
Detection of Feature Interactions using
Feature-Aware Verification

Sven Apel 1, Hendrik Speidel 1, Philipp Wendler 1, Alexander von Rhein 1, Dirk Beyer 1,2
1 University of Passau, Germany

2 Simon Fraser University, B.C., Canada

Abstract—A software product line is a set of software products
that are distinguished in terms of features (i.e., end-user–visible
units of behavior). Feature interactions —situations in which the
combination of features leads to emergent and possibly critical
behavior— are a major source of failures in software product
lines. We explore how feature-aware verification can improve the
automatic detection of feature interactions in software product
lines. Feature-aware verification uses product-line–verification
techniques and supports the specification of feature properties
along with the features in separate and composable units. It
integrates the technique of variability encoding to verify a product
line without generating and checking a possibly exponential
number of feature combinations. We developed the tool suite
SPLVERIFIER for feature-aware verification, which is based on
standard model-checking technology. We applied it to an e-mail
system that incorporates domain knowledge of AT&T. We found
that feature interactions can be detected automatically based on
specifications that have only local knowledge.

I. INTRODUCTION

A software product line is a family of software products
that share a common set of features and differ in others. A
feature is an end-user–visible behavior of a software product
that is of interest for some stakeholder. A feature interaction is
a situation in which the composition of multiple features leads
to emergent behavior that does not occur when one of them is
absent. The feature-interaction problem (i.e., the problem of
predicting and detecting feature interactions) has been studied
and addressed before and is still a major challenge [8].

Our aim is to explore how product-line–verification tech-
niques [9], [12], [14] (i.e., efficiently verifying that all products
of a product line satisfy their specification) can be used
to automatically detect feature interactions. Especially, we
concentrate on two challenges that arise in feature-oriented
software product lines: A first challenge, which was formu-
lated by Hall [10], is to detect feature interactions based
on specifications that do not have global system knowledge.
The background is that the specification of a feature should
not need to be aware of all other features of the system. It
is desirable to specify and implement features in separate
and composable units, while still being able to detect feature
interactions [5], [10].

A second challenge, which applies to product-line analysis
in general [2], [9], [11], [12], [14], is to detect feature
interactions without the need of generating and checking all
individual products. Typically, many different feature com-
binations are possible, so detecting feature interactions by
generating all possible combinations may not be feasible.

We call our approach of verifying the absence (or detecting
the presence) of feature interactions feature-aware verification.
We base it on a number of ingredients. First, we provide a
specification language to specify a feature’s temporal prop-
erties in a separate and composable unit (along with its
implementation). Second, we use the technique of variability
encoding (which is based on configuration lifting [14]) to
verify a complete product line in a single run ensuring that
all possible feature combinations are free of critical feature
interactions. Third, we use off-the-shelf model-checking tech-
niques, rather than relying on modifications and extensions of
existing model checkers.

We have developed the tool suite SPLVERIFIER for feature-
aware verification, and we use it in a case study —an e-mail
client that was developed as a product line— to investigate
the potential of feature-aware verification for detecting feature
interactions. In this paper, we provide a brief overview of
our approach, tool suite, and case study. Further details are
available in an accompanying technical report [6] as well as
on the Web.1

II. BACKGROUND AND PROBLEM STATEMENT

The goal of feature orientation is to make features explicit in
design and code, for example, in the form of composable fea-
ture modules [1]. Feature modules are composed by superim-
position [3]. Basically, superimposition merges the code of all
features recursively based on nominal and structural similarity.
Typically, there is a partial or total order of features defined,
because feature composition is not generally commutative [4].
In our case study, we use the tool FEATUREHOUSE [3] for
composition.

In Figure 1, we depict excerpts of three feature modules
taken from our case study. Feature EmailClient implements a
basic e-mail client, feature Encrypt encrypts outgoing e-mails,
and feature Forward forwards incoming e-mails to another
host. Note that encryption is asymmetric and relies on the
availability of proper keys—a circumstance that gives rise to
an undesired feature interaction, as we will explain shortly.

EMailClient is the base feature in our example. It introduces
a structure email for representing e-mails and the two functions
outgoing and incoming for handling incoming and outgoing
e-mails. Composing it with feature Encrypt, the existing
structure email is extended by the two new fields isEncrypted

1http://www.fosd.de/FAV/

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

372

Feature EMailClient
1 // representation of e−mail
2 struct email {
3 int id; char ∗from; char ∗to; char ∗subject; char ∗body;
4 };
5
6 // outgoing e−mails are processed by this function before they leave the system
7 void outgoing (struct client ∗client, struct email ∗msg) { ... }
8
9 // incoming e−mails reach the client at this point and are stored in a mailbox

