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1 Introduction

Although work on the specification, semantics and verification of parallelism
over the last decades has led to significant progress in the understanding of
parallelism and to workable development methods in certain domains, no method
for the development of reliable, portable, parallel application software for high-
performance computing has been achieved as of yet whose practicality and ease
of use is commonly evident.

Presently, the high-performance programming community is, in general, not
working with a formal foundation or a rigorous discipline of programming. This
may be deplored, but it is understandable when one reviews past developments
in the verification and semantics of parallelism.

2 The Past

In the Seventies, verification techniques based on Hoare logic or temporal logic
were introduced and immediately used with quite some success in verifying basic
properties of parallel programs, like adherence of an input-output specification,
or mutual exclusion, or the absence of deadlock. Abstract data types –notably,
the monitor– were proposed for the administration of shared data, and were also
equipped with proof rules. All this work did not explicitly address the exchange
of data between processors in the form of message-passing communications.

In the late Seventies and early Eighties, distributed programming received a
lot of attention, fueled by Hoare’s introduction of CSP [15], in which he stressed
the absence of a semantic foundation for it. There were early hopes for a straight-
forward extension of Owicki’s shared-memory verification methods [27, 28], but
the result turned out to be impractical [1, 21]. Instead, one turned to process
algebra. The dominant theories were CCS [24] and a reworked version of CSP
[16] and, by today, both come in many variations. These theories are convenient
for the description of communication behaviour, but they cannot deal easily with
the notion of an assignable local store.

One language offering message passing and a store is occam [17], which was
introduced as a spinoff of CSP. However, occam failed in dominating the high



performance market. One reason may be that it is just at too low a level for
programming massive parallelism. We will pick this thought up in the following
section.

Petri nets [30] had been around since the Sixties and had proved their worth
for the specification of concurrent control. Temporal program logic had also
come to fruition [22] and proved particularly useful in the specification and
model checking of concurrent systems. Lately, it has been extended for a more
assertional style of reasoning [19].

However, none of these foundations, which are very useful in other appli-
cations, succeeded in providing a basis for high-performance computing. One
possible reason is that the granularity of parallelism of the systems they are
designed for is static and comparatively low. In high-performance computing,
one of the major choices to be made is the level of granularity, which depends
on factors like the problem size and the machine size, and which can change
frequently. High-performance programmers have a strong need for convenient
aggregate data structures and flexible partitioning techniques to achieve the de-
sired granularity.

Verification becomes a lot easier when one makes the source program look
sequential. This is often called data parallelism and is particularly easy with the
use of a functional language. One commendable effort on this front was Sisal [5],
a functional language which competed in performance directly with Fortran. In
order to win, it forewent functional pearls like polymorphism and higher-order
functions. In the end, Sisal did not get the attention it was seeking: imperative
programmers did not feel the need to switch and functional programmers found
it difficult to accept the sacrifices it made in the interest of performance.

By the late Eighties, hardware technology had created a parallel computer
market which amplified the trend towards message passing for scalable parallel
programs, i.e., programs whose amount of parallelism scales up with the prob-
lem size and which become, for large problem sizes, massively parallel. The need
for working high-performance programs had grown and researchers closer to
applications devised language constructs which enabled them to produce high-
performance software. These constructs were extensions of or could be com-
bined with sequential core languages which the high-performance sector favours
– mainly, Fortran and C. There were two major approaches.

The first approach extended the core language with constructs for parallelism
and distribution of work and data. After many individual efforts, an attempt at
a standardization was made in the early Nineties with the definition of High-
Performance Fortran (HPF) [18]. HPF is Fortran adorned with comments which
point out a parallel structure –like a parallel loop or independent pieces of code–
or a distribution pattern of data aggregations (arrays) across a set of processors.
The compiler can heed these comments or ignore them, if they are beyond its
capabilities.

