
Self-Organization in Overlay Networks

Sven Apel1 and Klemens Böhm2

1 Otto-von-Guericke-University, Magdeburg, Germany
apel@iti.cs.uni-magdeburg.de

2 University of Karlsruhe (TH), Germany
klemens.boehm@ipd.uni-karlsruhe.de

Abstract. Overlay networks are an important kind of P2P infrastruc-
tures. The range of applications and requirements is broad. Consequently,
our research objective are overlay networks which organize and adapt
themselves at runtime. This article describes the current state of our
project and gives an overview of the steps envisioned. We briefly show
the necessity for self-organization in overlay networks. Based on our
experience, we then provide a list of overlay network system parame-
ters relevant for dynamic adjustment. When designing mechanisms for
self-adaptation for overlay networks, we have observed implementation-
level interference and semantic-level interference. To deal with these
phenomena, the overlay network architecture envisioned (1) must sep-
arate functionality for self-organization and system core functionality
and (2) should preserve system integrity. To achieve this, we propose
to use self-tuning mechanisms with explicit pre- and postconditions and
conflict resolution as well as reflection. We discuss alternative implemen-
tation techniques and present one concrete approach based on Aspect-
Oriented Programming and Mixin Layers. We conclude with first insights
into organic overlay networks and emergent behavior.

1 Introduction

The Peer-to-Peer (P2P) paradigm will gain momentum in the near future, due to
scalability, reliability and (economic) efficiency. Distributed hash tables (DHT)
follow this paradigm: They store and administer huge sets of (key, value)-pairs
in a highly distributed manner, without any central coordination. The virtual
network structure of DHTs is independent of the underlying physical network.
Therefore, they are also called overlay networks3. Overlay networks have many
potential applications in the area of the WWW and Internet computing [10].
Based on our experience [4, 5], this article starts by explaining why overlay net-
works must be able to adapt themselves at runtime. In short, there is a broad
range of application requirements as well as characteristics of the environment
that may change over time. This calls for self-adaptation/self-organization. This
article describes the current status of our project aiming at self-organizing over-
lay networks and the steps envisaged.
3 In the remaining article we use the term ’overlay network’ to refer to this class of

distributed systems.

In the absence of a coordinator, runtime adaptation is not trivial. Each peer
must adapt its behavior individually, but in concert with other peers. When
we speak of self-adaptation of an overlay network we mean the adaptation of
the participating peers. We refer to the entire process of self-adaptation as self-
organization or, synonymously, self-tuning of the P2P system. Our previous at-
tempts to implement such self-tuning mechanisms have revealed the daunting
complexity of this task. The more mechanisms we have integrated, the more they
interfere with each other and with the core functionality. Interference may take
place at the implementation level and at the semantic level. These two kinds of
interference are different, as we will explain.

This paper discusses the applicability of various software-engineering prin-
ciples, notably reflection, aspect-orientation, components and meta-data tech-
niques, to implement self-tuning for overlay networks in a modular and efficient
manner. We propose a concept for a reflective framework on top of overlay net-
works. This solution (1) must separate functionality for self-organization and
system core functionality and (2) should preserve consistency using conditions.
To achieve this, we propose to use self-tuning mechanisms where pre- and post-
conditions are made explicit as well as reflection. We sketch three potential ways
of implementing self-tuning mechanisms inside the reflective framework and dis-
cuss their pros and cons, based on the current state of our project. Furthermore,
we present one concrete implementation approach based on AOP and Mixin Lay-
ers. Finally, we discuss preliminary results regarding organic overlay networks
and emergent behavior.

The remainder of this paper is as follows: Sections 2 introduces overlay net-
works. Section 3 reviews relevant software-engineering methods. Section 4 in-
troduces self-tuning in overlay networks and describes open problems. Section 5
presents a concept for a reflective framework on top of overlay networks and
describes the integration of self-tuning mechanisms. Section 6 discusses open
questions regarding the implementation. Section 7 presents a first approach for
implementing self-tuning mechanisms. Section 8 outlines future work and Sec-
tion 9 concludes.

2 Overlay Networks and DHTs

Most of the current overlay networks constitute DHTs. The structure of the data
administered by overlay networks is simple, namely (key, value)-pairs. Each peer
administers some of these pairs. A hash function, applied to the keys, distributes
the data over the peers. Overlay network variants differ in the topology of the
key space and in the definition of proximity. Chord [26] organizes the key space in
circular one-dimensional vector space. Pastry [23] uses a Plaxton Mesh. Overlay
networks provide an interface identical to the one of an ordinary hash table.