10 void incoming (struct client ∗client, struct email ∗msg) { ... }

Feature Encrypt
11 // extending the e−mail structure by information on encryption
12 struct email {
13 int isEncrypted;
14 char ∗encryptionKey;
15 };
16
17 // encrypt a given e−mail, if the public key of the receiver is known
18 void encrypt (struct client ∗client, struct email ∗msg) { ... }
19
20 // override function outgoing to encrypt e−mails before they are sent
21 void outgoing (struct client ∗client, struct email ∗msg) {
22 encrypt (client, msg);
23 original (client, msg); // invoke the overridden function
24 }

Feature Forward
25 // forward an e−mail to another host
26 void forward (struct client ∗client, struct email ∗msg) { ... }
27
28 // override function incoming to forward e−mails automatically
29 void incoming (struct client ∗client, struct email ∗msg) {
30 forward (client, msg);
31 original (client, msg); // invoke the overridden function
32 }

Fig. 1. A feature-oriented implementation of an e-mail client in C (excerpt).

and encryptionKey, function encrypt is added, and the existing
function outgoing is overridden to intercept outgoing e-mails
and to encrypt them using function encrypt; keyword original
invokes the overridden function. Feature Forward introduces a
function forward and overrides the existing function incoming
to forward incoming e-mails to another host.

As there are different feature-oriented languages and tools
available [4], we concentrate on a common set of functionality:
A feature module may add new fields, functions, and structures
as well as refine existing functions by overriding.

Typically, features can be composed in different combi-
nations. The compositional flexibility gives rise to feature
interactions. A feature interaction is a situation in which
new behavior emerges from the composition of two or more
features that cannot easily be deduced from the behavior of
the features involved. The emergent behavior can be undesired
and associated with unexpected program states [8].

In our example, the features Encrypt and Forward have been
developed independently of each other, only based on feature
EMailClient. The composition of all three features leads to
an undesired feature interaction that occurs if one host sends
an encrypted e-mail to a second host that forwards the e-mail
automatically to a third host. If the second host does not have
the public key of the third host, it forwards the e-mail in plain
text (Forward does not know whether an e-mail is encrypted).
This situation violates the specification of feature Encrypt,
which states that e-mails that have been encrypted initially
must never be sent unencrypted over the network.

1 automaton EncryptSpec {
2 introduction {
3 shadow struct email { int in_encrypted; };
4 }
5
6 before void incoming(_:struct client∗, msg:struct email∗) {
7 msg−>in_encrypted = isEncrypted(msg);
8 }
9

10 after void outgoing(_:struct client∗, msg:struct email∗) {
11 if(msg−>in_encrypted == 1 && !isEncrypted(msg)) { fail; }
12 }
13 }

Fig. 2. Automaton-based specification of feature Encrypt.

Hall notes that the detection of feature interactions based on
feature-local specifications is an open problem [10]. That is,
the specification of a feature should not necessarily be aware
of all other features of the system, but only of the ones it uses
and extends directly. In our example, we need a specification
of the desired behavior of feature Encrypt that states that e-
mails that are received in encrypted form must not be sent in
plain text—without referring to other independently developed
features such as Forward.

Note that documenting dependencies and interactions
among features by means of a feature model cannot solve the
feature-interaction problem, as in real software projects the
feature model is often not consistent with the specifications
and implementations of the corresponding features, due to hid-
den implementation dependencies, evolution, and bugs [15].

III. SPECIFYING FEATURES

To be able to reason about feature interactions, each feature
needs a formal specification of its behavior and the constraints
that have to be fulfilled if it is selected (i.e., if it is present in
the desired product). A key goal of feature-oriented program-
ming is to implement and specify features in separate and
composable units. Ideally, a feature’s specification refers only
to itself and a certain basis (i.e., the features that it extends and
uses directly). We would like to explore to what extent this is
possible. Beside missing global domain knowledge, scalability
is a motivation for feature-local specifications. A system in
which every feature has to be aware of every other feature
does not scale well with regard to program comprehension
when the number of features increases.

We have developed a language to specify features in sep-
arate and composable units, which we illustrate —due to
the lack of space— by an example. In Figure 2, we show
the specification of feature Encrypt (declared by keyword
automaton). When the client receives an encrypted e-mail
(lines 6–8), the status (encrypted or not) of the e-mail is stored
(line 7) into a field that has been attached as a shadow to
structure email (line 3). When an e-mail that was encrypted
leaves the system (lines 10–12), it must still be encrypted; if
not, the e-mail client reaches an error state defined by keyword
fail (line 11).

In our specification language, an automaton specifies a
safety property over the behavior of a feature. That is, it defines
in which circumstances related to the feature the execution of

373

the overall system reaches an error state; all other behaviors are
accepted and thus considered safe. Technically, the source code
of the features is instrumented with labels that indicate error
states such that the model checker can perform a reachability
analysis based on the corresponding control-flow graph.

