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Abstract

New areas of applications make the world of supercomputing more important than ever

before. The programming of parallel machines remains di�cult, even though new languages

are being developed every year. They often follow the imperative paradigm, enriched with

low-level parallel directives. To improve on this situation, we propose the use of functional

languages, known for their ease of programming due to their high level of abstraction, and

employ a speci�c parallelization method based on the polytope model, which has been suc-

cessful for imperative scienti�c programs. We describe the prerequisites for adapting the

polytope model to Haskell, a non-strict functional language. Di�erent evaluation strategies

are being considered and the question of how indexed data structures are to be dealt with in a

functional language is examined. Finally, a parallelization of the LU decomposition algorithm

exempli�es the method.

1 Introduction

In the past, many bene�ts of functional programming languages have been described and exploited,

e.g., ability to reason, higher portability, higher expressiveness leading to fewer lines of code, and so

on. One area which has long been proposed as a major argument in favor in functional languages,

parallel programming, has up to now not achieved the role it was supposed to play. This is due

to a problem which researchers in the early 80s did not anticipate: it is true that there is a lot of

inherent parallelism in a functional program, but the problem is that there is too much of it and

one has to contain and organize it. Dynamic control of parallelism, the dominant approach so far,

seems not to provide all the instruments necessary.

In this paper, we take a new approach to parallel functional programming, driven by the demand of

scienti�c computing. Our attempt is to gain as much static control over the parallel computation

as possible. This area of application has been the driving force of high-performance computing

in the past, both hardware and software. A typical application is an iterative algorithm using an

indexed data structure, modeling matrices.

In our view, crucial for the acceptance is an implicit model of parallel computation, freeing the

programmer from error-prone tasks of parallel programming and thereby smoothing the transition

from sequential to parallel code, but imposing the need for automatic parallelizing compilers.

In the imperative world, where most of the development of software for parallel processing takes

place, implicit techniques for scienti�c programs can be formulated adequately within the polytope

model [Len93].

1.1 Basics of the Polytope Model

The polytope model is being used so far for traditional imperative programs. It provides a frame-

work for automatic parallelization of speci�c parts of a program. In particular, it deals with loop

nests, usually for scienti�c programs.

The characteristics of a program fragment suitable for treatment with a parallelizer based on the

polytope model are the following:
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� Loop nests whose body consists of array assignments (we assume the single-assignment

property for each array element).

� Loop bounds and array index expressions are typically a�ne and may contain other vari-

ables which are constant within the loop nest; no non-linear index expressions or indirect

subscriptions are allowed.

� Other than assignments, only conditionals and procedure calls are analyzed in the loop

body. The latter are treated as read and write accesses to all parameters, as far as the

parallelization is concerned.

The task of determining the parallelism inherent in the loop nest and generating semantically

equivalent, parallel code proceeds as follows:

� Data dependences have to be calculated. They associate accesses of di�erent operations

on the same array element. If such dependences exist, they impose a partial ordering on

the operations. A sequential loop nest is in fact a speci�c traversal of the index space, a

subset of Z

n

with one point for each combination of loop variable values, which preserves

this ordering.

� The task of \scheduling" is to �nd a function mapping all operations to points in time. This

is also called the time mapping. The optimization aspect is to map every operation to the

earliest possible time without violating the data dependences. If there is any parallelism in

the program, there will be more than one operation scheduled at the same time.

� The dual mapping, the \allocation", assigns the operations to speci�c processing elements

(PE). This is called the space mapping. One goal is to optimize data locality on the PEs,

thus reducing communication. Ideally, one would like this to be adjusted to the schedule for

optimal results, but in general this is not feasible.

� A code generation procedure performs a program transformation of the original source code

into parallel target code by using the space-time mapping.

Intuitively speaking, the index space of the original loop nest is skewed by means of a coordinate

transformation in such a way that there exist some dimensions to which no dependence arrows are

parallel. These dimensions may be enumerated in parallel, the others are enumerated in sequence.

1.2 Prerequisites for Adaptation to FPLs

Functional languages di�er fundamentally from imperative ones. Their semantics is based on the

�-calculus rather than the von Neumann model; this change of paradigm requires checking the

work on the polytope model with respect to possible paradigm-based assumptions which might not

apply anymore. Furthermore, new concepts such as the evaluation strategy have to be considered.

