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Abstract We present the combination of two approaches to the simplification of Grid applica-
tion development: component-based programming and automatic loop parallelization.
Components are reusable software building blocks which contain the code for sol-
ving recurring problems, together with the required middleware configuration, such
that new applications can be generated by customizing components and combining
them together. Automatic loop parallelization is a mechanism for the transformation
of sequential code into parallel code, such that programmers can take advantage of a
multiprocessor platform without having to deal with code parallelization. We study two
particular implementations of these approaches: the Higher-Order Component Service
Architecture (HOC-SA) and the LooPo loop parallelizer. The HOC-SA provides Higher-
Order Components (HOCs) specifically configured to run on top of a Grid middleware,
and LooPo generates efficient parallel code, taking dependences between data and/or
tasks into account. As a case study, we use the Farm-HOC, a component for running a
dependence-free task farm on the Grid. We explain how applications that exhibit com-
plex dependences can be executed using our Farm-HOC, when the application code is
preprocessed with LooPo. A combination of LooPo and the Farm-HOC allows to run
distributed computations on the Grid by sending a simple operation request via a Web
service. The remote server hosting the Farm-HOC then uses LooPo to create ordered
groups of independent tasks which are processed on the Grid in parallel.
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1. Introduction

The Grid combines distributed resources to a networked virtual supercomputer
with new potential for high-performance applications. However, the numerous ag-
gregate resources of the Grid are far more difficult to handle than the processors in
a traditional cluster architecture. The major reasons for this difficulty are the high
network latencies of Internet connections and the heterogeneity of the available re-
sources. Unfortunately, most current approaches towards Grid application program-
ming address only one of these two problems.

We address both, 1) the latency problem by grouping tasks at the servers using
loop parallelization with tiling and 2) the heterogeneity problem, by using software
components which do not run directly on a particular hardware platform, but on top
of a middleware.

Tiling was developed in the area of automated loop parallelization to increase
the performance of distributed applications [11]: it exploits locality in the Grid by
adapting the task granularity of a parallel program which improves the performance
by decreasing effects of network latency. However, the communication issues ari-
sing when heterogeneous servers are used for processing the individual tasks of an
application are usually not addressed by the work in this area.

In contrast, the recent efforts in middleware research have a strong focus on com-
munication protocols, service orientation and loose coupling between clients and
servers: clients may switch between multiple servers for executing remote operati-
ons in a single application [18]. Examples are the initiatives of the Globus Alliance
(www.globus.org) and the Unicore Forum (www.unicore.org), which make use
of Web services and XML for representing the data being exchanged or stored in
durable resources using a structured portable format. However, efficiency is not gua-
ranteed by structuring data, which actually can imply a throttling of the application
throughput. Moreover, it is not obvious that middleware simplifies application pro-
gramming in all cases: while programmers are relieved of marshalling their data by
using so-called service containers, one such container has to be configured for every
server, which is often even more cumbersome than writing a fully self-contained
program that does not rely on any container, tool or middleware.

This paper offers a novel approach based on automatically parallelizing software
components, which combines the advantages of two research areas: a) automatic loop
parallelization, which is a code optimization technique based on ordering tasks, and
b) component-based programming with reuse of customizable code and configuration
files.

Section 2 of the paper explains how sequential code can be transformed auto-
matically into more efficient parallel code. Section 3 shows how components help
programmers to benefit from a middleware without configuring it themselves for
executing a particular application, and we explain how code parameters are used for
customizing components. In Section 4, we show how code transformation techniques
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can be applied to code parameters, such that a farm component which originally sup-
ported only dependence-free applications can run code with dependences in parallel.
Section 5 demonstrates the advantages of our approach using two example applica-
tions: DNA sequence alignment and solving linear equation systems. We conclude
the paper and discuss related work in Section 6.

2. Loop Parallelization in 3 Phases

In the context of high-performance computing, the automatic parallelization of
loop programs is well understood. A three-phase approach can be used to transform
the input loop to a parallel target program in which the granularity of parallelism is
adapted to the number of available processors and, independently, to the cost ratio of
computation vs. communication [11].

In the first phase, the input program is analysed and the dependences are computed.
In the second phase, all computations are mapped to logical execution steps and to
virtual processors by computing a space-time mapping. In the third phase, several
time steps and/or virtual processors are aggregated to so-called tiles, which are then
distributed across the available physical processors for atomic execution.

