EXTENDING LOOP PARALLELIZATION
FOR THE GRID TO LARGELY
DECENTRALIZED COMMUNICATION

Michael Claflen, Philipp Claflen and Christian Lengauer
Fakultat fir Informatik und Mathematik
Universitat Passau, D-94030 Passau, Germany

[classenm,classen,lengauer]@fim.uni-passau.de

Abstract Since scalability is a critical issue for the Grid, a communication structure
based on a peer-to-peer model is preferable to the more centralized client/server
approach. However, in the field of high-performance computing for the Grid,
most existing tools cannot deal with complex dependences in the input pro-
gram or lack a decentralized approach to communication. We present a frame-
work for the automatic parallelization of loop programs with dependences for
the Grid using largely decentralized communication. A central server is only
used for controlling the execution of tasks and initiating the communication
of data between nodes.

1. Introduction

Several important advances have lately been made in Grid computing to
make it a viable platform for high-performance computing in the scientific
field. E.g., improvements have been made with regard to simplifying the
development and execution of scientific Grid applications. In one of these
efforts, we have pursued a component-based approach to combining automatic
loop parallelization with the comfort of a Grid middleware, which enables
the relatively simple generation of distributed parallel programs [1]. In the
case that data dependences exist between different tasks, the scalability of
the generated code depends largely on the amount of communication caused
by the applied communication scheme [13]. In this context, decentralized
(i.e., peer-to-peer) communication is generally the method which leads to
maximum scalability [12].

We present a largely decentralized communication scheme for the use in
automatic loop parallelization for the Grid. This method has been imple-

2

mented using higher-order programming constructs [5]. We have validated
our implementation by experimental case studies.

The rest of the paper is organized as follows. Section 2 introduces our
communication structure. Section 3 presents relevant concepts of loop paral-
lelization. Section 4 gives an overview of our implementation. Section 5 dis-
cusses experimental results from test of our method on the examples of matrix
multiplication, polynomial product and successive over-relaxation. Section 6
concludes and discusses future work.

2. A Largely Decentralized Communication Scheme

In a massively parallel distributed computing environment, communication
bottlenecks must be avoided in order to achieve scalability. Communication
must be decentralized as much as possible, but the clients must still be made
as light-weight as possible. A peer-to-peer communication scheme is usually
considered the best approach [12]. However, existing implementations do not
support inter-task dependences or do so only in simple special cases. For
this purpose, we propose a peer-to-peer communication structure in combi-
nation with our prototype automatic parallelization compiler LooPo, which
can handle very complex dependences [8, 10].

Despite the basic idea of decentralized communication, we still retain some
form of central control: a dedicated controller keeps track of the dependences
between tasks and initiates communication if necessary. This approach pre-
vents clients from having to store information about other clients and to keep
this information updated, but it still guarantees that the bulk of the commu-
nication and computation is performed independently by the clients.

Figure 1 gives an overview of the interaction between the controller and
several clients. The individual responsibilities of controller and client are as
follows.

2.1 The Controller

The controller has a number of responsibilities. It generates and schedules
tasks for execution according to the restrictions given by a dynamic task
graph. It also controls the communication between tasks, keeps track of the
completion of tasks and collects the final results of the computation. The
individual steps are described in more detail as follows.

1 At startup time, the controller uses run-time parameter values to obtain
a list of all occurring tasks, which are represented as so-called task
ids. Then, the dependence information provided by LooPo is used to
generate a task graph that represents all dependences between task ids.
The task graph is a DAG, whose edges represent dependences. Initial
tasks are the sources of the DAG and final tasks are sinks. This graph

Extending Loop Parallelization for the Grid 3

:Client 1 :Client 1 :Client 2
(compl_nation ‘communication commu_nication

| :Controller

< request task

i request communication

send task =

(+soak data)
- send data L

< task terminated L

request: drain data >|_
<<

L send drain data

v v

Figure 1. a typical communication sequence

Task
Dependence
Graph

Controller

Scheduler
»

Figure 2. P2P communication scheme

can be used to determine the conditions for an execution order to be
correct. It is also used to determine communication partners if data has
to be exchanged between dependent tasks.

