
Load-Aware Inter-Co-Processor Parallelism in Database

Query ProcessingI

Sebastian Breßa, Norbert Siegmundb, Max Heimelc, Michael Saeckerd,c,
Tobias Lauere, Ladjel Bellatrechef, Gunter Saakea

aOtto von Guericke University Magdeburg, P.O. Box 4120, D-39016 Magdeburg
bUniversity of Passau, Innstraße 41, D-94032 Passau

cTechnische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin
dParStream GmbH, Große Sandkaul 2, D-50667 Cologne

eJedox AG, Bismarckallee 7a, D-79098 Freiburg im Breisgau
fLIAS/ISAE-ENSMA, 1 avenue Clément Ader BP 40109, F-86961 Futuroscope

Abstract

For a decade, the database community has been exploring graphics process-
ing units and other co-processors to accelerate query processing. While the
developed algorithms often outperform their CPU counterparts, it is not ben-
eficial to keep processing devices idle while over utilizing others. Therefore,
an approach is needed that efficiently distributes a workload on available
(co-)processors while providing accurate performance estimates for the query
optimizer. In this paper, we contribute heuristics that optimize query pro-
cessing for response time and throughput simultaneously via inter-device
parallelism. Our empirical evaluation reveals that the new approach achieves
speedups up to 1.85 compared to state-of-the-art approaches while preserving
accurate performance estimations. In a further series of experiments, we eval-
uate our approach on two new use cases: joining and sorting. Furthermore, we
use a simulation to assess the performance of our approach for systems with
multiple co-processors and derive some general rules that impact performance
in those systems.

Keywords: co-processing, query processing, query optimization

IThis paper is a substantially extended version of an earlier work [9].
Email addresses: bress@ovgu.de (Sebastian Breß), siegmunn@fim.uni-passau.de

(Norbert Siegmund), max.heimel@tu-berlin.de (Max Heimel),
michael.saecker@parstream.com (Michael Saecker), tobias.lauer@jedox.com (Tobias
Lauer), bellatreche@ensma.fr (Ladjel Bellatreche), saake@ovgu.de (Gunter Saake)

Preprint submitted to Data & Knowledge Engineering March 31, 2014

1. Introduction

In recent years, processing devices became more and more heterogeneous,
and will likely become even more hetereogeneous in the future [16, 31]. Using
such co-processors to accelerate database query processing became increasingly
popular over the last years. Many efficient algorithms for data processing
were developed to exploit the processing capabilities of modern co-processors,
such as Graphics Processing Units (GPUs) [4, 10, 14], Accelerated Processing
Units (APUs) [15] or Field Programmable Gate Arrays (FPGAs) [24].

Most of the aforementioned approaches aim at improving the efficiency
of database operations. Only few solutions address the challenge of utilizing
multiple processing devices efficiently (i.e., using the processing device that
promises the highest gain w.r.t. an optimization criterion while keeping
all processing devices busy). There are two major classes of solutions
in this field: (1) heterogeneous task-scheduling approaches and (2) tailor-
made co-processing approaches. With (1), we do not know the specifics
of database systems (e.g., the set of operations and data representations,
access structures, optimizer specifics, concurrency control). Additionally, task
scheduling approaches typically require a system to use task abstractions of
a certain framework (e.g., Augonnet and others [3] or Ilić and others [18]).
Since DBMS have their own task abstractions, a large part of code would
have to be rewritten. With (2), we are bound to operations in a specific
DBMS (e.g., He and others [14] or Malik and others [21]).

Problem Statement. There is no approach that exploits DBMS-specific opti-
mizations while being independent of an algorithm’s implementation details
or the hardware in the deployment environment. To close this gap, we pre-
sented in prior work a decision model that distributes database operations
on available processing devices [7]. The model uses a learning-based ap-
proach that is independent of implementation details and hardware while
providing accurate cost estimations for database operations. We implemented
our decision model in a hybrid query-processing engine (HyPE) [6], which
is designed to be applicable to any hybrid DBMS.1 The problem is that in
real life systems, a machine may contain several heterogeneous co-processors
besides a few CPUs. Each processing device has its own load and in case
they are not homogeneous, different processing speed. However, there is no

1A DBMS that implements for each operation at least an operator for a CPU and a
co-processor, such as GDB [14], Ocelot [16], or MapD [23].

2

state-of-the-art approach that is capable to distribute a workload of database
operators on such a system while taking into account load and relative speed
of each processing device.

Research Question. In a more general context, we have to answer the following
research question: How can we distribute a workload of database operators
on processing devices with different speeds and load factors efficiently?

Contributions. In this paper, we make the following contributions:
1. We introduce heuristics that allow us to handle operator streams and

efficiently utilize inter-device parallelism by adding new optimization
heuristics for response time and throughput.

2. We provide an extension to HyPE, which implements the heuristics.
3. We present an exhaustive evaluation of our optimization heuristics w.r.t.

varying parameters of the workload using micro benchmarks (e.g., to
identify the most suitable heuristic).

This is a revised version of a previous paper [9]. Compared to this earlier
work, we make the following novel contributions:

1. We introduce a new optimization heuristic called probability-based
outsourcing, which selects devices at random with a probability that
corresponds to their expected performance.

2. Then, we extend our evaluation by two additional use cases: joining
and sorting to validate our approach on the most common operations
in a column store, a central aspect of a GPU-accelerated DBMS [8].

3. Finally, we investigate how the best optimization heuristic scales with
an increasing number of co-processors and an increasing speed difference
between processing devices, thus proving the overall applicability of our
load-aware scheduling in databases.

Major Findings. We find that our approaches can reliably balance a workload
not a priori known on all available (co-)processors. The (co-)processors may
have significantly different processing speeds for certain operations, which are
automatically learned by our system. In a further series of experiment in a
simulator, we find that the dominating performance bottleneck in a multi
co-processor system is to transfer result data back to the CPU.

Outline. The paper is structured as follows: In Section 2, we present our pre-
liminary considerations. We discuss operator-stream-based query processing
as well as HyPE’s extensions in Section 3. We introduce our optimization

3

Operation O

Algorithm Pool

CPU Decision Component

Ai

Dataset D

A1,
A2,...,
An

Optimization Heuristic

Test(A1,D),
Test(A2,D),...,
Test(An,D)

Estimation Refinement

GPU Estimation Component

Figure 1: Decision Model Architecture.

heuristics in Section 4 and provide an exhaustive evaluation using micro bench-
marks in Section 5. We conduct additional experiments with our simulator in
Section 6 and discuss related work in Section 7.

2. Preliminary Considerations

In this section, we provide a brief background on GPUs, because we will
evaluate our approach on a CPU/GPU system. Then, we discuss our decision
model [7], which we extend to support operator-stream-based scheduling.

2.1. Graphics Processing Unit

GPUs are specialized processors for graphics applications. A new trend
called General Purpose Computation on Graphics Processing Units (GPGPU)
allows for a broader range of applications to benefit from the processing
power of GPUs. Their main properties are: (1) They have higher theoretical
processing power compared to CPUs for the same monetary cost. (2) GPUs
are optimized for high throughput, because they possess a highly parallel
architecture and can efficiently handle thousands of threads concurrently. (3)
They can process only data dormant in GPU RAM. Data not available in
GPU RAM has to be transfered from the CPU RAM over the PCIe Bus,
which is the bottleneck in a CPU/GPU system. Note that data processing on
processing devices and memory transfer can be performed in parallel [32].

2.2. Decision Model

In prior work, we proposed a decision model which distributes operations
across processing devices, such that an operation’s response time is minimal
[7]. The main idea is to assign each operation O a set of algorithms (e.g., the
algorithm pool APO), where each algorithm utilizes exactly one processing
device, such as a CPU or a co-processor (CP). Hence, a decision for an

4

algorithm A using processing device X leads to an execution of operation
O on X. This way, the model does not just decide on a processing device,
but on a concrete algorithm on a processing device, thereby removing the
need for a separate physical optimization stage. For an incoming data set
D, the execution times of all algorithms of operation O are estimated using
an estimation component, which passes the estimated execution times to
a decision component. The decision component receives an optimization
heuristic as an additional input, which allows the user to tune for response
time or throughput. The decision component returns the algorithm Ai that
has to be executed. We explain our heuristics in detail in Section 4. We
visualize our decision model in Figure 1. Furthermore, our approach is able
to notice changes in the environment (e.g., changing data and workloads) and
can adjust its scheduling decisions accordingly. This is a crucial property for
use in a query optimizer, because the optimizer relies on cost estimations and
decisions of HyPE. The model is a stable basis for an optimizer, because it:

1. Delivers reliable and accurate estimated execution times, which are used
to compute the quality of a plan and enables the optimizer for a cost-
based optimization and an accurate query-response-time estimation.

2. Refines its estimations at run-time, making them more robust in case
of changes in data or workloads.

3. Decides on the fastest algorithm and therefore, processing device.
4. Requires no a priori knowledge about the deployment environment,

for example the hardware in a system, because it learns the hardware
characteristics by observing the execution-time behavior of algorithms.

