
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-013-2009

Combining Static and Dynamic Feature Binding in
Software Product Lines

M. Rosenmüller, N. Siegmund, G. Saake, S. Apel

Arbeitsgruppe Datenbanken

Impressum (§ 5 TMG):
Herausgeber:
Otto-von-Guericke-Universität Magdeburg

 Fakultät für Informatik
 Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120

 39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage:

Redaktionsschluss:

Herstellung: Dezernat Allgemeine Angelegenheiten,
 Sachgebiet Reproduktion

Bezug: Universitätsbibliothek/Hochschulschriften- und

Tauschstelle

Marko Rosenmüller

rosenmue@ovgu.de

52

10.09.2009

Combining Static and Dynamic Feature Binding in
Software Product Lines

Marko Rosenmüller, Norbert Siegmund,
Gunter Saake

School of Computer Science
University of Magdeburg, Germany

{rosenmue,nsiegmun,saake}@ovgu.de

Sven Apel
Dept. of Informatics and Mathematics

University of Passau, Germany
apel@uni-passau.de

ABSTRACT
Software product lines (SPL) are used to build similar pro-
grams from a single code base. Programs of an SPL can be
distinguished in terms of features, which represent units of
program functionality that satisfy requirements. Features of
an SPL can be bound either statically at program compile
time or dynamically at runtime. Both binding times have
advantages and disadvantages, as we will explain. However,
contemporary techniques and tools for implementing SPLs
do not allow a programmer to flexibly choose the binding
time per feature. We present an approach that integrates
static and dynamic feature binding. It allows a program-
mer to implement an SPL once and to decide later which
features are statically bound and which dynamically. We
provide a compiler and report from experiences of applying
our approach to two non-trivial product lines. We analyze
resource consumption of the SPLs and provide a guideline
for optimizing resource consumption.

1. INTRODUCTION
Software product line (SPL) engineering has been applied

successfully to many domains to generate tailor-made pro-
grams.1 An SPL is a family of similar programs that can be
distinguished in terms of features. A feature is a unit of pro-
gram functionality that satisfies a requirement, implements
a design decision, and provides a potential configuration op-
tion [2]. Programs of an SPL are generated by composing
modules that implement features. Depending on the un-
derlying composition mechanism, features are either bound
statically (e.g., at compilation time or in a preprocessing
step) or dynamically (e.g., when loading a program or at
runtime). Both binding times have benefits: static bind-
ing facilitates customizability without any cost at runtime
whereas dynamic binding allows a programmer to flexibly
select and bind features at runtime, however, at the cost of
performance and memory consumption [1, 12]. We argue
that this tradeoff between static customizability and flexi-
bility due to dynamic binding has to be considered in SPL
engineering.

A well known example for static composition are prepro-
cessors (e.g., the C/C++ preprocessor), which enable fine-
grained customizability and code optimizations. When com-
posing features statically, however, often only a subset of
the features is used at the same time and some features
might not be used at all. The reason is that we often cannot
decide before deployment or runtime whether a feature is

1http://www.sei.cmu.edu/productlines/plp hof.html

needed or not. For example, the required functionality of a
database management system (DBMS), deployed on a smart-
phone or a PDA, depends on the requirements of the appli-
cations that use the DBMS which may change over time. A
Web browser that stores encrypted passwords in a database
requires a DBMS with a data encryption feature. This fea-
ture is needed only when the Web browser reads or writes
passwords, which is typically not the case most of the time.
Since power supply, available working memory, and comput-
ing power are limited on mobile devices, such a functional
overhead is not acceptable.

Dynamic binding helps avoiding this overhead by load-
ing features only when they are needed. Additionally, dy-
namic binding allows others to independently develop and
deploy alternative implementations of features or program
extensions, e.g., by using plugins. Dynamic binding even
provides means for loading functionality on demand from
a network. On the other hand, it increases memory con-
sumption and degrades performance especially when many
small extensions are used [12]. This compositional overhead
can be avoided using static binding if the required features
are known before deployment. For example, adapters to the
underlying operation system do not need to be bound dy-
namically.

In previous work, we have shown that we can decide af-
ter after development of an SPL whether static or dynamic
binding should be used [27]. However, all features have to
be bound either statically or dynamically and it is not pos-
sible to use a different binding time for each feature. Hence,
we have to choose between customizability at runtime and
resource optimizations due to static composition. In this pa-
per, we present an approach that integrates static and dy-
namic binding seamlessly. In contrast to other approaches,
we can choose the binding time of an SPL per feature af-
ter development and generate dynamic binding units, which
consist of a user defined set of features. Dynamic binding
units are composed at runtime depending on the environ-
ment and requirements of the running application. Due to
static composition of the inner features of a binding unit,
we achieve fine-grained customizability and performance op-
timizations. At the same time, the approach provides high
flexibility due to dynamic composition of binding units.

The contributions of this paper are (i) an approach for
integrating static and dynamic feature binding in SPLs that
allows to flexibly switch the binding time per feature, (ii) an
evaluation of the approach regarding customizability and re-
source consumption, and (iii) a guideline for building bind-
ing units to optimize resource consumption of an SPL. Us-

CORE

TRANSACTION

QUERYENGINE

TxnDB Query
Processor

Figure 1: Decomposition of classes (vertical bars)
along the features (horizontal bars) in a DBMS.

1 //Core implementation
2 class DB {
3 bool Put(Key& key , Value& val) { ... }
4 };

5 //feature QueryEngine
6 refines class DB {
7 QueryProcessor queryProc;
8 bool ProcessQuery(String& query) {
9 return queryProc.Execute(String& query);

10 }
11 };

12 //feature Transaction
13 refines class DB {
14 Txn* BeginTransaction () { ... }
15 bool Put(Key& key , Value& val) {
16 ... //transaction spec i f i c code
17 return super::Put(key ,val);
18 };
19 };

Figure 2: FeatureC++ source code of class DB.

ing code transformations and a generated infrastructure for
automating dynamic composition, features can be imple-
mented with the same mechanism independent of their bind-
ing time. This simplifies development and reduces imple-
mentation effort compared to existing approaches. In our
evaluation, we present experiences and insights from apply-
ing the approach to two non-trivial product lines in order
to analyze the impact of dynamic binding on resource con-
sumption. Based on the results, we analyze which features
should be composed into a dynamic binding unit. More-
over, we show how resource consumption of an SPL can be
optimized by changing their binding units.

2. FEATURE-ORIENTED PROGRAMMING
In this Section, we introduce feature-oriented program-

ming (FOP), a paradigm for implementing SPLs [24, 8]
which we use as the basis for our approach. FOP treats the
features of an SPL as fundamental elements of the develop-
ment process. It allows programmers to implement features
as increments in functionality [8]. A user creates a concrete
program from an SPL by selecting a set of features that sat-
isfy her requirements. The corresponding feature modules,
i.e., the implementation units of features, are composed to
generate a tailor-made program.

In FOP, a feature module consists of classes and class
fragments as shown in Figure 1 for a DBMS product line.
The DBMS consists of a Core implementation and two fea-
tures QueryEngine and Transaction, displayed as ver-
tical bars. Class DB provides the interface of the DBMS
and classes Txn and QueryProcessor are used to implement

transactions and query processing. The two features cut
across the implementation of multiple classes shown as white
boxes. These class refinements implement extensions of a
class needed for a particular feature. For example, the basic
implementation of class DB is provided in the Core module
and extended in features QueryEngine and Transaction
(depicted with arrows).

