2. with Le Verge’s enhancements (cf. section 3.3)

3. for non-linear parameterization (cf. section 3.4.2)

We will shortly present each version and point out the differences. For all of our imple-
mentations we used the functional programming language Haskell, plus data structures
and functions provided by HsLooPo, a part of the LooPo project [Leh].

3.5. IMPLEMENTATION DETAILS AND CONCLUSION 33

3.5.1 Simple Version

Our first implementation is a straight forward approach to the double decision method
which is similar to our first informal description (cf. section 3.2.1). It is a conversion
of an SML-implementation of Le Verge. We only show the code for the main function.
The auxiliary functions are explained below.
The input of the function are three lists of vectors, where old is the list of processed
constraints, new the list of unprocessed constraints and ray the list of rays. As initial
input old should be empty, new should contain all constraints and ray an initial ray
space (i.e. the unit vectors).
The function works recursively. At each step one constraint is chosen and the ray space
is altered accordingly (cf. section 3.2.1). If all constraints are processed the resulting
list of rays is output.

chernikova old new ray =
if (length new) == 0
then ray
else

let
-- current is an arbitrary unprocessed constraint
current = (head new);

-- the rayspace is divided into verifying, saturating
-- and violating rays
verify = filter (\x -> (mulVV current x) > 0) ray;
saturates = filter (\x -> (mulVV current x) == 0) ray;
violates = filter (\x -> (mulVV current x) < 0) ray;

-- newray is the set of linear combinations of verifying and
-- violating rays
newray = map (\(x, y) -> ((addVV (mulSV (mulVV current x) y)

(negV (mulSV (mulVV current y) x))),
x,
y))

(cartesianProdukt verify violates)

-- s filters all processed constraints that are saturated
-- by x
s x = filter (\c -> (mulVV c x) == 0) old

-- irredundant filters all irredundant rays
irredundant =
map (\(x, y, z) -> normalize x)

(filter (\(x,y,z) ->
(not (any (isSubList (s x))

(map s (delete y (delete z ray))))))
newray)

in
chernikova (old++[current])

(tail new)
(union (union verify saturates) irredundant)

Auxiliary functions:

34 CHAPTER 3. CHERNIKOVA’S ALGORITHM

mulVV v1 v2 multiplies vector v1 by vector v2.

mulSV s v multiplies vector v by scalar s.

cartesianProdukt l1 l2 computes the Cartesian product of two list l1 and
l2.

normalize v normalizes vector v, by computing its entries greatest common divi-
sor gcd and dividing v by gcd.

isSubList l1 l2 checks if l1 is a sublist of l2, that means l2 contains all
elements of l1

This implementation is very comprehensible, but it can only compute non-negative
solutions and is quite inefficient since many superfluous calculations are done.

3.5.2 Version with Le Verge’s Enhancements

This implementation can already compute negative solutions and is much faster than
the simple one. Its based on Chernikova’s approach and utilizes Le Verge’s improve-
ments.
Once again, we only present the main function and explain the auxiliary functions be-
low. The detailed description of the functionality can be found in section 3.3.
This function needs much more information for each iterative step and hence has more
arguments, which contain the following:

line is the lineality-space, represented by a list of vectors. The vectors are extended
with the constraints as described in section 3.2.2. The initial set of vectors con-
tains the unit vectors, where each vector is extended with the entries of the con-
straints in the according dimension.

ray is the ray-space, with the same representation as the lineality-space. It is initial-
ized as empty.

n is the number of the current constraint, where 0 ≤ n < nbConstraint.

dim is the dimensionality of the constraints and the lineality- and ray-space.

nbConstraint is the number of constraints.

The result is a tuple of two lists, where the first contains the lineality-space and the
second the ray-space. Both lines and rays are still extended with the constraint entries
and therefore need further processing.

3.5. IMPLEMENTATION DETAILS AND CONCLUSION 35

chernikova line ray n dim nbConstraint =
if n < dim
then (line,ray)
else let
-- find the list of lines that do not saturate the current constraint
notSaturatingLines = filter (\x -> (vectorEntry x n) /= 0) line

-- this section is only applied if notSaturatingLines is not empty
-- we choose one line that is not saturating as current line
currentLine = head notSaturatingLines
saturatingLines = filter (\x -> (vectorEntry x n) == 0) line

-- the not saturating lines are combined with the current line
newLine = (map (\x -> combine x currentLine n)

(delete currentLine notSaturatingLines)) ++ saturatingLines
-- the positive half of the line is added to the rays
absCurLine = if ((vectorEntry currentLine n) < 0)

then mulVS currentLine (-1) else currentLine
newRay = (map (\x -> combine x absCurLine n) ray)++[absCurLine]

-- this section is only applied if notSaturatingLines is empty
-- the rayspace is divided into verifying, saturating
-- and violating rays
verify = filter (\x -> (vectorEntry x n) > 0) ray
saturates = filter (\x -> (vectorEntry x n) == 0) ray
violates = filter (\x -> (vectorEntry x n) < 0) ray

-- counts the number of constraints that two vectors saturate
common vec1 vec2 lowerb ind nbCom sats =
if lowerb == ind
then (vec1,vec2,nbCom,sats)
else if ((vectorEntry vec1 ind) == 0) &&

((vectorEntry vec2 ind) == 0)
then common vec1 vec2 lowerb (ind-1) (nbCom+1) (sats++[ind])
else common vec1 vec2 lowerb (ind-1) nbCom sats

-- pairs of rays that saturate enough constraints
commonConstraints =
filter (\(_,_,z,_) -> ((z + (length line)) >= (dim -2)))

(map (\(x,y) -> common x y n (nbConstraint + dim -1) 0 [])
(cartesianProdukt verify violates))

-- new rays from linear combinations, may contain rays
-- from prior iterations
newRedRays = (map (\(x,y,_,_) -> normalize (combine y x n))

(filter (\(x,y,_,z) -> isNewRay x y z ray)
commonConstraints))

newrays = union (union verify saturates) newRedRays
in
if notSaturatingLines == []
then
-- notSaturatingLines is empty
chernikova line newrays (n-1) dim nbConstraint
else
-- notSaturatingLines is not empty
chernikova newline newRay (n-1) dim nbConstraint

Auxiliary functions:

vectorEntry v n returns the entry of vector v in dimension n.

36 CHAPTER 3. CHERNIKOVA’S ALGORITHM

combine v1 v2 n computes a linear combination of the vectors v1 and v2, that
has the value 0 at dimension n.

mulVS v s multiplies the vector v by a scalar s.

common v1 v2 lb i nbSat satList checks how many and which con-
straints are saturated by a linear combination of vectors v1 and v2 that has
the value 0 at dimension i. The function works recursively, the initial input is:

v1, v2 are two vectors

lb is the dimensionality of the constraint and the lineality- and ray-space (in
our representation the constraint entries start at this entry of the vectors).

i is the number of the constraint, that the linear combination of v1 and v2
saturates.

nbSat is 0.

satList is an empty list.

The result of this function is a quadruple of the two vectors, the number of
constraints that their linear combination saturates and a list of these constraints
numbers.

notcommonzero v cList checks if a vector v saturates the constraints, whose
numbers are given in the list cList. If it does the result is False else True.

isNewRay v1 v2 satList rayList checks if the linear combination of vec-
tor v1 and v2 that saturates the constraints with the numbers in satList sat-
urates a different set of rays than any other ray in rayList.

normalize v normalizes the vector v, by computing its entries greatest common
divisor gcd and dividing v by gcd.

Chernikova’s algorithm is much more efficient than the first implementation, especially
with Le Verge’s improvements. It can also compute negative solutions and is able to
process linear parameterized constraints (cf. section 3.4.1). This implementation is in
large parts a conversion of Le Verge’s C-implementation to the Haskell language (see
[Ver94]).

3.5.3 Version for Non-linear Parameterization

Our last implementation makes use of the work of Armin Größlinger [Grö03] to deal
with non-linear parameters in the coefficients of the constraints. It is based on the
preceding version, but has some big differences. To handle the non-linear parameteri-
zation we changed the used data structures and built in case distinctions.

3.5. IMPLEMENTATION DETAILS AND CONCLUSION 37

The input is the same as in 3.5.2. Only the data structures for the ray-space R and
lineality-space L are different. L and R are again represented as lists of vectors, but
now their entries may be fractions of polynomials. The initial values are the same as
before.
Because of the case distinctions a single tuple of lineality and ray space is not sufficient
anymore. Therefore a decision tree is used, which holds the different result spaces at
its leaves.

chernikova line ray n dim nbConstraint =
if n < dim
then dLeaf (line,ray)
else let
-- filters the lines that do not saturate the current constraint
lineEqUneqTree = filterVecEq line n

-- if all lines saturate the current constraint apply caseB else caseA
caseAOrB = compDTreeG (\(x,y) ->

if (length y) > 0 then caseA x y else caseB x) lineEqUneqTree

-- caseA is only applied if at least one line does not saturate
-- the current constraint
caseA satLine (curr:notSatLine) =
-- find the positive directed half of the current line -> geCond

geCond (vectorEntry curr n)
(prod2DTreeG (prodDTreeG
-- the lines are projected along the current constraint

((map (\x -> combineFP x curr n) notSatLine)
++(map dLeaf satLine)))

(prodDTreeG
-- the positive directed half of the current line is added to
-- the rayspace and all rays are projected along the constraint

((map (\x -> combineFP curr x n) ray)
++[(dLeaf curr)])))

(prod2DTreeG (prodDTreeG
((map (\x -> combineFP x curr n) notSatLine)
++(map dLeaf satLine)))

(prodDTreeG
((map (\x -> combineFP x (mulVS curr (-1)) n) ray)
++[dLeaf (mulVS curr (-1))])))

-- caseB is only applied if all lines saturate the current constraint
-- the rayspace is partitioned in verifying, saturating and violating rays
rayVerSatVio = filterVecS ray n
caseB satLine = prod2DTreeG (dLeaf satLine) newRaysNorm