Before being used, the decision model needs to be configured for an
application by defining a fixed set of operations, where each operation has
at least one algorithm. Afterwards, the user needs to define a feature vector
for each operation, which describes the relevant factors for cost estimation
(e.g., data size and selectivity for selections). Then, the user has to specify
a learning method and a load adaption heuristic for each algorithm, and an
optimization heuristic for each operator. In this work, we will propose and
evaluate new optimization heuristics. We provide more details on the other
parts of HyPE in previous work [7].

2.3. Optimization Heuristics

Until now, we only considered response-time optimization [7], which
works fairly well for scenarios where the CPU and CP outperform each other
depending on input data size and selectivity. However, for scenarios where
the execution times of CPU and CP algorithms do not have a break even

5

point, meaning that they are not equally fast for a given data set, simple
response-time optimization is insufficient, because the faster processing device
is over utilized while the slower processing device is idle.

This was the main criticism of Pirk and others for operation-based schedul-
ing [26]. They introduced a co-processing technique, bitwise distribution, which
utilizes the CPU and the CP to process one operation, which achieves good
device utilization by using the CP to pre-process a low-resolution index of
the data and refining this intermediate result on the CPU. A different way
to approach the problem of efficient utilization of processing resources in a
CPU/CP system is the purposeful use of slower processing devices to achieve
inter-device parallelism. The main challenge is to optimize the response time
of single operations, while optimizing throughput for an overall workload.

Although HyPE was primarily designed to optimize performance, it could
also optimize for other metrics, such as minimal energy consumption or
memory usage.

3. Operator-Stream-based Query Processing

Next, we briefly describe our evaluation system. Then, we compare single
and multi-query optimization to motivate query processing based on operator
streams. Such a query processor serializes a set of queries to an operator
stream, which is then scheduled to available processing devices. Therefore,
we extend HyPE to support operator-stream-based scheduling. Finally, we
discuss the requirements of an efficient query-serialization algorithm.

3.1. CoGaDB

We use our prototype CoGaDB as evaluation platform. CoGaDB is
an in-memory, column-oriented, and GPU-accelerated DBMS.2 It processes
operators in two phases: First, the specified operator processes the input data
and returns a list of tuple identifiers (TIDs) representing the result. Second,
a materialization operator constructs the final result by applying the TID
list on the input data.3 The first phase can be processed on the CPU or the
GPU, respectively, where the second phase is always processed on a CPU.

2http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb
3Our evaluation results differ compared to prior work [9], because we use a newer version

of CoGaDB, which has a more efficient materialization operator.

6

3.2. Single versus Multi-Query Optimization

Single-query optimization is not suitable in case a set of complete queries
is processed in parallel and operators from different queries can be executed
interleaved. This is because of the high sensitivity of co-processors to cache
invalidation. Let us consider an example with two queries: For each query,
one operator is executed consecutively, but operators from different queries
are executed interleaved. Each operator detects that the cached data of the
previous operator has to be thrown away so that the new operator can do
its job, which is similar to trashing during buffer management in traditional
databases. By contrast, a global optimization strategy can consider data
locality for a query workload to build a global query graph, but at the cost of a
significantly increased response time for single queries. Thus, it is necessary to
combine on-the-fly operator scheduling with query optimization. We propose
a two phase solution: First, serialize a set of queries to an operator stream
and second, schedule the operator stream on all available co-processors. In
this paper, we focus on the second part: distributing an already serialized
workload on all available processing resources, which we discuss next.

3.3. Operator-Stream Extension of HyPE

We implemented our decision model from prior work [7] and our heuristics,
which we discuss in Section 4, in HyPE [6].4 To support operation-stream-
based scheduling, we refine our decision model as follows. Let Op(O,D) be
the application of the operation O to the data set D. A workload W is a
sequence of operators:

W = Op1(D1, O1)Op2(D2, O2) . . . Opn(Dn, On) (1)

Note that any query plan can be linearized into an operator stream by using
materialization and chaining of outputs into inputs. Hence, a data set Dj can
be the result of an operator Opi (i < j), which allows for data dependencies
between operators. However, we assume that the stream contains only
operators without any dependencies. This in turn means that queries may
only be linearized in part (e.g., only leave operators of a query plan are inserted
in the stream; an operator inserts its parent in the stream on termination).
We exemplify this in Figure 2, where the leaf nodes of the query plan (1,2,4)
do not have any dependency and hence can be added to the stream. In
contrast, operators 3 and 5 depend on the results of their children and have

4http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/hype/

7

1 2

3 4

5

1 2 4

Independent
Operators

Query Plan
Partial

Linearization

Figure 2: Example for Partial Query Linearization

to wait for their completion. HyPE works in two phases: In the training
phase, a part of the workload is used to train the model’s approximation
functions. In the operational phase, HyPE provides estimated execution times.
On system startup, there are no approximation functions available such that
HyPE cannot provide meaningful execution-time estimates, which may lead
to poor results. Furthermore, processing-device utilization may change due
to changing data and workloads. Hence, it is important not to schedule all
operations at once, even if meaningful approximation functions exist. Based
on these insights, we developed the following scheduling mechanism for HyPE.

We add a ready queue to each processing device. In case a ready queue
is full, no more operators may be scheduled to the corresponding processing
device. That way, HyPE keeps the processing devices busy, while maintaining
the flexibility to react to changing processing device utilization (e.g., by
keeping track of each ready queues estimated finishing time). Therefore, we
have to select a suitable operator-queue length. A longer queue will reduce
the likelihood that a processor is idle. However, at the same time, it will
also reduce estimation quality, as the cost estimator has to predict execution
times that will occur further away in the future. Based on our experiments,
we found that a maximal queue length of 100 operators achieves a good and
stable performance. Due to space limitations, we will not consider this issue
in the remainder of this paper.

3.4. Mapping Query Plans to Operator-Streams

From our workload definition, we accept operator streams only as input.
However, a database query typically consists of multiple data-intensive opera-
tors, which depend on each other (e.g., a join gets a filtered column from a
selection as input). The operator-stream processor needs to consider these
inter-operator dependencies between operators of queries when generating a
stream of independent operators.

8

3.4.1. Precondition

The precondition to map query plans to operator streams is that the
operators are ”self-contained” schedulable units. That is, operators can
be processed independently from each other on different processing devices.
Therefore, we need operator-at-a-time bulk processing [22] (or at least block-
wise processing like in Vectorwise [5] or MapD [23]), in which one operator
consumes its input and materializes its output. Bulk processing allows for
operator-based scheduling, the precondition for our operator-stream schedul-
ing, but does not support inter-operator parallelism by pipelining, which may
have a negative impact on performance on CPU side. However, pipelining
can also be achieved by compiling sub-queries between pipeline breakers (e.g.,
sort operations) [25]. Then, a compiled sub-query can be executed as one
bulk operator. However, it is unclear how to estimate the cost of the compiled
(sub-)queries. For ad-hoc queries, it is not feasible to learn the performance
behavior of compiled queries. Furthermore, we cannot combine cost models
that were learned for bulk operators. Therefore, our approach does not work
currently for compiled queries.

3.4.2. Challenges of a Query-Serialization Algorithm

A simple way to create an operator stream from a query plan is to perform
a bottom-up traversal and add the operators of the same level to the operator
stream. This ensures that dependent operators are executed after their
predecessors.5 However, an efficient query-serialization algorithm needs to
optimize for three goals simultaneously:

Data-Locality-Aware Operator Placement. An efficient strategy executes oper-
ators on the same processing device, where their predecessors were executed.
This way, the overhead due to data transfers between CPUs and CPs is
reduced.

Inter-Device Parallelism. It is important to use all available processing re-
sources to decrease a queries response time (i.e., using an already busy
processing device slows down query processing). Therefore, a query should be
executed on not only one, but multiple processing devices to efficiently exploit
inter-device parallelism. However, if we use more (co)-processors, additional
data transfers may become necessary in case data is not cached in a CP.

5Note that some systems (e.g., MonetDB) already possess plans in form of an operator
stream (e.g., MonetDB’s MAL plans).

9

Heterogeneous Properties. Database operations have very different properties.
A selection is well suited to run on CPUs, because of their highly optimized
branch prediction mechanisms whereas aggregations are typically faster on
GPUs because of their outstanding numeric processing power. By assigning
an operation to the most suitable processing device, we can fully exploit the
heterogeneous nature of hybrid CPU/CP systems. However, this may conflict
with data locality and inter-device parallelism.

3.4.3. Toward a Mapping Strategy

Overall, we need a strategy that serializes a query plan to an operator
stream such that (1) the dependencies between the operators are not violated,
(2) available processing devices are fully utilized, (3) the overhead of data
transfers is kept low due to clever data placement, and (4) each processing
device processes the operations that it can handle most efficiently.

One suitable strategy would be to assign subtrees of the query plan to
processing devices, so that the data-intensive processing is distributed on
different processing devices (CPU and co-processors) and the assembly of the
results is done by one processing device (typically the CPU). Since we focus
on scheduling already serialized queries to available processing devices, we
will address the serialization of queries to operators streams in future work.