2.1 Phase 1: Program and dependence analysis

The loop parallelization methods used here are applicable to perfectly or imper-
fectly nested loops which compute on array variables and whose bounds and data
dependences are affine expressions, i.e., linear in the indices of the surrounding loops
and in symbolic and numeric constants. Note that, for loop parallelization, the va-
rious instances of a statement, that are generated by surrounding loops, must be
distinguished.

For loop programs as just described (or for affine recurrence equations), the de-
pendences can be computed automatically. To this end, several methods have been
implemented in LooPo. They are all based on integer linear programming. To test
whether any two array accesses, for possibly different values of the loop counters,
reference the same array cell, the integer linear programming problem to be solved
consists of equations that ensure that both accesses reference the same array cell,
and of inequations that ensure that both accesses are enumerated by the surrounding
loops. The result is a function that takes any access to an array, together with the
counters of the surrounding loops, and that tells which instance of which statement
most recently accessed the same array cell [8, 4].

2.2 Phase 2: Parallelization

Space-time mapping is a technique used to extract parallelism from a loop nest.
The parallelism is expressed by (piece-wise) affine functions mapping every instance
of every statement to coordinates in space, i.e., on different virtual processors, and in
time, i.e., to different logical execution times. These functions are called placement
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and schedule, respectively. The schedule has to respect the dependences; computa-
tions that are scheduled at the same logical time can be executed in parallel. The
placement is done by a heuristic for locating instances of statements depending on
each other on the same virtual processor.

2.3 Phase 3: Granularity adaptation

In most cases, the granularity of the parallelism generated is much too fine to be
efficient. Thus, we apply tiling techniques to the space-time mapped program.

After space-time mapping, we have loops that enumerate the virtual processors,
and other loops that enumerate logical time steps. Tiling the respective target loops
modifies different parameters of the target program.

Tiling space loops means aggregating a set of virtual processors. All virtual proces-
sors that are covered by one tile are executed on the same processor. The tile size must
be a compromise between much, but fine-grained and, thus, communication-intensive
parallelism on the one hand, and little parallelism but also a small communication
volume on the other. A cost model can be used to adjust the size with the ratio of
communication cost and computation cost.

Tiling time loops means aggregating logical time steps, and allowing communi-
cation only at the border of the aggregated time steps. This reduces the number of
communication startups, but at the cost of an increased number of time steps that
must be executed (since the receivers of messages are delayed if the send is postpo-
ned until the tile border is reached). Again, a cost model can be used to adjust the tile
size with the ratio of communication startup cost and computation cost.

3. Task Farming on the Grid

A task farm is a recurring structure in parallel programming, encountered in many
applications. Besides reusability, a task farm has the advantage that it addresses a
drawback of parallel programs generated automatically, as described in the preceding
section: for many input loops, the load in the generated parallel program is unevenly
distributed among the processors. Frequently, the parallel program first has a phase
of increasing parallelism, and afterwards, sometimes immediately following, a phase
of decreasing parallelism. Thus, if we exploit all existing parallelism, i.e., if we use
as many processors as there can be used maximally, we end up with a theoretically
maximal efficiency of 50%. The simple example of Section 5 is such a case. The only
way to solve this problem is to reduce the number of processors used.

Tiling alone cannot improve the situation: affine functions, which are the ma-
thematical basis of tiling, cannot map different tiles to the physical processors in a
round-robin fashion, or in any other way so that the number of tiles to be mapped
to a physical processor changes with the available parallelism. However, this kind of
load balancing is one of the strengths of task farming.
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Task farming can be applied to procedures with or without input data. To describe
farming as general as possible, we introduce the term workspace which refers to the
memory holding the data we operate on, regardless whether this data is provided by
the user or generated at runtime. Parallelism is achieved in a task farm by applying
the same code to distinct regions of the workspace. Thus, one can think of a task as
a part of the workspace: a task is unambiguously defined by a data item, while, in
some applications, a task definition may consist of the combination of data plus some
individual code.

One process called Master divides the workspace into independent pieces. The
resulting tasks are passed to multiple Worker processes, which apply the same proce-
dure simultaneously to all data. Implementations of the task farm range from skeleton
programs for specific parallel architectures [3] to scalable versions [16], in which the
Worker processes are distributed across multiple networked machines. In the fol-
lowing, we describe our particular implementation of a task farm for the Grid, the
Farm-HOC.