-- pairs of rays that saturate enough common constraints with the number
-- of the saturated constraints and a list of the constraints numbers
commonConstraints = mapDTreeG (\(x,y,z) -> (x,y,

(filter (\(_,_,z,_) -> ((z + (length line)) >= (dim -2)))
(map (\(x,y) -> common x y n (nbConstraint + dim -1) 0 [])
(cartesianProdukt x z))))) rayVerSatVio

-- list of new rays from linear combinations
newRays =

mapDTreeG (\(ver,sat,coms) ->
(ver++sat++ (map (\(x,y,_,_) -> combineNoNormFP y x n)
(filter (\(x,y,_,z) -> isNewRay x y z ray) coms)))) commonConstraints

38 CHAPTER 3. CHERNIKOVA’S ALGORITHM

newRaysNorm = compDTreeG normalizeListFP newRays
in
compDTreeG (\(x,y) -> chernikova x y (n-1) dim nbConstraint) caseAOrB

Auxiliary functions (functions not mentioned are explained in section 3.5.1 or 3.5.2):

filterVecEq ls n splits a list of vectors ls in two lists, one with vectors that
have 0 at position n and one that does not. The result is a decision tree with all
possible splittings at its leafs.

compDTreeG f dt applies a function f, that produces a decision tree to every leaf
of the decision tree dt

prod2DTreeG dt1 dt2 combines two decision trees dt1 and dt2, so that there
are tuples of dt1 and dt2 leaf values at the new tree’s leaves.

prodDTreeG dts combines a list of decision trees dts so that on the combined
tree’s leafs lists of the leaf values of the old trees are.

filterVecS ls n splits a list of vectors ls in three lists, one with vectors that
have a value greater than 0 at position n one with a value less than 0 and one
with the value 0. The result is a decision tree with all possible splittings at its
leaves.

mapDTreeG f dt applies a normal function f to every leaf of the decision tree dt

combineFP v1 v2 n computes a linear combination of two vectors v1 and v2
so, that the resulting vector has the value 0 at position n. The result is a decision
tree with all possible combinations as its leaves.

This version of the algorithm is very different in its way of processing from the other
two versions, since it passes much of the computational work to the decision tree and
the underlying logic. Hence, the performance is very dependent on the implementation
of the used data structure.

Chapter 4

Enumerator Computation

The number of integral points in a polytope is an important measurement for many
applications. There are several implementations that can calculate this parameter for
linearly parameterized polytopes. This chapter describes two existing methods to cal-
culate the exact value and an estimation. The first technique is invented by Philippe
Clauss [Cla96] and uses Ehrhart polynomials for its symbolical evaluation. The sec-
ond approach [VSB+04] also uses Ehrhart polynomials, but works with an analytical
method based on Barvinok’s decomposition [Bar93]. Finally we will present a method
by Thomas Fahringer, which uses symbolical analysis.

4.1 Clauss’ Method

Philippe Clauss presented a method to count the exact number of integer points in a lin-
early parameterized polytope [Cla96]. For the calculation he uses Ehrhart polynomials
or more precisely Ehrhart pseudo-polynomials.

4.1.1 Ehrhart Polynomials

Eugene Ehrhart showed that the number of integer points in a polytope can be ex-
pressed by so called pseudo-polynomials or Ehrhart pseudo-polynomials [Ehr77]. A
pseudo-polynomial is similar to a normal polynomial with the exception that it has
rational periodic numbers as coefficients. Rational periodic numbers are defined as
follows:

Definition 4.1 A rational periodic number c(p) is a function f : Z→ Q with a period
q, so that c(p) = c(p′) whenever p = p′ mod q.

39

40 CHAPTER 4. ENUMERATOR COMPUTATION

y

x

(n=6)

(n=5)

y = n

y = 0

x = 1 x = 5

y

x

(n=6)

(n=5)

y = n

y = 0

x = 0.5 y + 2x = 1

Figure 4.1: Linear Parameterized Polytopes

Ehrhart proposed a notation with q rational numbers enclosed in square brackets. A
rational periodic number c(p) with a period q = 2, where c(p) = 5 if p mod q = 0
and c(p) = 3

4 if p mod q = 1 would for example be written as

c(p) =
[
5,

3
4

]

p

(4.1)

Now we can formally define pseudo-polynomials:

Definition 4.2 A pseudo-polynomial of degree d is a function f

f(x) = cd(x)xd + . . . + c1(x)x + c0 (4.2)

where ci(x) are rational periodic numbers. The period of f is the least common mul-
tiple of all ci(x). A pseudo-polynomial of degree 1 is a polynomial.

The connection between the number of integer points in a polytope and pseudo-
polynomials is formulated in Ehrhart’s theorem:

Theorem 4.1 Let P ⊂ Qd be a rational polytope, the number of integer points in the
dilations sP with s ∈ N is given by a pseudo-polynomial of degree d. The period of
the pseudo-polynomial is a divisor of the least common multiple of the denominators
of the vertices of P .

To provide a deeper insight to the theorem above we want to explain, where we need
periodical functions to describe the number of integer points in a parameterized poly-
tope. Let us explain this on figure 4.1. Both polytopes have three fixed and one pa-
rameterized supporting hyperplane. The left polytope’s vertices however are always

4.1. CLAUSS’ METHOD 41

integral for all (integral) values of the parameter n, thus we can, as mentioned above,
represent the number of integer points in the polytope by a normal polynomial f , it is
easy to see, that in this case it would be f(n) = 4n. The right polytope on the other
hand has a parameterized vertex, that is not integral for certain values of the parame-
ter n. The upper right vertex has the parameterized coordinates

(
n, 1

2n + 2
)

and for
odd values of n the vertex is therefore not integral. The dotted line indicates that the
number of integer points does not grow continuously, but periodical. So we can’t set
up a polynomial as before, instead we can either define a number of polynomials, as
many as there are periods, and make a case distinction on n, or we set up an Ehrhart
pseudo-polynomial with according period. We will explain below how this can be
done.

4.1.2 Clauss’ Method

Philippe Clauss developed an algorithm to compute the the number of integer points
in a linearly parameterized polytope. In this section we will explain this method in-
formally, the outline of the algorithm will be given in the next section. For proofs and
more mathematical explanations please refer to the original publication [Cla96].
As explained before a linearly parameterized polytope may take different shapes for
different parameter values (see section 3.4.1). The parameter space is divided into dis-
joint domains, where the shape is not changing, i.e. the vertices are well-defined. For
each of those domains the enumerator is calculated. The enumerator of a domain is
the polynomial or pseudo-polynomial, that describes the number of integer points in
the polytope as a function of its parameters.
From the definitions above we have some information about the structure of the enu-
merator function of a polytope within a certain domain. The degree d of the (pseudo-)
polynomial f is equal to the dimensionality of the domain. If we know the number of
parameters we can set up a prototype of the pseudo-polynomial. For one parameter n,
this would look as follows:

f(n) = cd(n)nd + . . . + c1(n)n1 + c0(n) (4.3)

where c0, . . . , cd are rational periodic numbers. The period of ci is a divisor of the
denominator of the domain, so we assume it is the denominator and simplify later if
possible. For the example in figure 4.1 (right polytope) the prototype, with expanded
periodical rational numbers, would be f(n) = [c12, c22]nn2+[c11, c21]nn+[c10, c20]n.
The coefficients have period 2, since the denominator of the polytope is 2. We obtain
the denominator by calculating the LCM of the denominators of the vertices of the
polytope. The vertices are provided by Chernikova’s algorithm, which we discussed
in detail in chapter 3.
To compute more than one parameter Clauss uses symbolic variables instead of cal-
culating the equation with all parameters at once. So for a two-dimensional polytope
with two parameters a, b, he first sets up a system with the first parameter a, like

42 CHAPTER 4. ENUMERATOR COMPUTATION

f(a, b) = d2a
2 + d1a + d0 and recursively generate equations for additional parame-

ters:

d2 = c22b
2 + c21b

2 + c20

d1 = c12b
2 + c11b

2 + c10

d0 = c02b
2 + c01b

2 + c00

(4.4)

Now the task is to compute the coefficients of the pseudo-polynomial. If the pseudo-
polynomial has degree d, period q and p parameters we have (d + 1)pq unknown
coefficients and (d+1)p unknowns for each period. Clauss uses a form of interpolation
to compute these.
To compute (d+1)pq variables we need in general (d+1)pq equations. To get these we
actually count the number of integer points for (d + 1)pq parameter values. For each
period qi ∈ {0, . . . , q−1}we choose the first d values vj in every parameter’s domain,
where vi mod q = qj , and calculate the number of integer points of the polytope. In
our example is q = 2 and d = 3, so we count the numbers of integer points for q0

where n ∈ {0, 2, 4} and for q1 where n ∈ {1, 3, 5}. The solutions are:

q0

f(0) = 2
f(2) = 7
f(4) = 14

and q1

f(1) = 4
f(3) = 10
f(5) = 18

(4.5)

With the calculated results we can set up a system of equations for each period, where
we simply set in the values of the parameters and the calculated result. By solving
these systems we get the coefficients for each period. In our example this would be:

q0

0c12 + 0c11 + c10 = f(0) = 2
4c12 + 2c11 + c10 = f(2) = 7

16c12 + 4c11 + c10 = f(4) = 14
=⇒

c10 = 2
c11 = 2
c12 = 1

4

(4.6)

q1

c22 + c21 + c20 = f(1) = 4
9c22 + 3c21 + c20 = f(3) = 10

25c22 + 5c21 + c20 = f(5) = 18
=⇒

c20 = 7
4

c21 = 2
c22 = 1

4

(4.7)

After solving these systems we have the coefficients for each period, and we can com-
bine them to the complete pseudo-polynomial,

f(n) =
[
1
4
,
1
4

]

n

n2 + [2, 2]n n +
[
2,

7
4

]

n

. (4.8)

Obviously we can simplify this result. The first two coefficients are constant, since
they have the same values for all periods, so the simplified pseudo-polynomial is:

f(n) =
1
4
n2 + 2n +

[
2,

7
4

]

n

(4.9)

4.1. CLAUSS’ METHOD 43

4.1.3 Algorithm Outline

The input of the algorithm is an inequality system, which describes a linearly-
parameterized polytope. These steps will be applied: First the polytopes domains
and according vertices are computed, for each domain the following steps are applied:

Basic factors: The number parameters and the dimensionality of the domain are cal-
culated

Denominator: The domain denominator is calculated.

