
Putting Automatic Polyhedral Compilation

for GPGPU to Work

Soufiane Baghdadi 1, Armin Größlinger 2,1, and Albert Cohen 1

1 INRIA Saclay and LRI, Paris-Sud 11 University, France
{soufiane.baghdadi,albert.cohen}@inria.fr

2 Universität Passau, Fakultät für Informatik und Mathematik
armin.groesslinger@uni-passau.de

Abstract. Automatic parallelization is becoming more important as
parallelism becomes ubiquitous. The first step for achieving automa-
tion is to develop a theoretical foundation, for example, the polyhedron
model. The second step is to implement the algorithms studied in the
theoretical framework and getting them to work in a compiler that can
be used to parallelize real codes.
The polyhedral model is a well-established theoretical foundation for
parallelizing codes with static control. In this paper, we present, from
a practical point of view, the challenges to solve for getting polyhedral
compilation for GPUs to work. We choose the Polyhedral Compiler Col-
lection (PoCC) as compiler infrastructure and target CUDA as the target
platform; we plan to support OpenCL in the future.

1 Introduction

In recent years, graphics processing units (GPUs) have prominently entered the
parallel computing scene because they offer higher computing power than cur-
rent multicore CPUs and some changes in their design have made them suitable
for general-purpose computing (GPGPU computing). The peculiarities of their
architecture have given rise to the new programming model single instruction

multiple threads (SIMT, a variation of the well-known SIMD model), new lan-
guages (CUDA, OpenCL) and new tools. Research in automatic parallelization
has long promised fully automatic transformation of sequential input programs
to efficient parallel code. One such direction of research is the well-known poly-
hedron model. The model is supported by a broad theory and recent advances
address the characteristics of GPUs, especially the SIMT programming model
and memory hierarchies.

In this paper, we present the practical aspect of putting automatic poly-
hedral compilation for GPGPU computing to work. We discuss the challenges
in the particular context of the automatically parallelizing compiler called the
Polyhedral Compiler Collection (PoCC):
http://www-roc.inria.fr/ pouchet/software/pocc

PoCC has been designed as a source-to-source compiler for parallelizing static
control parts (SCoPs) for multicore CPUs using OpenMP. We add modules

to PoCC for dealing with GPU memory management and code generation for
CUDA, each module focusing on its specific task. Both aspects, memory man-
agement and code generation, require problems to be solved which do not occur
when targeting CPUs. In addition, we have to take care that the transformation
that is applied to the original code produces parallelism suitable for GPUs. In
CUDA, there are two levels of parallelism: blocks and threads. Each block con-
sists of several hundred threads that can synchronize among each other; several
blocks (tens to hundreds) execute independently of each other. This fits with
space-time mapping followed by tiling as this generates the right kind of two-
level parallelism: outer sequential loops (time tiles) and parallel loops (space
tiles) for the tiles (supersteps) and inner loops (so-called point loops) for each
operation inside a tile.

In memory management, we have to deal with three levels of memory. Data
has to be transferred between the host memory and the main memory of the
GPU and, for efficiency, between the main memory of the GPU and the much
faster scratchpad memories of the GPU’s (multi)processors. We add statements
(with suitable iteration domains) for memory transfers between host, GPU main
memory and scratchpad memory. In addition, we have to compute the size of
the memory transfers (number and size of elements) and construct a suitable
layout of all the transferred data to make do with one transfer call between host
and GPU for the elements of several arrays, for example.

In code generation, the first step is to apply a polyhedral code generator
(e.g., CLooG). The loop nest generated by it is directly suitable for an execution
using OpenMP, but for GPUs, we have to do further processing. First, we have
to modify memory accesses in the computation statements to fit the chosen
memory region and data layout. Second, dealing with the CUDA language, we
extract each GPU part G of the loop nests (i.e., the point loops) and replace
it by an invocation of a (newly synthesized) kernel function K; G becomes the
body of K. To be precise, the invocation of K also does away with the space tile
loops surrounding it as the iterations of space tile loops become the blocks of
the corresponding kernel invocation. Third, we modify the parallel point loops in
each kernel to distribute their iterations among the threads of a block according
to the SIMT model.