We implemented our approach for combining static and
dynamic feature binding using FeatureC++,2 an FOP ex-
tension for the C++ programming language [4]. In Figure 2,
we depict an excerpt of the FeatureC++ source code of class
DB (cf. Fig. 1). Method Put is used to store data provided
as key-value pairs. Feature QueryEngine adds a new field
queryProc and a new method ProcessQuery for processing
SQL queries. Feature Transaction adds a new method
and refines method Put (Line 15). Transaction specific code
is added to the beginning of Put (Line 16) and is executed
before invoking the refined method using the keyword super

(Line 17).

3. STATIC AND DYNAMIC FEATURE
BINDING

Based on a feature-oriented DBMS implementation as
shown in Figure 1, we can generate different DBMS variants
by composing a varying set of feature modules. For exam-
ple, we can derive a simple DBMS only consisting of the
Core implementation or variants that include the features
QueryEngine and/or Transaction by combining the ac-
cording modules. The composition of feature modules can
either be done statically or dynamically.

Static composition means to combine the code of multi-
ple features into one executable program and dynamic com-
position means to apply them in a running program or at
load-time. There are different possibilities to categorize the
binding time of features in SPLs [13]. In this paper, we refer
to static binding if a feature is bound in an application before
load-time, e.g., at compilation time, and dynamic binding if
it is applied at load-time or after loading an application. In
prior work on FeatureC++, we have shown that features can
be composed statically or dynamically, using the same code
base [27]. In the following, we introduce the code transfor-
mations used in FeatureC++ to support different binding
times. Nevertheless, the presented concepts are language
independent and can be applied to other programming lan-
guages as well. A more detailed overview of FeatureC++
can be found in [4, 27].

3.1 Static Binding
In order to support static feature binding, the classes of

an SPL have to be composed according to the features se-
lected in the configuration process. Since FeatureC++ is
based on a source-to-source transformation to C++, the en-
tire code of the base implementation of a FeatureC++ class
and their refinements of all selected features is composed
into one compound C++ class. This class consists of:
• the union of all member variables,
• one method for each method refinement,
• one constructor and destructor for each different con-

structor / destructor definition, and
• one method for each constructor / destructor refine-

ment.

2http://fosd.de/fcc/

1 class DB {
2 bool Put_Core(Key& key , Value& val) { ... }
3
4 Txn* BeginTransaction () { ... }
5
6 bool Put(Key& key , Value& val) {
7 ... //Transaction spec i f i c code
8 return Put_Core(key ,val);
9 };

10 };

Figure 3: Generated C++ source code of class DB us-
ing static binding of Core functionality and feature
Transaction.

+Put()

DB_Core
+ProcessQuery()

DB_QueryEngine

+Put()
+ProcessQuery()
+BeginTransaction()

DB

-super

+Put()
+ProcessQuery()
+BeginTransaction()

DB_Decorator

DB

+Put()
+BeginTransaction()

DB_Transaction

Core QueryEngine Transaction

Figure 4: Class diagram of the generated decora-
tor hierarchy for dynamic binding of class DB using
features QueryEngine and Transaction.

In Figure 3, we depict the generated C++ code that
corresponds to the FeatureC++ code of class DB in Fig-
ure 2. This generated code is shown only for illustration
and does not have to be read by a programmer that uses
FeatureC++. The code corresponds to a composition of
the Core implementation with feature Transaction. All
methods and fields except the code of feature QueryEngine
are composed into one C++ class. The base implementation
of method Put (feature Core) was renamed to Put_Core

(Line 2) to provide a unique name for every transformed
method. It is called from its refinement in Line 8. Us-
ing this kind of transformation, a C++ compiler can eas-
ily inline method refinements since they are composed into
the same file. For example, method Put_Core is inlined in
method Put and does not introduce any overhead for method
calls. Based on such optimizations, we have shown that Fea-
tureC++ provides the same performance as code that does
not provide such fine-grained customizability [25].

3.2 Dynamic Binding
In order to support dynamic binding of features from the

same source code, the classes of an application have to be
modified dynamically according to the active features. For
example, class DB (cf. Fig. 2) has to be extended dynam-
ically with code of feature Transaction when activating
the transaction management of the DBMS. For that rea-
son, we extended the FeatureC++ code generation process
to transform the refinement chain of a class into a delega-
tion hierarchy [27]. Similar to the Delegation Layers ap-
proach [23], we use the decorator pattern [14] to compose
classes dynamically. Each class thus consists of a decorator
for each refinement and a class is combined dynamically by
composing the decorators.

For illustration, we depict the class diagram of the trans-

super : DB
 : DB_Core

super : DB
 : DB_Transaction

super : DB
 : DB_Core

super : DB
 : DB_QueryEngine

super : DB
 : DB_Transaction

obj1

obj2

Figure 5: Object diagrams of instances of class DB

for two different feature selections.

formed class DB in Figure 4. The class is composed from its
refinements, which have been transformed into decorators
(DB_Core, DB_QueryEngine, DB_Transaction), each belong-
ing to a separate feature. The generated decorator inter-
face (class DB) is used to reference dynamically composed
classes within the transformed code and also from exter-
nal source code. The abstract decorator class DB_Decorator
maintains a reference to the predecessor refinement (super
reference) and forwards operations that are not implemented
by a concrete decorator. The implementation of methods
and method refinements are provided by the concrete deco-
rators. For example, method Put (Line 3 in Figure 2) and
its refinement in feature Transaction (Line 15) are trans-
formed into methods of concrete decorators DB_Core and
DB_Transaction (cf. Fig. 4). Method refinements invoke re-
fined methods by using the super reference of the decorator
class.

Feature Classes. When dynamically creating an SPL in-
stance, we have to compose the selected features. We sup-
port this feature instantiation by using classes to repre-
sent features. These feature classes are generated in the
code transformation process. Much like ordinary classes
and refinements, the feature classes are also combined using
the decorator pattern. For example, when composing fea-
ture modules Core, QueryEngine, and Transaction, as
shown in Figure 4, there is a feature decorator generated for
each feature, which inherits from an abstract decorator, that
represents an arbitrary feature of the product line. Each in-
stance of a feature decorator maintains a super reference to
the predecessor feature in a composed program.

Class Instantiation. Instantiation of dynamically com-
posed classes means to combine objects of the generated
concrete decorator classes according to the selected features
as depicted in Figure 5. Shown are two different instances
of class DB using the Core implementation as well as fea-
tures QueryEngine and Transaction. Each instantiated
refinement contains a super reference that points to the next
refinement in the chain. The dynamically composed objects
can be used in the same way as an instance of a regular
class and can be modified at runtime by adding or removing
instances of decorators. The refinement chain thus corre-
sponds to a linked list of class fragments. Changing the
configuration of a class corresponds to insertion, exchange,
and deletion of elements of this refinement list.

For class instantiation, the feature decorators provide fac-
tory methods to create instances of ordinary SPL classes
which means creating an instance for each decorator. For
example, a generated method newDB() is used to create an
instance for each decorator of class DB for a specific SPL in-
stance. Class instances are composed from their decorators
within the factory methods of the corresponding features.

Creating an instance of a feature means to simultaneously
apply decorators to all classes the feature refines.

