
Aspect Refinement in Software Product Lines

Sven Apel, Thomas Leich, and Gunter Saake

Department of Computer Science
Otto-von-Guericke-University Magdeburg

email: {apel, leich, saake}@iti.cs.uni-magdeburg.de

Abstract. This article investigates aspects in the context of the step-wise devel-
opment of software product lines. Specifically, we propose the integration of aspects
into AHEAD, an architectural model for feature-based product line development.
We introduce the notion of aspect refinement based on Aspectual Mixin Layers,
a technique for implementing features. Aspect refinement enables a programmer
to evolve aspects over several product line development stages. This is novel since
common AOP approaches do not have such an architectural model. Furthermore, we
propose a bounding quantification that reduces the complexity and unpredictabil-
ity of aspects in incremental software development. A novel bounding mechanism
exploits the natural order of the layered architecture introduced by the concept
of aspect refinement. Aspect refinement and bounding quantification improve the
development of product lines using AOP techniques.

1 Introduction

Software product lines are subject of ongoing research and will gain momentum in future.
Research in this field tries to move software development to the new quality of industrial
production. AHEAD is an architectural model to implement product lines [3]. The idea of
AHEAD is to decompose programs into basic features and to compose stacks of features to
derive a concrete program. Doing so, products added to a product line can reuse features
of existing ones and further add new features. This is also called step-wise refinement.
The steps correspond to the development stages of the evolving product line. AHEAD
proposes large-scale compositional programming: It generalizes the concept for features
and feature refinements. Features consist not only of code but of several types of artifacts,
e.g., makefiles, UML-diagrams, documentation. Each artifact inside a feature can refine
corresponding artifacts of previous features.

This article investigates the relation of Aspect-Oriented Programming (AOP) [6] and
AHEAD. AOP is a prominent programming technique that aims on modularizing crosscut-
ting concerns. Due to its success in this respect it is worth while to consider it in context
of product line development.

Following the AHEAD model we propose that aspects are also artifacts that contribute
to features. This is a different view than that of current research on aspects and product
lines [4, 10]. These approaches perceive aspects as first-class entities to express features.
Several studies have shown that this does not hold for a wide range of features, espe-
cially not in the context of product lines [9, 2, 11]. The reason is that features are often
implemented not by single classes or aspects but by the collaboration of sets of them.
Common AspectJ-like AOP languages cannot express and encapsulate collaborations and
collaboration refinements.

Approaches as Aspectual Mixin Layers (AMLs) [2], Caesar [11], Aspectual Collabora-
tions [7] try to overcome this problem by combining collaborations and aspects. This article
focuses on AMLs because they follow the AHEAD architectural model. We use them to
introduce the notion of aspect refinement. Since aspects are integrated in the AHEAD layer
structure – in our case AMLs – the possibility of refining aspects arises. We perceive that
as a natural step following the AHEAD model. Aspect refinement opens the door to evolve
aspects in a step-wise manner. This improves aspect reuse and evolution.

The integration of aspects into the layered AHEAD architecture allows us to reduce
the complexity and unpredictability of aspects. Several studies have revealed that the

unpredictable behavior of common aspects, especially in context of incremental designs,
decreases the aspect reuse and complicates the evolution of such designs [8, 2, 7]. Based on
the idea of aspect refinement, we propose a novel aspect bounding mechanim that takes
the layered structure of the feature stack into account. This bounding quantification scopes
aspects so that they only affect features of previous development stages. This prevents
inadvertent effects on unanticipated features of subsequent development stages.

2 Integrating Aspects into AHEAD

This section reviews Mixin Layers (MLs) and Aspectual Mixin Layers (AMLs). Both are
implementation techniques that follow the AHEAD model. Wheras MLs encapsulate classes
and class refinements, AMLs additionally include aspects and their refinements. For exl-
panation, we use FeatureC++1, a proprietary C++ language extension that supports
MLs and AMLs.

2.1 Mixin Layers

MLs are one appropriate technique to implement features [13, 3]. The basic idea is that
features are often implemented by a collaboration of class fragments. A ML is a static
component encapsulating fragments of several different classes (mixins) so that all frag-
ments are composed consistently. Advantages are a high degree of modularity and an easy
composition [13].

Figure 1 depicts a stack of three MLs (L1 − L3) in top down order. The MLs crosscut
multiple classes (CA − CC). The rounded boxes represent the mixins. Mixins that belong
to and together constitute a complete class are called refinement chain. Refinement chains
are connected by vertical lines. Mixins that start a refinement chain are called constants,
all others are called refinements. A mixin A that is refined by mixin B is called the parent
mixin or parent class of mixin B. Consequently, mixin B is the child class or child mixin
of A. Analogously, we speak of parent and child MLs.

