
Applying Design by Contract
to Feature-Oriented Programming

Thomas Thüm1, Ina Schaefer2, Martin Kuhlemann1, Sven Apel3, and
Gunter Saake1

1 University of Magdeburg, Germany
2 University of Braunschweig, Germany

3 University of Passau, Germany

Abstract. Feature-oriented programming (FOP) is an extension of ob-
ject-oriented programming to support software variability by refining
existing classes and methods. In order to increase the reliability of all
implemented program variants, we integrate design by contract (DbC)
with FOP. DbC is an approach to build reliable object-oriented soft-
ware by specifying methods with contracts. Contracts are annotations
that document and formally specify behavior, and can be used for for-
mal verification of correctness or as test oracles. We present and discuss
five approaches to define contracts of methods and their refinements
in FOP. Furthermore, we share our insights gained by performing five
case studies. This work is a foundation for research on the analysis of
feature-oriented programs (e.g., for verifying functional correctness or for
detecting feature interactions).

1 Introduction

Feature-oriented programming (FOP) [21,7] is a programming paradigm sup-
porting software variability by modularizing object-oriented programs along the
features they provide. A feature is an end-user-visible program behavior [15].
Code belonging to a feature is encapsulated in a feature module. A feature mod-
ule can introduce classes or modify existing classes by adding or refining fields
and methods. A program variant is generated by composing the feature modules
of the desired features. We use formal methods to increase the reliability of all
program variants that can be generated from a set of feature modules.

Design by contract (DbC) [20] has been proposed as a means to obtain re-
liable object-oriented software. The key idea is to specify each method with
a contract consisting of a precondition and a postcondition. The precondition
formulates assumptions of the method that the caller of the method has to en-
sure. The postcondition provides guarantees that the method gives such that the
caller can rely on it. Additionally, class invariants specify properties of objects
that hold before and must hold after a method call. DbC can be used for for-
mal specification and documentation of program behavior as well as for formal
verification or testing of functional correctness. We integrate DbC with FOP to
increase the reliability of FOP.

class Array { Base
Item[] data; //@ invariant data != null;
Array(Item[] data) { this.data = data; }
/∗@ requires \nothing;
@ ensures (\forall int i; 0 < i && i < data.length;
@ data[i−1].key <= data[i].key); @∗/

void sort() { /∗ heap sort algorithm ∗/ }
}
class ArrayWithInverse extends Array { /∗ ... ∗/ }
class Item {
int key; Object value; //@ invariant value != null;
Item(key, value) { this.key = key; this.value = value; }

}

Fig. 1. Design by contract with Java and JML: method contracts and class invariants
are embedded in comments.

FOP adds another dimension of modularization and code reuse to object-
oriented programs besides inheritance. While in class-based inheritance, sub-
classes must satisfy the behavioral subtyping principle [17], method refinement
(i.e., method overriding in FOP) is different in nature from code reuse by inher-
itance. A feature may change the behavior of an existing method arbitrarily to
meet feature-specific requirements. For example, a security feature may restrict
the allowed parameter values of a method by strengthening the precondition.
Thus, when integrating DbC with FOP, the question arises how method con-
tracts of refined methods should be defined.

We present and discuss five new approaches to specify contracts of methods
which we refine using FOP. We consider the strengths and weaknesses of each
approach with respect to strictness, expressiveness, complexity, and specification
clones. Furthermore, we discuss the refinement of class invariants and evaluate
the practical applicability of the presented approaches using five case studies.
This paper is the first to focus on the specification of feature-oriented programs
using DbC. Previous work focused on ensuring consistency of feature-oriented
programs using type checking [3,10] and model checking [5,6]. With our sys-
tematic analysis of the different approaches to specify feature-oriented programs
using DbC, we provide the foundation for future research on the formal analy-
sis of feature-oriented programs, including the formal verification of functional
correctness, feature interaction detection, and test case generation.