Prototype: A prototype of the domain enumerator is set up.

Interpolation: The enumerator is calculated:

• The integral points are counted for a number of parameter values
• The enumerators coefficients are calculated, by solving a system of equa-

tions

Simplification: The pseudo-polynomial is simplified

4.1.4 Review

The use of Ehrhart pseudo-polynomials to describe the enumerator of polytopes is
very convenient and gives easily understandable formulas since it does not use com-
plex functions such as min, max and mod. Clauss’ method to compute the Ehrhart
polynomials is also very comprehensible. It is implemented in the PolyLib library
[Wil93]. However, Beyls lists three serious limitations, which will be discussed below
[Bey04]. Methods to reduce these limitations will be shown in the next section.

Counting non-parameterized polytopes To set up initial equation systems in the
interpolation method, the number of integral points in fixed sized polytopes have to
be counted. In PolyLib this is done, by creating a set of loops, which enumerate the
integer points of an hyperrectangle, which encloses the original polytope. At each it-
eration, that is for each point, there is a test, if it lies within the original polytope.
Consider a polytope with constraints 0 ≤ i ≤ N, 0 ≤ j ≤ N where 1000000 ≤ N ≤
2000000. To calculate the enumerator the integral points of 3 polytopes have to be cal-
culated for N ∈ {1000000, 1000001, 1000002}. For N = 1′000′000 100′000′000′000
points have to be checked whether they lie in the polytope or not, which of course re-
sults in a noticeable execution time.
A more efficient way to count the number of integer points in a fixed sized polytope
was given by Barvinok [Bar94]. In fact the interpolation method is not depending on
the inefficient counting method. It could easily be replaced by Barvinok’s algorithm
and therefore this limitation does not reveal a substantial problem. We will discuss this
algorithm later in section 4.2.

44 CHAPTER 4. ENUMERATOR COMPUTATION

Figure 4.2: Matrix Multiplication: Code and Intermediate Accesses

Degenerate domains A more serious limitation is the problem of degenerate do-
mains. For the initial equation systems the number of integer points in (d + 1)pq
fixed sized polytopes is counted. In order to get linearly independent equations Clauss
takes the values from a hyperrectangle in the parameter domain. This method is also
known as Vandermonde interpolation. There are however cases where no large enough
hyperrectangle can be found in the parameter domain, then Clauss method fails to pro-
duce an answer, although with different parameter values the answer might be found.
The parameter domains where this problem occurs are known as degenerate domains.
Solutions could be found with different interpolation methods.

Large solution size For some polytopes the periods of the Ehrhart polynomials get
very large and hence a representation in another form is preferable. This is illustrated
best in a practical example from Beyls [Bey04].
Consider the program code for matrix multiplication in figure 4.2a, suppose we want
to count the number of distinct Translation Lookaside Buffer (TLB) pages accessed
between two consecutive accesses to the same TLB page. This indicates the number
of TLB page misses that can be expected and is called the reuse distance.
For simplicity, we will assume that A[i][k] and B[k][j] access different TLB
pages and we will concentrate on A[i][k]. We assume that A is a 200× 200 matrix,
which is laid out in column major order, and starts at address zero. Furthermore, an
element size of 4 bytes is assumed. As such, A[i][k] is located at address 4 ×
(200k + i).
Iterations (i, j, k) and (i, j + 1, k) access the same array element A[i][k]. Figure
4.2b shows the iterations that are executed between these two iterations, iterations
(i, j, k+1 · · · 199) (◦ in the figure) and iterations (i, j+1, 0 · · · k−1) (¦ in the figure).
The set of TLB pages accessed by the ◦-iterations can be described as

S1 =
{

t

∣∣∣∣∃k′ : t =
⌊

800k′ + 4i

L

⌋
∧ 0 ≤ i, j, k ≤ 199 ∧ k + 1 ≤ k′ ≤ 199

}
, (4.10)

4.2. USING BARVINOK’S DECOMPOSITION 45

where i, j and k are parameters. Assuming page size L = 4096, this can be written as
a set of linear constraints:

S1 = {t|∃k′ : 1024t ≤ 200k′+i ≤ 1024t+1023∧0 ≤ i, j, k ≤ 199∧k+1 ≤ k′ ≤ 199}
(4.11)

and further simplified to (for example by using the Omega library)

S1 = {t|0 ≤ i ∧ 1024t− 39800 ≤ i ≤ 199 ∧ 0 ≤ k ≤ 198
∧0 ≤ j ≤ 199 ∧ i + 200k ≤ 823 + 1024t}. (4.12)

For the ¦-iterations a similar equation is obtained. The total count of TLB pages is
#(S1 ∪ S2) = #S1 + #(S2 \ S1). Concentrating on S1, we see that it is a one-
dimensional polytope and using PolyLib we can find out that its vertices are

i

1024
+ 25

k

128
− 823

1024
and

i

1024
+

4975
128

. (4.13)

Since the dimension of this polytope is d = 1 and the periods are qi = 1024, qj = 1
and qk = 128, the resulting Ehrhart polynomial has 4 terms and each has a periodic
coefficient with period 1024. In total it is represented by 4 · 1024 = 4096 rational
numbers.
Using Barvinok’s decomposition (see section 4.2), a much simpler form could be ob-
tained:

⌊
i + 888
1024

⌋
−

⌊
i + 200k + 199

1024

⌋
+ 39 (4.14)

4.2 Using Barvinok’s Decomposition

An alternative approach to the interpolation method by Clauss was presented by Ver-
doolaege et al. [VWBC05], it reduces the limitations of Clauss’ method by using
Barvinok’s decomposition [Bar93]. To compute the enumerator of a polytope this al-
gorithm considers its generating function. We will first explain generating functions,
then how to find them for polytopes and later how to evaluate them.
The algorithm consists of the following transformations and calculations:

Supporting cones The polytope is decomposed into its supporting cones.

Shifted cones The cones are shifted to the origin.

Simplicial cones The cones are triangulated into simplicial cones.

Unimodular cones The simplicial cones are decomposed into unimodular cones.

46 CHAPTER 4. ENUMERATOR COMPUTATION

x=4.5x=0

x

Figure 4.3: One-dimensional polytope with 5 lattice points

Generating functions For each unimodular cone the generating function is deter-
mined.

Number of lattice points The generating functions of the unimodular cones are eval-
uated, shifted back and summed up

4.2.1 Generating Functions

Even if generating functions are often used as a more general construct, we will rely
on the following definition:

Definition 4.3 (Generating function) The generating function of a set A ⊂ Qd is the
generating function of the integer points in A. It is a formal power series with a term
for each integer point in A and can be written as:

f(A, x) =
∑

a∈A∩Zd

xa (4.15)

Evaluating this function at 1 returns the number of terms of f which equals the enu-
merator of A.

With the above definition we can calculate the enumerator of a polytope via it’s gener-
ating function. But by now we still have to enumerate all integer points, which is one
of the deficits of the interpolation method (see section 4.1). Consider the following
simple example:
Let P = {p|0 ≤ p ∧ 2p ≤ 9} be a one-dimensional polytope (shown in figure 4.3), in
the form of equation 4.15 the generating function is:

f(P, x) = x0 + x1 + x2 + x3 + x4 (4.16)

If we evaluate this function at x = 1, we get the correct enumerator 5:

f(P, 1) = 10 + 11 + 12 + 13 + 14 = 5 (4.17)

Let’s take a look at the cone C = {c|c ≥ 0}, we see that it’s generating function is the
geometric series:

f(C, x) = x0 + x1 + x2 + . . . =
∞∑

a=0

xa =
1

1− x
(4.18)

4.2. USING BARVINOK’S DECOMPOSITION 47

= ++

Figure 4.4: Polytope and its Supporting Cones.

Since this function contains more terms than we want for P , we subtract the part that
lies outside of the polytope:

f(P, x) = f(C, x)− f(C + 7, x) =
∞∑

a=0

xa −
∞∑

a=5

xa =
x0

1− x
− x5

1− x
(4.19)

The problem with this function is, that it always leads to a division by zero, when we
evaluate it at point x = 1. To circumvent this we have to compute limx→1 f(P, x).
We will show how this can be done in section 4.2.6. But first we will explain how to
set up the generating function for arbitrary polytopes. For this we have to decompose
the polytopes into unimodular cones.

4.2.2 Supporting Cones

The first step from a polyhedron towards its unimodular cones is to consider the sup-
porting cones of the polyhedron.

Definition 4.4 (Supporting cone) Let P = {x ∈ Qd|Ax ≥ 0} be a (parametric)
polyhedron with a (possibly parametric) vertex v, then

cone(P, v) = {x ∈ Qd|Bx ≥ 0} (4.20)

is the supporting cone of P at v, where B is the submatrix of A containing the con-
straint that are active on v, i.e. the constraints that define the supporting hyperplanes
that intersect at v.

An example of the supporting cones of a polytope is shown in figure 4.4.
Brion showed in 1988 that the generating function of a polyhedron is the same as the
sum of the generating functions of its cones [Bri88].

Theorem 4.2 (Brion’s theorem) The generating function f(P, x) of a polyhedron P
is equal to the sum of generating functions of its supporting cones,

f(P, x) =
∑

v(p)vertex ofP

f(cone(P, v), x) (4.21)

We already used this theorem intuitively in equation 4.19. These supporting cones are
in general not (shifted) unimodular, so we have to further decompose them.

48 CHAPTER 4. ENUMERATOR COMPUTATION

Figure 4.5: Degenerate Polytope and its Non-Simplicial Supporting Cone.