In FeatureC++ MLs are represented by file system directories. Therefore, they have
no programmatic representation. Those mixins found inside the directories are assigned to
be members of the enclosing MLs.

C
A

C
B

C
C

L
1

L
2

L
3

Fig. 1. Stack of MLs.

1 class Buffer {
2 char *buf;
3 void put(char *s) {}
4 };
5 refines class Buffer {
6 int len; int getLength () {}
7 void put(char *s) {
8 i f (strlen(s) + len < MAX)
9 super::put(s);

10 }
11 };

Fig. 2. Constants and refinements
in FeatureC++.

Each constant and refinement is implemented by a mixin inside exactly one source
file. The root of a refinement chain is formed by these constants (see Fig. 2, Line 1).
Refinements are applied to constants as well as to other refinements. They are declared by
the refines keyword (Line 5). Usually, they introduce new attributes and methods (Line 6)
or extend2 methods of their parent classes (Lines 7-10). To access the extended method the
super keyword is used (Line 9). The super keyword has a similar semantic as the proceed
keyword of AspectJ/AspectC++.

For a more detailed introduction to FeatureC++, its capabilities, and its implemen-
tation we refer to [2, 1].
1 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/
2 We do not use the term ’override’ because we want to emphasize that usually method refinements

reuse the parent method. This is more an extension than an overriding.

2.2 Aspectual Mixin Layers

The key idea behind AMLs is to embed aspects into MLs (see Fig. 3). Each ML contains
a set of mixins and a set of aspects. This methodology follows AHEAD which proposes
that features of a product consist of different kinds of software artifacts. Aspects are beside
classes another kind of software artifact.

aspectmixin

refinement weaving

Fig. 3. AMLs: Embedding aspects
into MLs.

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole LogAspect

Buffer

Log

Sync

Base

Alloc

Fig. 4. Implementing a logging fea-
ture using AMLs.

Figure 4 shows a stack of MLs that implements some buffer functionality, in particular,
a basic buffer with iterator, a separated allocator, synchronization, and logging support.
Whereas the first three features are implemented as common MLs, the logging feature is
implemented as an AML. The rationale behind this is that the logging aspect captures a
whole set of methods that will be refined (dashed arrows).

The embedding of aspects into AMLs has several advantages compared to MLs. Es-
pecially the ability of aspects to modularize certain kinds of crosscutting concerns is an
improvement. However, these issues are out of scope of this paper. We refer to [2] for more
details.

3 Aspect Refinement

The introduction of aspects into AHEAD leads us to the notion of aspect refinement. Since
aspects are introduced in MLs it is natural to refine them incrementally, too. We perceive
this step-wise refinement of aspects as natural consequence of the AHEAD architectural
model. AHEAD states that all kinds of software artifacts that contribute to a feature can
be refined incrementally. Several ideas of class refinement can be mapped to aspects, e.g.
extending methods, introducing members, etc. But more interesting is the fact that it
becomes possible to also refine aspect-specific constructs, in particul pointcuts and advice.

We have used AMLs to implement aspect refinement. With AMLs aspects can refine
other aspects by using the refines keyword. To access the methods and attributes of the
parent aspect, the refining aspect uses the super keyword. Figure 5 shows an AML that
refines a logging aspect – included in a logging feature (see Fig. 4) – by additional join points
to extend the set of intercepted methods. Beside this, the logging console (implemented as
a mixin) is refined by additional functionality, in particular by a modified output format.

Generally, aspects can refine the methods of parent aspects as well as the parent’s
pointcuts. Extending pointcuts increases the reuse of existing join point specifications (as
in the logging example). Note that refining/extending aspects is conceptually different
than applying aspects themselves. Applying two aspects modifies the base program in
two independent steps. In our logging example this would lead to two different logging
instances. Instead, aspect refinement results in two native aspects that are connected via
inheritance. Thus, one aspect extends the other and both are applied to the base program.
Doing so in the logging example, we have only one logging instance. See [1] for a details on
the implementation in FeatureC++.

Figure 6 depicts an aspect refinement that extends a logging feature, including a logging
aspect. It extends a parent method in order to adjust the output format (Line 2-5) and
refines a parent pointcut to extend the set of target join points (Lines 6-8). Both is done
using the super keyword (Line 4,8).

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole

LogConsole

LogAspect

LogAspect

Buffer

ExtLog

Log

Sync

Base

Alloc

Fig. 5. Refining an AML.

