
Analyzing the Discipline of Preprocessor Annotations in
30 Million Lines of C Code

Jörg Liebig
University of Passau

joliebig@fim.uni-passau.de

Christian Kästner
Philipps-University Marburg

kaestner@informatik.uni-
marburg.de

Sven Apel
University of Passau

apel@fim.uni-passau.de

ABSTRACT

The C preprocessor cpp is a widely used tool for implement-
ing variable software. It enables programmers to express
variable code (which may even crosscut the entire imple-
mentation) with conditional compilation. The C preproces-
sor relies on simple text processing and is independent of
the host language (C, C++, Java, and so on). Language-
independent text processing is powerful and expressive—
programmers can make all kinds of annotations in the form
of #ifdefs—but can render unpreprocessed code difficult to
process automatically by tools, such as refactoring, concern
management, and variability-aware type checking. We dis-
tinguish between disciplined annotations, which align with
the underlying source-code structure, and undisciplined an-
notations, which do not align with the structure and hence
complicate tool development. This distinction raises the
question of how frequently programmers use undisciplined
annotations and whether it is feasible to change them to
disciplined annotations to simplify tool development and to
enable programmers to use a wide variety of tools in the
first place. By means of an analysis of 40 medium-sized
to large-sized C programs, we show empirically that pro-
grammers use cpp mostly in a disciplined way: about 84%
of all annotations respect the underlying source-code struc-
ture. Furthermore, we analyze the remaining undisciplined
annotations, identify patterns, and discuss how to transform
them into a disciplined form.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.8 [Software Engineering]: Metrics; D.3.4 [Pro-
gramming Languages]: Processors—Preprocessors

General Terms

Languages

Keywords

preprocessor, ifdef, conditional compilation, virtual separa-
tion of concerns, crosscutting concerns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03 ...$10.00.

1. INTRODUCTION
The preprocessor cpp is a text processing tool that ex-

tends the programming language C by lightweight metapro-
gramming facilities [24]. It was originally designed for the
programming language C and is nowadays also part of C++
and used with several other languages such as Fortran. The
preprocessor provides three capabilities: file inclusion, tex-
tual substitution (macro substitution), and conditional in-
clusion (a.k.a. conditional compilation). Here, we concen-
trate on conditional inclusion and problems related to this
capability [8, 26].

Conditional inclusion allows programmers to selectively
include source code. To this end, a programmer annotates
source code using the preprocessor directives #ifdef, #ifn-
def, and so on, which wrap lines of source code to make
them optional. Programmers influence the inclusion of an-
notated code with configuration files or compiler flags and,
to this end, generate different program variants, some of
which include certain code fragments and some not. The
application of conditional inclusion is not limited to a single
file. Programmers use it for the implementation of features
(end-user visible concerns) that often crosscuts the entire
code base [26].

In academia, contemporary textual preprocessors are heav-
ily criticized as error prone and as rendering code hard to
read and maintain [1, 11, 10, 27, 35]. Instead of separating
concerns, with preprocessors, developers often implement
concerns with many small annotated code fragments scat-
tered across the code base. There are two common sugges-
tions to deal with this situation: The first is to refactor
concerns and replace conditional compilation my means of
contemporary language concepts that support crosscutting
implementations, such as aspects, mixin layers, or feature
modules; for example, a large body of research addresses the
potential of refactoring #ifdef directives into aspects [1, 5, 6,
27, 32]. The second suggestion—called concern management
or virtual separation of concerns—is to keep but explicitly
manage scattered preprocessor implementations, often with
additional tool support, for example, in the form of views
on selected concerns, visualizations, and preprocessor-aware
type systems [11, 15, 16, 17, 21, 30, 34].

Both approaches, concern refactoring and concern man-
agement, rely on an integrated analysis of the source-code
structure and the effect of preprocessor directives. However,
parsing and analyzing the unprocessed representation of the
source code (pre-cpp) is known to be hard, because the pre-
processor cpp is token-based and as such oblivious to the
underlying source-code structure. Developers may annotate

191



arbitrary tokens, such as a single closing bracket. Although
this is not a problem for tools that analyze a single pre-
processed variant of the source code (post-cpp), such as a
compiler or many static analysis tools, pre-cpp tools have
difficulties handling arbitrary text-based annotations. These
difficulties are widely acknowledged in prior research on code
refactoring [12, 13, 14, 36, 38], transformation [1, 4, 22], slic-
ing [37], or product-line aware analysis tools [3, 20, 23, 31].
Despite significant research effort (e.g., [12, 14, 36, 38]) and
significant improvements, refactoring engines of IDEs such
as Eclipse and Visual Studio still struggle with certain kinds
of annotation in pre-cpp code.

A typical approach that has been used to analyze pre-cpp
code in the past (sometimes explicitly, but mostly implicitly)
is to handle not all, but only a subset of annotations, which
we call disciplined annotations. Disciplined annotations are
annotations on certain syntactic code structures, such as en-
tire functions and statements, whereas we call annotations
of individual tokens or brackets that do not align with under-
lying code structure undisciplined annotations. Restricting
developers to disciplined annotations makes it much easier
to build proper tools and to ensure correctness and com-
pleteness of the mechanisms involved. For example, we can
parse source code including disciplined annotations in one
step and propagate annotations to elements of an abstract
syntax tree that we use as input for concern refactoring or
concern management tools [22]. As another example, when
developers annotate only entire functions, refactoring tools
can safely transform function bodies or rename all alterna-
tive implementations of a function without loss of variability
information. (As a side effect, disciplined annotations also
prevent tedious syntax errors such as annotating only the
closing but not the opening bracket of a function.)

A tool based only on disciplined annotations will not un-
derstand all existing source code, so developers may need
to prepare the source code and bring some annotations into
a disciplined form first. Some researchers claim that the re-
striction to disciplined annotations is not a significant limita-
tion in practice and that source-code preparation is straight-
forward and quick to apply [4]. However, we are not aware
of any empirical evidence for such claims. Although the pre-
processor has been the topic in several studies [8, 26, 35],
the issue of discipline has not been investigated empirically.

We make the following contributions:
• We describe (different forms of) disciplined and undis-

ciplined annotations.
• We analyze 40 software projects with over 30 million

lines of C code regarding the discipline of their anno-
tations.

• We classify undisciplined annotations and present num-
bers of their occurrence.

• We present transformations for undisciplined annota-
tions to make them disciplined and discuss implica-
tions for tool builders.

• We give recommendations for a common definition of
disciplined annotations on which tool builders can rely.

This work differs from our previous work [26] in that we
focus here on the discipline of preprocessor use, whereas,
earlier, we analyzed cpp’s variability mechanisms regarding
their potential to implement product lines. Here, we look
at the preprocessor from the tool builder’s perspective and
discuss parsing and handling of potential ill-formed #ifdef

annotations, whereas earlier we analyzed the programmers

need for variability on the source-code level and the scat-
tered nature of features implemented with conditional com-
pilation. In previous work, we took side with the software
engineer in terms of program understanding and alternative
product-line implementation techniques, such as aspects or
feature modules; here we take side with tool builders.

2. DISCIPLINED ANNOTATIONS
Before we look at the use of cpp in practice, we provide

an overview of its conditional-inclusion capabilities and clas-
sify annotations into disciplined and undisciplined annota-
tions. We illustrate our explanations with code excerpts of
the open-source text editor vim.

2.1 Conditional Inclusion
Conditional inclusion is one of three capabilities to imple-

ment variable software with the preprocessor. Programmers
annotate conditional parts of the source code with prepro-
cessor directives such as #ifdef (for brevity, we refer to all
conditional inclusion macros #if, #ifdef, #ifndef, #elif,
#else, and #endif as #ifdefs), which control lexical pro-
gram transformations. The inclusion of conditional code
depends on the evaluation of the condition that belongs to
an #ifdef. The condition consists of one or more integer
constants that are defined prior to the #ifdef. Figure 1
shows an example of conditional inclusion (Fig. 1 a) and the
result of applying cpp to the source code (Fig. 1 b). Here,
the integer constant FEAT_NETBEANS_INTG controls the in-
clusion of struct signlist *prev; (Line 13). A single
#ifdef controls the inclusion of all subsequent lines until
the next #ifdef occurs. This way, a programmer specifies
which source code is optional. For implementing alternative
source-code fragments, a programmer uses a combination of
#if, #elif, and #else. In prior work we found that pro-
grammers use conditional inclusion frequently to implement
variable source code that crosscuts the mandatory part of
the software system [26].

