
PolyAPM: Parallel Programming

via Stepwise Refinement
with Abstract Parallel Machines

Nils Ellmenreich and Christian Lengauer
{nils,lengauer}@fmi.uni-passau.de

Fakultät für Mathematik und Informatik, Universität Passau, Germany

Abstract. Writing a parallel program can be a difficult task which has
to meet several, sometimes conflicting goals. While the manual approach
is time-consuming and error-prone, the use of compilers reduces the pro-
grammer’s control and often does not lead to an optimal result. With our
approach, PolyAPM, the programming process is structured as a series of
source-to-source transformations. Each intermediate result is a program
for an Abstract Parallel Machine (APM) on which it can be executed to
evaluate the transformation. We propose a decision tree of programs and
corresponding APMs that help to explore alternative design decisions.
Our approach stratifies the effects of individual, self-contained transfor-
mations and enables their evaluation during the parallelisation process.

1 Introduction

The task of writing a program suitable for parallel execution consists of sev-
eral phases: identifying parallel behaviour in the algorithm, implementing the
algorithm in a language that supports parallel execution and finally testing, de-
bugging and optimising the parallel program. As this process is often lengthy,
tedious and error-prone, languages have been developed that support high-level
parallel directives and rely on dedicated compilers to do the low-level work cor-
rectly. Taking this approach to an extreme, one may refrain entirely from spec-
ifying any parallelism and use instead a parallelising compiler on a sequential
program. The price for this ease of programming is a lack of control over the
parallelisation process and, as a result, possibly code that is less optimised than
its hand-crafted equivalent.

We can view the process of writing a parallel program as a sequence of
phases, many of which have alternatives. Selecting a phase from among several
alternatives and adjusting it is called a design decision.

Both of these opposing approaches – going through the whole parallelisation
process manually or leaving the parallelisation to the compiler – are unsatisfac-
tory with respect to the design decisions. Either the programmer has to deal with
the entire complexity, which might be too big for a good solution to be found,
or one delegates part or all of the process to a compiler which has comparatively
little information to base decisions on.

Even if a parallelising compiler honours user preferences to guide the com-
pilation process, it is difficult to identify the effect of every single option on the
final program. There is no feasible way of looking into the internals of a compiler
and determining the effect of a design decision on the program.

To avoid the aforementioned drawbacks of current parallel program devel-
opment paradigms, we propose an approach that combines the advantages of
manual and automatic parallelisation. To bridge the gap between the algorithm
and the final parallel program, we introduce a sequence of abstract machines that
get more specific and closer to the target machine architecture as the compila-
tion progresses. During the compilation, the program is undergoing a sequence
of source-to-source transformations, each of which stands for a particular com-
pilation phase and results in a program designed for a particular APM. This
makes the compilation process more transparent since intermediate results be-
come observable by the programmer. These observations may influence the de-
sign decisions the programmer makes as the compilation progresses further. We
have implemented simulators for the machines, thus enabling the programmer
to evaluate the result of each transformation directly on the executing program.
Our experience has been that this result structures parallel program develop-
ment and that it helps evaluating the effects of a single decision during the
parallelisation process.

This paper is organised as follows: Section 2 gives a brief description of the
use of APMs in program development. Our PolyAPM approach and the APMs
we have designed are presented in Section 3. An example of a parallelisation by
using the APMs is given in Section 4. Section 5 describes the experiences we
made using APMs. An overview of related work is given in Section 6. The paper
is concluded by Section 7.

2 Program Development using Abstract Machines

The idea of stepwise refinement of specifications has long been prevalent in com-
puter science. Trees are used to represent design alternatives. If we look at the
various intermediate specifications that exist between all the transformations of
the parallelisation process, we observe an increasing degree of concreteness while
we proceed. Thus, the abstract specification is finally transformed into a binary
for a target machine. Consider the intermediate steps: on our descent along one
path down the tree, we pick up more and more properties of the target archi-
tecture. But that also means that, most likely, no existing machine matches the
level of abstraction of any intermediate specification. If we employ an abstract
machine model that is just concrete enough to cover all the details of our pro-
gram, we can have it implemented in software and even run our intermediate
programs on it.