4. Optimization Heuristics

In this section, we discuss our main contribution, the heuristics for response
time and throughput optimization for efficient processing device utilization.

4.1. Assumptions for Load Adaption

Our decision model continuously refines performance estimations by col-
lecting new observations (data properties and execution time). However,
this mechanism requires a continuous supply of new observations, which
means that every processing device has to be used regularly [7]. This in turn
means that each processing device is used for data processing, resulting in
inter-device parallelism. In other words, all techniques enforcing inter-device
parallelism ensure the continuous supply of new observations and that the
performance models also reflect the current data properties (e.g., skew). The
downside of continued refinement of cost models is a steady overhead during
run-time. However, this overhead is negligible in HyPE, because it assumes
bulk processing, a coarse-grained granularity for monitoring. Per default,
HyPE updates the cost model of an algorithm in mini batches. Typically, it

10

Test(Oprun,X)Test(Opcur,X)

Processing
DevicesReady Queues

Operator
to Schedule

Scheduled
Operator

Operator to
Schedule

Running
Operator

Test(OQX)

Oprun – Operator currently Executed, Opcur – Operator to be Scheduled,
OQX – Ready Queue of Processing Device X,

Test(Op,X) – Estimated Execution Time of Operator Op on Processing Device X

Figure 3: WTAR: Load Tracking with Ready Queues

collects 100 new observations and then, recomputes the cost model, which
reduces computational overhead and the impact of outliers.

4.2. Response Time

Next, we discuss two heuristics for response-time optimization.

Simple Response Time (SRT). The decision component gets a set of operators
with their estimated execution times as input. The SRT heuristic chooses the
algorithm that is likely to have the smallest execution time [7]. The problem
with SRT is that using always the fastest algorithm does not consider, when
the corresponding algorithm is actually executed. If the model shifts the
whole workload to the GPU, operators have to wait, until their predecessors
are executed. Therefore, over utilization of a single device slows the processing
of a workload down in two ways: (1) individual execution times are likely to
increase, and (2) the waiting time until an operator can start its execution
increases.

Waiting-Time-Aware Response Time (WTAR). We propose an optimization
approach WTAR that is aware of the waiting time of operations on all
processing devices and schedules an operation to the processing device with
the minimal time the operation needs to terminate. WTAR is a modified

11

version of the heterogeneous earliest finishing time (HEFT) algorithm [37].
In contrast to HEFT, WTAR is designed to schedule an operator stream,
and therefore, does not assume an a priori known workload. Furthermore,
WTAR uses per operation cost estimations instead of the average algorithm
(task) execution cost. This is because HyPE provides accurate performance
estimations for algorithms. Let Test(Opi, X) be the estimated execution time
of operator Opi on processing device X, OQX be the operator queue of all
operators waiting for execution on processing device X and Test(OQX) the
estimated completion time of all operators in OQX :

Test(OQX) =
∑

Opi∈OQX

Test(Opi, X) (2)

Let Oprun be the operator that is currently executed, Tfin(Oprun, X) the
estimated time until Oprun terminates, and Opcur the operator that shall
be executed on the processing device that will likely yield the smallest
response time. Then, the model selects the processing device X, where
min(Test(OQX) + Tfin(Oprun, X) + Test(Opcur, X)). Note that this approach
avoids the overloading of one processing device, because it considers the time
an operator has to wait until it is executed. If this waiting time gets too large
on processing device X w.r.t. processing device Y , the model will choose Y .

4.3. Throughput

Next, we discuss heuristics that optimize a workload’s throughput.

Round Robin (RR). Round robin is a simple and widely used algorithm
[36], which assigns tasks alternating to available processing devices without
considering task properties. We use it as a reference measure to compare our
approaches with throughput-oriented algorithms. RRs simplicity is its major
disadvantage: it only achieves good results in case processing devices execute
tasks equally fast or else RR over/under utilizes processing devices, which
may lead to significant performance penalties. An over utilization of a slow
processing device is worse than over utilizing the fastest processing device, as
in case of SRT. Hence, we propose a more advanced heuristic for throughput
optimization in the following.

Threshold-based Outsourcing (TBO). Recall that a decision for an algorithm
executes an operation on exactly one processing device (e.g., CPU merge
sort on the CPU and GPU merge sort on the GPU). The problem with
SRT is that it over utilizes a processing device in case one algorithm always

12

outperforms the others. This violates the basic assumption of our decision
model that all algorithms are executed regularly. Therefore, we modify SRT
to choose a sub-optimal algorithm (and therefore, a sub-optimal processing
device) under the condition that the operation is not significantly slower.6

Therefore, we need to keep track of (1) the passed time to decide, when a
different algorithm (processing device) should be used and (2) the estimated
slowdown, a sub-optimal algorithm execution may introduce to prevent an
outsourcing of operations to unsuited processing devices (e.g., let the GPU
process a very small data set).

With (1), we add a timestamp to all operations as well as their respective
algorithms. Each operation O is assigned to one logical clock Clog(O), which
basically provides the number of operation executions. Each time an algorithm
A is executed, its timestamp ts(A) is updated to the current time value
(ts(A) = Clog(O)). In case the difference of the timestamps of A and Clog(O)
exceeds a threshold Tlog (a logical time), the respective processing device X
of A is considered idle. Therefore, an operation should be outsourced to X
in order to balance the system load on the processing devices. With (2), we
introduce a new threshold, the maximal relative slowdown MRS(Aopt, A) of
algorithm A compared to the fastest (optimal) algorithm Aopt.

The operation O may be executed by a sub-optimal algorithm A (us-
ing a different processing device) if and only if A was not executed for at
least Tlog times and the relative slowdown does not exceed the threshold

MRS(Aopt, A) > Test(A)−Test(Aopt)

Test(Aopt)
. For our experiments, we performed a pre-

pruning phase to identify a suitable configuration of the parameters. We found
that MRS(Aopt, A) = 50% and Tlog = 2 leads to good and stable performance.
This configuration means that TBO attempts to outsource an operation to
a processing device X if it was not used for the last two operations. For n
co-processors, Tlog should be n+ 1.

Probability-based Outsourcing (PBO). The problem to select the fastest pro-
cessing device can be transformed into a multi-armed bandit (MAB) problem
[38]. A multi-armed bandit problem is to select the bandit (processing device)
with the highest benefit (lowest processing time). An efficient algorithm
has to balance between using the bandit with the highest known reward
(called exploitation) and searching for a bandit with higher reward (called
exploration). An efficient approach for the MAB problem is the softmax

6Hence, TBO is limited to one optimized algorithm per device.

13

learning strategy [34], which assigns each arm a probability to be optimal and
randomly chooses an arm w.r.t. to the computed probability distribution.

In contrast to the traditional multi-armed bandit problem, we can use all
arms (processing devices) in parallel. Hence, we want to favor the processing
device with the highest benefit (smallest execution time) while using the
other processing devices in parallel to reduce the overall workload execution
time. Therefore, we adapt the idea of the softmax learning strategy and
assign each algorithm of each processing device a probability for executing
an operation.7 Hence, we use the continuous exploration of softmax learning
with constant tuning parameter (τ = 1). The probability depends on the
estimated execution time of Ai ∈ APO for the data set D:

P (Ai) = 1− Test(Ai)∑
Aj∈APO

Test(Aj)
(3)

Consequently, HyPE favors algorithms on faster processing devices over
algorithms on slower processing devices. For long term scheduling, this
strategy leads to a statistically uniform distribution of load on all processing
devices. Furthermore, it utilizes all processing devices, even if one device
(e.g., a GPU) always outperforms another processing device (e.g., a CPU).
Therefore, all processing devices are kept busy with a reduced probability to
under/over utilize a processing device compared to SRT or RR.

4.4. Other Optimization Goals

HyPE can be used for other optimization goals as well. For example, in
environments where energy consumption is the most critical factor, HyPE can
learn the correlation between an operators feature vector and the operators
energy consumption. Similar, the memory consumption can be an issue (e.g.,
if the co-processor has very small device memory), and the algorithm with
the smallest memory footprint should be used. To use HyPE with a different
optimization goal, the user has to supply measurements from an appropriate
measure for the optimization goal (e.g., watt for energy consumption). Since
the focus of this work is to optimize the performance of database systems by
either optimizing response time or throughput, we will not further investigate
other optimization goals in this work.

7We assume one optimized algorithm per processing device, because we focus on inter-
processor parallelism. Hence, the algorithm pool APO contains one algorithm per PD.