Based on the values of integer constants, different variants
can be generated. In our example, three variants are possi-
ble: with struct signlist (Lines 7 to 15) and/or struct

signlist *prev; (Line 13) and without both elements. Be-
cause cpp works on the basis of tokens of the target language,
it is language independent.1 That is, programmers may an-
notate arbitrary source-code fragments. A key observation
is that annotations may be used in a disciplined or undisci-
plined way.

2.2 Tool Builders’ Requirements
Before we describe what we consider as disciplined anno-

tations, we describe what form of annotations tool builders

1To be specific, cpp does not care about the underlying lan-
guage and can thus be combined with any language. It even
provides the command-line flag -P when running the prepro-
cessor with non-C input to suppress #line directives. How-
ever, preprocessor directives may break existing tool support
for unprocessed code. For example, a Java editor does not un-
derstand the preprocessor directives. As a consequence, sev-
eral preprocessors have been developed that can define prepro-
cessor directives inside comments, such as Antenna (antenna.
sourceforge.net) and Munge (weblogs.java.net/blog/tball/
archive/munge/Munge.java) for Java, or that have a configurable
syntax, such as the preprocessor facilities provided by the commer-
cial product-line tools pure::variants (www.pure-systems.com)
and Gears (www.biglever.com).

192



1 struct buffblock {

2 struct buffblock *b_next;
3 char_u b_str[1];
4 };

5
6 #if defined(FEAT_SIGNS) || defined(PROTO)

7 struct signlist {
8 int id;

9 linenr_T lnum;
10 int typenr;
11 struct signlist *next;

12 #ifdef FEAT_NETBEANS_INTG
13 struct signlist *prev;

14 #endif
15 };
16 // some macro definitions
17 #endif

(a)

1 struct buffblock {

2 struct buffblock *b_next;
3 char_u b_str[1];
4 };

5
6
7 struct signlist {
8 int id;

9 linenr_T lnum;
10 int typenr;
11 struct signlist *next;

12
13
14
15 };
16 // some macro definitions
17

(b) (c)

Figure 1: Example of conditional inclusion (a), the result after applying cpp (b), and the AST (c)

can or want to handle. For illustration, we use two scenar-
ios (concern refactoring and concern management) that are
common in the research area of crosscutting concerns and
discuss the technical influence of preprocessor annotations
on both scenarios.

Concern refactoring. A common idea is to refactor scat-
tered #ifdef-based implementations into cohesive implemen-
tations such as aspects, if possible, automatically. After
refactoring, variability is implemented by selecting which
aspects to weave into the program instead of running a tex-
tual preprocessor. For example, Lohmann et al. refactored
#ifdef annotations in an operating systems kernel [27], and
Adams et al. identified common patterns of conditional in-
clusion that can be refactored into aspects [1]. The authors
of both papers described that although they could refactor
most annotations, they had to rely on heuristics and could
not refactor all code. However, the authors also stated that
handling of variable source-code fragments is a major prob-
lem when dealing with unprocessed source code (pre-cpp).
To automate such refactoring, tools require a parse tree or
abstract syntax tree (AST) with variability information, of-
ten enriched with information on types for analysis or trans-
formation. It must be possible to identify variable code as
compared to the base code. Hence, it is preferable that
#ifdef annotations map to complete subtrees in the AST
representation, such that reasoning about the source-code
structure and its annotations is possible on the basis of a
uniform representation.

Concern management. As an alternative strategy for refac-
toring, some researchers propose to keep scattered implemen-
tations of #ifdefs, but manage them with tool support. A
typical strategy is to generate views on the source code. For
example, a view on a feature X shows all code fragments an-
notated with #ifdef X together with the feature’s context,
but hides all remaining code [2, 16, 17, 21]. A developer
can inspect (and often also edit) such view similar to a co-
hesive aspect implementation, but the view is generated on
demand based on a scattered implementation. Henceforth,
we call this approach virtual separation of concerns [21]. Be-
side visualizations, additional tool support may also include

advanced error checking, such as syntactical correctness and
consistency of views, or even that all valid feature combina-
tions result in well-typed programs [20, 21].

Although some tool support for concern management is
possible at a textual level, a common abstract syntax tree
that includes information about features is helpful to rea-
son about the code and provide navigation support. For
example, to be useful, views must include some context in-
formation, such as the class or function the code fragment
is defined in.2 To determine the context for a view, an ab-
stract syntax tree provides more accurate information than
grep-like heuristics such as “show the 3 lines before and after
the code fragment”. In addition, advanced features such as
variability-aware type checking strongly depend on an ab-
stract syntax tree as well.

Interestingly, concern refactoring and concern management
are two approaches popular in the research community on
code-clone detection, in which different groups advocate ei-
ther code-clone removal by refactorings or code-clone man-
agement with tool support [33].

An AST with variability information. Many tools need to
build a parse tree or abstract syntax tree that contains also
variability information from the annotations. In a uniform
representation #ifdef annotations have to map to complete
subtrees in the parse tree or abstract syntax tree to enable
the combination of the tree information with the variability
information. Consider the code fragment in Figure 1 a and
the corresponding AST in Figure 1 c. Annotations are rep-
resented by nodes in the AST: The annotation of struct

signlist in Line 7 has its corresponding struct subtree in
the AST; the same for struct signlist *prev in Line 13.
Note that the resulting AST in Figure 1 c contains the en-
tire information for all three variants, so we do not need to
generate all variants.

Unfortunately, annotations do not always align with the
underlying source-code structure. Figure 2 shows an exam-
ple, in which an annotation of optional code is split up into

2Presenting a single statement without further context would
probably not be very helpful in understanding the implementation
of a feature; similar context is available in aspects by repeating
class and function names in interfaces or pointcuts.

193



two single annotations (Line 6 and 15); the end of the block
USE_ISPTS_FLAG in Line 6 is in a different block (Line 15).
This annotation cannot be mapped to a node or subtree in
the AST and we consider it as undisciplined, as we explain
in Section 2.3.

1 #if defined(__GLIBC__)
2 // additional lines of code
3 #elif defined(__MVS__)
4 result = pty_search(pty);

5 #else
6 #ifdef USE_ISPTS_FLAG

7 if (result) {
8 #endif
9 result = ((*pty = open("/dev/ptmx", O_RDWR)) < 0);

10 #endif
11 #if defined(SVR4) || defined(__SCO__) || \

12 defined(USE_ISPTS_FLAG)
13 if (!result)
14 strcpy(ttydev, ptsname(*pty));

15 #ifdef USE_ISPTS_FLAG
16 IsPts = !result;

17 }
18 #endif
19 #endif

Figure 2: Example of an undisciplined annotation in
xterm

A clean mapping from annotations to AST elements has
the following advantages:

• The AST representation contains all information of a
program including its variability. This simplifies tools
for concern refactoring, concern management, and many
others, because heuristics are not necessary when deal-
ing with the source code and programmers can safely
analyze and transform the AST. We do not need to
preprocess the code first, transform it, and then re-
vert the preprocessing step. For example, when we
refactor code by extracting an annotated sequence of
statements into an advice declaration, we can make
sure that we move them correctly without loss of vari-
ability information.

• The mapping of #ifdef annotations to AST elements
ensures the absence of syntax errors. When we allow
only annotations on structural elements, but not on ar-
bitrary tokens such as brackets, the removal of #ifdefs
cannot introduce syntax errors [23].