The second approach paired the core language with a library of primitives
for communication and synchronization. The best known representatives are the
Parallel Virtual Machine (PVM) [10], the Message-Passing Interface (MPI) [29]



and Bulk-Synchronous Programming (BSP) [23]. Here, the number of processes
is specified by a system parameter.

3 The Present

The major portion of today’s high-performance parallel programs is written in
C or Fortran, augmented with MPI primitives. If one believes that occam is
too low-level to have been successful, MPI, which succeeded, must be just that
much more abstract: at least, one does not have to name the communication
channels explicitly. But MPI programming is still very cumbersome and error-
prone. Much more thought goes into working out the parallel structure of the
program than into solving the computational problem at hand. There is no sound
basis for establishing correctness, the number of MPI primitives (over 200) is too
large to assure its maintenance as a standard, and portability remains a problem.
Yet, MPI serves the immediate need of the high-performance application sector,
because it produces working programs – even though often at a high price.

A smaller part of the market is trying to work with HPF. Correctness is less
of a programming issue here, since the HPF program appears sequential (cf.
data parallelism), but there is the burden on the compiler to get the parallel
part correct and efficient. This style of programming is much more comfortable
than using MPI, and present-day HPF compilers will produce good code for
some problems [31]. However, the usefulness of HPF deteriorates rapidly with
increasing irregularity of the computational problems. There are efforts under
way to make HPF more irregularity-resiliant.

4 The Future

Can life be made easier for parallel programmers? Is there hope for portable
parallel programs? Can a formal foundation for parallel programming for high
performance be found? Many research efforts are under way to answer these
questions positively.

One approach is to clean up the act of MPI programming. Let me mention
two trends.

The first trend disciplines the programmer in the use of communications:
much like the goto was banished from sequential programming, point-to-point
communications could be banished from MPI programming. Instead, one would
rely only on the use of more abstract, regular communication patterns. Some
are already provided by the MPI library: reduce, scan, scatter, gather, etc.
Techniques of program transformation can help in identifying efficient imple-
mentations for these patterns [34] and choosing the right pattern – or the right
composition of patterns – even with regard to a particular processor topology
[12].

The second trend disciplines the programmer by structuring the program into
blocks between which no communication is allowed to take place. In BSP, these
blocks are called supersteps. Communications specified within a superstep are



carried out after all computations of the superstep have terminated. The benefit
of this approach is an increased simplicity of programming and cost prediction.
The BSP library is an order of magnitude smaller than the MPI library, and
its cost model rests on only three machine parameters! The price paid is that,
like with the imposition of any structure, the programmer loses flexibility –the
verdict on how serious a loss this is is still out– and that there is an inherent
fuzziness in the evaluation of the machine parameters [32].

Another approach which relies heavily on a smart run-time system is Cilk,
Leiserson’s extension of C [9]. Cilk is C plus half a dozen constructs for the defini-
tion and containment of parallelism. Leiserson addresses the issue of correctness
by running systematic tests administered by a so-called nondeterminator [8]. For
safety-critical applications, one should apply a method of deriving correct Cilk
programs.

In the same vein, Glasgow Parallel Haskell (GpH) extends the functional lan-
guage Haskell [33]. Here, the effects of the extensions on the language semantics
are easier to understand: the program’s output values cannot be corrupted, only
the time of their appearance can change (albeit, maybe, to infinity)!

Functional programs are particularly amenable to program transformation,
also for exposing parallelism. In the last decade, people have tried to identify
computational patterns which contain inherent parallelism and to derive this
parallelism – in the best case, systematically through a sequence of equational
program transformations. The aim is to form a library of these patterns, backed
up with efficient implementations for existing parallel computers. Systems are
being worked on which can make use of such libraries [2, 6]. There is also some
industrial involvement [3], but it is still in its infancy.

Particular attention has been paid to the divide-and-conquer paradigm, which
comes in a variety of patterns [11, 13, 26]. There are also functional languages
specifically supporting divide-and-conquer [4, 14, 25].