In this paper, we detail on the different challenges mentioned and how we
solve them to achieve fully automatic parallelization for GPGPU computing us-
ing the polyhedron model. In Section 2, we introduce the polyhedron model and
the tool chain we use in our implementation. We discuss the specific challenges
to address when auto-parallelizing for GPGPU in Section 3. We discuss the most
closely related work and position the originality of our approach in Section 4.
We then detail on our implementation in Section 5. Section 6 concludes the pa-
per. Due to technical problems (cf. Section 5.3) we cannot present experimental
results at this time.

2 The Polyhedron Model

The polyhedron model is a powerful model to describe and transform certain
regular loop nests. It and has been studied and extended for several decades
[KMW67,Lam74,Len93]. We briefly introduce the model itself and a tool chain,
the Polyhedral Compiler Collection, which we extend with modules for GPU-
specific code generation.

2.1 Model

The polyhedron model (without its recent extensions for irregular codes and non-
linearities) can describe codes that consist of nested for-loops with statements
that access arrays. Both the loop bounds and the subscripts of the arrays have
to be affine expressions in the surrounding loop indices and some structural
parameters (e.g., the size of a matrix). Such a loop nest (or a sequence of them)
is called a static control part (SCoP).

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

S: A[i][j] = (A[i-1][j] + A[i][j-1]) * 0.5;

(a) Code (b) Iteration domain

(c) Domain after space-time mapping and tiling

for (T=0; T<=(2*n-2)/2; T++)

parfor (P=max(1+2*T-n,0)/2; P<=min(2*T+1,n)/2; P++)

for (t=2*T; t<=min(2*T+1,2*n-2); t++)

parfor (p=max(t-n,0); p<=min(t,n); p++) {
int i = 2-p+t, j = p+1;

A[i][j] = (A[i-1][j] + A[i][j-1]) * 0.5;

}
(d) Parallel code

Fig. 1. Static control part

The loops surrounding a statement S define its iteration domain DS , i.e., S
is executed for each i ∈ DS . For example, the statement S in the static control
part shown in Figure 1(a) has iteration domain DS = {(i, j) | 1 ≤ i, j ≤ n}. A
specific execution of a statement S for a value i ∈ DS is called an operation of
S, written 〈i, S〉.

The array accesses in the statements give rise to the dependences between
the operations of the statements. When two operations 〈i, S〉 and 〈j, T 〉 access
the same memory cell, i.e., f(i) = g(j) with array accesses A[f(i)] in S and
A[g(j)] in T , and at least one of the two accesses is a write access, then the
relative execution order of 〈i, S〉 and 〈j, T 〉 may not be changed as this would,
in general, change the program semantics. In Figure 1(b), the arrows show the
dependences between operations. The dependences determine which operations
can be executed in parallel. The parallel execution order is given by computing a
so-called schedule θS for each statement S which gives the execution time θS(i)
of an operation 〈i, S〉 and a placement πS which gives the processor πS(i) on
which the operation is executed. Schedule and placement together are called the
space-time mapping of the program model.

Since the parallelism given by schedule and placement is usually too fine-
grained for the parallel target architecture (e.g., the placement describes more
processors than are available), the grain of the execution is coarsened after space-
time mapping by applying a tiling step, i.e., bigger blocks are formed by grouping
together operations and executing them as atomic units. In the model, this is
achieved by changing the enumeration of a dimension (e.g., the processors) to
a two-dimensional enumeration, an outer dimension (the tile dimension) that
enumerates the groups and an inner dimension that enumerates the iterations
inside a given group. The size of the tiles is determined by the hardware, e.g.,
the number of processors available. Tiling can also be used to adjust the memory
footprint of the tiles, for example, to make each tile use the cache of a processor
optimally.

The final step in the transformation process is to generate executable code
from the program model after space-time mapping and tiling. The state-of-the-
art tool for doing this is CLooG [Bas04]. An in-depth description of all the steps
of the model (targeted for distributed memory architectures) can be found in
the literature [Gri04].

2.2 Polyhedral Compiler Collection

The Polyhedral Compiler Collection (PoCC) links together several tools for the
polyhedron model to form a source-to-source parallelizing compiler. It uses Clan
to extract a SCoP from a given source code, Candl to analyze dependences, Pluto
[BHRS08] to compute schedule, placement and tiling, and CLooG to generate
code. Recent development versions of PoCC include tools for vectorization and
other optimizations. PoCC was designed to be used for multicore CPUs. We
contribute modules to PoCC which enable a source-to-source transformation
from a C program to a CUDA program where a designated SCoP is executed on
a GPU.