3.1 Handling specific requirements of the runtime platform

Grid software [9], and especially reusable component software [17] for the Grid,
is typically integrated with a middleware which builds a uniform layer of abstraction
above the Grid hardware. Due to the heterogeneity of the hardware resources in the
Grid, any data transmission over the network must be handled in a portable format.
Therefore, a modern Grid middleware, e. g. , the popular Globus Toolkit [9], usually
requires from the application code to handle the exchange of data over the network
using Web services. The middleware provides a Web service runtime environment
consisting of programs for generating service ports from interface descriptions and
of containers, which encode all data transmissions over the network into XML do-
cuments in the SOAP format. The advantage of using Grid middleware is that the
computers interconnected via Web services can be of various architectures and can
run code written in different programming languages, while only one computer must
provide a service port to its communication partners (which either run a standalone
client or host other Web services and access the remote service port from their own
containers). The middleware programs used to automatically generate a service port
require an interface description (in WSDL format) which is a part of the configuration
that must be written by the user.

Thus, middleware users achieve data portability and code interoperability across
the Grid, at the price that every remotely accessible component requires a configu-
ration of the services used for accessing them. This configuration consists at least of
two files, one WSDL file describing the remote interface and one WSDD file contai-
ning the deployment description. The WSDL file describes the component’s access
points (called service operations) and the formats of the data the component accepts
and emits. In the WSDD file, the operations defined in the interface are mapped to
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the corresponding binary files which contain the actual code required for performing
these operations when they are requested by a client or another Web service. The con-
figuration of Web services for accessing Grid components includes even more than
the description of interfaces and binaries, e. g. , the Globus-typical resource property
configuration and a declaration of the types of the messages, which can be exchanged
with the Web services asynchronously. These messages must be explicitly defined as
notifications, since Web services usually process all operations synchronously with
the program requesting them.

Our Farm-HOC [10] is an implementation of a task farm as a Grid-enabled com-
ponent, i. e. , it includes, beside the task farm implementation code, the required
configuration files to access the farm remotely via a Web service hosted in the Glo-
bus container. The implementation relies on a code mobility mechanism which al-
lows clients to send to the Farm-HOC via its service port data and executable code.
This mechanism is enabled by our Higher-Order Component Service Architecture
(HOC-SA) [6] consisting of a code service for maintaining a database of code units
shared among Grid servers and a remote code loader, used for uploading and down-
loading code from the code service.

The Web service used to access the Farm-HOC accepts parameters carrying exe-
cutable code. Customizing code parameters specify the application-specific part of
the Master and Worker behavior, e. g. , for running a particular filter algorithm on
string data using multiple servers of the Grid, as required in the data-intensive ap-
plications of computational molecular biology. In this example, one Master code
parameter is uploaded to specify how the genome data is partitioned and the Worker
parameter carries the code for running the actual filter on each of the single partiti-
ons. Once the Farm-HOC starts processing input, it invokes our remote code loader,
which instantiates on the server side an object providing a method for running the co-
de uploaded by the client. This way, the Master and Worker parameters can be used
as customizing parameters of the Farm-HOC, while standard Web services usually
do not support the exchange of code over the network.

3.2 The Treatment of Dependences

Many customizing code parameters for the Farm-HOC (explained above, in Sec-
tion 3.1) is that they introduce dependences between tasks, as one piece of data must
be available before another one can be computed. Task farming, in contrast, implies a
space-time mapping (see Section 2) where all tasks are scheduled at the same logical
time and are placed separately or in groups (according to the tiling) onto different
processors. This only works, if there are no dependences between the tasks.

In [7], an adaptation of the Farm-HOC is suggested: the workspace regions get
ordered, such that computations follow a pattern, wherein the parallel processing of
all elements in a subset of the workspace is possible via farming. Thus, the farm
is transformed into a sequence of farms. This adaptation is enabled via our code
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mobility mechanism as follows: one code parameter uploaded to the Farm-HOC
performs the initial ordering of the tasks (e. g. , regions of a matrix) and arranges
them accordingly for their parallel execution. Due to the fact that this ordering must
comply with nothing else than the task dependences, which are fully described by the
Master and Worker code parameters passed to the Farm HOC, our adaptation of the
Farm-HOC does not require writing any additional code or dependence description
from the user. In the following section, we show how a task ordering, if one is required
due to dependences, can be automatically derived by the loop parallelizer LooPo from
the code parameters passed to the Farm-HOC.