Content-Addressable Networks (CAN) [20] are another important kind of
an overlay network, and we have gained experience with overlay networks by
implementing a CAN [4]. The key space with CAN is a n-dimensional coordinate
space. Each peer is responsible for a zone of the key space. This means that

external characteristics

network latency (nl)

transfer rate (tr)

network topology (nt)

connectivity (co)

Table 1. External system characteristics.

internal characteristics

peers (np)

workload (wl)

data density (dd)

% unreliable peers (up)

Table 2. Internal system characteristics.

the peer stores all (key, value)-pairs whose keys fall into its zone. A query is
evaluated by forwarding messages from peer to peer in a greedy fashion, until a
peer responsible for the query point is reached [20].

The range of applications for overlay networks is broad, see [10] for a com-
prehensive list, and our objective is the design and implementation of an overlay
network that supports most of these. Overlay network applications have require-
ments that are quite diverse and change over time. For example a mobile group-
ware demands for a secure and reliable communication and has to cope with
resource-constraints and mobility. Instead, a web annotation service requires a
flexible load balancing and a mechanism for a fair distribution of work [4]. In
order to fit these requirements and to face environmental changes, e.g., network
traffic, workload, connection interrupts, available resources, overlay networks
have adapt and organize themselves dynamically at runtime. In fact that means
that the individual peers have to alter their behavior.

Our experience with the two mentioned applications, the groupware for mo-
bile ad-hoc networks and the web annotation service, has revealed that the num-
ber of system characteristics that influence the behavior of overlay networks is
high. We distinguish between external characteristics and internal character-
istics (cf. Tables 1 and 2). External characteristics are characteristics of the
environment, internal ones are environment-independent. Furthermore, we see
several indicators which allow a peer to derive the current status with regard
to these characteristics. For example, the number of incoming queries per time
serves as an indication of the current workload. Table 3 lists some indicators and
the corresponding characteristics. To behave in a way that is acceptable for the
application, overlay networks have to adapt to changes of the environment. We
have identified several tuneable system parameters, listed in Table 4, together
with the indicators they can react to.

Example. A peer detects an increase of the workload by observing indicator
’rate of incoming queries’. If the rate of incoming queries exceeds a threshold,
the peer can try to increase the degree of replication, next to other options. Then
the number of peers processing the queries increases. Hence, the rate of queries
processed by the ’original’ peer decreases. As a side-effect, availability of data
increases as well. In contrast, if the rate decreases, the replication degree can be
reduced, to save resources and to reduce the overhead of replica maintenance. 2

With conventional overlay networks, participation in the work is voluntary.
I.e., peers are free to decide how many resources they provide to the overlay

indicators characteristics

� query response time (tresp) nl, tr, nt, wl, co

unanswered queries (qansw) up, co

forwarded messages (mforw) np, wl, dd

incoming queries / time (qinc) nl, tr, np, wl, dd

Table 3. Relationship between indicators and system characteristics.

indicators parameters

qansw, tresp size of contact cache

tresp, mforw, qansw replication strategy

qinc, qansw, mforw replication degree

qansw, tresp # communication channels

qansw reliability threshold

Table 4. Relationship between tuneable parameters and indicators.

network. Obviously, this soon leads to free riding. Free riders are peers that try to
benefit from the system, i.e., query the overlay network, but do not participate in
the work, i.e., forward or answer queries. We also refer to free riders as unreliable
peers. Various approaches against free riding have been proposed, e.g. quorum-
based and reputation-based schemes [7]. We for our part have implemented a
lightweight reputation mechanisms for CAN [4]. It will serve as an example of
some of the issues in the following, so we review it: A peer generates positive
feedback on a peer that has performed useful work. A peer may also generate
negative feedback in certain situations. Feedback is distributed in a swarm-like
manner. It is time stamped, in order to expire after some time. A peer uses
the feedback stored in its reputation repository to decide if it deems another
peer reliable – the number of positive feedback objects must be higher than the
reliability threshold. A peer ignores feedback attached to an incoming message if
it does not deem the sender reliable. – This scheme is a self-tuning mechanism
that determines behavior and performance characteristics of the overall overlay
network. It is not part of the core functionality – some applications/contexts do
not need it, e.g., groupware in local area networks.

