
A Systolizing Compilation Scheme
for Nested Loops with Linear Bounds*

Michael Barnet t 1 and Chris t ian Lengauer 2

1 Department of Computer Sciences, The University of Texas at Austin,
Austin, Texas 78712-1188, U.S.A. E-mMI: mbarnett~cs.utexas.edu
2 Fakultgt fiir Mathematik und Informatik, Universits Passau,

Postfach 25 40, D-W8390 Passau, Germany. E-malh lengauer@fmi.unl-passau.de

A b s t r a c t . With the recent advances in massively parallel programmable
processor networks, methods for the infusion of massive MIMD parallelism
into programs have become increasingly relevant. We present a mechanical
scheme for the synthesis of systolic programs from programs that do not
specify concurrency or communication. The scheme can handle source pro-
grams that are perfectly nested loops with regular data dependences and
that correspond to uniform recurrence equations. The target programs are in
a machine-independent distributed language with asynchronous parallelism
and synchronous communication. The scheme has been implemented as a
prototype systolizing compiler.

1 Introduct ion

A new generat ion of p rogrammable processor networks is emerging tha t can sup-
por t fine-grain (thousands of processors), MIMD, communicat ion-intensive paral le l
programs. Present architectures of this type are, for e x a m p l e , / W a r p [6], the T9000
t ransputer [19], the AP1000 [37], and the CM-5 [38]. Archi tectures under develop-
ment include the Mosaic [35], and the Rewrite Rule Machine [1]. One class of pro-
grams tha t such machines will be able to execute effectively is the class of systolic

programs.
Systolic programs are programs for general-purpose dis t r ibuted memory proces-

sor networks with asynchronous paral le l ism and synchronous communicat ion. The
execution of a systolic p rogram emulates a systolic array [22, 23], a processor network
with only local interconnections that , in the past , has been intended for a hardware
real izat ion as a special-purpose VLSI chip. One proper ty of systolic arrays is tha t
their para l le l ism can be determined before run time.

We present a scheme for the mechanical derivation of systolic programs. We derive
the systolic p rogram from a source program tha t specifies neither concurrency nor
communicat ion and from an abs t rac t description of a corresponding systolic array.
The source program must be a set of perfectly nested loops with only l inear loop
bounds and regular da t a dependences. The description of the systolic array is based
on linear functions tha t dis t r ibute the s ta tements of the program over space and

* FinanciM support was received from the Science and Engineering Research Council
(SERC), grant no. GR/G55457.

375

time. There are several mechanical methods for the design of systolic arrays from
such source programs [15, 31, 33].

Our ultimate goal is a scheme that works for all uniform recurrences [21]. The
scheme proposed here almost reaches this goal: we still have to allow for non-
neighbouring connections and piecewise linear loop bounds. While non-neighbouring
connections do not add any conceptual challenge, they complicate the details of the
i /o to and from the array considerably. Piecewise linear loop bounds can be dealt
with by considering each linear piece separately and composing the results.

Our notation is presented in Sect. 2. Section 3 is a brief review of our scheme.
Section 4 presents the geometric model for the source programs. Section 5-discusses
the central aspects of the scheme with an example (additional details can be found
in [3]). Our conclusions are presented in Sect. 6.

2 N o t a t i o n

The application of a function f to an argument x is denoted by f . z . Function appli-
cation is left-associative and has higher binding power than any other operator. We
will occasionally use the lambda notation for functions.

Quantification over a dummy variable x is written (Q x : R . x : P.x) , following
[10]. Q is the quantifier, R is a predicate in x representing the range, and P is a
term that depends on x. When R is understood from the context, it is omitted.
The symbol A is used for universal quantification, E for existential quantification.
(set z : R . x : P .x) is equivalent to the more traditional {P.x I R.x}. The quantifier
(seq i : R. i : P.i) represents an ordered sequence of elements; we also write tuples
by listing the elements in angled brackets. Our derivations are in the equational
proof format of [10]. Curly brackets enclose supporting comments of an equation.

The set of points that a linear function f maps to zero is called the null space of
f and denoted null.f. Other properties of linear functions that we use include their
dimensionality and rank. We identify points and vectors; both are usually written as
a list of the elements in parentheses, but may also be written as a column in square
brackets, x . i denotes the i-th coordinate of point x. For a point x, the notation
(x ; i : e) refers to the point with the same coordinates as x except that x . i = e.
Matrices are denoted by capital letters. M . i refers to row i of matrix M; thus, the
element in row i and column j is written M . i . j . The point whose components are all
zero is denoted by 0, the identity matrix by I; the context indicates their dimension.
The inner product of two points x and y, both in R ~, is:

x e y = (s u m / : O G i < n : x . i . y . i)

and is undefined when the points do not have the same number of components.
Matrix multiplication is denoted by juxtaposition, e.g., M x for a matrix M and a
vector x.

Z, Q, and R represent the set of integers, rational numbers, and real numbers,
respectively. Integers are denoted by the letters i through n, and points by the
letters w through z. Thus, m �9 n is the product of two scalars, while m �9 x is the
multiplication of a point by a scalar; it represents the componentwise multiplication
by m. The symbol / is used for division; it may appear in two different contexts.

376

m / n denotes the ord inary division of two numbers, x / m represents the division of
each component of x by the number m, i.e., (l / m) �9 x. Other opera tors are also
extended componentwise: e.g., given two n-vectors x and y, x < y is equivalent to
(A i : O < i < n : x . i < y.i). We denote the integer m such tha t m , y equals x by
x / / y . I t is only well-defined if x is a mult iple of y. Integer division is denoted by
"--". m I n s tands for (E i : i E Z : m �9 i = n); in programs, it is represented by n
rood m = O. The values +1 and - 1 are called uni~ values.

3 O v e r v i e w

The source program is a set of r perfectly nested loops:

f o r xo = lbo ~-- sto ---* rbo
f o r xl = lbl ~-- st1 --~ rbl

f o r x r - 1 = lbr_ 1 ~-- sty_ 1 ---+ rbr - 1

(x0, =1, . . . , X _l)

with a loop body, called the basic s ta tement , of the form:

(x 0 , x l , . . . , x , - 1) : i f B o . x o . x l . ' " . X r - 1 ~ SO
[] BI .=0 .x l . - - ' . x , . -1 ~ $1

Bt-1 . x o . x l . ' " . x r - 1 ~ St-i
f i .

Let the range of ~ be 0 < s r, and the range of i be 0 < i < t . The bounds lb~ (left
bound) and rb~ (right bound) are linear expressions in the loop indices x0 to x l -1
and in a set of variables called the problem size. The body of the loops may be
viewed as a procedure with the loop indices as its parameters; each i te ra t ion of the
body is completely specified by an r - tuple of values for the indices. The steps sQ
are unit values; different step widths can be coded into the arguments of the basic
s ta tement . The left bound and right bound of each loop are related by:

(A ~ : 0_<~<r : lb~ <rb~) .

