
Issues of the Automati
 Generation of HPF LoopPrograms
Peter Faber, Martin Griebl, and Christian LengauerFakult�at f�ur Mathematik und InformatikUniversit�at Passau, D{94030 Passau, Germanyemail: ffaber,griebl,lengauerg�fmi.uni-passau.de

Abstra
t. Writing 
orre
t and eÆ
ient programs for parallel 
omput-ers remains a 
hallenging task, even after some de
ades of resear
h inthis area. One way to generate parallel programs is to write sequentialprograms and let the 
ompiler handle the details of extra
ting paral-lelism. LooPo is an automati
 parallelizer that extra
ts parallelism fromsequential loop nests by transformations in the polyhedron model. Thegeneration of 
ode from these transformed programs is an importantstep. We report on problems met during 
ode generation for HPF, andexisting methods that 
an be used to redu
e some of these problems.1 Introdu
tionWriting 
orre
t and eÆ
ient programs for parallel 
omputers is still a 
hallengingtask, even after several de
ades of resear
h in this area. Basi
ally, there aretwo major approa
hes: one is to develop parallel programming paradigms andlanguages whi
h try to simplify the development of parallel programs (e.g., data-parallel programming [PD96℄ and HPF [Hig97℄), the other is to hide all parallelismfrom the programmer and let an automati
ally parallelizing 
ompiler do the job.Parallel programming paradigms have the advantage that they tend to 
omewith a straightforward 
ompilation strategy. Optimizations are mostly performedbased on a textual analysis of the 
ode. This approa
h 
an yield good results forappropriately written programs. Modern HPF 
ompilers are also able to dete
tparallelism automati
ally based on their 
ode analysis.Automati
 parallelization, on the other hand, often uses an abstra
t mathe-mati
al model to represent operations and dependen
es between them. Transfor-mations are then done in that model. A 
ru
ial step is the generation of a
tual
ode from the abstra
t des
ription.Be
ause of its generality, we use the polyhedron model [Fea96,Len93℄ for par-allelization. Parallel exe
ution is then de�ned by an aÆne spa
e-time mappingthat assigns (virtual) pro
essor and time 
oordinates to ea
h iteration. Our goalis then to feed the resulting loop nest with expli
it parallel dire
tives to an HPF
ompiler. The problem here is that transformations in the polyhedron model 
an,in general, lead to 
ode that 
annot be handled eÆ
iently by the HPF 
ompiler.In the following se
tion, we point to some key problems that o

ur during thisphase.



2 Problems and SolutionsThe �rst step in the generation of loop programs from a set of aÆne 
onditionsis the s
anning of the index spa
e; several methods have been proposed for thistask [KPR94,GLW98,QR00℄. However, the resulting program, may 
ontain arraya

esses that 
annot be handled eÆ
iently by an HPF 
ompiler.This 
an be partly avoided by 
onverting to single assignment (SA) form.This transformation [Fea91,Coh99℄ is often used to in
rease the amount of 
on-
urren
y that 
an be exploited by the 
ompiler (sin
e, in this form, only truedependen
es have to be preserved). Converting to SA form after loop skewing{ whi
h is proposed by Collard in [Col94℄ { yields relatively simple index fun
-tions: index fun
tions on the left-hand side of an assignment are given by thesurrounding loop indi
es, and index fun
tions on the right-hand side (RHS) aresimpli�ed be
ause uniform dependen
es lead to simple numeri
al o�sets and,thus, to simple shifts that 
an be dete
ted and handled well by HPF 
ompilers.However, there are three points that 
ause new problems:1. SA form in its simple form is extremely memory-
onsuming.2. Conversion to SA form may lead to the introdu
tion of so-
alled �-fun
tionsthat are used to re
onstru
t the 
ow of data.3. Array o

urren
es on the RHS of a statement may still be too 
omplex forthe HPF 
ompiler in the 
ase of non-uniform dependen
es, whi
h may againlead to serialized load 
ommuni
ations.The �rst point is addressed by Lefebvre and Feautrier [LF98℄. Basi
ally, theyintrodu
e modulo operators in array subs
ripts that 
ut down the size of thearray introdu
ed by SA 
onversion to the length of the longest dependen
e for agiven write a

