
Aspect Refinement and Bounded Quantification in Incremental Designs

Sven Apel, Thomas Leich, and Gunter Saake
Department of Computer Science

Otto-von-Guericke-University Magdeburg
{apel, leich, saake}@iti.cs.uni-magdeburg.de

Abstract

This article investigates aspects in the context of the
incremental software development, i.e. software product
lines. Specifically, we propose the integration of aspects
into AHEAD, an architectural model for feature-based
product line development. We introduce the notion of aspect
refinement based on Aspectual Mixin Layers, a novel tech-
nique for implementing features. Aspect refinement enables
a programmer to evolve aspects over several product line
development stages. This is novel since common AOP ap-
proaches do not have such an architectural model. We real-
ize the idea of aspect refinement by introducing mixin-based
inheritance to aspects. Furthermore, we propose a bounded
aspect quantification that reduces the complexity and un-
predictability of aspects in incremental software develop-
ment. Our novel bounding mechanism exploits the natural
order of the layered architecture introduced by the concept
of aspect refinement. Aspect refinement and bounded as-
pect quantification improve the incremental development of
product lines using AOP techniques.

1 Introduction

Software product lines are subject of ongoing research
and will gain momentum in future. Research in this field
tries to move software development to the new quality of
industrial production. AHEAD is an architectural model to
implement product lines [3]. The idea of AHEAD is to
decompose programs into basic features and to compose
stacks of features to derive concrete programs. Products
added to a product line are supposed to reuse features of ex-
isting ones and further add new features. This is also called
step-wise refinement. The steps correspond to the develop-
ment stages of the evolving product line. AHEAD proposes
large-scale compositional programming: It generalizes the
concept for features and feature refinements. Features con-
sist not only of code but of several types of artifacts, e.g.,
makefiles, UML-diagrams, documentation. Each artifact

inside a feature can refine corresponding artifacts of pre-
vious features.

This article explores the relationship of AHEAD and
Aspect-Oriented Programming (AOP) [9]. AOP is a promi-
nent programming technique that aims on modularizing
crosscutting concerns. Due to its success in this respect it
is worth while to consider it in context of product line de-
velopment. We believe that there is no reason to understand
aspects and features as concurrent concepts. We propose
rather an architectural model to integrate both.

Following the AHEAD model we perceive aspects as ar-
tifacts that contribute to features. This is a different view
than that of current research on aspects and features [6, 14].
These approaches use aspects as first-class entities to ex-
press features. Several studies have shown that this does not
hold for a wide range of features, especially not in the con-
text of complex evolved software [13, 1, 15]. The reason is
that features are often implemented not by single classes or
aspects but by the collaboration of sets of them. Common
AspectJ1-like AOP languages cannot express and encapsu-
late collaborations and their refinements.

Approaches as Aspectual Mixin Layers (AMLs) [1], Cae-
sar [15], and Aspectual Collaborations (ACs) [11] try to
overcome this tension by combining collaborations and as-
pects. Whereas the latter two intermix structural elements
of aspects and collaborations, AMLs propose the integra-
tion of aspects and features at architectural level. Since
AMLs are based on AHEAD the programmer composes
AMLs by specifying and evaluating algebraic equations.
This opens the door to automatic optimization and large-
scale compositional reasoning. AMLs have similar prop-
erties than Caesar and ACs, but however do not focus on
on-demand remodularization and dynamic feature deploy-
ment.

This article focuses on AMLs because they follow the
AHEAD architectural model. We use them to introduce the
notion of aspect refinement. Since aspects are integrated in
the AHEAD layer structure – in our case AMLs – the possi-
bility of refining aspects arises. We perceive that as a natural

1http://eclipse.org/aspectj/

consequence following the AHEAD model. Aspect refine-
ment facilitates the implementation, evolution, and reuse of
aspects in a step-wise manner. Implementing aspect refine-
ment we introduce the known concept of mixin-based in-
heritance [4] to aspects and AOP. This allows for flexibly
altering the inheritance/refinement relations of aspects in-
side a layered feature stack.