3 GPU-Specific Challenges

Today, graphics processing units (GPUs) are not only used for rendering images
but for general purpose computing, so called general purpose GPU (GPGPU)
computing. This change has been driven by two factors. First, some changes
to the architecture of GPUs make it possible to execute general purpose appli-
cations on GPUs, not only graphics computations. Second, the raw computing
power of GPUs currently exceeds the computing power of multicore CPUs. Al-
though one CPU core and one GPU multiprocessor (see below) have about the
same computing power, GPU multiprocessors are simpler and, hence, more of
them can be put on a single processor die.

The graphics heritage of GPUs is reflected in a massively parallel execu-
tion model due to computing the pixels of an image being a heavily parallel
task. Apart from this and other differences in the execution model compared to
CPUs, memory hierarchies and their management and the structure of the code
pose challenges that need to be addressed when targeting graphics processors
for parallel applications. In the rest of this section, we present the architecture
of NVidia GPUs as an example for the architecture of graphics processors. Tar-
geting OpenCL instead of CUDA would be similar but differ in the details. We
plan to support OpenCL in the future, too.

3.1 Execution Model

A GPU consists of several multiprocessors (analogous to the cores of a multicore
CPU) that execute independently of each other. Each multiprocessor consists of
8 or, on newer hardware, 32 thread processors that execute threads. The main
constraint for the execution is that the thread processors of a multiprocessor have
to execute the same instruction for the computations to be parallel. The reason
is that there is only one instruction decode unit for the whole multiprocessors.
Each thread processor has its own arithmetic logic unit, i.e., the computations
of the threads happen in parallel in a SIMD fashion.

When a kernel (GPU code) is called, the invocation specifies a two-level
parallelism corresponding to the multiprocessor-thread hierarchy. The threads
are grouped in so-called blocks. A block is mapped to a multiprocessor (as soon as
a multiprocessor becomes free); hence, the execution of the blocks is independent
(there cannot be communication between the blocks). In each block, several
threads (mapped to the thread processors) execute. Threads in a block can
synchronize and exchange data during the execution.

The blocks are addressed in one- or two-dimensional coordinates, the threads
in a block in one-, two- or three-dimensional coordinates depending on the ap-
plication’s need.

The threads in a block are grouped in so-called warps of 32 threads. Ac-
cording to the limitations of the multiprocessors, the threads in a warp have
to execute the same instruction for parallel execution to happen; otherwise, di-
vergence occurs and the execution becomes sequential. Different warps can take
different control paths without harming performance.

3.2 Memory Management

On CPUs, one has to deal with only one level of memory explicitly, namely
main memory. Caching is handled by hardware; to profit from caching, the only
challenge is to arrange the code such that accesses to main memory happen in
a fashion that is suitable for caching.

On GPUs, hardware-managed caches for main memory are available (on
newer architectures) but it is still necessary to exploit the scratchpad mem-
ory of a multiprocessor (called shared memory in CUDA) by explicit addressing.
Each multiprocessor offers 16 or 64 kB of shared memory which is local to the
multiprocessor and can be accessed within one clock cycle provided that certain
alignment constraints (that depend on the hardware generation) are obeyed.
Newer hardware generations lift the alignment restrictions.

In total, there are three levels in the memory hierarchy:

– host memory, i.e., the main memory of the CPU,
– device memory, i.e., the main memory of the GPU accessible by all multi-

processors,
– shared memory, i.e., the scratchpad memory of a multiprocessors.

To be able to execute code at all, we have to copy input data from host memory
to device memory and output data from device memory to host memory. To
achieve high performance, data values that are accessed multiple times have
to be put in the scratchpad, i.e., at suitable points, data has to be copied to
scratchpad memory before the data is used and, later, when the data is not
used/updated any more, it has to be copied back to device memory.

Organizing the memory transfers places two problems. First, we have to de-
termine which elements to copy. Second, we have to select a linearized layout
for the transferred data. In case of a copy from host to device memory, we can
only copy a contiguous memory region (through DMA) and for a copy between
device and scratchpad memory, we do not want to waste memory in the scratch-
pad because of its limited size. For the scratchpad management, there is a third
challenge, namely we do not need (and want) to copy all the elements each time
because some elements are reused and should remain in the scratchpad longer
than others.