3 Software Engineering Methods for Self-Organization

For implementing self-adaptive overlay networks the following paradigms are
important:

Reflection. Reflection is one widely accepted method to implement self-intro-
spection and self-adaptation [14]. Reflection was first introduced in the context
of programming languages [25]. Reflective programming languages enable the
programmer to reason about their language constructs, e.g., classes, methods,
etc., and to observe and modify them. Later, this concept has been applied to
software systems in general: Reflective software systems make their structural

and behavioral properties explicit: They are able to reason about themselves
(introspection) and to alter their structure and behavior (adaptation). To do
so, they refine their internal structure and behavior in form of meta-data. The
spectrum of possible adaptation mechanisms reaches from simple parameter ad-
justments, e.g., increasing a value, to complex structural changes, e.g., modifying
several methods and classes. Both theoretical [25, 15, 14] and practical work [22,
9] has been done in the area of reflective systems. But to our knowledge, there
has not been any research in reflective P2P systems. On the other hand, systems
as BeeHive [18] and others [19] do focus on dynamic adaptation, but only on the
protocol level.

We argue that a P2P system can benefit from reflection by observing its
internal state, e.g., the current workload, and by reacting by invoking a load
balancing mechanism. Note, the introspection and adaptation is done by the in-
dividual peers. There is no centralized view of the overall P2P system. Currently,
it is unclear how can a reflective architecture be implemented on top of overlay
networks? Which software engineering methods help to implement a reflective
P2P architecture?

Separation of Concerns. To implement self-organization, the paradigm sepa-
ration of concerns is essential [8]. The idea is to separate the basic functionality
from special-purpose concerns (e.g., synchronization, real-time constraints). [8]
argue that this separation makes programs easier to write and to modify. This
separation is important for self-organization of overlay networks – our experi-
ence shows that the self-organization mechanisms are strongly tangled with the
core functionality: In order to implement our light-weight reputation mechanism
(see Section 2), we had to modify five classes at 17 code positions and we had
to implement five new classes. These numbers tell us that we should not aim for
self-organization in our context without proper software-engineering support.
Further, the problem becomes more daunting if more self-tuning mechanisms
are applied.

Aspect-Oriented Programming. Aspect-oriented programming (AOP) [13] is
strongly related to reflection and is one approach to support separation of cross-
cutting concerns. The idea behind AOP is to implement crosscutting concerns
as aspects. This prevents the known phenomena of code tangling and scattering.
The core features are implemented as components, as with common design and
implementation methods. Using pointcuts and advices, an aspect weaver brings
aspects and components together. Pointcuts specify the join points of aspects
and components. Advices specify which code is applied to these points. AspectJ 4

is a language extension for compile-time aspect weaving. [17, 27] propose and in-
vestigate dynamic weaving mechanisms. Dynamic weaving is more flexible, but
consumes more resources.

AOP is a candidate to implement self-organizing overlay networks: AOP
enables the programmer to separate the introspection and adaptation code from

4 http://eclipse.org/aspectj/

the peer core. This prevents the above mentioned code tangling and scattering.
Furthermore, AOP allows to flexibly alter self-tuning mechanisms by weaving
new aspects at compile time or at runtime.

Component Techniques. Component models like Mixin Layers [3] facilitate
modularization of crosscutting concerns at class-, object- or method level by
composition of components. Mixin Layers are one appropriate technique to im-
plement software systems in a feature-oriented fashion [24, 3]. The basic idea
is that features are often implemented by a collaboration of class fragments. A
Mixin Layer is a static component encapsulating fragments of several different
classes (Mixins) so that all fragments are composed consistently. Mixin Layers
are a well-established implementation technique for component-based layered
designs. Advantages are a high degree of modularity and easy composition [24].
AHEAD generalizes the concept of Mixin Layers to all kinds of software artifacts,
e.g., documentation, UML diagrams, and makefiles.

An overlay network product line based on AHEAD could be used to derive
tailor-made overlay networks in order to fit application requirements or specific
environments. The AHEAD design rule checks [3] would allow semantic checking
during the composition of overlay networks from different components.

4 Self-Tuning in Overlay Networks

This section describes problems related to self-tuning overlay network. A self-
tuning mechanism observes system characteristics (see Tab. 1, 2) using indicators
(see Tab. 3) and adapts system parameters (see Tab. 4) related to these char-
acteristics. The two self-tuning mechanisms described next serve as a running
example throughout this article. They are simple and unexciting, but this should
allow for a better focus on issues that are essential.

Number of incoming queries. The number of incoming queries is an indica-
tor. We can infer from it the average computational load and the network traffic
inside the overlay network. With some overlay networks, if the number of queries
exceeds a threshold, a peer can replicate parts of its data repository to other
peers. In other words, the corresponding system parameter in this example is
the degree of replication.

