
Issues of the Automati Generation of HPF LoopPrograms
Peter Faber, Martin Griebl, and Christian LengauerFakult�at f�ur Mathematik und InformatikUniversit�at Passau, D{94030 Passau, Germanyemail: ffaber,griebl,lengauerg�fmi.uni-passau.de

Abstrat. Writing orret and eÆient programs for parallel omput-ers remains a hallenging task, even after some deades of researh inthis area. One way to generate parallel programs is to write sequentialprograms and let the ompiler handle the details of extrating paral-lelism. LooPo is an automati parallelizer that extrats parallelism fromsequential loop nests by transformations in the polyhedron model. Thegeneration of ode from these transformed programs is an importantstep. We report on problems met during ode generation for HPF, andexisting methods that an be used to redue some of these problems.1 IntrodutionWriting orret and eÆient programs for parallel omputers is still a hallengingtask, even after several deades of researh in this area. Basially, there aretwo major approahes: one is to develop parallel programming paradigms andlanguages whih try to simplify the development of parallel programs (e.g., data-parallel programming [PD96℄ and HPF [Hig97℄), the other is to hide all parallelismfrom the programmer and let an automatially parallelizing ompiler do the job.Parallel programming paradigms have the advantage that they tend to omewith a straightforward ompilation strategy. Optimizations are mostly performedbased on a textual analysis of the ode. This approah an yield good results forappropriately written programs. Modern HPF ompilers are also able to detetparallelism automatially based on their ode analysis.Automati parallelization, on the other hand, often uses an abstrat mathe-matial model to represent operations and dependenes between them. Transfor-mations are then done in that model. A ruial step is the generation of atualode from the abstrat desription.Beause of its generality, we use the polyhedron model [Fea96,Len93℄ for par-allelization. Parallel exeution is then de�ned by an aÆne spae-time mappingthat assigns (virtual) proessor and time oordinates to eah iteration. Our goalis then to feed the resulting loop nest with expliit parallel diretives to an HPFompiler. The problem here is that transformations in the polyhedron model an,in general, lead to ode that annot be handled eÆiently by the HPF ompiler.In the following setion, we point to some key problems that our during thisphase.



2 Problems and SolutionsThe �rst step in the generation of loop programs from a set of aÆne onditionsis the sanning of the index spae; several methods have been proposed for thistask [KPR94,GLW98,QR00℄. However, the resulting program, may ontain arrayaesses that annot be handled eÆiently by an HPF ompiler.This an be partly avoided by onverting to single assignment (SA) form.This transformation [Fea91,Coh99℄ is often used to inrease the amount of on-urreny that an be exploited by the ompiler (sine, in this form, only truedependenes have to be preserved). Converting to SA form after loop skewing{ whih is proposed by Collard in [Col94℄ { yields relatively simple index fun-tions: index funtions on the left-hand side of an assignment are given by thesurrounding loop indies, and index funtions on the right-hand side (RHS) aresimpli�ed beause uniform dependenes lead to simple numerial o�sets and,thus, to simple shifts that an be deteted and handled well by HPF ompilers.However, there are three points that ause new problems:1. SA form in its simple form is extremely memory-onsuming.2. Conversion to SA form may lead to the introdution of so-alled �-funtionsthat are used to reonstrut the ow of data.3. Array ourrenes on the RHS of a statement may still be too omplex forthe HPF ompiler in the ase of non-uniform dependenes, whih may againlead to serialized load ommuniations.The �rst point is addressed by Lefebvre and Feautrier [LF98℄. Basially, theyintrodue modulo operators in array subsripts that ut down the size of thearray introdued by SA onversion to the length of the longest dependene for agiven write aess. The resulting arrays are then partially renamed, using a grapholoring algorithm with an interferene relation (write aesses may onit forthe same read) as edge relation. Modulo operators are very hard to analyze, butintroduing them for array dimensions that orrespond to loops that enumeratetime steps (in whih the array is not distributed) may still work, while spatialarray dimensions should remain without modulo operators. In the distributedmemory setting, this optimization should generally not be applied diretly, sinethis would result in some proessors owning the data read and written by others.The overall memory onsumption may be smaller than that of the original arraybut, on the other hand, bu�ers and ommuniation statements for non-loal datahave to be introdued. One solution is to produe a tiled program and not usethe modulo operator in distributed dimensions.�-funtions may be neessary in SA form due to several possible souresof a single read sine, in SA form, eah statement writes to a separate, newlyintrodued array. �-funtions selet a spei� soure for a ertain aess; thus,their funtion is similar to the ?-operator of C. In the ase of seletions based onaÆne onditions, �-funtions an be implemented by opy operations exeutedfor the orresponding part of the index, whih an be sanned by standardmethods. Yet, even this implementation introdues memory opies that an be2