2 Background

Figure 1 shows our running example — a Java program that is annotated with
the Java Modeling Language (JML) [16] to specify its behavior using DbC. Class
Array is specified by an invariant (using the keyword invariant) that states
that field data should not be null. Invariants have to be established by the
class constructors, they can be assumed before every method call and have to be
reestablished afterwards. Method sort() of class Array is specified by a method
contract. The precondition of the contract is expressed in the requires clause

Array ArrayWithInverse Item Base

Array DescendingOrder

Array ArrayWithInverse Item Synchronization

Fig. 2. Feature-oriented class refinement (dashed arrows) and object-oriented inheri-
tance (solid arrows) are concepts for reuse that are orthogonal to each other.

and has to be ensured by the caller of the method. Here, the precondition is
simply true. In JML, behavioral subtyping [17] for subclasses is achieved by
specification inheritance. This means that all subclasses inherit the invariants of
their superclasses and that overriding methods must also satisfy the contracts
of the overridden methods. The ensures clause expresses the postcondition of a
contract and has to be guaranteed by the method. In our example, the postcon-
dition states that the resulting array is sorted. Contracts can also be denoted by
Hoare triples [13]. Given a method m with precondition φ and postcondition ψ,
the contract of method m is denoted by {φ}m{ψ}.

Feature-oriented programming (FOP) is an extension of object-oriented pro-
gramming (OOP) aiming at better reuse capabilities across families of object-
oriented programs [21]. Classes are split into pieces distributed over feature mod-
ules; modules that implement end-user-visible features. A particular program can
be derived automatically by combining the feature modules of the required fea-
tures [2]. A feature module can introduce new classes, methods, and fields. If
a method with a particular name already exists in a previously composed fea-
ture module, the existing method is refined [2]. Method refinement is similar
to overriding with object-oriented inheritance, but the FOP keyword original

is used instead of super. The main difference is that original is bound at
the time the feature modules are composed. Figure 2 visualizes the FOP re-
finement of the classes of Figure 1 (Array, ArrayWithInverse, Item) with the
feature modules Base, DescendingOrder, and Synchronization. Base contains the
classes Array, ArrayWithInverse, and Item. DescendingOrder contains a class
refinement Array which refines class Array of Base to invert the sorting order
of implemented arrays. Synchronization contains refinements for all classes of
Base; as a result, these classes support multithreading.

3 Contracts for Feature-Oriented Programming

We present five approaches for the integration of DbC into FOP and discuss
advantages and disadvantages of each approach.

Plain Contracting The application of DbC to FOP should be as simple as
possible to facilitate creation and maintenance of contracts for programmers.

refines class Array { StableSort
/∗@ requires original;
@ ensures original && ...sorting is stable...; @∗/

void sort() { /∗ merge sort algorithm ∗/ }
}

Fig. 3. Explicit contract refinement : feature StableSort overrides method sort() with
an implementation of a stable sorting algorithm. Both, precondition and postcondition
maintain the refined contract indicated by the keyword original and refine it.

Plain contracting is the simplest possible approach allowing programmers to de-
fine contracts only for method introductions and not for method refinements. As
a consequence, method refinements may not change the behavior of the refined
method. Consider the example in Figure 1. Assume that an additional feature
Quicksort refines the class Array by overriding the body of method sort() with
a Quicksort implementation. The contract of method sort() does not have to be
changed, because the new implementation does not affect sorting. Given a set of
selected features and a total order on those features, a tool can decide for every
method whether it is a method introduction or a method refinement [3]. Then,
we can automatically check that no method refinement comes with a contract.

On the one hand, allowing programmers to introduce, but not to refine con-
tracts comes with advantages. First, we only need to specify a method once even
if it is refined by several other feature modules, and thus the effort for specifi-
cation (i.e., writing contracts) is minimal. Second, the source code is easier to
understand as the same contract holds in every possible combination of features.
This is beneficial since a programmer needs to know the contract for every called
method (e.g., to find out whether the precondition is fulfilled at every position
where the method is called). On the other hand, this approach might be too
restrictive. With plain contracting, we are not able to specify feature-oriented
programs, where the refinement of a method also requires the refinement of a
contract. For instance, if we replace an instable sorting algorithm with a stable
one, we may need to express that callers can rely on this property if the accord-
ing feature is present. In Section 6, we evaluate whether this restriction is an
actual problem in practice.

Explicit Contract Refinement When refining a method, we may also need
to refine the corresponding contract if the method behavior is changed such that
it no longer satisfies the original contract. The refinement of contracts can be
supported by the same linguistic means as method refinement, which should raise
the acceptance of DbC in FOP. Explicit contract refinement allows programmers
to use the keyword original to refer the refined precondition and postcondition
in the contract refinement.

As an example for explicit contract refinement, in Figure 3, we assume that
feature Base is identical to the previous example and that a new feature Stable-
Sort replaces the sorting algorithm by a stable sorting algorithm; here, merge

sort. In order to provide a contract, which states that the result is sorted and
the algorithm is stable, we refer to the existing postcondition and conjoin it with
a definition of stability (which we left out for brevity). Keyword original may
appear anywhere in the precondition or postcondition (not necessarily at the
beginning) or it may not appear at all.