One may argue that many of the possible patterns of parallelism that can be des-
cribed by farming plus task ordering, i. e. , any composition of farming phases with
variable sizes (e. g. , a systolic schema [13]) are fairly different from standard farming.
Some users may prefer to have a more extensive collection of different HOCs, instead
of using the Farm-HOC whenever possible and implicitly deriving a new behavior
from it, when needed. However, when deriving new HOCs from the Farm-HOC,
programmers benefit from the fact, that these HOCs share the same interface which
takes two code parameters, the partitioning Master and the computation Worker.
Moreover the data input and output format is the same for any farming program,
namely data arrays representing, e. g , strings or matrices. The complexity of the ne-
cessary configuration specifying the required interface on top of a Grid middleware,
including the setup for converting code to data for its transmission and vice ver-
sa for its execution, strongly motivates the use of the Farm-HOC, even for parallel
computations different from the standard farming procedure.

4. Teaching the Task Farm Component to Parallelize Loops

Our approach is to apply loop parallelization methods (see Section 2) to the code
parameters of the Farm-HOC (see Section 3) allowing it to deal with temporal de-
pendences. The idea is to resolve the dependences between the tasks being processed
in parallel by grouping and ranking the task partitions (unordered workspace regi-
ons) created by the Master. The ranking defines a sequence of groups where all the
partitions in one group contain only tasks which are independent from the tasks in
other partitions of the same group and only depend on each other or on the tasks in
partitions which belong to a group with a lower rank. Following this sequence, the
parallel Workers can be applied to the partitions of all groups in rank order.

We automate the detection of dependences required for the group ranking: starting
with the description of the Worker code parameter, LooPo computes the dependences
and the schedule (i. e. , the groups and their ranks), and eventually generates a loop
nest enumerating the tasks in the right sequence. If desired, the tile size, which
has been introduced as a user parameter (the partition size of the original farm),
can be kept and used by LooPo. Alternatively, LooPo can compute the tile size
automatically, when the user (or the Grid monitoring system [5]) provides a cost
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model and its architecture parameters. Within the scope of an ongoing CoreGRID
fellowship, LooPo will be integrated with the Farm-HOC to allow not only for farming
but also different parallelism structures [12] on top of the latest Globus middleware.

5. Example Applications

As a very simple example of an automatically derived task ordering for our Farm-
HOC, we consider a loop program that is used for computing the distances of DNA
sequences, i.e., the total number of the required transformations needed to transform
one sequence into another [14]. A loop nest for computing a matrix of distance values
(the alignment matrix) is as follows:

1: for (i=0; i<n; i++)

2: for (j=0; j<m; j++)

3: s[i,j] = max( s[i,j-1]+plt,

4: s[i-1,j-1]+delta(i,j),

5: s[i-1,j]+plt )

In this code, delta can be interpreted as a side-effect-free function or as a read-
only array that represents the (non-)difference between one character at position i

and the other character to be compared to at position j ; plt is a constant representing
a (negative) penalty for mismatch.

Due to the assignment in line 3–5, every matrix element depends on its north,
northwest and west neighbor and, therefore, the code must be adapted before it can
be executed in parallel via farming. To order the tasks automatically, the above code
is processed with LooPo which derives the dependences and a schedule, as discussed
in Section 2. Here, the resulting schedule is θ(i , j ) = i + j . Furthermore, LooPo
can be used to generate code that enumerates sequentially all virtual time steps t

that are in the image of θ, together with a loop enumerating all instances i that are
scheduled at time t . This loop on i (line 3–6 in the code shown below) is then free
of dependences and can be forwarded to the Farm-HOC, described in Section 3, for
parallel execution on the Grid.

