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A b s t r a c t .  With the recent advances in massively parallel programmable 
processor networks, methods for the infusion of massive MIMD parallelism 
into programs have become increasingly relevant. We present a mechanical 
scheme for the synthesis of systolic programs from programs that do not 
specify concurrency or communication. The scheme can handle source pro- 
grams that are perfectly nested loops with regular data dependences and 
that correspond to uniform recurrence equations. The target programs are in 
a machine-independent distributed language with asynchronous parallelism 
and synchronous communication. The scheme has been implemented as a 
prototype systolizing compiler. 

1 Introduct ion  

A new generat ion of p rogrammable  processor networks is emerging tha t  can sup- 
por t  fine-grain ( thousands of processors), MIMD, communicat ion-intensive paral le l  
programs.  Present architectures of this type are, for e x a m p l e , / W a r p  [6], the T9000 
t ransputer  [19], the AP1000 [37], and the CM-5 [38]. Archi tectures  under develop- 
ment  include the Mosaic [35], and the Rewrite Rule Machine [1]. One class of pro- 
grams tha t  such machines will be able to execute effectively is the class of systolic 

programs.  
Systolic programs are programs for general-purpose dis t r ibuted memory proces- 

sor networks with asynchronous paral le l ism and synchronous communicat ion.  The  
execution of a systolic p rogram emulates  a systolic array [22, 23], a processor network 
with only local interconnections that ,  in the past ,  has been intended for a hardware  
real izat ion as a special-purpose VLSI chip. One proper ty  of systolic arrays  is tha t  
their  para l le l ism can be determined before run time. 

We present a scheme for the mechanical  derivation of systolic programs.  We derive 
the systolic p rogram from a source program tha t  specifies neither concurrency nor 
communicat ion  and from an abs t rac t  description of a corresponding systolic array. 
The  source program must  be a set of perfectly nested loops with only l inear loop 
bounds  and regular  da t a  dependences.  The  description of the  systolic array is based 
on linear functions tha t  dis t r ibute  the s ta tements  of the program over space and 
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time. There are several mechanical methods for the design of systolic arrays from 
such source programs [15, 31, 33]. 

Our ultimate goal is a scheme that  works for all uniform recurrences [21]. The 
scheme proposed here almost reaches this goal: we still have to allow for non- 
neighbouring connections and piecewise linear loop bounds. While non-neighbouring 
connections do not add any conceptual challenge, they complicate the details of the 
i /o  to and from the array considerably. Piecewise linear loop bounds can be dealt 
with by considering each linear piece separately and composing the results. 

Our notation is presented in Sect. 2. Section 3 is a brief review of our scheme. 
Section 4 presents the geometric model for the source programs. Section 5-discusses 
the central aspects of the scheme with an example (additional details can be found 
in [3]). Our conclusions are presented in Sect. 6. 

2 N o t a t i o n  

The application of a function f to an argument x is denoted by f . z .  Function appli- 
cation is left-associative and has higher binding power than any other operator. We 
will occasionally use the lambda notation for functions. 

Quantification over a dummy variable x is written (Q x : R . x  : P.x) ,  following 
[10]. Q is the quantifier, R is a predicate in x representing the range, and P is a 
term that  depends on x. When R is understood from the context, it is omitted. 
The symbol A is used for universal quantification, E for existential quantification. 
(set  z : R . x  : P .x )  is equivalent to the more traditional {P.x I R.x}. The quantifier 
(seq i : R. i  : P.i)  represents an ordered sequence of elements; we also write tuples 
by listing the elements in angled brackets. Our derivations are in the equational 
proof format of [10]. Curly brackets enclose supporting comments of an equation. 

The set of points that  a linear function f maps to zero is called the null space of 
f and denoted null.f. Other properties of linear functions that  we use include their 
dimensionality and rank. We identify points and vectors; both are usually written as 
a list of the elements in parentheses, but may also be written as a column in square 
brackets, x . i  denotes the i-th coordinate of point x. For a point x, the notation 
(x ; i  : e) refers to the point with the same coordinates as x except that  x . i  = e. 
Matrices are denoted by capital letters. M . i  refers to row i of matrix M;  thus, the 
element in row i and column j is written M . i . j .  The point whose components are all 
zero is denoted by 0, the identity matrix by I;  the context indicates their dimension. 
The inner product of two points x and y, both in R ~, is: 

x e y  = ( s u m /  : O G i < n  : x . i . y . i )  

and is undefined when the points do not have the same number of components. 
Matrix multiplication is denoted by juxtaposition, e.g., M x for a matrix M and a 
vector x. 

Z, Q, and R represent the set of integers, rational numbers, and real numbers, 
respectively. Integers are denoted by the letters i through n, and points by the 
letters w through z. Thus, m �9 n is the product of two scalars, while m �9 x is the 
multiplication of a point by a scalar; it represents the componentwise multiplication 
by m. The symbol / is used for division; it may appear in two different contexts. 
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m / n  denotes the ord inary  division of two numbers,  x / m  represents the division of 
each component  of x by the number m, i.e., ( l / m )  �9 x. Other opera tors  are also 
extended componentwise: e.g., given two n-vectors x and y, x < y is equivalent to 
(A  i : O < i < n  : x . i  < y.i).  We denote the integer m such tha t  m ,  y equals x by 
x / / y .  I t  is only well-defined if x is a mult iple  of y. Integer division is denoted by 
"--".  m I n s tands for (E  i : i E Z : m �9 i = n); in programs,  it  is represented by n 
rood m = O. The values +1 and - 1  are called uni~ values. 

3 O v e r v i e w  

The source program is a set of r perfectly nested loops: 

f o r  xo = lbo ~-- sto ---* rbo 
f o r  xl  = lbl ~-- st1 --~ rbl 

f o r  x r -  1 = lbr_ 1 ~-- sty_ 1 ---+ rbr -  1 

(x0, =1, . . . ,  X _l) 

with a loop body,  called the basic s ta tement ,  of the form: 

( x 0 , x l , . . . , x , - 1 )  : i f  B o . x o . x l . ' " . X r - 1  ~ SO 
[] BI .=0 .x l . - - ' . x , . -1  ~ $1 

Bt-1 . x o . x l . ' " . x r - 1  ~ St-i 
f i .  

Let the range of ~ be 0 < s  r, and the range of i be 0 < i < t .  The bounds lb~ (left 
bound)  and rb~ (right bound)  are linear expressions in the loop indices x0 to x l -1  
and in a set of variables called the problem size. The body of the loops may be 
viewed as a procedure with the loop indices as its parameters;  each i te ra t ion  of the 
body  is completely specified by an r - tuple  of values for the indices. The steps sQ 
are unit  values; different step widths can be coded into the arguments  of the basic 
s ta tement .  The left bound and right bound of each loop are related by: 

( A ~  : 0_<~<r  : lb~ <rb~)  . 