One specific kind of abstract machine has been described by O’Donnell and
Rünger in [OR97] as the Abstract Parallel Machine (APM). They define it by
way of the functional input/output behaviour of a parallel operation (ParOp).
Their notion of an APM is closely related to its implementation in the functional

language Haskell. The use of Haskell is motivated by its mechanisms for dealing
with high-level constructs and by a clearly defined semantics that make proofs
of program transformations feasible. However, we would like to model machine
characteristics more closely within the APM and will base our work only loosely
on [OR97].

3 PolyAPM

Rather than using just one APM in the sense of [OR97] for all transformations,
we need to design variations of APMs. The compilation process is a sequence of
source-to-source transformations each of which describes one particular step in
the generation of a parallel program. Therefore, we need levels of abstraction cor-
responding to the machines properties assumed by the program transformations.
The sequence of programs is associated with a sequence of APMs. In general,
there are fewer APMs than programs, since no every transformation introduces
new machine requirements.

3.1 The PolyAPM Decision Graph

As discussed above, a single problem specification may lead to a set of possible
target programs, mainly because different parallelisation techniques and param-
eters are used and different target architectures are to be met. Therefore, the
process of deriving a target program is like traversing the tree of design decisions.
However, in certain cases, two different branches may lead to the same program,
thus making this tree a DAG, the PolyAPM Decision Graph (PDG). Each node
in this graph is a transformed program that runs on a dedicated APM. There are
two graphs: one for the APMs themselves and one for the APM programs, where
each node in the former may correspond to several nodes in the latter. A part
of the PDG is given in Figure 1. The transformations depicted in the PDG have
been motivated by our experiences with the polytope model for parallelisation
[Len93] within the LooPo project [GL96], but PolyAPM is not restricted to this
model.

The program development process is divided into several phases as follows:

1. Implementation of a problem specification in standard sequential Haskell as
a source program. There are two main reasons for using Haskell. First, we
claim, that for many algorithms that are subject to parallelisation (first of all
numerical computations), the Haskell implementation represents a natural
“rephrasing” of the problem in just a slightly different language. Second, as
we use Haskell to implement the APMs, the APM program’s core also is a
Haskell function that is being called by the APM interpreter. It should be
avoided to cross another language barrier in order to obtain the first APM
program. However, these reasons make the choice of Haskell only highly
suggestive, but not necessary.

C+MPI C+BSP ... C+MPI C+BSP ...

sync. program

program w/ comms.

mem. man. program

classical tiled program

par. tiled program

program w/ comms

mem. man. program

processor tiled program

source program

async. program

.

.

.

Fig. 1. PolyAPM Decision Graph (PDG), here only a sub-tree

2. Initial parallelisation of the sequential program. It means the analysis of
the problem to identify independent computations that can be computed
in parallel. This process might be done manually (as is the case with our
example in Section 4), or with help of a parallelisation tool. We have used
LooPo [GL96] for this purpose. In any case, the result of the parallelisation
should map each computation to a virtual processor (this mapping is called
allocation) and to a logical point in time (schedule). The granularity of the
computation is the choice of the programmer, as the PolyAPM framework
will maintain this granularity throughout the process. As the source program
will most likely contain recursion or a comprehension, it is often sensible to
perform the parallelisation on these and keep the inner computations of the
recursion/comprehension atomic.
Without loss of generality, we assume a one-dimensional processor field so
that we have the basic computations, their allocation in space (i.e., the pro-
cessor) and their scheduled computation time. With these components, the
problem has a natural expression as a loop program with two loops, where
the processor loop is parallel, the time loop is sequential and the loop body
is just our atomic computation. If the outer loop is sequential, we call the
program synchronous, otherwise asynchronous. This motivates the corre-
sponding branches of the PDG in Figure 1. The right branch for classical
tiling is a special case where parallelisation is not the first step.