In terpre ted as a sequential program: if the step is positive, the loop is executed from
the left bound to the right bound; if the step is negative, it is executed from the r ight
bound to the left bound. The guards Bi are boolean functions; the computa t ions Si
may contain composit ion, a l ternat ion, or i tera t ion but with no non-local references
other than to a set of global variables indexed by the loop indices. 12 is the set of
names of these variables.

A systolic ar ray is a specification of a paral lel implementa t ion. I t consists of two

linear d is t r ibut ion functions:

- step specifies a tempora l dis t r ibut ion, a t ime schedule for the s ta tements .
- place describes the spat ia l d is t r ibut ion of the s ta tements onto processes.

377

The range of place is called the process space, denoted P ; its dimension is one less
than the number of nested loops in the source program. Each element in the process
space is a process. There are systolic arrays of reduced dimension (e.g., [20, 27, 40])
and arrays defined by piecewise linear d is t r ibut ion functions (e.g., [7, 9, 11]). We
consider only full-dimensionM systolic arrays tha t are described by linear d is t r ibut ion
functions.

We use a geometric model for the source program and the systolic array. The
loop bounds of the source program define the boundaries of a convex polyhedron in
r -d imensional space. (When the loop bounds are finite, the polyhedron is a poly-
tope.) The s ta tements of the program correspond to the set of integer points within
the polyhedron. For simplicity, we require every integer point to correspond to a
s ta tement . (This is enforced by restr ict ing loop str ides to unit values.) We call ei-
ther the entire polyhedron in •r or, also, jus t the enclosed set of integer points the
index space.

The loops in the dis t r ibuted program, like those in the source program, require
integer-valued loop indices. We ensure tha t the results obta ined in the model are all
integer and can thus be interpreted as p rogram components.

For any fixed process y, the l ineari ty of place ensures tha t the points mapped to y
tie equidis tant ly dis t r ibuted on a s t ra igh t line in the index space; we denote this line
by chord.y. We call the fixed distance between neighbouring points inc (elsewhere,
it is called the iteration vector [33]); it does not depend on y. The l ineari ty of step
imposes a to ta l order on the points of a chord. Thus, it suffices to identify the first
point , first, on the line - this is the point at which step reaches a m i n i m u m - and
the last point , last - the point at which step reaches a maximum. The computa t ions
to be performed by a process are completely specified by the sequence

(seq i : O_< i_< (last - first) /// inc : f i r s t + i . i n c) .

For a given process y, the equation

place.x = y

can be solved for the par t icular x tha t should be the value of first (or last). If, in
addit ion, the equations are solved for any process, i.e., for y expressed symbolical ly
in terms of the coordinates of the process space, then the values first and last are
functions from the process space back to the index space (in general, piecewise
linear functions; we refer to each linear piece as a clause). Of course, there is no
unique solution as long as place projects more than one point onto y. Tha t is, t h i s
system of l inear equations is underdetermined. But, by replacing one component
of x with a known constant, it may be solved for a unique point . The key is to
discover a component of first (last), and then solve the system for the remaining
r - 1 components of first (last). If first (last) is known to lie on a boundary of the
index space, then one of its components is known (if a point x lies on a boundary
defined by loop [, then x. [is either the left or right bound of tha t loop).

The da ta of interest in a systolic array are indexed variables in the source pro-
gram; all elements of an indexed variable move through the systolic array with a
constant speed and direction: the variable 's flow. In the systolic array, an indexed
variable is also referred to as a stream. An indexed variable is specified by a name

378

and an index vector', indexed variables may have a common name as long as certain
technical restrictions are met [8]. An index vector is an (r -1) - tup le each component
of which is a linear expression that depends only on the loop indices and integer
constants. The linear expression is divided into two parts: an index map, (a linear
function from F r to Z r-l) and an offset, (an integer vector in Zr-1). The rank of the
index map must be r - 1. Variables whose index map has a rank less than that are
split into variables that have index maps with full rank [8].

4 T h e G e o n a e t r i c M o d e l

A loop bound is a linear expression comprising integer constants, problem size vari-
ables, and enclosing loop indices. We represent it by a pair, (c, d); c is a row vector
in][1 • _ it contains the coefficients of the loop indices (with 0 for all absent indices)
- while d is the rest of the linear expression (any additive constants and problem
size variables). We denote the left bound of loop s 0 < ~< r, by Ll, the right bound
by Rl. When the distinction is irrelevant, we write boundt.

We require the concept of the application of a loop bound to a point x. Given a
loop bound bound = (c, d), its application to z is defined as:

bound.x = c . x + d . (1)

A polyhedron is described by a system of linear inequalities in matrix notation:

A x < b .

The polyhedron is the set of all points z that satisfy this inequality.
To derive the system of linear inequalities of the index space from the source

program, we construct a matrix E and a vector f from the left bounds of all loops,
and a matrix G and a vector h from the right bounds. Row g of each matrix is the
vector c from the corresponding loop g (i.e., the left bound of loop g is used for E,
the right bound for G). Each component g of vector f is the function d from the left
bound of loop g; in h it is taken frolu the right bound, f and h are linear expressions.

This is a simplified version of Ribas' notation [34]: we know that our loop strides
are unit values and that, for each g, L~ < R~.

We demonstrate the entire method with the example of a selection sort as given
in Rao [32, pp. 273-278]. (Different place functions turn this source program into
different sorts.) The source program is shown in Figs. 1 and 2.

The array x contains the unsorted elements. The array m is initialized during
the execution of the program, and upon termination, contains the sorted elements.
We refer to each indexed variable by its name: to m[j] by m and to x[i] by x. The
index maps for the variables are Mm = ()~ (j, i) . j) and Mz = (~ (j, i).i). Both offm
and offz are the zero vector. Elements of the null spaces of the index maps are (0, 1)
and (1, 0), respectively.

The first row of E is the vector c from the left bound of the first loop which is,
by definition, always 0. The second row of E is the vector c from the left bound of
the second loop which is (1, 0), because the coefficient of j in the left bound of the
inner loop is 1. Similarly to E, the first row of G is 0, and in this particular case,

379

for j = 1 ~--- 1--~ n
for i = j ~- l -+ n

(j, i)

g index Lt Rt
o j (o, 1) (o, It)
1 i ((1, 0), O) ((0, 0), n)

i iv1 I t - z z -

1
V O

I I
1

Fig. 1. Sorting: program, loop bounds, and index space.

(j, i) :: i f i = j -~ re[j] := x[i]
D i • j --~ m[j], x[i] := max(x[i], m[j]), min(x[i], m[j])
fi

Fig. 2. Sorting: basic statement.

~ j
n

the second row is also O. The vectors f and h are constructed from the constants
in the loop bounds : the constants in the left loop bounds are 1 and O, those in the
right bounds are n and n. Thus, the matrices and vectors in the example are:

These matr ices and vectors are used to represent the index space. By the definition
of the loop bounds:

(A t , x : 0_<g<r /X z E S [: L~ .x<_x .g<R~.x)

which becomes in mat r ix form:

E x + f < x < G x + h .