In terpre ted  as a sequential  program: if the step is positive, the loop is executed from 
the left bound to the right bound; if the step is negative, it  is executed from the r ight  
bound to the left bound.  The  guards Bi are boolean functions; the computa t ions  Si 
may contain composit ion,  a l ternat ion,  or i tera t ion but  with no non-local  references 
other than  to a set of global  variables indexed by the loop indices. 12 is the set of 
names of these variables. 

A systolic ar ray is a specification of a paral lel  implementa t ion.  I t  consists of two 

linear d is t r ibut ion functions: 

- step specifies a tempora l  dis t r ibut ion,  a t ime schedule for the s ta tements .  
- place describes the spat ia l  d is t r ibut ion of the s ta tements  onto processes. 
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The range of place is called the process space, denoted P ;  its dimension is one less 
than  the number  of nested loops in the source program.  Each element in the process 
space is a process. There are systolic arrays of reduced dimension (e.g., [20, 27, 40]) 
and arrays defined by piecewise linear d is t r ibut ion functions (e.g., [7, 9, 11]). We 
consider only full-dimensionM systolic arrays  tha t  are described by linear d is t r ibut ion 
functions. 

We use a geometric model  for the source program and the systolic array. The 
loop bounds of the source program define the boundaries  of a convex polyhedron in 
r -d imensional  space. (When the loop bounds are finite, the polyhedron is a poly- 
tope.)  The  s ta tements  of the program correspond to the set of integer points  within 
the polyhedron.  For simplicity,  we require every integer point  to correspond to a 
s ta tement .  (This is enforced by restr ict ing loop str ides to unit  values.) We call ei- 
ther the entire polyhedron in •r or, also, jus t  the enclosed set of integer points  the 
index space. 

The loops in the dis t r ibuted program, like those in the source program,  require 
integer-valued loop indices. We ensure tha t  the results obta ined in the model  are all 
integer and can thus be interpreted as p rogram components.  

For any fixed process y, the l ineari ty of place ensures tha t  the points  mapped  to y 
tie equidis tant ly  dis t r ibuted on a s t ra igh t  line in the index space; we denote this line 
by chord.y. We call the fixed distance between neighbouring points  inc (elsewhere, 
it  is called the iteration vector [33]); it does not depend on y. The l ineari ty of step 
imposes a to ta l  order on the points  of a chord. Thus, it  suffices to identify the first 
point ,  first, on the line - this is the point  at  which step reaches a m i n i m u m -  and 
the last  point ,  last - the point  at  which step reaches a maximum.  The computa t ions  
to be performed by a process are completely specified by the sequence 

( seq  i : O_< i_< (last - first) /// inc : f i r s t + i . i n c )  . 

For a given process y, the equation 

place.x = y 

can be solved for the par t icular  x tha t  should be the value of first (or last). If, in 
addit ion,  the equations are solved for any process, i.e., for y expressed symbolical ly  
in terms of the coordinates of the process space, then the values first and last are 
functions from the process space back to the index space (in general,  piecewise 
linear functions; we refer to each linear piece as a clause). Of course, there is no 
unique solution as long as place projects  more than one point  onto y. Tha t  is, t h i s  
system of l inear equations is underdetermined.  But,  by replacing one component  
of x with a known constant,  it  may be solved for a unique point .  The key is to 
discover a component  of first (last), and then solve the system for the remaining 
r - 1 components  of first (last). If first (last) is known to lie on a boundary  of the 
index space, then one of its components  is known (if a point  x lies on a boundary  
defined by loop [, then x. [  is either the left or right bound of tha t  loop). 

The da ta  of interest in a systolic array are indexed variables in the source pro- 
gram; all elements of an indexed variable move through the systolic array with a 
constant  speed and direction: the variable 's  flow. In the systolic array, an indexed 
variable is also referred to as a stream. An indexed variable is specified by a name 
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and an index vector', indexed variables may have a common name as long as certain 
technical restrictions are met [8]. An index vector is an ( r -1) - tup le  each component 
of which is a linear expression that  depends only on the loop indices and integer 
constants. The linear expression is divided into two parts: an index map, (a linear 
function from F r to Z r-l) and an offset, (an integer vector in Zr-1). The rank of the 
index map must be r - 1. Variables whose index map has a rank less than that  are 
split into variables that  have index maps with full rank [8]. 

4 T h e  G e o n a e t r i c  M o d e l  

A loop bound is a linear expression comprising integer constants, problem size vari- 
ables, and enclosing loop indices. We represent it by a pair, (c, d); c is a row vector 
in ][1 • _ it contains the coefficients of the loop indices (with 0 for all absent indices) 
- while d is the rest of the linear expression (any additive constants and problem 
size variables). We denote the left bound of loop s 0 < ~< r, by Ll, the right bound 
by Rl. When the distinction is irrelevant, we write boundt.  

We require the concept of the application of a loop bound to a point x. Given a 
loop bound bound = (c, d), its application to z is defined as: 

bound.x = c . x  + d . (1) 

A polyhedron is described by a system of linear inequalities in matrix notation: 

A x < b .  

The polyhedron is the set of all points z that  satisfy this inequality. 
To derive the system of linear inequalities of the index space from the source 

program, we construct a matrix E and a vector f from the left bounds of all loops, 
and a matrix G and a vector h from the right bounds. Row g of each matrix is the 
vector c from the corresponding loop g (i.e., the left bound of loop g is used for E, 
the right bound for G). Each component g of vector f is the function d from the left 
bound of loop g; in h it is taken frolu the right bound, f and h are linear expressions. 

This is a simplified version of Ribas'  notation [34]: we know that  our loop strides 
are unit values and that,  for each g, L~ < R~. 

We demonstrate the entire method with the example of a selection sort as given 
in Rao [32, pp. 273-278]. (Different place functions turn this source program into 
different sorts.) The source program is shown in Figs. 1 and 2. 

The array x contains the unsorted elements. The array m is initialized during 
the execution of the program, and upon termination, contains the sorted elements. 
We refer to each indexed variable by its name: to m[j] by m and to x[i] by x. The 
index maps for the variables are Mm = ()~ (j, i ) . j )  and Mz = (~ (j, i).i).  Both offm 
and offz are the zero vector. Elements of the null spaces of the index maps are (0, 1) 
and (1, 0), respectively. 