2 Tasks are generated on demand, if a client requests a task from the
controller. At the generation of tasks, the initial tasks have to be pro-
vided with the initial set of data elements from arrays and variables.
This procedure of distributing initial data is called soaking. In our
implementation, the controller supplies each initial task with the corre-
sponding set of soaking data (Fig. 2(a)). The corresponding collection
of the final results of computation is called draining and is performed
by communication between clients and controller (Fig. 2(f)).

3 Another responsibility of the controller is to organize the execution of

2.2

tasks. For this purpose, a task scheduler is part of the controller class.
It uses the task graph to determine a set of tasks that are ready for ex-
ecution (i.e., that do not depend on unfinished tasks). Then it chooses
the next task based on a scheduling strategy that can be adjusted by
the programmer, if necessary. Note that, in a Grid middleware envi-
ronment, the scheduling strategy of the middleware could be used [4].

After the execution of a task, the controller marks it as terminated.
When a subsequent task is scheduled for execution, the controller uses
the task dependence graph to determine all tasks on which this task
depends. Then the controller notifies the corresponding clients to send
their data to the destination client of the newly generated task. Sub-
sequently, the communication of data between clients takes place in a
largely decentralized communication pattern (Fig. 2(d)).

The Client

The main responsibility of a client is to execute tasks. However, in the
peer-to-peer communication pattern used, clients are also responsible for com-
municating data to the dependent communication partner that requires the
data for further computations. Each client requests tasks by the controller,
which then assigns a new task based on the task dependence graph and the
applied scheduling strategy. The main execution order of a task on a client
is as follows.

1 Each task receives data from already terminated tasks if data depen-

dences exist (Fig. 2(c)). In this case, only dependences are taken into
account that induce a need for data communication, i.e., communica-
tion stemming from a write access followed by a read access to the same
data element.

Data is written from the receive buffers into local arrays, thus updating
the local version of the arrays with the current state of computation.

The computation is performed on the local arrays (Fig. 2(e)).

The client informs the controller that the computation has terminated
and requests a new task.

If the controller notifies the client of a communication to another de-
pendent task, the requested data is written to the corresponding send
buffer for each target task id. Note that this step and the following com-
munication steps are executed in parallel with the computation using a
second thread. Thus, computation and communication are overlapping
in a non-blocking fashion.

Extending Loop Parallelization for the Grid)

6 In order to determine the physical location of each communication part-
ner, the client receives a physical destination processor for every desti-
nation task id (Fig. 2(b)).

7 Each prepared send buffer is sent to the corresponding target processor
(Fig. 2(d)).

8 At the end of the computation, all final values of data elements that
reside typically in locations scattered across the clients. The action of
collecting these values and returning them to the controller is called
draining and is governed by the controller (Fig. 2(f)). For more details
on how data elements to be drained are identified, see Section 4.1.

In order to simplify the adaptation of this peer-to-peer communication
scheme to a Grid infrastructure, we use a high-level approach for our imple-
mentation. We extend an existing taskfarming framework based on the use
of so-called Higher-Order Components (HOCs) [5]. Further implementation
details on the aspects of code generation are given in Section 4. In the next
section, we describe how parallel tasks are extracted from a sequential input
program.

3. Automatic Loop Parallelization

In order to obtain a distributed program consisting of tasks that can be
executed in parallel, we use methods for the automatic parallelization of loop
programs. These methods are based on a mathematical model, the so-called
polytope (or polyhedron) model [11]. This moel supports the use of mathemat-
ical optimization techniques in the form of integer linear programming for the
complete parallelization process. It can be applied to perfectly or imperfectly
nested loops which compute on array variables. Loop bounds, array accesses
and data dependences must be affine expressions, i.e., linear in the indices of
the surrounding loops and in symbolic and numeric constants. Corresponding
methods are implemented in a prototype compiler called LooPo [10, 8].

The transformation of the input loop program into a parallel target pro-
gram is performed in four phases [8].

1 The input program is analyzed and the dependences are computed [3,
6]. The result is a set of polyhedra that represent all computations, all
array accesses, and a set of dependence relations between computations.
These dependences determine the correct partial order of the computa-
tions and, also, the necessary communications in a distributed-memory
environment.