Simplifying the inequalities, the mat r ix form can be rewri t ten as:

E - I

We continue to refer to the mat r ix on the left by A and the vector on the right by
b. Our polyhedra l index space is thus the set of points x satisfying (2). We call a
ma t r ix and vector of this s tructure the normal f o r m for the polyhedron. In normal
form, the index space of the example becomes:

l i [i1 _<

(For typographica l reasons, we often write the normal form as two inequalities; one
for the left bounds, the other for the right bounds.) Each row in A is the outward

380

normal to the associated boundary of the index space [14, 24]. A vertex of the index
space, i.e., an extreme point, is the intersection of r boundaries; we associate the
vertex with the boundar ies and their normals. Any r normals, each derived from
a dist inct loop, define a vertex. There are 2 ~ vertices. They result from taking all
possible combinat ions of loop bounds; component t of each vertex is either the left
bound or right bound of loop l . For those rows of A and b used to define a vertex, the
inequali t ies become equalities. Figure 3 depicts the normals for the example. Note
tha t two of the vertices coincide: v~ and v3. The normal (1, 0) is for the bounda ry
between them, which in this example, consists of jus t one point . Such boundar ies
are called extraneous and are discussed in Sect. 5.4.

i

I I ~ J

1 n

Fig. 3. Index space with outward normMs.

4.1 T h e S y s t o l i c A r r a y

Let the systolic ar ray be defined by the step function:

s tep . (j , i) = j + i .

Rao discusses three place functions:

Nace . (j , i) = j , p lace. (j , i) = i , p lace . (j , i) = i - j .

We derive a program only for the third place function; it is the most complicated
one (the only one tha t is non-simple [4]).

A s t ream's flow is derived from a vector in the null space of its index map. Let
s be a s t ream, M the index map, and w a vector in the null space of M. Then
flow.s = place.w/step.w. Thus, for s t ream x:

flow.x
= { definition of flow }

place.(1, 0)/step.(1, 0)
= { s t ep . (j , i) = j+i , place.(j , i) = i - j }

- 1 / 1
= { simplification }

- - 1 .

381

Similarly, the flow of stream m is 1.
A stream whose flow is 0 is called a s tat ionary stream. Elements of a stat ionary

stream stay with a fixed process for the duration of the program and must be made
available to the process before its first use. This is called loading. The final values of
a stat ionary stream, if of interest, must be output after their last use. This is called
recovery.

The process space is one-dimensional; we name its coordinate p.

5 T h e S y s t o l i z a t i o n S c h e m e

This section presents the central aspects of the scheme. Subsection 5.1 presents the
method for determining the boundaries of the process space. In Subsect. 5.2, inc is
derived; it is used for many parts of the systolic program. In Subsect. 5.3, certain
boundaries of the index space are shown to be of particular interest: those which
contain the points first and last. Certain troublesome boundaries are discussed in Sub-
sect. 5.4. Subsections 5.5, 5.6, and 5.7 present the heart of the compilation scheme:
the derivation of the computation processes. Subsection 5.5 explains how the sys-
tems of equations are constructed, Subsect. 5.6 shows how to cope with non-integer
solutions, and Subsect. 5.7 explains the derivation of the guards when the compu-
tation processes are defined piecewise. Subsection 5.8 describes the augmentation
of the basic statement with communication directives for moving stream elements.
The input and output processes are derived in Subsects. 5.9 and 5.10. The former
describes their layout, i.e., their distribution in space; the latter describes the pro-
gram each i /o process executes. A computat ion process may have to transfer data
elements before or after they are used for computation. Subsection 5.11 presents the
derivation of this code. Subsection 5.12 derives the buffer processes (the processes
that do not compute but only communicate). Finally, in Subsect. 5.13, the complete
target program for sorting is presented.

5.1 T h e P r o c e s s Space B o u n d a r i e s

The distributed program contains one process for each point in the range of place,
i.e., in the process space 7 ~. The process space can be an arbitrary polytope (it is the
linear projection of a polytope); it is easier to specify its rectangular closure: rect.T).
(The process space is specified in the distributed program by parallel loops; only a
restricted class of polytopes can be specified this way if linear loop bounds are used.)
We create a process for each point in the rectangular closure; the points that do not
lie in the range of place do not perform any computations. The rectangular closure
is specified by two points: m i n t) and max7 ~. Both are points in 7/~-1 such that:

(A y : y E T) : (A i : O ~ i < r - 1 : m i n T) . i ~ _ y . i ~ m a x T) . i)) .

In terms of the model, each component of minT) is the minimum value a linear
function attains on the index space, while max?) is the maximum value. The linear
function is the corresponding component of place. Let P.i represent the unique vec-
tor associated with the linear function of component i in place, 0 < i < r - 1 . Thus,
each component of minT) and max?> is the solution of a linear program that either

382

minimizes the value of P. i . x (for minP) , or maximizes it (for m a x P) , given the sys-
tem of inequali t ies A x _< b. For any value h, the points in 2" tha t satisfy P . i . x = h
lie on a hyperplane whose normal is P.i.

In the example, the process space is one-dimensional; both m i n t) and max7) have
a single component; thus we abbrevia te P.i to P . In general, the following procedure
is performed for each component separately. Since place. (j , i) = i - j , we obta in
P = (- 1 , 1). The linear p rogram minimizes P . x for mint) and maximizes i t for
max7 "). Figure 4 shows the index space with the hyperplane and its normal (- 1 , 1).

n i I '

1 n ~

Fig. 4. max:P.

In general, for points x E P , the value of P . x increases as the hyperplane is
moved in the direction of P ; it decreases as the hyperplane is moved in the direction
o f - P . From linear progranaming, we know tha t when the value P . x is at a ma x imum
(minimum), then a vertex of the index space lies on the hyperplane. Such a vertex
(which need not be unique) can be found by moving the hyperplane as far as possible
in the direction of P (- P) , while still intersecting E. Any vertex on the hyperplane
has the proper ty tha t P (- P) is a non-negative l inear combinat ion of the normals
tha t define the vertex. Geometrically, these are the normals between which P (- P)
lies. In Fig. 4, the vertex at the base of the normal P = (- 1 , 1) lies between the

normals (- 1 , O) and (0, 1).
A vector v is a l inear combinat ion of a set of vectors (se t k : O < k < n : vk) if

and only if a solution for x of the system of equations V x = v exists, where V is
a ma t r i x whose columns are the vk. Thus, to see whether a vertex x provides the
m a x i m u m (minimum) for P (- P) , we construct a naatrix V, whose columns are the
r normals tha t define x. Then we solve the system of linear equations:

V~y~ = P .

for each vertex in Z for maxP, and with P replaced by - P for minP . When the
solut ion y= is non-negative, i.e., y , > O, then the vertex x from which V= is derived
is the vertex we are searching for. There are four vertices in the example. We name

them:

vo = (L o , L 1) , vl = (Lo,-R1) , v~ = (Ro,L1) , v3 = (/~o,R1) �9

383

Matrix Vk is derived from vertex vk by entering the rows for the respective loop
bounds in A as the columns of Vk :

[- 001] [01]
The four solutions of Vkyk = (--1, 1), 0 < k < 4 , are:

Yo = (0 , - 1) , Yl = (1, 1) , Y2 = (0 , - 1) , Y3 = (- 1 , 1) .