The elements to transfer are found by computing the sets of elements that
are actually used and the linearization is performed by assigning contiguous one-
dimensional indices to the elements. The theoretical basis for dealing with these
problems can be found in our own previous work [Grö09]. In Section 5.1, we
describe the practical side of these techniques.

3.3 Code Generation

The CUDA programming language is based on C++. On the one hand, a few
extensions are made, for example, to declare whether a variable (on the GPU)
is in device memory or in shared memory, or a special syntax for invoking GPU
code from host code specifying the number of blocks and threads.

On the other hand, kernel code is rather restricted. For example, it cannot
use recursion (because there is no run-time stack) or dynamic memory alloca-
tion. Fortunately, the transformed code obtained for SCoPs does not need these
features. In Section 5.2, we present the modifications we have made to the poly-
hedral code generation for multicores to generate CUDA code.

4 Related Work and Position Statement

Revisiting the affine transformation construction and the heuristics of Bond-
hugula’s Pluto framework [BHRS08], Baskaran et al. developed the first polyhe-
dral compiler optimizations for GPU targets [BBK+08a,BBK+08b]. These opti-
mizations include locality- and access-pattern enhancing transformations for the
GPU’s global memory and shared memory, as well as code generation to man-
age the on-chip shared memory. Baskaran’s C-to-CUDA is the first end-to-end,
automatic source-to-source polyhedral compiler for GPU targets, implementing
and evaluating the above optimizations as well as several code generation en-
hancements [BRS10].

Our work is independent from from C-to-CUDA, although it shares many
tools and algorithms with it. Our motivations are also slightly different, leading
to the investigation of complementary optimization and code generation prob-
lems, and stressing the practical post-processing aspects of the problem.

Indeed, our first motivation was a very practical one: building a GPU code
generator that would complement an arbitrary source-to-source tool-chain for
polyhedral compilation (PoCC in this case). Unlike C-to-CUDA, this choice re-
quires a careful modularization and standardization of the input parameters,
polyhedral sets and relations to drive the code generation. This choice also re-
quired decoupling the code generation algorithm (CLooG) from post-processing
stages dedicated to CUDA syntax generation, including the generation of the
memory copying and other CUDA library calls, the declaration of the kernel’s
signature, and the declaration of new (local) arrays and memory management
instructions. GPU-specific optimizations are also impacted by this design, and
recast as independent passes working on the PoCC intermediate format. For ex-
ample, the localization pass is a key component of our approach; it is an evolution
of an algorithm we proposed before [Grö09]. Another advantage of this design is
the ability to plug unmodified optimization heuristics, such as Pouchet’s LeTSeE
[PBCC08] iterative search engine, as a complement to GPU-specific tiling and
parallelization passes. Eventually, we are not willing to restrict ourselves to static
control loop nests, but plan to extend our optimizations and code generator to
arbitrary (structured) intraprocedural control flow. This is made possible by
our recent advances in polyhedral code generation and abstraction for dynamic
data-dependent conditions [BPCB10].

5 Implementation

Our implementation is in a work-in-progress state as we first had to solve several
technical problems to get a working source-to-source compiler. The algorithms
dealing with GPU-specific challenges are still being improved but they are in a
state that allows us to present our work at this stage and give an impression of
where we are heading.

Parsing the input source code and computing the dependences is unmodified.
For the space-time mapping and tiling steps of the transformation process, we
use an unmodified version of Pluto for now because it turned out that Pluto’s
parallelization and optimization which are targeted at multicore CPUs are good
enough for constructing a parallel program for a GPU. To fully exploit the po-
tential of GPUs, we plan to implement parallelizing transformations that are
tailored to the peculiarities of GPUs later. After the tiling phase, we insert
our two modules: GpuLocalizer and CudaGenerator. The GpuLocalizer

module adds statements for the host to device memory transfers and statements
for the device to shared memory transfers and reorganization. The CudaGen-

erator module first calls CLooG to generate code for the transformed program
model (including the statements added by GpuLocalizer) and applies some
post-processing to obtain CUDA code.

for (T=...) // global time steps (time tiles)

parfor (P=pl(T) to pu(T)) // global processor, i.e., space time

for (t=...) // local time (time inside a tile)

parfor (p=...) // local processor (thread)

computation statements

Fig. 2. Principal program structure after space-time mapping and tiling

After space-time mapping and tiling, the principal structure of the trans-
formed program is as shown in Figure 2.