Network transfer rate. The network transfer rate is a more technical system
characteristic. If it decreases dramatically, or if the connection is interrupted, a
peer can use alternative communication protocols or media. The corresponding
system parameter in this example is again the replication degree: Increasing it
increases availability of the data and allows to cope with changes of the transfer
rate.

We have identified self-tuning in overlay networks as a crosscutting concern.
It is not trivial to integrate several self-tuning mechanisms, due to their cross-
cutting nature. Their implementations interfere with each other and with the

implementation of the peers core functionality. If we want to apply the example
mechanisms to an overlay network, we have to add code for introspection of the
system characteristics (transfer rate and workload). This code is tangled with
the code for ’core’ communication, e.g., listing and accepting connections and
receiving messages. Further, several classes and methods have to be implemented
to analyze changes of the characteristics. In addition, the replication code itself
crosscuts wide parts of the core functionality. The same problems have occurred
when integrating our lightweight reputation mechanism (see Section 3). We had
to modify numerous implementation units (5 classes, 17 code points, 5 new clas-
ses). In the remaining article, we refer to these effects as implementation level
interference.

Further, the problem of semantic interference arises. Semantic interference
means that two mechanisms conflict and work in the opposite direction. Think of
our examples: When integrating the two self-tuning mechanisms into the peers,
two conflicts can occur: (1) The current system configuration does not include
replication components. (2) The two mechanisms adjust the same system para-
meter, the replication degree.5 One mechanism may increase it, while the other
one decreases it. Even if the overall system behavior is meaningful, two concur-
rent mechanisms waste resources, or the system state becomes instable.

Summing up, the following challenges arise when implementing self-organizing
overlay networks: How to implement self-tuning mechanisms in a modular way?
Is it possible to apply several mechanisms without crosscutting each other or the
system core? How to avoid semantic interference?

5 Reflective Self-Tuning Overlay Networks

This section introduces a reflective architecture for overlay networks, in order
to integrate self-tuning mechanisms. We list and discuss alternative methods to
add self-tuning mechanisms to the reflective framework. While these methods are
standard, our discussion of their applicability for overlay networks is original.

5.1 Reflective Architecture

Figure 1 depicts the overall architecture of the system envisioned, including the
system core, the reflective framework and the plugged self-tuning mechanisms.
Any reflective architecture separates the base level from the meta level and
reifies meta data. One specialty of the architecture proposed here is the encap-
sulation of self-tuning mechanisms into pluggable units. The plugged self-tuning
mechanisms operate on the reified meta data to alter the peers structure and
behavior. We do so to avoid interference (semantic and implementation level).
To encapsulate self-tuning, we intend to use components or component-like en-
tities, e.g., aspects. Recall that components are large-scale software building
blocks that can encapsulate even complex self-tuning mechanisms. This avoids
the interference problem at the implementation level. To avoid interference at
5 Note that we refer to the plugging of two mechanisms to one peers instance.

the semantic level, we intend to integrate conditions into the self-tuning mech-
anisms (see Fig. 1). Similar approaches exist in the domain of component tech-
niques, e.g., AHEAD design rule checks. We want to investigate how to reuse
these approaches for overlay networks. Similar to AHEAD design rule checks we
distinguish between pre- and postconditions. Preconditions state prerequisites
to apply the self-tuning mechanism, postconditions state which conditions hold
after the self-tuning mechanism has kicked in.

Example. Think of our self-tuning mech-

reification

self−tuning mechanisms

core
components

system core

framework
system core
configuration

consistency checker

meta−data reflective

cond. cond. cond.

Fig. 1. A reflective overlay network

anisms ’number of incoming queries’ and
’network transfer rate’. Plugging both may
cause conflicts: (1) The core has no repli-
cation entity. (2) Both adjust the same
parameter, namely the replication degree.
Pre- and postconditions avoid these con-
flicts: (1) Each mechanism defines a pre-
condition to state that it requires a repli-
cation entity in the core. (2) The mech-
anisms provide a postcondition that de-
clares that they adjust the replication de-

gree. The reflective framework can detect these conflicts by processing the con-
ditions. 2

The reflective framework manages the self-tuning process. It provides an
interface for the application programmer to add, remove or configure self-tuning
mechanisms. Moreover, it provides (reifies) information on the structure of the
underlying system and of the current system state and behavior. Candidates
for reification in our context are the characteristics from Tables 1 and 2, the
indicators from Table 3, and the parameters from Table 4.

As a subsequent step, the consistency checker compares the pre- and post-
conditions to the internal representation of the system core. If it detects conflicts
of any of the two kinds, it informs the application using a callback mechanism.