Summary. The presented approach provides a single exten-
sion mechanism, i.e., class and method refinements, which is
independent of the binding time. Hence, a programmer only
has to learn and use a single implementation mechanism and
does not have to provide a different implementation for each
binding time. However, the presented approach only allows
to choose between static and dynamic binding for a whole
SPL and not for single features.

This results in a functional or compositional overhead de-
pending on the chosen binding time for the product line.
Static binding results in a functional overhead when features
are included in a program variant but are not used. Dynamic
binding, on the other hand, provides more flexibility by dy-
namically loading features when required. It thus avoids a
functional overhead and allows to change or extend a pro-
gram after deployment. This is achieved by generated code
(e.g., decorators) and late method binding, which introduces
a compositional overhead in terms of memory consumption
and performance.

4. COMBINING STATIC AND DYNAMIC
BINDING

In order to overcome the limitations of static and dynamic
binding, we combine the code transformations presented
above to allow a programmer to decide for each feature of
an SPL if it has to be bound statically or dynamically.

4.1 Dynamic Binding Units
A feature is typically used in combination with other fea-

tures and thus dynamic binding of single features is usually
not needed but increases resource consumption. An exam-
ple for a DBMS consisting of five feature modules, is shown
on the left side in Figure 6. Usually the transaction man-
agement requires feature Logging, so both features should
be combined into a single unit for dynamic composition.

This results in groups of feature modules that are stat-
ically composed into a single larger dynamic binding unit.
Lee et al. suggest to define dynamic binding units by group-
ing features when planning an SPL and to manually imple-
ment components according to this decision [19]. We au-
tomate this process and generate dynamic binding units as
needed at deployment time by composing multiple features
statically.

Generating Binding Units. Two examples for generating
dynamic binding units are depicted in Figure 6. DB′ and
DB′′ are two transformed product lines (i.e., not concrete
products) that support dynamic composition for different
application scenarios. For DB′, feature modules Core and
B-Tree (an index structure for efficient data retrieval) are
combined into a single binding unit Base. This binding unit
is already a working DBMS. We can compose the features
of Base statically because usually a DBMS requires some
index structure and we can often decide before deployment
which index structures should be used. Similarly, Trans-
action and Logging are composed into a distinct binding
unit Txn. Depending on the application scenario, feature
QueryEngine is composed into another distinct binding
unit QE in DB′ or into binding unit Base in DB′′ when

Running DBMS

DB4

DB3

DB2

DB1

Feature Modules Binding Units

DB'

BASE
CORE

B-TREE

QE

TXN

QUERYENGINE

TRANSACTION

LOGGING

DB''

BASE
CORE

B-TREE

TXNTRANSACTION

LOGGING

QUERYENGINE
DB

CORE

B-TREE

QUERYENGINE

TRANSACTION

LOGGING

BASE
CORE

B-TREE

QEQUERYENGINE

BASE
CORE

B-TREE

BASE
CORE

B-TREE
QUERYENGINE

TXNTRANSACTION

LOGGING

BASE
CORE

B-TREE
QUERYENGINE

TXNTRANSACTION

LOGGING

Figure 6: Two possible static transformations of a
DBMS product line (DB → DB′, DB′′) resulting in
dynamic binding units (BASE, QE, TXN) and ex-
amples of running DBMS (DB1–DB4).

query processing is always required. Based on DB′ and
DB′′ we can create a number of different DBMS variants
(examples DB1–DB4 in Figure 6) by dynamically compos-
ing the binding units according to a given configuration, i.e.,
a list of binding units. Comparing variants DB2 and DB3,
we see that both provide the same functionality but feature
QueryEngine is bound dynamically in DB2 and statically
in DB3.

Feature composition can be formalized by treating fea-
tures as functions that modify other features or a base pro-
gram [8, 5]. The resulting compound module is the source
for a next composition step. In our case, a dynamic bind-
ing unit itself is a compound feature module and is bound
in a dynamic composition process. Hence, dynamic binding
often does not mean binding of single features but dynamic
binding of larger statically composed feature modules.

We can denote composition of features with • and describe
composition of program DB1 as:

Base = BTree • Core (1)

TXN = Logging • Transaction (2)

DB1 = TXN •Base (3)

= (Logging • Transaction) • (BTree • Core) (4)

Equations (1) and (2) represent static compositions result-
ing in dynamic binding units Base and TXN . Equation
(3) represents dynamic composition of these binding units.
Combining static and dynamic composition in that way can
be problematic if the order of composition matters. The rea-
son is that composition of feature modules is not necessar-
ily commutative [5]. For example, if feature Transaction
extends methods of feature Btree, the execution order of
the method extensions might be important. When chang-
ing the two dynamic units from Equations (1) and (2) to
Base = Transaction • Core and Log = Logging • Btree,
dynamic composition results in the composed program

DB = (Logging •Btree) • (Transaction • Core) (5)

which is invalid if Btree and Transaction are not commu-
tative. This has to be considered when mixing static and

Base TXNQE

DB_Base DB_QE

DB

-super

DB_Decorator

DB_TXN

DB_Base

CORE
B-TREE

DB_QE DB_TXN

QUERYENGINE TRANSACTION
LOGGING

DB

Figure 7: Combined static and dynamic composition
of class DB. Generated classes shown as white boxes
within light-gray binding units. Transformed code
shown as gray boxes within classes.

dynamic composition, e.g., using special code transforma-
tions, as we explain in Section 4.3.

4.2 Product Derivation
The process of creating a program from an SPL, i.e., the

product derivation, can be divided into three steps, (i) con-
figuration, (ii) static transformation, and (iii) dynamic com-
position. In the first step, a user selects the potentially
required features and assigns a binding unit to each feature.
In the simplest case, there is only one binding unit.

The subsequent static transformation process generates
dynamic binding units and code for automating dynamic
composition of these units. Features not selected in the
configuration process are not included in any binding unit,
which reduces their binary size. There are two extremes: (1)
a single binding unit contains all selected features resulting
in a pure statically composed program and (2) one binding
unit per feature resulting in pure dynamic composition as
described above (see Sec. 3). Between these extremes we
now support all combinations of static and dynamic binding
using static composition of dynamic binding units.

Dynamic binding units are stored in the binary of an ap-
plication or in extension libraries.3 FeatureC++ supports
dynamic composition of binding units by a composition in-
frastructure which is generated in the static transformation
process. Hence, a programmer does not have to write code
for loading and composing dynamic binding units. See [27]
for details about dynamic composition, verification of a com-
position at runtime, etc.

4.3 Source Code Transformations
The code transformations involved in the combined ap-

proach are a mixture of static and dynamic composition as
already explained. Hence, composing a class from multiple
refinements means to first combine refinements from fea-
tures of the same binding unit and then create decorators for
each binding unit. An example corresponding to the bind-
ing units of DB′ in Figure 6 is shown in Figure 7. Similar
to pure dynamic composition, class DB consists of an inter-
face, an abstract decorator, and three concrete decorators
(cf. Fig. 4). Now, the concrete decorators themselves are al-
ready statically composed classes. Code of the DBMS core
and the refinement of feature B-Tree are merged into one
class DB_Base that is part of binding unit Base (cf. Fig. 6).
The refinement of feature QueryEngine is transformed into
class DB_QE, which is part of binding unit QE. DB_TXN is also
a statically composed class and part of binding unit TXN.
All generated classes are combined using decorators. The
needed code transformation is thus a static composition fol-
lowed by a transformation needed for dynamic composition.