14

5. Evaluation

To judge feasibility of our heuristics, we conducted several experiments
that evaluate response time and throughput for four use cases: aggregations,
column scans, sorts, and joins. We selected these use cases, because they are
essential stand alone operations during database query processing, but some
are also sub-operations of complex operations such as the CUBE operator [12]
(e.g., aggregations and selections). Although some optimization heuristics
have already proven applicable (e.g., response time), we are interested in
specific aspects for all optimization heuristics relevant for a database system.
The goal of the evaluation is to answer the following research questions:
RQ1: Which of our optimization heuristics perform best under varying work-

load parameters?
RQ2: How does the optimization heuristic impact the quality of estimated

execution times?
RQ3: Which optimization heuristic leads to best CPU/GPU utilization ratio

and overall performance?
RQ4: How much overhead does the training phase introduce w.r.t. the work-

load execution time?
RQ5: Which optimization heuristics are suitable for which use cases?
Providing answers for the aforementioned questions is crucial to meet the
requirements for an optimizer and to judge feasibility of our overall approach.

5.1. Experiment Overview

In the following, we describe the experiments we conducted to answer the
research questions. First, we present implementation details on our use cases
as well as the experimental design (i.e., which benchmarks we used). Second,
we discuss the experiment variables. Third, we present the analysis procedure.
Since our evaluation system CoGaDB is a column-store, we only need to
model the part of the database that is accessed by the generated queries.
Therefore, it would not reduce the performance to have many columns in a
table (e.g., in fact tables).

Aggregation. A data set for an aggregation operation is a table with two
integer columns in a key-value form whereas the key refers to a group for
which their values (second column) needs to be aggregated. We use as
aggregation function SUM, because it is a very common aggregation function
in database systems.

15

Column Scan. A data set for a column scan operation is a table with one
column. The values in the column are integer values ranging from 0 to 1000.
The benchmark generates an operation by computing a random filter value
val ∈ {0, . . . , 1000} and a filter condition filtcond ∈ {=, <,>}.

Sort. A data set for a sort operation is a table with one column. The values
in the column are integer values ranging from 0 to 1.000.000.000 to create
data sets with varying number of duplicates. We used the highly optimized
and parallel sort algorithms of the Threading Building Blocks Library for the
CPU and the Thrust Library for the GPU.8

Join. A join operation gets two data sets as input, in which the first data
set contains a table with one column having the primary keys (TPK) and
the second data set contains a table with the foreign-key column (TFK).
TPK always contains as many disjoint keys as specified in the data-set size.
TFK corresponds to exactly one TPK . To generate an input data set of
size X, we generate 10% of X as primary keys and 90% of X as foreign
keys, because foreign key tables are typically much larger than primary key
tables, especially in a data warehouse environment. In the experiments, the
benchmark randomly selects a combined (TPK , TFK) data set and computes
the join between the two tables. We adapted the sort-merge join of He and
others for the GPU [14] and a hash join on the CPU.

Experimental Design. The used benchmark is a crucial point to conduct
a sound experiment. We use a micro benchmark for single operations in
CoGaDB. The user has to specify three parameters: a maximal data set size,
the number of data sets in the workload and a data-set generation function,
for which we input the first two parameters, and get in return a data set for
the respective operation. The specified number of data sets is generated using
a use-case-specific data generator function to allow for an evaluation of HyPE
without restricting generality. We measure the overall runtime (including
data transfers), estimation error, device utilization, and training length for a
workload. The test machine has an Intel R© CoreTMi5-2500 CPU @3.30 GHz
with 4 cores and 8 GB DDR3 main memory @1333 MHz, and a NVIDIA R©

GeForce R© GT 640 GPU (compute capability 2.1) with 2 GB device memory.
The operating system is Ubuntu 12.04 (64 bit) with CUDA 5.0 (driver 304.54).

8www.threadingbuildingblocks.org, thrust.github.com

16

For all experiments, all data sets fit into main memory. The source code of
CoGaDB and our benchmark is available online to enable reproducibility.9

Variables. We conduct experiments to identify which of our heuristics perform
best under certain conditions. We evaluate our approach for the following
variables: (1) number of operations in the workload (#op), (2) number of
different input data sets in a workload (#datasets), and (3) maximal size of
data sets (sizemax).

Analysis Procedure. We evaluate our results separately for each use case using
boxplots over all related experiments to prove that our optimization heuristics
are stable for the whole parameter space (#op,#datasets, sizemax). We vary
the three variables in a ceteris paribus analysis [33] with (500, 50, 10MB) as
base configuration and only vary one parameter at a time, leaving the other pa-
rameters constant (e.g., (1000, 50, 10MB),(500, 100, 10MB),(500, 50, 20MB)):

1. #op ∈ {500, . . . , 8000}
2. #datasets ∈ {50, . . . , 500}
3. sizemax ∈ {10MB, . . . , 100MB}

Note that higher values for #datasets or sizemax would result in a database
exceeding our main memory and hence, violating our in-memory assumption.10

As quality measures, we consider (1) the speedup w.r.t. the execution of a
workload on the fastest processing device, which can be obtained using static
scheduling approaches (e.g., Kerr and others [20]), (2) average estimation
errors, which is ideally zero, and (3) device utilization. In case the workload
is unevenly distributed, one processing device is over utilized, whereas others
are under utilized, increasing execution skew. An ideal device utilization in a
scenario of n processing devices is that each processing device processes 1/n
of the workload. For our test environment, a perfect utilization would be to
use 50% of workload execution time on CPU and 50% on GPU. (4) Finally,
we investigate the relative training times depending on the optimization
heuristics.

5.2. Results

Now, we present only the results of the experiments. In Section 5.3, we
answer the research questions and discuss the achieved speedups, estimation

9http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/

supplemental.php
10Note that we need additional memory for intermediate results or the operating system.

17

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

SRT WTAR RR TBO PBOS
pe

ed
up

 w
.r.

t.
fa

st
es

t P
D

Optimization Heuristics

(a) Speedup.

 0

 20

 40

 60

 80

 100

SRT WTAR RR TBO PBO

D
ev

ic
e

U
til

iz
at

io
n

in
 %

Optimization Heuristics

optimal

(b) CPU Utilization.

 0.01

 0.1

 1

 10

 100

SRT
 (CPU)

SRT
 (GPU)

WTAR
 (CPU)

WTAR
 (GPU)

RR
 (CPU)

RR
 (GPU)

TBO
 (CPU)

TBO
 (GPU)

PBO
 (CPU)

PBO
 (GPU)

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or
 in

 %

Optimization Heuristics

5% error threshold

(c) Average Estimation Errors of Cost Models Depending on Optimization Heuristics.

PD – Processing Device, SRT – Simple Response Time, WTAR – Waiting Time Aware Response Time,

RR – Round Robin, TBO – Threshold-based Outsourcing, PBO – Probability-based Outsourcing

Figure 4: Aggregation Use Case.

accuracy, device utilization, and relative training times of the heuristics. The
results are accumulated over all experiments and displayed as box plots to
illustrate the typical characteristics (e.g., mean and variance) w.r.t. a quality
measure. A box plot visualizes a data distribution by drawing the median,
the interquartile ranges as box, and extremes as whiskers [2]. Note that 50%
of the points are in the box, and 95% are between the whiskers. Outliers are
drawn as individual points.

5.2.1. Result of Aggregation

Figure 4(a) illustrates the achieved speedups for the fastest processing
device (CPU) of our optimization heuristics over all experiments. To answer

18

RQ1, we observe that (1) SRT has no significant speedup compared to the
fastest processing device, because the box plot is located at 100%, which
means that only a single device (CPU) is utilized. (2) WTAR is significantly
faster than PBO (by 3%) and RR (by 8%), and (3) TBO is inferior to RR (by
31%), WTAR (by 37%), and PBO (by 34%), but achieves higher performance
than SRT (by 8%). Figure 4(b) illustrates the device utilization over all
experiments. The gray horizontal line exemplifies the ideal device utilization.
To answer RQ3, we observe that (1) SRT and TBO tend to over utilize the
CPU. (2) We see that the box plot of WTAR lies on the horizontal line,
which represents the best utilization. WTAR, PBO, and RR are performing
best, whereas RR has slightly worse device utilization than WTAR and is
slightly better than PBO. Figure 4(c) shows the estimation accuracy of the
optimization heuristics. To answer RQ2, we observe that (1) the accuracy is
typically higher for CPU algorithms compared to GPU algorithms, (2) SRT
and TBO exceed our error threshold for GPU algorithms, whereas the other
optimization heuristics are acceptable, because the estimation error is smaller
than our defined 5% threshold.

5.2.2. Results of Column Scan

Figure 5(a) illustrates the achieved speedups for the fastest processing
device (CPU) of our optimization heuristics over all experiments. For this
use case, the CPU consistently outperforms the GPU by an average speedup
of 2.7. We see that WTAR and PBO have the lowest response time, which
answers RQ1. In contrast to aggregations, the t-tests indicate that there is no
systematic difference between WTAR and PBO for column scans (e.g., they
are equally fast). Furthermore, we observe that RR performs poorly (e.g.,
≈2 times worse than WTAR). Figure 5(b) illustrates the device utilization
over all experiments. To answer RQ3, we observe that (1) SRT does not
lead to a speedup for column scans, because SRT over utilizes one processing
device on a regular basis indicating that it is not suitable for efficient task
distribution and (2) WTAR and PBO achieve nearly ideal device utilization,
whereas TBO tends to over utilize the CPU. RR consistently over utilizes the
GPU, which explains the poor performance of RR. We show the estimation
accuracy of the optimization heuristics for column scans in Figure 5(c). We
see that SRT, TBO, and PBO exceed the error threshold on the GPU.

