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Abstract
Feature-oriented design improves reusability of object-
oriented classes. Features are increments in program
functionality and correspond to feature modules. Pro-
grams composed from feature modules can conflict to
applications they interact with. In this paper, we intro-
duce refactoring feature modules. Refactoring feature
modules are a new combination of feature-oriented de-
sign and refactorings that adjust members and classes
that are composed from feature modules. We show that
refactoring feature modules reduce conflicts between
applications and encourage software reuse.

1. Introduction
Feature-oriented design extends object-oriented design
to improve reusability of object-oriented classes [43,
3]. Features are increments in program functionality
and correspond to feature modules. Feature modules
add classes to a program, members to classes, or extend
members of classes.
Features are organized in a feature model that de-

fines valid compositions of features. Stakeholders use
the feature model to derive different programs but have
no knowledge about the program’s implementation. If
the program, that is composed from feature modules,
is a library (so-called scaling software library [4]) then
the library interacts with classes that are not part of the
feature-oriented design. However, library classes and
members may preclude the library’s integration into an-
other software [35, 20, 22, 39], e.g., if library members
are expected to have a different name. In that case of
conflicts, the stakeholder must change the library she
composed and so she must learn the library’s imple-
mentation first.
An object-oriented refactoring describes a process

to restructure and change object-oriented members

and classes [16]. A refactoring may remove conflicts
caused by classes and members and, thus, facilitate
their reuse. But, even if a refactoring possibly per-
formed on every program is known upfront, exist-
ing refactoring approaches are not integrated into the
feature-oriented configuration process. Instead, refac-
torings (or according meta-programs) must be executed
after the program is composed. However, the developer
cannot compose every valid program in advance [25].
To refactor multiple programs efficiently, refactorings
must be integrated into the feature-oriented configura-
tion process and feature-oriented design.
In this paper, we propose to define refactorings

in refactoring units and encapsulate these refactoring
units in feature modules of feature-oriented design, we
call feature modules that encapsulate refactoring units
refactoring feature modules. We show how refactoring
units in a feature-oriented design benefit from feature
modules and show how the programs composed from
feature modules benefit from refactoring feature mod-
ules. First, we show how refactoring feature modules
reduce conflicts that precluded reuse of libraries in the
past and discuss the role of refactoring feature modules
in other areas where feature-oriented design is used.
Second, we show how refactoring units can be com-
posed with feature-oriented mechanisms.

Relationship of refactorings and feature modules.
Refactorings and feature modules are not competing
concepts but expose interesting complements. Refac-
torings and feature modules both are transformations
executed on programs. Thereby, a refactoring is a pro-
cess of transforming the members and classes of a
program (so-called system architecture [18]) whereas
feature modules are language constructs that trans-
form a program’s functionality. To transform a pro-
gram, refactorings restructure existing members and
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1 public class Deque{

2 List _elements;

3 void insert_front(Element e){

4 _elements.add(e);

5 }

6 }

(a) Jak module L1
7 refines class Deque {

8 int _depth;

9 void setElements(List newElems){

10 _elements=newElems;

11 }

12 void insert_front(Element e){

13 Super.insert_front(e);

14 _depth=_elements.size();

15 }

16 }

(b) Jak module L2
17 public class Container {

18 Deque _d;

19 void add_front(Element e){

20 _d.insert_front(e);

21 }

22 void setElements(List newElems){

23 _d.setElements(newElems);

24 }

25 }

(c) Jak module L3
Figure 1. Sample feature-oriented design from [4].

classes, whereas feature modules create new members
and classes or extend them. Feature modules transform
methods and classes individually (so-called heteroge-
neous crosscutting [1]), whereas one refactoring of-
tentimes transforms different members and classes at
once (so-called homogeneous crosscutting [1]). Feature
modules are abstracted with a name; refactorings are
not defined in modules and, thus, there is no abstrac-
tion for refactorings. Consequently, to execute a feature
module on members and classes one only has to know
the according feature module’s name but to refactor a
program one has to know the program’s system archi-
tecture and the refactoring effects.