IV. DETECTING INTERACTIONS

Based on feature-local specifications, we explore two op-
tions of detecting feature interactions in a product line: gen-
erate all products and check them one at a time (Sect. IV-A),
and generate one product that contains all features and check
it in a single pass using variability information (Sect. IV-B).

A. Detecting Interactions in Products

Each feature comes with an implementation and a spec-
ification. Once the features of a product are selected, the
composer (e.g., FEATUREHOUSE) generates the correspond-
ing code, which is checked against the specifications of the
features selected for the product. To this end, we use a model
checker that statically determines whether the execution of
the composed product can reach an error state, as defined by
the specifications of the features involved. If that happens, we
know that the composition violates the constraints of at least
one participating feature and indicates a feature interaction (or
a defect in a single feature).

To verify that all products of a product line are free of
interactions, we have to generate and check all products
individually, which we call the brute-force approach.

B. Detecting Interactions in Product Lines

An alternative to the brute-force approach is to verify a
product simulator that contains all features of a product line. In
the product simulator, each feature can be enabled or disabled,
according to the feature model. The state space of the product
simulator subsumes the state spaces of all valid products of
the product line such that the model-checking procedure can
benefit from it during the checking process. It allows the model
checker to detect feature interactions more efficiently, because
not all individual feature combinations have to be unfolded in
the model checker’s state space.

The product simulator is obtained by variability encoding.
The procedure of variability encoding is a modification of
the regular composition process in order to create the product
simulator incorporating all features of the product line. First,
variability encoding defines for each feature a global boolean
feature variable that models the presence or absence of the
feature. Second, variability encoding introduces for each func-
tion refinement a dispatcher function that dispatches between
the refined and the refining function depending on whether
the feature that contains the refinement is selected. Third,
variability encoding stores the dependency constraints between
features (i.e., the feature model) using a boolean predicate over
the boolean feature variables. Finally, the program execution
is encapsulated in a conditional block that is executed only if
the constraints imposed by the feature model are satisfied; this

way, execution paths that are associated with invalid feature
combinations are not considered by the model checker.

After variability encoding, we check the resulting product
simulator against the specification of all features of the product
line. We initialize the boolean variables of the features using
a nondeterministic choice so that the model checker must
assume that all feature combinations defined by the feature
model may occur. This way, the model checker checks all
possible feature combinations, that is, all combinations of
feature code, without generating all individual products.

V. CASE STUDY

To explore the feasibility of feature-aware verification for
feature-interaction detection, we have developed the tool suite
SPLVERIFIER and applied it to a case study. SPLVERIFIER
and the case study are available on the project’s Web site.

A. Implementation

SPLVERIFIER is based on several existing tools and on
tools that we developed for the purpose of feature-aware
verification. For composition and variability encoding, we use
FEATUREHOUSE2 (i.e., we compose features and inject guards
by means of superimposition). For model checking, we use
the tool CPAchecker [7], which allows to check temporal
safety properties of C code, by means of either explicit or
symbolic model checking. We translate the automata-based
specifications to ACC aspects 3, and we use the ACC compiler
to inject assertions in source code locations that have been
specified by the corresponding automaton and that are relevant
to a safety property.

B. The E-Mail Client Case Study

Hall’s e-mail system consists of 10 features that give rise to
27 feature interactions [10]. It is divided into a client and
a server. For our case study, we concentrate on the client
because, for now, we do not focus on interactions in distributed
scenarios. We implemented the features of the e-mail client
in C with FEATUREHOUSE following the specification of
Hall (including a base program and two helper features).
Furthermore, we included an entry function to trigger events in
the client. Based on the work of Hall, we developed for every
relevant feature a specification in the form of one or several
automata. As discussed previously, a key requirement was to
specify the features’ behavior and safety properties based on
local knowledge.

C. Experiments

We conducted a number of experiments with the e-mail
product line. First, we generated all of its 40 products and
checked them using CPAchecker. It turned out that with
feature-aware verification, we were able to detect all feature
interactions of the e-mail client based on the feature-local
specifications of the input features. If the model checker does
not report a counterexample (i.e., none of the safety properties

2http://www.fosd.de/fh/
3Aspect-oriented extension of C: http://research.msrg.utoronto.ca/ACC/

374

has been violated), we can be certain that the composition does
not contain a feature interaction that violates the specification
of the features involved.

Interestingly, we even found an interaction in our imple-
mentation that has not been documented by Hall. It occurs
when both features Decrypt and Forward are selected: if a
host forwards an e-mail automatically to another host that
cannot decrypt this e-mail. This finding encourages us that
our approach is useful to detect unknown interactions. We also
checked the entire e-mail client product line using variability
encoding. Again, we were able to detect all feature interac-
tions, but without generating all possible feature combinations.