2 Two piecewise affine functions are computed: the schedule maps each
computation to a logical execution step, and the placement maps each

computation to a virtual processor. The goal is to extract all available
parallelism, independently of any machine parameters, e.g., the number
of processors. This phase is called the space-time mapping.

3 Several time steps and/or virtual processors are aggregated to a so-
called tile. Each tile represents a task, which can be assigned to an
available client on a physical processor for sequential execution. This
phase is crucial for efficiency, since only coarse-grain parallelism can lead
to a speedup in distributed systems in which the network is typically
orders of magnitude slower than the compute nodes [9].

4 Code for the computations and communications is generated [2]. This
part of the parallelizer had to be redeveloped completely for our imple-
mentation and, thus, is discussed in more detail in the next section.

Note that we have adapted the classic approach (in Phase 3) of mapping
the execution of tiles on statically predetermined processors for the use in
a dynamic taskfarming approach [1]. One consequence of the changes is
an increased number of tiles (more than the number of available physical
processors) in order to achieve dynamic load balancing. Furthermore, a task
dependence graph is constructed at run time for scheduling the execution of
tasks dynamically at run time.

4. Generating Code

In order to simplify the adaptation to a Grid middleware, we use the high-
level programming construct of a so-called higher-order component (HOC) [5].
We also reuse parts of a previous implementation based on taskfarming [1],
which are not affected by the choice of communication pattern. Therefore,
this section focuses on aspects of code generation related to peer-to-peer com-
munication.

4.1 Communication

We distinguish three different kinds of communication:

m Before the start of the computation, the controller sends initial data to
the clients. This is called soaking.

m While the computation proceeds, clients communicate with each other.

m After the computation has terminated, the clients send their final data
back to the controller. This is called draining.

We specify the communication for soaking and draining by extending our orig-
inal input program: additional soaking and draining statements are included

Extending Loop Parallelization for the Grid 7

before the first and after the last statement, respectively. These additional
statements enumerate accesses to arrays from the input program. Thus, ad-
ditional dependences are introduced which can be used to describe the flow
of data from the input arrays on the controller to the virtual space-time co-
ordinates of the computation operations on a client and back to the location
of the output arrays on the controller.

The peer-to-peer communication of data between clients is described by de-
pendences between statements of the original input program. Based on these
dependences, we generate a loop nest for the client which is parametrized by
the task id of the source and destination client of the communication. De-
pending on these parameters, the loop nest enumerates all data elements that
are communicated between the two tasks. The data is stored in buffers and
is transmitted when the controller notifies the client of the target processor
id of the communication.

4.2 Controller

For the controller, the code for constructing a task dependence graph
(TDG) can be reused from our previous taskfarm implementation [1]. The
scheduler can also be reused, but it is sensible to take run-time information
from the TDG into account to schedule tasks for clients in a way that pre-
vents unnecessary peer-to-peer communication. The changes required have
been implemented in a new scheduler class. In addition, the controller has to
initialize new tasks containing soaking data, as mentioned in Section 4.1.

4.3 Client

The communication-related code generation for the client involves gener-
ating code for receiving data from other clients and loading the data from
the receive buffers, writing data to send buffers and performing a communi-
cation to a destination processor. These communication operations have to
be generated for all three kinds of communication mentioned in Section 4.1.
For this purpose, a model representation of dependences and array accesses
is used. We generate loops that enumerate all data elements that have to be
transferred between either the controller and a client (in the case of soaking
and draining) or between clients (in the case of peer-to-peer communication).
These loops are parametrized with the task ids of the communication part-
ners of the sender and receiver processor involved. Note that, for a given pair
of communicating task ids (or a communication between the controller and
a specific task), the same loop nests are used for both reading from buffers
and writing to buffers, because of the ordering of elements in communication
buffers.

8

5. Experiments

We designed experiments to prove that scalability can be achieved by com-
bining a peer-to-peer communication scheme with an automatic paralleliza-
tion of loop nests with dependences. For these first tests, we used our own
run-time environment on a local area network. However, the current im-
plementation is aimed at easy portability to a Grid middleware (such as
HOC-SA [5]) by using the concept of HOCs.