The first row of E is the vector c from the left bound of the first loop which is, 
by definition, always 0. The second row of E is the vector c from the left bound of 
the second loop which is (1, 0), because the coefficient of j in the left bound of the 
inner loop is 1. Similarly to E, the first row of G is 0, and in this particular case, 
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for  j = 1 ~--- 1--~ n 
for  i = j ~- l -+ n 

(j, i) 

g index Lt  Rt  
o j (o, 1) (o, It) 
1 i ((1, 0), O) ((0, 0), n) 

i iv1 I t  - z z - 

1 
V O  

I I 
1 

Fig.  1. Sorting: program, loop bounds, and index space. 

(j, i) :: i f i  = j -~ re[j] := x[i] 
D i • j --~ m[j], x[i] := max(x[i], m[j]), min(x[i], m[j]) 
fi 

Fig.  2. Sorting: basic statement. 

~ j  
n 

the second row is also O. The vectors f and h are constructed from the constants 
in the loop bounds :  the constants in the left loop bounds are 1 and O, those in the 
right bounds are n and n. Thus, the matrices and vectors in the example are: 

These matr ices  and vectors are used to represent the index space. By the definition 
of the loop bounds: 

( A t ,  x : 0_<g<r  /X z E S [  : L~ .x<_x .g<R~.x )  

which becomes in mat r ix  form: 

E x + f  < x < G x + h .  

Simplifying the inequalities, the mat r ix  form can be rewri t ten as: 

E - I  

We continue to refer to the mat r ix  on the left by A and the vector on the right by 
b. Our polyhedra l  index space is thus the set of points  x satisfying (2). We call a 
ma t r ix  and vector of this s tructure the normal  f o r m  for the polyhedron.  In normal  
form, the index space of the example becomes: 

l i [i1 _< 

(For typographica l  reasons, we often write the normal  form as two inequalities; one 
for the left bounds,  the other for the right bounds.)  Each row in A is the outward 
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normal  to the associated boundary  of the index space [14, 24]. A vertex of the index 
space, i.e., an extreme point,  is the intersection of r boundaries;  we associate the 
vertex with the boundar ies  and their normals.  Any r normals,  each derived from 
a dist inct  loop, define a vertex. There are 2 ~ vertices. They result from taking all 
possible combinat ions  of loop bounds; component  t of each vertex is either the left 
bound or right bound of loop l .  For those rows of A and b used to define a vertex, the 
inequali t ies become equalities. Figure 3 depicts the normals  for the example.  Note 
tha t  two of the vertices coincide: v~ and v3. The normal  (1, 0) is for the bounda ry  
between them, which in this example,  consists of jus t  one point .  Such boundar ies  
are called extraneous and are discussed in Sect. 5.4. 

i 

I I ~ J  

1 n 

Fig.  3. Index space with outward normMs. 

4.1 T h e  S y s t o l i c  A r r a y  

Let the systolic ar ray be defined by the step function: 

s tep . ( j , i )  = j + i  . 

Rao discusses three place functions: 

Nace . ( j , i )  = j , p lace. ( j , i )  = i ,  p lace . ( j , i )  = i -  j . 

We derive a program only for the third place function; it  is the most complicated 
one (the only one tha t  is non-simple [4]). 

A s t ream's  flow is derived from a vector in the null space of its index map.  Let 
s be a s t ream,  M the index map,  and w a vector in the null space of M.  Then 
flow.s = place.w/step.w. Thus, for s t ream x: 

flow.x 
= { definition of flow } 

place.(1, 0)/step.(1,  0) 
= { s t ep . ( j , i )  = j+i ,  place.( j , i )  = i - j  } 

- 1 / 1  
= { simplification } 

- - 1  . 
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Similarly, the flow of stream m is 1. 
A stream whose flow is 0 is called a s tat ionary stream. Elements of a stat ionary 

stream stay with a fixed process for the duration of the program and must be made 
available to the process before its first use. This is called loading. The final values of 
a stat ionary stream, if of interest, must be output  after their last use. This is called 
recovery. 

The process space is one-dimensional; we name its coordinate p. 

5 T h e  S y s t o l i z a t i o n  S c h e m e  

This section presents the central aspects of the scheme. Subsection 5.1 presents the 
method for determining the boundaries of the process space. In Subsect. 5.2, inc is 
derived; it is used for many parts of the systolic program. In Subsect. 5.3, certain 
boundaries of the index space are shown to be of particular interest: those which 
contain the points first and last. Certain troublesome boundaries are discussed in Sub- 
sect. 5.4. Subsections 5.5, 5.6, and 5.7 present the heart of the compilation scheme: 
the derivation of the computation processes. Subsection 5.5 explains how the sys- 
tems of equations are constructed, Subsect. 5.6 shows how to cope with non-integer 
solutions, and Subsect. 5.7 explains the derivation of the guards when the compu- 
tation processes are defined piecewise. Subsection 5.8 describes the augmentation 
of the basic statement with communication directives for moving stream elements. 
The input and output  processes are derived in Subsects. 5.9 and 5.10. The former 
describes their layout, i.e., their distribution in space; the latter describes the pro- 
gram each i /o process executes. A computat ion process may have to transfer data  
elements before or after they are used for computation. Subsection 5.11 presents the 
derivation of this code. Subsection 5.12 derives the buffer processes (the processes 
that  do not compute but only communicate). Finally, in Subsect. 5.13, the complete 
target program for sorting is presented. 

5.1 T h e  P r o c e s s  Space  B o u n d a r i e s  

The distributed program contains one process for each point in the range of place, 
i.e., in the process space 7 ~. The process space can be an arbitrary polytope (it is the 
linear projection of a polytope); it is easier to specify its rectangular closure: rect.T). 
(The process space is specified in the distributed program by parallel loops; only a 
restricted class of polytopes can be specified this way if linear loop bounds are used.) 
We create a process for each point in the rectangular closure; the points that  do not 
lie in the range of place do not perform any computations. The rectangular closure 
is specified by two points: m i n t  ) and max7 ~. Both are points in 7/~-1 such that:  

( A y  : y E T  ) : ( A  i : O ~ i < r - 1  : m i n T ) . i ~ _ y . i ~ m a x T ) . i ) )  . 

In terms of the model, each component of minT) is the minimum value a linear 
function attains on the index space, while max?) is the maximum value. The linear 
function is the corresponding component of place. Let P.i  represent the unique vec- 
tor associated with the linear function of component i in place, 0 < i <  r - 1 .  Thus, 
each component of minT) and max?> is the solution of a linear program that  either 
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minimizes the value of P. i . x  (for minP) ,  or maximizes it (for m a x P ) ,  given the sys- 
tem of inequali t ies A x _< b. For any value h, the points  in 2" tha t  satisfy P . i . x  = h 
lie on a hyperplane  whose normal  is P.i. 