It determines the run-time behaviour of a functional program and a�ects the expressiveness of the

language, termination behaviour, degree of possible parallelism and more. Therefore, choosing the

right evaluation strategy is crucial in a functional setting (see Section 2.2).

In order to adapt the polytope model to a functional language, we have to solve several problems:

� identify control structures in the functional language which can be dealt with in the model,

� determine the best possible evaluation strategy,

� examine e�cient incremental array updates, both, sequential and parallel.

These tasks are discussed in the following sections.
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2 Adapting the Model

This section elaborates on the prerequisites listed in Section 1.2.

2.1 Control Structures

Depending on the kind and structure of the imperative program, one has to choose the appropriate

level of parallelism. The set of options include instruction-level, loop-level, intra-procedural and

task parallelism. Scienti�c programs are typically loop nests with array assignment statements in

the loop body. Other types of programs often cannot take advantage of specialized loop-based

schemes and use combinations of instruction-level and one of the coarser-grain paradigms.

Now, the question arises of how this translates to the functional world. In this case, it is more

di�cult to categorize the abstraction level because all functional control structures can be used

within the lowest-level expression up to the main function call. The selection of constructs which

are potentially parallelizable include: subexpressions within an expression, independent function

parameters, explicit recursion, prede�ned functions with recursive patterns, subexpressions in a

data type constructor.

The best way of making a selection is to investigate the source of the problem: the set of imperative

scienti�c programs containing loop nests often stems from mathematical recurrence relations on

matrices. So the question is: if one implements a recurrence relation in a functional language,

what are the constructs one should use? Recurrence relations de�ne each element exactly once, so

one would typically have an array constructor using a comprehension ranging over the array. In a

lazy language, the actual evaluation order of the comprehension depends on the data dependences

between array elements. For this interesting class of problems the task boils down to parallelizing

the comprehension in order to construct the array. This approach is also being pursued by the

NESL group [BCH

+

93].

For the mathematical treatment of array comprehensions in the polytope model we need to de�ne

the analogue of the imperative index space. We de�ne the index space of an array de�nition as a

subset of Z

n

with one dimension for each comprehensions generator and the dimension's domain

according to the range of the respective generator. The dimensionality of the array itself may

be smaller than n due to the fact that the comprehension contains intermediate lists which are

reduced in some way. Therefore, we de�ne the data space as the domain of the de�ned array, thus

being a projection of the index space. From now on, the term index space refers to the functional

term if not stated otherwise.

As already mentioned, it is most interesting to view array comprehensions in the context of a lazy

or, more generally, a non-strict semantics. See Section 2.2 for more details. In this case, even

mutually recursive de�nitions are possible. See Section 3.1 for an example.

2.2 Evaluation strategy

The publications on functional programming do not agree on a common terminology. In order to

compare evaluation strategies from di�erent authors, we present our own set of de�nitions and

point out where we di�er from the respective authors' convention.

� Strictness : a function f with one parameter is called strict if f(?) = ?. Functions with

more than one parameter are strict if they are strict in every parameter.
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� Normal order and applicative order evaluation are de�ned by the standard �-calculus reduc-

tions strategies leftmost-outermost and leftmost-innermost [Rea89].

� Lazy evaluation is de�ned as the reduction strategy call-by-need, which in turn is normal

order reduction with sharing of common subexpressions (based on graph reduction).

� Eagerness is de�ned as a property of many evaluation orders, such that all actual param-

eters will be evaluated before the function returns its result. In particular, unnecessary

computations may be performed.

� Fair is a parallel evaluation strategy which has a fair scheduling policy and, thus, prevents

starvation. The opposite is unfair.

Strictness Evaluation Par/Seq Eager Speculation Data

semantics strategy structures

strict

applicative order Seq

Yes Yes
�nite

eager-parallel-unfair Par

non-

strict

eager-parallel-fair Par Yes Yes circular

lazy

Seq

No No
in�nite

normal order

Table 1: Functional evaluation strategies

An overview of the properties of common evaluation strategies is given in Table 1. In the literature,

the terms used are not generally agreed upon. Let us discuss the table in more detail.