3. Based on the parallelisation, the source program is transformed into an
APM program, which resembles an imperative loop nest with at least two
surrounding loops (there may be additional loops in source program’s core
computation). The program is subject to several transformations to adapt

SynAPM

SynCommAPM

SynMMAPM

AsynAPM

AsynCommAPM

AsynMMAPM

source program

Fig. 2. PolyAPM Machine Tree

it to other APMs. This is the central part of PolyAPM and is discussed in
more detail below in Section 3.2.

4. The final result of the compilation, the target program, has to be executable
on a parallel machine. Therefore the last APM program is transformed into
a target language for the parallel machine. It is important that the target
language exhibits at least as much control as the last APM needs, so that
no optimisation of any APM program transformation is lost. Suitable target
languages, among others, are C+MPI and C+BSP.

3.2 Abstract Machines and their Programs

The APMs form a tree, as shown in Figure 2. There is a many-to-one mapping
from the programs to APMs. An APM program must reflect the design char-
acteristics of the corresponding APM, e.g., in case of a synchronous program, a
loop nest with an outer sequential and an inner parallel loop and a loop body,
which may contain more loops. This separates the loops representing the real
machine from logical loops.

The synchronous program is subject to a sequence of source-to-source pro-
gram transformations. Each adds another machine characteristic or optimises
a feature needed for execution on a real parallel machine. Assuming that the
original parallelisation was done for a number p of processors whose value de-
pends on the input, the p processor’s workload has to be distributed on rp real
processors of the target machine. This transformation is called processor tiling,
in contrast to tiling techniques with other purposes.

The next two transformations complete the transition to a distributed mem-
ory architecture with communications. This has been deliberately split up into
two transformations: First, while still maintaining a shared memory, we’ll be gen-
erating communication directives. As a second step, the memory is distributed,
making the communication necessary for a correct result. The reason for this
unusual separation is twofold: one of the aims of PolyAPM is to make each
transformation as simple as possible, and both, communication generation and

memory distribution, can get complicated. Furthermore, if we did both trans-
formations in one step and the resulting APM program had an error, it would
be more difficult than necessary to isolate the reason of this error. When in-
terpreting an APM program that communicates even in the presence of shared
memory, the communications perform identity operations on the shared memory
cells. The APM interpreter checks for this identity and issues a warning in case
of a mismatch. This way wrong communications will be detected, but missing
communications show their effects only after the distribution of memory.

The transformed program will have to run on an APM capable of commu-
nications, the SynCommAPM, which provides a message queue and a message
delivery system. We assume that each processor stores data in local memory
by the owner-computes rule. Therefore, data items computed elsewhere have
to be communicated, either by point-to-point communications or by collective
operations. If we were to employ a different storage management rule, this trans-
formation would have to be adapted accordingly.

The “unnecessary” communications of the SynCommAPM program become
crucial when the memory is being distributed for the SynMMAPM-program. This
branch of the tree uses the owner-computes rule, making it easy to determine
which parts of the global data space are actually necessary to keep in local
memory. That completes the minimal necessary set of transformations needed
for a synchronous loop program on a distributed-memory machine. The last
transformation generates so-called target code, i.e., it transforms the SynMMAPM

program into non-APM source code that is compilable on the target machine.
Possible alternatives include C+MPI and C+BSP.

As outlined in Figure 1, transformation sequences other than the synchronous
one are possible. In addition to the corresponding asynchronous one, we have
depicted a typical sequence as employed by the tiling community [Wol87].

4 Example/Case Study

As an illustrating example, we chose the one-dimensional finite difference method.
We start with an abstract problem specification, and by going through the pro-
cess of program transformations – each yield a new, interpretable specification –
we will eventually obtain an executable program for a specific target platform.