In this case, there is only one solution that is non-negative: Yl. So there is a unique
vertex, vl, for which P reaches a maximum. For (1 , - 1) , i.e., - P , the solutions
are -Yk, 0_< k < 4. Since both Yo and y~ are non-negative, both vertices vo and v2
achieve the minimum when projected by place. Note that -Y3 is not non-negative,
even though, in this program, the corresponding vertex, v3, also achieves a minimum
for P . This is a result of the extraneous boundary. If the constant in the right bound
of the inner loop were another size variable m, such that m > n, there would be a
right vertical boundary to :/:, v~ and v3 would not coincide, and v3 would not achieve
a minimum for P .

Geometrically, we have found the points at which the hyperplane h = (- 1 , 1)
achieves a maximum value on the polyhedron :/::

max~=(maxx : x E E : h x) .

This is where a diagonal line (with a slope of 1) intersecting 27 lies when moved as
far north-west as possible in Fig. 1.

Once V= is found, the vertex x itself is constructed. The vertex is a point in the
index space that satisfies all r of its defining bounds. Thus, to derive the coordinates
of x, we solve the system of equations representing the bounds using the matrix V w
(the rows of V T are the normals defining z) and a vector b= whose components are
the components of the vector b corresponding to each normal. Then, x is the solution
of the system:

= (3)

In the example, P achieves the maximum at vertex Vl; this is the vertex where
the left boundary of the outer loop intersects the right boundary of the inner loop:
vertex (L0, R1). To construct this vertex symbolically, we solve V W x = (--1, n):

[-001] = [-:]
= { simplification }

- j = - I A i = n

= { simplification }
j = l A i = n

yielding x = (1, n).
Finally, after the vertex x is constructed, the value of m a x P is just the value

of place.x, which can be evaluated symbolically. For the example, there is only one
component:

384

max~P
= { definition }

place.(l, n)
= { place. (j , i) = i - j

r t - - 1 .

This procedure is performed for all r - 1 components in the range of P . For each
component i, maxP.i is the i - th component of the image (under place) of the vertex
derived for P.i (and likewise for min~P). In the worst case, for each component , a
l inear sys tem must be solved for each vertex. There are 2 r vertices. Therefore, there
are at most (r - 1) �9 2 r systems of equations to solve. In practice, r is usually not
larger than 5 [36] and there are many circumstances for which the same vertex can
be used in the derivat ion of many components. Also, if P.i is equal to a normal of
the index space, which is frequently the case, the solution is tr ivial .

5.2 D e r i v i n g inc

inc is the dis tance between any two neighbouring points on any chord.y in the process
space; it is a constant . As a vector tha t lies on a chord, it is in the null space of
place. We require inc to point in the direction of execution of the points on chord.y;
i.e., i ts direction is determined by step. inc's components are scaled to make it the
unit vector between neighbours. If w is an a rb i t ra ry (non-zero) element of null.place
and k = (g c d i : O<i<r : w.i), then:

i0c = sgn.(step.), (l / k) , (4)

The sign ensures tha t inc points in the direction prescribed by the step function.
step.w = 0 is not possible: step and place would be inconsistent, contrary to our
assumption tha t the systolic a r ray is correct. For example, let w be (- 3 , - 3) , which
is in the null space of place. Then:

inc
= { (4) }

sgn.(step.w) * (l / k) * w
= { k = 3 }

s g n . (- 3 + - 3) * (1/3) * (- 3 , - 3)
= { simplif ication }

s g n . (- 6) * (-i,-1)
= { simplification }

- 1 . (- 1 , - 1)
= { simplif ication }

(1, 1) .

5 .3 I d e n t i f y i n g t h e F a c e s

The derivat ion of first and last begins by identifying the boundaries of the index
space tha t contain them. This leaves r - 1 equations with r - 1 unknowns which
can be solved exact ly for the remaining r - 1 components of first (or last). In the

385

general case, the boundaries of interest are the ones that share a (single) point with
a chord.y. Al l chords are mutually parallel since they are all defined by the same
direction vector: inc. Thus, for each boundary, it suffices to consider whether or not
inc is orthogonal to the normal of that boundary. If it is, then the boundary is parallel
to the chords and is not needed to derive first and last. If a boundary is parallel to
the chords, then it must coincide with exactly one of them; for that y, first and last
lie on other boundaries that are not parallel to the chords.

A boundary that is not parallel to inc is called a face. The face associated with
a right (left) bound of loop ~ is denoted by 9r.Rt (~'.L~). For each boundary of the
index space, we compute incow for the normal w to that boundary; when the result
is 0, inc is orthogonal to the normal and parallel to the boundary. Since each row of
A is a normal to the boundary defined by the corresponding loop bound, the result
of multiplying A by inc is the inner product of the corresponding row with inc. The
results of the inner products are:

Each boundary for which the inner product is not zero is a face. When the inner
product is less than zero, the boundary is used for the derivation of first. When it is
greater than zero, the boundary is used for last. In the example, there is one face for
f i rst: 5r.L0. There are two faces for last: ~'.R0 and 5r.R1. Figure 5 shows the index
space and the chords.

1 -

1 I ~ j

1 n

Fig. 5. Sorting: the index space and chords. The arrows represent the direction of inc.

5.4 E x t r a n e o u s B o u n d a r i e s

We call boundaries that contain only a single point exiraneous. An example is the
boundary associated with the right bound of the first loop in Fig. 1: it contains
only the point (n,n) . Not every extraneous boundary can be ignored, as Fig. 6
illustrates. The outward normals derived from the loop bounds are (- 1 , 0), (1, -1) ,
(1, 0), and (0, 1). When m < n, the boundary corresponding to the normal (1, 0)
is extraneous, but when m > n, it is not. In general, the values of m and n are

386

not available at compile time. There are cases where a compile-time analysis could
determine boundaries that may be deleted; our present implementat ion does not do
so. Deleting an extraneous boundary can be computat ional ly expensive [34].

f o r i = 0 ~--- 1 - -* n

for j = i ~-- l ---~ ra
(i , j)

Fig. 6. Example of extraneous boundaries.

5.5 C o n s t r u c t i n g a n d So lv ing t h e E q u a t i o n s f o r first a n d last

Once the faces have been identified, one system of equations per face is constructed
in order to derive first and one to derive last. We discuss only first; for last, the roles
of the left and right bounds are reversed.

Let x be the vector of loop indices. Then the value of first is the solution of the
system of equations for ~'. boundt:

place.(x;g : e) = y

where e is the result of applying boundi to x (this amounts to substi tuting the bound
of loop i as it appears in the program). Using the example, the face for first is ~'.L0.
The vector x is (j , i) , and e is the result of applying L0 to (j, i):

(x;Z : e)
= { x = (j , i) , s e = L 0 . (j , i)

((j, i); 0 : L o . (j , i))
= { L0 = ((0,0), 1) }

((j, i); 0 : ((0, 0), 1).(j , i))
= { Equation 1 }

((j , i) ;O : O , j + O , i + l)
= { simplification }

((j , i) ;0 : 1)
= { simplification }

(1,i)
which just substi tutes the left bound of the loop indexed by j for the first component
of the point. The system of equations has been reduced to one with only r - 1
unknowns and can now be solved exactly:

place.(1, i) = p
= { place.(j,i) = i - j }

i - l = p
= { simplification }

i = p + l .