The two major categories which separate all strategies are strict and non-strict. Strict evaluation

has a potential for parallelism mainly in the evaluation of function arguments. With strictness,

mutually recursive and self-referencing data structures are not possible, because during the con-

struction of a data item the evaluation of the self-reference would have to be delayed { otherwise

there would be an in�nite loop. With strictness, there is no such delay. Therefore, all substructures

have to be independent and can be computed in parallel but, due to the lack of data dependences

among them, each single item is often very simple, so that it might not pay to make everything

parallel. The lack of mutual recursion makes it hard to implement recurrence relations.

The alternative is non-strictness, where functions may terminate even if the evaluation of some

arguments do not terminate. The reason is that a strict function will have to evaluate all arguments

before returning the result while a non-strict function does not have to. Non-strictness is a source

of greater expressiveness, e.g., it a�ects directly the type of data structures that can be dealt with.

Strict functions evaluate all parameters to normal form, which is the reason why they can only

deal with �nite data structures. Non-strict functions may not evaluate everything; thus, they are

able to handle �nite parts of possibly in�nite data structures. This greater expressiveness is the

driving force behind the design of non-strict languages.

First, let us have a look at the strict orders. Applicative order, also known as call-by-value, is a

well de�ned sequential strategy. Some authors use eager evaluation as a synonym for it, but in

our terminology it is just one of several eager orders. Due to eagerness there is a possibility of

speculative computations.

One possible strict and parallel strategy is eager-parallel-unfair, also known as parallel-innermost

[Rea89]. It could be described as evaluating all function parameters simultaneously in a strict

manner without taking care of load balancing. This a�ects the termination behaviour and is in

this respect not di�erent from applicative order. The possible parallelism is restricted to those

redexes which do not contain another inner redex. It is called unfair, since strictness forces the

evaluation of unnecessary and possibly non-terminating computations.
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An improvement with respect to parallelism has been made by combining non-strictness with

eagerness to eager-parallel-fair, which is non-strict, but not necessarily lazy. This strategy is

called lenient by Traub [Tra91] and has been used in the languages Id [Nik91] and pH [NAH

+

95].

The main goal is to keep the expressive power of non-strictness, i.e., more complicated data

dependences, while improving the degree of parallelism with respect to lazy evaluation at the

expense of the impossibility of in�nite data structures. The reduction strategy is not de�ned

in terms of the �-calculus; instead, these languages are being given an operational semantics

which resembles the data 
ow paradigm: expressions can be evaluated as soon as their inputs

are available. This ensures non-strictness, but not laziness. In particular, function bodies can be

evaluated while not all arguments are in normal form. This enables recursive self-references and

consequently circular data structures. But eventually all arguments are being reduced, so that

in�nite data structures are not possible. An example of a circular data structure is a circular list,

in Haskell notation a = 1:2:a. An example of an in�nite data structure is the list of all integers,

in Haskell b = [1..].

Finally, lazy and normal order reduction are again de�ned in terms of the �-calculus. They are

sequential { not eager { and therefore no (possibly unnecessary) speculative computations take

place. As a result, in�nite data structures can be de�ned of which �nite parts may be computed.

The di�erence between both is lazy's added sharing of subexpressions for e�ciency reasons.

Lazy evaluation is the standard for sequential non-strict languages like Haskell [PHe96]. Parallel

versions use either a variation of laziness combined with explicit parallelism annotations (GPH

[THLJ98] and Clean [BvEvL

+

87]) or other parallel, non-strict strategies like pH [NAH

+

95], which

uses eager-parallel-fair or lenient evaluation. In scienti�c computing, the main data structure is

the �xed-size matrix resp. array, either sparse or dense. Therefore, the drawback of excluding

in�nite data structures is no restriction, so that lenient evaluation would su�ce for our purposes.