• Based on an AST, we can reason about types or con-
trol flow or perform other static analyses and model
checking [7], always including variability information.
These semantic analyses become more complex due to
annotations (for example, a variable can have different
types depending on the selection of preprocessor con-
stants), but it still can be performed on the entire vari-
able code base in a single step, instead of generating all
variants upfront. For example, in [20] we have built a
type system that compares annotations between func-
tion declarations and function calls, which depends on
variability annotations in a single AST.

2.3 Defining Disciplined Annotations
Based on the idea of mapping annotations to elements

of the underlying source-code structure, we propose a def-
inition of disciplined annotations. Actually, it is quite dif-
ficult to find a common definition, because different tools
may have different requirements (e.g., some can handle an-

notated function parameters, others do not). Here, we put
forward a conservative definition.

Definition Disciplined Annotations: In C,
annotations on one or a sequence of entire func-
tions and type definitions (e.g., struct) are dis-
ciplined. Furthermore, annotations on one or a
sequence of entire statements and annotations on
elements inside type definitions are disciplined.
All other annotations are undisciplined.

We chose this definition, because we can map functions,
type definitions, and statements straightforwardly to sub-
trees in the AST. Furthermore, we can exploit this defini-
tion when extending an existing C grammar in Section 2.4.
In Section 4.1, we discuss our definition of disciplined anno-
tations based on an empirical evaluation of the annotation
discipline in 40 software projects.

In Figure 4, we show some examples of disciplined an-
notations taken from the text editor vim: an annotation
on an entire function (Fig. 4 a), an annotation on an entire
statement including a nested substatement (Fig. 4 b), and
an annotation on a field inside a struct (Fig. 4 c).

One may argue that our definition is too strict. We could
also allow annotations at expression level (as in Fig. 5 d), on
parameters (as in Fig. 5 g), on case blocks in a switch state-
ment (as in Fig. 5 h), or on the else branch of an if statement
(as in Fig. 5 b). In all these cases, we can map the annota-
tion to subtrees of the AST. Actually, we can even map
partial annotations on if, for, or while statements that do
not include the nested body as in Figure 5 a. In these cases
we would map the annotation to an individual AST element
and not to an entire subtree (which we discussed as wrap-
pers in [23]). All these fine-grained annotations (and sev-
eral more) would be possible to interpret as disciplined, but
then the tools that work on the resulting AST will be more
complex. Some tools benefit from disallowing annotations
on expressions or parameters, because this way they have
to consider fewer annotated code fragments and thus fewer
transformation patterns [22]. One goal of our analysis is to
find out whether our conservative definition of disciplined
annotations is sufficient in practice or whether some or all
fine-grained annotations should be considered as disciplined
as well, because software engineers use them frequently.

There are annotations that we can classify as undisciplined
without any doubt. These are ill-formed annotations in
which already the number of #ifdef and #endif statements
does not match and, annotations that can produce syntax
errors when removed (such as an annotation of an opening
bracket without an annotation on the corresponding closing
bracket). Figure 2 shows an example of an ill-formed an-
notation. (If the flags __GLIBC__ and USE_ISPTS_FLAG are
selected, the resulting code will contain an syntax error.)

2.4 Parsing Disciplined Annotations
An AST representation of unprocessed code requires a

mapping of #ifdef annotations to the program structure.
To this end, we need a parsing step that can at best parse the
entire unprocessed source code (pre-cpp) in a single step. A
straightforward approach is to introduce preprocessor direc-
tives into the grammar of the host language. Figure 3 shows
an excerpt of a cpp-extended C grammar. The grammar sup-
ports optional or alternative function definitions with cpp
directives (additional productions for annotating functions

194



highlighted). Note that, due to cpp’s unlimited annotation
capabilities it is difficult to write a preprocessor-aware gram-
mar that covers all possible annotations and considered im-
possible by some researchers (e.g., [29]). But when we en-
force disciplined annotations, this approach becomes prac-
tical. When preprocessor directives are already part of the
grammar, and hence recognized by the parser, we can assign
parsed annotations directly to code fragments of the AST.

1 translation_unit
2 : external_declaration
3 | translation_unit external_declaration

4 ;
5 external_declaration

6 : function_definition
7 | ’#’ ’if’ cppexp nl function_definition nl cppthenfunc

8 | declaration
9 ;

10 cppthenfunc

11 : ’#’ ’endif’ nl
12 | ’#’ ’else’ nl function_definition nl ’#’ ’endif’ nl

13 | ’#’ ’elseif’ cppexp nl function_definition nl cppthenfunc
14 ;
15 function_definition ...

Figure 3: Excerpt of an cpp-extended ISO/IEC 9899
lexical C grammar; rules for preprocessor directives
are in Line 7 and Lines 10 to 14; cppexp is the con-
dition; nl is a newline; cppthenfunc represents the
#endif or alternative function definitions

3. EMPIRICAL STUDY
Next, we analyze how annotations are used in practice

and whether enforcing disciplined annotations would be a
feasible endeavor.

3.1 Hypothesis
Before we present and discuss the results of the analy-

sis, we formulate our hypothesis regarding the discipline of
preprocessor annotations. We expect that the majority of
#ifdefs used in C programs is disciplined. We have three
reasons for this hypothesis:

1. Developers prefer disciplined annotations and consider
undisciplined annotations as hard to read. For exam-
ple, Baxter and Mehlich report of a project that con-
tained some undisciplined annotations: “The reaction
of most staff to this kind of trick is first, horror, and
then second, to insist on removing the trick from the
source” [4].

2. Some software projects have coding guidelines that state
how to use the preprocessor. They typically suggest
disciplined over undisciplined annotations. For exam-
ple, in Linux kernel development, guidelines state that
programmers shall annotate entire functions instead of
arbitrary source-code fragments: “Code cluttered with
ifdefs is difficult to read and maintain. Don’t do it. In-
stead, put your ifdefs in a header, and conditionally de-
fine static inline functions, or macros, which are used
in the code.” 3

3. Disciplined annotations are sufficient for most prob-
lems in software development. Arbitrary undisciplined
annotations are simply not necessary in most cases.

3see /Documentation/SubmittingPatches in the Linux source

Even though variability involves changes at subfunction
level, it is questionable whether annotations at the
level of expressions or parameters outweigh the prob-
lems they introduce.

Although these reasons are backed by anecdotal reports
from practice, we are unaware of substantial empirical evi-
dence. Therefore, we empirically analyze 40 C projects re-
garding the discipline of the preprocessor use to confirm or
reject our hypothesis.

3.2 Sample Projects & Collecting Data
We selected 40 software projects to get a comprehensive

overview of the discipline of preprocessor use. We had three
criteria for the selection. First, the software projects must
have a large developer base. Second, the selection must con-
tain systems from different domains and of different sizes.
Third, the primary programming language must be C. In
Table 2, we provide information on the selected projects.
Together these systems contain 30 255 220 lines of C code
(normalized by pretty printing and eliminating empty lines
and comments) and contain 330 017 annotations. Before we
analyzed the software projects, we prepared the source code
by eliminating include guards.4

Our analysis requires representing source code as an AST.
We use the tool src2srcml5 for this task. It parses the unpro-
cessed C code and generates an XML document. The XML
representation includes both plain C code and preprocessor
directives. Based on this coherent representation, we visit
all annotations and determine whether they align with func-
tions, types, and statements, as defined above.6 For each
project, we classify the annotations and count the number
of disciplined and undisciplined annotations. We omitted 71
of 104 020 files during the analysis (0.7% of all files ana-
lyzed), because either src2srcml could not correctly parse
these files or they contained incomplete annotations such as
an #ifdef without the corresponding #endif. Without a
proper AST representation, we were not able to classify the
annotations in these files.7

To discuss whether our conservative definition of disci-
plined annotations is too strict or whether even a restriction
to annotations on functions would be feasible, we took a
closer look at the different kinds of disciplined and undisci-
plined annotations. Our analysis tool distinguishes between
the following kinds of disciplined annotations:
FT: Annotations on one or multiple functions or type defi-

nitions (Fig. 4 a).
SF: Annotations on one or multiple statements inside a

function or on fields inside a type definition (Fig. 4 b
and 4 c).