3Currently, we support only Windows DLLs.

1 //Core implementation
2 class DB {
3 bool Put(Key& key , Value& val) { ... }
4 };

5 //feature Logging
6 refines class DB {
7 bool Put(Key& key , Value& val) {
8 ... //logging spec i f i c code
9 return super::Put(key ,val);

10 };
11 };

12 //feature Transaction
13 refines class DB {
14 bool Put(Key& key , Value& val) {
15 ... //transaction spec i f i c code
16 return super::Put(key ,val);
17 };
18 };

Figure 8: FeatureC++ source code of class DB with
method Put that is extended in two features.

Storing SPL Context. Class instantiation in a dynamically
composed program requires to create an object that corre-
sponds to the configuration of an SPL instance. In Fea-
tureC++, we use objects of dynamically composed feature
classes (cf. Sec. 3.2) to represent SPL instances. For ex-
ample, instance DB2 that includes the binding units Base
and QE of DB′ in Figure 6 is dynamically composed from
instances of two feature classes, one for each binding unit.
When creating an object of class DB as shown in Figure 7,
we need to know which SPL instance has to be used. For
that reason, we store SPL references within objects. When
a class is created the reference to the SPL instance is used
for selecting the required concrete decorators. For exam-
ple, when creating an instance of class DB the SPL instance
DB2 defines the binding units (Base and QE) and thus the
configuration of class DB.

For statically composed classes, this information is not
needed because the type of a class is determined statically
and does not change according to a dynamically changing
SPL instance. For example, if class Txn (cf. Fig. 1) is only
part of one binding unit that is statically composed from
features Transaction and Logging (cf. Fig. 6) we do
not need an SPL instance for creating objects of that class
because it is independent of the dynamic feature selection.

Nevertheless, when combining static and dynamic compo-
sition also an object of a purely statically composed class
needs to store a reference to the corresponding SPL in-
stance if it (directly or indirectly) creates instances of other
dynamically composed classes. For example, also a class
QueryEngine, which is composed statically because it is only
part of binding unit QE, has to store a reference to its
SPL instance if it creates objects of dynamically composed
classes.

Commutativity of Method Refinements. When compos-
ing classes, it has to be ensured that the executiuon or-
der of method refinements does not change because they
usually have to be executed in a predefined order. Since
composition is usually not commutative the execution order
would change if static and dynamic composition is mixed.
An example is shown in Figure 8. Method Put of class DB

1 class DB_Base {
2 bool Put_Core(Key& key , Value& val) { ... }
3
4 bool Put_hook(Key& key , Value& val) {
5 return Put_Core(key ,val);
6 }
7
8 bool Put(Key& key , Value& val) {
9 ... //transaction spec i f i c code

10 return Put_hook(key ,val);
11 };
12 };

13 class DB_Logging {
14 bool Put_hook(Key& key , Value& val) {
15 ... //logging spec i f i c code
16 return super->Put_hook(key ,val);
17 };
18 };

Figure 9: Generated C++ code of class DB with a
hook for method refinement.

is extended by features Logging and Transaction. Both
method extensions have to be executed bottom-up: first the
transaction code has to be executed (Line 15) and after-
ward the logging code (Line 8). When statically composing
the Core implementation and feature Transaction into
a single binding unit and feature Logging into a different
binding unit, it results in an invalid program when we dy-
namically compose the resulting binding units. The reason
is that when we dynamically add feature Logging, the code
of method Put defined in Line 7 would be executed first and
the refinement in feature Transaction afterwards.

Commutativity of refinements can be provided by a code
transformation that ensures the correct execution order of
method extensions [3]. For example, we can generate a hook
method Put_hook as shown in the generated code in Fig-
ure 9. The hook is called in Line 10 instead of method
Put_Core. It is overridden by feature Logging to exe-
cute the logging specific code before executing the extended
method (Line 16). If feature logging is not present, the hook
simply calls the refined method, i.e., Put_Core (Line 5).

Summary. When combining static and dynamic composi-
tion, the code transformations of a pure static approach are
used for static composition of binding units. The binding
units are composed using delegation as in a pure dynamic
approach. Due to the combination of static and dynamic
binding, a dynamically bound feature is often statically com-
posed with other features. Dynamic binding thus not nec-
essarily results in generating decorators for the classes of a
feature. A dynamically bound feature might even be trans-
formed using only static composition of its classes and class
refinements with classes of other features of the same bind-
ing unit.

5. EVALUATION
With an evaluation4 of static and dynamic feature bind-

ing in two SPLs, we demonstrate the applicability of our
approach. We analyze the impact of different dynamic bind-
ing units on resource consumption and illustrate the benefits

4For our evaluation, we use an Intel Core 2 system with 2.4
GHz and operating system Windows XP.

optional

Logging
Recovery

QueryEngine

Transaction

FAME-DBMS Storage
Btree

Buffer
Manager

PageReplace

API Put
Remove

Get
Access

Sequential

Encryption DES
AES

SELECT
INSERT
UPDATE

mandatory XOR OR

Binding units: TXN QE CryptoBase Btree

Figure 10: Feature diagram of FAME-DBMS with
different binding units.

of combining static and dynamic binding. In Section 6, we
discuss the results and analyze when features should be com-
posed statically or dynamically and which features should be
combined in a dynamic binding unit.

5.1 Case Studies
Since there are no large SPLs implemented in Fea-

tureC++, we use two product lines for our evaluation, that
have been developed in our working group. The first SPL is
Fame-Dbms, a DBMS product line for use in resource con-
strained environments [25]. The second SPL is NanoMail a
highly customizable mail client.

FAME-DBMS. Fame-Dbms is an embedded DBMS, i.e., it
is embedded into an application and accessed via an API.
It was developed for resource constrained device which is
possible due to static feature binding. We use it to analyze
applicability of the combined approach even though dynamic
binding was initially not intended. In Figure 10, we depict
an extract of the feature model of Fame-Dbms, which is
a hierarchical representation of its features, describing op-
tional features and relations between them. We show only
features that are relevant for our case study and omit fea-
tures that are always statically bound like operating system
related features. In its current version, Fame-Dbms consists
of 56 features with 12400 lines of code.

We compare different variants of Fame-Dbms which use
the same configuration including 44 features but different
binding units (cf. Fig. 10). This allows us to assess the im-
pact of dynamic binding on resource consumption. Binding
unit Base represents a basic DBMS that consists of an API
for storing and retrieving data. Binding unit Txn provides
transactional access to the database. QueryEngine (QE)
is a customizable query engine that supports a subset of SQL
by statically composing only the required SQL features [26].
Exemplary, the query engine supports SELECT-FROM-WHERE

queries. Crypto is a binding unit for data encryption and
decryption. Customization of ciphers is done statically by
choosing the algorithms, e.g., Aes or Des. Finally, binding
unit Btree provides efficient access to data via a B+tree.

NanoMail. We have developed NanoMail as a highly cus-
tomizable mail client SPL with 25 features and 6200 LOC. It
provides different mail applications from a simple MailNotify
application, which only notifies a user if there is unread mail,

ClamAV
...