6 Implementation Issues

This section discusses alternatives to reflect modifications of reified parameters
by the self-tuning mechanisms into the peers, namely aspect-oriented program-
ming, component techniques and architectural reflection. After describing these
alternatives briefly, we talk about their strengths and weaknesses.

Aspect-Oriented Programming. One can use AOP to weave dynamically
the code of the self-tuning mechanisms to points inside the components of the
system core. Figure 2 illustrates this. The self-tuning mechanisms provide aspect
implementations (dark gray box) written in a specific aspect language. The con-
figuration unit uses an aspect weaver to weave them into the core components
of the overlay network (bent arrows). Depending on the plugging method, the
weaving takes place at load time or during runtime.

aspect

self−tuning mechanisms

core
configuration

core
components

reflective
framework

meta−dataconfiguration
unit

aspect
weaving

system core

provide
new

aspect

cond. cond. cond.

Fig. 2. Self-tuning using aspect
weaving

new

old

self−tuning mechanisms

core
configuration

core
components

reflective
framework

meta−dataconfiguration
unit

restructuring
components

system core

component
new

provide

cond. cond. cond.

Fig. 3. Self-tuning using compo-
nent composition

Component Techniques. Configuration is also feasible by the composition of
components. A so-called configuration unit recomposes the core components. In
other words, it exchanges components, applies new ones and removes existing
ones. Figure 3 shows the replacement of an existing component (the white box
at the bottom left) by a new one (gray box). One can elegantly encapsulate
behavioral strategies into components. For instance, an overlay network peer can
pursue different caching policies, e.g., neighbors cache data frequently accessed,
more remote peers cache data, etc. A peer can change its caching policy by
exchanging the respective component by another one with the same interface.

Architectural Reflection. Architectural reflection uses design information
and evolutionary rules to evolve the structure and behavior of software systems
[6]. Our idea is to combine this approach with our self-tuning mechanisms. Each
self-tuning mechanism does not only provide consistency conditions but also
evolutionary rules. Note that evolutionary rules are different from consistency
conditions. Consistency conditions prevent from conflicts between self-tuning
mechanisms. Evolutionary rules in turn describe how to adapt the structure and
the behavior of the peers. We hypothesize that overlay network-specific evolu-
tionary rules can describe the specific structure, behavior and characteristics of
overlay networks in a more precise way than generic rules [6].
Figure 4 depicts overlay networks enhanced by architectural reflection. An appli-
cation programmer can obtain information on the overlay network-internal state
and structure using the meta-interface. Meta-objects bear this information. The
programmer defines evolutionary rules inside a self-tuning mechanism to specify
which characteristic is observed and how to adapt the corresponding parameter.
Rules have the form (if{<condition>} then {<adaptation>}). The configura-
tion unit processes the rules and observes the characteristics specified by the
if -block. If the conditions become true it executes the then-clause. The then-
clause modifies the reified meta-objects. Finally, the configuration unit reflects
the modifications into the base-level.

Currently, we do not know which method is superior in our specific context.
AOP and dynamic weaving are able to modify the system core at expression and
statement level. The advantage is that one can implement the self-tuning mech-
anisms (which are crosscutting concerns) in modular units. The disadvantage

is that the weaving process becomes complex. This might result in decreased
performance and a higher resource consumption. However, an advantage is that
we can reuse aspects in overlay networks which have been implemented for other
domains. There are some good candidates from the middleware domain, namely
synchronization, logging, authorization, load balancing, and encryption.

The advantage of modern component mod-

components
core

trap
control

flow

self−tuning mechanisms

configuration
unit

system core

reflect
modifications

reflective
framework

reificationreflection

cond. cond. cond.
rules rules rules

meta−data

evol. rules

Fig. 4. Self-tuning using archi-
tectural reflection

els is that components are easy to compose.
However, they can interact with the system
core on method-, class- and object level only,
in contrast to statement-level with AOP. Ex-
ceptions are the component languages Fea-
tureC++ [1] and CaesarJ [16], but both
are currently still immature. Because of their
crosscutting nature, not all self-tuning mech-
anisms can be implemented in a highly mod-
ular way. This may lead to implementation-
level interference. Further, not all component
models provide dynamic composition. How-

ever, modern component models are base technology to build PLA.
Similarly to the dynamic weaving approach, architectural reflection is ex-

tremely flexible. The application programmer decides at expression/statement
level where the control flow is trapped, which base data is reified, and which
evolutionary rules specify the new system behavior/structure. The disadvantage
are higher memory consumption (to store design information) and weaker per-
formance, since design information is processed, reified and reflected at runtime.
An open question is how to specify and check such evolutionary rules in the
context of overlay networks.