4.2.3 Triangulating Non-Simplicial Cones

If the polytope is degenerated, the supporting cones are not only not unimodular, but
also not simplicial. A simplicial cone can be defined as follows.

Definition 4.5 (Simplicial cone) A cone of dimension d is simplicial, if has only d
rays and lines, i.e. it’s number of generators is d.

An example of a non-simplicial cone can be seen in figure 4.5. If we have a non-
simplicial supporting cone, we have to triangulate it. There are several techniques to
do so. Verdoolaege uses the Delaunay triangulation [VWBC05]. We will only give a
short overview, how this can be done.
The basic idea of the Delaunay triangulation is to lift the cone, i.e. to add a new
dimension. We will refer to this dimension as height of the cone’s generators. If our
cone is C = {x ∈ Qd|Ax ≥ 0} with generators ui, we extend each generator with a
coordinate λi, so the new generators are {(ui, λi)} and

Cλ = {x ∈ Qd+1|Aλx ≥ 0} (4.22)

Now we can compute this lifted cones lower faces, which are defined as

{x ∈ Cλ|Aλ
+x = 0} (4.23)

where Aλ
+ contains only those row vectors of Aλ, where the d + 1st entry is positive.

The polyhedral complex built by the lower faces is called lower envelope. If we project
it to the first d dimensions, we have a subdivision of C, which will be a triangulation
for generic choices of λ.
The Delaunay triangulation uses λi =

∑
j u2

i,j . This however may not always succeed
and Verdoolaege then uses random heights, which in practice always lead to a triangu-
lation.
To get the lower envelope we compute the implicit representation of the polyhedron
generated by the rays {(ui, λi)} and the origin. This can be done by Chernikova’s
algorithm, which we discussed earlier (see chapter 3). The result will also contain the
upper envelope and to avoid this additional computation we add the ray (0, . . . , 0, 1)

4.2. USING BARVINOK’S DECOMPOSITION 49

to the cone, so only the lower and some vertical facets are computed.
Let us illustrate this with an example. Consider the non-simplicial cone in figure 4.5,
its generators may be

RC =

1
0
0

 ,

1
1
0

 ,

1
0
1

 ,

1
1
1

 . (4.24)

The Delaunay triangulation uses the heights λ = (1, 2, 2, 3), as we will see this does
not lead to a valid triangulation, so we will also use random heights λ′ = (3, 2, 5, 6).
With the optimization the lifted cones Cλ

↑ and Cλ′
↑ have the generators

RCλ
↑ =

1
0
0
1

 ,

1
1
0
2

 ,

1
0
1
2

 ,

1
1
1
3

 ,

0
0
0
1

(4.25)

and

RCλ
↑ =

1
0
0
3

 ,

1
1
0
2

 ,

1
0
1
5

 ,

1
1
1
6

 ,

0
0
0
1

. (4.26)

The implicit representation is

Aλ =

−1 −1 −1 1
0 0 1 0
0 1 0 0
1 0 −1 0
1 −1 0 0

(4.27)

and

Aλ′ =

−3 1 −2 1
−1 −1 −4 1

1 −1 0 0
1 0 −1 0
0 1 0 0
0 0 1 0

. (4.28)

It is obvious that the Delaunay triangulation will fail, since Aλ
+ has only one row

(−1,−1,−1, 1) and hence we have only one lower facet, which is the original cone.
Aλ′

+ however has two rows, a1 = (−3, 1,−2, 1) and a2 = (−1,−1,−4, 1). Now we

50 CHAPTER 4. ENUMERATOR COMPUTATION

y

z

x

y

z

x

Figure 4.6: Triangulation of a Non-Simplicial Cone.

have to find the sets of lifted rays (ui, λi) which saturate the equation aj(ui, λi) = 0.
We get the sets

Ra1 =

1
0
0
3

 ,

1
1
0
2

 ,

1
0
1
5

(4.29)

and

Ra2 =

1
1
0
2

 ,

1
0
1
5

 ,

1
1
1
6

. (4.30)

Projected to the first d dimensions we have two simplicial cones, which are a triangu-
lation of the original cone (see figure 4.6).
After the triangulation we have cones, which have common borders. Since we calcu-

late the number of integral points in each cone, points that lie on the borders might be
counted twice and hence we should subtract the affected faces. We will now see how
to overcome this problem.
To circumvent handling lower dimensional faces we use Brion’s polarization trick
[Bri88]. The polar cone C∗ of a cone C has rays and constraints interchanged, i.e.

C∗ = {y|∀x ∈ C : x • y ≥ 0}. (4.31)

We now use the fact that any linear equality between a set of cones also holds for the
set of their polar cones [BP99]. Hence we can polarize the cone, decompose it and
ignore the lower dimensional faces, since they contain lines after the repolarization.
To compute the polar we only interchange rays and constraints. An example can be
seen in figure 4.7, the right cone C = {(x, y)|x + 2y ≥ 0, x − 2y ≥ 0} has the
generators u1 = (2, 1) and u2 = (−2, 1), while it’s polar C∗ = {(x, y)|2x + y ≥
0,−2x + y ≥ 0} on the left has the generators u∗1 = (1, 2) and u∗2 = (1,−2).

4.2. USING BARVINOK’S DECOMPOSITION 51

y y

C C*

xx

Figure 4.7: Cone and its Polar.

In the following we will always assume that we work on the polar of a cone, when we
perform any kind of decomposition. Therefore we ignore lower dimensional faces.

4.2.4 Barvinok’s Decomposition

Definition 4.6 (Unimodular cone) A rational polyhedral cone

C = {x ∈ Qd|Ax ≥ 0} (4.32)

is unimodular, if A ∈ Zd×Zd is a unimodular matrix, i.e. the determinant of A is±1.
We call the cone shifted if the right-hand side is not zero, i.e. C = {x ∈ Qd|Ax ≥ γ}.
It may also be parametric, then γ = Bp + b, where B ∈ Qd×n and b ∈ Qd.

After the triangulation we have only simple cones, which however are in general still
not unimodular. To achieve unimodularity, we have to further decompose them. Barvi-
nok described a polynomial algorithm to do so [Bar94].
The main idea is to decompose a cone C, whose generator matrix K has determinant
det(K), into several cones Ci with det(Ki) < det(K). This is done repeatedly until
all resulting cones are unimodular, i.e. their generator matrices have determinant 1.
We decompose the cone C by finding an integral vector w, which can be written as a
linear combination of the generators of C with small coefficients, to be more precisely

w =
d∑

i=1

αiui |αi| ≤ |det(K)|− 1
d (4.33)

With a suitable w we can decompose a cone C into d cones Ci with smaller deter-
minants. For each cone Ci we simply replace a different generator by wT . It can be
shown that we can always find a proper w, which will lead to smaller determinants
[VWBC05].
We will only describe the method to find w briefly, for deeper insights in the mathemat-
ical background we again refer to [VWBC05]. Let B = KT be the matrix with genera-
tors of a cone C as rows and ∆ = det(B). We are searching for an integral wT = αT B

52 CHAPTER 4. ENUMERATOR COMPUTATION

such that the infinity norm ||α||∞ = max(|α1|, . . . , |αd|) is minimal. To find the w,
we are looking for a small α, which is equal to searching a λT = ∆αT = ∆wT B−1.
∆B−1 is a basis to an integer lattice, hence we can use Lenstra, Lenstra and Lovasz’
basis reduction algorithm (LLL) to find an B′ = U(∆B−1), where B′ is a reduced ba-
sis for the lattice ∆B−1 with nearly orthogonal vectors and U is an unimodular matrix
[LJL82]. These vectors are short in sense of the Euclidean but not the infinity norm,
so search for a linear combination with small coefficients µ. This gives us

λT = µT B′ (4.34)

and with λT = ∆wT B−1 and B′ = U(∆B−1) we get

wT = µT U. (4.35)

The search for µ may be very expensive and so only unit vectors are tried, which
means that possible values for w are only rows of U . If no element of λ is strictly
positive, we replace w by −w. In practice this always leads to a valid reduction.
The implementation of the LLL algorithm Verdoolaege uses is part of Victor Shoup’s
Number Theory Library (NTL) [Sho04].
Let’s look at a very simple example, recall the cone C = {(x, y)|x+2y ≥ 0, x−2y ≥
0} in figure 4.7. It is not unimodular, since the determinant of generator matrix

B =
(

2 1
−2 1

)
(4.36)

is 4. Now we have to calculate the reduced basis of 4B−1

4B−1 =
(

1 −1
2 2

)
. (4.37)

The reduced basis B′ is

B′ =
(

1 −1
2 2

)
U =

(
1 0
0 1

)
. (4.38)

We used the MapleTM implementation of the LLL algorithm for this step. The first row
of B′ is smaller than the second in the infinity norm and hence we choose wT = (1, 0).
This gives us two new cones C1 and C2, which have generators matrices

K1 =
(

2 1
1 0

)
K2 =

(
1 −2
0 1

)
, (4.39)

which are both unimodular.

4.2. USING BARVINOK’S DECOMPOSITION 53

Figure 4.8: Fundamental Parallelepiped of a Shifted Unimodular Cone.

4.2.5 Generating Functions for Unimodular Cones

At first we only consider a unimodular cone C = {x ∈ Qd|Ax ≥ 0}, it may be defined
by it’s rays u1, . . . , ud, which are the columns of U = C−1,

C = {λ1u1 + λ2u2 + . . . + λdud|λ ≥ 0}. (4.40)

It can be shown, that the generating function of such a unimodular cone can be ex-
pressed by the following formula [BP99]:

f(C, x) =
1

(1− xu1)(1− xu2) · · · (1− xud)
(4.41)

If the cone is shifted by an integer vector, that means its vertex is not the origin, but an
integer vertex v = Uγ, we can simply multiply the f(C, x) by the factor xv. But since
vertices may be non-integral, we have to calculate the correct integral multiplication
factor. We need the integral point, that lies within the fundamental parallelepiped Π of
cone C.