Pop3
IMAP
SMTP

Notify

Client

Virus

Spam
User

Send

Recv

Console
GUI

List
DB

MailClient

Filter

Storage

Protocol

Debug

UI

Figure 11: Feature diagram of NanoMail. Feature
of a minimal MailNotify application highlighted.

 0

 20

 40

 60

 80

 100

1 (static) 2 (+QE) 3 (+Txn) 4 (+Crypt) 5 (+Btree)

bi
na

ry
 s

iz
e

[K
B

]

of binding units

dynamic binding units
base program

static size

Figure 12: Binary size (base program and dynamic
binding units) for variants of FAME-DBMS with an
increasing number of binding units.

up to a full mail client with mail storage in a database. The
features of NanoMail are shown in Figure 11. Features of the
minimal MailNotify application are highlighted as shaded
boxes. In our evaluation, we compare variants with equal
functionality and varying binding units. For analyzing the
impact of fine-grained dynamic customization, we provide
several mail filters that are used like plugins. A developer
can provide several of those plugins as distinct binding units
or group them into one or more binding units.

5.2 Resource Consumption
In order to analyze resource consumption, we measure

the binary size, used working memory, and performance of
different Fame-Dbms and NanoMail variants and compare
their functional and compositional overhead (cf. Sec. 3).
Our aim is to show when static or dynamic binding should
be preferred and how dynamic binding units affect resource
consumption. In the following, we evaluate both product
lines in detail and analyze factors that influence resource
consumption.

5.2.1 Binary Size.
The binary size of an application is important when stor-

age is limited (e.g., on a PDA) or when loading binaries
in demand. For example, when loading a dynamic binding
unit from the network, its size is highly important. In the
following analysis, we thus compare the impact of dynamic
binding units on binary program size (executable code and
static data).

A comparison of the binary size of five variants of Fame-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 (static) 2 (+DB) 3 (+Clam)

bi
na

ry
 s

iz
e

[K
B

]

of binding units

dynamic binding units
base program

static size

Figure 13: Binary size for variants of NanoMail with
varying bining units.

Dbms with equal functionality is shown in Figure 12. In con-
figuration 1, all features are statically bound and compiled
as a single binary. In each of the configurations 2–5 an addi-
tional binding unit (QE, Crypto, TXN, Btree) is extracted
from the base implementation and compiled as a distinct
dynamically linked library (DLL). The compositional over-
head of dynamic variants compared to static composition is
between 14% and 40% (amount above the dashed line in
Fig. 12) and increases with an increasing number of binding
units. About 80% of this overhead is caused by generated
code (e.g., generated decorators) and the remaining part is
code for loading DLLs and a general overhead for DLLs. The
generated code includes code for automating dynamic com-
position (1KB for loading binding units from DLLs; part
of the base application, independent of number of binding
units) and generated decorators (13–28%). However, the
compositional overhead does not depend on the size of a
binding unit, but its tangling with other binding units, i.e.,
how many other classes are extended and accessed by a bind-
ing unit. For example, binding unit QE is the largest binding
unit of Fame-Dbms (32KB) but it causes only half of the
overhead of the Crypto binding unit. For NanoMail, the
relative overhead is only between 1% and 3% due to a larger
program size (1.33MB) and well encapsulated binding units.
The minimal compositional overhead for a binding unit is
about 6KB and grows linearly with an increasing number of
binding units. Compared to static binding, this is an over-
head between 16% and 67% for Fame-Dbms (33KB–8KB)
and between 0.5% and 7% for NanoMail (1.33MB–84KB).
In detail, the overhead is caused by code duplication, e.g.,
generated code required in each DLL, and a general over-
head for DLLs (5KB per DLL).

The potential functional overhead for Fame-Dbms with
respect to the base code of configuration 5, i.e., without
loading dynamic binding units, is between 2KB (3%; config-
uration 4) and 32KB (64%; configuration 1). In NanoMail,
the maximal functional overhead is even larger (up to 94%)
due to the binary size of binding units. For example, the
virus filter has a size of 912KB resulting in a large func-
tional overhead compared to a total binary size of 1.33MB
if the virus filter is not used.

To conclude, our case studies demonstrate that the over-
head of binary size highly varies for different binding units
and between different SPLs. The compositional overhead is
quite high for Fame-Dbms (up to 40%) and very low for
NanoMail (< 4%). The possible functional overhead is for

 0

 200

 400

 600

 800

 1000

1 (static) 2 (+QE) 3 (+Txn) 4 (+Crypt) 5 (+Btree)

m
em

or
y

co
ns

um
pt

io
n

[K
B

]

of binding units

full program
base program

760 KB (static variant)

Figure 14: Comparison of consumed working mem-
ory of FAME-DBMS variants with an increasing num-
ber of binding units. Full program variants have
loaded the dynamic binding units, base program vari-
ants have not.

both SPLs very high (64%–94%). Modifying the binding
units, both kinds of overhead can be reduced, but the opti-
mal tradeoff has to be found per application scenario.

5.2.2 Memory Consumption.
We show a comparison of consumed working memory for

the different variants of Fame-Dbms in Figure 14. Reasons
for a varying memory consumption are additional executable
code, loaded into working memory, and memory allocated at
runtime. Both are analyzed in the following.

Dynamically Allocated Memory. The size of dynamically
allocated memory depends on size and number of instanti-
ated objects and additional allocated memory, e.g., for the
data buffer in a DBMS. Dynamic binding results in a com-
positional overhead due to an increased size of dynamically
composed objects of 12 bytes for each binding unit that ex-
tends a class. This is caused by additional references that
are stored within objects, e.g., to access the next decorator
in a chain of decorators via the super reference (cf. Fig. 7).
In Fame-Dbms, only a small number of objects is created in
the running DBMS which does not result in a measurable
overhead. In NanoMail, the size of a mail object in memory
increases depending on dynamic customizability by 12 bytes
per binding unit that extends the class. However, this is a
quite small overhead compared to the size of a usual mail of
2KB in our case study.

In Fame-Dbms and NanoMail, the allocated memory thus
only varies due to a functional overhead. It is caused by
objects that are not used or by additional fields of a class
that are part of an unused binding unit (added via class re-
finements). For example, the MailNotify application does
not retrieve or store mails and thus uses much less memory
than a full mail client (1.3MB instead of 9.8MB). Hence,
if only mail notification is used, there is an overhead of
about 8.5MB. In Fame-Dbms, such an increased memory
consumption cannot be observed, because additional fea-
tures do not allocate a significant amount of memory if not
used and the size of the data buffer does not depend on the
feature selection.

Executable Program Code. The compositional overhead
of binary program code also results in an overhead of mem-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 (static) 2 (+DB) 3 (+Clam)

m
em

or
y

co
ns

um
pt

io
n

[K
B

]

of binding units

full program
base program

5852 KB (static variant)

Figure 15: Consumed working memory in NanoMail
for variants with different binding units. Full pro-
gram variants have loaded the dynamic binding
units, base program variants have not.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0 20 40

m
em

or
y

co
ns

um
pt

io
n

[K
B

]

of filters

multiple binding units
single binding unit

static

Figure 16: Consumed working memory of NanoMail
with an increasing number of mail filters with static
composition, dynamic composition with a single
binding unit for all filters, and dynamic composition
with one binding unit per filter.

ory consumption as shown in Figure 14 for Fame-Dbms and
in Figure 15 for NanoMail. For dynamic variants of Fame-
Dbms with equal features, we observe an overhead between
68KB and 288KB (9%–38%) compared to the static variant
and up to 528KB (9%) in NanoMail. The minimal overhead
for loading DLLs is about 13KB per DLL. For small bind-
ing units, this means a large overhead compared to the size
of the binding unit, e.g., more than 100% per binding unit
for small mail filters in NanoMail as shown in Figure 16. By
generating one binding unit for multiple filters, this overhead
is avoided. For binding units that consume a larger amount
of memory like the virus filter (528KB) in NanoMail, this is
an overhead of about 2%, which is usually acceptable.