7 Preliminary Implementation Results

This section present our first experiences in implementing self-tuning mecha-
nisms. Our preliminary approach combines AOP and Mixin Layers.

Our first attempts to implement self-tuning were contact caching, the rep-
utation mechanism and load balancing. During the implementation of these
mechanisms we observed that the dissemination of meta-data is fundamental
to most self-tuning mechanisms. Examples for meta-data are information about
the current load, remote contacts, feedback objects of our reputation mechanism,
RSA-keys, and application specific information, e.g., synchronization signals in
parallel processing applications (see [5] for a discussion). Due to the absence of a
central coordinator the meta-data must be propagated in a decentralized swarm-
like manner. We see several strategies to cache incoming meta-data, e.g., FIFO,
Random, LRU, etc. (caching strategies), as well as to propagate it to the ’right’
direction, e.g., Greedy Forwarding, Kleinberg distribution, CAN Multicast, etc.
(dissemination strategies).

Aspect
Weaver

Aspect

Aspect

Composition

Composition

Composed
Dissemination StrategyAspect

Dissemination

Generatorcompose

Mixin Layer
Mixin Layer

Mixin Layer

Dissemination Layers

Composed
Caching StrategyAspect

Caching
Mixin Layer

Mixin Layer
Mixin Layer

Caching Layers

weave

Core Implementation
P2P System

...
CAN Chord P−Grid

select

select

use

use

AOP Mixin Layers

Fig. 5. Generating and applying strategies using Mixin Layers and AOP.

Furthermore, we have observed that strategies often differ only in details,
e.g., a threshold or some additional constraints. Out of these observations and
the considerations of Section 6 we investigated in an combined, component-based
and aspect-oriented architecture. We utilize AOP and Mixin Layers that enable
us to implement a broad range of caching and dissemination strategies on top of
an overlay network. These strategies are essential to implement higher-level self-
tuning mechanisms. Figure 5 gives an overview of our approach. The following
paragraphs discuss this approach and the roles of AOP and Mixin Layers.

AOP. Mainly, we have used AOP (AspectJ) to separate the code for the meta-
data caching and dissemination strategies from the core implementation of the
overlay network. The left side in Figure 5 depicts a schematic design of dissem-
ination and caching strategies implemented as aspects. It can be seen that the
aspects are separated clearly. This allows us to design a generalized protocol
implementation that does not depend on the type of the overlay network and
increases the reusability and the ability of plugging strategies.

Mixin Layers. During the design phase we have observed that we need often
only small modifications of the caching and dissemination strategies to specify
different protocol characteristics. For example, from the algorithmic point of
view the caching strategy random differs from FIFO only in the order the items
are removed. Furthermore, some features are common for many strategies, e.g.,
to keep track of the peer a certain item was already sent to. Implementing a new
strategy in form of a separate aspect for each variant would be inefficiently and
errorprone, because approved code is not reused. Therefore, we have decided to
combine the approach of aspect-oriented strategies with a Mixin Layer-based
implementation.
We have used Mixin Layers to implement variants of the different caching and
dissemination strategies and the AHEAD Tool Suite [3] to automatize the confi-
guration and generation process. Doing, so we had to decompose the mechanisms
for caching and dissemination into fine-grained layers. Based on this design we
are able to compose these layers to generate different strategy variants. AOP is
then used to apply the configured strategies to the core of the overlay network

peers. Figure 5 depicts the schematic overview of configuring and applying strate-
gies to the peers: At first, a generator (here the AHEAD Composer) composes
the strategies according to a (user) specification. Then, the composed strategies
are applied to the peer core using aspects and the AspectJ Weaver. Using Mixin
Layers, we do not need multiple aspects. Instead, we need only two of them: one
for applying the caching strategies and the other for applying the dissemination
strategies. Figure 6 depicts the stack of Mixin Layers implemented for random
dissemination and FIFO caching. The enclosing grey boxes are the Mixin Layers.
The included rounded boxes are the inner Mixin classes. The figure depicts only
the inheritance relations between the inner classes. Other relations (e.g. asso-
ciations) as well as references to external classes are omitted. The Base layer
includes the needed data structures: MetaData, to provide a base for application
specific data, MetaDataCache for storing the cached meta-data, MetaDataList
to attach meta-data to messages, as well as the strategy base classes (interfaces)
CachingStrategy and DisseminationStrategy. Tangible strategies (in our example
random dissemination and FIFO caching) implement these interfaces to provide
the desired algorithm. The layer TimeStampedMetaData refines the MetaData
base by adding time stamps to each meta-data object. The layer NoRedun-
dantEntries prevents the meta-data cache and the messages from storing equal
meta-data objects. ExperimentLogging creates the logging dump which we used
to analyze our experiments.