387

Substituting the solution back into the point, we obtain first = (1, p + 1). In sorting,
first is an integer point, but in general, it need not be. Our method for non-integer
solutions is presented in Sect. 5.6.

For last, both systems of equations are produced by the right bounds. The first
system uses the loop indexed by j :

place.((j , i) ;O: n) = p

with the solution:

place.(n,i) = p
= { place.(j,i). = i - j }

i - n = p
= { simplification }

i = p + n .

Substituting the solution back into the point yields last = (n,p + n). The second
.system of equations uses the loop indexed by i:

place.((j, i); 1 : ,~) = p

with the solution:

place.(j,n) = p
= { place.(j,i). = i - j }

n - j = p
= { simplification }

j = n - p .

Substituting the solution back into the point yields last = (n - p, n).
There are no non-integer solutions; thus, no extra clauses are needed in either

f irst or last.

5.6 C o p i n g w i t h N o n - I n t e g e r S o l u t i o n s

The solution of the system of linear equations is the intersection of chord.y with a
boundary of the index space. When the solution is not integral, there are processes
y such that first.y and last.y do not lie on the boundaries of the index space. The
intersection is instead a point in q r As such, it cannot be used as the value of first
or last: we must use the nearest integer point towards the interior of the index space
instead. It is always possible to detect the presence of non-integer solutions; they
have non-unit denominators.

Consider the set of equations for a particular face, :P.boundt, i.e., a boundary
defined by a bound of loop t, with its outward normal y,. Let x I be the solution to the
system of equations. When a non-integer solution occurs, the guard for that clause
of first (resp. last) is augmented with a conjunct that guarantees that the solution
is integer. The functions num and den return the numerator and denominator of a
rational number, respectively. The conjunct is of the form:

(A t ' : O_<e '<r A g' # e : den.(xl.g ')]num. (x ' . g ')) .

388

Suppose that the place function for the example were place.(j, i) = 2 �9 j + i. Then
the face .f.L1 would be used to derive first, and the solution would be (p/3, p/3). In
this case, the conjunct would reduce to 3 I P-

Let s be the least common multiple of the denominators in x':

s = (Icm k : 0 < k < r : den.(x'.k)) . (5)

Then there are s clauses for this face; they are specified by the set:

(s e t k : 0 < k < s : x ' G k / s * i n c) (6)

where Q is addition when yl . inc < 0 and subtraction when yt . inc > 0. (Remember:
if y l . i n c = 0, there is no face for the associated boundary.) The purpose is to
perturb the point x' towards the interior of the index space along the line chord.y.
The original expression for first (resp. last) and the s - 1 new clauses, each with its
own conjunct, are composed into an alternative command. In the example, s = 3,
so two new clauses are derived.

Note. Although, in theory, this can lead to a very large number of clauses, in prac-
tice, given the kind of place functions used for systolic arrays, there are usually no
more than about two, because otherwise there are unnecessarily many processors in
the array, s is the number of processes created in the process space per unit along
the face. Large values for s tend to produce more processes than are needed. Under
certain circumstances, non-integer solutions of the system of equations do not incur
any new clauses. When the largest absolute value of the denominators of the com-
ponents of x' is 2, it is possible to use the floor and ceiling functions to perturb the
solution. When s is 2, (6) indicates one extra clause.

Given the alternative place function, the face is defined by the left bound of the
loop indexed by i, the second loop, whose normal is (1 , - 1) . Referring to (6), s is 3.
Derived from the alternative place function, inc = (- 1 , 2); (1, - 1) . i nc is - 3 , so (D is
addition. The two new clauses of first are:

x' Q k /s* inc
= { k = l)

(p/a ,p/3) + 1/3 �9 (-1, u)
= { simplification }

(p/a,p/3) + (- 1 / 3 , 2/3)
= { simplification }

((p - 1)/3, (p + 2)/3)

x' | k /s * inc
= { k = 2 }

(p/3, p/a) + 2/3 �9 (-1 ,2)
= { simplification }_

(p/3, p/a) + (-2 /3 , 4/3)
= { simplification }

((p - 2) / 3 , (p + 4) / 3) .

The conjunct for the left value reduces to 3 I (P - 1), that for the right value to
3 I (P - 2). Thus, the complete expression for first (for this boundary of the index

space) is:

first = i f3 IP -+ (p /a ,p /a)
D 31 (v - 1) -+ ((p - 1) /3 , (; + u) / a)

3 I (P - 2) + ((p - 2) /3 , (p + 4) / 3)
f t .

389

5.7 D e r i v a t i o n o f t h e B o u n d s

Once the values of first and last have been derived, the guards tha t define the regions
of the process space for which those values apply are derived from first (resp. last)
and the bounds of the loops in the source program. Let x' be the solution of the set
of equations place.x = y, where x ~ is a point in ~.boundl. Then, the guard for the
clause is a predicate defining the bounds of the projection of the face in the process
space. It uses the bounds of all loops other than g:

(A l : 0 _ < t < r A t o t ' : L~.x'<_x'.t<_Re.x'). (7)

The general form of (7) becomes

Le.first _< first.g _< Rbfirst

and
Le.last _< last.g _< Re.last

where t is the olher loop than the one defining the face. Tha t is, when .~.boundo is
used to derive the value of first or last, the bounds of the inner loop are used for the
guards; when it lies on ~.boundl, then the bounds of the outer loop are used.

The value of first is on ~-.L0, so the guard is:

Ll.first < first.1 _< P~l.first
= { first = (1,p + 1), L1 = ((1, 0), 0), and R1 = (0, n) }

((1,0), 0) . (1 , p + 1) _< (1 , p + 1).1 _< (0, n} . (1 ,p+ 1)
= { simplification }

l < p + l _ < n
= { simplification }

O < _ p < _ n - 1 .

There are two clauses for last. A guard is derived for each clause. The first clause is
from ~.R0:

Ll.last < last.1 < P~l.last
= { l a s t = (n , p + n) , L l = ((1 , O) , O) , andR l= (O , n) }

((1,0), O).(n,p+ n) < (n,p-t-n).l <_ (0, n) .(n,p+ n)
= { simplification }

n < p + n < _ n
= { simplification }

0_<p<0.

The second clause is from ;C.Rl:

Lo.last <last.O < R.o.last
= { last = (n - -p , n), L0 = (0, 1), and R0 = (0, n) }

(0, 1).(n -- p,n) <_ (n -- p, n).O <_ (0, n).(n -- p,n)
= { simplification }

l < n - p < _ n
= { simplification }

1 - n < - p < O
= { simplification }

0 _ < p _ < n - 1 .