Explicit contract refinement is a flexible approach where contracts can be re-
fined by including the previous contract if appropriate; preconditions and post-
conditions can be refined individually. However, the approach may lead to com-
plex and less understandable specifications, especially, when several refinements
for the same method contract exist and some, but not all refinements, refer to
the previous contract. It may be unclear what a method actually needs to ensure
and what it can rely on, because this may depend on the feature selection. In
particular, contracts depend on the feature from which the method is called.

Consecutive Contract Refinement Consecutive contract refinement is an
approach with which new contracts can be defined for method refinements but
contracts for refined methods may not be invalidated. The central idea of the
approach is to adapt contract subtyping to FOP. Contract subtyping is widely
used in OOP and ensures that contracts defined in a certain class must be fulfilled
in all subclasses, too. The main difference to contract subtyping in OOP is that
features may be present or not, and thus the feature selection influences the
resulting method contract.

Given an original method m with precondition φ and postcondition ψ, we
can refine m with a new method implementation m′ with precondition φ′ and
postcondition ψ′. Then, the refined method m′ needs to ensure the original
contract {φ}m′{ψ} and the new contract {φ′}m′{ψ′}. As a result, the method
can be used in all places where method m is called, and the caller can rely on the
contract of the refined method m. For example, re-consider the feature StableSort
in Figure 3. With consecutive contract refinement, the example would look the
same except for the replacement of ‘original’ with ’true’ in the precondition
and postcondition, because the contract of the refined method holds implicitly.

The main advantage of consecutive contract refinement compared to explicit
contract refinement is that existing contracts remain valid even if a method is
refined. This way, callers can rely on contracts defined in a particular feature
independent on the presence of other features, because refinements cannot in-
validate the contract. This advantage comes with a reduced applicability, since
we cannot encode cases in which a feature weakens an existing contract.

Contract Overriding Contract overriding is a special case of explicit contract
refinement where the keyword original is never used. Contract overriding al-
lows programmers to replace the contract when refining a method, but does not
allow programmers to reference or reuse refined contracts. In contrast to consec-
utive contract refinement, contracts defined in previous features do not need to
be fulfilled. In previous work, we used contract overriding to verify SPL prod-
ucts by proof composition [23]. In this previous work, we additionally enforced

compatibility between contracts and their refinements. A contract refinement
is compatible to a previous contract, if every method that fulfills the refined
contract also satisfies the contract of the refined method.

The main problem with contract overriding are specification clones, because
there is no way to adapt original contracts. The CPA (copy, paste, adapt) princi-
ple is the only option to refine contracts, which may result in many specification
clones and, thus, a high specification effort. Another serious disadvantage is that
the meaning of a contract is unclear for callers, because it heavily depends on
the actual feature selection and on the composition ordering. Furthermore, if two
features refine the same method contract using contract overriding, we may get
undesired contracts if both features are selected (known as feature interaction
problem of FOP [2]). We could introduce derivative contracts (i.e., a contract
that is only included if two or more features are selected) but derivative contracts
can introduce further specification clones.

Pure-Method Refinement Preconditions and postconditions in JML may
also contain calls to methods that are free of side-effect and are guaranteed to
terminate (known as pure method in JML [16]). If a pure method is used in a
contract, the contract depends on the result of this (pure) method call. Pure
methods called in contracts open a further possibility for contract refinement,
because pure methods can be refined as any other method in FOP – this allows
programmers to refine contracts as a spin-off. With pure-method refinement,
instead of actually refining a contract itself, a pure method used in a contract is
refined and, thus, indirectly contracts based on the feature selection are modified.

In Figure 4, the example of pure-method refinement is based on an publicly
available case study4, which we have decomposed into features. Class ExamData-
Base stores the results of student exams. Array students contains the students
and their points, whereas a null-value refers to a free position in the array. The
method consistent() checks whether all students have at least zero points. The
method validStudent() is used in the contract of method consistent() and is
refined by a class refinement of feature module BackOut ; this refinement allows
students to back out from an exam. Hence, the contract of method consistent()

is refined by changing the body of method validStudent().
Pure methods in contracts support fine-grained contract refinement. Even

parts of preconditions or postconditions can be refined, which would otherwise
require to clone contracts and modify them. Such specification clones may lead
to similar problems as code clones [14]. For example, when updating a contract,
we may forget to update clones of this contract and introduce inconsistencies.
Hence, specification clones should be avoided whenever possible requiring more
sophisticated specification approaches such as pure-method refinement.