Definition 4.7 (Fundamental parallelepiped) The fundamental parallelepiped Π of
a shifted cone C with generators ui and vertex v is

Π = v +

{
d∑

i=1

αiui

∣∣∣0 ≤ αi < 1

}
(4.42)

It contains one single integer point w with

w =
d∑

i=1

dγieui =
d∑

i=1

αiui (4.43)

54 CHAPTER 4. ENUMERATOR COMPUTATION

An example of a fundamental parallelepiped can be seen in figure 4.8, it is not closed,
since the dashed borders lie outside. The cone’s vertex is v = (1.5, 1) and its genera-
tors are u1 = (0, 1) and u2 = (1, 1). We have

C = {(x1, x2)|2x1 ≥ 3, 2x1 − 2x2 ≤ 1} (4.44)

and therefore

A =
(

1 0
−1 1

)
, γ =

(−0.5
1.5

)
. (4.45)

We get w = dγ1eu1 + dγ2eu2, which is

w = d−0.5e
(

0
1

)
+ d1.5e

(
1
1

)
=

(
2
2

)
(4.46)

As expected the fundamental parallelepiped contains one integer point w = (2, 2).
With this integral point w we get the following general definition of f(C, x),

f(C, x) =
xw

(1− xu1)(1− xu2) · · · (1− xud)
, (4.47)

with

w =
d∑

i=1

dγieui = −
d∑

i=1

b−γicui. (4.48)

For our example this is

f(C, x) =
x2

1x
2
2

(1− x1)(1− x1x2)
, (4.49)

With this formula it is easy to calculate the generating function of a (shifted) unimod-
ular cone.

4.2.6 Evaluating Generating Functions

Now we can set up generating functions for any non-parameterized polytope. What
remains is to evaluate them at 1. We will only show the calculations that have to
be done, since the mathematical background is quite challenging (see [VWBC05]).
We will illustrate this on our introducing example, which is shown in figure 4.3. It
was a one dimensional polytope containing 5 lattice points. We found the following
generating function

f(P, x) =
x0

1− x
− x5

1− x
. (4.50)

4.2. USING BARVINOK’S DECOMPOSITION 55

We can treat each summand separately and build the sum later:

f(P, x) = f(C1, x) + f(C2, x)

f(C1, x) =
x0

1− x
, f(C2, x) =

x5

1− x
(4.51)

It should be noticed, that this property allows us to evaluate the generating functions
for all unimodular cones separately. At first we substitute x by s+1 and expand about
s = 0 by polynomial division.

f(C1, s) =
1

1− (s + 1)
=

1
s

f(C2, s) =
(s + 1)5

1− (s + 1)
=

1 + 5s + 10s2 + 10s3 + 5s4 + s5

s
(4.52)

In our example this is no problem but in general the x might be multidimensional,
then we either chose a vector λ, such that the inner product of λ and the generators
is different from zero, or we recursively apply the evaluation for each dimension (an
example for the first can be found in [Bey04] and for the second in [VWBC05]). The
general form of this summands is

f(Ci, s) = E[i]
(1 + s)numi

∏r
j=1((1 + s)denij − 1)

(4.53)

where E[i] is the sign and r is the number of rays of the corresponding cone. The
function has still a pole at s = 0 of an order equal to the number of factors in the
denominator, which is r. We can write this as

f(Ci, s) = E[i]
1
sr

Pi(s)
Qi(s)

(4.54)

where Pi(s) = (1+s)numi and Qi(s) =
∏r

j=1
((1+s)denij−1)

s . The Pi(s)
Qi(s)

polynomial’s

sr coefficient is lims→0
1
sr

Pi(s)
Qi(s)

. To compute the coefficients

Pi(s)
Qi(s)

= c0 + c1s + c2s
2 + . . . (4.55)

we expand Pi(s) = a0 + a1s + a2s
2 + . . . and Qi(s) = b0 + b1s + b2s

2 + . . . and use
the following recurrence relation:

c0 =
a0

b0

cl =
1
b0

(al −
l∑

i=1

bicl−i) (4.56)

56 CHAPTER 4. ENUMERATOR COMPUTATION

For our example this means for cone C1

P (s) = 1

Q(s) =
1− (s + 1)

s
= 1

c0 =
a0

b0
=

1
1

= 1

c1 =
1
b0

(a1 − (b1 ∗ c0)) =
1
1
(0− (0 ∗ 1)) = 0 (4.57)

and for cone C2

P (s) = (s + 1)5 = 1 + 5s + 10s2 + 10s3 + 5s4 + s5

Q(s) =
1− (s + 1)

s
= 1

c0 =
a0

b0
=

1
1

= 1

c1 =
1
b0

(a1 − (b1 ∗ c0)) =
1
1
(5− (0 ∗ 1)) = 5 (4.58)

The sum of the coefficients of the cones is 0+5 = 5 which is the same result as in our
first calculation in equation 4.17.

4.2.7 Extension to Linear Parameters and Review

We have described the single steps, how to calculate the enumerator of a non-
parameterized polytope using the Barvinok decomposition. Processing linearly pa-
rameterized polytopes works essentially the same way, but additionally we keep track
of the domain of each vertex and hence each cone. In the final step we sum up cones
that lie in the same chamber, for an good example see [VWBC05]. Here is an overview
of the algorithm for linear parameterized polytopes:

1. For each vertex vi of polytope P :

(a) Determine the supporting cone Ci of P with vertex vi

(b) Let C0
i be Ci shifted to the origin

(c) Decompose C0
i in unimodular cones Ci

j

i. Polarize C0
i to C∗

i

ii. Triangulate C∗
i in simplicial cones

iii. Decompose each simplicial cone into unimodular cones
iv. Polarize the unimodular cones back to Ci

j

4.3. FAHRINGER’S METHOD 57

(d) For each unimodular cone Ci
j determine f(Ci

j , x)

(e) Determine f(Ci, x)

2. For each chamber D of polytope P :

(a) Determine f(P, x)

(b) Evaluate f(P, 1)

Further information can be found in Verdoolaege’s technical report [VWBC05]. This
algorithm overcomes the limitations of Clauss’ method (cf. section 4.1):

• No counting of the integer points of non-parameterized polytopes has to be done.
Calculating the enumerator of non-parameterized polytopes is proportional to
the vertices not the integer points.

• There is no problem with degenerate domains.

• Long periodic numbers can be avoided by using modulo or ceiling expressions.

4.3 Fahringer’s Method

During our work we came across another method which was presented by Thomas
Fahringer. It estimates the number of integral points in non-linearly parameterized
polytopes using symbolical analysis [Fah98, FS03] and is based on an approach by
William Pugh [Pug94]. This method has been implemented, but unfortunately, the
implementation was lost and, therefore, we could not compute any tests and compare
them to our results.
We will provide a simple example to illustrate the techniques used. Instead of comput-
ing the vertices of the polytope with Chernikova’s algorithm, Fahringer uses a set of
rewrite rules and simplifications to compute the lower and upper bounds of the sym-
bolic expressions in the equations and inequalities. An inequality y ≤ x+1 would for
example define an upper bound Uy = {x + 1} for y and a lower bound Lx = {y − 1}
for x.
To estimate the number of integral points within the polytope a symbolic sum algo-
rithm is applied to the resulting tuples of expressions and bounds. The sum is com-
puted by eliminating the variables one after the other. For each variable, subsets of the
original constraints are built where their maximum lower and minimum upper bounds
can be determined uniquely and then the variable is replaced in the remaining sym-
bolic expressions by an algebraic sum. For each resulting disjoint constraint subset,

58 CHAPTER 4. ENUMERATOR COMPUTATION

the sums of the according algebraic sums are built. Consider the following inequality
system I:

1 ≤ x ≤ N1

x ≤ N2

1 ≤ y ≤ x (4.59)

we have two variables x, y with the bounds Lx = {1}, Ux = {N1, N2}, Ly = {1}
and Uy = {x}. We start with eliminating y, we have only one upper and lower bound
and hence only one intermediate result:

x∑

y=1

1 = x− 1 (4.60)

For x we have one lower and two upper bounds which gives us two subsets with
additional constraints, for N1 ≤ N2 we get

N1∑

x=1

x− 1 =
N1(N1 − 1)

2
(4.61)

and for N2 < N1

N2∑

x=1

x− 1 =
N2(N2 − 1)

2
. (4.62)

This simple example gives an impression of the function of Fahringer’s technique.

Chapter 5

Volume Computation

We have described several algorithms to calculate the exact number of integral points
in linearly parameterized polytopes. Yet many problems concern the volume of non-
linearly parameterized polytopes. We have introduced a technique to transform algo-
rithms for non-parameterized polytopes to algorithms for non-linearly parameterized
polytopes in section 3.4.2. In this section we will show how to compute the volume of
a non-linearly parameterized polytope as a rough approximation to its enumerator. Of
course the volume may extremely differ from the enumerator, but in general cases it is
sufficiently accurate for many applications.
In the following we will explain a method to compute the volume of non-parameterized
polytopes and then show our implementation of this algorithm for non-linearly param-
eterized polytopes.

5.1 Algorithm for the Volume of Polytopes

There are several techniques for computing the exact volume of a polytope. A good
survey can be found in [GK94]. We implemented a very simple technique which is
based on triangulation and is taken from [Fah96].
The algorithm triangulates a polytope into a set of simplices and then then sums up the
volumes of the simplices. First, we will give a formula for calculating the volume of a
simplex.

5.1.1 Volume of a Simplex

Definition 5.1 (Simplex) A simplex is an n-dimensional convex polytope with n + 1
vertices.

59

60 CHAPTER 5. VOLUME COMPUTATION

Figure 5.1: Simplices of Dimension 1-4.

y

x

z

Figure 5.2: Tetrahedron

Therefore a simplex of dimension 1 is a line segment, one of dimension 2 is a triangle
and one of dimension 3 is a tetrahedron, which can be seen in figures 5.1 and 5.2. The
volume of a simplex is given by a closed form formula.