In the example,  the process space is one-dimensional;  both  m i n t  ) and max7 ) have  
a single component;  thus we abbrevia te  P.i to P .  In general, the following procedure 
is performed for each component  separately.  Since place. ( j , i )  = i - j ,  we obta in  
P = ( - 1 ,  1). The  linear p rogram minimizes P . x  for mint  ) and maximizes i t  for 
max7 "). Figure 4 shows the index space with the hyperplane and its normal  ( - 1 ,  1). 

n i I ' 

1 n ~ 

Fig.  4. max:P. 

In general,  for points  x E P ,  the value of P . x  increases as the hyperplane  is 
moved in the direction of P ;  it decreases as the hyperplane is moved in the direction 
o f - P .  From linear progranaming, we know tha t  when the value P . x  is at  a ma x imum 
(minimum),  then a vertex of the index space lies on the hyperplane.  Such a vertex 
(which need not  be unique) can be found by moving the hyperplane as far as possible 
in the direction of P ( - P ) ,  while still intersecting E. Any vertex on the hyperplane 
has the proper ty  tha t  P ( - P )  is a non-negative l inear combinat ion of the normals  
tha t  define the vertex. Geometrically,  these are the normals  between which P ( - P )  
lies. In Fig. 4, the vertex at  the base of the normal  P = ( - 1 ,  1) lies between the 

normals  ( - 1 ,  O) and (0, 1). 
A vector v is a l inear combinat ion of a set of vectors ( se t  k : O < k < n  : vk) if 

and only if a solution for x of the system of equations V x  = v exists, where V is 
a ma t r i x  whose columns are the vk. Thus,  to see whether a vertex x provides the  
m a x i m u m  (minimum) for P ( - P ) ,  we construct  a naatrix V, whose columns are the 
r normals  tha t  define x. Then we solve the system of linear equations:  

V~y~ = P .  

for each vertex in Z for maxP,  and with P replaced by - P  for minP .  When the 
solut ion y= is non-negative,  i.e., y ,  > O, then the vertex x from which V= is derived 
is the vertex we are searching for. There are four vertices in the example.  We name 

them: 

vo = ( L o , L 1 ) ,  vl = (Lo,-R1) , v~ = (Ro,L1) , v3 = (/~o,R1) �9 
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Matrix Vk is derived from vertex vk by entering the rows for the respective loop 
bounds in A as the columns of Vk : 

[- 001] [ 01] 
The four solutions of Vkyk = (--1, 1), 0 < k < 4 ,  are: 

Yo = ( 0 , - 1 )  , Yl = (1, 1) , Y2 = ( 0 , - 1 ) ,  Y3 = ( - 1 ,  1) .  

In this case, there is only one solution that  is non-negative: Yl. So there is a unique 
vertex, vl, for which P reaches a maximum. For ( 1 , - 1 ) ,  i.e., - P ,  the solutions 
are -Yk, 0_< k < 4. Since both Yo and y~ are non-negative, both vertices vo and v2 
achieve the minimum when projected by place. Note that  -Y3 is not non-negative, 
even though, in this program, the corresponding vertex, v3, also achieves a minimum 
for P .  This is a result of the extraneous boundary. If the constant in the right bound 
of the inner loop were another size variable m, such that  m > n, there would be a 
right vertical boundary to :/:, v~ and v3 would not coincide, and v3 would not achieve 
a minimum for P .  

Geometrically, we have found the points at which the hyperplane h = ( - 1 ,  1) 
achieves a maximum value on the polyhedron :/:: 

max~=(maxx : x E E  : h x )  . 

This is where a diagonal line (with a slope of 1) intersecting 27 lies when moved as 
far north-west as possible in Fig. 1. 

Once V= is found, the vertex x itself is constructed. The vertex is a point in the 
index space that  satisfies all r of its defining bounds. Thus, to derive the coordinates 
of x, we solve the system of equations representing the bounds using the matrix V w 
(the rows of V T are the normals defining z) and a vector b= whose components are 
the components of the vector b corresponding to each normal. Then, x is the solution 
of the system: 

= (3)  

In the example, P achieves the maximum at vertex Vl; this is the vertex where 
the left boundary of the outer loop intersects the right boundary of the inner loop: 
vertex (L0, R1). To construct this vertex symbolically, we solve V W x  = (--1, n): 

[-001] = [-:] 
= { simplification } 

- j = - I  A i = n  

= { simplification } 
j = l  A i = n  

yielding x = (1, n). 
Finally, after the vertex x is constructed, the value of m a x P  is just the value 

of place.x, which can be evaluated symbolically. For the example, there is only one 
component: 
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max~P 
= { definition } 

place.(l, n) 
= { place. ( j , i )  = i -  j 

r t - - 1  . 

This procedure is performed for all r -  1 components  in the range of P .  For each 
component  i, maxP.i is the i - th component  of the image (under place) of the vertex 
derived for P.i (and likewise for min~P). In the worst case, for each component ,  a 
l inear sys tem must  be solved for each vertex. There are 2 r vertices. Therefore, there 
are at  most  (r  - 1) �9 2 r systems of equations to solve. In practice, r is usually not  
larger than  5 [36] and there are many circumstances for which the same vertex can 
be used in the derivat ion of many  components.  Also, if P.i is equal to a normal  of 
the index space, which is frequently the case, the solution is tr ivial .  

5.2 D e r i v i n g  inc 

inc is the dis tance between any two neighbouring points  on any chord.y in the  process 
space; it  is a constant .  As a vector tha t  lies on a chord, it is in the null space of 
place. We require inc to point  in the direction of execution of the points  on chord.y; 
i.e., i ts  direction is determined by step. inc's components  are scaled to make it the  
unit  vector between neighbours. If w is an a rb i t ra ry  (non-zero) element of null.place 
and k = ( g c d  i : O<i<r : w.i), then: 

i0c = sgn.(step. ), ( l / k ) ,  (4) 

The sign ensures tha t  inc points  in the direction prescribed by the step function. 
step.w = 0 is not  possible: step and place would be inconsistent,  contrary  to our 
assumption tha t  the systolic a r ray  is correct. For example,  let w be ( - 3 , - 3 ) ,  which 
is in the null space of place. Then:  

inc 
= { (4) } 

sgn.(step.w) * ( l / k )  * w 
= { k = 3  } 

s g n . ( - 3  + - 3 )  * (1/3)  * ( - 3 , - 3 )  
= { simplif ication } 

s g n . ( - 6 )  * (-i,-1) 
= { simplification } 

- 1 .  ( - 1 , - 1 )  
= { simplif ication } 

(1, 1) . 