Pure-method refinement is expressive, because method refinements do neither
depend on refined methods nor must relate to them in any way (e.g., weakening
or strengthening existing contracts). A further advantage is that no new key-
words and no linguistic concepts are needed for contract refinement, because

4
http://verifythis.cost-ic0701.org/post?pid=database-system-for-managing-exams

http://verifythis.cost-ic0701.org/post?pid=database-system-for-managing-exams

class ExamDataBase { Base
/∗@ ensures \result == (\forall int i; 0 <= i
@ && i < students.length && validStudent(students[i]);
@ students[i].points >= 0); @∗/

boolean consistent() {
for(int i=0; i<students.length; i++)

if (validStudent(students[i]) && students[i].points < 0)
return false;

return true;
}
/∗@ pure @∗/ boolean validStudent(Student student) {
return student != null;

}
}
class Student {
//@ invariant matrNr > 0 && firstname != null && surname != null;
int matrNr; String firstname, surname;

}

refines class ExamDataBase { BackOut
/∗@ pure @∗/ boolean validStudent(Student student) {
return original(student) && !student.backedOut;

}
}
refines class Student {
//@ invariant !backedOut | | backedOutDate != null;
Date backedOutDate = null; boolean backedOut = false;

}

Fig. 4. Pure-method refinement : the contract of method consistent() contains a
call to the pure method validStudent(). Feature BackOut refines the contract of
consistent() indirectly by refining method validStudent(). By refining one pure
method, we can refine several contracts indirectly at the same time.

traditional FOP mechanisms can be used. Hence, it is easy to understand the
meaning of contracts, if the refinements of all pure methods therein are clear.
The main disadvantage of pure-method refinement is that it strongly relies on
the concept of pure methods being allowed to be called in contracts. Further-
more, the flexibility for refining methods by FOP may cause contracts which are
hard to understand (e.g., if we have several refinements of the same method,
some strengthening, some weakening, and some overriding).

4 Refinement of Invariants

DbC involves the specification of methods by contracts and classes by invariants
usually expressing invariant properties of the fields. In the following, we assume
that contract refinement is carried out with any of the previously discussed
approaches and discuss how programmers can refine invariants analogously.

If invariants can be introduced in features, an invariant only needs to be
established for the resulting program if the corresponding feature is selected (e.g.,
in Figure 4 feature BackOut introduces fields together with an invariant). Thus,
we can build variable specifications using invariant introductions. Similarly to

contracts, invariants can be refined explicitly or implicitly (i.e., with or without a
keyword referring to invariants defined in previously composed feature modules).
When using explicit invariant refinement, we can use the keyword original to
reference the previous definition of the invariant and combine it with the previous
invariants. Applying consecutive contract refinement means that features can
only add new invariants that need to hold as well. We can apply the concept
of pure-method refinement to invariants. If an invariant contains a pure method
call, the pure method can be refined using FOP method refinement. Finally,
contract overriding can also be applied to invariants, where existing invariants
can be overridden by features which we refer to as invariant overriding.

Allowing the refinement of invariants provides additional flexibility for the
specification of feature-oriented programs. Every feature module can change in-
variants provided by previously composed feature modules. Depending on the
approach chosen for refinement of contracts, we find it intuitive to refine in-
variants using the same means. However, the introduction and refinement of
invariants allows that particular invariants only need to be fulfilled if a certain
feature is present. As a result, it can be difficult to examine those combinations
of features for which a certain invariant is present. The refinement of invariants
has huge consequences as an invariant must hold for all methods of a class, and
a change influences many callers and callees at the same time. Furthermore, the
flexibility with invariant refinement can easily result in specifications that can-
not be satisfied by any implementation. In Section 6, we evaluate whether the
refinement of invariants is actually useful in practice.

5 Comparison

After presenting five alternative approaches of refining contracts, we now want
to compare them based on properties directly related to specifications and give
some intuition which approach is useful under which circumstances. We compare
the approaches according to four properties which are different perspectives on
the specification of programs: strictness, expressiveness, complexity, and specifi-
cation clones. While strictness and expressiveness may indicate that an approach
can not be applied to certain feature-oriented programs, the other criteria refer
to properties that are nice to have.