In Fame-Dbms, we can observe a slight functional over-
head of consumed memory due to binary code (i.e., code of
unused binding units that are loaded into memory). Dy-
namic variants of Fame-Dbms use between 752KB and
772KB of memory when not loading dynamic binding units,
which is an overhead of less than 3%. For NanoMail, the
consumed memory of base programs without binding units
varies between 4,232KB and 5,852KB (Figure 15). This
means a functional overhead in the static variant of 28% of
the total memory if only basic features are used.

To summarize, the compositional overhead of allocated

memory increases if a program allocates a large number
of small objects that are dynamically composed; and the
functional overhead of allocated memory highly depends on
the application scenario and implementation of features and
might be very high. Due to binary program code, a large
number or highly crosscutting binding units increase the
compositional overhead while large binding units affect the
functional overhead if they are loaded but not used. Over-
all, the overhead of consumed memory highly depends on
size and number of binding units and their implementation
but also on user requirements. It thus has to be analyzed
for each SPL and application scenario which feature binding
and which binding units are the best with respect to memory
consumption.

5.2.3 Performance.
Performance of an application is usually specific for a do-

main. We thus measure the performance of Fame-Dbms
using benchmarks for reading and writing data. As shown
in Figure 17, the performance decreases with an increasing
number of binding units. Comparing dynamic variants to
pure static composition, we observe a performance degra-
dation between 5% (2 binding units) and 28% (5 binding
units). The reason is reduced method inlining and more in-
directions compared to static variants. For example, 100%
of method refinements can be inlined for static binding. This
decreases to about 95% for configuration 2 and further to
86% for configuration 5. Additionally, public and protected
methods of a dynamically composed class that can be in-
lined in static variants are also replaced by virtual methods.
This is required to access the class from other binding units
via its abstract decorator. Private methods and methods
of classes that use only static composition are not affected.
The compositional overhead mainly depends on the num-
ber of method refinements and the invocation frequency of
refined methods.

To analyze the startup time of an application, we com-
pare different variants of Fame-Dbms and NanoMail. We
observe a general compositional overhead for starting a pro-
gram of about 30ms per additional binding unit. This is
only noticeable for a user if a large number of binding units
is used. A functional overhead can be observed due to large
binding units and complex initialization code. For example,
loading the virus filter in NanoMail takes more than 2 s. An
influence of unused binding units on performance at runtime
is possible if additional code has to be executed, e.g., when
scanning mail attachments for viruses if it is not required.
However, if the implementation of a feature allows to disable
its functionality when loaded, the functional overhead can
be avoided. This, however, requires additional implementa-
tion effort and is not needed when using dynamic binding as
provided with our approach. The functional overhead thus
highly depends on the implementation of the features of an
SPL.

6. DISCUSSION
In the following, we discuss our results and analyze which

features should be composed into a binding unit. Finally,
we provide a guideline for building SPLs that support static
and dynamic binding.

6.1 Resource Consumption
Extensibility of programs is often achieved with dynamic

 0

 20

 40

 60

 80

 100

1 (static) 2 (+QE) 3 (+Txn) 4 (+Crypt) 5 (+Btree)

re
la

tiv
e

pe
rf

or
m

an
ce

 [%
]

of binding units

random read
random write

100% (static variant)

Figure 17: Comparison of benchmarks for reading
and writing for different statically and dynamically
composed variants of FAME-DBMS. Shown is the rel-
ative performance. 100% is equal to about 3.0 Mio
queries / s for reading and 0.8 Mio queries /s for
writing.

binding (e.g., in plugins). Static binding, on the other hand,
provides fine-grained customizability without any negative
influence on resource consumption (e.g., using C/C++ pre-
processors). Hence, both binding times are essential for
many applications and also for SPL engineering. Our eval-
uation has shown that compositional and functional over-
head occurs in terms of binary size, memory consumption,
and performance when using static and dynamic binding.
Other properties not considered here, e.g., consumed net-
work bandwidth, are also affected. For small binding units,
the compositional overhead is often high, e.g., for mail filters
in NanoMail we observe an overhead of consumed memory
of more than 100% compared to the actual size of a binding
unit. This is similar for performance and binary size.

The compositional overhead caused by a binding unit de-
pends on its tangling with other binding units, i.e., on the ex-
pected and provided interface. This interface has to support
dynamic binding (e.g., using virtual methods) and thus hin-
ders method inlining, introduces indirections, and increases
the size of generated code. Hence, it is usually important to
aggregate multiple features in larger binding units to reduce
the compositional overhead. On the other hand, increasing
the number of features per binding unit introduces a poten-
tial functional overhead due to unused features.

We summarize our results in Table 1. Shown are the
reason and influencing factors for compositional and func-
tional overhead with respect to binary program code, al-
located memory, and performance. Memory consumption
caused by binary code is not listed separately because it is
directly influenced by binary code size. The main difference
between compositional and functional overhead is that the
compositional overhead is usually caused by a high num-
ber of binding units and crosscutting binding units while
functional overhead is usually caused by a large size and
functionality of binding units. Hence, there is a tradeoff
between compositional and functional overhead. Choosing
the right features for a binding unit can thus optimize mem-
ory consumption and performance.

6.2 Defining Binding Units
The remaining challenge for a domain expert is to find

proper binding units to provide the required flexibility while

Binary Program Code Allocated Memory Performance

Compositional overhead

reason generated code dynamic extension of objects missing inlining, indirections,
generated code

influence number / crosscutting of bind-
ing units;

allocation of small extended ob-
jects

number of method extensions;
invocation frequency

Functional overhead

reason code of binding units allocation in unused features time for execution of not re-
quired functionality

influence large binding units memory allocation per binding
unit

computational complexity

Table 1: Reasons and main influencing factors for compositional and functional overhead of resource con-
sumption.

minimizing the overall overhead. Because static binding
does not exhibit any compositional overhead, it is usually
the best choice if dynamic extensibility is not required. In-
troducing dynamic binding only to reduce the functional
overhead might be needed when resources are restricted but
not in general. Nevertheless, dynamic binding is mandatory
for achieving extensibility after deployment (e.g., for third
party extensions) or when the configuration of an SPL has
to be changed at runtime.

If dynamic binding is used, binding units should modu-
larize related features to reduce generated code (decorators,
etc.) and to enable method inlining between these features.
Ideally, the features should not heavily crosscut other bind-
ing units. For example, binding unit Crypto (cf. Fig. 10)
is well encapsulated and extends only a small number of
classes and methods. Most of the classes defined in the
binding unit are private to this binding unit, i.e., are not
extended by other features and can be composed statically.
For finding the optimal binding units, resource consumption
of different feature combinations has to be analyzed, which
is a complex task. As a simple rule, a large number and a
large size of binding units should be avoided since the first
increases the compositional overhead and the latter might
increase the functional overhead.