5.1 GpuLocalizer

Both the data transfer between host and device memory and the management
of the scratchpad (shared memory) is done by GpuLocalizer. The reason for
combining both tasks in one module is that the computations required are ac-
tually quite similar.

The theoretical basis for our computations can be found in our own previous
work [Grö09]. We did not implement our procedure completely at that time as we
had to use a library which turned out to compute incorrectly with Z-polyhedra
and the deficiencies of the library could not be repaired easily. Therefore, our
previous implementation could only deal for codes without tiling, for example.

Meanwhile, the integer set library3 (ISL) has become available. This enables
us to perform exact computations for integer sets defined by affine (in)equalities
(including Z-polyhedra). We can now implement a sound and complete manage-
ment for the scratchpad and for the data transfer between host and device. In
the following, we present our technique for a single array, but the extension to
multiple arrays is straight-forward.

For the data transfer between host and device, we compute the set CA(T) of
all indices of elements of array A needed in global time step T , i.e., x ∈ CA(T)
means that there is a tile with global time coordinate T that accesses A[x]. By
Ehrhart theory (as implemented in the Barvinok library4), we can compute an
expression σA(x, T) ∈ Z such that for a given T

– the function x 7→ σA(x, T) is injective on CA(T),

– 0 ≤ σA(x, T) < |CA(T)| for all x ∈ CA(T).

In other words, σA maps the elements of CA(T) to a contiguous interval starting
at 0. Therefore, σA can be used to assign positions in the transfer buffer between
host and device memory to the elements of A used at time step T . In the kernel,
i.e., the code that runs on the GPU, each array access A[f(i)] is replaced by
A[σA(f(i), T)] and the kernel will operate on the right data values from the
transfer buffer.

To improve performance, we have to keep relevant data values in shared
memory, i.e., we actually want to replace A[f(i)] by LA[ρA(f(i), t)] where LA

refers to shared memory reserved for elements of original array A and ρA is the
mapping function between the original index f(i) and the position in shared
memory for array A. ρA can be computed in the same way as σA from the
corresponding set DA(t),

5 except that ρA does not assign linearized locations for
a global time step (the set of all parallel tiles) but for one local time step, i.e., one
iteration of the loop on t within a tile. Unlike the data transfer between host and
device, we do not copy in all the data to shared memory at the beginning of each
time step and copy back all the data at the end of the time step because reuse
between time steps is likely and, in contrast to the transfers between host and
device, we can move elements to new positions in shared memory individually.
This enables us to move elements that are used in time steps t and t + 1 with
indices given by x ∈ DA(t)∩DA(t+1) from ρA(x, t) to ρA(x, t+1) and we need
only copy in elements described by DA(t) − DA(t − 1) and copy out DA(t) −
DA(t+ 1).

The complication that occurs with moving elements inside shared memory is
that we have to be careful not to overwrite elements prematurely, i.e., it has to be
performed as a parallel assignment. Using two copies of shared memory to copy
from one to the other is a possible solution requiring twice the amount of shared

3 http://freshmeat.net/projects/isl, visited 2010-06-07.
4 http://freshmeat.net/projects/barvinok, visited 2010-06-07.
5 Actually, DA depends not only on t but also on T and P ; for the ease of notation,
we only write the dependence on t.

memory, of course. Depending on the properties of ρA, in-place movement is pos-
sible is some situations (see [Grö09]). The principal code after GpuLocalizer

is shown in Figure 3.

for (T=...) {
for (x ∈ CA(T)) buffer[σA(x, T)] = A[x];

copy to device(buffer);

parfor (P=Pl(T) to Pu(T)) {
for (t=...) {
parfor (x ∈ DA(t)−DA(t− 1)) LA[ρA(x, t)] = buffer[σA(x, T)];
parfor (p=pl(T, P, t); p ≤ pu(T, P, t); p++)

computation statements with LA[ρA(f(i), t)] instead of A[f(i)]
parfor (x ∈ DA(t)−DA(t+ 1)) buffer[σA(x, T)] = LA[ρA(x, t)];
parfor (x ∈ DA(t) ∩DA(t+ 1))