First we need to implement the specification in Haskell and identify the
parallelism. The APM program expresses the parallelism as a loop nest with one
of the two outermost loops being tagged as “parallel”. Then we derive subsequent
APM programs until a final transformation to the target language is feasible.

The abstract specification of the one-dimensional finite difference problem
(as presented by [Fos95]) describes an iterative process of computing new array
elements as a combination of the neighbour values and the previous value at
the same location. Formally, the new array at with p elements at iteration t is
defined as:

(∀i ∈ {2 . . . p − 1} : : at [i] := (at−1[i − 1] + 2 ∗ at−1[i] + at−1[i + 1])/4) (1)

findiff:: Array Int Float -> Array Int Float

findiff a = listArray (low,up)

(a!(low):

[(a!(i-1)+2*a!(i)+a!(i+1))/4 | i<-[low+1..up-1]] ++[a!(up)])

where (low,up) = bounds a

findiffn:: Int -> Array Int Float

findiffn n = f n

where f:: Int ->Array Int Float

f 0 = findiff testinput

f n = findiff (f (n-1))

Fig. 3. Sequential Haskell Specification of Finite Differences

loop_syn = LP [(Seq, \([],[n])->0, \([],[n])->20, 1),

(Par, \([t],[n])->0, \([t],[n])->n, 1)]

(BD body_syn)

body_syn::((Array Int Float,Array Int Float),[Idx]) -> [Idx]

-> ((Array Int Float,Array Int Float),[Idx])

body_syn ((a,a1),splist) [t,p]

| (p == low)||(p == up) = ((a,a1//[(p,a!p)]),splist)

| (low < p)&&(p < up) = ((a, stmnt1 a a1 (t,p,n)),splist)

where stmnt1 a a1 (t, p, n) = a1 //[(p, (a!(p-1)+2*a!(p)+a!(p+1))/4)]

(low,up) = bounds a

[n] = splist

Fig. 4. SynAPM version of the Finite Differences

The Haskell specification of this problem is given in Figure 3. Note how closely
the Haskell program of Figure 3 corresponds to Equation 1. findiff represents
one iterative step in which a new array is computed from the previous array a,
just as Equation 1 requires. Function findiffn calls findiff as often as the
parameter n prescribes. Each call to findiff generates a new Haskell array with
the updated values. This corresponds to a destructive update of an array using
an imperative programming model. In this example, all references to a refer to
the previous iteration, so that we need to copies of the array.

We continue with the presentation of transformed findiff programs, em-
phasising the difference to the respective predecessor programs.

4.1 The Synchronous Program

The parallelisation of the source program is done manually. It is obvious that the
calculations of the array elements of one particular findiffn call are indepen-
dent, but they all depend on the previous values. Thus, findiffn corresponds to

body_til::((Array Int Float,Array Int Float),[Idx]) -> [Idx]

-> ((Array Int Float,Array Int Float),[Idx])

body_til ((a,a1),splist) [t,p,p2]

| (p2==low)||(p2==up) = ((a,a1//[(p2,a!p2)]),splist)

| (low< p2)&&(p2< up) = ((a, stmnt1 a a1 (t,p2,n)),splist)

where stmnt1 a a1 (t, p, n) = (a1 //[(p, (a!(p-1)+2*a!(p)+a!(p+1))/4)])

(low,up) = bounds a

[n] = splist

loop_til = LP [(Seq, \([],[n])->0, \([],[n])->20, 1),

(Par, \([t],[n])->0, \([t],[n])->physprocs, 1),

(Seq, \([t,p],[n])->max (p*(tilesize_p n)) 0,

\([t,p],[n])->min ((p+1)*(tilesize_p n)) n, 1)]

(BD body_til)

where

tilesize_p:: Int -> Int

tilesize_p n = min (n ‘div‘ physprocs) n

Fig. 5. Tiled SynAPM version of the Finite Differences

an outer, sequential loop, whereas the list comprehension inside findiff yields
a parallel loop.