2.3 Indexed Data Structures

In Section 1, we have motivated the need for parallelization of scienti�c programs. Since scienti�c

computing is based on mathematics, the programmer often has to �nd a representation of matrices

in the programming language he uses. This requires n-dimensional integer indexing and often

elementwise indexed access to the data. Two di�erent access patterns of matrices can be observed:

one constructs the entire matrix step by step without ever changing a once-written value, the other

iterates over temporary values and overwrites values in the matrix. In contrast to the imperative

paradigm, where an array element corresponds to nothing but a memory location, these two

patterns must be handled very di�erently in functional programming. This is due to constraints

imposed by the language semantics and is explained in more detail below.

One frequently stated advantage of functional languages is the comparative ease of proving pro-

gram properties. One prerequisite for this is the single-assignment property, i.e., every name is

associated with a value not more than once. In particular, this rule forbids reassignment (or

better: rebinding) of values to names, as is common in an imperative program. The reason is that

one often wants to have a referentially transparent language, in which both sides of an equation

can be used interchangeably and are, in fact, interchanged in proofs. Formally, a language L is

referentially transparent, if and only if: E

1

= E

2

=) E = E[E

1

:= E

2

] for all expressions E, E

1

and E

2

in L. Therefore, the value of a name must remain constant within its scope. This require-

ment is not generally accepted; there are functional languages which, under certain circumstances,

allow reassignment and pay for it with a less elegant semantics; ML [HMT88], LISP [MAE

+

64]

and Id [Nik91] are examples.

Now, algorithms can be divided into three kinds with respect to their use of arrays.
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1. All elements are constructed independently, so that the matrix can be written in one step

and has the single-assignment property.

2. Each element is de�ned exactly once, but for their calculations the �nal values of other

elements are needed. These elements have the single-assignment property, but the matrix

cannot be written in one step. One would need deferred or lazy evaluation to construct it.

3. Array elements are repeatedly overwritten.

From the functional programming point of view, the �rst kind is the easiest: arrays are computed

once and from then on treated as read-only objects. The second requires a non-strict (e.g., lazy)

evaluation { otherwise the single-assignment property is lost. The third gives rise to major imple-

mentation problems: for semantic reasons, most functional languages disallow this. The usual way

of avoiding this restriction is to require the programmer to de�ne a new array for every update

which di�ers from the previous one only in the updated element, which brings the algorithm back

to one of the �rst two kinds. The implementation has two options | incremental updates are

stored as di�erences to the original array, increasing the access time, whereas monolithic arrays

require a complete copy of the source, resulting in increased memory consumption but O(1) access

time. Both updates create new arrays. Haskell uses monolithic arrays.

Several optimization techniques are being used to improve this situation. The question is whether

the array's use is single- or multi-threaded. In single-threaded use, once an array has been updated,

the old version is not being used anymore. This is also the case in imperative languages; in fact,

here the old copy cannot be used anymore since the old value has been overwritten destructively.

In functional languages like Haskell, the updated array requires a new name, so that the old copy

is still around and can be used, e.g., for a di�erent update. The latter way to use arrays is called

multi-threaded. Now, if the compiler has a means of detecting single-threaded use { or, maybe,

the language even enforces it { then the update can be done in place, without copying the array.

Furthermore, even in Haskell, the programmer might enforce single-threaded use by encapsulating

the array in a monad [Wad92] . An appropriate compiler could take advantage of this situation.

On the other hand, traditional computer architectures are not capable of a true O(1) update of

a multi-threaded array [O'D93]. Other possibilities include sophisticated data structures with

amortized update costs of close to O(log n) in the worst case [OB97].

Another kind of overhead of most arrays in functional languages is incurred by of boxed types. In

contrast to C, where an integer array is represented by a contiguous amount of memory consisting

of integer values, each data element in, e.g., Haskell is boxed, i.e., has one additional level of

redirection to be able to store values like ?. To make scienti�c computations which, more often

than not, deal with integers and 
oats more e�cient, the use of unboxed data types is necessary.

Sometimes such data types are provided as compiler-speci�c extensions. A di�erent approach is

to separate structure and type information from the actual data leading to an e�cient unboxed

representation [JS98].

An alternative to using an array at all is the indexed list [EL97]. This less general approach than

the array can be su�cient in lots of cases and has an e�cient implementation. The basic idea is

that of a list data type whose cons operation appends at the end and whose list elements can be

retrieved by their respective index in O(1).