As described in Section 2.3, there is a gray zone of anno-
tations that we consider as undisciplined, but which could
be mapped to AST elements with some effort. Hence, we

4An include guard is a well-known pattern of conditional inclu-
sion that does not represent any functional aspect. It annotates
one or more function or type definitions, which is per definition
disciplined. Including include guards in our statistics would bias
the results toward disciplined annotations.
5
http://www.sdml.info/projects/srcml/

6Note that we split alternative annotations such as #ifdef-#else-
#endif into two annotations, one from #ifdef to #else and one
from #else to #endif, because they enframe different code frag-
ments and have to be analyzed separately.
7Our analysis tool and the comprehensive data is available at the
project’s website http://fosd.de/cppstats/.

195



1 #if defined(__MORPHOS__) && \
2 defined(__libnix__)
3 extern unsigned long *__stdfiledes;

4
5 static unsigned long
6 fdtofh(int filedescriptor) {
7 return __stdfiledes[filedescriptor];
8 }

9 #endif

(a) compilation unit

1 void tcl_end() {
2 #ifdef DYNAMIC_TCL

3 if (hTclLib) {
4 FreeLibrary(hTclLib);

5 hTclLib = NULL;
6 }
7 #endif
8 }

(b) sub-function level

1 typedef struct {
2 typebuf_T save_typebuf;

3 int typebuf_valid;
4 struct buffheader save_stuffbuff;

5 #if USE_INPUT_BUF
6 char_u *save_inputbuf;
7 #endif
8 } tasave_T;

(c) sub-type level

Figure 4: Examples of disciplined annotations in vim

1 #ifdef RISCOS
2 if ((s = vim_strrchr(result, ’/’))
3 != NULL && s >= gettail(result))

4 #else
5 if ((s = vim_strrchr(result, ’.’))

6 != NULL && s >= gettail(result))
7 #endif

(a) if

1 #ifdef FEAT_FIND_ID
2 else if (*e_cpt == ’i’)

3 type = CTRL_X_PATH_PATTERNS;
4 else if (*e_cpt == ’d’)

5 type = CTRL_X_PATH_DEFINES;
6 #endif

(b) else-if block

1 int n = NUM2INT(num);
2 #ifndef FEAT_WINDOWS

3 w = curwin;
4 #else
5 for (w = firstwin; w != NULL;

6 w = w->w_next, --n)
7 #endif
8 if (n == 0)
9 return window_new(w);

(c) for wrapper

1 if (char2cells(c) == 1

2 #if defined(FEAT_CRYPT) || \
3 defined(FEAT_EVAL)
4 && cmdline == 0

5 #endif
6 )

(d) expression

1 if (!ruby_initialized) {
2 #ifdef DYNAMIC_RUBY
3 if (ruby_enabled(TRUE)) {

4 #endif
5 ruby_init();

(e) ill-formed annotation

1 #if defined(FEAT_SEARCHPATH) || \
2 defined(FEAT_BROWSE)
3 theend:

4 vim_free(fname);
5 #endif

(f) goto

1 need_redraw =

2 check_timestamps(
3 #ifdef FEAT_GUI

4 gui.in_use
5 #else
6 FALSE

7 #endif
8 );

(g) parameter

1 #ifdef FEAT_CLIENTSERVER

2 case SPEC_CLIENT:
3 sprintf((char *)strbuf,

4 PRINTF_HEX_LONG_U,
5 (long_u)clientWindow);
6 result = strbuf;

7 break;
8 #endif

(h) case block

1 for ( ; mp != NULL;

2 #ifdef FEAT_LOCALMAP
3 mp->m_next == NULL ?
4 (mp = mp2, mp2 = NULL) :

5 #endif
6 (mp = mp->m_next)) {

(i) expression

1 int put_eol(fd)

2 FILE *fd;
3 {

4 if (
5 #ifdef USE_CRNL

6 (
7 #ifdef MKSESSION_NL
8 !mksession_nl &&

9 #endif
10 (putc(’\r’, fc) < 0)) ||

11 #endif
12 (putc(’\n’, fd) < 0))
13 return FAIL;

14 return OK;
15 }

(j) nested #ifdefs

1 #ifdef FEAT_MBYTE
2 int props;

3 p_encoding = enc_skip(p_enc);
4 props = enc_canon_props(p_encoding);

5 if (!(props & ENC_8BIT)
6 || !prt_find_resource((char *)p_encoding,
7 &res_encoding))

8 #endif
9 {

(k) combination of sub-function and if

Figure 5: Examples of undisciplined annotations in vim

196



search for certain patterns of undisciplined annotations, such
as annotations on parameters, case blocks, and expressions,
and determine how often they occur. If these patterns occur
frequently, we may consider defining them as disciplined as
well. The patterns we consider are the following:8

IF: Partial annotations of an if statement, e.g., an annota-
tion of the if condition or the if-then branch without
the corresponding else branch (Fig. 5 a).

CA: Annotations on a case statement in which only a case
block is annotated (Fig. 5 h).

EI: Annotations on an else-if branch inside an if-then-else
cascade (Fig. 5 b).

PA: Annotations on a parameter of a function declaration
or a function call (Fig. 5 g).

EX: Annotations on well-formed parts of expressions
(Fig. 5 d, Fig. 5 i, and Fig. 5 j).

3.3 Results
In Table 2, we list the results of our analysis: we present

the number of occurrences of disciplined and undisciplined
preprocessor uses for each of the 40 projects. The key result
is that 84.4 ± 6.4% of all annotations are in a disciplined
form. Disciplined preprocessor use in the software projects
ranges from 69.7% in subversion to 100.0% in mpsolve. Ex-
cept for mpsolve, we always found some undisciplined anno-
tations.

Looking closer at the disciplined annotations, we found
that 27.1 ± 11.9% of all annotations wrap entire functions
and type definitions and 57.2 ± 11.2% wrap statements or
fields.

The most common pattern of undisciplined annotations
is annotations on case blocks (CA; 4.1 ± 3.3%). Except
for irssi and mpsolve, they occur in every project. Par-
tial annotations on if statements (IF; 2.4 ± 2.0%) are less
frequent, but still occur several times in every project ex-
cept lighttpd and mpsolve. Annotations on else-if (EI; 0.3
± 0.4%), parameters (PA; 0.3 ± 0.4%), and expressions
(EX; 0.7± 1.0%) occur infrequently and only in some projects.
There are only few projects with an exceptionally high num-
ber of occurrences of such patterns (up to 5.5%), for exam-
ple, gcc, sendmail , or vim.

We were not able to identify the remaining annotations au-
tomatically (7.7 ± 4.9%; range from 0.0 to 28.2%). Among
those are ill-formed annotations and infrequent patterns (or
combinations of identified patterns), such as in Figure 5 c,
5 e, 5 f, and 5 k.

To have a closer look at the unclassified annotations, we
manually analyzed all unclassified annotations in 10% of all
projects.9 In Table 1, we show the number of unclassified
annotations that we identified as disciplined, undisciplined,
and ill-formed. The reason for src2srcml ’s inability to iden-
tify these few patterns is that it is based on heuristics. We
discuss this limitation as a threat to validity in Section 4.3.
However, the enormous size of the data set (Table 2) amor-

8The identification of patterns that might be considered disci-
plined was an iterative process. We started with patterns we
were familiar with and iteratively added additional patterns that
we found during manual inspection of undisciplined annotations
in the analysis results.
9Due to the large number of remaining unclassified annotations
in larger software projects, such as freebsd or opensolaris, we
selected some smaller projects to get an intuition of the kind of
unclassified annotations. In terms of lines of code, the selected
projects cover 1% of all systems.

tizes the influence of a few false negatives (i.e., not as disci-
plined classified annotations) in unclassified patterns.

name disciplined undisciplined ill-formed

cherokee 4 20 6
irssi 0 11 0
lighttpd 1 21 0
xterm 0 39 8

Table 1: Results of a manual inspection of unclassi-
fied annotations in four projects

4. INTERPRETATION AND DISCUSSION
The results raise a number of questions. If 84% of all

annotations are disciplined, how do we handle the remain-
ing 16%? Should we include further annotation patterns
to be disciplined or should we transform undisciplined into
disciplined annotations?