LA[ρA(x, t+ 1)] = LA[ρA(x, t)]; // parallel assignment

}
}
copy from device(buffer);

for (x ∈ CA(T)) A[x] = buffer[σA(x, T)];
}

Fig. 3. Principal code after GpuLocalizer

The drawback of the method we use is that the expressions computed for
σA and ρA can be rather big compared to the original expressions for the array
subscripts and can contain case distinctions on the loop iterators in general.
The case distinctions can be eliminated by splitting the iteration domains of the
statements according to the conditions; this increases the number of statements
and puts some pressure on the code generator (CLooG) and can lead to code
explosion. We are working on techniques that compute mappings σA and ρA that
do away with mapping to a contiguous interval, i.e., by allowing to waste some
space in the transfer buffer or scratchpad memory, the mapping gets simpler.

5.2 CudaGenerator

The main challenge forCudaGenerator is to output a correct CUDA program.
In the model (and for code generators like CLooG), the loops are simply nested
inside each other as shown in Figures 2 and 3. But in CUDA, the kernel code
has to be in a separate function and a special syntax has to be used for invoking
kernels. In addition, the parfor loops of the model have to be mapped to the
blocks (in case of the loop on P) and threads (for the loop on p). The principal
code (for readability without the code for managing shared memory) is shown
in Figure 4. The generation of CUDA code happens in 4 steps:

(1) Kernels are extracted from the abstract syntax tree delivered by CLooG and
replaced by kernel invocation statements specifying the number of blocks

and threads. The number of blocks is derived from the number of tiles in
the parallel dimension (i.e., the number of iterations of the loop on P).

(2) The computation statements in each kernel are modified to access shared
memory (or device memory if shared memory is not used) by replacing orig-
inal array identifiers (e.g., A by LA) and modifying the subscript functions
to use ρ or σ, respectively (e.g., change A[f(i)] to LA[ρS(f(i), t)]).

(3) The code for each kernel is printed in a separate CUDA file and a header
file containing the prototype of the kernel function is created. In the kernel
code, the values of the tile iterators are reconstructed: T is passed to the
kernel as a parameter and P is computed from the block number. Parallel
loops (parfor) are made parallel by distributing the iterations among the
threads, i.e., the thread number is added to the lower bound of the loop and
the loop stride is set to the number of threads.

(4) The function containing the original SCoP is augmented with declarations
for the variables, initialization of CUDA, allocation of transfer buffers and,
of course, the host part of the generated parallel code (i.e., the loop on T ,
data transfer and kernel calls).

Note that the iterations of the loop on P become the blocks of the kernel in-
vocation and the iterations of the loop on p are distributed among the threads
of a block. The required amount of shared memory and the required size of the
transfer buffer can be computed using Ehrhart theory by counting the number
of elements in DA(t) and CA(T), respectively. Each block is started with 512
threads (the maximum on older hardware) as, at the moment, we do not compute
the maximal number of threads among all the blocks of a kernel invocation.

5.3 Technical Difficulties

Unfortunately, several technicalities prevent us from presenting benchmark re-
sults in this paper. We are aware of the fact that describing an auto-parallelizing
source-to-source compiler without showing benchmarks is quite unconvincing
and we are rather dissatisfied that we cannot provide any hard numbers.

The main reason for the current problems is that the tool chain (PoCC) is
in a state of flux, and its interfaces, data structures and libraries are constantly
evolving. Some of the recent changes are necessary for our modules to work
correctly; therefore, using an older, more stable version of PoCC was not an
option. The changes in the interfaces and data structures required to rewrite
some parts of our modules several times. Changing to new libraries (e.g., ISL)
exposed several bugs in all parts of the tool chain which stalled development of
our modules further.

We hope to overcome the current technical difficulties in the coming weeks
and to be able to run a few benchmarks when this paper is presented at CPC
2010. A few benchmarks performed with a prototype implementation of GpuLo-

calizer (which did not support tiling and suffered from relying on an incorrect
library) can be found in our previous work [Grö09].

global void kernel0(float *buffer, int T, int n) {
int P = Pl(T) + blockIdx.x;

for (t=...) {
...

for (p=threadIdx.x+pl(T, P, t); p ≤ pu(T, P, t); p += blockDim.x)

computation statements with LA[ρA(f(i), t)] instead of A[f(i)]
...