5.1 Example Input Programs

In our experiments, we used the following numerical calculation examples
as kernels for our input programs [7]:

m Matrix multiplication:

for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < n; k++)
Cl[il[j]1 = c[i1[j]1 + A[il[x] * B[k1[j1;

m Polynomial product:
for (int i = 0; i <= N; i++)

for (int j = 0; j <= N; j++)
C[i+j]l = C[i+j]l + A[il = B[jl;

» One-dimensional successive over-relaxation (SOR1d):

for (int k = 1; k <= M; k++)
for (int i = 2; i <= N-1; i++)
A[i] = (A[i-1] + A[i+1]) / 2.0;

These example programs have been chosen as typical examples of mathe-
matical calculations on arrays using nested for-loops. In all cases, there are
dependences caused by accesses of shared array elements by different loop
iterations.

We used our implementation to perform the parallelization steps described
in Section 3 and obtain a distributed target program that uses the commu-
nication scheme as described in Section 2.

5.2 Results

We tested our target programs on a 100MBit Ethernet connecting various
desktop PCs with processor ranging from AMD Athlon XP 3000+ to Intel
Core 2 Duo 6400, using between 2 GB and 4 GB of main memory.

Extending Loop Parallelization for the Grid 9

Figure 3 shows the resulting speedup of our parallelized target programs
executed using the peer-to-peer communication scheme as compared to the
run time of a sequential version running on one processor (AMD Opteron).
In the case of matrix multiplication, we used a 4000 x 4000 matrix. In the
case of the polynomial product, we used N =500k and, for SOR1d, we used
problem sizes of M =500k and N = 1000k. In all three cases, we adapted
the granularity of parallelism to the specific problem size and communication
behavior by hand, by choosing the appropriate tile size.

The resulting speedup exhibits scalability for comparably large processor
numbers (upto 32 processors) — especially in the case of polynomial prod-
uct, which contain a simple dependence structure, leading to task “chains”,
with no dependences between separate chains. Our scheduler can exploit this
structure to avoid inter-task communication by scheduling a chain of tasks on
the same client. The dependence structure of SOR1d produces more inter-
task dependences, which disables an exploitation of task chains. In case of
matrix multiplication, the scalability is limited, for larger problem sizes, by
the memory requirements. The reason is that our approach does not yet
support distributed storage of arrays on clients and, thus, the memory used
for the two-dimensional arrays in the matrix multiplication leads to swapping
effects for larger problem sizes.

absol ute speedup (peer-to-peer) absolute speedup (master/worker)
40 T - P 40 T - T
matrix multiplication —+— matrix multiplication ——
3B polynomial product ---x---- 4 35 polynomial product ------- i
et SOR1d -
30 - 30 ¢
25 b 25+
Q o J—
=1 b=
’é 20 + g ’g 20t T
15 1 15| 7
5 Pl] 517 e
o o ‘ ‘ ‘ 0 o ‘ ‘ ‘
4 6 8 2 16 24 32 4 6 8 2 16 24 32
nodes nodes
Figure 3. Absolute speedups in Figure 4. Absolute speedups in the task-
the peer-to-peer implementation farming implementation

Figure 4 shows the speedup on a previous implementation based on a mod-
ified master-worker taskfarming approach that has been extended to deal
with inter-task dependences. Overall, there is an improved scalability using
the new peer-to-peer approach. In the case of SOR1d, the available amount
of parallelism obtained from our parallelization algorithms did not provide
enough communication volume to demonstrate the benefits of a peer-to-peer
communication scheme convincingly: for the problem sizes we tested, the

10

overall consumption of network bandwith remains low (up to about 30% of
the available bandwith). We expect the peer-to-peer approach to outperform
the master-worker implementation in applications whose communication vol-
ume reaches the limit of available network bandwidth.

6. Conclusions and Future Work

Most current high-performance computing projects on the Grid focus on
task-based parallelism without any inter-task dependences. In the presence of
inter-task dependences, a decentralized communication scheme is required to
achieve scalability. We have proposed a largely decentralized communication
scheme for automatically parallelized code to be used in a Grid middleware
infrastructure using Higher-Order Components (HOCs).