To write a SynAPM program for findiff, we proceed as follows:

1. We define the memory contents, here: two arrays a and a1 of the same kind
as the input array,

2. We set the read-only structure parameter list to n, which describes the size
of a,

3. We define the loops: one outer sequential loop, arbitrarily set to 21 iterations,
and one inner parallel loop, ranging from 0 to n − 1, and

4. We write a loop body function.

This defines the synchronous loop nest loop syn in Figure 4. The body function
of SynAPM has the following type: BD (e -> b -> e), i.e., it takes some state,
consisting of memory and structure parameters, and a list of current values of
all surrounding loops, to return an updated state. Figure 4 shows the state to be
of type (Array Int Float,Array Int Float),[Idx]). The first array a is the
one computed by the last iteration, and a1 is filled at this time step. Note that
the structure parameter list splist consists of only one item: the size n of the
array. As the computation takes place only on the inner array values, we need a
case analysis to take care of the border cells.

4.2 The Tiled Program

Figure 5 shows the synchronous findiff program after a simple processor tiling
transformation. The parallel loop has been partitioned into tiles such that the

body_comm = similar to body_til

loop_comm = similar to loop_til, msg generation after each body

instance Sendable SC_Dom Int Float SCMem where

generateMsg [t,p,p2] [n] (a,a1) =

[Msg (p2, to_p, t, to_tm, A, p2, a1!p2)|

to_p <- (case pos_in_tile of

pat | pat==low -> []

| pat==up -> []

| pat==0 -> [p-1]

| pat==(ts-1) -> [p+1]

| True -> []),

to_tm <- [t+1]

]

where (low,up)= bounds a

pos_in_tile = p2 ‘mod‘ ts

ts = tilesize_comm n

instance Updatable SC_Dom Int Float SCMem where

updateMem (Msg (from_p, to_p, from_tm, to_tm, dom, idx, val)) (a,a1) =

if (a1!idx) == val then (a,a1//[(idx,val)])

else wrong update

Fig. 6. SynCommAPM version of the Finite Differences

number of remaining parallel iterations matches the number of physically avail-
able processors (as defined by physprocs). An additional sequential inner loop
p2 has been added that enumerates the previously parallel iterations sequen-
tially. Its bounds make sure that the loop variable takes the values previously
provided by loop p, so that the relevant parameters of the body now are t and
p2. Other than that, the function body til is identical to body syn. As the
APMs work with an arbitrary but fixed number of processors, the tiled program
can still run on SynAPM.

Changes to the code to obtain the tiled program:

– The constant physprocs (denoting the number of physical processors on real
machine) and the tilesize function are added.

– An additional loop in LP with loop variable p2 is added.
– The body function takes three loop variables, p is replaced by p2.

4.3 The Communicating Program

Loop and body functions are the same as in the tiled program except for the
memory type. Whereas in the previous APM programs the memory type could
be freely defined, we now require the parameterised type State that couples

memory and message queue. The parameters are required by context declarations
within the SynCommAPM interpreter. See Figure 6. Emphasised font is used for
pseudo code that replaces some longer Haskell code. It is meant to shorten the
presentation.

New are three additional functions that have to be implemented by the pro-
grammer and which are called from inside the interpreter:

– generateMsg generates new messages originating from each processor at
each time-step;

– updateMem, updates the state’s memory with values sent by a message;
– synchronizeMem, being called after each time-step for possible synchronisa-

tion work on all processors. In this case, synchronizeMem removes the old
array in each processor’s state and introduces an empty new one to be filled
in by computations in the next time-step. synchronizeMem will be omitted
in the given code examples as it is just an auxiliary function.

These three functions have to be introduced by class instance declarations be-
cause the APM interpreter needs some type information to use the – at this point
– undefined functions as stubs. This is because the APM interpreters reside in a
separate Haskell module that is being used by different APM program modules.
So, for every APM program the specific instances of these three functions are
different, yet they need to fit into the APM, and making them instances of multi-
parameter type classes guarantees the integration into the APM interpreter.