Definition 5.2 (Volume of a simplex) Let P be an n-dimensional simplex and V =
{v1, . . . , vn+1} the set of vertices of P then its volume is defined by

vol(P) =
1
n!
|det(v2 − v1, v3 − v1, . . . , vn+1 − v1)| (5.1)

where vi − vj the distance vector of two vertices is.

This formula can even be applied to parameterized simplices without change, since
we can compute the determinant also with a parametrical matrix. However, it may
lead to one case distinction because of the absolute. Consider the simplex shown in
figure 5.2. It may be defined by the set P = {(x, y, z) ∈ R3|x ≥ 0, y ≥ 0, z ≥
0, x + y + z ≤ p, p ≥ 0} where p is a rational parameter. The set of vertices is
V = {(0, 0, 0), (p, 0, 0), (0, p, 0), (0, 0, p)} and the formula gives the volume:

vol(P) =
1
3!

∣∣∣∣∣∣
det

p 0 0
0 p 0
0 0 p

∣∣∣∣∣∣
=

1
6
p3 (5.2)

5.1.2 Triangulation

We have already seen a form of triangulation in section 4.2.3. Here we will see another
technique which makes use of the center of mass vertex. The center of mass vertex of
a polytope is defined as follows:

5.1. ALGORITHM FOR THE VOLUME OF POLYTOPES 61

c1
c1

c2

Figure 5.3: Triangulation of a Cube

Definition 5.3 (Center of mass vertex) Let P be a polytope of dimension d, with a
set of vertices V , then

vc =
1
|V |

∑

v∈V

v (5.3)

is the center of mass vertex of P .

To triangulate a polytope P of dimension n with the center of mass vertex, we use an
recursive algorithm. Here in pseudo code:

triangulate (Polyhedron p, Dimension d, Vertices v)
simplices = EmptSet;
IF d>1
c = centerOfMass(p);
v = v UNION c;
FORALL facets f of p do

simplices = simplices UNION triangulate(f,d-1,v)
ELSE
simplices = {p UNION v};

FI
RETURN simplices;

END.

The initial input is a set of vertices p of the polyhedron to be computed, the dimension
of the polyhedron and an empty set. The output is a set of sets of vertices, where each
defines a simplex. Informally we do the following: We calculate the set of facets F
of P and decompose P in |F | new polytopes, where each is the convex hull of the
vertices the facet f ∈ F and the polytopes center of mass vm. Then we do this for
each of the facets recursively, until we have only 1-dimensional facets, (i.e. lines) left.
At this point, we have n− 1 center of mass vertices to each line. With the line vertices
we have n + 1 vertices that define a simplex. The set of all simplices is a triangulation
of P .
Consider a 3-dimensional cube; its triangulation can be seen in figure 5.3. On the left
we see the first recursive step, the center of mass c1 of the whole cube is calculated and
the cube is decomposed in 6 square pyramids. On the right we see the next for one of

62 CHAPTER 5. VOLUME COMPUTATION

y

x

z

Figure 5.4: 3-dimensional Polytope

these pyramids. The center of mass c2 of the according face is calculated and is split
up into 4 triangles. As lines do not have to be triangulated, we can stop here and have
a valid triangulation of the cube.
This triangulation is by far not minimal in the number of resulting simplices, for it will
also decompose simplices. Nevertheless, it is easy to adopt to parameterization, which
we will see later (section 5.3).

5.1.3 Volume

With the explicit formula for simplices and the triangulation the volume computation
is straightforward. We simply triangulate any polytope and then sum up the volumes
of the resulting simplices. In pseudo code:

volume(Polyhedron p, dimension k)
simplices = triangulate(p,k,{});
sum = 0;
forall s in simplices do
sum = sum + simplexVolume(s);

od
return sum;

end.

We will now have a look at an example concerning the polytope

P = {(x, y, z) ∈ R3|0 ≤ x ≤ 3, 0 ≤ y ≤ 3, 0 ≤ z ≤ 3, x + y + z ≤ 4}, (5.4)

5.1. ALGORITHM FOR THE VOLUME OF POLYTOPES 63

which can be seen in figure 5.4. With Chernikova’s algorithm (section 3.2) we can get
its set of vertices

V =

0
0
0

 ,

3
0
0

 ,

3
1
0

 ,

3
0
1

 ,

0
3
0

 ,

1
3
0

 ,

0
3
1

 ,

0
0
3

 ,

1
0
3

 ,

0
1
3

 . (5.5)

Now we calculate the center of mass c1 of the whole polyhedron

c1 =
1
|V |

∑

v∈V

v =

11/10
11/10
11/10

 . (5.6)

In order to decompose the polyhedron, we have to identify the facets and the according
vertices. Each facet is defined by the set of the vertices that lie on one supporting
hyperplane. We know the supporting hyperplanes from the constraints. A vertex lies
on a hyperplane if the scalar product of the vertex and the hyperplane is zero (both in
homogeneous form).
We can demonstrate this for the constraint a7 := x + y + z ≤ 4. The supporting
hyperplane is defined by the equality x + y + z = 4 and the set of vertices that lies on
that hyperplane is

F7 =

3
1
0

 ,

3
0
1

 ,

1
3
0

 ,

0
3
1

 ,

1
0
3

 ,

0
1
3

 . (5.7)

We do this for all constraints and get 7 facets, this can be seen in figure 5.5 on the right
side. For each of those facets we again compute the center of mass. We do this for the
facet we computed above,

c2 =
1
|F |

∑

v∈F

v =

4/3
4/3
4/3

 . (5.8)

Now we have to find all facets of F . This is done as before by finding all sets of
vertices F ∗ ⊂ F , that lie on a supporting hyperplane of F . The result can be seen in
figure 5.5 on the left. We find 6 supporting hyperplanes and therefore get 6 lines. With
the centers of mass c1 and c2 each line defines a simplex, for which we can compute the
volume with the formula in equation 5.1. We will do this for example for the simplex

64 CHAPTER 5. VOLUME COMPUTATION

y

x

z

v4 v5

v0 v1

v3

v2

v8

v7

v9

v6

c1 c1

v5

v2

c2

y

x

z

Figure 5.5: Triangulation of a Polytope.

with vertices F ∗ = {c1, c2, v2, v5}. The volume of this simplex is

volume(F ∗) =
1
n!
|det(c2 − c1, v2 − c1, v5 − c1)| =

1
6

∣∣∣∣∣∣
det

7/30 19/10 −1/10
7/30 −1/10 19/10
7/30 −11/10 −11/10

∣∣∣∣∣∣
=

14
45

(5.9)

If we do this for all simplices, we get the volume of P which is 252
3 .

5.2 Comparison of Volume and Number of Integral Points

We already mentioned that the real volume of a polytope can only be a very rough
estimate of the number of its integral points. But, nevertheless, for many applications
it is, in most cases, sufficient.
We have to be aware of two extremal cases:

• the volume of a non-full-dimensional polytope is always zero,

• a polytope with a width of less than one in one dimension can contain zero
points.

The first case is very common, but we excluded it intentionally before. If we have to
deal with polytopes of lower dimensions, we can project them to a space with proper
dimensionality. The second case is harder to predict, especially in parameterized
polytopes.
The difference between the volume and the enumerator of a polytope becomes

5.3. NON-LINEAR PARAMETERIZED VOLUME COMPUTATION 65

less significant with increasing size. As the main application of our technique is
parallelization, we must expect large problem sizes. We will illustrate this in a sample
calculation: Consider a hypercube of dimension d with integral edge length x and
integral vertices, its volume is xd and its enumerator is (x + 1)d. The deviation
of the volume from the enumerator in percent is shown as d ∈ {1, 2, 3, 4} and
x ∈ {1, 10, 1000, 1000000} in the following tabular:

d x = 1 x = 10 x = 1000 x = 1000000
1 50 9.1 0.001 0.000001
2 75 17 0.002 0.000002
3 88 25 0.003 0.000003
4 93 32 0.004 0.000004

As we can see is the deviation very small for large polytopes. For the problem sizes
that we expect it is negligible (see also [Fah96]).

5.3 Non-Linear Parameterized Volume Computation

5.3.1 Changes on the Algorithm

For computing the volume of a non-linearly parameterized polytope we will once again
use the technique of Armin Größlinger, which we introduced in section 3.4.2. It will
give us the result in form of a decision tree, where each node indicates a case distinc-
tion. At first we have to identify whereabouts in the algorithm we need to introduce
case distinctions.
The algorithm above needs both the implicit and parametric representation of a poly-
tope. As we only (in general) have one, we use our implementation of Chernikova’s
algorithm to get the other. This step will produce several case distinctions (see section
3.4.2).
For computing a polytope’s volume, we have to triangulate it first. The triangulation
consists of 3 recursive steps (except the last recursion):

• Compute center of mass vertex.

• Compute facets.

• Triangulate facets.

The computation of the center of mass vertex results in no new case distinctions since
it is a closed formula, which we can also use with parameters. The computation of the

66 CHAPTER 5. VOLUME COMPUTATION

facets gives us new case distinctions, since we have to check if a vertex lies on a hyper-
plane. For every combination of any hyperplane and vertex we get a EqCond node,
but if we use Chernikova’s algorithm these case distinctions should be redundant and
lead to no new nodes. The triangulation of the facets is the recursive step and nothing
is changed here. In the last recursion the simplex is returned and here also nothing has
to be done.
When we triangulated the polytope, we have to compute and then sum up the sim-
plices’ volumes. For the calculation of the volumes we use the formula in equation
5.1. As we indicated before, this results in one case distinction for each simplex, since
we have to calculate an absolute value, so we introduce a GeCond node here. The
summation can be done without change.