We have given an overview of the basic communication scheme and the
structure based on a central controller and clients that perform decentralized
communication. In order to validate our approach, we have implemented an
automatic loop parallelization tool that uses our largely decentralized com-
munication scheme for handling communication caused by inter-task depen-
dences.

Our experiments proved that our largely decentralized communication scheme
leads to better scalability than a previous taskfarming based implementation.
In the example of a polynomial product algorithm, our generated target pro-
gram scaled for up to 32 processors. The examples of matrix multiplication
and SOR1d showed that the problems sizes were not large enough to achieve
scalability for more than 16 processors. However, our largely decentralized
implementation still resulted in speedup improvements compared to the cen-
tralized taskfarming based approach.

For future work, we will make the necessary adaptions to the HOC-SA
Grid middleware. We also want to focus on developing methods for using
distributed arrays for the computation to achieve scalability with regard to
memory consumption in clients.

Acknowledgments

Financial support from the German Research Foundation (DFG) for project
CompSpread and from the EU FP6 Network of Excellence Core GRID is grate-
fully acknowledged. Thanks to Jan Dunnweber, and Armin Gréfilinger for
discussions, help and technical support.

References

[1]

[10]

Eduardo Argollo, Michael Claflen, Philipp Clafien, and Martin Griebl. Loop paral-
lelization for a GRID master-worker framework. In Proc. CoreGRID Workshop on
Grid Programming Model, pages 516-527. CoreGRID Tech. Report TR-0080, June
2007.

Cédric Bastoul. Code generation in the polyhedral model is easier than you think.
In Proc. 13th IEEE Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT 2004), pages 7-16. IEEE Computer Society Press, September 2004.

Jean-Francois Collard and Martin Griebl. A precise fixpoint reaching definition analy-
sis for arrays. In Larry Carter and Jeanne Ferrante, editors, Languages and Compilers
for Parallel Computing (LCPC’99), Lecture Notes in Computer Science 1863, pages
286—302. Springer-Verlag, 1999.

Catalin Dumitrescu, Dick Epema, Jan Dinnweber, and Sergei Gorlatch. User-
transparant scheduling of structured parallel applications in grid environments. In
Workshop on HPC Grid Programming Environments and Components and Com-
ponent and Framework Technology in High-Performance and Scientific Computing
(HPC-GECO+COMPFRAME). IEEE Computer Society Press, 2006.

Jan Diinnweber and Sergei Gorlatch. HOC-SA: A grid service architecture for higher-
order components. In Proc. IEEE Int. Conf. on Services Computing, pages 288—294.
IEEE Computer Society Press, 2004.

Paul Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel
Programming, 20(1):23-53, February 1991.

Carl-Erik Froberg. Numerical Mathematics — Theory and Computer Applications.
Benjamin/Cummings, 1985.

Martin Griebl. Awutomatic Parallelization of Loop Programs for Distributed Memory
Architectures. Fakultat fir Mathematik und Informatik, Universitat Passau, 2004.
Habilitation thesis. http://www.fmi.uni-passau.de/~griebl/habil.ps.gz.

Martin Griebl, Peter Faber, and Christian Lengauer. Space-time mapping and tiling
— a helpful combination. Concurrency and Computation: Practice and Ezperience,
16(3):221-246, March 2004.

Lehrstuhl fiir Programmierung, Universitdt Passau. The polyhedral loop parallelizer:
LooPo. http://www.fmi.uni-passau.de/loopo/.

12

[11]

[12]

[13]

Christian Lengauer. Loop parallelization in the polytope model. In E. Best, edi-
tor, CONCUR’93, Lecture Notes in Computer Science 715, pages 398-416. Springer-
Verlag, 1993.

Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer computing. Technical
report, HP Labs, 2002.

Eduardo Javier Huerta Yero and Marco Aurélio Amaral Henriques. Speedup and scala-
bility analysis of master—slave applications on large heterogeneous clusters. J. Parallel
and Distributed Computing, 67(11):1155-1167, 2007.