1 refines aspect LogAspect {
2 void print () {
3 changeFormat ();
4 super:: print ();
5 }
6 pointcut log() =
7 call("% Buffer ::put (...)") ||
8 super::log();
9 };

Fig. 6. An aspect embedded into an AML.

4 Bounding Quantification

The close integration of aspects into the incremental development style of product lines
and AHEAD leads to a further interesting issue. This integration allows us to tame the
unpredictable behavior of aspects.

The problem of current AOP languages is that the binding of aspects is independent of
the current development stage. That means that aspects may affect subsequent integrated
features. This can lead to unpredicted effects, e.g. an aspect is unintentionally bound to
features of subsequent development stages. This may lead to errors and unpredicted pro-
gram behavior. Since common AOP languages cannot distiguish between software artifacts
of different development stages they cannot scope their appliance. Integrating aspects into
incremental designs implemented by MLs makes it possible to assign the implementation
units to development stages and to define a natural order.

In [8] Lopez-Herrejon and Batory propose an alternative aspect composition mechanism.
They argue that with regard to software (product line) evolution, features should only
affect features of prior development stages. Mapping this to aspects means that aspects
should only affect elements assigned to development stages that were already present at the
aspect’s implementation time. Current AOP languages, e.g. AspectJ and AspectC++, do
not follow this principle. This decreases aspect reuse and complicates incremental software
development. Consequently, AMLs with their support for aspect refinement follow this
principle: aspects affect only artifacts of previous development stages.

In order to implement this bounding mechanism in the AMLs of FeatureC++, the
user-declared join point specifications of aspects must be restructured: Type names in
pointcut expressions are translated in order to match only these types that are declared by
the current and the parent layers. Each expression that contains a type name is translated
into a set of new expressions that refer to all type names of the parent classes. Figure 7
shows a synchronization aspect that is part of an AML. It has two parent layers (Base, Log)
and several child layers. Using this novel bounding mechanism, we transform the aspect
and the pointcut as depicted in Figure 8. It can be seen that the new pointcut matches
only types of the current and parent layers (Lines 3-5).

1 aspect SyncAspect {
2 pointcut sync() =
3 call("% Buffer ::put (...)");
4 };

Fig. 7. A simple pointcut expression.

1 aspect SyncAspect_Sync {
2 pointcut sync() =
3 call("% Buffer_Sync ::put (...)") ||
4 call("% Buffer_Log ::put (...)") ||
5 call("% Buffer_Base ::put (...)");
6 };

Fig. 8. Transformed pointcut.

5 Discussion

The integration of aspects into AHEAD contributes several new opportunities to the pro-
grammer. It enables the programmer to choose the adequate technique for a given problem:
He can use mixins to implement common features in form of MLs and he can use aspects to
implement certain crosscutting features. Which technique is most appropriate depends on

the features to be implemented and the features that are already present. [2, 1] give a set
of guildelines when using aspects and when using mixins. Note that often the programmer
does not use aspects stand-alone but encapsulated in AMLs with mixins in collaboration.

The introduction of aspects has led us to the proposal of aspect refinement. Since
aspects are encapsulated in MLs they can be refined, too. We perceive this as a natural
consequence of the AHEAD architectural model. Refining aspects leads to the observation
that it would be useful to refine pointcuts and advice besides methods. Since advice are
not first-class entities in common AOP approaches we focus preliminarily on pointcut
refinements. Section 3 has shown that there are indeed certain applications of this concept.
FeatureC++ supports aspect and pointcut refinement already. Advice refinements would
be possible if methods and advice became unified, e.g. by exploiting ideas of classpects [12].

The advantage of aspect refinement is the possibility to evolve aspects over several
development stages. It contributes a unification of aspects and classes in this respect.
Furthermore, it opens the door to bounding quantification. Our novel bounding mechanism
allows to scope aspects and to prevent unpredicted aspect interactions and bindings. This
is not possible with common AOP languages because the order of refinements cannot be
inferred from the program structure, e.g. the classes and aspects. Thus, the integration
of aspects into MLs makes it possible for the first time to bound aspects based on their
affiliation to a development stage. This is an important contribution to apply aspects to
product line development.

Although, we used AMLs and FeatureC++ to implement aspect refinement and the
bounding mechanism, the ideas are applicable to other programming languages. The only
prerequisite is an explicit layered architecture that integrates aspects.

6 Related Work

Mezini et al. propose Caesar that combines aspects and collaboration [11]. Aspects in Cae-
sar rely on aspect collaboration interfaces that decouple an aspect’s implementation from
its binding. By defining a binding, a programmer can adapt the aspect’s implementation to
the application context. This on-demand remodularization improves aspect reuse. Bindings
are applied statically at object creation time or during the dynamic control flow. Different
aspects can be composed via their collaboration interfaces. Collaborations are refined using
pointcut-like constructs.