Function updateMem checks before an update whether the memory’s and the
message’s values are identical. If they are not, the interpreter issues a runtime
error message because a wrong communication message was generated. This is no
method to prove correctness of communications, but testing the SynCommAPM

program with a variety of inputs without errors can provide some confidence in
the message generation, which belongs to the more error-prone parts of parallel
programming. The SynMMAPM will provide further communication checks.

Changes to the code to obtain the communicating program:

– A State type combining memory and message queue replaces the memory;
types in body and LP are adapted accordingly.

– Each call of the body is followed by a call of the message generation function
of SynCommAPM, which in turn calls the provided generateMsg.

– Instance declarations for generateMsg, updateMem and synchronizeMem are
added.

4.4 The Memory-Managed Program

With the paradigm shift from shared to distributed memory, the memory rep-
resentation in the APM programs has to be adapted. Each processor gets its
own chunk of the memory, which in the example in Figure 7 comprises all the
data which is computed on this processor and the remotely-owned data that

data MM_PProcMem = PPM (Array Int Float) (Array Int Float)

body_mm::([Idx],[Idx]) -> MM_PProcState -> (MM_PProcState,[Idx],[Idx])

body_mm (splist, idxlist@[t,p,p2]) (State (PPM a1 a2) msgs)

| (p2==low)||(p2==up) =

(State (PPM a1 (a2//[(lidx,a1!lidx)])) msgs,splist,idxlist)

| (low <p2)&&(p2 <up) =

(State (PPM a1 (a2//[(lidx,stmnt1)])) msgs,splist,idxlist)

where stmnt1 = (a1!(lidx-1) + 2*a1!lidx + a1!(lidx+1))/4

(low,up) = (0,n-1)

[n] = splist

lidx = (proc2idx p2 n)

The functions loop_mm, generateMsg and updateMem are similar

to before and have only been adjusted to the new memory data type.

Fig. 7. SynMMAPM version of the Finite Differences

is required for the computation. The values of the latter will be communicated
before the computation. So the one-dimensional array is divided into chunks ac-
cording to the tile size, with an additional element to the left an to the right,
because each element’s computation needs its two neighbours. The body func-
tion’s indexing into its local array has to be adapted. The index range changed
from {1 . . .n − 1} to {1 . . . tilesize − 1}. Furthermore, all communications within
a tile can be eliminated, thus requiring a change in the generateMsg function.
This program resembles very much an imperative SPMD program with loops as
control structure so that the transition to C+MPI is relatively straightforward.

Changes to the code to obtain the memory-managed program:

– The memory type within the global state changes to an array of local memory
types. Body, generateMsg and updateMem are changed accordingly.

– In LP, just the names of the body/generateMsg functions changes.

4.5 The C+MPI program

This last transformation leaves the APM realm. Conceptually, nothing inter-
esting happens, but a language barrier has to be crossed. The simpler the body
function is, the easier its transformation into a C function gets. The premier area
of parallel programming, scientific computation, usually deals with arithmetic
operations on arrays. The array as the most frequently used data structure exists
in both languages. This is not to say that more general problem domains cannot
be handled, but then the target code transformation gets more complicated.

To generate target code, abstract APM communications have to be trans-
formed into MPI calls, the memory data type and its distribution/aggregation
function need the imperative equivalent. But all these changes are isolated, and

in most cases not difficult, especially if this transformation was taken into ac-
count while choosing the appropriate Haskell types.

Changes to the code to obtain the C+MPI program:

– A template for an SPMD program in C+MPI for the APM structures is
provided.

– The memory type has to be adapted, the message queue is subsumed by
MPI.

– The functions generateMsg, updateMem and synchronizeMem are rewritten
in C and replace the stubs within the C template.

5 Critical Evaluation

In Section 4 we showed a simple development in a straight sequence of programs.
In practise, one will want a choice between sequences, leading to a tree as sug-
gested. Still, here is a preliminary evaluation of the PolyAPM approach, based
on our sequence example.