The integration of aspects into the layered AHEAD ar-
chitecture allows us further to reduce the complexity and
unpredictability of aspects. Several studies have revealed
that the unpredictable behavior of common aspects, espe-
cially in context of incremental designs, i.e. product lines,
decreases the aspect reuse and complicates the evolution of
such designs [12, 1, 11]. Based on the idea of aspect re-
finement, we propose a novel aspect bounding mechanism
that takes the layered structure of the feature stack into ac-
count. This bounded quantification scopes aspects so that
they only affect features of previous development stages.
This prevents inadvertent effects on unanticipated features
of subsequent development stages.

2 Aspectual Mixin Layers

This section reviews Mixin Layers (MLs) and Aspec-
tual Mixin Layers (AMLs). Both are techniques to imple-
ment features following the AHEAD model. Whereas MLs
encapsulate classes and their collaborations, AMLs addi-
tionally include aspects. For explanation, we use FEA-
TUREC++2, a proprietary C++ language extension that sup-
ports MLs and AMLs. It uses AspectC++3 for aspect weav-
ing.

2.1 Mixin Layers

MLs are one appropriate technique to implement fea-
tures [17, 3]. The basic idea is that features are often im-
plemented by a collaboration of class fragments. A ML is
a static component encapsulating fragments of several dif-
ferent classes (mixins) so that all fragments are composed
consistently.

Figure 1 depicts a stack of three MLs (L1 − L3) in top
down order. The MLs crosscut multiple classes (CA−CC).
The rounded boxes represent the mixins. Mixins that be-
long to and together constitute a complete class are called
refinement chain. Mixins that start a refinement chain are
called constants, all others are called refinements.

In FEATUREC++ MLs are represented by file system di-
rectories. Therefore, they have no textual representation at
code level. Those mixins found inside the directories are
assigned to be members of the enclosing MLs.

2http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/
3http://www.aspectc.org/

C
A

C
B

C
C

L
1

L
2

L
3

Figure 1. Stack of MLs.

Each constant and refinement is implemented by exactly
one mixin. Constant classes form the root of a refinement
chain. Refinements are applied to constants as well as to
other refinements. Figure 2 depicts a constant (Line 1) and
a refinement (Line 5). Programmers declare refinements by
the refines keyword (Line 5). Usually, they introduce new
attributes and methods (Line 6-7) or extend methods of their
parent classes (Lines 8-11). To access the extended method
the super keyword is used (Line 10). The super keyword
has a similar semantic as the proceed keyword of AspectJ.

For a more detailed introduction to FEATUREC++, its
capabilities, and its implementation we refer the reader
to [1].

1 c l a s s Buffer {
2 char *buf;
3 void put(char *s) { /∗ . . . ∗ / }
4 };
5 r e f i n e s c l a s s Buffer {
6 i n t len;
7 i n t getLength() { re turn len; }
8 void put(char *s) {
9 i f (strlen(s) + len < MAX_LEN)

10 super::put(s);
11 }
12 };

Figure 2. Constants and refinements.

2.2 Aspectual Mixin Layers

The key idea behind AMLs is to embed aspects into MLs
(see Fig. 3). Each AML contains a set of mixins and a set
of aspects.

Figure 4 shows a stack of AMLs that implements some
buffer functionality, in particular, a basic buffer with itera-
tor, a separated allocator, synchronization, and logging sup-
port. Whereas the first three features are implemented using
common mixins, the logging feature is implemented using

aspectmixin

refinement weaving

Figure 3. Aspectual Mixin Layers.

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole LogAspect

Buffer

Log

Sync

Base

Alloc

Figure 4. An AML for logging.

one mixin and one aspect. The rationale behind this is that
the logging aspect captures a whole set of methods that will
be refined (dashed arrows).

The embedding of aspects into AMLs has several advan-
tages compared to MLs. Especially the ability of aspects to
modularize certain kinds of crosscutting concerns is an im-
provement. However, these issues are out of scope of this
paper. For more details we refer the interested reader to [1].

The close integration of aspects and features reveals that
they are not concurrent concepts but enhance and support
each other. Features organize the architecture in the large
whereas aspects embedded into features improve the cross-
cutting modularity of these features. This architectural in-
tegration is a prerequisite for the ideas of aspect refinement
and bounding aspect quantification.