4.1 Toward a Common Definition of
Disciplined Annotations

Transforming undisciplined annotations into disciplined
annotations requires a certain effort. Disciplined annota-
tions are most useful, when the community can agree on
a common definition to establish a solid foundation for the
development of inter-operable tools.

In Section 2.3, we proposed a conservative definition of dis-
ciplined annotations that is easy to reason about for tools.
We already noted that several other annotation patterns
could be regarded as disciplined at the expense of more com-
plex tool implementation (for all tools), but at the benefit
that less effort is necessary to transform legacy code into dis-
ciplined annotations. Here, we come back to this issue and
initiate a discussion about the suitability of our definition.

First, our results show that, with our conservative defini-
tion, 84% of all annotations are disciplined. Making the def-
inition stricter is not feasible, because this way we can cover
less annotations without any further benefit. For example,
when considering only annotations on function and type defi-
nitions disciplined, we can cover only 27% of all annotations;
annotations on statements and fields would be considered
undisciplined, even though they are easy to handle by tools.

Second, the most common pattern of undisciplined anno-
tations that we recognized were annotations on case blocks
inside switch statements as in Figure 5 h (4.1 ± 3.3%). Such
annotations occur in every sample project except mpsolve
and irssi . They can easily be mapped to AST subtrees, but
(similar to or even worse than if-else chains) they are sur-
prisingly difficult to handle due to the complicated control
flow (in particular, in the presence of break statements).

Third, the next common pattern of undisciplined annota-
tions (2.4 ± 2.0%) are partial annotations of if statements,
in which only parts of an if statement are annotated (e.g.,
only the condition or the if-then branch without the alter-
native else) as in Figure 5 a. Although this pattern occurs
quite frequently in some projects (and at least once in every
project except for mpsolve and lighttpd), handling such an-
notations is difficult, since we cannot map the annotations
to an entire AST subtree, but only to an individual AST

197



element without its children.10 Aiming at an inter-operable
infrastructure for many tools, we suggest not regarding such
annotations as disciplined, but to refactor the source code
(Sec. 4.2).

Fourth, the remaining identified patterns of annotated if-
then-else chains (0.3 ± 0.4%), parameters (0.3 ± 0.4%), and
expressions (0.7 ± 1.0%) occur infrequently (and not in all
projects). Due to the rare occurrences of such patterns we
consider refactoring the source code as the better and more
inter-operable solution.

Finally, there are several annotations that do not fit into
either of our patterns (7.7 ± 4.9%). The individual pat-
tern (or combination of patterns) behind these annotations
occurs so infrequently that we can safely discard them as
undisciplined. Overall, we interpret the results of our analy-
sis as a confirmation of our initial conservative definition of
disciplined annotations.

4.2 Handling the Remaining 16 Percent
Tools aiming at disciplined annotations are able to han-

dle most #ifdefs (84%). This may be sufficient for simple
analyses such as the measurement of source-code complexity
metrics or roughly estimating the potential for refactorings
as done by Adams et al. (their tool simply ignored all anno-
tations it did not understand) [1]. However, for some tools a
single undisciplined annotation may render the tool unsafe
or useless; for example, concern refactoring tools may fail
or even produce incorrect results, or concern management
tools may show inconsistent views, because they could not
parse certain files or code fragments. Taking into account
that, except for one project, all projects contain at least a
few undisciplined annotations, this is a serious issue that
deserves attention.

For handling the remaining 16 percent, we see two possibil-
ities. First, we can introduce more sophisticated tools that
use heuristics to accept more annotations than we currently
classify as undisciplined. Still, since arbitrary undisciplined
annotations may occur in a software system, the effort to
write such tools is extraordinary. Two examples of such
tools are Garrido’s refactoring tool CRefactory [12] or Padi-
oleau’s preprocessor-aware parser Yacfe [29]. But, because
both tools use heuristics, the outcome of these tools may not
be 100% correct.

Second, we can enforce disciplined annotations and re-
quire the developer to transform all remaining undisciplined
annotations into disciplined annotations. To make this ap-
proach practical, tool support is necessary for the automa-
tion of the transformation task. Enforcing disciplined anno-
tations simplifies the development of tools significantly and
hence can foster a community of tool developers for pre-cpp
code. We discuss the transformation of undisciplined anno-
tations and the effort of such transformation next.

Transformation of Undisciplined Annotations. To trans-
form undisciplined annotations into disciplined annotations,
#ifdefs need to be expanded until they wrap entire func-
tion or type definitions, statements, or fields. Except for ill-
formed annotations, undisciplined annotations can always

10Partial annotations complicate tool support, because depending
on the evaluation of #ifdef conditions the child element belongs
to two different AST elements. For example, the if statement
(Line 8) in Figure 5 c belongs either to the for loop (Line 5) or
the function (not printed there) directly.

be expanded into disciplined annotations. A brute-force al-
gorithm that works in every case is to replicate the source
code for every possible combination of #ifdefs and to an-
notate the entire replicated code fragment.11 For example,
Figure 6 a shows an example of an undisciplined parameter
annotation with two possible variants. We can replicate the
code fragment (one version in which Feat gui is defined and
one version in which it is not defined) and annotate the en-
tire statement in a disciplined form, as shown in Figure 6 c.
In the worst case, we would have to replicate the entire file
multiple times and annotate the file’s content. However, in
most cases, more sophisticated expansions at the level of
statements or functions are appropriate.

However, an automatic expansion is not always that easy
because of nested #ifdefs and scattered annotations. First,
we found some annotations that were ill-formed and that do
not map to nodes or subtrees in the AST or even a parse tree
(Fig. 2). We argue that a programmer may expand these an-
notations manually after a tool automatically identifies them
as undisciplined. Second, consider the nested #ifdef exam-
ple in Figure 5 j. The #ifdef Mksession nl is embedded in
the #ifdef Use crnl, and the preprocessor evaluates it only
in case Use crnl evaluates to true. The expansion of this
nesting leads to three alternatives: without Use crnl and
Mksession nl, with Use crnl and without Mksession nl,
and with both. This example may be simple, but it has
been shown that nesting occurs frequently and a nesting
depth beyond 2 is quite common [26]. Expanding nested
#ifdefs may lead to an exponential number of code clones
as a result of the combinatorial explosion of all annotations
involved. It is questionable whether it is feasible to expand
deeply nested #ifdefs in favor of source-code refactoring.
However, because we limit the expansion to statements and
functions, we believe that the expansion approach does not
lead to combinatorial explosion and the expanded output is
manageable by concern management tools.

Although a brute-force expansion is possible, developers
can often write more elegant annotations manually. For ex-
ample, for annotations on parameters or fragments of expres-
sions as in Figures 5 d, 5 i, 5 j, and 6 a, we would typically
rather introduce a variable and one or more annotated as-
signment statements, as illustrated in Figure 6 b. Hence,
we recommend a semi-automatic process instead of a fully
automatic transformation. A tool locates undisciplined an-
notations and proposes expansions, but the developer can
provide better implementations. More examples of auto-
mated and manual expansions of undisciplined #ifdef an-
notations (as in Fig. 5) are available at the project’s website
http://fosd.de/cppstats/.

Expressiveness, Replication, and Readability. There is
a trade-off between expressiveness, code replication and read-
ability. Expressiveness denotes the ability and flexibility to
make changes to the source code. An expressive preproces-
sor is able to handle fine-grained annotations and thus min-
imizes code replication. However, expressive preprocessors
such as cpp are criticized for making code difficult to read
and understand [4]. Limiting the expressiveness of the pre-
processor, for example, to disciplined annotations, requires
a certain amount of code replication, as we have explained.