5.3.2 Implementation Details

We implemented the volume computation algorithm for non-linearly parameterized
polytopes. The implementation is very similar to the pseudo code in section 5.1.3, as
before we used the Haskell programming language and data structures and functions
provided by HsLooPo, a part of the LooPo project [Leh]. We will first explain some
auxiliary functions and then show the algorithm itself.
The first function computes the volume of a simplex:

simplexVolume vertices =
let
-- an arbitrary vertex is chosen as root vertex
-- and negated for substraction
negRoot = negV (head vertices)

-- the root vertex is subtracted from all the other vectors,
-- and a matrix is built from the resulting distance vectors
vectors = map (addVV negRoot) (tail vertices)
vMatrix = rowVectorsToMatrix1 vectors

-- the determinant of the matrix is computed and divided
-- by the faculty of the number of vertices of the simplex
det = determinantFP (rows’ vMatrix)
divBy = fac (length vertices)
result = det / (int2FracPoly divBy)

-- to compute the absolute value of the result a geCond
-- node is introduced
absResult = geCond result (dLeaf result) (dLeaf (-result))

in absResult

It is a straightforward implementation of the formula for simplex volumes, input is a
list of vectors, containing the simplexes vertices. Auxiliary functions are:

negV v computes the negative of a vector v.

5.3. NON-LINEAR PARAMETERIZED VOLUME COMPUTATION 67

addVV v1 v2 adds two vectors v1 and v2.

rowVectorsToMatrix1 vs builds a matrix with row vectors from a list of vec-
tors vs (it should be the column matrix, but it makes no difference, because the
determinant is equal for a matrix and its transpose).

determinantFP m computes the determinant of a matrix m (we use the Laplace
formula to simplify matters).

fac n computes the faculty of n.

int2FracPoly x converts the type of a variable from Int value to FracPoly.

The result of the function is not a polynomial, but a decision tree, with parameterized
polynomials at its leafs.
The next function computes the center of mass vertex of a polytope, input is a list of
its vertices:

centerOfMass vertices =
let
divBy = 1 / (fromIntegral (length vertices))
vertexSum = foldl addVV (head vertices) (tail vertices)
result = mulVS vertexSum divBy

in result

This function does nothing special, but computing the center of mass vertex with the
formula presented in equation 5.3.
In our implementation, the triangulation and volume summation are not separated, so
we don’t have to additionally iterate over the list of simplex volumes:

volume hyperplanes vertices n centersOfMass =
-- if dimension 1 is reached volume of the simplex is computed
if n == 1 then
let

allVertices = vertices++centersOfMass
result = simplexVolume allVertices

in result

-- the polytope has to be further decomposed
else
let

-- the center of mass of the polytope defined by vertices is computed
-- and is added to the list of center of mass vertices
centerVertex = centerOfMass vertices
newCentersOfMass = centersOfMass++[centerVertex]

-- the facets of the polytope defined by vertices are computed
-- and the volume function is called for all facets
facets = getFacets hyperplanes vertices
volumes = map (\x -> volume hyperplanes x (n-1) newCentersOfMass) facets

-- the sum of all simplices volumes is computed and returned
sumOfVolumes = mapDTreeG (foldl (+) 0) (prodDTreeG volumes)

in sumOfVolumes

68 CHAPTER 5. VOLUME COMPUTATION

Initial input of this function is the set of supporting hyperplanes, a list of the ver-
tices, the dimension of the polytope and an empty list which will hold the center of
mass vertices in later recursions. We will discuss the representation of the hyper-
planes later. As in the pseudo code version we have two cases, either dimension 1 is
reached and the vertices in vertices combined with the center of mass vertices in
centersOfMass define a simplex, or we have to further triangulate the polytope.
If n is 1, we simply unite vertices and centersOfMass and compute the volume
of their convex hull. If we have to further triangulate the polytope, we calculate the
center of mass vertex and the facets of the polytope. For each facet we call the volume
function recursively and sum up the results. We use following auxiliary functions:

mapDTreeG f dt applies a function f to every leaf of the decision tree dt

prodDTreeG dts combines a list of decision trees dts so, that on the combined
trees leafs lists of the leaf values of the old trees are.

Additionally, we use the function getFacets hs vs, which returns the facets of
the polytope with vertices vs, hyperplanes hs in a decision tree. The facets are spec-
ified by a list of their vertices. This function needs some extra consideration. To find
a facet we first have to find the supporting hyperplane and then the vertices on that
hyperplane. If we do this for each recursion, we have many redundant computations,
so it is more advisable to initially compute the set of vertices for each hyperplane and
implement the getFacet function simply by intersection. Let us first consider the
functions to build the set of vertices to each hyperplane:

-- Filters a list of vertices, that lie on a hyperplane
-- Returns a DTreeGen with the corresponding lists at the leaves
verticesOnHyperplane _ [] = dLeaf []
verticesOnHyperplane hyp (v:vs) =
let
-- the vertex is transfered to vector representation
-- and multiplied with the hyperplanes vector
vector = insertEntries v (vectorLength v) [(int2FracPoly 1)]
prod = mulVV hyp vector

-- if the scalar product is null the vertex lies on the hyperplane
-- else it does not
in EqCond prod

(mapDTreeG (\x -> x++[v]) (verticesOnHyperplane hyp vs))
(verticesOnHyperplane hyp vs)

-- Applies the verticeOnHyperplane function on a list of hyperplanes
-- Returns a list of DTreeGens
_verticesOnHyperplanes [] _ = []
_verticesOnHyperplanes (hyp:hs) vs =
[verticesOnHyperplane hyp vs] ++(verticesOnHyperplanes hs vs)

-- Joins the list of DTreeGens to a DTreeGen with lists at it’s leaves.
verticesOnHyperplanes hs vs =
prodDTreeG _verticesOnHyperplanes hs vs

5.3. NON-LINEAR PARAMETERIZED VOLUME COMPUTATION 69

With the function verticesOnHyperplanes hs vs we get a decision tree con-
taining a subset of the vertices in vs for each hyperplane in hs at each leaf. We can
now apply the volume calculation to each leaf of the decision tree. This representation
of the hyperplanes gives us a very easy implementation of the getFaces function:

-- Computes a list of lower dimensional facets of a polytope
-- by intersection
getFacets hyperplanes vertices dim =
let
faces = map (\x -> intersect vertices x) hyperplanes
facets = filter (\x -> (length x) < (length vertices)

&& (length x) >= (dim -1)) faces
in facets

We only have to intersect the hyperplanes’ vertices with the vertices of the current
polytope. We then filter the result, because if the polytope lies within a hyperplane,
this hyperplane will give us the complete polytope again.

70 CHAPTER 5. VOLUME COMPUTATION

Chapter 6

Conclusions

In parallel computing it is essential that programs have a good work distribution. Au-
tomatic parallelization techniques therefore need information on the overall amount of
work in an program. In the polyhedron model this can be expressed as the number of
integral points in a polytope.
We have presented a method to estimate this number for non-linearly parameterized
polytopes. Our approximation of the enumerator of a polytope is its volume. This is a
good approximation in most cases (cf. [Fah96]). We also implemented our method as
part of the HsLooPo project.
Our implementation is based on Armin Größlinger’s decision tree data structure
[Grö03]. It does much of the computational work concerning the case distinctions.
Since this is very complex, the overall runtime is dominated by the decision mak-
ing. Therefore, our technique addresses exclusively non-linear problems. For linear
problems to date the technique by Sven Verdoolaege et al. is best in performance and
applicability [VSB+04].
Thomas Fahringer and Bernhard Scholz presented an equally expressive technique
[Fah98]. Unfortunately, we could not compare our results, since their implementation
was lost and they no reference was made to its complexity.
A large part of our implementation was the adaption of Chernikova’s algorithm for
non-linearly parameterized polyhedra. We discussed it extensively because the dou-
ble description is not only used for volume and enumerator computation, but is also
the basis for several operations performed on polyhedra, such as intersection, differ-
ence and union. As it is one goal of the HsLooPo project to completely extend the
polyhedron model to non-linear parameterized polyhedra, this algorithm may well be
needed in different applications in the future. Like the volume computation, it also is
highly dependent on the decision tree data structure and, therefore, only suitable for
non-linear problems.
An overview of the running time of some of our experiments can be seen in table 6.1.
The first test (eq. 3.32) was a linearly parameterized polytope with a few more case

71

72 CHAPTER 6. CONCLUSIONS

Polytope #Vars #Params #Tree Nodes (C) Chernikova Volume
Eq. 3.32, p. 21 2 1 15 1.09 sec. 2.08 sec
Eq. 3.47, p. 30 2 1 12 1.02 sec. 1.31 sec.
Eq. 4.59, p. 58 2 2 38 10.7 sec. 18.9 sec.

Table 6.1: Runtime Experiments

distinctions than the polytope in the second test (eq. 3.47). The longer, but almost
equal, runtime of first test shows that linear parameterization leads to the same amount
of computation as non-linear parameterization. The third test shows how fast the com-
plexity of non-linear parameterization grows.

Further improvements could address the inefficiency of linear and unparameterized
problems by providing alternative implementations for these. Another issue is the way
equations are handled in the volume computation. In our current implementation the
exact volume is computed, and so an equation will always result in the volume being
zero. This is correct, but in this case not desirable. One solution would be to project
the polytope to a lower dimensional space, so that only the equation is eliminated.

Bibliography

[Bar93] Alexander I. Barvinok. A polynomial time algorithm for counting inte-
gral points in polyhedra when the dimension is fixed. In 34th Annual
Symposium on Foundations of Computer Science, pages 566–572. IEEE,
Nov. 1993.

[Bar94] Alexander I. Barvinok. A polynomial time algorithm for counting inte-
gral points in polyhedra when the dimension is fixed. Math. Oper. Res.,
19(4):769–779, 1994.

[Bey04] Kristof Beyls. Software Methods to Improve Data Locality and Cache
Behavior. PhD thesis, 6 2004.

[BHRZ03] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. The Parma Polyhe-
dra Library User’s Manual. Department of Mathematics, University of
Parma, Parma, Italy, April 2003.

[BP99] A. Barvinok and J. Pommersheim. An algorithmic theory of lattice points
in polyhedra, 1999.

[Bri88] Michel Brion. Points entiers dans les polyèdres convexes. Annales Sci-
entifiques de l’École Normale Supérieure, 4, 21(4):653–663, 1988.