Strictness can be used to classify all presented approaches regarding allowed
and disallowed refinements from a logical point of view. Given a certain con-
tract C, a refined contract C ′ may be strengthened with respect to method
calls (e.g., by adding a further postcondition) or weakened (e.g., by requiring a
further precondition). Strengthening means that every method fulfilling C ′ also
fulfills C and weakening means that every method fulfilling C also fulfills C ′.
Further possibilities are to refine the contract with an equivalent one (e.g., by
commuting preconditions or leaving the contract as-is) or to refine the contract
in arbitrary way. In Figure 5, we illustrate the strictness relation by a Venn
diagram. The intersection of weakened and strengthened contracts is the set of
equivalent contracts. As plain contracting disallows any refinement of contracts,

Plain
Contracting

Consecutive
Contract

Refinement

Explicit Contract Refinement
Pure-Method Refinement

Contract Overriding

Equivalent

StrengtheningWeakening

Arbitrary Refinement

Fig. 5. Comparison of the presented approaches of contract refinement regarding strict-
ness. Approaches may allow or disallow weakening and strengthening of contracts re-
sulting in four categories. For example, disallowing both means to allow only contract
refinements if they are equivalent to the original contract.

the contracts are equivalent for every method refinement. Consecutive contract
refinement allows only to strengthen the original contract. All other presented
approaches allow arbitrary refinements.

Expressiveness refers to whether we can specify all meaningful properties of
feature-oriented programs. Given a particular program, we need to know whether
we can express its specification with a certain approach or not. There is a connec-
tion to strictness: approaches allowing arbitrary refinements are more expressive
than approaches allowing only strengthened contracts and similarly, strengthen-
ing is more expressive than equivalent contracts. In Table 1, we give an overview
on the expressiveness of all presented approaches. The low expressiveness of
plain contracting and consecutive contract refinement is simply based on their
strictness. Contract overriding has a lower expressiveness compared to other ap-
proaches allowing arbitrary refinements, because derivative contracts may be
needed if two features refine the same contract (see Section 3).

Plain Explicit Consecutive Pure Method Contract
Contracting Refinement Contract Ref. Refinement Overriding

Expressiveness – – + + 0 + + +

Complexity + + – – + 0 – –

Specification Clones + + 0 + + + – –

Table 1. Comparison of the presented approaches for the refinement of contracts.
+ + means that the approach is good with respect to the property (i.e., the approach
has high expressiveness, contracts have a low complexity, specification clones can be
avoided). Intuitively, – – refers to the worst and 0 to a neutral evaluation.

Complexity indicates whether it is easy for a programmer to manually retrieve
the resulting contract of a certain method for a particular feature combination.
An approach, in which determining the contract has the lowest complexity, is
beneficial for programmers that need to create and maintain specifications be-
cause mistakes, such as wrong contracts or wrong implementations, can have
expensive outcomes (e.g., it is expensive to detect errors using verification or
testing). Thus, we expect contract specifications to have a low complexity. Con-
tract overriding has the highest complexity, as contracts can be arbitrarily refined
by each feature, and contracts can depend on the presence of every single feature.
Contracts created by explicit contract refinement have a lower complexity since
no derivative contracts are needed. Using pure-method refinement, contracts can
only be refined at predefined positions. Consecutive contract refinement only al-
lows a programmer to strengthen contracts meaning that if a certain feature is
selected, then all methods need to establish the contracts defined therein, in-
dependent of other features. Clearly, the complexity is even lower if we do not
allow refinements at all using plain contracting, because a contract is either not
present or the same for all feature selections.

Specification clones are identical or very similar contracts. We expect that
specification clones lead to similar problems as code clones (see Section 3). Hence,
a specification approach should help to avoid specification clones. We consider
contract overriding as the worst approach regarding specification clones, as it
provides no ability to reuse contracts such that the only option is to copy and
adapt contracts. A better approach is the explicit refinement of contracts and
invariants because the keyword original can be used to reference preconditions
and postconditions of a previous contract. With consecutive contract refinement,
all contracts are implicitly reused such that we expect even less specification
clones. The best approaches in terms of avoiding clones are plain contracting
and pure-method refinement. Plain contracting completely disallows contract
refinements, and with pure-method refinement even parts of contracts can be
refined which allows to reuse existing contracts.