3 Aspect Refinement

The integration of aspects into the layered architectural
development style leads us to the notion of aspect refine-
ment. Since aspects are encapsulated in AMLs it is natural
to refine them incrementally, too. We perceive this step-
wise refinement of aspects as natural consequence of the
AHEAD architectural model. AHEAD states that all kinds
of software artifacts that contribute to a feature can be re-
fined incrementally. Several ideas of class refinement can
be mapped to aspects, e.g. extending methods, introducing
members, etc. But more interesting is the fact that it be-
comes possible to refine also aspect-specific constructs, in
particular pointcuts and advice.

Mixins and mixin-based inheritance [4] are fundamen-
tal techniques for implementing refinements at code level.
They allow to move the selection of the inheritance relation
to parent classes from implementation to instantiation time.
This increases the degree of flexibility and variability of
mixins compared to common classes with common inher-
itance. Implementing aspect refinement we adopt the con-
cept of mixin-based inheritance to aspects. Thus, aspects
become mixins, too. Common aspect inheritance, e.g. as in
AspectJ, suffers from the same inflexibility than traditional
object-oriented inheritance. It is straightforward that a high
degree of flexibility in altering the inheritance/refinement

hierarchy yields a high degree of variability, customizabi-
lity, and reusability. Furthermore, this leads to a unification
of aspects and mixins in the context of layered architectures.

In order to prove their feasibility we implement aspect
refinement using AMLs. With AMLs aspects can refine
other aspects by using the refines keyword. To access the
methods and attributes of the parent aspect, the refining as-
pect uses the super keyword. Figure 5 shows an AML (Ext-
Log) that refines a logging feature (Log). For that purpose it
refines the logging aspect by additional join points in order
to extend the set of intercepted methods (dashed arrows).
Beside this, the logging console (implemented as a mixin)
is refined by additional functionality, in particular by a mod-
ified behavior and appearance.

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole

LogConsole

LogAspect

LogAspect

Buffer

ExtLog

Log

Sync

Base

Alloc

Figure 5. Aspect refinement.

Extending pointcuts increases the reuse of existing join
point specifications (as in the logging example). Note that
refining/extending aspects is conceptually different than ap-
plying aspects themselves. Applying two aspects (child and
parent) separately modifies the base program in two inde-
pendent steps. In our logging example this would lead to
two different logging instances. Instead, aspect refinement
results in two native aspects that are connected via inheri-
tance. Thus, one aspect extends the other and both are ap-
plied to the base program. Doing so in the logging example,
we have only one logging aspect instance.

Figure 6 depicts an logging aspect (Line 1) and an aspect
refinement (Line 9). For simplification both are depicted in
one listing. Normally, they would be implemented in two
files located in two AMLs. The base aspect owns a method
for formatting the logging output (Line 2), a pointcut4 for
defining the intercepted target method calls (Line 3), and an
advice for executing the actual logging code (Lines 4-6).

The refining aspect (Line 9) extends the formatting
method in order to adjust the output format (Lines 10-13).
Moreover, it refines the parent pointcut in order to extend
the set of target join points (Lines 14-15). Note, that ev-
ery time the programmer accesses the parent aspect the su-
per keyword is used (Lines 12,15). This is a key advantage
of mixin-based inheritance and would not be possible with
common AOP languages, e.g. AspectJ.

4The character ’%’ is a wild card and corresponds to the AspectJ’s ’*’.

1 a s p e c t LogAspect {
2 string format() { /∗ . . . ∗ / }
3 p o i n t c u t log() = c a l l ("% Buffer::%(...)");
4 ad v i ce log() : a f t e r () {
5 cout << JoinPoint::signature() << endl;
6 }
7 };
8
9 r e f i n e s a s p e c t LogAspect {

10 string format() {
11 /∗ do s o m e t h i n g ∗ /
12 re turn super::format();
13 }
14 p o i n t c u t log() = c a l l ("% Allocator::%(...)") ||
15 super::log();
16 };

Figure 6. Refining an aspect by extending
methods and pointcuts.

Since advice is not a first class entity in FEATUREC++
and AspectC++ we cannot demonstrate an example of re-
fining an advice. By adopting ideas of classpects that unify
methods and advice [16] we would be able to refine advice
analogously to methods.

4 Bounding Aspect Quantification

The close integration of aspects into the incremental de-
velopment style of product lines leads to a further interest-
ing issue. This integration allows us to tame the unpre-
dictable behavior of aspects.