5 .3  I d e n t i f y i n g  t h e  F a c e s  

The derivat ion of first and last begins by identifying the boundaries  of the index 
space tha t  contain them. This  leaves r - 1 equations with r - 1 unknowns which 
can be solved exact ly  for the remaining r - 1 components  of first (or last). In the 
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general case, the boundaries of interest are the ones that  share a (single) point with 
a chord.y.  Al l  chords are mutually parallel since they are all defined by the same 
direction vector: inc. Thus, for each boundary, it suffices to consider whether or not 
inc is orthogonal to the normal of that  boundary. If  it is, then the boundary is parallel 
to the chords and is not needed to derive first and last. If a boundary is parallel to 
the chords, then it must coincide with exactly one of them; for that  y, first and last 
lie on other boundaries that  are not parallel to the chords. 

A boundary that  is not parallel to inc is called a face. The face associated with 
a right (left) bound of loop ~ is denoted by 9r.Rt (~'.L~). For each boundary of the 
index space, we compute incow for the normal w to that  boundary; when the result 
is 0, inc is orthogonal to the normal and parallel to the boundary. Since each row of 
A is a normal to the boundary defined by the corresponding loop bound, the result 
of multiplying A by inc is the inner product of the corresponding row with inc. The 
results of the inner products are: 

Each boundary for which the inner product  is not zero is a face. When the inner 
product is less than zero, the boundary is used for the derivation of first. When it is 
greater than zero, the boundary is used for last. In the example, there is one face for 
f i rst:  5r.L0. There are two faces for last: ~'.R0 and 5r.R1. Figure 5 shows the index 
space and the chords. 

1 - 

1 I ~ j  

1 n 

Fig. 5. Sorting: the index space and chords. The arrows represent the direction of inc. 

5.4 E x t r a n e o u s  B o u n d a r i e s  

We call boundaries that  contain only a single point exiraneous. An example is the 
boundary associated with the right bound of the first loop in Fig. 1: it contains 
only the point (n,n) .  Not every extraneous boundary can be ignored, as Fig. 6 
illustrates. The outward normals derived from the loop bounds are ( - 1 ,  0), (1, -1 ) ,  
(1, 0), and (0, 1). When m < n, the boundary corresponding to the normal (1, 0) 
is extraneous, but when m > n, it is not. In general, the values of m and n are 
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not available at compile time. There are cases where a compile-time analysis could 
determine boundaries that  may be deleted; our present implementat ion does not do 
so. Deleting an extraneous boundary  can be computat ional ly expensive [34]. 

f o r  i = 0 ~--- 1 - -*  n 

for  j = i ~-- l ---~ ra 
( i , j )  

Fig. 6. Example of extraneous boundaries. 

5.5 C o n s t r u c t i n g  a n d  So lv ing  t h e  E q u a t i o n s  f o r  first a n d  last 

Once the faces have been identified, one system of equations per face is constructed 
in order to derive first and one to derive last. We discuss only first; for last, the roles 
of the left and right bounds are reversed. 

Let x be the vector of loop indices. Then the value of first is the solution of the 
system of equations for ~'. boundt: 

place.(x;g : e ) = y  

where e is the result of applying boundi to x (this amounts  to substi tuting the bound 
of loop i as it appears  in the program).  Using the example, the face for first is ~'.L0. 
The vector x is ( j , i ) ,  and e is the result of applying L0 to (j, i): 

(x;Z : e) 
= { x = ( j , i ) , s  e = L 0 . ( j , i )  

((j, i); 0 : L o . ( j , i ) )  
= { L0 = ((0,0), 1) } 

((j, i); 0 : ((0, 0), 1).( j , i))  
= { Equation 1 } 

(( j , i ) ;O : O , j + O , i + l )  
= { simplification } 

( ( j , i ) ;0  : 1) 
= { simplification } 

(1,i) 
which just substi tutes the left bound of the loop indexed by j for the first component  
of the point. The  system of equations has been reduced to one with only r - 1 
unknowns and can now be solved exactly: 

place.(1, i) = p 
= { place.(j,i) = i -  j } 

i - l = p  
= { simplification } 

i = p + l  . 
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Substituting the solution back into the point, we obtain first = (1, p + 1). In sorting, 
first is an integer point, but in general, it need not be. Our method for non-integer 
solutions is presented in Sect. 5.6. 

For last, both systems of equations are produced by the right bounds. The first 
system uses the loop indexed by j :  

place.((j , i) ;O: n) = p 

with the solution: 

place.(n,i) = p 
= { place.(j,i). = i -  j } 

i - n = p  
= { simplification } 

i = p + n .  

Substituting the solution back into the point yields last = (n,p + n). The second 
.system of equations uses the loop indexed by i: 

place.((j, i); 1 :  ,~) = p 

with the solution: 

place.(j,n) = p 
= { place.(j,i). = i -  j } 

n - j = p  
= { simplification } 

j = n - p .  

Substituting the solution back into the point yields last = (n - p, n). 
There are no non-integer solutions; thus, no extra clauses are needed in either 

f irst or last. 

5.6 C o p i n g  w i t h  N o n - I n t e g e r  S o l u t i o n s  

The solution of the system of linear equations is the intersection of chord.y with a 
boundary of  the index space. When the solution is not integral, there are processes 
y such that  first.y and last.y do not lie on the boundaries of the index space. The 
intersection is instead a point in q r  As such, it cannot be used as the value of first 
or last: we must use the nearest integer point towards the interior of the index space 
instead. It is always possible to detect the presence of non-integer solutions; they 
have non-unit denominators. 