5.2.3. Results of Sort

Figure 6(a) illustrates the achieved speedups for the fastest processing
device (GPU) of our optimization heuristics over all experiments. For the sort

19

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

SRT WTAR RR TBO PBOS
pe

ed
up

 w
.r.

t.
fa

st
es

t P
D

Optimization Heuristics

(a) Speedup.

 0

 20

 40

 60

 80

 100

SRT WTAR RR TBO PBO

D
ev

ic
e

U
til

iz
at

io
n

in
 %

Optimization Heuristics

optimal

(b) CPU Utilization.

 0.1

 1

 10

 100

SRT
 (CPU)

SRT
 (GPU)

WTAR
 (CPU)

WTAR
 (GPU)

RR
 (CPU)

RR
 (GPU)

TBO
 (CPU)

TBO
 (GPU)

PBO
 (CPU)

PBO
 (GPU)

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or
 in

 %

Optimization Heuristics

5% error threshold

(c) Average Estimation Errors of Cost Models Depending on Optimization Heuristics.

PD – Processing Device, SRT – Simple Response Time, WTAR – Waiting Time Aware Response Time,

RR – Round Robin, TBO – Threshold-based Outsourcing, PBO – Probability-based Outsourcing

Figure 5: Column Scan Use Case.

use case, the GPU consistently outperforms the CPU by an average factor
of 2.42. We see that WTAR has the lowest response time and leads to a
speedup of ≈ 1.4, which answers RQ1. Furthermore, we observe that (1) SRT
achieves no speedup compared with a GPU only scenario. (2) Since the GPU
is faster than the CPU, the RR heuristic leads to poor performance, because
it heavily over utilizes the CPU leading to a higher workload execution time
than executing all operations on the GPU. (3) TBO does not outsource the
operations to the GPU aggressively enough, leading to a performance penalty
compared with WTAR (by 20%). However, TBO is still faster compared to a
CPU only approach (by 9%).

Figure 6(b) illustrates the device utilization over all experiments. To

20

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

SRT WTAR RR TBO PBOS
pe

ed
up

 w
.r.

t.
fa

st
es

t P
D

Optimization Heuristics

(a) Speedup.

 0

 20

 40

 60

 80

 100

SRT WTAR RR TBO PBO

D
ev

ic
e

U
til

iz
at

io
n

in
 %

Optimization Heuristics

optimal

(b) CPU Utilization.

 0.01

 0.1

 1

 10

 100

SRT
 (CPU)

SRT
 (GPU)

WTAR
 (CPU)

WTAR
 (GPU)

RR
 (CPU)

RR
 (GPU)

TBO
 (CPU)

TBO
 (GPU)

PBO
 (CPU)

PBO
 (GPU)

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or
 in

 %

Optimization Heuristics

5% error threshold

(c) Average Estimation Errors of Cost Models Depending on Optimization Heuristics.

PD – Processing Device, SRT – Simple Response Time, WTAR – Waiting Time Aware Response Time,

RR – Round Robin, TBO – Threshold-based Outsourcing, PBO – Probability-based Outsourcing

Figure 6: Sort Use Case.

answer RQ3, we observe that (1) SRT consistently over-utilizes the GPU.
This limited inter-device parallelism causes to a significant slowdown compared
to WTAR and (2) WTAR and PBO achieve nearly ideal device utilization,
whereas TBO tends to over utilize the GPU. We show the estimation accuracy
of the optimization heuristics for sorts in Figure 6(c). We make the same
observations as for aggregations and selections. That is, heuristic WTAR
outperforms all others (RQ2).

5.2.4. Results of Join

Figure 7(a) illustrates the achieved speedups of our optimization heuristics
compared to the fastest processing device (GPU). For the join use case, the

21

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

SRT WTAR RR TBO PBOS
pe

ed
up

 w
.r.

t.
fa

st
es

t P
D

Optimization Heuristics

(a) Speedup.

 0

 20

 40

 60

 80

 100

SRT WTAR RR TBO PBO

D
ev

ic
e

U
til

iz
at

io
n

in
 %

Optimization Heuristics

optimal

(b) CPU Utilization.

 0.01

 0.1

 1

 10

 100

SRT
 (CPU)

SRT
 (GPU)

WTAR
 (CPU)

WTAR
 (GPU)

RR
 (CPU)

RR
 (GPU)

TBO
 (CPU)

TBO
 (GPU)

PBO
 (CPU)

PBO
 (GPU)

A
ve

ra
ge

 E
st

im
at

io
n

E
rr

or
 in

 %

Optimization Heuristics

5% error threshold

(c) Average Estimation Errors of Cost Models Depending on Optimization Heuristics.

PD – Processing Device, SRT – Simple Response Time, WTAR – Waiting Time Aware Response Time,

RR – Round Robin, TBO – Threshold-based Outsourcing, PBO – Probability-based Outsourcing

Figure 7: Join Use Case.

GPU consistently outperforms the CPU by an average factor of 3.56. We see
that WTAR has the lowest response time, which answers RQ1. Furthermore,
we observe that (1) SRT achieves no speedup with respect to the GPU due to
missing inter-device parallelism. (2) The RR heuristic leads to poor perfor-
mance, because it heavily over utilizes the CPU. (3) TBO does not outsource
the operations to the GPU aggressively enough leading to a performance
penalty similar to the other use cases. Figure 7(b) illustrates the device
utilization over all experiments. To answer RQ3, we observe that (1) SRT
consistently over-utilizes the GPU (which is the fastest processing device for
this use case) and (2) WTAR achieves nearly ideal device utilization, whereas
RR tends to over utilize the CPU, which leads to a performance decrease of

22

20% compared with a GPU only execution. SRT and TBO over utilize the
GPU on a regular basis, causing a significant slowdown compared to WTAR.
We show the estimation accuracy of the optimization heuristics for joins in
Figure 7(c). We make the same observations as for aggregations, selections,
and sorts. That is, heuristic WTAR outperforms all others (RQ2).

5.3. Discussion

Overall, WTAR outperforms the other heuristics, especially when rela-
tive speed of processing devices differs. To ensure that our results are not
coincidence, we performed t-tests with α = 0.001 [2]. The result is that
WTAR is significantly faster than heuristic the other heuristics. However,
we could not verify for the column scan use case that WTAR is significantly
faster than PBO. However, this also means that no heuristic was significantly
faster than WTAR for all use cases. Therefore, we conclude that WTAR
achieves the highest performance for all uses cases. Furthermore, it has a very
low variance in workload execution time and therefore, stability. Hence, the
answer for RQ5 is that there is one heuristic performing best for all use cases:
WTAR. The speedup experiments allow for a direct comparison with static
scheduling approaches, which select one processing device before runtime such
as Kerr et al. [20]. We measured average performance improvements of ≈69%
(aggregations), ≈14% (column scans), ≈38% (sorting) and ≈35% (joining)
for WTAR w.r.t. to the fastest processing device.

Regarding RQ2, the estimation quality of WTAR, PBO, and RR is stable
across different use cases over the investigated parameter space, whereas SRT
and TBO frequently exceeds the error threshold (5%).

To answer RQ3, we discuss device utilization. WTAR proved superior to
PBO, RR, TBO and SRT. RR gets worse with increasing speed difference of
processing devices. In contrast, WTAR delivers nearly ideal device utilization
with marginal variance over a large parameter space. SRT mostly uses
one processing device, indicating that it is not suitable for efficient task
distribution. Overall, SRT performs poorly in case there is no break-even
point between CPU and GPU algorithms execution-time curves, because SRT
over utilizes one processing device, resulting in execution skew and increasing
overall workload execution time. However, our prior work clearly shows the
benefit of SRT in case a break-even point exists [7].

To answer RQ4, we investigate HyPE’s overhead by measuring the training
time and compute the relative training time w.r.t. the workload execution time
for aggregations (Figure 8(a)), columns scans (Figure 8(b)), sorting (Figure

23

 0
 0.02
 0.04
 0.06
 0.08

 0.1

SRT WTAR RR TBO PBO

Tr
ai

ni
ng

 T
im

e
in

 %

Optimization Heuristics

(a) Aggregation.

 0
 0.02
 0.04
 0.06
 0.08

 0.1

SRT WTAR RR TBO PBO

Tr
ai

ni
ng

 T
im

e
in

 %

Optimization Heuristics

(b) Column Scan.

 0
 0.02
 0.04
 0.06
 0.08

 0.1

SRT WTAR RR TBO PBO

Tr
ai

ni
ng

 T
im

e
in

 %

Optimization Heuristics

(c) Sort.

 0
 0.02
 0.04
 0.06
 0.08

 0.1

SRT WTAR RR TBO PBO

Tr
ai

ni
ng

 T
im

e
in

 %
Optimization Heuristics

(d) Join.