5.1 Benefits

– Effects of program transformations can be isolated and evaluated, to help
deciding for the most suitable transformation path. An example is the com-
munication generation for SynCommAPM. For complex programs, different
communication patterns can be tested by executing the different versions of
the communicating program. The APM interpreter can output communica-
tion statistics to help selecting the most suitable pattern with the smallest
total number of communications.

– Building a test environment for program transformations becomes easier,
as input and output of each transformation can be executed and compared
with other transformations. PolyAPM can be used to construct a compilation
system in which not all transformations are automatic, allowing incremen-
tal development. Alternatively, the structure of PolyAPM supports parallel
compiler research where a complete compilation is not feasible and some
transformations are performed manually, which is the case for all transfor-
mations in Section 4.

– Using Haskell has the benefit that the definition of the APM programming
language as an algebraic data type provides syntax and type checks for free.
Because of this, the APM programs and their interpreters can be kept rela-
tively small, as no parsing of APM programs is necessary.

– It is a challenge to split up the Haskell program into the APM interpreter
module and APM program modules. The interpreter has to make assump-
tions about the unknown APM program (especially that the three user-
defined functions introduced by SynCommAPM exist and have types of a
certain kind). Haskell’s multi-parameter type classes support these asser-
tions.

– A researcher who wants to prove that a transformation of APM programs
preserves correctness, can do so with equational reasoning techniques.

5.2 Drawbacks

– It is a lot of effort to write all APM programs (for example four plus one
sequential program in Section 4) in order to get one target program if the
aim is just a single compilation. PolyAPM is not meant for the development
of individual application programs.

– In PolyAPM the loop body has to be a Haskell function to maintain the
generality of the approach (i.e., if we devise a special language for array
assignments, which could be more easily transformed than a general Haskell
function, then we severely restrict the class of applicable problems). The
more non-trivial and Haskell-specific code the body function contains, the
more problems arise when this code is transferred to an imperative language
(see Section 4.5).

5.3 Who may profit from PolyAPM?

– Researchers who are interested in comparing the effects of transformations.
This could be compiler writers or researchers in compilation and parallelisa-
tion techniques.

– Programmers who have a PolyAPM compilation systems at their disposal
which can perform some transformations automatically. Programming the
remaining (if any) transformations manually might be less work than writing
the target program directly.

– Programmers who need to compile one source program for different target
languages or different machine architectures and who have at least some
transformations automated.

6 Related Work

John O’Donnell and Gudula Rünger presented APMs in [OR97] and provided a
starting point for others to work on parallel compilation using these.

Joy Goodman has extended the above work [Goo01], included input and
output via monads, investigated the decision-making process and formalised the
decision making process.

Noel Winstanley also uses the APM methodology in his PEDL system [Win01].
He compiles array-based numerical programs to the parallel, imperative target
language SAC. However, he uses a special restricted language, tailored for his
specific problem domain, and focuses on a high degree of optimisation and au-
tomation of the compilation.

Many automatic parallel compilation systems exist with varying degrees of
user interaction. Some research systems like SUIF[WFW+94] serve as a com-
piler’s workbench, where some compilation phases may be replaced by own im-
plementations. The parallelizer LooPo[GL96] developed in our group also belongs

to this category. Other systems like Polaris[BEF+95], Parafrase[PGH+90] and
HPF compilers like Adaptor[Bra98] employ a more static view on the paralleli-
sation, in which the selection of transformations is rather fixed.

7 Conclusions

Based on our initial experimental evaluation, we envision the PolyAPM model
for specific sub-areas of of parallel program development rather than claiming a
general purpose approach.

Structured (parallel) program development: The task of obtaining par-
allel target code consists of several steps. Current commercial parallelising
compilation systems (mainly for HPF) often are only able to perform the
compilation in one pass. There is usually no or only restricted influence on
the selection of the used algorithms. This static process can be made flexible
with a modular system of compilation phases, where single phases can be
chosen from a given set of alternatives. A few academic systems use this
approach for some phases of their compilation system.