Consider the set of equations for a particular face, :P.boundt, i.e., a boundary 
defined by a bound of loop t, with its outward normal y,. Let x I be the solution to the 
system of equations. When a non-integer solution occurs, the guard for that  clause 
of first (resp. last) is augmented with a conjunct that  guarantees that  the solution 
is integer. The functions num and den return the numerator and denominator of a 
rational number, respectively. The conjunct is of the form: 

( A t '  : O_<e '<r  A g' # e  : den.(xl.g ') ]num. (x ' . g ' ) ) .  
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Suppose that  the place function for the example were place.(j, i) = 2 �9 j + i. Then 
the face .f.L1 would be used to derive first, and the solution would be (p/3, p/3). In 
this case, the conjunct would reduce to 3 I P- 

Let s be the least common multiple of the denominators in x': 

s = ( Icm k : 0 < k < r  : den.(x'.k)) . (5) 

Then there are s clauses for this face; they are specified by the set: 

( s e t k  : 0 < k < s  : x ' G k / s * i n c )  (6) 

where Q is addition when yl . inc < 0 and subtraction when yt . inc > 0. (Remember: 
if y l . i n c  = 0, there is no face for the associated boundary.) The purpose is to 
perturb the point x' towards the interior of the index space along the line chord.y. 
The original expression for first (resp. last) and the s - 1 new clauses, each with its 
own conjunct, are composed into an alternative command. In the example, s = 3, 
so two new clauses are derived. 

Note. Although, in theory, this can lead to a very large number of clauses, in prac- 
tice, given the kind of place functions used for systolic arrays, there are usually no 
more than about  two, because otherwise there are unnecessarily many processors in 
the array, s is the number of processes created in the process space per unit along 
the face. Large values for s tend to produce more processes than are needed. Under 
certain circumstances, non-integer solutions of the system of equations do not incur 
any new clauses. When the largest absolute value of the denominators of the com- 
ponents of x'  is 2, it is possible to use the floor and ceiling functions to perturb the 
solution. When s is 2, (6) indicates one extra clause. 

Given the alternative place function, the face is defined by the left bound of the 
loop indexed by i, the second loop, whose normal is ( 1 , - 1 ) .  Referring to (6), s is 3. 
Derived from the alternative place function, inc = ( - 1 ,  2); (1, - 1 ) . i nc  is - 3 ,  so (D is 
addition. The two new clauses of first are: 

x' Q k /s*  inc 
= { k = l )  

(p/a ,p/3)  + 1/3 �9 (-1,  u) 
= { simplification } 

(p/a,p/3) + ( - 1 / 3 ,  2/3) 
= { simplification } 

((p - 1)/3, (p + 2)/3) 

x' | k /s  * inc 
= { k = 2 }  

(p/3, p/a) + 2/3 �9 ( -1 ,2)  
= { simplification }_ 

(p/3, p/a) + ( -2 /3 ,  4/3) 
= { simplification } 

((p - 2 ) / 3 ,  (p + 4 ) / 3 ) .  

The conjunct for the left value reduces to 3 I ( P -  1), that  for the right value to 
3 I (P - 2). Thus, the complete expression for first (for this boundary of the index 

space) is: 

first = i f3  IP -+ (p /a ,p /a )  
D 31 (v - 1) -+ ((p - 1 ) /3 ,  ( ;  + u ) / a )  

3 I (P - 2) + ((p - 2 ) /3 ,  (p + 4 ) / 3 )  
f t .  
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5.7 D e r i v a t i o n  o f  t h e  B o u n d s  

Once the values of first and last have been derived, the guards tha t  define the regions 
of the process space for which those values apply are derived from first (resp. last) 
and the bounds of the loops in the source program. Let x'  be the solution of the set 
of equations place.x = y, where x ~ is a point in ~.boundl. Then, the guard for the 
clause is a predicate defining the bounds of the projection of the face in the process 
space. It  uses the bounds of all loops other than g: 

( A l :  0 _ < t < r  A t o t ' :  L~.x'<_x'.t<_Re.x'). (7) 

The  general form of (7) becomes 

Le.first _< first.g _< Rbfirst 

and 
Le.last _< last.g _< Re.last 

where t is the olher loop than the one defining the face. Tha t  is, when .~.boundo is 
used to derive the value of first or last, the bounds of the inner loop are used for the 
guards; when it lies on ~.boundl, then the bounds of the outer loop are used. 

The  value of first is on ~-.L0, so the guard is: 

Ll.first < first.1 _< P~l.first 
= { first = (1,p + 1), L1 = ((1, 0), 0), and R1 = (0, n) } 

((1,0), 0 ) . ( 1 , p +  1) _< ( 1 , p +  1).1 _< (0, n} . (1 ,p+  1) 
= { simplification } 

l < p + l _ < n  
= { simplification } 

O < _ p < _ n - 1 .  

There are two clauses for last. A guard is derived for each clause. The first clause is 
from ~.R0:  

Ll.last < last.1 < P~l.last 
= { l a s t = ( n , p + n ) , L l = ( ( 1 , O ) ,  O) , andR l= (O ,  n) } 

((1,0), O).(n,p+ n) < (n,p-t-n).l  <_ (0, n) .(n,p+ n) 
= { simplification } 

n < p + n < _ n  
= { simplification } 

0_<p<0. 

The second clause is from ;C.Rl: 

Lo.last <last.O < R.o.last 
= { last = (n - -p ,  n), L0 = (0, 1), and R0 = (0, n) } 

(0, 1).(n -- p,n) <_ (n -- p, n).O <_ (0, n).(n -- p,n) 
= { simplification } 

l < n - p < _ n  
= { simplification } 

1 - n < - p < O  
= { simplification } 

0 _ < p _ < n - 1 .  



390 

Note that the first clause is for the extraneous boundary that contains only the 
vertex (n, n). 

Table 1 displays the final program for each computation process p. The clauses 
for the extraneous boundaries have not been deleted. Also, the expression for first 
need not be in a guarded command, since the process space is rectangular. In this 
example, a mechanical simplifier could recognize this. 

first last inc 
i f O ~ p ~ n - 1 - - - * ( 1 , p + l )  if0 p ~ 0  - - -* (n ,p+ , )  inc= (1,1) 
n 0 0 < p <  n - i - ~  ( ~ - p , . )  

fi 

Table 1. Computation processes. 

5.8 A u g m e n t i n g  the  Basic S t a t e m e n t  

A basic statement is a guarded command with n clauses. The guards may only 
depend on the loop indices. In the distributed program, the statement becomes: 

(x0,xz, . . . ,xr-1)  : i f  Bo .xo .x i  . . . .  .xr-1 -~ S~o 

D Bi .x0 .x i  . . . . .  xr-1 ~ $~ 

fi 

where S~, 0 ~ i < t, is an augmentation of the statement Si achieved by replacing the 
indexed variables with scalars, prefixing Si with receive commands for the variables 
that are read, and postfixing it with send commands for the variables that are 
written (or propagated). The augmented basic statement for sorting is presented in 
Subsect. 5.13. 