Figure 8: Relative Training Time of Use Cases.

8(c)), and joining (Figure 8(d)). It is clearly visible that the performance
impact of the training is marginal.

Summary. For all use cases, WTAR outperformed all other optimization
heuristics in terms of performance, estimation accuracy, and equal processing
device utilization. In some experiments, RR caused slightly better estimated
execution times. Overall, we observe that estimation accuracy strongly
depends on the optimization heuristics (RQ2), because the heuristics directly
influence the operations executed on the processing devices, which in turn
trains the approximation functions more or less. RR is likely to perform
worse than WTAR in case a processing device is significantly faster than the
others, because in this case RR leads to an uneven device utilization, which
we observed for column scans, sorts and joins. We conclude that out of the
considered optimization heuristics, WTAR is the most suitable for use in a
database optimizer (RQ1–5).

5.4. Threats to Validity

We now discuss threats to internal and external validity.

24

Threats to Internal Validity. We performed a t-test to ensure that our results
are statistically sound and did not occur by chance. Furthermore, we have
to consider measurement bias when measuring execution times and device
utilization. Therefore, we repeated each experiment during our ceteris paribus
analysis five times. We depict all measurements as box plots including the
outliers and use the arithmetic mean during heuristic comparison. This allows
for a precise evaluation of the reliability of our approach.

Threats to External Validity. We are aware that using micro benchmarks
does not automatically reflect the performance behavior of real-world DBMS.
However, we argue that (1) they are a necessity for an in-depth analysis of our
optimization heuristics and (2) we selected a representative set of operator
types that are very common. The implementation details of database operators
may differ in industrial DBMS. We counter that by using a learning-based
approach to allow us to accurately predict performance without knowing the
algorithms in detail. We address hardware heterogeneity in the same way.

We modeled only the relevant parts of a database for our benchmarks.
However, this is sufficient in a column store, in which no additional processing
costs arise for one operation when additional columns are added to the table
(except the tuple materialization operator, but we assume the use of late
materialization [1]). We cannot automatically generalize our results to all
DBMS workloads, but we carefully performed many experiments for four
different, but common use cases.

Finally, we only did experiments for a setup of one CPU and one GPU.
To judge feasibility of our approach in a general scenario of n co-processors,
additional evaluation is necessary, which we present next.

6. Simulation

In this section, we investigate the following research questions:
RQ6: How does the best optimization heuristics scale for n processing devices

(n > 2)?
RQ7: What are the most important impact factors on the performance of

our best optimization heuristic on a hybrid CPU/CP system?
Providing answers for the aforementioned questions is crucial to predict the
scaling behavior of our overall approach.

6.1. Experiment Overview

In the following, we describe our experiment that we conducted to answer
the research questions. First, we present implementation details of our

25

simulator and the experimental design. Second, we discuss the experiment
variables. Third, we present the analysis procedure.

Architecture of Simulator. Our previous use cases considered only two pro-
cessing devices: one CPU and one GPU. Furthermore, we cannot vary the
processing devices relative speed to each other: On varying hardware plat-
forms, processing devices will have a different relative speed to each other
(e.g., a CPU of one system is 1.5 times faster as the GPU and in the other
system 2 times slower). Since an exhaustive hardware analysis is infeasible,
we run a simulation that abstracts from real hardware and allows us to tune
the important processor parameters.

We model the simulation environment as follows: We assume that we have
one optimized algorithm per operation per processing device. Hence, we have n
algorithms A1, ..., An and n processing devices PD1, ..., PDn, where algorithm
Ai is executed on processing device PDi. To model different performance
of each processing device, we introduce the relative speed rsp(PDi), which
contains the average speedup of a processing device PDi to processing device
PD1. That is, PD1 acts as the base line and all other n−1 processing devices
behave relative to PD1. For example, a relative speed greater one means
that PDi is a faster processing device than PD1 and vice versa. Note that
the relative speed depends also on the operation. The goal is to schedule the
operator workload on all available processing devices in consideration of their
relative speed and their current load condition. An algorithm’s execution
time T (Ai) is a function of the input data size size and a jitter function jit:

T (Ai) = size · rsp(PDi) + |jit| (4)

The jitter function models the variance in execution times for all algorithms.
We use a normal distribution with µ = 0 and σ = 100µs to generate the jitter
times. σ was selected according to the jitter we observed for the other use
cases. Since jitter adds a random time to an algorithm’s execution time, we
use the absolute value of jit.

Furthermore, we have to consider data transfers, the major bottleneck of
a hybrid CPU/co-processor system. The typical workflow for a co-processor
is to transfer the input data from the CPU to the co-processor, process the
input data, and transfer the results back to the CPU.

Transferring the input data from the CPU to the co-processor should be
avoided with a suitable data placement strategy. However, this strategy will
never be able to completely avoid data transfers. Therefore, we assign each

26

processing device a cache hit rate (CHR). The CHR of a processing device is
the probability that the input data is cached in the processors local memory.

In general, results have to be transfered back from a co-processor to the
CPU. However, result sizes are often smaller than the input data sizes (e.g., for
selections and aggregations). Therefore, we introduce the average selectivity
factor (ASF) of the simulated operation, which is the ratio of the number of
result tuples and the number of input tuples.11

The overhead introduced by the data transfers over the bus is also de-
pendent on the operation: compute intensive operations such as rendering
tasks can neglect data transfer cost, but data intensive tasks have to carefully
consider the data transfer overhead. Therefore, we introduce the Relative Bus
Speed (RBS), which specifies the ratio of the computation time for a data
set D on processing device zero (CPU) and the transfer time for D.

A further limitation of the bus is that data can only be transfered simul-
taneously in two different directions (e.g., one transfer from CPU to GPU
and vice versa). All other transfer requests are serialized by the hardware.
We simulate this behavior by two locks, one lock for each transfer direction.

Experimental Design. Similar to the other use cases, we generate a workload
consisting of 10,000 operations and 100 different data sets. A data set consists
of a single value indicating the size. An operation gets a data set as input and
waits a certain time depending on the data size. Therefore, we can simulate
a multiple number of processing devices as physical cores in the CPU. The
source code of our simulator is available online as part of HyPE.12

Variables. We conduct experiments to identify which parameters have the
highest influence on the performance of a hybrid CPU/CP system. We
evaluate our best heuristic WTAR for the following variables: (1) number
of available processing devices (#PD), (2) the relative speed (RS) of the
co-processors compared to the CPU, (3) the average cache hitrate (CHR) of
the co-processors, and (4) the average operator selectivity factor (ASF).

Analysis Procedure. We evaluate our results separately for each experiment.
In each experiment, we vary two of our independent variables, whereas the
dependent variable is always the speedup of executing the workload on the
whole system with respect to executing the workload on a single CPU. We
vary the four variables in the following intervals:

11We currently consider only single operations in the simulator.
12http://goo.gl/0pOrFx

27

1. #PD ∈ {1, . . . , 20}
2. RS ∈ { 1

10
1
9
. . . , 1, 2, . . . , 10}

3. CHR ∈ {0.0, 0.1, . . . , 1.0}
4. ASF ∈ {0.0, 0.1, . . . , 1.0}

For our base configuration, we assume that a co-processor is roughly two
times faster in processing a data set than the CPU (RS=2), the average cache
hitrate is about 50% (CHR=0.5), the average selectivity factor is 1.0 (e.g.,
as for sorts or primary key/foreign key joins) and the number of processing
devices is 20 (#PD=20). We conduct four experiments, in which we vary two
variables in their specified intervals:

1. We investigate the influence of different relative speeds between the CPU
and the CPs. Therefore, we vary relative speed (RS) and number of
processing devices (#PD) while keeping the other parameters constant
(CHR=0.5 and ASF=1.0).

2. Then, we vary the cache hitrate and number of processing devices and
keep operator selectivity and relative speed constant (ASF=1.0 and
RS=2).

3. Since the average operator selectivity has a high impact on the per-
formance, we vary the average operator selectivity and number of
processing devices while keeping cache hitrate and relative speed con-
stant (CHR=1.0 and RS=2). Note that the cache hitrate is set to 1.0
so it cannot act as confounding variable in this experiment.

4. Finally, to decide which factor has the greatest impact on performance,
we vary cache hitrate and average operator selectivity (#PD=20 and
RS=2).

For time and space reasons, we restricted the analysis to WTAR, as this
heuristic proved to be the best case in the two-device scenario.

6.2. Results

Now, we present only the results of the experiments. In Section 6.3, we
answer the research questions and discuss the achieved speedups.