[Che64] N.V. Chernikova. Algorithm for finding a general formula for the non-
negative solutions of a system of linear equations. U.S.S.R. Computa-
tional Mathematics and Mathematical Physics, 5(2):167–185, 1964.

[Che65] N.V. Chernikova. Algorithm for finding a general formula for the non-
negative solutions of a system of linear inequalities. U.S.S.R. Computa-
tional Mathematics and Mathematical Physics, 5(2):228–233, 1965.

[Che68] N.V. Chernikova. Algorithm for discovering the set of all the solutions
of a linear programming problem. U.S.S.R. Computational Mathematics
and Mathematical Physics, 8(6):282–293, 1968.

73

74 BIBLIOGRAPHY

[Cla96] Philippe Clauss. Counting solutions to linear and nonlinear constraints
through ehrhart polynomials: Applications to analyze and transform sci-
entific programs. In International Conference on Supercomputing, pages
278–285, 1996.

[Ehr77] Eugene Ehrhart. Polynômes arithmétiques et méthode des polyèdres en
combinatoire. In International Series of Numerical Mathematics, volume
vol.35. Birkhauser Verlag, Basel/Stuttgart, 1977.

[Fah96] Thomas Fahringer. Automatic Performance Prediction of Parallel Pro-
grams. Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[Fah98] Thomas Fahringer. Efficient symbolic analysis for parallelizing compilers
and performance estimators. The Journal of Supercomputing, 12(3):227–
255, 1998.

[FS03] Thomas Fahringer and Bernhard Scholz. Advanced Symbolic Analysis for
Compilers, volume 2628 of Lecture Notes in Computer Science. Springer,
2003. New Techniques and Algorithms for Symbolic Program Analysis
and Optimization.

[GGL04] Armin Größlinger, Martin Griebl, and Christian Lengauer. Introducing
non-linear parameters to the polyhedron model. In Michael Gerndt and
Edmond Kereku, editors, Proc. 11th Workshop on Compilers for Parallel
Computers (CPC 2004), Research Report Series, pages 1–12. LRR-TUM,
Technische Universität München, July 2004.

[GK94] Peter Gritzmann and Victor Klee. On the complexity of some basic prob-
lems in computational convexity: II. volume and mixed volumes. Uni-
versität Trier, Mathematik/Informatik, Forschungsbericht, 94-07, 1994.

[Gri00] Martin Griebl. On the mechanical tiling of space-time mapped loop nests.
Technical Report MIP-0009, Fakultät für Mathematik und Informatik,
Universität Passau, August 2000.

[Grö03] Armin Größlinger. Extending the polyhedron model to inequality systems
with non-linear parameters using quantifier elimination. Diploma thesis,
Universität Passau, September 2003.

[Leh] Lehrstuhl für Programmierung, Universität Passau. The polyhedral loop
parallelizer: LooPo.

[LJL82] A. Lenstra, H. Lenstra Jr., and L. Lovasz. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

BIBLIOGRAPHY 75

[LW97] Vincent Loechner and Doran K. Wilde. Parameterized polyhedra and
their vertices. International Journal of Parallel Programming, 25(6):525–
549, 1997.

[MR80] T.H. Matheiss and David S. Rubin. A survey and comparison of meth-
ods for finding all vertices of convex polyhedral sets. Mathematics of
operations research, 5(2):167–185, May 1980.

[MRTT53] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The double
description method. Contributions to the Theory of Games, 2(28):51–73,
1953.

[Pug94] William Pugh. Counting solutions to presburger formulas: How and why.
In SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 121–134, 1994.

[Sch86] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, Inc., New York, NY, USA, 1986.

[Sho04] Victor Shoup. Ntl: A library for doing number theory, 2004.
www.shoup.net/ntl.

[Ver94] H. Le Verge. A note on chernikova’s algorithm. Technical Report 635,
Rennes, France, 1994.

[VSB+04] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. Analytical computation of ehrhart polynomials:
enabling more compiler analyses and optimizations. In CASES ’04: Pro-
ceedings of the 2004 international conference on Compilers, architec-
ture, and synthesis for embedded systems, pages 248–258, New York,
NY, USA, 2004. ACM Press.

[VWBC05] Sven Verdoolaege, Kevin Woods, Maurice Bruynooghe, and Ronald
Cools. Computation and manipulation of enumerators of integer projec-
tions of parametric polytopes. Technical report, Katholieke Universiteit
Leuven, Heverlee - Belgium, March 2005.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Technical Report
RR-2157, 1993.

76 BIBLIOGRAPHY

Index

Barvinok’s decomposition, 51
Barvinok, A., 43, 51
Beyls, K., 43
bound

lower, 57
upper, 57

Brion’s theorem, 47
Brion, M., 47, 50

center of mass, 60
chamber, 25
Chernikova’s algorithm, 9–38
Chernikova, N.V., 10, 14, 17, 34, 71
Clauss, P., 39, 41, 45, 57
cone, 7

convex, 7
polar, 50
polyhedral, 7
simplicial, 48
supporting, 47
unimodular, 51

cone duality, 7
constraint, 11

decision tree, 27
Delaunay triangulation, 48
Delaunay, B., 48
domain

degenerate, 44
domain decomposition, 25
double description method, 10

Ehrhart polynomial, 39–41
Ehrhart, E., 39
enumerator, 41

equation, 5

Fahringer, T., 39, 57, 71
fundamental parallelepiped, 53

generating function, 46, 53
Größlinger, A., 2, 26, 27, 36, 65, 71

half-space, 6
Haskell, 32
homogeneous form, 5
HsLooPo, 32, 66, 71
hyperplane, 6

supporting, 6

implicit representation, 6, 7
incidence matrix, 24
inequality, 5
interpolation, 42

Le Verge, H., 16, 17, 33, 34
Lenstra, A., 52
Lenstra, H., 52
line, 6
lineality-space, 7
linear

equation, 5
inequality, 5

linear combination, 12
LLL, 52
LooPo, 32, 66
Lovasz, L., 52
lower envelope, 48
lower face, 48

m-face, 23

77

78 INDEX

Motzkin, T.S., 7, 10

norm
Euclidean, 52
infinity, 52

normalization, 12

parameter
linear, 21
non-linear, 26

parametric representation, 7
period, 40
polarization trick, 50
polyhedron, 6–7

degenerate, 7
dual, 8

polyhedron model, 1
PolyLib, 16, 43
polytope, 6
projection, 23
pseudo-polynomial, 39
Pugh, W., 57

quantifier elimination, 28

rational periodic number, 39
ray, 6

bidirectional, 17
redundancy check, 13

saturation matrix, 24
Scholz, B., 71
Shoup, V., 52
simplex, 59
symbolic sum, 57

tiling, 1
triangulation, 48, 60

Verdoolaege, S., 45, 48, 57, 71

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, dass ich diese Diplomarbeit selbständig und ohne
Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und
alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, als solche
gekennzeichnet habe, sowie dass diese Diplomarbeit in gleicher oder in ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegt wurde.

Passau, 30. Januar 2006

(Tilmann Rabl)

	Title
	Abstract
	Abstract

	Acknowledgments
	Acknowledgments
	Contents
	Figures

	1 Introduction
	1.1 Polyhedra and Polytopes in Automatic Parallelization
	1.2 Motivating Example

	2 Prerequisites
	2.1 Polyhedra and Polytopes
	Definition 2.1: Linear equation
	Definition 2.2: Linear inequality
	Notation 2.1
	Notation 2.2
	Definition 2.3: Hyperplane
	Definition 2.4: Half-space
	Definition 2.5: Polyhedron
	Definition 2.6: Polytope
	Definition 2.7: Line
	Definition 2.8: Ray
	Definition 2.9: Polyhedral cone
	Definition 2.10: Polyhedron - parametric representation
	Definition 2.11: Dual polyhedron

	3 Chernikova's Algorithm
	3.1 How to Compute the Dual Representation
	3.2 Function of Chernikova's Algorithm
	3.2.1 Informal Description
	3.2.2 Formal Description

	3.3 H. Le Verge's Improvements
	3.3.1 New Criteria
	3.3.2 Finding General Solutions

	3.4 Parameterized Polytopes
	3.4.1 Linearly Parameterized Polytopes
	3.4.2 Non-Linearly Parameterized Polytopes

	3.5 Implementation Details and Conclusion
	3.5.1 Simple Version
	3.5.2 Version with Le Verge's Enhancements
	3.5.3 Version for Non-linear Parameterization

	4 Enumerator Computation
	4.1 Clauss' Method
	4.1.1 Ehrhart Polynomials
	Definition 4.1
	Definition 4.2
	Theorem 4.1
	4.1.2 Clauss' Method
	4.1.3 Algorithm Outline
	4.1.4 Review

	4.2 Using Barvinok's Decomposition
	4.2.1 Generating Functions
	Definition 4.3: Generating function
	4.2.2 Supporting Cones
	Definition 4.4: Supporting cone
	Theorem 4.2: Brion's theorem
	4.2.3 Triangulating Non-Simplicial Cones
	Definition 4.5: Simplicial cone
	4.2.4 Barvinok's Decomposition
	Definition 4.6: Unimodular cone
	4.2.5 Generating Functions for Unimodular Cones
	Definition 4.7: Fundamental parallelepiped
	4.2.6 Evaluating Generating Functions
	4.2.7 Extension to Linear Parameters and Review

	4.3 Fahringer's Method

	5 Volume Computation
	5.1 Algorithm for the Volume of Polytopes
	5.1.1 Volume of a Simplex
	Definition 5.1: Simplex
	Definition 5.2: Volume of a simplex
	5.1.2 Triangulation
	Definition 5.3: Center of mass vertex
	5.1.3 Volume

	5.2 Comparison of Volume and Number of Integral Points
	5.3 Non-Linear Parameterized Volume Computation
	5.3.1 Changes on the Algorithm
	5.3.2 Implementation Details

	6 Conclusions
	Bibliography
	Index