The parallel code, automatically generated by LooPo, is represented in a format
that supports parallel loops using, e.g., the FORALL keyword of HPF, or the pragma
omp parallel directive of OpenMP as shown here:

1: for (t=0; t<=m+n; t++)

2: #pragma opm parallel

3: for (i=max(t-m,0); i<=min(t,n); i++)

4: s[i][t-i] = max( s[i][t-i-1]+plt,

5: s[i-1][t-i-1]+delta(i-1,t-i-1),

6: s[i-1][t-i]+plt );
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(a) Uniform flow depen-
dences

(b) Non-uniform depen-
dences

Figure 1. Examples of automatically detected dependences for two applications

For running such code on top of the standard Java virtual machine (as required by
the Farm-HOC implementation described in [7]), it must be converted to Java by
inserting the body statements of each parallel loop into Runnable-objects, holding
also the initialization code to provide an appropriate thread pool setup. Obviously,
the length of the parallel code is increased by such conversions, but they can be fully
automated and run within LooPo.

Besides code in various formats, LooPo can also generate an intuitive graphical
representation of the dependences detected in an application: In the diagrams in
Figure 1 (a) and (b), each point corresponds to an instance of a statement executed
inside a loop, e. g. , the critical assignment in Line 3–5 of our above example. The
points are positioned along axes which correspond to the loops surrounding the
statements, as described in [2]. Dependences are depicted as arrows. Figure 1 (a)
illustrates a run of the sequence alignment application for two equally sized input
sequences of length 6 (The application illustrated in Figure 1 (b) is described in the
following). As can be seen, only the statements on the antidiagonals are independent
and can be processed in parallel.

In the context of matrix algorithms, DNA sequence alignment is one of the simplest
cases, since it is a perfect loop nest and it has uniform dependences. Our example is
a single matrix computation that takes place at every matrix entry. However, neither
the Farm-HOC nor LooPo are limited to such simple matrix algorithms.

As a more complex example with imperfectly nested loops and non-uniform de-
pendences that are not obvious from the code, we study the last step of solving a linear
equation system: the backward substitution of the variables which is performed after
the coefficient matrix has been converted to a triangular form. In this application, the
code parameter passed to the Farm-HOC looks as follows:

1: for (k=0; k<=n-1; k++) {

2: S: sum[n-k] = b[n-k];
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3: for (l=0; l<=k-1; l++)

4: T: sum[n-k]=sum[n-k]-a[n-k][n-l]*b[n-l];

5: U: b[n-k]=sum[n-k]/a[n-k][n-k]; }

LooPo computes the schedule tS(k) = 0, tT (k , l) = 2∗l+2, and tU (k) = 2∗k+1;
a loop nest enumerating the tasks that must be processed is then derived and processed
in parallel on the Grid by the Farm-HOC. The dependencies in this example are shown
in Figure 1 (b).

6. Conclusion

We have shown that a combination of components with loop parallelization sim-
plifies the programming of Grid applications in two respects. First, the programmers
can use components without caring about dependences between tasks and/or data.
Second, automatic parallelization benefits from load balancing which is implicitly
incorporated within components, such as the Farm-HOC.

Our work represents one of the current approaches towards programming efficient
applications for the Grid without dealing with the full complexity of their distributed
execution. A related project is the integration of the KOALA scheduler [15] with
HOCs for a user-transparent, automated choice of execution machines [5]. While
scheduling allows to increase the performance of an application by adapting the
environment, i. e. , switching between resources, we have shown how to reduce exe-
cution times by adapting the application code. Both approaches are complementary
and can be combined to achieve even higher efficiency.

Once the integration of LooPo into the Farm-HOC is finished, we are planning to
conduct a performance evaluation for various applications, including a comparison
between LooPo-generated and hand-tuned parallel code on the Grid.

Acknowledgments

This research was conducted within the FP6 Network of Excellence CoreGRID
funded by the European Commission (Contract IST-2002-004265).

References
[1] E. Argollo, D. Rexachs, F. Tinetti, and E. Luque. Efficient execution of scientific computation

on geographically distributed clusters. In PARA, pages 691–698, 2004.

[2] C. Lengauer. Loop parallelization in the polytope model. In International Conference on
Concurrency Theory, LNCS 715, pages 398–416, Hildesheim, August 1993.

[3] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Research
Monographs in Parallel and Distributed Computing. Pitman, London, 1989.

[4] J.-F. Collard and M. Griebl. A precise fixpoint reaching definition analysis for arrays. In
Languages and Compilers for Parallel Computing, LNCS 1863, pages 286–302. Springer, 1999.
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