The advantage of using Mixin
Experiment

Logging

FIFO
Caching

Random
Dissemination

Base

NoRedundant
Entries

TimeStamped
MetaData

Dissemination
Strategy

Dissemination
Strategy

Caching
Strategy

Meta
Data

Caching
Strategy

Cache
MetaData

Cache
MetaData

Meta
Data

Dissemination
Strategy

Caching
Strategy

Meta
Data Cache

MetaData MetaData
List

Fig. 6. Stack of Mixin Layers for FIFO Ca-
ching and Random Dissemination.

Layers is that we can easily derive
and combine new variants of strate-
gies. To introduce a new caching
strategy we have to implement the
interface CachingStrategy. Doing so,
we can remove the currently used
strategy and apply the new one. In
this way we can easily combine ca-
ching strategies with dissemination
strategies. Different application-spe-
cific self-tuning mechanisms require
different combinations of caching
and dissemination strategies [5]. A
further advantage is that we are
able to reuse the base data struc-

tures as well as existing strategy implementations. Imagine a proximity FIFO
caching strategy which combines FIFO caching with the contact information of
the peer. This might be useful in order to limit the range of meta-data to the
contacts of a peer. If a cache entry was generated by a immediate contact, the
caching strategy is FIFO. If not, the cache entries are dropped. The proximity
FIFO caching strategy reuses the overall code of the simple FIFO strategy.

Discussion. This implementation concept can be used to implement more com-
plex self-tuning mechanisms (we argue). In current we have not considered se-

mantic interference and dynamic plugging. We propose the use of an extended
version of the AHEAD Design Rule Checks to implement the consistency condi-
tions. To allow dynamic plugging the aspects for applying the self-tuning compo-
nents, e.g., Mixin Layer stacks, must be dynamically weaveable. For that aspect
frameworks like PROSE [17] or AspectWerkz [27] can be used. The consistency
conditions can be processed at runtime by parsing the corresponding files (.drc-
files). In summary the combination of AOP and Mixin Layers is one appropriate
approach to implement modular self-tuning. In future work we will additionally
investigate in other component-techniques and architectural reflection as well as
the seamless integration of design rules and the overall reflective architecture.

8 Organic Overlay Networks and Emergent Behavior

Beside the modelling of self-organizing overlay networks as well as design and
implementation issues, we investigate in the potential organic character of rule-
and state-based self-organizing overlay networks. Our model of self-organizing
overlay networks has all characteristics of organic vivi-systems [12]: (1) no cen-
tral coordination instance, (2) individual peers are autonomous, (3) peers are
interconnected massively, and (4) causal dependencies of peers and their behav-
ior may be non-linear. This observation leads us to the question if self-organizing
overlay networks behave organic in the sense of an emergent behavior [28]. Nat-
urally, we are interested how to model the behavior of peers as well as their
interactions in general to achieve an emergent order. This means that the global
behavior of the overlay network shows an ordered pattern that cannot be eas-
ily derived from the local behavior (described by states or rules) of the peers.
To find indices for the emergence of order we are experimenting with swarm-
algorithms. In particular we try to adopt ideas of flocking models [21] and social
interaction models [2] to implement self-tuning mechanisms. First results show
that the a organic behavior can be achieved by simulating swarms a the top of
a CAN. Currently, we want to apply these results to a simple load balancing
mechanism. Thereby, the load balancing algorithm is not described as a global
entity or policy (as in [11]). Instead it is distributed over the individual peers
in form of behavioral rules. Therefore, the desired global behavior, a balanced
load, emerges from the behavior of the autonomous peers. One main goal is to
find and identify so called phase transitions. Phase transitions are spontaneous
changes of the behavior triggered by minimal parameter adjustments. In first
experiments we have found indications for such phase transitions in a culture
model [2] on top of a CAN. We are interested in which parameters of an overlay
network can trigger such phase transitions and how to adjust the parameters to
shift for instance the load distribution of the overlay network to a ordered state
(a balanced load). From these insights we want to abstract, to build more effi-
cient, complex self-tuning mechanisms, e.g. our reputation mechanism. Finally,
we will investigate in the parallel execution of different self-tuning mechanisms
and the impact on the emergent global behavior, phase transitions and robust-
ness against failures.