5.9 The  I / O  Processes  - Layou t  

We create i/o processes along the boundaries o f rec t .7  ) .  This has the advantage of 
simplicity. For each stream s, the components of flow.s determine the dimensions in 
which i/o processes are created (because the vector represented by flow.s is parallel 
to a boundary of the closure precisely when its corresponding component is zero). 
For each non-zero component i of flow.s, the following set of processes is created: 

I ( .98 . i=(se t  y : y E  rect.7 ) A ( y . i =  m i n P . i  V y . i =  max~P.i) : y) . 

When flow.s.i is greater than 0, then the points whose i-th component is minT).i  are 
input processes, and those whose i-th component is maxT~.i are output processes. 
When flow.s.i is less than 0, then the two are reversed. Depending on the bounds of 
the indexed variable, some processes in each set may perform null communications, 
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analogously to the processes tha t  are not  in P .  Whenever  there is more than  one 
non-zero component  offlow.s (yielding more than one set of i / o  processes), there are 
points  tha t  are in more than  one set. Sets tha t  are not  disjoint  must  be made  so: 
we derive the process definitions in order of increasing dimension number,  from 0 to 
r - 2 .  In each dimension, dupl icate  processes are el iminated.  

Since the process space of sort ing is one-dimensional,  there is only one set of i /o  
processes per s tream. Each s t ream has an input  process located at  one end of the 
l inear ar ray of processes, and an ou tput  process at  the other end. Each s t ream's  flow 
has only one component;  if it is positive, the input  processes are at  min~P, and the 
ou tput  processes are at rnaxP. Thus, the input  process for m is located at  0 and its 
ou tput  process is at  n - 1, and vice versa for x. 

5 .10 T h e  I / O  P r o c e s s e s  - C o m m u n i c a t i o n  

An i / o  process is completely specified by the sequences of d a t a  elements it  accesses: 
for a s t ream s, by firsts, fasts, and incs. In order to derive the process definition for 
the i / o  processes, first, the access space As for each s t ream s is derived. The access 
space is the set of points  in the range of s 's  index map  tha t  are accessed by some 
s ta tement  in Z: 

As = ( se t  x : x E Z : M~.x + off,).  

Just  as for the process space, it is much easier to derive the rectangular  closure of the 
access space. Thus, for each s t ream s, minas and maxAs are derived in the same 
way as mint ) and max7 9. Each component  of the index map for s t ream s is a linear 
function. Using the procedure presented in Sect. 5.1, a vertex of Z which achieves the 
min imum (for minas,  or the max imum for max.As) is derived, and then symbolical ly  
constructed and projected by Ms. In this example,  this is par t icu la r ly  simple since 
both index maps  have only one component  and the normal  to the hyperplane  for 
M,~ and M~ is equal to a normal  of the index space (for all but  min.A~). Tha t  is, 
the index map  of m is the row vector [ 1 0 ] ,  which is equal to the first row of  I - G. 
Consequently, the vertex tha t  achieves a max imum has n, the right bound of the 
loop indexed by j ,  as its first component.  The second component  of the vertex can 
be the left or right bound of the loop indexed by i; in either case, the coordinates 
of the vertex are (n, n). The project ion of this point  by Mm (with offm added) is 
max.A,~, namely n. For minAm, the normal  to the hyperplane  is 

- 1 , [ 0 1 ]  = [ 0 - 1 ]  

which is again equal to a normal  of 5[, this t ime the first row of E - I .  So minAm 
is the result of project ing a vertex whose first component  is 1 (the left bound of the 
loop indexed by j )  and whose second component  is either 1 or n (the left or right 
bound of the loop indexed by i when j = 1). In either case, the value for rain.Am is 
1. For s t ream x, the hyperplane to the normal  is [01  ], which is equal to the second 
row of I - G, yielding a vertex whose second component  is the right bound n of the 
loop indexed by i; thus maxM= = n. For min.,4~, though, the hyperplane ' s  normal  
is [0 - 1 ] ,  which is not equal to any of the normals  to 5[. Wi thou t  presenting the 
derivation, only one vertex achieves a min imum value: (1, 1), derived from the left 
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bounds of both loops. Thus minA~ = 1. Note that  these derivations are independent 
of the place function. 

The i /o  process definitions are derived from the access space and inc. Applying 
the stream's index map to ]nc provides the value for inc~. For a stationary stream, 
the result, 0, is replaced by a provided loading ~ recovery vector. This specifies the 
direction by which the stream is loaded into and recovered from the array. Both 
streams m and x are moving streams, the value of Ms.inc is 1 for both. Using incs, 
the values for firsts and lasts are computed. Since all one-dimensional streams are 
simple, the values for firsts and lasts are derived directly from the access space 
and inc~ [3]. For simple streams, when incs is positive, then firsts = minas and 
last~ = maxA~ ; when it is negative, the definitions are reversed. The i /o  process 
definitions are displayed in Tab. 2. 

stream first~ lasts inc'~ 
m 1 n 1 
x 1 n 1 

Table 2. I /O processes. 

5.11 T h e  C o m p u t a t i o n  P r o c e s s e s  - D a t a  P r o p a g a t i o n  

Stream elements that  arrive at a process before the process begins its computat ions 
must be propagated. This is called soaking. Also, after the process has finished its 
computations,  it may have to propagate further stream elements. This is called 
draining. 

For stat ionary streams, the convention is that,  on loading, the process stores 
the first element tha t  it receives into a local variable and propagates the rest. On 
recovery, the process propagates all elements from other processes and then ejects its 
loom element. The number of elements to be propagated on soaking and on recovery 
is defined by the same formula. Similarly, the number of elements to be propagated 
on draining and on loading is defined by the same formula. Let M be the index map 
of stream s and y the vector of the coordinates of the process space. The general 
formula for soaking is: 

soaks --- (M . ( f i r s t . y )  + offs)  - f i r s t s . y ) / / i n c ~  . 

That  for draining is: 

drains = ( l a s t s . y -  ( M . ( l a s t , y )  + o f f s ) ) / / i n c ~  . 

Since the process space is one-dimensional, y consists of a single coordinate, p. With-  
out presenting the derivations, the results are given in Tab. 3. Since the soaking and 
draining code depends on the definition of first and last, when the latter are defined 
piecewise, so must the former. Here, last is defined piecewise, so drain is defined 
piecewise for both streams. 
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s t r e a m  soaks drain~ 
m 0 

x p 

i f 0 ~ p < 0  ~ 0 
O < p ~ n - - 1  ~ p 

fi  

i f 0 ~ p ~ 0  ~ p 
O ~ p < n - - 1  ~ 0 

fi  

Table  3. Propagation code. 