This leaves us with the question of which possibility to choose. Standard mathematical algorithms

do not require multi-threadedness and unboxed types are necessary for e�ciency reasons. It seems

that, for this speci�c purpose, a new data structure is needed. This could be the indexed snoc

list [GG97], if applicable. In all other cases, we propose a new array-like data structure with

only few, unboxed data types, whose single-threaded use should be enforced by the compiler. The

implementation, however, should make in-place updates for e�cient access.
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lu_decomp:: Array (Int,Int) Float -> (Array (Int,Int) Float,

Array (Int,Int) Float)

lu_decomp a = (l ,u)

where

l:: Array (Int,Int) Float

l = array ((1,1), (n,n))

[ ((i,j), a!(i,j) - sum [ l!(i,k)*u!(k,j) | k <- [1..(j-1)]])

| i <- [1..n], j <- [1..n] , j<=i ]

u:: Array (Int,Int) Float

u = array ((1,2), (n,n))

[ ((i,j), (a!(i,j) - sum [ l!(i,k)*u!(k,j) | k <- [1..(i-1)]])/ l!(i,i))

| j <- [2..n], i <- [1..n], i<j ]

(_ , (n, _)) = bounds a

Figure 1: Haskell code for LU decomposition

3 The Polytope Model in Action

We present an example parallelization in order to give a feel for how the anticipated method

might work. For some of the practical calculations, we used the loop parallelizer LooPo [GL96],

a test suite for di�erent parallelization strategies based on the polytope model. It can be used

to parallelize loop nests written in Fortran or C. Some steps of the parallelization process are

language-independent; the respective modules can be used for our purposes.

3.1 The Example: LU-Decomposition

Our example algorithm is the LU decomposition of a non-singular square matrix A = (a

ij

) ; (i; j =

1; : : : ; n).

The result consists of one lower triangular matrix L = (l

ij

), with unit diagonal, and one upper

triangular matrix U = (u

ij

), whose product must be A.

L and U are de�ned constructively as follows [Ger78]:

l

ij

= a

ij

�

j�1

X

k=1

l

ik

u

kj

; j � i; i = 1; 2; : : : ; n (1)

u

ij

=

a

ij

�

P

i�1

k=1

l

ik

u

kj

l

ii

; j > i; j = 2; : : : ; n (2)

The Haskell implementation used for this example is shown in Figure 1.

3.2 Dependence Analysis

Data dependences between computations impose a partial order which any evaluation order must

follow. The partial order is used to identify independent computations which can be executed in

parallel. The aim of dependence analysis is to obtain this partial order by analysis of the source

code. In the following, we present a simple algorithm to determine the dependences between array

elements in array computations of a Haskell program.
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Array computations in Haskell are often speci�ed with the array construct. The array elements

are usually de�ned by an array comprehension. Due to the fact that data type de�nitions can be

mutually recursive, a set of array de�nitions may depend on each other. We de�ne two arrays a

and b to be in relation R, i.e., aRb i� a value from b is being referenced in the de�nition of a.

Then, the weakly connected components with respect to R are the sets of arrays, in which each

array is either the source or the destination of a dependence. The computations of the arrays in

a component are parallelized together.

The �rst task is to determine these array component sets, given a Haskell program. This is done

by the pseudo-algorithm in Figure 2.

Input: { Haskell-program with array de�nitions

Output: { Array component sets S

i

, i 2 N

1. Construct a list L of all arrays in the program.

2. while there exists an unmarked array A in L do

3. Construct the weakly connected component S

A

of

arrays which includes A.

4. Mark all arrays of set S

A

in list L

5. output all S

i

Figure 2: Array component set determination

The second task is to determine all dependences within a set. They will be used later on for

the parallelization of all computations within the set. The pseudo-algorithm for the dependence

analysis is presented in Figure 3.

Input: { Haskell-program with array de�nitions

{ Component set S

Output: { Set of all dependences with index spaces of set S

1. foreach array A in S

2. foreach array A' of S used in the de�nition of A

3. construct a dependence A' ! A; add it to set D,

together with appropriate index space.