390

Note that the first clause is for the extraneous boundary that contains only the
vertex (n, n).

Table 1 displays the final program for each computation process p. The clauses
for the extraneous boundaries have not been deleted. Also, the expression for first
need not be in a guarded command, since the process space is rectangular. In this
example, a mechanical simplifier could recognize this.

first last inc
i f O ~ p ~ n - 1 - - - * (1 , p + l) if0 p ~ 0 - - -* (n ,p+ ,) inc= (1,1)
n 0 0 < p < n - i - ~ (~ - p , .)

fi

Table 1. Computation processes.

5.8 A u g m e n t i n g the Basic S t a t e m e n t

A basic statement is a guarded command with n clauses. The guards may only
depend on the loop indices. In the distributed program, the statement becomes:

(x0,xz, . . . ,xr-1) : i f Bo .xo .x i xr-1 -~ S~o

D Bi .x0 .x i xr-1 ~ $~

fi

where S~, 0 ~ i < t, is an augmentation of the statement Si achieved by replacing the
indexed variables with scalars, prefixing Si with receive commands for the variables
that are read, and postfixing it with send commands for the variables that are
written (or propagated). The augmented basic statement for sorting is presented in
Subsect. 5.13.

5.9 The I / O Processes - Layou t

We create i/o processes along the boundaries o f rec t .7) . This has the advantage of
simplicity. For each stream s, the components of flow.s determine the dimensions in
which i/o processes are created (because the vector represented by flow.s is parallel
to a boundary of the closure precisely when its corresponding component is zero).
For each non-zero component i of flow.s, the following set of processes is created:

I (.98 . i=(se t y : y E rect.7) A (y . i = m i n P . i V y . i = max~P.i) : y) .

When flow.s.i is greater than 0, then the points whose i-th component is minT).i are
input processes, and those whose i-th component is maxT~.i are output processes.
When flow.s.i is less than 0, then the two are reversed. Depending on the bounds of
the indexed variable, some processes in each set may perform null communications,

391

analogously to the processes tha t are not in P . Whenever there is more than one
non-zero component offlow.s (yielding more than one set of i / o processes), there are
points tha t are in more than one set. Sets tha t are not disjoint must be made so:
we derive the process definitions in order of increasing dimension number, from 0 to
r - 2 . In each dimension, dupl icate processes are el iminated.

Since the process space of sort ing is one-dimensional, there is only one set of i /o
processes per s tream. Each s t ream has an input process located at one end of the
l inear ar ray of processes, and an ou tput process at the other end. Each s t ream's flow
has only one component; if it is positive, the input processes are at min~P, and the
ou tput processes are at rnaxP. Thus, the input process for m is located at 0 and its
ou tput process is at n - 1, and vice versa for x.

5 .10 T h e I / O P r o c e s s e s - C o m m u n i c a t i o n

An i / o process is completely specified by the sequences of d a t a elements it accesses:
for a s t ream s, by firsts, fasts, and incs. In order to derive the process definition for
the i / o processes, first, the access space As for each s t ream s is derived. The access
space is the set of points in the range of s 's index map tha t are accessed by some
s ta tement in Z:

As = (se t x : x E Z : M~.x + off,).

Just as for the process space, it is much easier to derive the rectangular closure of the
access space. Thus, for each s t ream s, minas and maxAs are derived in the same
way as mint) and max7 9. Each component of the index map for s t ream s is a linear
function. Using the procedure presented in Sect. 5.1, a vertex of Z which achieves the
min imum (for minas, or the max imum for max.As) is derived, and then symbolical ly
constructed and projected by Ms. In this example, this is par t icu la r ly simple since
both index maps have only one component and the normal to the hyperplane for
M,~ and M~ is equal to a normal of the index space (for all but min.A~). Tha t is,
the index map of m is the row vector [1 0] , which is equal to the first row of I - G.
Consequently, the vertex tha t achieves a max imum has n, the right bound of the
loop indexed by j , as its first component. The second component of the vertex can
be the left or right bound of the loop indexed by i; in either case, the coordinates
of the vertex are (n, n). The project ion of this point by Mm (with offm added) is
max.A,~, namely n. For minAm, the normal to the hyperplane is

- 1 , [0 1] = [0 - 1]

which is again equal to a normal of 5[, this t ime the first row of E - I . So minAm
is the result of project ing a vertex whose first component is 1 (the left bound of the
loop indexed by j) and whose second component is either 1 or n (the left or right
bound of the loop indexed by i when j = 1). In either case, the value for rain.Am is
1. For s t ream x, the hyperplane to the normal is [01], which is equal to the second
row of I - G, yielding a vertex whose second component is the right bound n of the
loop indexed by i; thus maxM= = n. For min.,4~, though, the hyperplane ' s normal
is [0 - 1] , which is not equal to any of the normals to 5[. Wi thou t presenting the
derivation, only one vertex achieves a min imum value: (1, 1), derived from the left

392

bounds of both loops. Thus minA~ = 1. Note that these derivations are independent
of the place function.

The i /o process definitions are derived from the access space and inc. Applying
the stream's index map to]nc provides the value for inc~. For a stationary stream,
the result, 0, is replaced by a provided loading ~ recovery vector. This specifies the
direction by which the stream is loaded into and recovered from the array. Both
streams m and x are moving streams, the value of Ms.inc is 1 for both. Using incs,
the values for firsts and lasts are computed. Since all one-dimensional streams are
simple, the values for firsts and lasts are derived directly from the access space
and inc~ [3]. For simple streams, when incs is positive, then firsts = minas and
last~ = maxA~ ; when it is negative, the definitions are reversed. The i /o process
definitions are displayed in Tab. 2.

stream first~ lasts inc'~
m 1 n 1
x 1 n 1

Table 2. I /O processes.

5.11 T h e C o m p u t a t i o n P r o c e s s e s - D a t a P r o p a g a t i o n

Stream elements that arrive at a process before the process begins its computat ions
must be propagated. This is called soaking. Also, after the process has finished its
computations, it may have to propagate further stream elements. This is called
draining.

For stat ionary streams, the convention is that, on loading, the process stores
the first element tha t it receives into a local variable and propagates the rest. On
recovery, the process propagates all elements from other processes and then ejects its
loom element. The number of elements to be propagated on soaking and on recovery
is defined by the same formula. Similarly, the number of elements to be propagated
on draining and on loading is defined by the same formula. Let M be the index map
of stream s and y the vector of the coordinates of the process space. The general
formula for soaking is:

soaks --- (M . (f i r s t . y) + offs) - f i r s t s . y) / / i n c ~ .

That for draining is:

drains = (l a s t s . y - (M . (l a s t , y) + o f f s)) / / i n c ~ .

Since the process space is one-dimensional, y consists of a single coordinate, p. With-
out presenting the derivations, the results are given in Tab. 3. Since the soaking and
draining code depends on the definition of first and last, when the latter are defined
piecewise, so must the former. Here, last is defined piecewise, so drain is defined
piecewise for both streams.