5.12 T h e  B u f f e r  P r o c e s s e s  

Internal  buffers on the communicat ion channels between processes in P are specified 
for each s t ream with a fractional  flow. Since we require our systolic arrays  to have 
only nearest-neighbour communicat ion,  for each s t ream s, flow.s is of the form y /n  
for some n > 0, where ( A i  : O<_i<r : [ y . i l <  - 1) holds. The synchronous commu- 
nicat ion provides a buffer of size 1; we specify n - 1 buffer processes between each 
computa t ion  process. In this example,  all s t reams have unit  flow. 

For process spaces tha t  have more than  one dimension, processes may  be created 
tha t  are not in 7 ) (but  are in rect.7)). These processes do not  par t ic ipa te  in the 
computa t ion ,  but  they do propagate  da ta  elements from the borders of the processor 
array to the process space. The boundaries  of 7 ) are defined by the guards in the 
expression for first (or last) - both  are defined only for the points  in the process 
space. The points  in rect.7 ) but  not in 7) are those for which the disjunction of the 
guards  fails to hold. Each buffer passes along all elements of a s t ream tha t  it  receives. 
For s t ream s, buf~ is the number  of elements buffered: 

buf~ = ((last~ - f i r s t s ) / / i n c , )  + 1 . 

Of course, when any of these are defined piecewise, buff~ is also defined piecewise. 
In this example,  the process space is one-dimensional;  all one-dimensional  process 
spaces are rectangular;  thus, there are no external  buffers. 

5 .13 T h e  T a r g e t  P r o g r a m  

The dis t r ibuted program is wri t ten in a language-independent  notat ion,  which can be 
direct ly t rans la ted  to any par t icular  d is t r ibuted programming  language with asyn- 
chronous paral lel ism and synchronous communicat ion.  

The  construct  p a r f o r  denotes the paral lel  composit ion of a set of indexed pro- 
cesses; p a r  denotes the paral lel  composit ion of a rb i t ra ry  processes. Sequential  com- 
posi t ion is indicated by vertical al ignment (as in occam [16, 18]). Each s t ream has 
its own set of channels. Channels are d is t r ibuted  shared da t a  s tructures indexed as 
arrays: for process y and s t ream s, channel s_chan[y] connects to process y - f l o w . s ,  
channel s_chan[y+flow.s] connects to process y+flow.s.  The nota t ion  p a s s  s_chan, n 
s tands for the program: 
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fo r  counter = 1 *--- 1 --* n do  
r ece ive  foo f r o m  s_chan[y] 
s e n d  foo f r o m  s_chan[y+flow.s] 

The scope of the variables counter and foo are local to the p rogram.  
The indices of a channel are derived from the flow of the respective stream. The 

extraneous clauses in last, as well as the extraneous clauses it induced in drainm and 
drainz, have been removed by hand. The notat ion < first, last, inc > (also called a 
repeater [28]), that  appears in the basic statement, represents the sequence of calls 
to the (augmented) basic statement,  where the values of the indices correspond to 
the components of the points. The target program is shown in Figs. 7 and 8. We 
have hand-translated it to occam [16] and executed it on a simulator. (A mechanical 
translator to occarn 2 [17] has since been developed [30].) 

t h a n  m_chan[O..n], x_chan[-1. .n-  1] 
par  

/********** Input Processes **********/ 

send z < 1, n, 1 > to x_chan[n - 1] 

/********** Computation Processes **********/ 

p a r f o r p = 0  ~ 1 - - -*n -1  
int m, x 
pass x_chan, p 
< ( 1 , p + 1 ) ,  ( n - p , p + n ) ,  (1,1) > 
pass m_chan, p 

/********** Output Processes **********/ 

receive m < l, n, 1 > f rom ra_chan[n] 

Fig. 7. Sorting: target program. 

6 C o n c l u s i o n s  

Our implemented compilation scheme handles all source programs with linear loop 
bounds that  correspond to systolic arrays with nearest-neighbour communication. 
Work similar to ours is found in the field of parallelizing compilers. 

Wolf and Lain [39], while concerned with a different form of parallelism (DOALL 
loops), present an algorithm for deriving transformed programs from source pro- 
grams and a mapping, T, that  corresponds to the combination of our functions step 
and place. Their transformed loop bounds are conservative: the outer loops may 
specify more iterations than necessary, but  the innermost loop is guaranteed to exe- 
cute only legitimate iterations. This can create excess processes in the process space. 
Wolf and Lain are only concerned with producing the new loop nest and not the code 
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(j, i) :: if i = j --* receive x f rom x_chan[p] 
m := x 
send rn to m_chan[p + 1] 

i r j --* par  
receive m f rom ra_chan[p] 
receive x f rom x_chan[p] 

m, x := max(x, m), min(x,m) 
par  

send m to m_chan[p + 1] 
send x to x_chan[p- 1] 

fi 

Fig. 8. Sorting: augmented basic statement. 

necessary to support i/o. They restrict T to be unimodular, which means that  it is 
not only invertible and an integer matrix, but its inverse is also an integer matrix. 
This guarantees (in our terminology) that  first and last are integer, and that  the loop 
strides of the transformed loops are unit steps. 

Lu and Chen [29] also are concerned with DOALL parallelism and loop trans- 
formations. In contrast to Wolf and Lain, they do not require the transformations 
to be unimodular, but at the expense of execution efficiency: the body is guarded 
with a test to make sure that  each iteration corresponds to a point back in the index 
space. They also do not concern themselves with i /o  code. 

Unimodularity simplifies code generation, but it is not a necessary requirement 
and its violation does not necessarily have to lead to lower-quality code [5]. In our 
work, we describe the time dimension precisely, even for non-unimodular transfor- 
mations [3]. At present, we require our systolic arrays to be full-dimensional and are 
willing to waste processors in space (by using the rectangular closure of the process 
space). 

Within the systolic world, work has either concentrated on producing ad-hoc 
programs by hand, e.g. [13], or on describing the structure such programs should 
have, e.g., [12]. 

Quinton uses a language called A L P H A  to describe systolic programs [25, 26]; it 
is a synchronous language; as such, it resembles Lu and Chen's work in that,  for each 
iteration of the outermost sequential loop (implementing the clock of a synchronous 
systolic array), each process tests to see whether an iteration corresponding to the 
s6urce program is specified or not. A L P H A  also requires the space-time transfor- 
mation to be unimodular. 

Ribas [34] presents a compilation method for systolic programs targeted specif- 
ically at the programmable systolic array Warp [2]. His method is restricted by 
the architecture of Warp: only one-dimensional systolic arrays with uni-directional 
streams are considered. 
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