The problem of current AOP languages is that the bind-
ing of aspects is independent of the current development
stage. That means that aspects may affect subsequent in-
tegrated features. This can lead to unpredicted effects, e.g.
an aspect is unintentionally bound to features of subsequent
development stages. This may cause errors and unpredicted
program behavior.

4.1 Incremental Development Example

Consider our buffer example. In a particular develop-
ment stage we add support for serializing and storing basic
data types (see Fig. 7). For each supported data type the
buffer provides an adequate method to store single items
(Lines 2-5).

In a subsequent step we add synchronization support.
Therefore, we introduce an aspect because this is the best
way to implement such a homogeneous crosscutting con-
cern (see Fig. 8). The synchronization aspect intercepts
calls to the put methods (Line 2) and sets lock variables
around the execution of these methods (Lines 3-7).

In a third development step we add support for serial-
izing and storing arrays (see Fig. 9). This refinement uses
functions of the basic buffer that implements basic data type

1 r e f i n e s c l a s s Buffer {
2 void put(i n t item) { /∗ . . . ∗ / }
3 void put(f l o a t item) { /∗ . . . ∗ / }
4 void put(double item) { /∗ . . . ∗ / }
5 /∗ . . . ∗ /
6 };

Figure 7. Adding support for basic data types.

1 a s p e c t SyncAspect {
2 p o i n t c u t sync() = c a l l ("% Buffer::put%(...)");
3 ad v i ce sync() : around() {
4 lock();
5 tjp->proceed();
6 unlock();
7 }
8 };

Figure 8. Synchronizing access to buffers.

support. This step introduces put methods for each sup-
ported array type. These methods readout the arrays and
call the put methods of the parent buffer that handle single
data items.

1 r e f i n e s c l a s s Buffer {
2 void put(i n t *array, i n t len) { /∗ . . . ∗ / }
3 void put(f l o a t *array, i n t len) { /∗ . . . ∗ / }
4 void put(double *array, i n t len) { /∗ . . . ∗ / }
5 /∗ . . . ∗ /
6 };

Figure 9. Adding support for arrays.

Introducing this refinement leads to a problem: The syn-
chronization aspect weaves code (lock, unlock) not only to
the put methods of the basic data type buffer but also to all
subsequent buffer refinements, e.g. the buffer that supports
arrays. During the implementation of the synchronization
aspect this was not intended and could not be foreseen. In
this example this leads to a doubled synchronization that
wastes resources. In more complex buffer hierarchies with
concurrent access this may produce unpredictable effects,
e.g. deadlocks, inconsistent buffer content, etc.

The programmer has always the opportunity to restrict
aspects by fully quantifying the target join points, i.e. by
enumerating and narrowing down the set of potential join
points; but this decreases the reusability of aspects in other
contexts. Furthermore, programmers may define conven-
tions for naming methods, etc. However, it is a non-trivial
task to have an overview of complex software. Thus, unan-
ticipated interactions may occur unnoticed.

1 a s p e c t SyncAspect_Sync {
2 p o i n t c u t sync() = c a l l ("% Buffer_Sync::put(...)") ||
3 c a l l ("% Buffer_Base::put(...)");
4 };

Figure 10. Transformed pointcut.

4.2 A Novel Bounding Mechanism

Lopez-Herrejon and Batory state that this problem is not
a question of good or bad design but merely it is caused by
the aspect quantification mechanisms of current AOP lan-
guages [12]. That means that during the evolution of com-
plex software it is unavoidable that such situations occur.

Since common AOP languages cannot distinguish bet-
ween software artifacts of different development stages they
cannot scope their appliance. Integrating aspects into in-
cremental designs allows for assigning the implementation
units to development stages and to define a natural order.

To overcome this tension Lopez-Herrejon and Batory
propose an alternative aspect composition mechanism [12].
They argue that with regard to software (product line) evo-
lution, features should only affect features of previous de-
velopment stages. Mapping this to AOP means that as-
pects should only affect elements assigned to development
stages that were already present at the aspect’s implemen-
tation time. Current AOP languages, e.g. AspectJ and As-
pectC++, do not follow this principle. As Section 4.1 has
shown this decreases aspect reuse and complicates incre-
mental software development. Consequently, AMLs with
their support for aspect refinement follow this principle: as-
pects affect only artifacts of previous development stages.