To reduce the overhead of a binding unit, different opti-
mizations are possible. Overlapping binding units, i.e., bind-
ing units that use an overlapping set of features, can be used
to shrink the interface of a binding unit or to decrease the
number of binding units, which can reduce the compositional
overhead. Another optimization is to split or merge binding
units. This is useful, if the requirements change over time
and not the whole application should be replaced. For ex-
ample, binding units that are often or always used can be
merged into a single binding unit.

6.3 Conclusion and Recommendations
We have presented an integrated approach for static and

dynamic feature binding. To summarize, our approach pro-
vides means for:
• changing the binding time of a feature after develop-

ment using a single implementation mechanism which
is independent of the binding time,

• binding only selected features statically or dynami-
cally in order to provide dynamic extensibility and
fine-grained static customizability,

• merging dynamically bound features in dynamic bind-
ing units to optimize resource consumption.

Since both binding times are used in practice, our approach
can replace complex solutions that use a mixture of differ-
ent approaches which do not allow to change the binding
time of a feature after development. With dynamic bind-
ing, a developer can achieve dynamic extensibility similar
to plugins. With our approach, the same feature can also
be bound statically, as it is often done with C/C++ pre-
processors. Hence, it unifies approaches for SPL develop-
ment that are currently used in several domains and even
provides customizability for highly resource constrained en-
vironments [25]. With respect to the development process,
it is much easier to use only one mechanism for extensions
(i.e., refinements) and not to switch between different mech-
anisms (e.g., virtual methods, macros, #ifdef’s, etc.). In
contrast to C/C++ preprocessors, FeatureC++ furthermore
ensures syntactically correct extensions while achieving the
same performance [25]. Furthermore, it can simplify devel-
opment, debugging, and maintenance of an SPL by using
static instead of dynamic binding at development time (in-
cluding static type checking). Finally, a combined approach
can also be applied if only static binding is needed and al-
lows for introducing dynamic binding in later versions of an
SPL when required.

As shown in Figure 18, our approach provides pure static
and pure dynamic composition as supported by many exist-
ing solutions but also supports all combinations with vary-
ing binding units (shown as triangle). Because there is no
optimal size for a binding unit, a domain expert can de-
fine binding units per application scenario. As a guideline
for configuring SPLs, the following questions have to be an-
swered:

1. Which features have to be bound dynamically?
2. Which dynamically bound features should be com-

posed into one binding unit?

When answering the second question, the compositional
overhead can be reduced for a constant number of dynam-
ically bound features by increasing the number of features

of

 d
yn

am
ic

 fe
at

ur
es

of binding units

0%

100%

1 1 per feature

reduce compositional
overhead

pure
static

pure
dynamic

reduce functional
overhead

2

max. compositional
overhead

max. functional
overhead

Figure 18: Combining static and dynamic binding
to support different extent of dynamic binding and
different size of binding units.

per binding unit (arrow in upper part of Fig. 18). The func-
tional overhead can be reduced by increasing the number
of dynamic features or by increasing the number of bind-
ing units for dynamically bound features (lower left arrows).
This allows for optimizations for each application scenario.

Limits of Dynamic Composition. Not all features of an
SPL can or should be bound dynamically. For example, it
does not make sense to use dynamic binding for mandatory
features or features that act as adapters for the operating
system. There are also semantic reasons that limit dynamic
composition or require a special implementation. For ex-
ample, the Encryption feature of Fame-Dbms extends the
layout of a database stored in persistent memory with a flag
for signaling an encrypted database. Adding or removing
such a feature dynamically means that also the data in ex-
isting databases has to be changed. Such changes can be
highly complex and cannot always be automated. In gen-
eral, dynamic adaptation is highly complex and there is no
general mechanism that allows for exchanging arbitrary fea-
tures at runtime. Hence, there are special implementations
required to support such dynamic modifications that are not
in the scope of our work.

Optimizations. The presented approach and its current im-
plementation does not provide an optimized solution. In the
following, we describe optimizations that can decrease the
compositional overhead of resource consumption due to dy-
namic binding. Such optimizations cannot avoid the over-
head but can reduce it, e.g., depending on the actual appli-
cation scenario.

SPL Context. As described above, to support dynamic
composition an object has to store a reference to the SPL
it belongs to. This can be optimized for several use-cases.
For example, if there is only a single SPL instance required,
we can store this instance in a global variable and avoid
additional references within objects.

Memory Allocation and Performance. Currently,
code generated by FeatureC++ is not optimized with re-
spect to memory allocation and performance. For example,
we could allocate a single block of memory for all concrete
decorators when creating an object of a dynamically com-

posed class instead of allocating multiple blocks, one for each
decorator.

There are other possible optimizations and there is often
a tradeoff between reducing memory consumption and in-
creasing performance which has to be further analyzed.

7. RELATED WORK
There are a number of approaches for software composi-

tion that employ different techniques or paradigms to sup-
port different binding times. For example, CaesarJ [6] sup-
ports static composition based on collaborations and dy-
namic deployment of aspects. Lee et al. suggest to de-
cide before development which features to implement in one
component and to compose the resulting components at run-
time [19]. Object Teams support dynamic binding of teams
which can be used to represent features of an SPL [18]. Com-
position in Object Teams starts with statically instantiated
activation teams which in turn activate other teams at run-
time. All these approaches require to know the binding time
of an implementation unit before development. In contrast,
our goal is to combine static and dynamic binding based on
the same code base. That is, we want to choose the binding
time not before deployment to enable reuse of source code
even if different binding times are used.

Zdun et al. introduce transitive mixins that generalize
composition of classes and objects [29]. In contrast to our
approach, transitive mixins are applied to single classes or
objects and do not have a representation for features as ele-
ments for composition in SPLs. Furthermore, the implemen-
tation provided in [29] is build on top of a dynamic approach
which cannot provide the benefits expected from static com-
position.

Other approaches are based on design patterns.
Chakravarthy et al. provide with Edicts a solution that sup-
ports different binding times using different patterns that
are applied to a base program using aspects [11]. Config-
uration is done by switching the edicts that are manually
implemented and not generated. Czarnecki et al. similarly
describe how to parameterize the binding time using C++
templates [13]. With a template based program generator
this enables automatic configuration of the binding time,
e.g., for class extensions. In contrast to our approach, tem-
plates as described by Czarnecki et al. do not support simul-
taneous composition of all classes a feature extends. Both
approaches do not allow to compose multiple features stati-
cally and compose the resulting binding units dynamically.

There are also approaches that support static and dy-
namic binding of aspects. AspectC++ supports weav-
ing at runtime and compile time using the same as-
pects [15]. AspectJ supports weaving advice at compile-
time, after compile-time (post-compile weaving), and at
load-time (when the according class files are loaded into
memory).5 PROSE [22] and Steamloom [9] furthermore
support weaving at runtime and may be combined with As-
pectJ’s static weaving. These AOP approaches can be used
to support multiple class extensions at the same time like
in collaboration based approaches and FOP. However, there
is no direct support for composition of whole features ac-
cording to a feature model. Moreover, it is not possible
to compose multiple aspects and bind the resulting module
dynamically which would require different binding times per

5http://eclipse.org/aspectj

aspect.
Our approach is based on Delegation Layers [23] which

supports dynamic composition of features but currently
lacks an implementation and does not support static com-
position. Several other collaboration based approaches
and layered designs like Jak [7], Java Layers [10], Ji-
azzi [21], Mixin Layers [28], Aspectual Collaborations [20],
and Context-oriented Programming [17] also support either
static or dynamic composition. In contrast to these ap-
proaches our solution integrates static and dynamic com-
position, and aids the developer in dynamically composing
SPLs and verification of SPL configurations according to a
feature model as described in [27].