ess. The resulting arrays are then partially renamed, using a graph
oloring algorithm with an interferen
e relation (write a

esses may 
on
i
t forthe same read) as edge relation. Modulo operators are very hard to analyze, butintrodu
ing them for array dimensions that 
orrespond to loops that enumeratetime steps (in whi
h the array is not distributed) may still work, while spatialarray dimensions should remain without modulo operators. In the distributedmemory setting, this optimization should generally not be applied dire
tly, sin
ethis would result in some pro
essors owning the data read and written by others.The overall memory 
onsumption may be smaller than that of the original arraybut, on the other hand, bu�ers and 
ommuni
ation statements for non-lo
al datahave to be introdu
ed. One solution is to produ
e a tiled program and not usethe modulo operator in distributed dimensions.�-fun
tions may be ne
essary in SA form due to several possible sour
esof a single read sin
e, in SA form, ea
h statement writes to a separate, newlyintrodu
ed array. �-fun
tions sele
t a spe
i�
 sour
e for a 
ertain a

ess; thus,their fun
tion is similar to the ?-operator of C. In the 
ase of sele
tions based onaÆne 
onditions, �-fun
tions 
an be implemented by 
opy operations exe
utedfor the 
orresponding part of the index, whi
h 
an be s
anned by standardmethods. Yet, even this implementation introdu
es memory 
opies that 
an be2



avoided by generating 
ode for the 
omputation statement for some 
ombinationsof possible sour
es dire
tly, trading 
ode size for eÆ
ien
y.For non-aÆne 
onditions, additional data stru
tures be
ome ne
essary tomanage the information of whi
h loop iteration performs the last write to a 
er-tain original array 
ell. Cohen [Coh99℄ o�ers a method for handling these a

essesand also addresses optimization issues for shared memory; in the distributedmemory setting, however, generation of eÆ
ient management 
ode be
omes more
ompli
ated, sin
e the information has to be propagated to all pro
essors.A general approa
h for 
ommuni
ation generation that 
an also be used tove
torize messages for aÆne index expressions is des
ribed by Coelho [ACKI95℄:send and re
eive sets are 
omputed, based on the meet of the data owned bya given sending pro
essor with the read a

esses of the other pro
essors { allgiven by aÆne 
onstraints. The 
orresponding array index set is then s
annedto pa
k the data into a bu�er; an approa
h that has also been taken by thedHPF 
ompiler [AMC98℄. In a �rst attempt to evaluate this generalized messageve
torization using portable te
hniques, we implemented HPF LOCAL routines forpa
king and sending data needed on a remote pro
essor and 
opying lo
al datato the 
orresponding array produ
ed by single-assignment 
onversion. However,our �rst performan
e results with this 
ompiler-independent approa
h were noten
ouraging due to very high overhead in loop 
ontrol and memory 
opies.Communi
ation generation may also be simpli�ed by 
ommuni
ating a su-perset of the data needed. We are 
urrently examining this option. Anotherpoint of improvement that we are 
urrently 
onsidering is to re
ompute datalo
ally instead of 
reating 
ommuni
ation, if the 
ost of re
omputing (and the
ommuni
ation for this re
omputation) is smaller than the 
ost for the straight-forward 
ommuni
ation. Of 
ourse, this s
heme 
annot be used to implementpurely pipelined 
omputation, but may be useful in a 
ontext where overlap-ping of 
omputation with 
ommuni
ation (see below) and/or 
ommuni
ation ofa superset of data 
an be used to improve overall performan
e.Overlapping of 
ommuni
ation with 
omputation is also an important opti-mization te
hnique. Here, it may be useful to �ll the temporaries that implementthe sour
es of a read a