In order to implement this bounding mechanism in FEA-
TUREC++, the aspects must be restructured: Type names in
pointcut expressions are translated in order to match only
these types that are declared by the current and the parent
layers. Each expression that contains a type name is trans-
lated into a set of new expressions that match only types of
the current and the parent features.

To get back to our buffer example, this novel bound-
ing mechanism transforms the synchronization aspect, i.e.
its pointcut, as depicted in Figure 10. The extensions of
the class and aspect names, e.g. Sync, are introduced
by the FEATUREC++ compiler and are exploited by the
bounding mechanism. It can be seen that the new pointcut
matches only types of the current and parent layers (Lines 2-
3). Whereas this transformation is specific to the FEA-
TUREC++ compiler the idea of restructuring and bounding
pointcuts is easily applicable to other AOP languages.

This bounding mechanism is supposed to support the
programmer to develop software incrementally. Since our
bounding mechanism is not desired in all situations the pro-
grammer has always the possibility to intervent the bound-

ing policy and let the introduced aspects affect all develop-
ment stages. However, this mechanism points to possible
problems and assists the programmer to prevent errors.

5 Discussion

AMLs propose the close integration of aspects and fea-
tures. They are no concurrent concepts but enhance each
other [1]. The idea of aspect refinement is a direct result
of this integration. Since aspects are encapsulated in fea-
tures they can be refined, too. We perceive this as a natural
consequence of the incremental development style. Refin-
ing aspects leads to the observation that it would be useful
to refine pointcuts and advice besides methods. Since ad-
vice are not first-class entities in common AOP approaches
we focus preliminarily on pointcut refinements. Section 3
has shown that there are indeed certain applications of this
concept. FEATUREC++ supports aspect and pointcut re-
finement already. Advice refinement would be possible if
methods and advice became unified, e.g. by exploiting ideas
of classpects [16].

The advantage of aspect refinement is the possibility to
evolve aspects over several development stages. It con-
tributes a unification of aspects and classes in this respect.
In order to realize aspect refinement we introduce the capa-
bilities of mixins in flexibly altering the inheritance hierar-
chy to aspects and AOP. This is an improvement to aspects,
similar to mixin-based inheritance with respect to classes.

Aspect refinement opens the door to bound the quantifi-
cation of aspects. Our novel bounding mechanism allows to
scope aspects and prevents thereby unpredicted aspect in-
teractions and bindings. This is not possible with common
AOP languages because the order of refinements cannot be
inferred from the program structure, e.g. the classes and as-
pects. Thus, the integration of aspects into AMLs makes it
possible for the first time to bound aspects based on their
affiliation to a development stage. This is an important con-
tribution to apply aspects to incremental software develop-
ment.

Although, we used AMLs and FEATUREC++ to imple-
ment aspect refinement and the bounding mechanism, the
ideas are applicable to other programming languages. The
only prerequisite is an explicit layered architecture that in-
tegrates aspects.

6 Related Work

Current AOP languages already support aspect inheri-
tance. Aspect inheritance can be used to implement refine-
ments. The drawbacks are that these aspects are not encap-
sulated in feature modules and that the inheritance hierarchy
is fixed at implementation time. Aspect refinement exploits
mixin-based inheritance to overcome this tension.

Mezini et al. propose Caesar that combines aspects and
collaborations [15]: Aspects rely on aspect collaboration
interfaces that decouple an aspect’s implementation from its
binding. By defining a binding, the programmer adapts the
implementation to the application context. This on-demand
remodularization improves aspect reuse. Bindings are ap-
plied statically at object creation time or during the dynamic
control flow. Different aspects can be composed via their
collaboration interfaces. Collaborations are refined using
pointcut-like constructs or mixin-based inheritance.

As with Caesar Aspectual Collaborations (ACs) [11] and
Object Teams (OTs) [8] encapsulate aspects into modules
with expected and provided interfaces. Their focus is simi-
lar to Caesar but with drawbacks regarding the aspect reuse
(due to missing bidirectional interfaces).