6 Evaluation

In order to evaluate the practicability of the five proposed specification ap-
proaches, we performed two case studies by creating feature-oriented programs
including their specifications from scratch and three case studies by decom-
posing already specified object-oriented programs into feature modules. All our
case studies are implemented and specified in feature-oriented extensions of Java
and JML, but we expect similar results for other object-oriented languages and
contract-based specification languages. The advantage of Java and JML is that
many tools as well as specified and verified sample programs exist. However, it
turned out that most existing examples are too small to be decomposed into
features (i.e., only three of them were suitable for decomposition).

In Table 2, we present some statistics of our feature-oriented sample pro-
grams. They have between two and eight classes consisting of two to 42 fields

ExamDB Paycard DiGraph BankAccount IntList

Classes, fields 4, 10 8, 42 8, 13 2, 7 2, 2
Methods (pure) 29 (8) 18 (5) 48 (22) 10 (0) 12 (0)

Features, variants 4, 8 4, 6 4, 8 6, 24 5, 16
Method refinements (pure) 2 (2) 3 (1) 0 (0) 4 (0) 4 (0)

Contracts (in core features) 25 (17) 10 (4) 43 (27) 8 (2) 7 (1)
Invariants (in core features) 5 (4) 6 (2) 12 (12) 4 (1) 3 (2)

Contract refinements 0 1 0 2 1
Contracts with method
calls (refined, multiple) 8 (7, 4) 2 (2, 0) 29 (0, 10) 0 (0, 0) 0 (0, 0)

Invariant refinements 0 0 0 0 0
Invariants with method
calls (refined, multiple) 0 (0, 0) 0 (0, 0) 5 (0, 0) 0 (0, 0) 0 (0, 0)

Table 2. Results of case studies

and ten to 48 methods. Some methods are declared as being pure. Our case
studies have four to six features where six to 24 combinations of features are
considered valid and can be used to generate different program variants. The
programs are specified by seven to 43 contracts and three to twelve invariants.

With respect to strictness and expressiveness of the approaches, we found
that four of five case studies could not be specified using plain contracting,
because contract refinement was required. Only, the DiGraph case study could be
specified with plain contracting; it does not contain a single method refinement as
it is a library and the features chosen for decomposition do not cross-cut method
implementations. But, method and contract refinement may be necessary when
extracting further features or extending DiGraph with a new features. Contract
strengthening is sufficient for three of five case studies. We specified the IntList
and the Paycard case studies using consecutive contract refinement. Thus, for
these case studies strengthening is sufficient. ExamDB and BankAccount rely on
contract weakening. While contract strengthening is commonly used for OOP,
it is not suited for any feature-oriented program. In larger programs, we expect
even more examples where contract weakening is needed.

Our results show that some, but not all feature-oriented method refinements
require contract refinements. For example, the BankAccount case study contains
four method refinements, but for only two of them the contract was refined. Con-
verse, pure-method refinement requires the refinement of methods per definition,
but some method refinements may be introduced only to refine contracts (i.e.,
the method refinement is not needed for implementation of features but only to
express their specification). For example, in the ExamDB case study, we newly
introduced two refinements of pure methods to actually refine seven contracts
each containing a call to the pure method.

The granularity of contract refinement can influence the suitability of the
individual approaches. The case study ExamDB requires fine-grained refinement
of contracts. In Figure 4, the contract of method consistent() is refined using
pure-method refinement. The contract quantifies over all valid students, and
feature BackOut can actually influence which students are valid (students that
are backed-out are considered as invalid). In this example, only a small part of a
contract needs to be refined, while most of it remains unchanged. Hence, we used
pure-method refinement for ExamDB to express these fine-granular refinements.
All other approaches would lead to specification clones. But, we also observed the
danger that pure-method refinement is applied accidentally. When decomposing
an existing system into features, the implementation may require the refinement
of certain methods. If one of such methods is declared as pure, it may also be used
in contracts. But then, we may accidentally refine contracts or invariants simply
by refining these methods. If we choose to disallow pure-method refinement, we
also need to make sure that either no pure method can be refined or that no
method referenced in contracts or invariants can be refined. The same holds if
we create a feature-oriented program from scratch.

In the case study Paycard, we used a combination of two approaches. We
used pure-method refinement to refine two contracts, because the refinement was
fine-grained. But, for another contract refinement, we used consecutive contract
refinement as the whole original contract should be established as-is and refined
by a further contract. The experience with our case studies showed that even
combinations of presented approaches may be useful.