4. output D

Figure 3: Dependence Analysis Algorithm

The determination of the index space in step 3 has to consider possible boolean restrictions of

generators in Haskell's list comprehension. The original polytope model [Len93], is restricted

to index spaces with a�ne bounds. For simplicity, we use this model in the context of this

paper, i.e., the boolean predicates may only be a�ne relations of index variables. Extensions of

the polytope model can deal with general IF statements [Col95], which correspond to arbitrary

boolean predicates in our context.

Applying the dependence algorithm to the LU example, we end up with one component set

S comprising A and the two mutually recursive arrays L and U , both reading A. The set of

dependences is presented in Figure 4.

This set of dependences describes a partial order on the index space of L and U . The �gure

contains, for each array, the referenced array elements (of itself and others), the restriction imposed

on the original array's domain de�nition (an a�ne relation) and the restricted index space of the
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Arr No Source Dest. Restr. Restricted Index Space

L

1 l(i; k) l(i; j)

j � i
(i; j; k) 2 f1; : : : ; ng � f1; : : : ; ig � f1; : : : ; (j � 1)g

2 u(k; j) l(i; j)

U

3 l(i; k) u(i; j)

i < j

(i; j; k) 2 f1; : : : ; (j � 1)g � f2; : : : ; ng � f1; : : : ; (i� 1)g
4 u(k; j) u(i; j)

5 l(i; i) u(i; j)

Figure 4: Dependences in the LU example

dependence. To get an idea of the structure of the dependences, Figure 5 contains a graphical

presentation of the data space with L's dependences on the left and U 's dependences on the right.

The numbers next to the di�erent types of lines in the legend correspond to the dependence

numbers in Figure 4. The reason for the di�erent dimensionality of data and index space is in our

case the intermediate list generated by k, which is summed up. Dependences and index spaces are

input for a scheduling algorithm which is described in the next section.

j

4

3

2

1

1 2 3 4
i

1 2 3 4 5

U:

L:

1

2

3

4

5

j

1 2 3
i

4 5

Figure 5: Dependences between array elements

3.3 Schedule and Allocation

Using the Feautrier scheduler [Fea92] of LooPo [Wie95] to get a schedule for the dependences

mentioned above, we obtain:

�

l

(i; j) = 2 � (j � 1) (3)

�

u

(i; j) = 2 � (i� 1) + 1 (4)

This schedule honors the fact that the de�nitions of L and U are mutually recursive, so that their

overall computation is interleaved. Note that, at each point in time, several computations can be

performed, e.g., at logical time 2 � (j � 1) we can compute l(i; j) for all i.

The mapping of computations, which are performed at the same time, to virtual processors is

de�ned by the allocation function. Finding a valid function is not di�cult, since every mapping

from the set of parallel computations to the natural numbers will do. The di�culty is �nding

a sensible function which minimizes the number of communications. This is done by placing
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dependences on single processors, i.e., allocating a computation on the same processor as a previous

computation it depends on. Then, the data item can simply stay in the local memory of the

processor. Up to now, no provably optimal algorithm for generating an allocation has been found,

but some heuristic algorithms have been proposed [Fea94, DR95].

We use LooPo's Feautrier allocator [Wie95] to compute suitable allocation functions for the LU

example:

�

l

(i; j) = i (5)

�

u

(i; j) = j (6)

Now we combine schedule and allocation to a single transformation matrix, which is used to

perform a coordinate transformation of the index pairs (i; j) into (t; p), which corresponds to the

enumeration of time and processors. The scheduler generates a schedule for each computation so

that we have two matrices, one for L and one for U . Generally, the relation T �

�

i

j

�

+

~

d =

�

t

p

�

holds,

in this case, denoting a mapping from the index space f(i; j) j (i; j) 2 N

2

+

g to the target space

f(t; p) j (t; p) 2 N

2

g. We obtain:

T

L

=

�

0 2

1 0

�

;

~

d

L

=

�

�2

0

�

; T

U

=

�

2 0

0 1

�

;

~

d

U

=

�

�1

0

�

This matrix presentation combines the data necessary for the coordinate transformation.

To see the e�ect on the index space, Figure 6(a) presents the computations of L and U in a single

index space (their domains do not intersect, so that they could even be stored in a single matrix).