393

s t r e a m soaks drain~
m 0

x p

i f 0 ~ p < 0 ~ 0
O < p ~ n - - 1 ~ p

fi

i f 0 ~ p ~ 0 ~ p
O ~ p < n - - 1 ~ 0

fi

Table 3. Propagation code.

5.12 T h e B u f f e r P r o c e s s e s

Internal buffers on the communicat ion channels between processes in P are specified
for each s t ream with a fractional flow. Since we require our systolic arrays to have
only nearest-neighbour communicat ion, for each s t ream s, flow.s is of the form y /n
for some n > 0, where (A i : O<_i<r : [y . i l < - 1) holds. The synchronous commu-
nicat ion provides a buffer of size 1; we specify n - 1 buffer processes between each
computa t ion process. In this example, all s t reams have unit flow.

For process spaces tha t have more than one dimension, processes may be created
tha t are not in 7) (but are in rect.7)). These processes do not par t ic ipa te in the
computa t ion , but they do propagate da ta elements from the borders of the processor
array to the process space. The boundaries of 7) are defined by the guards in the
expression for first (or last) - both are defined only for the points in the process
space. The points in rect.7) but not in 7) are those for which the disjunction of the
guards fails to hold. Each buffer passes along all elements of a s t ream tha t it receives.
For s t ream s, buf~ is the number of elements buffered:

buf~ = ((last~ - f i r s t s) / / i n c ,) + 1 .

Of course, when any of these are defined piecewise, buff~ is also defined piecewise.
In this example, the process space is one-dimensional; all one-dimensional process
spaces are rectangular; thus, there are no external buffers.

5 .13 T h e T a r g e t P r o g r a m

The dis t r ibuted program is wri t ten in a language-independent notat ion, which can be
direct ly t rans la ted to any par t icular d is t r ibuted programming language with asyn-
chronous paral lel ism and synchronous communicat ion.

The construct p a r f o r denotes the paral lel composit ion of a set of indexed pro-
cesses; p a r denotes the paral lel composit ion of a rb i t ra ry processes. Sequential com-
posi t ion is indicated by vertical al ignment (as in occam [16, 18]). Each s t ream has
its own set of channels. Channels are d is t r ibuted shared da t a s tructures indexed as
arrays: for process y and s t ream s, channel s_chan[y] connects to process y - f l o w . s ,
channel s_chan[y+flow.s] connects to process y+flow.s. The nota t ion p a s s s_chan, n
s tands for the program:

394

fo r counter = 1 *--- 1 --* n do
r ece ive foo f r o m s_chan[y]
s e n d foo f r o m s_chan[y+flow.s]

The scope of the variables counter and foo are local to the p rogram.
The indices of a channel are derived from the flow of the respective stream. The

extraneous clauses in last, as well as the extraneous clauses it induced in drainm and
drainz, have been removed by hand. The notat ion < first, last, inc > (also called a
repeater [28]), that appears in the basic statement, represents the sequence of calls
to the (augmented) basic statement, where the values of the indices correspond to
the components of the points. The target program is shown in Figs. 7 and 8. We
have hand-translated it to occam [16] and executed it on a simulator. (A mechanical
translator to occarn 2 [17] has since been developed [30].)

t h a n m_chan[O..n], x_chan[-1. .n- 1]
par

/********** Input Processes **********/

send z < 1, n, 1 > to x_chan[n - 1]

/********** Computation Processes **********/

p a r f o r p = 0 ~ 1 - - -*n -1
int m, x
pass x_chan, p
< (1 , p + 1) , (n - p , p + n) , (1,1) >
pass m_chan, p

/********** Output Processes **********/

receive m < l, n, 1 > f rom ra_chan[n]

Fig. 7. Sorting: target program.

6 C o n c l u s i o n s

Our implemented compilation scheme handles all source programs with linear loop
bounds that correspond to systolic arrays with nearest-neighbour communication.
Work similar to ours is found in the field of parallelizing compilers.

Wolf and Lain [39], while concerned with a different form of parallelism (DOALL
loops), present an algorithm for deriving transformed programs from source pro-
grams and a mapping, T, that corresponds to the combination of our functions step
and place. Their transformed loop bounds are conservative: the outer loops may
specify more iterations than necessary, but the innermost loop is guaranteed to exe-
cute only legitimate iterations. This can create excess processes in the process space.
Wolf and Lain are only concerned with producing the new loop nest and not the code

395

(j, i) :: if i = j --* receive x f rom x_chan[p]
m := x
send rn to m_chan[p + 1]

i r j --* par
receive m f rom ra_chan[p]
receive x f rom x_chan[p]

m, x := max(x, m), min(x,m)
par

send m to m_chan[p + 1]
send x to x_chan[p- 1]

fi

Fig. 8. Sorting: augmented basic statement.

necessary to support i/o. They restrict T to be unimodular, which means that it is
not only invertible and an integer matrix, but its inverse is also an integer matrix.
This guarantees (in our terminology) that first and last are integer, and that the loop
strides of the transformed loops are unit steps.

Lu and Chen [29] also are concerned with DOALL parallelism and loop trans-
formations. In contrast to Wolf and Lain, they do not require the transformations
to be unimodular, but at the expense of execution efficiency: the body is guarded
with a test to make sure that each iteration corresponds to a point back in the index
space. They also do not concern themselves with i /o code.

Unimodularity simplifies code generation, but it is not a necessary requirement
and its violation does not necessarily have to lead to lower-quality code [5]. In our
work, we describe the time dimension precisely, even for non-unimodular transfor-
mations [3]. At present, we require our systolic arrays to be full-dimensional and are
willing to waste processors in space (by using the rectangular closure of the process
space).

Within the systolic world, work has either concentrated on producing ad-hoc
programs by hand, e.g. [13], or on describing the structure such programs should
have, e.g., [12].

Quinton uses a language called A L P H A to describe systolic programs [25, 26]; it
is a synchronous language; as such, it resembles Lu and Chen's work in that, for each
iteration of the outermost sequential loop (implementing the clock of a synchronous
systolic array), each process tests to see whether an iteration corresponding to the
s6urce program is specified or not. A L P H A also requires the space-time transfor-
mation to be unimodular.

Ribas [34] presents a compilation method for systolic programs targeted specif-
ically at the programmable systolic array Warp [2]. His method is restricted by
the architecture of Warp: only one-dimensional systolic arrays with uni-directional
streams are considered.

396

Acknowledgements

We are grateful for very helpful discussions with and suggestions by Jingling Xue.
They have improved the contents and presentation of this paper. The first author
also thanks Hudson Ribas for helpful discussions.

References

1. H. Aida, S. Leinwand, and J. Meseguer. Architectural design of the rewrite rule en-
semble. In J. Delgado-Frias and W. R. Moore, editors, Proc. Int. Workshop on VLS1
for Artificial Intelligence and Neural Networks, 1990. Also: Technical Report SRI-CSL-
90-17, SRI Int., Dec. 1990.

2. M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M. Lam, O. Menzilcioglu, and
J. A. Webb. The Warp computer: Architecture, implementation, and performance.
IEEE Transactions on Computers, C-36(12):1523-1538, Dec. 1987.