11Note that the use of #include, #define, and #undef macros does
not hinder the expansion, because we can replicate these macros
as well.

198



1 need_redraw =

2 check_timestamps(
3 #ifdef FEAT_GUI

4 gui.in_use
5 #else
6 FALSE

7 #endif
8 );

(a)

1 int visible = FALSE;
2 #ifdef FEAT_GUI

3 visible = gui.in_use;
4 #endif
5 need_redraw =

6 check_timestamps(visible);

(b)

1 #ifdef FEAT_GUI
2 need_redraw = check_timestamps(gui.in_use);

3 #else
4 need_redraw = check_timestamps(FALSE);

5 #endif

(c)

Figure 6: Transformation of an undisciplined param-
eter annotation (a); possible disciplined annotation
provided by a programmer (b); automatic transfor-
mation by expansion (c)

Furthermore, it improves readability in that annotations are
only mixed with the base code at a predefined level.

Code replication is related to code cloning. Although some
researchers consider code clones harmful (e.g., [18, 33]), we
and others [19] argue that clones, as a result of expansion,
are manageable. One reason is that the alternatives contain-
ing the replicated code are side-by-side and therefore easy to
track for a programmer. Another reason is that expanded
code is limited to function or type definitions and statements,
which we consider as disciplined annotations. Note that dif-
ferent patterns of undisciplined annotations may cause dif-
ferent amounts of code replication, which is interesting to
explore in further work.

4.3 Threats to Validity
Next, we describe two threats to validity that are crucial

for our empirical analysis: threats to internal validity (re-
lation of the observed output to the input) and threats to
external validity (generalization of findings).

Threats to Internal Validity. The selection of sample soft-
ware projects is crucial for empirical analyses, because a
biased selection leads to biased results. To control this con-
founding variable, we analyzed a large number of software
projects of different domains and different sizes.

Not all annotation patterns have a functional aspect. In
this work we omit the include-guard pattern. An include
guard prevents the multiple inclusion of a header file dur-
ing the compilation process and is per se disciplined, as it
annotates the whole content of a header file. Including in-
clude guards in our statistics would bias our results towards
disciplined annotations, so we excluded them.

The tool src2srcml , which we use for our analysis, is par-
tially based on heuristics that are used to infer an abstract
syntax tree from unpreprocessed source code. From our
experiences, src2srcml ’s heuristic approach fails from time
to time, especially when it comes to ill-formed annotations.
That is, it may classify a few annotations incorrectly. Note
that we face an instance of the chicken-or-the-egg problem
here! For a completely correct classification, we would have
to use a tool that can handle all kinds of annotations, which

is not possible, as explained before. Alternatively, we could
use only disciplined annotations, which is exactly the view
we want to support with our analysis.

Threats to External Validity. Using a large sample size we
believe that our results are representative for the preproces-
sor usage in C software projects. We cannot generalize our
results to other programming languages that also make use
of the preprocessor, such as C++. This is because C++,
for instance, provides additional capabilities for expressing
variable source code (e.g., template metaprogramming) and,
to this end, programmers may use cpp differently.

5. RELATED WORK
Our discussion of disciplined annotations is influenced by

prior work on preprocessor-aware tool support – especially
from preprocessor-aware refactorings – and analyses of pre-
processor usage. Two cpp-aware refactoring tools for C are
Xrefactory [38] and CRefactory [13, 14]. Internally, both
tools automatically expand macros (using textual substitu-
tions) and undisciplined annotations to disciplined annota-
tions. Xrefactory uses a brute-force expansion at the level of
files (which leads to massive replication), whereas CRefac-
tory uses a very sophisticated expansion mechanism at finer
granularity, but is tailored to refactoring and also based on
heuristics.

Regarding refactorings from #ifdef-based code to aspects,
prior work was mostly conceptual or manual, because of the
complexity of parsing pre-cpp code. For example, Adams
et al. analyzed the feasibility of refactoring, but did not ac-
tually execute refactorings [1]. Lohmann et al. refactored
#ifdef annotations in an operating systems kernel, but did
not automate the refactoring [27]. In prior work, we au-
tomated and formalized refactorings from annotated Java
code to mixin-style feature modules (which can be adapted
to AspectJ as a target language as well), but strictly relied
on disciplined annotations [22].

Baxter and Mehlich proposed DMS , a source-code trans-
formation system for C and C++ [4]. The authors use cpp-
aware grammars that are able to capture a subset of pos-
sible #ifdef annotations for both languages (as discussed
in Sec. 2.4). To resolve interactions of macro substitution
and file inclusion with conditional compilation, the authors
use specialized heuristics in DMS . Baxter and Mehlich pro-
vide anecdotal evidence that their tool can parse 85% of
industrial pre-cpp code and that rewriting undisciplined an-
notations in a 50 000 lines of code project can be done in
“an afternoon”. Our empirical analysis of a wide range of
software projects confirms their findings.

The problems with arbitrary preprocessor transformation
inspired other researchers to create their own disciplined
macro language [9, 25, 28, 39]. Erwig and Walkingshaw
proposed choice calculus, a common language for software
variation management [9]. The theoretical foundation of
choice calculus is similar to our definition of disciplined anno-
tations; both approaches allow only the variation of subele-
ments in AST-like structures. Considering macro expansion,
there has been significant effort to introduce Lisp-style syn-
tax macros that operate on ASTs instead of relying on token
substitution. Syntax macros are a disciplined form of macros
and are complementary to disciplined annotations for condi-
tional inclusion. In this context, especially ASTEC [28] is
interesting, because it also covers both syntax macros and

199



conditional inclusion in a disciplined form (it allows annota-
tions only on declarations, statements, and expressions).

The use of ASTEC requires a one-time transformation of
all cpp directives into the ASTEC macro language. The
authors evaluated their approach on four different programs
with the result that most #ifdef annotations could be trans-
formed automatically. Our work differs from ASTEC and
other syntax-macro systems in that we stick with the lexical
preprocessor cpp (we only restrict its use) to avoid changing
or adapting existing tool support. Additionally, our analysis
gives a more comprehensive overview of #ifdef annotations,
because we analyzed a substantial code base. Unclassified,
undisciplined annotations make up at max 5.8% during the
evaluation of ASTEC . We found that some software projects
contain up to 28.2% unclassified, undisciplined annotations
(for example, the Linux kernel used for the ASTEC evalu-
ation seems to be a favorable case compared to the other
systems in our analysis, presumably due to its coding guide-
lines mentioned in Sec. 3.1).12 Overall, our work confirms
the findings in ASTEC and we strongly agree that disci-
plined annotations are practical for implementing variable
source code.

Some programming languages (e.g., Java, D, and Visual
Basic) have a “static if” in their syntax that is evaluated dur-
ing compiler invocation. The “static if” is limited to entire
statements and therefore represents a small but strict subset
of disciplined annotations according to our definition.

Finally, numerous analyses of preprocessor usage have been
conducted by several researchers (e.g., [8, 26]). For example,
Ernst et al. analyzed the preprocessor usage covering mainly
macro definitions using #define directives [8]. While #de-

fine directives are also important for tool support, conclu-
sions based on their usage give only a limited view as #ifdef
usage also effects tool support. Our findings complement the
understanding of preprocessor usage for tool support.

In prior work, we have analyzed the preprocessor usage
from the perspective of the software engineer [26]. We looked
at how software engineers implement variability using the
preprocessor (e.g., where do #ifdef annotations occur in
the code and how complex are those annotations). In con-
trast, in this work, we aim at tool support for source code
that contains preprocessor annotations and discuss the no-
tion of disciplined annotations, which we did not consider
earlier [26].

6. CONCLUSION
We have empirically analyzed the discipline of cpp prepro-

cessor annotations in 40 software projects with 30 million
lines of code. We found that 84% of #ifdef of all annota-
tions are disciplined – they respect the underlying source-
code structure by annotating only entire function or type
definitions, statements, and fields. It seems that software
engineers are aware of the problems of undisciplined anno-
tations and deliberately limit their use.