Caesar, ACs, and OTs as well as AMLs have several sim-
ilarities. All are based on collaborations which represent the
basic building blocks and all integrate AOP concepts. The
main advantage of AMLs is that they extend the AHEAD ar-
chitectural model. Although the others do not propose such
model we perceive, if it is, GenVoca as their architectural
model [2]. AHEAD has several strength compared to its
predecessor GenVoca: It integrates all kinds of software ar-
tifacts and introduces an algebraic model for software struc-
ture. This opens the door to automatic algebra-based op-
timization and compositional reasoning [3]. Furthermore,
AMLs implement aspect refinement with a bounded aspect
quantification for the first time. This improves the capabili-
ties of aspects to implement incremental refinements.

However, Caesar, ACs, and OTs have a stronger focus
on on-demand remodularization and dynamic composition
which are not concerned in the AML approach.

A couple of work aims on exploiting generic types for as-
pects in order to support the evolution of complex software
and to serve unanticipated requirements [7, 14, 5, 10]. All
these approaches are related to AMLs: All allow to param-
eterize aspects at instantiation time but only AMLs embed
aspects into collaborations and support mixin-based inheri-
tance.

7 Conclusions

In this paper, we examined the relationship between in-
cremental software development and AOP. According to
AHEAD we perceive aspects also as artifacts that contribute
to features. This is different from the view of previous
work. The embedding of aspects into the layered archi-
tectural style increases the power of FOP. Aspects improve
the crosscutting modularity of features. Based on AMLs
we introduced the notion of aspect refinement. Aspects en-
capsulated in AMLs refine other aspects by extending their
methods, adding members, and refining pointcuts. Thus,
aspects can easily be extended and evolved over several de-

velopment stages. The concept of aspect refinement uni-
fies aspects with other software artifacts with regard to step-
wise refinement. Realizing aspect refinement we introduced
mixin-based inheritance to aspects and AOP. This improves
flexibility, customizability, and reusability.

The novel bounded aspect quantification exploits the
concept of aspect refinement in order to reduce the com-
plexity and unpredictability of aspects. The naturally lay-
ered architecture of AHEAD allows to bound aspects only
to artifacts of previous development stages. This reduces
unpredictable aspect interactions and improves incremental
software development using AOP techniques.

References

[1] S. Apel et al. FeatureC++: On the Symbiosis of Feature-
Oriented and Aspect-Oriented Programming. In GPCE,
2005.

[2] D. Batory and S. O’Malley. The Design and Implementa-
tion of Hierarchical Software Systems with Reusable Com-
ponents. ACM TOSEM, 1(4), 1992.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE TSE, 30(6), 2004.

[4] G. Bracha and W. Cook. Mixin-Based Inheritance. In OOP-
SLA/ECOOP, 1990.

[5] J. A. Canal. Parametric Aspects: A Proposal. In ECOOP
RAM-SE Workshop, 2004.

[6] A. Colyer, A. Rashid, and G. Blair. On the Separation of
Concerns in Program Families. Technical report, Computing
Department, Lancaster University, 2004.

[7] S. Hanenberg and R. Unland. Parametric Introductions. In
AOSD, 2003.

[8] S. Herrmann. Object Teams: Improving Modularity for
Crosscutting Collaborations. In NetObjectDays, 2003.

[9] G. Kiczales et al. Aspect-Oriented Programming. In
ECOOP, 1997.

[10] G. Kniesel, T. Rho, and S. Hanenberg. Evolvable Pattern
Implementations Need Generic Aspects. In ECOOP RAM-
SE Workshop, 2004.

[11] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Col-
laborations: Combining Modules and Aspects. The Com-
puter Journal (Special issue on AOP), 46(5), 2003.

[12] R. Lopez-Herrejon and D. Batory. Improving Incremental
Development in Aspectj by Bounding Quantification. In
SPLAT, 2005.

[13] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
Support for Features in Advanced Modularization Technolo-
gies. In ECOOP, 2005.

[14] N. Loughran et al. Supporting Product Line Evolution with
Framed Aspects. In AOSD ACP4IS Workshop, 2004.

[15] M. Mezini and K. Ostermann. Variability Management with
Feature-Oriented Programming and Aspects. ACM SIG-
SOFT, 2004.

[16] H. Rajan and K. J. Sullivan. Classpects: Unifying Aspect-
and Object-Oriented Language Design. In ICSE, 2005.

[17] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM TOSEM, 11(2), 2002.

