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Abstract. Writing correct and efficient programs for parallel comput-
ers remains a challenging task, even after some decades of research in
this area. One way to generate parallel programs is to write sequential
programs and let the compiler handle the details of extracting paral-
lelism. LooPo is an automatic parallelizer that extracts parallelism from
sequential loop nests by transformations in the polyhedron model. The
generation of code from these transformed programs is an important
step. We report on problems met during code generation for HPF, and
existing methods that can be used to reduce some of these problems.

1 Introduction

Writing correct and efficient programs for parallel computers is still a challenging
task, even after several decades of research in this area. Basically, there are
two major approaches: one is to develop parallel programming paradigms and
languages which try to simplify the development of parallel programs (e.g., data-
parallel programming [PD96] and HPF [Hig97]), the other is to hide all parallelism
from the programmer and let an automatically parallelizing compiler do the job.

Parallel programming paradigms have the advantage that they tend to come
with a straightforward compilation strategy. Optimizations are mostly performed
based on a textual analysis of the code. This approach can yield good results for
appropriately written programs. Modern HPF compilers are also able to detect
parallelism automatically based on their code analysis.

Automatic parallelization, on the other hand, often uses an abstract mathe-
matical model to represent operations and dependences between them. Transfor-
mations are then done in that model. A crucial step is the generation of actual
code from the abstract description.

Because of its generality, we use the polyhedron model [Fea96,Len93] for par-
allelization. Parallel execution is then defined by an affine space-time mapping
that assigns (virtual) processor and time coordinates to each iteration. Our goal
is then to feed the resulting loop nest with explicit parallel directives to an HPF
compiler. The problem here is that transformations in the polyhedron model can,
in general, lead to code that cannot be handled efficiently by the HPF compiler.
In the following section, we point to some key problems that occur during this
phase.



2 Problems and Solutions

The first step in the generation of loop programs from a set of affine conditions
is the scanning of the index space; several methods have been proposed for this
task [KPR94,GLW98,QR00]. However, the resulting program, may contain array
accesses that cannot be handled efficiently by an HPF compiler.

This can be partly avoided by converting to single assignment (SA) form.
This transformation [Fea91,Coh99] is often used to increase the amount of con-
currency that can be exploited by the compiler (since, in this form, only true
dependences have to be preserved). Converting to SA form after loop skewing
— which is proposed by Collard in [Col94] — yields relatively simple index func-
tions: index functions on the left-hand side of an assignment are given by the
surrounding loop indices, and index functions on the right-hand side (RHS) are
simplified because uniform dependences lead to simple numerical offsets and,
thus, to simple shifts that can be detected and handled well by HPF compilers.

However, there are three points that cause new problems:

1. SA form in its simple form is extremely memory-consuming.

2. Conversion to SA form may lead to the introduction of so-called ¢-functions
that are used to reconstruct the flow of data.

3. Array occurrences on the RHS of a statement may still be too complex for
the HPF compiler in the case of non-uniform dependences, which may again
lead to serialized load communications.

The first point is addressed by Lefebvre and Feautrier [LF98|. Basically, they
introduce modulo operators in array subscripts that cut down the size of the
array introduced by SA conversion to the length of the longest dependence for a
given write access. The resulting arrays are then partially renamed, using a graph
coloring algorithm with an interference relation (write accesses may conflict for
the same read) as edge relation. Modulo operators are very hard to analyze, but
introducing them for array dimensions that correspond to loops that enumerate
time steps (in which the array is not distributed) may still work, while spatial
array dimensions should remain without modulo operators. In the distributed
memory setting, this optimization should generally not be applied directly, since
this would result in some processors owning the data read and written by others.
The overall memory consumption may be smaller than that of the original array
but, on the other hand, buffers and communication statements for non-local data
have to be introduced. One solution is to produce a tiled program and not use
the modulo operator in distributed dimensions.

¢-functions may be necessary in SA form due to several possible sources
of a single read since, in SA form, each statement writes to a separate, newly
introduced array. ¢-functions select a specific source for a certain access; thus,
their function is similar to the 7-operator of C. In the case of selections based on
affine conditions, ¢-functions can be implemented by copy operations executed
for the corresponding part of the index, which can be scanned by standard
methods. Yet, even this implementation introduces memory copies that can be



avoided by generating code for the computation statement for some combinations
of possible sources directly, trading code size for efficiency.

For non-affine conditions, additional data structures become necessary to
manage the information of which loop iteration performs the last write to a cer-
tain original array cell. Cohen [Coh99] offers a method for handling these accesses
and also addresses optimization issues for shared memory; in the distributed
memory setting, however, generation of efficient management code becomes more
complicated, since the information has to be propagated to all processors.

A general approach for communication generation that can also be used to
vectorize messages for affine index expressions is described by Coelho [ACKI95]:
send and receive sets are computed, based on the meet of the data owned by
a given sending processor with the read accesses of the other processors — all
given by affine constraints. The corresponding array index set is then scanned
to pack the data into a buffer; an approach that has also been taken by the
dHPF compiler [AMC98]. In a first attempt to evaluate this generalized message
vectorization using portable techniques, we implemented HPF_LOCAL routines for
packing and sending data needed on a remote processor and copying local data
to the corresponding array produced by single-assignment conversion. However,
our first performance results with this compiler-independent approach were not
encouraging due to very high overhead in loop control and memory copies.

Communication generation may also be simplified by communicating a su-
perset of the data needed. We are currently examining this option. Another
point of improvement that we are currently considering is to recompute data
locally instead of creating communication, if the cost of recomputing (and the
communication for this recomputation) is smaller than the cost for the straight-
forward communication. Of course, this scheme cannot be used to implement
purely pipelined computation, but may be useful in a context where overlap-
ping of computation with communication (see below) and/or communication of
a superset of data can be used to improve overall performance.

Overlapping of communication with computation is also an important opti-
mization technique. Here, it may be useful to fill the temporaries that implement
the sources of a read access directly after computing the corresponding value.
Data transfers needed for these statements may then be done using non-blocking
communication, and the operations, for which the computations at a given time
step must wait, are given directly by an affine function. Although our preliminary
tests did not yield positive results, we are still pursuing this technique.

A further issue is the size and performance of the code generated by a poly-
hedron scan. Quilleré and Rajopadhye [QRO00] introduce a scanning method that
separates the polyhedra to be scanned such that unnecessary IF statements in-
side a loop — which cause much run-time overhead — are completely removed.
Although this method still yields very large code in the worst case, it allows to
trade between performance and code size by adjusting the dimension in which the
code separation should start, similar to the Omega code generator [KPR94]. So,
the question is: which separation depth should be used for which statements? A
practical heuristics may be to separate the loops surrounding computation state-



ments on the first level, scan the loops implementing ¢-functions separately, and
replicate these loop nests at the beginning of time loops.

3 Conclusions

We have learned that straightforward output of general skewed loop nests leads
to very inefficient code. This code can be optimized by converting to SA form
and leveraging elaborate scanning methods. Yet, both of these methods also have
drawbacks that need to be weighed against their benefits. There is still room left
for optimization by tuning the variable factors of these techniques. Code size and
overhead due to complicated control structures have to be considered carefully.
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