As with Caesar Aspectual Collaborations (ACs) [7] and Object Teams (OTs) [5] encap-
sulate aspects into modules with expected and provided interfaces. Their focus is similar
to Caesar but with drawbacks regarding the aspect reuse (due to missing bidirectional
interfaces).

Caesar, ACs, and OTs as well as AMLs have several similarities. All are based on
collaborations which represent the basic building blocks and all integrate AOP concepts.
The main advantage of AMLs is that they have AHEAD as architectural model. Although
the others do not propose such model we perceive, if it is, GenVoca as their architectural
model. AHEAD has several strength compared to its precedessor GenVoca: It integrates all
kinds of software artifacts and introduces an algebraic model for software structure. This
opens the door to automatic algebra-based optimization and compositional reasoning [3].
Futhermore, AMLs firstly implement aspect refinement with bounding quantification.

However, Caesar, ACs, and OTs have a stronger focus on on-demand remodularization
and dynamic composition which are not concerned in the AML approach.

Colyer et al. propose the principle of dependency alignment : a set of guidelines for
structuring features in modules and aspects with regard to program families [4]. They
distinguish between orthogonal and weak-orthogonal features. But they do not disguish
between the structural properties and conceptual differences of aspects and features. The
discussion of AMLs and aspect refinement gives the insight that using aspects stand-alone
has several weaknesses in implementing features. The integration in collaborations unifies
and improves AOP and AHEAD methodolgy.

Loughran et al. support the evolution of program families with Framed Aspects [10].
They combine the advantages of frames and AOP in order to serve unanticipated re-

quirements. Framed Aspects are related to AMLs. Both allow to parameterize aspects at
instantiation time but AMLs embed aspects into collaborations and supports step-wise
aspect refinement.

7 Conclusions

In this paper, we have investigated the relation between the AHEAD architectural model
for incremental product line development and AOP. According to AHEAD we perceive as-
pects also as software artifacts that contribute to features. This is different from the view of
former work in this field. The embedding of aspects into the AHEAD layered architecture
increases the power of these features. Aspects improve their crosscutting modularity. Based
on AMLs we have introduced the notion of step-wise aspect refinement. Aspects encap-
sulated in AMLs refine other aspects by extending their methods, adding members, and
refining pointcuts. The concept of aspect refinement unifies aspects with other software
artifacts with regard to step-wise refinement. Integrated in AHEAD, aspects can easily
be extended and evolved over several development stages. The novel bounding quantifi-
cation exploits the concept of aspect refinement in order to reduce the complexity and
unpredictability of aspects. The naturally layered architecture of AHEAD allows to bound
aspects only to artifacts of previous development stages. This reduces unpredictable aspect
interactions and improves incremental software development using AOP techniques.

Finally, we want to emphasize that the idea of aspect refinement and bounding quantifi-
cation does no depend on a specific programming language, but is merely a general concept
of integrating and handling aspects in context of incremental designs, e.g. software product
lines.

References

1. S. Apel et al. FeatureC++: Feature-Oriented and Aspect-Oriented Programming in C++.
Technical report, Department of Computer Science, Otto-von-Guericke University, Magde-
burg, Germany, 2005.

2. S. Apel et al. FeatureC++: On the Symbiosis of Feature-Oriented and Aspect-Oriented Pro-
gramming. In GPCE, 2005.

3. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE TSE,
30(6), 2004.

4. A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in Program Families.
Technical report, Computing Department, Lancaster University, 2004.

5. S. Herrmann. Object Teams: Improving Modularity for Crosscutting Collaborations. In Ne-
tObjectDays, 2003.

6. G. Kiczales et al. Aspect-Oriented Programming. In ECOOP, 1997.
7. K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining Modules

and Aspects. The Computer Journal (Special issue on AOP), 46(5), 2003.
8. R. Lopez-Herrejon and D. Batory. Improving Incremental Development in Aspectj by Bound-

ing Quantification. In SPLAT, 2005.
9. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in Advanced

Modularization Technologies. In ECOOP, 2005.
10. N. Loughran et al. Supporting Product Line Evolution with Framed Aspects. In AOSD

ACP4IS Workshop, 2004.
11. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented Programming

and Aspects. ACM SIGSOFT, 2004.
12. H. Rajan and K. J. Sullivan. Classpects: Unifying Aspect- and Object-Oriented Language

Design. In ICSE, 2005.
13. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation Technique

for Refinements and Collaboration-Based Designs. ACM TOSEM, 11(2), 2002.