The use of patterns –or schemata, skeletons, templates, or whatever one
might call them– is also an advance in that it is highly compositional. This
benefit, often obtained when one imposes structure, does unfortunately not apply
to the aspect of performance: in general, the composition of two patterns, which
have been tuned individually for a given architecture, must be retuned [12, 34].

The most powerful way of unburdening the programmer from correctness and
performance issues of parallelism is, of course, to use certified automatic methods
of parallelization. In the imperative world, much effort has been invested in the
automatic parallelization of nested loops. This is the focus of every parallelizing
compiler. The polytope model for loop parallelization [7, 20], which emerged
from systolic design, goes much further than present-day parallelizing compilers
by providing an optimizing search for the best parallel implementation. But
obtaining a solution in a model is much easier than deriving competitive target
code. Much work remains to be done and is being done here.

Let me conclude with the observation of two fashionable trends of today.
The first is the increasing interest in the new library OpenMP

(openmp.org), the shared-memory equivalent of MPI, which is pushed heavily



by an industrial consortium. There is the hope that virtual shared memory will
make any consideration of the location of a datum in a distributed store obso-
lete. With the increased use of clusters of symmetric shared-memory processors
(SMPs), a combination of MPI and OpenMP programming will likely prevail in
the near future.

The second is a large impetus concerning Java for high-performance com-
puting, which has led to the formation of an interest group, the Java Grande
Forum (javagrande.org). As long as Java is interpreted by a virtual machine,
it will be difficult to obtain high performance – but this will not last forever.
There are other aspects of Java which make it seem like an unlikely candidate for
high-performance computing: its thread model is inefficient, the array –the data
structure used most for high performance– cannot be given multiple dimensions
easily and there are problems with its floating-point arithmetic. However, the
pressure for an adaptation of Java to high-performance computing in some form
or other is mounting rapidly, with many researchers getting involved.

5 Conclusions

It seems quite clear that structureless parallelism is not going to have a future
in high-performance computing – be it with shared memory or with message
passing. The step yet to be taken in a major part of the applications is akin to
the switch from assembly programming to higher-level languages in the Sixties
– a step of abstraction. Just as back then, it will require advances in language
design, compilation technology and parallel architectures, and it is still going to
be painful for programmers, who will feel they give up essential liberties.

In high-performance computing, parallelism is not part of the specification – a
performance requirement is! Parallelism enters the stage only in the program de-
velopment, as an optimization to attain the required peformance. Consequently,
one has a choice of how to structure one’s parallelism. This structure is more
easily imposed when the computation has structure itself than when the struc-
ture of the computation is irregular or unpredictable. Especially in the latter
case, optimal performance is often going to be difficult to achieve.

Freeing the programmer completely from the issue of parallelism is not going
to be practical, except in trivial cases. Even if the compiler chooses the paral-
lel structure based on knowledge of the target machine and the dependences in
the program, the programmer is still the maker of these dependences and, thus,
predetermines the potential for parallelism. Granted: present-day parallelizing
compilers alter the dependence structure specified by the programmer –e.g., by
expanding scalars to vectors or by plugging in parallel code for reductions and
scans– but, for alterations at a larger scale, the use of custom-implemented pat-
terns seems more promising. (Note that reductions and scans are basic patterns
themselves.) In general, it is going to be a good idea to let the programmer assist
the compiler with simple hints.

The present phase in the development of high-performance computing is one
of exploration. So, by the way, is the present phase of architecture design. In the



quest for high performance, computer architectures are becoming more ornate
and, as a consequence, are increasing the burden on high-performance compilers.
Whether this tendency is going to be sustained and compilers can keep up with
it, remains to be seen.

To me, the most dominant issue in high-performance computing, which has
hardly been addressed effectively so far, is that of portable performance. After
all, a high-performance computer usually becomes obsolete after about five years!

6 Disclaimer

This treatise is meant as a quick, to-date, personal perspective. I do not claim
objectiveness or completeness, and I am aware of the personal bias in my ci-
tations. On the other hand, it has not been my intention to omit anything on
purpose or offend anyone.
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