Exploration of design decisions: Each phase in the PolyAPM compilation
process is a source-to-source transformation on APM programs. These pro-
grams are executable by the respective APM machine interpreter. As a result,
the effects of each transformation can be observed directly by looking at the
code and executing it.

Rapid prototyping: Researchers with a specialised focus on only one phase of
parallel program development can choose an APM at the abstraction level
they need and evaluate their work without the need to write a full compiler.

Although, in this paper, program development has only been demonstrated
for a single branch of the PDG, the full power of the approach is obtained by
making use of a subtree or sub-DAG of the PDG.

8 Acknowledgements

We thank Paul Feautrier and John O’Donnell for fruitful discussions, the DFG
for funding PolyAPMand PROCOPE for supporting the contact with Feautrier.

References

[BEF+95] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoe-
flinger, David Padua, Paul Petersen, William Pottenger, Lawrence Rauch-
werger, Peng Tu, and Stephen Weatherford. Polaris: Improving the ef-
fectiveness of parallelizing compilers. In Keshav Pingali, Uptal Banerjee,
David Gelernter, Alex Nicolau, and David Padua, editors, Proceedings of
the 7th International Workshop on Languages and Compilers for Parallel
Computing, LNCS 892, pages 141–154. Springer-Verlag, 1995.

[Bra98] Thomas Brandes. ADAPTOR Programmer’s Guide, Version 6.0,
June 1998. Available via anonymous ftp from ftp.gmd.de as
gmd/adaptor/docs/pguide.ps.

[Fos95] Ian Foster. Design and Building Parallel Programs. Addison-Wesley, 1995.
[GL96] Martin Griebl and Christian Lengauer. The loop parallelizer LooPo. In

Michael Gerndt, editor, Proc. Sixth Workshop on Compilers for Paral-
lel Computers (CPC’96), Konferenzen des Forschungszentrums Jülich 21,
pages 311–320. Forschungszentrum Jülich, 1996.

[Goo01] Joy Goodman. Incremental Program Transformations using Abstract Par-
allel Machines. PhD thesis, Department of Computing Science, University
of Glasgow, September 2001.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In Eike
Best, editor, CONCUR’93, Lecture Notes in Computer Science 715, pages
398–416. Springer-Verlag, 1993.

[OR97] John O’Donnell and Gudula Rünger. A methodology for deriving abstract
parallel programs with a family of parallel abstract machines. In Chris-
tian Lengauer, Martin Griebl, and Sergei Gorlatch, editors, EuroPar’97:
Parallel Processing, LNCS 1300, pages 662–669. Springer-Verlag, 1997.

[PGH+90] Constantine Polychronopoulos, Milind B. Girkar, Mohammad R.
Haghighat, Chia L. Lee, Bruce P. Leung, and Dale A. Schouten. The struc-
ture of Parafrase-2: An advanced parallelizing compiler for C and Fortran.
In David Gelernter, Alex Nicolau, and David Padua, editors, Languages
and Compilers for Parallel Computing (LCPC’90), Research Monographs
in Parallel and Distributed Computing, pages 423–453. Pitman, 1990.

[WFW+94] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P.
Amarasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao,
Chau-Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy.
SUIF: An infrastructure for research on parallelizing and optimizing com-
pilers. In Proc. Fourth ACM SIGPLAN Symp. on Principles & Prac-
tice of Parallel Programming (PPoPP), pages 31–37. ACM Press, 1994.
http://suif.stanford.edu/suif/.

[Win01] Noel Winstanley. Staged Methodologies for Parallel Programming. PhD
thesis, Department of Computing Science, University of Glasgow, April
2001.

[Wol87] Michel Wolfe. Iteration space tiling for memory hierarchies. In G. Rodrigue,
editor, Parallel Processing for Scientific Computing, pages 357–361. SIAM,
1987.