9 Conclusions

Overlay networks are useful for a broad range of applications and must cope
with different and changing environments. This calls for self-organization. This
article provides an overview of the current status of our ongoing project that tar-
gets at self-organizing overlay networks. We have described the design decisions
and problems that we currently face. For instance, self-tuning mechanisms may
interfere with each other and with the system core. Such interference can occur
at implementation and semantic level. We have discussed different methods to
deal with this problem in the context of overlay networks. Furthermore, we have
compared different techniques to implement self-tuning mechanisms. Thereupon,
we have presented a first approach based on AOP and Mixin Layers. As part
of our future directions, we have presented our ongoing work on organic overlay
networks and emergent behavior. A set of current and ongoing experiments with
swarm-algorithms based on overlay networks are supposed to reveal insight into
organic overlay networks. Thereupon, we want to build several new self-tuning
mechanisms that trigger an emergent order.

References

1. S. Apel et al. FeatureC++: Feature-Oriented and Aspect-Oriented Programming
in C++. Technical report, Department of Computer Science, Otto-von-Guericke
University, Magdeburg, Germany, 2005.

2. R. Axelrod. The Dissemination of Culture: A Model with Local Convergence and
Global Polarization. Journal of Conflict Resolution, 41, 1997.

3. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE TSE, 30(6), 2004.

4. K. Böhm and E. Buchmann. FairNet – How to Counter Free Riding in Peer-to-Peer
Data Structures. In Proc. of COOPIS, 2004.

5. E. Buchmann and S. Apel. Piggyback Meta-Data Propagation in Distributed Hash
Tables. In Proc. of WEBIST, Miami, Florida, May 2005.

6. W. Cazzola et al. Rule-Based Strategic Reflection: Observing and Modifying Be-
havior at the Architectural Level. In Proc. of ASE, 1999.

7. A. Datta, M. Hauswirth, and K. Aberer. Beyond ”Web of Trust”: Enabling P2P
E-Commerce. In Proc. of the IEEE Conf. on E-Commerce, 2003.

8. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
9. J. Dowling and V. Cahill. The K-Component Architecture Meta-model for Self-

Adaptive Software. In Proc. of Int. Conf. on Metalevel Architectures and Separa-
tion of Crosscutting Concerns, 2001.

10. S. D. Gribble et al. The Ninja Architecture for Robust Internet-Scale Systems and
Services. Computer Networks, 35(4), 2001.

11. D. Hughes, G. Coulson, and I. Warren. A Framework for Developing Reflective
and Dynamic P2P Networks (RaDP2P). In Proc. of P2P Computing, 2004.

12. K. Kelly. Out of Control: The New Biology of Machines, Social Systems, and the
Economic World. Basic Books, 1997.

13. G. Kiczales et al. Aspect-Oriented Programming. In Proc. of ECOOP, 1997.
14. G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT Press,

1991.

15. P. Maes and D. Nardi, editors. Meta-Level Architecture and Reflection. North-
Holland, 1988.

16. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. ACM SIGSOFT, 2004.

17. A. Popovici, G. Alonso, and T. Gross. Just in Time Aspects: Efficient Dynamic
Weaving for Java. In Proc. of AOSD, 2003.

18. V. Ramasubramanian and E. G. Sirer. The Design and Implementation of a Next
Generation Name Service for the Internet. In Proc. of ACM SIGCOMM, 2004.

19. A. Rao et al. Load Balancing in Structured P2P Systems. In Workshop on Peer-
to-Peer Systems, 2003.

20. S. Ratnasamy et al. A Scalable Content-Addressable Network. In Proc. of ACM
SIGCOMM, 2001.

21. C. W. Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics, 21(4), 1987.

22. M. Romn, F. Kon, and R. Campbell. Reflective Middleware: From Your Desk to
Your Hand. IEEE Distributed Systems Online, 2(5), 2001.

23. A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In Proc. of Middleware, 2001.

24. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM TOSEM, 11(2),
2002.

25. B. C. Smith. Reflection and Semantics in a Procedural Language. Technical Report
272, MIT Laboratory for Computer Science, 1982.

26. I. Stoica et al. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Appli-
cations. In Proc. of ACM SIGCOMM, 2001.

27. A. Vasseur. Dynamic AOP and Runtime Weaving for Java - How does AspectWerkz
Address it? In Workshop on Dynamic AOP, 2004.

28. E. Yates, editor. Self-Organizing Systems: The Emergence of Order. Plenum, New
York, 1987.