3. M. Barnett. A Systolizing Compiler. PhD thesis, Department of Computer Sciences,
The University of Texas at Austin, Mar. 1992. Technical Report TR-92-13.

4. M. Barnett and C. Lengauer. The synthesis of systolic programs. In 3.-P. Bans
and D. Le M6tayer, editors, Research Directions in High-Level Parallel Programming
Languages, Lecture Notes in Computer Science 574, pages 309-325. Springer-Verlag,
1992.

5. M. Barnett and C. Lengauer. Unimodularity considered non-essential (extended ab-
stract). In M. Cosnard, editor, CONPAR 92, Lecture Notes in Computer Science.
Springer-Verlag, 1992. To appear.

6. B. Baxter, G. Cox, T. Gross, H. T. Kung, D. O'Hallaron, C. Peterson, J. Webb, and
P. Wiley. Building blocks for a new generation of application-specific computing sys-
tems. In S. Y. Kung and E. E. Swartzlander, editors, Application Specific Array Pro-
cessors, pages 190-201. IEEE Computer Society Press, 1990.

7. A. Benaiui and Y. Robert. Spacetime-minimal systolic architectures for Gaussian elim-
ination and the algebraic path problem. Parallel Computing, 15(1):211-226, 1990.

8. 3. Bu and E. F. Deprettere. Converting sequential iterative algorithms to recurrent
equations for automatic design of systolic arrays. In IEEE 1at. Conf. on Acoustics,
Speech, and Signal Processing (1CASSP 88}, volume IV: VLSI; Spectral Estimation,
pages 2025-2028. IEEE Press, 1988.

9. Ph. Clauss, C. Mongenet, and G. R. Perrin. Calculus of space-optimal mappings of
systolic algorithms on processor arrays. In S. Y. Kung and E. E. Swartzlander, editors,
Application Specific Array Processors, pages 4-18. IEEE Computer Society, 1990.

10. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science, Springer-Verlag, 1990.

11. B. R. Engstrom and P. R. Cappello. The SDEF programming system. Journal of
Parallel and Distributed Computing, pages 201-231, 1989.

12. H. A. Fencl and C. H. Huang. On the synthesis of programs for various parallel ar-
chitectures. In Proc. 1991 1at. Conf. on Parallel Processing, Vol. I1, pages 202-206.
Pennsylvania State University Press, 1991.

13. A. Ferns 3. M. Llaberla, and J. 3. Navarro. On the use of systolic algorithms for
programming distributed memory multiprocessors. In J. McCanny, J. McWhirter, and
E. Swartzlander Jr., editors, Systolic Array Processors, pages 631-640. Prentice-Hall
Inc., 1989.

14. G. Hadley. Linear Algebra. Series in Industrial Management. Addison-Wesley, 1961.

397

15. C.-H. Huang and C. Lengauer. The derivation of systolic implementations of programs.
Acta Informatica, 24(6):595-632, Nov. 1987.

16. INMOS Ltd. occam Programming Manual. Series in Computer Science. Prentice-Hall
Inc., 1984.

17. INMOS Ltd. occam 2 Reference Manual. Series in Computer Science. Prentice-Hall
Inc., 1988.

18. INMOS Ltd. transputer Reference Manual. Prentice-Hall Inc., 1988.
19. INMOS Ltd. The T9000 transputer �9 Products Overview �9 Manual. SGS-Thompson

Microelectronics Group, first edition, 1991.
20. H. V. Jagadish, S. K. Rao, and T. Kailath. Array architectures for iterative algorithms.

Proc. IEEE, 75(9):1304-1320, Sept. 1987.
21. R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for

uniform recurrence equations. Journal of the Association for Computing Machinery,
14(3):563-590, July 1967.

22. It. T. Kung and C. E. Leiserson. Algorithms for VLSI processor arrays. In C. Mead
and L. Conway, editors, Introduction to VLSI Systems. Addison-Wesley, 1980.

23. S.-Y. Kung. VLSIArray Processors. Prentice-Hall Inc., 1988.
24. S. Lay. Convex Sets and Their Applications. Series in Pure and Applied Mathematics.

John Wiley &: Sons, 1982.
25. H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its use for the

design of systolic arrays. Journal of VLSI Signal Processing, 3:173-182, 1991.
26. H. Le Verge and P. Quinton. The palindrome systolic array revisited. In J.-P. Bans

and D. Le M6tayer, editors, Research Directions in High-Level Parallel Programming
Languages, Lecture Notes in Computer Science 574, pages 298-308. Springer-Verlag,
1992.

27. P. Lee and Z. Kedem. Synthesizing linear array algorithms from nested for loop algo-
rithms. IEEE Transactions on Computers, TC-37(12):1578-1598, Dec.]988.

28. C. Lengauer, M. Barnett, and D. G. Hudson. Towards systolizing compilation. Dis-
tributed Computing, 5(1):7-24, 1991.

29. L.-C. Lu and M. Chen. New loop transformation techniques for massive parallelism.
Technical Report YALEU/DCS/TR-833, Yale University, Oct. 1990.

30. D. D. Prest. Translation of abstract distributed programs to occam 2. 4th-Year Report,
Department of Computer Science, University of Edinburgh, May 1992.

31. P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations.
In Proc. 11th Ann. Int. Syrup. on Computer Architecture, pages 208-214. IEEE Com-
puter Society Press, 1984.

32. S. K. Rao. Regular Iterative Algorithms and their Implementations on Processor Ar-
rays. PhD thesis, Stanford University, Oct. 1985.

33. S. K. Rao and T. Kallath. Regular iterative algorithms and their implementations on
processor arrays. Proc. IEEE, 76(2):259-282, Mar. 1988.

34. H. B. Ribas. Automatic Generation of Systolic Programs from Nested Loops. PhD the-
sis, Department of Computer Science, Carnegie-Mellon University, June 1990. Techni-
cal Report CMU-CS-90-143.

35. C. E. Seitz. Multicomputers. In C. A. R. Hoare i editor, Developments in Concurrency
and Communication, chapter 5, pages 131-200. Addison-Wesley, 1990.

36. Z. Shen, Z. Li, and P.-.C. Yew. An empirical study of FORTRAN programs for
parallelizing compilers. IEEE Transactions on Parallel and Distributed Systems,
1(3):356-364, July 1990.

37. T. Shimizu, T. Horie, and H. Ishihata. Low-latency message passing communication
support for the AP1000. In Proc. 19th Ann. Int. Syrup. on Computer Architecture,
pages 288-297. ACM Press, 1992.

398

38. Thinking Machines Corporation. The Connection Machine CM-5, Technical Summary,
Oct. 1991.

39. M. Wolf and M. Lam. A loop transformation theory and an algorithm to maximize
parallelism. I E E E Transactions on Parallel and Distributed Systems, 2(4):452-471,
Oct. 1991.

40. J. Xue and C. Lengauer. On one-dimensional systolic arrays. In Proc. A C M Int.
Workshop on Formal Methods in VLSI Design. Springer-Verlag, Jan. 1991. To appear.