avoided by generating ode for the omputation statement for some ombinationsof possible soures diretly, trading ode size for eÆieny.For non-aÆne onditions, additional data strutures beome neessary tomanage the information of whih loop iteration performs the last write to a er-tain original array ell. Cohen [Coh99℄ o�ers a method for handling these aessesand also addresses optimization issues for shared memory; in the distributedmemory setting, however, generation of eÆient management ode beomes moreompliated, sine the information has to be propagated to all proessors.A general approah for ommuniation generation that an also be used tovetorize messages for aÆne index expressions is desribed by Coelho [ACKI95℄:send and reeive sets are omputed, based on the meet of the data owned bya given sending proessor with the read aesses of the other proessors { allgiven by aÆne onstraints. The orresponding array index set is then sannedto pak the data into a bu�er; an approah that has also been taken by thedHPF ompiler [AMC98℄. In a �rst attempt to evaluate this generalized messagevetorization using portable tehniques, we implemented HPF LOCAL routines forpaking and sending data needed on a remote proessor and opying loal datato the orresponding array produed by single-assignment onversion. However,our �rst performane results with this ompiler-independent approah were notenouraging due to very high overhead in loop ontrol and memory opies.Communiation generation may also be simpli�ed by ommuniating a su-perset of the data needed. We are urrently examining this option. Anotherpoint of improvement that we are urrently onsidering is to reompute dataloally instead of reating ommuniation, if the ost of reomputing (and theommuniation for this reomputation) is smaller than the ost for the straight-forward ommuniation. Of ourse, this sheme annot be used to implementpurely pipelined omputation, but may be useful in a ontext where overlap-ping of omputation with ommuniation (see below) and/or ommuniation ofa superset of data an be used to improve overall performane.Overlapping of ommuniation with omputation is also an important opti-mization tehnique. Here, it may be useful to �ll the temporaries that implementthe soures of a read aess diretly after omputing the orresponding value.Data transfers needed for these statements may then be done using non-blokingommuniation, and the operations, for whih the omputations at a given timestep must wait, are given diretly by an aÆne funtion. Although our preliminarytests did not yield positive results, we are still pursuing this tehnique.A further issue is the size and performane of the ode generated by a poly-hedron san. Quiller�e and Rajopadhye [QR00℄ introdue a sanning method thatseparates the polyhedra to be sanned suh that unneessary IF statements in-side a loop { whih ause muh run-time overhead { are ompletely removed.Although this method still yields very large ode in the worst ase, it allows totrade between performane and ode size by adjusting the dimension in whih theode separation should start, similar to the Omega ode generator [KPR94℄. So,the question is: whih separation depth should be used for whih statements? Apratial heuristis may be to separate the loops surrounding omputation state-3



ments on the �rst level, san the loops implementing �-funtions separately, andrepliate these loop nests at the beginning of time loops.3 ConlusionsWe have learned that straightforward output of general skewed loop nests leadsto very ineÆient ode. This ode an be optimized by onverting to SA formand leveraging elaborate sanning methods. Yet, both of these methods also havedrawbaks that need to be weighed against their bene�ts. There is still room leftfor optimization by tuning the variable fators of these tehniques. Code size andoverhead due to ompliated ontrol strutures have to be onsidered arefully.Aknowledgements This work is being supported by the DFG through projetLooPo/HPF.Referenes[ACKI95℄ C. Anourt, F. Coelho, R. Keryell, and F. Irigoin. A linear algebra frame-work for stati HPF ode distribution. Tehnial Report A-278, ENSMP-CRI, November 1995.[AMC98℄ V. Adve and J. Mellor-Crummey. Using integer sets for data-parallel programanalysis and optimization. ACM SIGPLAN Noties, 33(5), May 1998.[Coh99℄ A. Cohen. Program Analysis and Transformation: From the Polytope Modelto Formal Languages. PhD thesis, Laboratoire PRiSM, Universit�e de Ver-sailles, Deember 1999.[Col94℄ J.-F. Collard. Code generation in automati parallelizers. In C. Girault,editor, Pro. of the Int. Conf. on Appliations in Parallel and DistributedComputing, IFIP W.G 10.3, Caraas, Venezuela, April 1994. North Holland.[Fea91℄ P. Feautrier. Dataow analysis of array and salar referenes. Int. J. ParallelProgramming, 20(1):23{53, February 1991.[Fea96℄ P. Feautrier. Automati parallelization in the polytope model. In G.-R.Perrin and A. Darte, editors, The Data Parallel Programming Model, LNCS1132, pages 79{103. Springer-Verlag, 1996.[GLW98℄ M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytopemodel. In Pro. Int. Conf. on Parallel Arhitetures and Compilation Teh-niques (PACT'98), pages 106{111. IEEE Computer Soiety Press, 1998.[Hig97℄ High Performane Fortran Forum. HPF Language Spei�ation, 1997.[KPR94℄ W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings.Tehnial Report 3317, Dept. of Computer Siene, Univ. of Maryland, 1994.[Len93℄ C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor,CONCUR'93, LNCS 715, pages 398{416. Springer-Verlag, 1993.[LF98℄ V. Lefebvre and P. Feautrier. Automati storage management for parallelprograms. Parallel Computing, 24(2):649{671, 1998.[PD96℄ G.-R. Perrin and A. Darte, editors. The Data Parallel Programming Model,LNCS 1132. Springer-Verlag, 1996.[QR00℄ F. Quiller�e and S. Rajopadhye. Code generation for automati paralelizationin the polyhedral model. Int. J. Parallel Programming, 28(5), 2000. toappear.
4