Not a single case study required the refinement of invariants (see Figure 2).
Still, in all case studies except from DiGraph, invariants were introduced by
several, optional features resulting in invariants that only hold for products of
particular feature combinations. But, we found no case where a feature needed to
refine the invariant defined by another feature. However, we had to split invari-
ants into several smaller invariants when decomposing the ExamDB and Paycard
case studies into features. Splitting was possible as the invariant actually was a
conjunction, which can always be decomposed into several invariants. We cannot
conclude that the refinement of invariants can generally be avoided, but at least
in our case studies the introduction of invariants by features was sufficient. This
is a positive result according to the strong disadvantages of invariant refinement
discussed in Section 4.

In our case studies, we also analyzed whether a global specification that holds
for all program variants is sufficient as suggested by Liu et al. [18]. Their example
is that every pacemaker variant shall generate a pulse when no heartbeat is
detected. In Table 2, we observe that only between 14 and 68 percent of all
contracts and between 25 and 100 percent of invariants are given in core features.
A core feature is a feature that is included in every program variant [8]. The
core features together build-up the part that is common to all program variants.
From the above figures, we can conclude that in none of our case studies a global
specification is sufficient and specifications in form of contracts should be given
for every feature as we propose in this paper.

In summary, our evaluation showed that contract refinement is needed when
applying DbC to FOP. It is not always sufficient to only strengthen contracts (al-
ready in our small case studies) such that an approach for contract refinement
should also allow weakening. From our qualitative and quantitative analysis,
pure-method refinement is the most promising approach because contracts can
be strengthened or weakened and fine-grained refinements are supported as well.
Pure-method refinement may be combined with consecutive contract refinement
to better support coarse-grained refinements. In our experience, invariant intro-
ductions should be used instead of invariant refinements whenever possible.

7 Related Work

In previous work, we considered formal verification of feature-oriented programs
based on JML specifications. We proposed proof composition with the proof as-
sistant Coq for efficient deductive verification of all program variants and applied
a specification approach similar to contract overriding [23]. For the detection of
feature interactions, we composed specifications with implicit contract refine-
ment and analyzed program variants using ESC [22]. In each work, we proposed
one specification approach and focused on verification issues. Our experience
was that it is not clear what is the best way to specify feature-oriented programs
using DbC. In this work, we propose three further specification approaches and
compare all approaches regarding practicability by means of five case studies.

Specification using DbC has been considered for other program modulariza-
tion techniques than FOP. Bruns et al. [9] and Hähnle et al. [12] discuss DbC for
delta-oriented programming (DOP). DOP is an extension of FOP where feature
modules (known as delta modules) can also remove methods, fields, and classes.
A delta module can add or remove invariants and contracts. Since a feature mod-
ule only refines existing methods, it is not reasonable to consider the removal of
contracts or invariants for FOP.

DbC has been applied to aspect-oriented programming [24,19,1]. The aspect-
oriented around advice corresponds roughly to feature-oriented method refine-
ment and thus aspect-oriented programming can be seen as a superset of FOP [4].
Zhao and Rinard [24] proposed Pipa, a DbC specification language for AspectJ.
AspectJ programs with Pipa annotations are translated into Java programs with
JML annotations to allow programmers to reuse existing JML tools. Lorenz and
Skotiniotis [19] analyze advice contracts in terms of runtime assertions. They pro-
pose three advice categories with an according runtime assertion strategy each:
agnostic and obedient disallowing contract refinement (similar to contract over-
riding with equivalent contracts) and rebellious allowing contract strengthening
(similar to contract overriding with compatible contracts). Agostinho et al. [1]
discuss the interaction between classes and aspects while proposing agnostic
pieces of advice. All these approaches force programmers to create specification
clones, because they do not support contract weakening, which is needed in two
of our case studies. Furthermore, the absence of aspects is not considered, while
optional features in FOP are essential for software variability.

Most specification approaches for OOP assume behavioral subtyping [17] for
subclasses which are the means to reuse code. Dhara and Leavens [11] propose
specification inheritance to achieve behavioral subtyping which also is pursued
in Eiffel [20] and JML [16]. With consecutive implicit refinement, we transfered
the notion of behavioral subtyping to feature-oriented method refinement, but
two of five case studies cannot be specified using this approach, as it is too
restrictive.

8 Conclusion

In order to increase the reliability of feature-oriented programs, we discussed five
approaches to integrate DbC with FOP and evaluated them by means of five case
studies. We found that feature-oriented method refinement often requires the re-
finement of contracts such that the program specification depends on the actual
selection of features. In contrast, the refinement of invariants can be avoided in
our case studies. Furthermore, we identified the trade-off between expressive-
ness and complexity: while high expressiveness allows programmers to specify
arbitrary feature-oriented programs, the complexity of contracts increases.