We demonstrated that disciplined annotations bear the
potential to significantly improve the situation for tool de-
velopers that aim at unprocessed source code. This way
tools for concern refactoring, concern management, as well
as variability-aware parsers, refactoring engines, static ana-

12We assume that the authors classification of imperfect #ifdef
annotation is comparable to our classification of unclassified an-
notations.

lyzers, model checkers, and type checkers become feasible in
the first place for a vast amount of industrial C code. Since
undisciplined annotations occur in nearly all analyzed pro-
grams, we propose to transform them toward disciplined an-
notations by means of an semi-automatic transformation. In
this context, we identified a fundamental trade-off between
expressiveness, replication, and readability. We argue that,
to take advantage of disciplined annotations, it is feasible to
accept certain kinds of and a certain amount of code replica-
tion in favor of a better tool support and a better readability
of code.

In ongoing work, we develop a tool infrastructure to guide
the semi-automatic transformation process from undisciplined
to disciplined annotations.

Acknowledgments

We thank Andy Kenner and Christopher Resch for fruitful
discussions on (un)disciplined annotations. Furthermore, we
thank Christian Lengauer for helpful comments on earlier
drafts of this paper. Apel’s work is supported by the DFG
projects #AP 206/2-1 and #AP 206/4-1. Kästner’s work is
supported in part by ERC (#203099).

7. REFERENCES

[1] B. Adams, W. De Meuter, H. Tromp, and A. Hassan.
Can we Refactor Conditional Compilation into
Aspects? In Proc. of the Int’l Conf. on
Aspect-Oriented Software Development (AOSD), pages
243–254. ACM Press, 2009.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using
Version Control Data to Evaluate the Impact of
Software Tools: A Case Study of the Version Editor.
IEEE Trans. on Softw. Eng. (TSE), 28(7):625–637,
2002.

[3] L. Aversano, L. Di Penta, and I. Baxter. Handling
Preprocessor-Conditioned Declarations. In Proc. of the
Int’l Workshop on Source Code Analysis and
Manipulation (SCAM), pages 83–92. IEEE CS, 2002.

[4] I. Baxter and M. Mehlich. Preprocessor Conditional
Removal by Simple Partial Evaluation. In Proc. of the
Working Conf. on Reverse Engineering (WCRE),
pages 281–290. IEEE CS, 2001.

[5] M. Bruntink, A. van Deursen, M. D’Hondt, and
T. Tourwé. Simple Crosscutting Concerns Are Not So
Simple: Analysing Variability in Large-Scale
Idioms-Based Implementations. In Proc. of the Int’l
Conf. on Aspect-Oriented Software Development
(AOSD), pages 199–211. ACM Press, 2007.

[6] M. Bruntink, A. van Deursen, and T. Tourwé.
Isolating Idiomatic Crosscutting Concerns. In Proc. of
the Int’l Conf. on Software Maintenance (ICSM),
pages 37–46. IEEE CS, 2005.

[7] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model Checking Lots of Systems:
Efficient Verification of Temporal Properties in
Software Product Lines. In Proc. of the Int’l Conf. on
Software Engineering (ICSE), pages 335–344. ACM
Press, 2010.

[8] M. Ernst, G. Badros, and D. Notkin. An Empirical
Analysis of C Preprocessor Use. IEEE Trans. on
Softw. Eng. (TSE), 28(12):1146–1170, 2002.

200



[9] M. Erwig and E. Walkingshaw. The Choice Calculus:
A Representation for Software Variation. ACM Trans.
on Softw. Eng. and Meth. (TOSEM), 2010. to appear.

[10] J.-M. Favre. The CPP Paradox. In Proc. of the Europ.
Workshop on Software Maintenance, 1995.
http://citeseer.ist.psu.edu/viewdoc/summary?

doi=10.1.1.47.9464.

[11] J.-M. Favre. Understanding-In-The-Large. In Proc. of
the Int’l Workshop on Program Comprehension
(IWPC), pages 29–38. IEEE CS, 1997.

[12] A. Garrido. Program Refactoring in the Presence of
Preprocessor Directives. PhD thesis, University of
Illinois, 2005.

[13] A. Garrido and R. Johnson. Refactoring C with
Conditional Compilation. In Proc. of the Int’l Conf.
on Automated Software Engineering (ASE), pages
323–326. IEEE CS, 2003.

[14] A. Garrido and R. Johnson. Analyzing Multiple
Configurations of a C Program. In Proc. of the Int’l
Conf. on Software Maintenance (ICSM), pages
379–388. IEEE CS, 2005.

[15] W. Griswold, J. Yuan, and Y. Kato. Exploiting the
Map Metaphor in a Tool for Software Evolution. In
Proc. of the Int’l Conf. on Software Engineering
(ICSE), pages 265–274. IEEE CS, 2001.

[16] F. Heidenreich, I. Savga, and C. Wende. On Controlled
Visualizations in Software Product Line Engineering.
In Proc. of the SPLC Workshop on Visualization in
Software Product Line Engineering (ViSPLE), pages
303–313. Lero International Science Centre, 2008.

[17] D. Janzen and K. De Volder. Programming with
Crosscutting Effective Views. In Proc. of the Europ.
Conf. on Object-Oriented Programming (ECOOP),
pages 195–218. Springer-Verlag, 2004.

[18] E. Jürgens, F. Deissenböck, B. Hummel, and
S. Wagner. Do Code Clones Matter? In Proc. of the
Int’l Conf. on Software Engineering (ICSE), pages
485–495. IEEE CS, 2009.

[19] C. Kapser and M. Godfrey. “Cloning Considered
Harmful” Considered Harmful. Empirical Software
Engineering, 13(6):645–692, 2008.

[20] C. Kästner and S. Apel. Type-Checking Software
Product Lines – A Formal Approach. In Proc. of the
Int’l Conf. on Automated Software Engineering (ASE),
pages 258–267. IEEE CS, 2008.

[21] C. Kästner and S. Apel. Virtual Separation of
Concerns – A Second Chance for Preprocessors.
Journal of Object Technology (JOT), 8(6):59–78, 2009.

[22] C. Kästner, S. Apel, and M. Kuhlemann. A Model of
Refactoring Physically and Virtually Separated
Features. In Proc. of the Int’l Conf. on Generative
Programming and Component Engineering (GPCE),
pages 157–166. ACM Press, 2009.

[23] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and
D. Batory. Guaranteeing Syntactic Correctness for all
Product Line Variants: A Language-Independent
Approach. In Proc. of the Int’l Conf. Objects, Models,
Components, Patterns (TOOLS Europe), pages
174–194. Springer-Verlag, 2009.

[24] B. Kernighan and D. Ritchie. The C Programming
Language. Prentice-Hall, 1988.

[25] B. Leavenworth. Syntax Macros and Extented
Translation. Communications of the ACM (CACM),
9(11):790–793, 1966.

[26] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines. In Proc.
of the Int’l Conf. on Software Engineering (ICSE),
pages 105–114. ACM Press, 2010.

[27] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A Quantitative Analysis of
Aspects in the eCos Kernel. In Proc. of the EuroSys
Conf., pages 191–204. ACM Press, 2006.

[28] B. McCloskey and E. Brewer. ASTEC: A New
Approach to Refactoring C. In Proc. of the Europ.
Software Engineering Conf. and of the Int’l
Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 21–30. ACM Press, 2005.

[29] Y. Padioleau. Parsing C/C++ Code without
Pre-processing. In Proc. of the Int’l Conf. on Compiler
Construction (CC), pages 109–125. Springer-Verlag,
2009.

[30] T. Pearse and P. Oman. Experiences Developing and
Maintaining Software in a Multi-Platform
Environment. In Proc. of the Int’l Conf. on Software
Maintenance (ICSM), pages 270–277. IEEE CS, 1997.

[31] H. Post and C. Sinz. Configuration Lifting:
Verification meets Software Configuration. In Proc. of
the Int’l Conf. on Automated Software Engineering
(ASE), pages 347–350. IEEE CS, 2008.