ess dire
tly after 
omputing the 
orresponding value.Data transfers needed for these statements may then be done using non-blo
king
ommuni
ation, and the operations, for whi
h the 
omputations at a given timestep must wait, are given dire
tly by an aÆne fun
tion. Although our preliminarytests did not yield positive results, we are still pursuing this te
hnique.A further issue is the size and performan
e of the 
ode generated by a poly-hedron s
an. Quiller�e and Rajopadhye [QR00℄ introdu
e a s
anning method thatseparates the polyhedra to be s
anned su
h that unne
essary IF statements in-side a loop { whi
h 
ause mu
h run-time overhead { are 
ompletely removed.Although this method still yields very large 
ode in the worst 
ase, it allows totrade between performan
e and 
ode size by adjusting the dimension in whi
h the
ode separation should start, similar to the Omega 
ode generator [KPR94℄. So,the question is: whi
h separation depth should be used for whi
h statements? Apra
ti
al heuristi
s may be to separate the loops surrounding 
omputation state-3



ments on the �rst level, s
an the loops implementing �-fun
tions separately, andrepli
ate these loop nests at the beginning of time loops.3 Con
lusionsWe have learned that straightforward output of general skewed loop nests leadsto very ineÆ
ient 
ode. This 
ode 
an be optimized by 
onverting to SA formand leveraging elaborate s
anning methods. Yet, both of these methods also havedrawba
ks that need to be weighed against their bene�ts. There is still room leftfor optimization by tuning the variable fa
tors of these te
hniques. Code size andoverhead due to 
ompli
ated 
ontrol stru
tures have to be 
onsidered 
arefully.A
knowledgements This work is being supported by the DFG through proje
tLooPo/HPF.Referen
es[ACKI95℄ C. An
ourt, F. Coelho, R. Keryell, and F. Irigoin. A linear algebra frame-work for stati
 HPF 
ode distribution. Te
hni
al Report A-278, ENSMP-CRI, November 1995.[AMC98℄ V. Adve and J. Mellor-Crummey. Using integer sets for data-parallel programanalysis and optimization. ACM SIGPLAN Noti
es, 33(5), May 1998.[Coh99℄ A. Cohen. Program Analysis and Transformation: From the Polytope Modelto Formal Languages. PhD thesis, Laboratoire PRiSM, Universit�e de Ver-sailles, De
ember 1999.[Col94℄ J.-F. Collard. Code generation in automati
 parallelizers. In C. Girault,editor, Pro
. of the Int. Conf. on Appli
ations in Parallel and DistributedComputing, IFIP W.G 10.3, Cara
as, Venezuela, April 1994. North Holland.[Fea91℄ P. Feautrier. Data
ow analysis of array and s
alar referen
es. Int. J. ParallelProgramming, 20(1):23{53, February 1991.[Fea96℄ P. Feautrier. Automati
 parallelization in the polytope model. In G.-R.Perrin and A. Darte, editors, The Data Parallel Programming Model, LNCS1132, pages 79{103. Springer-Verlag, 1996.[GLW98℄ M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytopemodel. In Pro
. Int. Conf. on Parallel Ar
hite
tures and Compilation Te
h-niques (PACT'98), pages 106{111. IEEE Computer So
iety Press, 1998.[Hig97℄ High Performan
e Fortran Forum. HPF Language Spe
i�
ation, 1997.[KPR94℄ W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings.Te
hni
al Report 3317, Dept. of Computer S
ien
e, Univ. of Maryland, 1994.[Len93℄ C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor,CONCUR'93, LNCS 715, pages 398{416. Springer-Verlag, 1993.[LF98℄ V. Lefebvre and P. Feautrier. Automati
 storage management for parallelprograms. Parallel Computing, 24(2):649{671, 1998.[PD96℄ G.-R. Perrin and A. Darte, editors. The Data Parallel Programming Model,LNCS 1132. Springer-Verlag, 1996.[QR00℄ F. Quiller�e and S. Rajopadhye. Code generation for automati
 paralelizationin the polyhedral model. Int. J. Parallel Programming, 28(5), 2000. toappear.
4