Varying relative speed and number of processing devices. We illustrate the
results in Figure 9(a). The relative speed of processing devices has a high
impact on the speedup if and only if the co-processors are slower than the
Bus and the CPU (i.e., RS=0.1 means that the co-processors are ten times
slower than the CPU). In this case, we observe an almost linear grow of the
speedup with increasing number of processing devices until #PD=8, from
which the speedup remains constant. Further investigation revealed that the

28

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35

 0 5 10 15 20S
pe

ed
up

 w
.r.

t.
C

P
U

Number of Processing Devices

RS=0.1
RS=1.0
RS=10.0

(a) Varying relative speed and #PD.
Constant: CHR=0.5, ASF=1.0

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 0 5 10 15 20S
pe

ed
up

 w
.r.

t.
C

P
U

Number of Processing Devices

CHR=0.0
CHR=0.5
CHR=1.0

(b) Varying CHR and #PD.
Constant: RS=2, ASF=1.0

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8S
pe

ed
up

 w
.r.

t.
C

P
U

Number of Processing Devices

speedup=1ASF=0.0
ASF=0.1
ASF=0.2
ASF=1.0

(c) Varying ASF and #PD.
Constant: RS=2, CHR=1.0

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 0.2 0.4 0.6 0.8 1S
pe

ed
up

 w
.r.

t.
C

P
U

Average Cache Hitrate

ASF=0
ASF=0.2
ASF=0.5
ASF=1.0

(d) Varying CHR and ASF.
Constant: RS=2, #PD=20

CHR – Cache Hitrate, ASF – Average Operator Selectivity Factor, RS – Relative Speed

Figure 9: Simulator Results for Waiting-Time-Aware Response Time.

bus was fully utilized starting from eight processing devices. By contrast,
when the co-processors are equally fast (RS=1) or faster (RS=10) than the
CPU, the bus becomes fully utilized starting by four processing devices. The
performance degrades starting by more than eight processing devices.

Varying cache hitrate and number of processing devices. We visualize the
results of this experiment in Figure 9(b). We observe that the cache hitrate
has only a small impact on the speedup when the average operator selectivity
is very small. Hence, a large portion of the input data has to be transfered
back from the co-processors to the CPU, which slows down the performance.
Therefore, we will now investigate how the speedup develops for varying
operator selectivity.

29

Varying average operator selectivity and number of processing devices. We
illustrate the results in Figure 9(c). We observe that the speedup significantly
increases with a higher operator selectivity (and hence, a lower selectivity
factor). Note that we set the cache hitrate in this experiment to 100%. We
can clearly identify the operator selectivity as one dominating factor for the
performance of a hybrid CPU/CP system. However, we now have to identify
whether the cache hitrate or the operator selectivity has the highest impact.

Varying cache hitrate and average operator selectivity. We visualize the results
of this experiment in Figure 9(d). We observe a significant speedup only
when the operator selectivity is less than or equal to 0.5 and the cache hitrate
is at least 50%. Furthermore, we can observe that the cache hitrate is the
dominating performance factor until it exceeds 50%. Then, the operator
selectivity becomes the dominating factor. We encounter significantly higher
speedups only for a cache hitrate of at least 70% and a operator selectivity
factor of less than or equal to 0.2.

6.3. Discussion

We now discuss the results of our experiments. For the first experiment,
we observed that the higher the relative speed of a co-processor is, the more
likely is that the bus becomes the bottleneck of the system. Therefore, the
relative speed is only a minor performance factor, because of the data transfer
overhead over the PCIe bus. A slow co-processor just ”hides” latency due to
data transfers over the bus, but as soon as the bus is fully utilized, no further
performance improvement can be achieved.

For the second experiment, we observe that a higher cache hitrate increases
the performance of the system. However, the speedup does not grow linearly
with the number of processing devices. The reason for this is that the results
still have to be copied back from the co-processor to the main memory. In
case the operator selectivity factor is too high, the co-processors will compete
for the bus most of the time, which can significantly degrade performance.

For the third and fourth experiment, we observe that the cache hitrate
and the operator selectivity are the dominant factors for the performance of
a hybrid CPU/CP system. The cache hitrate is the dominating performance
factor until it exceeds 50%. Then, the operator selectivity becomes the
dominating factor (RQ7). We observe significantly higher speedups only for
a cache hitrate of at least 70% and an operator selectivity factor of less than
or equal to 0.2 (RQ6).

30

Consequences for query processing. As hypothesized in Section 3, data trans-
fers of multiple co-processors may render some co-processors irrelevant for
performance, because once the bus bandwidth is fully used, no further ac-
celeration is possible. When co-processors spent more time on waiting for
bus access than on data processing, we call this bus trashing. Based on this
discussion, we derive the following possible solutions for bus trashing:

1. Add multiple independent PCIe Express Bus systems in one machine
following the tuning principle partitioning breaks bottlenecks [35].

2. Use compression techniques to reduce the data volume (Fang and others
[11] and Przymus and others [27]).

3. Execute only operations with high selectivity on the co-processors.
It is unrealistic that point 3 is applicable most of the time. However, queries
often consist of sequences of operations that process data of their predecessor
and pass their output to their successor. Such operator chaining highly
minimizes data transfers. One way to implement operator chaining is to
construct bushy query trees and execute each separate path (or sub-tree) in
the query tree on another co-processor. An operator chain may be executed
on the co-processor if and only if the selectivity of the data passes a certain
threshold (e.g., 10%). He and others discussed this for a single CPU/GPU
system [14], but the idea is applicable to a more general scope.

6.4. Threats to Validity

We now discuss threats to internal and external validity.

Threats to Internal Validity. We carefully calibrated our simulator according
to the bandwidth of our test machine’s main memory and the PCIe Bus. We
measured the main-memory bandwidth of our machine with the linux tool
mbw and observed an average bandwidth of 23.43 GiB/s.The PCIe Bus has a
maximum speed of 8 GiB/s, leading to a relative bus speed of ≈ 0.3413.

Threats to External Validity. We are aware that our simulator cannot capture
all architectural details of a hybrid CPU/CP system. However, we have
modeled the most important impact factors of such systems with respect to
DBMS: relative processing device speed, cache hitrate, and operator selectivity,
which we derived from existing work [13, 14] and our own experiences with
CoGaDB and Ocelot. In our experiments, we always assumed that each
simulated co-processor has the same speed. This is a common scenario in
practice, where a machine contains GPUs (or parallel accelerator cards such
as the Intel Xeon Phi) from the same vendor and product.

31

7. Related Work

We now present related work in the fields of hybrid CPU/GPU query
processing, self-tuning databases and heterogeneous task scheduling.

7.1. Hybrid CPU/GPU Query Processing

He and others developed GDB, a GPU-accelerated DBMS [14]. In contrast
to HyPE, they use an analytical cost model, which needs to be updated for
each new generation of GPUs. Furthermore, their model cannot adapt to
changing data and workloads.

Malik and others proposed a tailor-made scheduling approach for OLAP
in hybrid CPU/GPU environments [21]. They introduced an analytical
calibration-based cost model to estimate runtimes on CPUs and GPUs. Since
the approach is specific to their implementation, it cannot be easily applied
to other DBMSs.

Rauhe and others used just-in-time query compilation for complete OLAP
queries to reduce the overhead due to data transfers and synchronization [29].
They achieve speedups up to five by combining multi-threaded execution
with SIMD capabilities of GPUs. However, they execute one query either on
the CPU or the GPU, while HyPE allows for concurrent processing on all
(co-)processors.

Similarly, Yuan and others investigated the performance of OLAP queries
on GPUs. They compile SQL queries to a ’driver program’, which then
executes the query using pre-implemented relational operators [40]. Wu and
others proposed Kernel Weaver, a compiler framework, which combines GPU
kernels of relational operators. Their goal is to reduce the data volume that
needs to be transfered over the bus and to exploit code optimizations enabled
by the combined kernels [39]. Both approaches perform all processing on
the GPU and hence, omit possible performance gains due to inter-device
parallelism.

Przymus and others proposed a bi-objective query planner based on
marked models [28]. Their framework enables the DBMS to optimize query
execution time and one additional goal such as energy consumption.

Zhang and others introduced an alternative optimization heuristic in their
system OmniDB, which schedules work units on available (co-)processors.
For each work unit, the scheduler chooses the processing device with the
highest throughput. To avoid overloading a single processing device, the
scheduler ensures that the workload on each processing device may not exceed
a predefined fraction of the complete workload in the system [42].

32

7.2. Self-Tuning

Zhang and others developed COMET, an approach for estimating the
cost of XML operators using the statistical learning technique transform
regression [41]. Our approaches have in common that we do not need detailed
cost models of the operators but learn them on the fly by observing the
correlation between an operator’s characteristic features and execution time.
The difference is that we focus on allocating co-processors for relational
operators whereas Zhang and others focus on cost prediction for XML queries.

Răducanu and others introduced the concept of micro adaptivity [30].
Their approach chooses from a set of algorithm implementations the one with
lowest execution cost. In contrast, our approaches distribute operators on
a set of processing devices according to the processor’s speed. Hence, the
approaches are complementary: While we choose a suitable processing device,
Răducanu and others select a suitable algorithm implementation.