}
}

for (T=...) {
for (x ∈ CA(T)) buffer[σA(x, T)] = A[x];

copy to device(buffer);

dim3 blocks(Pu(T)-Pl(T)+1,1), threads(512,1,1);

unsigned sharedSize = maxSharedSize A(T) + ...;

kernel0<<<blocks,threads,sharedSize>>>(buffer, T, n);

copy from device(buffer);

for (x ∈ CA(T)) A[x] = buffer[σA(x, T)];
}

Fig. 4. Principal code after CudaGenerator (shared memory management not
shown)

6 Conclusions

With our extensions to the Polyhedral Compiler Collection (PoCC), we have
shown that we can build a working source-to-source compiler which takes a
sequential C program as input and produces a CUDA program that can exploit
the parallelism of a modern GPU to execute certain loop nests (static control
parts) in parallel. Building upon the well-established polyhedron model, the
transformation from a sequential input program to a parallel output program is
automatic. Our contributions are modules for the tool chain that deal with the
data transfer (copy input data from the host to the GPU, copy output data from
the GPU to the host), scratchpad management and post-processing of the loop
code generated by a polyhedral code generator (CLooG) to be valid CUDA code.
Our modules are still in development as, e.g., different codes exhibit different
characteristics w.r.t. their use of the scratchpad; hence, several optimizations
for common cases have to be implemented to get a fast execution. In addition,
the parallelizing transformation computed by Pluto (which has been designed
for multicore CPUs) is good enough for our examples, but we are working on
modifications that take the peculiarities of GPUs into account to a greater extent
(for example, the restrictions on the control flow on GPUs).

References

[Bas04] Cédric Bastoul. Code generation in the polyhedral model is easier than
you think. In PACT ’04: Proceedings of the 13th International Confer-

ence on Parallel Architectures and Compilation Techniques, pages 7–16,
Washington, DC, USA, 2004. IEEE Computer Society.

[BBK+08a] Muthu M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J . Ra-
manujam, Atanas Rountev, and P. Sadayappan. Automatic data move-
ment and computation mapping for multi-level parall el architectures with
explicitly managed memories. In PPoPP ’08: Proc. of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
pages 1–10, New York, NY, USA, February 2008. ACM.

[BBK+08b] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoor-
thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. A compiler
framework for optimization of affine loop nests for gpgpus. In ICS ’08:
Proceedings of the 22nd annual international conference on Supercomput-
ing, pages 225–234, New York, NY, USA, 2008. ACM.

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A practical automatic polyhedral parallelization and locality optimization
system. In ACM SIGPLAN Conf. on Programming Languages Design and
Implementation (PLDI’08), Tucson, AZ, USA, June 2008.

[BPCB10] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen,
and Cédric Bastoul. The polyhedral model is more widely applicable than
you think. In Proceedings of the International Conference on Compiler
Construction (ETAPS CC’10), number 6011 in Lecture Notes in Computer
Science, Paphos, Cyprus, March 2010. Springer-Verlag.

[BRS10] Muthu M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-
to-cuda code generation for affine programs. In Proceedings of the Inter-
national Conference on Compiler Construction (CC 2010), number 6011
in Lecture Notes in Computer Science, pages 244–263. Springer-Verlag,
March 2010.

[Gri04] Martin Griebl. Automatic Parallelization of Loop Programs for Distributed
Memory Architectures. University of Passau, 2004. habilitation thesis.

[Grö09] Armin Größlinger. Precise management of scratchpad memories for localis-
ing array accesses in scientific codes. In O. de Moor and M. Schwartzbach,
editors, Proceedings of the International Conference on Compiler Construc-
tion (CC 2009), number 5501 in Lecture Notes in Computer Science, pages
236–250. Springer-Verlag, 2009.

[KMW67] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The orga-
nization of computations for uniform recurrence equations. Journal of the
ACM, 14(3):563–590, July 1967.

[Lam74] Leslie Lamport. The parallel execution of DO loops. Communications of
the ACM, 17(2):83–93, February 1974.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In Eike
Best, editor, CONCUR’93, LNCS 715, pages 398–416. Springer-Verlag,
1993.

[PBCC08] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimiza-
tion in the polyhedral model: Part II, multidimensional time. In ACM
Conf. on Programming Language Design and Implementation (PLDI’08),
Tucson, Arizona, June 2008.