[32] A. Reynolds, M. Fiuczynski, and R. Grimm. On the
Feasibility of an AOSD Approach to Linux Kernel
Extensions. In Proc. of the AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), pages 1–7. ACM Press, 2008.

[33] C. Roy and J. Coardy. A Survey on Software Clone
Detection Research. Technical Report 2007-541,
Queen’s University at Kingston, 2007.

[34] N. Singh, C. Gibbs, and Y. Coady. C-CLR: A Tool for
Navigating Highly Configurable System Software. In
Proc. of the AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software
(ACP4IS), page 9. ACM Press, 2007.

[35] H. Spencer and G. Collyer. #ifdef Considered
Harmful, or Portability Experience with C News. In
Proc. of the USENIX Technical Conf., pages 185–197.
USENIX Association Berkeley, 1992.

[36] D. Spinellis. Global Analysis and Transformations in
Preprocessed Languages. IEEE Trans. on Softw. Eng.
(TSE), 29(11):1019–1030, 2003.

[37] L. Vidács, A. Beszédes, and T. Gyimóthy. Combining
Preprocessor Slicing with C/C++ Language Slicing.
Science of Computer Programming (SCP),
74(7):399–413, 2009.

[38] M. Vittek. Refactoring Browser with Preprocessor. In
Proc. of the Europ. Conf. on Software Maintenance
and Reengineering (CSMR), pages 101–110. IEEE CS,
2003.

[39] D. Weise and R. Crew. Programmable Syntax Macros.
In Proc. of the Int’l Conf. on Programming Language
Design and Implementation (PLDI), pages 156–165.
ACM Press, 1993.

201



disciplined undisciplined
%TD %TU %NCname version domain #LOC #AA %FT %SF % IF %CA %EI %PA %EX %NC

apache1 2.2.11 Web server 212 493 3 543 17.6 62.9 2.2 5.0 0.7 0.2 0.7 10.7

berkeley db1 4.7.25 database system 187 673 3 167 13.7 74.4 0.8 4.1 0.0 0.3 0.6 6.3

cherokee1 0.99.11 Web server 51 958 659 25.2 52.2 6.4 11.2 0.3 0.0 0.2 4.6

clamav1 0.94.2 antivirus program 75 486 1 022 20.7 61.8 3.2 2.5 0.1 0.0 0.0 11.6

dia1 0.96.1 diagramming software 129 318 447 17.2 70.9 0.5 1.1 0.0 1.1 0.0 9.2

emacs1 22.3 text editor 237 044 5 556 26.0 61.4 2.8 2.2 0.6 0.3 1.8 4.9

freebsd1 7.1 operating system 5 935 445 76 093 30.0 54.7 2.2 6.3 0.4 0.4 0.8 5.4

gcc1 4.3.3 compiler framework 1 639 545 14 577 34.5 47.8 1.8 2.3 0.3 0.2 2.4 10.9

ghostscript1 8.62.0 postscript interpreter 443 429 2 973 36.6 52.9 1.0 2.9 0.2 0.3 0.3 5.9

gimp1 2.6.4 graphics editor 590 722 1 551 33.8 56.7 0.8 2.5 0.2 0.1 0.0 5.9

glibc1 2.9 programming library 747 415 11 836 40.0 44.3 2.7 5.0 0.2 0.2 0.6 11.1

gnumeric1 1.9.5 spreadsheet application 256 311 1 697 12.0 71.7 2.4 1.2 0.4 0.8 0.5 11.1

gnuplot1 4.2.5 plotting tool 76 185 1 951 30.2 48.9 4.0 8.1 0.4 0.1 0.9 7.5

irssi1 0.8.13 IRC client 49 833 150 15.3 70.7 6.7 0.0 0.0 0.0 0.0 7.3

libxml21 2.7.3 XML library 210 901 9 250 68.9 24.6 0.9 2.3 0.7 0.0 0.3 2.4

lighttpd1 1.4.22 Web server 39 037 666 16.5 74.8 0.0 5.3 0.0 0.0 0.2 3.3

linux1 2.6.28.7 operating system 5 977 732 43 259 36.4 55.9 1.1 3.5 0.2 0.2 0.2 2.6

lynx1 2.8.6 Web browser 117 701 3 593 17.7 61.8 5.4 3.9 0.3 0.2 1.8 9.1

minix1 3.1.1 operating system 64 235 879 33.0 59.5 0.7 1.7 0.1 0.0 0.1 4.9

mplayer1 1.0rc2 media player 600 428 6 230 22.4 60.4 2.7 5.2 0.1 0.4 0.3 8.5

mpsolve2 2.2 mathematical software 10 191 30 53.3 46.7 0.0 0.0 0.0 0.0 0.0 0.0

openldap1 2.4.16 LDAP directory service 246 385 2 729 22.4 65.6 2.1 5.0 0.0 0.2 0.9 3.9

opensolaris3 (2009-05-08) operating system 8 224 152 77 832 19.7 56.0 1.6 3.4 0.2 0.3 0.3 18.4

openvpn1 2.0.9 seftrity application 38 568 905 29.6 62.9 1.7 0.6 0.7 1.4 0.6 2.7

parrot1 0.9.1 virtual machine 103 790 1 520 39.9 50.1 0.5 3.2 0.1 0.0 0.1 6.2

php1 5.2.8 program interpreter 573 469 7 390 28.8 54.1 2.2 7.6 0.1 0.3 0.5 6.4

pidgin1 2.4.0 instant messenger 269 146 1 871 17.7 68.4 0.8 0.9 0.1 1.5 0.5 10.1

postgresql1 (2009-05-08) database system 453 890 2 918 22.5 57.5 1.6 5.4 0.4 0.3 0.6 11.7

privoxy1 3.0.12 proxy server 24 037 663 20.5 53.7 4.5 8.6 0.0 0.0 1.1 11.6

python1 2.6.1 program interpreter 374 117 8 650 12.6 76.8 0.8 2.8 0.6 0.8 0.3 5.3

sendmail1 8.14.2 mail transfer agent 83 644 2 729 18.9 55.8 3.0 12.5 1.4 0.4 2.1 5.8

sqlite1 3.6.10 database system 94 418 1 459 31.4 56.8 2.8 3.4 0.1 0.1 0.4 5.1

subversion1 1.5.1 revision control system 509 193 2 815 30.3 39.4 1.7 0.1 0.0 0.1 0.1 28.2

sylpheed1 2.6.0 e-mail client 101 418 899 28.1 55.2 1.2 1.2 0.6 0.9 0.4 12.4

tcl1 8.5.7 program interpreter 135 079 2 704 52.6 28.3 1.0 14.4 0.0 0.1 0.6 3.1

vim1 7.2 text editor 225 807 11 529 14.3 58.3 7.9 2.8 1.4 0.8 5.5 9.1

xfig1 3.2.5 vector graphics editor 72 583 366 26.8 53.8 7.4 2.7 1.1 0.3 1.4 6.6

xine-lib1 1.1.16.2 media library 494 543 4 798 23.5 61.7 1.2 3.3 0.1 0.3 0.2 9.8

xorg-server4 1.5.1 X server 528 313 7 342 24.6 59.4 3.0 5.1 0.4 0.2 1.1 6.3

xterm1 2.4.3 terminal emulator 49 586 1 769 23.1 63.5 4.4 4.9 0.2 0.2 1.0 2.7

avg± stdev 84.4±6.4% 7.9±4.7% 7.7±4.9%
1http://freshmeat.net/ 2http://www.dm.unipi.it/cluster-pages/mpsolve/ 3http://opensolaris.org/os/ 4http://x.org/

LOC: lines of code (normalized by pretty printing and eliminating empty lines and comments); AA: all annotations; TD: disciplined annotations; FT: function and type definitions;

SF: statement or field; TU: undisciplined annotations; IF: IF wrapper; CA: conditional case; EI: conditional else if; PA: parameter; EX: expression; NC: not classified;

Table 2: Data obtained from the analysis

202