In this example, we choose a value of 5 for n. The data points which are independent of each

other lie on the same dotted schedule line. The target space in Figure 6(b) depicts the points after

the coordinate transformations. Data items with the same schedule now have the same value t,

meaning that they are computed at the same time.

Thus, as a result of the parallelization, the computation of the LU decomposition has been ac-

celerated from 25 to 9 virtual time units (n

2

compared to 2n� 1), where one unit is the time to

compute a single data item. This time unit depends on the level of abstraction we have chosen

here. In the Haskell program in Figure 1, each computation of L and U contains the summation

of a list whose length is O(n). Taking this into account, a re�ned parallel solution requires about

3n time units, which corresponds to other results [Che86].

j

5

4

3

2

1

1 2 3 4 5 i

0

2

4

6

8

7531

U:

L:

(a) Index space of L and U

5

4

3

2

1

0 1 2 3 4 5 6 7 8 t
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Figure 6: Before and after the space-time mapping
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3.4 Code Generation

So far, in the process of parallelizing a program, we have analyzed the source program to get a set of

parallelizable array de�nitions, we have determined the data dependences between array elements

and we have found schedule and allocation functions to specify when and where computations

should be performed. The �nal task is code generation, i.e., generating a semantically equivalent

parallel target program by using schedule and allocation to specify the parallel behaviour explicitly.

Our work on code generation has only just begun. For the target language, we had several options:

� explicitly annotated functional languages based on parallel graph reduction,

� imperative languages with parallelism annotations like Fortran90,

� imperative languages with low-level libraries like C plus MPI,

� other high-level program transformation techniques, based on, e.g., abstract machines.

Our aims were to choose a framework which is 
exible enough to be adapted to the speci�c

needs of our scheme and allows for su�cient possibilities to tune the result. We believe that a

suitable collection of abstract parallel machines (APM) [OR97] �ts these needs best. The idea is

to perform a sequence of program transformations, each being a bit more speci�c, to convert an

abstract presentation of an algorithm into low-level executable code for a parallel machine.

We plan to design APMs for subsets of Haskell enriched with low-level directives for parallelism.

The process of transformation should eventually be mostly automatic, but the user should always

have the option of superceding the automatic process. At the end of the transformations, we aim

at a C plus MPI interface.

4 Related Work

There have been a lot of other e�orts to combine functional and parallel programming for scienti�c

computing. Probably most widely known is SISAL [BOCF92], a strict and lately even higher-order

language developed at Lawrence Livermore National Labs, which was designed to motivate former

FORTRAN programmers to use a functional language and thereby gain expressive power without

losing too much e�ciency. However, SISAL lacks a strict semantics and several features of a

modern functional language like an advanced type system with polymorphism.

NESL [BCH

+

93] is a project at CMU to devise a functional language which exploits implicit

parallelism contained in nested list comprehensions and some built-in functions. Our approach is

more general in that it can parallelize di�erent expressions together and is not restricted to lists.

Alpha [Wil94] is a restricted functional language aimed at the synthesis of regular architectures.

The input program, based mainly on recurrence equations, is re�ned in transformational steps

using, among others, space-time mappings in the fashion of the polytope model. Our approach

aims at scienti�c programs rather than VLSI.

Glasgow Parallel Haskell [THLJ98] exploits explicit parallelism of annotated Haskell programs us-

ing strategies, which describe the possibly parallel evaluation behavior of the annotated expression.

This is explicit task parallelism rather than our implicit and, possibly, �ner grained parallelism.

The MIT group of Arvind and Nikhil �rst designed Id [Nik91], a data 
ow language whose main

contributions were the introduction of I - and M -structures, which are used to provide e�cient,
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indexed data structures for a parallel environment at the cost of destroying some semantic prop-

erties of the language. More recent work adapts the ideas of Id to a Haskell dialect, pH [NAH

+

95]

(parallel Haskell). The language di�ers from Haskell in replacing lazy with lenient evaluation. The

main di�erence to our work is that they add impure data structures for parallelism, whereas we

keep the purely-functional semantics of Haskell.

5 Conclusion

For the restricted case of scienti�c array computations, the automatic parallelization process using

the polytope model can be adapted to the functional paradigm. It remains to be combined with

other techniques for general-purpose use { this can be done in the APM framework.
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