7.3. Heterogeneous Task Scheduling

Kerr and others developed a model, which selects CPU and GPU algo-
rithms statically before runtime [20]. Hence, their approach does not introduce
any runtime overhead and can utilize CPU and GPU at runtime for different
database operations. The major drawback is that no inter-device parallelism
can be achieved for a single operation class, because either every operation in
the workload is executed on the CPU or the GPU.

Iverson and others proposed a learning-based approach which requires no
hardware specific information similar to our model [19]. However, our used
statistical methods and architectures differ.

Augonnet and others introduced StarPU, a heterogeneous scheduling
framework that provides a unified execution environment and runtime system
[3]. StarPU can distribute parallel tasks in environments with heterogeneous
processors such as hybrid CPU/GPU systems and can construct performance
models automatically, similar to HyPE.

Ilić and others developed CHPS, an execution environment similar to
HyPE and StarPU [18]. CHPS main features are (1) support of a flexible task
description mechanism, (2) overlapping of processor computation and data
transfers and (3) automatic construction of performance models for tasks.
Ilić and others applied CHPS on TPC-H queries Q3 and Q6. They observed
significant performance gains, but used tailor-made optimizations for the
implementation of the queries [17].

A major problem of existing approaches is the high integration effort for
DBMS and the fact that the optimizer needs to use the task abstractions

33

of the scheduling frameworks (e.g., CHPS and StarPU). Since optimizers of
existing DBMS are extremely complex, an approach is needed that allows for
minimal invasive integration in the optimizer, while enabling the optimizer
for efficient co-processing. We developed HyPE to close this gap.
8. Conclusion

Efficient co-processing is an open challenge yet to overcome in database
systems. In this paper, we extended our hybrid query processing engine
by the capability to handle operator streams and optimization heuristics
for response time and throughput. We validated our extensions on five use
cases, namely aggregations, column scans, sorts, joins and simulations. Hence,
we showed that our approach works with the most important primitives in
column-oriented DBMS. We achieved speedups up to 1.85 compared to our
previous solution and static scheduling approaches while delivering accurate
performance estimations for CPU and GPU operators without any a priori
information on the deployment environment. As a significant extension
to the conference version [9], we investigated the scaling behavior of our
approach and found that we can achieve significant speedups with multiple
co-processors in case the data is cached in at least 50% of the cases and the
operator selectivity is equal or below 20%. In future work, we will develop
query optimization approaches that serialize a set of queries to an operator
stream and will compare their performance with traditional single-query
optimization.

Acknowledgements

We thank the anonymous reviewers of the Data & Knowledge Engineering Journal

and Jens Teubner from TU Dortmund University for their helpful feedback.

References

[1] D. Abadi, D. Myers, D. DeWitt, and S. Madden. Materialization strategies in a
column-oriented DBMS. In ICDE, pages 466–475. IEEE, 2007.

[2] T. Anderson and J. D. Finn. The New Statistical Analysis of Data. Springer, 1st
edition, 1996.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice & Experience, 23(2):187–198, 2011.

[4] P. Bakkum and K. Skadron. Accelerating SQL database operations on a GPU with
CUDA. In GPGPU, pages 94–103. ACM, 2010.

[5] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query
execution. In CIDR, pages 225–237, 2005.

34

[6] S. Breß. Why it is time for a HyPE: A hybrid query processing engine for efficient
GPU coprocessing in DBMS. The VLDB PhD workshop, PVLDB, 6(12):1398–1403,
2013.

[7] S. Breß, F. Beier, H. Rauhe, K.-U. Sattler, E. Schallehn, and G. Saake. Efficient
co-processor utilization in database query processing. Information Systems, 38(8):1084–
1096, 2013.

[8] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake. Exploring the
design space of a GPU-aware database architecture. In ADBIS workshop on GPUs In
Databases (GID), pages 225–234. Springer, 2013.

[9] S. Breß, N. Siegmund, L. Bellatreche, and G. Saake. An operator-stream-based
scheduling engine for effective GPU coprocessing. In ADBIS, pages 288–301. Springer,
2013.

[10] G. Diamos, H. Wu, A. Lele, J. Wang, and S. Yalamanchili. Efficient relational algebra
algorithms and data structures for GPU. Technical report, Center for Experimental
Research in Computer Systems (CERS), 2012.

[11] W. Fang, B. He, and Q. Luo. Database compression on graphics processors. PVLDB,
3:670–680, September 2010.

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

[13] C. Gregg and K. Hazelwood. Where is the data? why you cannot debate CPU vs.
GPU performance without the answer. In ISPASS, pages 134–144. IEEE, 2011.

[14] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander.
Relational query co-processing on graphics processors. In ACM Trans. Database Syst.,
volume 34. pp. 21:1–21:39. ACM, 2009.

[15] J. He, M. Lu, and B. He. Revisiting co-processing for hash joins on the coupled
CPU-GPU architecture. PVLDB, 6(10):889–900, 2013.

[16] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-oblivious
parallelism for in-memory column-stores. PVLDB, 6(9):709–720, 2013.

[17] A. Ilić, F. Pratas, P. Trancoso, and L. Sousa. High Performance Scientific Computing
with Special Emphasis on Current Capabilities and Future Perspectives, chapter High-
Performance Computing on Heterogeneous Systems: Database Queries on CPU and
GPU, pages 202–222. IOS Press, 2011.

[18] A. Ilić and L. Sousa. CHPS: An environment for collaborative execution on het-
erogeneous desktop systems. International Journal of Networking and Computing,
1(1):96–113, 2011.

[19] M. Iverson, F. Ozguner, and L. Potter. Statistical prediction of task execution times
through analytic benchmarking for scheduling in a heterogeneous environment. In
HCW, pages 99–111, 1999.

[20] A. Kerr, G. Diamos, and S. Yalamanchili. Modeling GPU-CPU workloads and systems.
GPGPU, pages 31–42. ACM, 2010.

[21] M. Malik, L. Riha, C. Shea, and T. El-Ghazawi. Task scheduling for GPU accelerated
hybrid OLAP systems with multi-core support and text-to-integer translation. In
IPDPSW, pages 1987–1996. IEEE, 2012.

[22] S. Manegold, M. L. Kersten, and P. Boncz. Database architecture evolution: Mammals
flourished long before dinosaurs became extinct. PVLDB, 2(2):1648–1653, 2009.

[23] T. Mostak. An overview of mapd (massively parallel database). White Paper,

35

Massachusetts Institute of Technology, April 2013. http://geops.csail.mit.edu/
docs/mapd_overview.pdf.

[24] R. Mueller, J. Teubner, and G. Alonso. Data processing on FPGAs. PVLDB,
2(1):910–921, 2009.

[25] T. Neumann. Efficiently compiling efficient query plans for modern hardware. PVLDB,
4(9):539–550, 2011.

[26] H. Pirk. Efficient cross-device query processing. In The VLDB PhD Workshop. VLDB
Endowment, 2012.

[27] P. Przymus and K. Kaczmarski. Dynamic compression strategy for time series database
using GPU. In ADBIS, pages 235–244. Springer, 2013.

[28] P. Przymus, K. Kaczmarski, and K. Stencel. A bi-objective optimization framework
for heterogeneous CPU/GPU query plans. In CS&P, pages 342–354. CEUR-WS, 2013.

[29] H. Rauhe, J. Dees, K.-U. Sattler, and F. Faerber. Multi-level parallel query execution
framework for CPU and GPU. In ADBIS, pages 330–343. Springer, 2013.

[30] B. Răducanu, P. Boncz, and M. Zukowski. Micro adaptivity in Vectorwise. In
SIGMOD, pages 1231–1242. ACM, 2013.

[31] M. Saecker and V. Markl. Big data analytics on modern hardware architectures: A
technology survey. In eBISS, pages 125–149. Springer, 2012.

[32] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, 1st edition, 2010.

[33] E. Schlicht. Isolation and Aggregation in Economics. Springer, 1985.
[34] S. L. Scott. A modern bayesian look at the multi-armed bandit. Appl. Stoch. Model.

Bus. Ind., 26(6):639–658, 2010.
[35] D. Shasha and P. Bonnet. Database tuning: principles, experiments, and troubleshoot-

ing techniques. Morgan Kaufmann, 2002.
[36] X. Tang and S. Chanson. Optimizing static job scheduling in a network of heteroge-

neous computers. In ICPP, pages 373–382. IEEE, 2000.
[37] H. Topcuouglu, S. Hariri, and M.-y. Wu. Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.,
13(3):260–274, 2002.

[38] J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical evaluation.
In ECML, pages 437–448. Springer, 2005.

[39] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel weaver: Automatically
fusing database primitives for efficient GPU computation. In MICRO, pages 107–118.
IEEE, 2012.

[40] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of processing data warehousing
queries on GPU devices. PVLDB, 6(10):817–828, 2013.

[41] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang. Statistical learning
techniques for costing XML queries. In VLDB, pages 289–300. VLDB Endowment,
2005.

[42] S. Zhang, J. He, B. He, and M. Lu. OmniDB: Towards portable and efficient query
processing on parallel CPU/GPU architectures. PVLDB, 6(12):1374–1377.

36