Finally, we compared the performance of the brute-force
approach and the variability-encoding approach. We found that
variability encoding is superior in cases in which the number
of products that contain interactions is low (or zero). More
details on the measurements are available in the accompanying
technical report [6].

VI. RELATED WORK

In the literature, there are two approaches of product-line
verification that can be used for the detection of feature
interactions: (1) check features as far as possible in isolation
and (2) check the entire product line in a single pass.

The first approach has been proposed first by Li et al. [13].
They verify features modularly based on formal transition sys-
tems and CTL. Verifying a feature, it is determined which parts
of a specification the feature satisfies and which parts have to
be satisfied by other features. This information constitutes, in
fact, a semantic interface of the feature, which is used during
the verification of its composition with other features. Li et
al. have a slightly different verification scenario in mind: they
check to what extent a feature satisfies a specification that a
product has to fulfill. In our approach, each feature comes with
its own specification that states which properties have to hold
when it is selected.

The second approach (i.e., check an entire product line
in a single pass) has been proposed first by Lauenroth et
al. [12] and Classen et al. [9]. They developed model checking
approaches that take product-line variability into account.
Basically, they enrich the state graph of a product line with
variability information, much like in the variability-encoding
approach. Based on their work, we explored whether and how
product-line verification techniques can be used for feature-
interaction detection. We emphasize the implementation and
specification of features in separate and composable units,
which was not the focus of Lauenroth et al. and Classen et al.
Finally, we pursue an approach that is based entirely on off-
the-shelf model checking, rather than on special developments
and extension of existing model checkers.

Post and Sinz propose the notion of configuration lifting
to efficiently verify variable C code [14]. The key idea is to
replace each conditional preprocessor directive (e.g., #ifdef)
by a corresponding if statement thus making it accessible to a
software verification tool. Variability encoding is inspired by
their approach.

VII. CONCLUSION

Feature-aware verification is an approach to detect fea-
ture interactions in product lines. First, we implement and
specify features in separate and composable units, and detect
interactions based on feature-local specifications. Locality of
feature specifications is important for scalability and dis-
tributed feature composition. Second, we use the technique of
variability encoding to avoid redundant verification effort due
to product similarities. We used, extended, and developed a
tool chain that supports feature-aware verification based on
off-the-shelf model checking technology. We were able to
automatically detect critical feature interactions (including a
previously undocumented interaction) in our e-mail system.

ACKNOWLEDGMENT

We are grateful to J. Atlee, A. Classen, and M. Rosenthal
for their comments to earlier drafts of this paper. We thank
S. Boxleitner for his implementation of the e-mail client. This
research was supported by the German DFG grants AP 206/2
and AP 206/4, and by the Canadian NSERC grant RGPIN
341819-07.

REFERENCES

[1] S. Apel and C. Kästner. An Overview of Feature-Oriented Software
Development. J. Object Technology, 8(5):49–84, 2009.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type Safety
for Feature-Oriented Product Lines. Automated Software Engineering,
17(3):251–300, 2010.

[3] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
Independent, Automated Software Composition. In Proc. ICSE, pages
221–231. IEEE, 2009.

[4] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebraic
Foundation for Automatic Feature-Based Program Synthesis. Science
of Computer Programming, 75(11):1022–1047, 2010.

[5] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting Dependences
and Interactions in Feature-Oriented Design. In Proc. ISSRE, pages 161–
170. IEEE, 2010.

[6] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Feature-
Aware Verification. Technical Report MIP-1105, University of Passau,
September 2011.

[7] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190.
Springer, 2011.

[8] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature
Interaction: A Critical Review and Considered Forecast. Computer
Networks, 41(1):115–141, 2003.

[9] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model Checking Lots of Systems: Efficient Verification of Temporal
Properties in Software Product Lines. In Proc. ICSE, pages 335–344.
ACM, 2010.

[10] R. Hall. Fundamental Nonmodularity in Electronic Mail. Automated
Software Engineering, 12(1):41–79, 2005.

[11] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type Checking Annotation-
Based Product Lines. ACM TOSEM, 2011. To appear.

[12] K. Lauenroth, S. Toehning, and K. Pohl. Model Checking of Domain
Artifacts in Product Line Engineering. In Proc. ASE, pages 269–280.
IEEE, 2009.

[13] H. Li, S. Krishnamurthi, and K. Fisler. Verifying Cross-Cutting Features
as Open Systems. In Proc. FSE, pages 89–98. ACM, 2002.

[14] H. Post and C. Sinz. Configuration Lifting: Verification meets Software
Configuration. In Proc. ASE, pages 347–350. IEEE, 2008.

[15] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of
Product Lines. In Proc. GPCE, pages 95–104. ACM, 2007.

375