Using FeatureC++, dynamic binding units can also be
composed at runtime. However, we do not provide a full-
fledged solution for runtime adaptation of SPLs. It is not
without reason that there is a whole branch of research on
runtime adaptation as well as runtime adaptable SPLs [16].
Nevertheless, solutions for runtime adaptation can be built
on top of FeatureC++. In this context, our approach inte-
grates traditional SPLs with runtime adaptable SPLs and
allows to customize runtime composable binding units stat-
ically. Furthermore, the flexible switching between binding
times can be used to simplify development of SPLs by tem-
porarily using static binding or removing unneeded features
for debugging.

8. SUMMARY AND PERSPECTIVE
We have presented an approach that seamlessly integrates

static and dynamic feature binding in SPLs based on the
same code base. It allows developers to statically build dy-
namic binding units that are composed at load-time or at
runtime of a program. The approach overcomes limitations
of pure static and pure dynamic binding and can replace
a mixture of static and dynamic approaches with a single
implementation mechanism.

In an evaluation, we have analyzed the impact of dynamic
binding units on resource consumption. Since there is a
tradeoff between functional overhead due to static binding
and compositional overhead due to dynamic binding, the
presented approach can be used to enable several optimiza-
tions of an SPL by distributing features between different
binding units. Such optimizations can be highly complex
but tool support could partially automate this process.

In future work, we plan to automate the optimization of
binding units, e.g., using static program analysis or monitor-
ing at runtime. As a first step, the FeatureC++ compiler
could inform the developer whether a binding unit has a
large interface or extends small objects and thus might in-
crease memory consumption or degrade performance.

Acknowledgments
We thank Christian Kästner for comments on drafts of
this paper. The work of Marko Rosenmüller is funded by
German Research Foundation (DFG), project number SA
465/34-1. Norbert Siegmund is funded by German Min-
istry of Education and Research (BMBF), project number
01IM08003C. Sven Apel’s work is funded partly by German
Research Foundation (DFG), project AP 206/2-1.

9. REFERENCES
[1] M. Anastasopoules and C. Gacek. Implementing

Product Line Variabilities. In Proceedings of the

Symposium on Software Reusability (SSR), pages
109–117. ACM Press, 2001.

[2] S. Apel and C. Kästner. An Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[3] S. Apel, C. Kästner, and D. Batory. Program
Refactoring using Functional Aspects. In Proceedings
of the International Conference on Generative
Programming and Component Engineering (GPCE),
pages 161–170. ACM Press, 2008.

[4] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
volume 3676 of Lecture Notes in Computer Science,
pages 125–140. Springer Verlag, 2005.

[5] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An
Algebra for Features and Feature Composition. In
Proceedings of the International Conference on
Algebraic Methodology and Software Technology
(AMAST), volume 5140 of Lecture Notes in Computer
Science, pages 36–50. Springer Verlag, 2008.

[6] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
An Overview of CaesarJ. Transactions on
Aspect-Oriented Software Development, 1(1):135–173,
2006.

[7] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools
for Implementing Domain-Specific Languages. In
Proceedings of the International Conference on
Software Reuse (ICSR), pages 143–153. IEEE
Computer Society Press, 1998.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

[9] C. Bockisch, M. Haupt, M. Mezini, and
K. Ostermann. Virtual Machine Support for Dynamic
Join Points. In Proceedings of the International
Conference on Aspect-Oriented Software Development
(AOSD), pages 83–92. ACM, 2004.

[10] R. Cardone and C. Lin. Comparing Frameworks and
Layered Refinement. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 285–294. IEEE Computer Society
Press, 2001.

[11] V. Chakravarthy, J. Regehr, and E. Eide. Edicts:
Implementing Features with Flexible Binding Times.
In Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), pages
108–119. ACM, 2008.

[12] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning
RISC-Style Database System. In Proceedings of the
International Conference on Very Large Data Bases
(VLDB), pages 1–10. Morgan Kaufmann, 2000.

[13] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[15] W. Gilani and O. Spinczyk. Dynamic Aspect Weaver

Family for Family-based Adaptable Systems. In
Proceedings of Net.ObjectDays, pages 94–109.
Gesellschaft für Informatik, 2005.

[16] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid.
Dynamic Software Product Lines. Computer,
41(4):93–95, 2008.

[17] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology (JOT), 7(3):125–151, 2008.

[18] C. Hundt, K. Mehner, C. Pfeiffer, and D. Sokenou.
Improving Alignment of Crosscutting Features with
Code in Product Line Engineering. Journal of Object
Technology (JOT) – Special Issue: TOOLS EUROPE
2007, 6(9):417–436, 2007.

[19] J. Lee and K. C. Kang. A Feature-Oriented Approach
to Developing Dynamically Reconfigurable Products
in Product Line Engineering. In Proceedings of the
International Software Product Line Conference
(SPLC), pages 131–140. IEEE Computer Society
Press, 2006.

[20] K. J. Lieberherr, D. Lorenz, and J. Ovlinger.
Aspectual Collaborations – Combining Modules and
Aspects. The Computer Journal, 46(5):542–565, 2003.

[21] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi:
New-Age Components for Old-Fashioned Java. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 211–222. ACM
Press, 2001.

[22] A. Nicoara, G. Alonso, and T. Roscoe. Controlled,
Systematic, and Efficient Code Replacement for
Running Java Programs. SIGOPS Operating Systems
Review, 42(4):233–246, 2008.

[23] K. Ostermann. Dynamically Composable
Collaborations with Delegation Layers. In Proceedings
of the European Conference on Object-Oriented
Programming (ECOOP), volume 2374 of Lecture
Notes in Computer Science, pages 89–110. Springer
Verlag, 2002.

[24] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer
Science, pages 419–443. Springer Verlag, 1997.

[25] M. Rosenmüller, S. Apel, T. Leich, and G. Saake.
Tailor-Made Data Management for Embedded
Systems: A Case Study on Berkeley DB. Data and
Knowledge Engineering (DKE), 2009. accepted for
publication.

[26] M. Rosenmüller, C. Kästner, N. Siegmund, S. Sunkle,
S. Apel, T. Leich, and G. Saake. SQL à la Carte –
Toward Tailor-made Data Management. In 13.
GI-Fachtagung Datenbanksysteme für Business,
Technologie und Web (BTW), pages 117–136, 2009.

[27] M. Rosenmüller, N. Siegmund, S. Apel, and G. Saake.
Code Generation to Support Static and Dynamic
Composition of Software Product Lines. In
Proceedings of the International Conference on
Generative Programming and Component Engineering
(GPCE), pages 3–12. ACM Press, 2008.

[28] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for

Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 11(2):215–255, 2002.

[29] U. Zdun, M. Strembeck, and G. Neumann.
Object-based and Class-based Composition of
Transitive Mixins. Information and Software
Technology, 49(8):871–891, 2007.