Acknowledgment

We thank Fabian Benduhn and anonymous reviewers for comments on earlier
drafts of this paper. Apel’s work is supported by the German Research Founda-
tion (DFG – AP 206/2, AP 206/4, and LE 912/13). Saake’s work is supported
by the German Research Foundation (DFG – SA 465/34-1).

References

1. S. Agostinho, A. Moreira, and P. Guerreiro. Contracts for Aspect-Oriented Design.
In Proc. Workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT). ACM, 2008.

2. S. Apel and C. Kästner. An Overview of Feature-Oriented Software Development.
J. Object Technology (JOT), 8(5):49–84, 2009.

3. S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type Safety for Feature-
Oriented Product Lines. Automated Software Engineering (ASE), 17(3):251–300,
2010.

4. S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE Trans. Software
Engineering (TSE), 34(2):162–180, 2008.

5. S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting Dependences and
Interactions in Feature-Oriented Design. In Proc. Int’l Symposium Software Reli-
ability Engineering (ISSRE), pages 161–170. IEEE, 2010.

6. S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection of Feature
Interactions using Feature-Aware Verification. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 372–375. IEEE, 2011.

7. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Trans. Software Engineering (TSE), 30(6):355–371, 2004.

8. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis of Feature
Models 20 Years Later: A Literature Review. Information Systems, 35(6):615–708,
2010.

9. D. Bruns, V. Klebanov, and I. Schaefer. Verification of Software Product Lines:
Reducing the Effort with Delta-oriented Slicing and Proof Reuse. In Proc. Int’l
Conf. Formal Verification of Object-Oriented Software (FoVeOOS), pages 61–75.
Springer, 2010.

10. B. Delaware, W. Cook, and D. Batory. A Machine-Checked Model of Safe Com-
position. In Proc. Workshop Foundations of Aspect-Oriented Languages (FOAL),
pages 31–35. ACM, 2009.

11. K. K. Dhara and G. T. Leavens. Forcing Behavioral Subtyping through Specifica-
tion Inheritance. In Proc. Int’l Conf. Software Engineering (ICSE), pages 258–267.
IEEE, 1996.

12. R. Hähnle and I. Schaefer. A Liskov Principle for Delta-oriented Programming.
In Proc. Int’l Conf. Formal Verification of Object-Oriented Software (FoVeOOS),
pages 190–207. Technical Report 2011-26, Department of Informatics, Karlsruhe
Institute of Technology, 2011.

13. C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Comm. ACM,
12(10):576–580, 1969.

14. E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do Code Clones Matter?
In Proc. Int’l Conf. Software Engineering (ICSE), pages 485–495. IEEE, 2009.

15. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, 1990.

16. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. Software Engineering Notes (SEN),
31(3):1–38, 2006.

17. B. H. Liskov and J. M. Wing. A Behavioral Notion of Subtyping. Trans. Program-
ming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

18. J. Liu, S. Basu, and R. Lutz. Compositional Model Checking of Software Product
Lines using Variation Point Obligations. Automated Software Engineering (ASE),
18(1):39–76, 2011.

19. D. H. Lorenz and T. Skotiniotis. Extending Design by Contract for Aspect-Oriented
Programming. Computing Research Repository (CoRR), abs/cs/0501070, 2005.

20. B. Meyer. Applying Design by Contract. Computer, 25(10):40–51, 1992.
21. C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proc.

Europ. Conf. Object-Oriented Programming (ECOOP), pages 419–443. Springer,
1997.

22. W. Scholz, T. Thüm, S. Apel, and C. Lengauer. Automatic Detection of Feature
Interactions using the Java Modeling Language: An Experience Report. In Proc.
Int’l Workshop Feature-Oriented Software Development (FOSD), pages 7:1–7:8.
ACM, 2011.

23. T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof Composition for Deduc-
tive Verification of Software Product Lines. In Proc. Int’l Workshop Variability-
intensive Systems Testing, Validation and Verification (VAST), pages 270–277.
IEEE, 2011.

24. J. Zhao and M. C. Rinard. Pipa: A Behavioral Interface Specification Language
for AspectJ. In Proc. Int’l Conf. Fundamental Approaches to Software Engineering
(FASE), pages 150–165. Springer, 2003.

	Applying Design by Contract to Feature-Oriented Programming