2. Background
In this section, we review concepts of feature-oriented
design and refactorings.

2.1 Feature-oriented Design
A feature is an increment in program functionality
which in feature-oriented design is implemented by a
feature module. A feature module encapsulates classes

Refactoring Transformation

Rename method Changes the name of a method to reveal the
method’s purpose

Move method Deletes the method and create a similar method
in the class that the method uses the most

Add formal parameter Adds a parameter to a method definition and ac-
cording calls to provide additional information to
the method body

Inline method Replaces all calls to a method with the method’s
body and removes the previously called method

Table 1. Standard refactorings [16].

or class refinements [3]. Class refinements add mem-
bers to classes or extend methods of classes. Valid com-
positions of feature modules (and according features)
are defined in a feature model; we additionally presume
the feature model to define an order for the valid com-
position of feature modules.
In Figure 1, we show a sample feature-oriented de-

sign using the Jak language [3]. The class refinement
Deque of feature module L2 in Figure 1b (class re-
finements are declared with the refines keyword, e.g.,
Line 7) adds a field depth (Line 8) and a method
setElements() (Lines 9-11) to the classDeque of feature
module L1 in Figure 1a. Class refinements add state-
ments to methods by overriding these methods, e.g.,
method insert front() of the class refinement Deque
(Fig. 1b) refines method insert front() of class Deque
(Fig. 1a) by overriding. This method refinement calls
the refined method using Super (Line 13) and adds
statements. Feature module L3 creates a new class
Container that adapts the class Deque to be acces-
sible under the name Container, and adapts method
Deque.insert front() to be accessible under the name
add front of the class Container. The composition re-
sult of L1, L2, and L3 then includes both classes Deque
and Container.

2.2 Refactoring
A refactoring describes a process of transforming the
system architecture (members and classes) of programs
but not their functionality [16]. A refactoring trans-
forms members and classes to increase their reuse by
removing conflicts with other classes. Refactorings fa-
cilitate subsequent extensions to the classes and im-
prove understandability of members and classes [44,
33]. A single refactoring may transform a large num-
ber of members and classes and, thus, is very laborious
to perform manually – for that, refactorings are sup-
ported by most integrated development environments,
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_depth

Deque
_elements
_depth
insert_front
setElements

_elements

insert_front
setElements

Container
_elements

add_front
_depth

setElements

Container

R4

R3

(a) (b) (c)

Figure 2. Refactoring methods and classes.

e.g., the Eclipse environment (v3.4.1) supports 23 dif-
ferent refactorings. In Table 1, we review some stan-
dard refactorings [16].
Refactorings expose different parameters where pa-

rameter values define the refactored members and
classes [33], e.g., the parameters of a rename method
refactoring are (1) the fully qualified name (identifier)
of the method to rename and (2) the new method name.
In Figure 2a, we depict the class Deque composed

from the feature modules of Figures 1a and b. Fig-
ure 2b shows the result of executing the refactor-
ing R3=’rename class: Deque → Container’ which
renames the class definition Deque and accord-
ing references into Container. We show in Fig-
ure 2c the same class after executing the refactor-
ing R4=’rename method: Container.insert front() →

Container.add front()’ which renames the method defi-
nition Container.insert front() and every according call
into Container.add front().

3. Refactoring Feature Modules
We envision refactorings and sequences of refactorings
as features in feature models such that a stakeholder can
restructure the program she builds by selecting accord-
ing refactoring features.1 The refactoring is abstracted
in the feature model with a name but must be defined in
the features modules. We do this by adding refactoring
definitions to feature modules.
In this section, we present refactoring feature mod-

ules a new approach that integrates refactorings into
feature-oriented design; we also propose an extension
to a feature-oriented language to implement our vi-
sions. We propose to define refactorings in refactoring
units that become elements of feature modules – we
call feature modules that encapsulate refactoring units
refactoring feature modules. We describe which classes
are transformed by a refactoring feature module and, fi-

1We must ensure that feature modules with a refactoring are se-
lected only when the refactoring can execute without errors but this
is outside the scope of this paper.

1 class MyRenameClass implements

RenameClassRefactoring {

2 String getOldClassId (){return "Deque";}

3 String getNewClassName (){return "Container";}

4 }

(a) refactoring feature module R3
5 class MyRenameMethod implements

RenameMethodRefactoring {

6 String getOldMethodId (){return

"Container.insert_front ()->void";}

7 String getNewMethodName (){return

"add_front";}

8 }

(b) refactoring feature module R4

Figure 3. Sample refactoring feature modules.

nally, present refactoring refinements that gain synergy
effects from combining refactorings and feature mod-
ules.

Definition of refactorings. A refactoring unit is a
class that implements a refactoring interface. A refac-
toring interface corresponds to one refactoring, e.g., to
the rename method refactoring, and describes the refac-
toring by declaring a getter method for every parameter
of that refactoring. The getter method implementation
in a refactoring unit then returns a value for that param-
eter. Together the parameter values of one refactoring
unit fully identify the particular refactoring (instance).
As an example, we show in Figure 3 two refac-

toring feature modules R3 and R4 with a refactoring
unit each. In the refactoring feature module R3 of Fig-
ure 3a, a refactoring unit MyRenameClass implements
the rename class refactoring, i.e., it implements the
refactoring interface RenameClassRefactoring and de-
fines the getter methods getOldClassId() and getNew-
ClassName(). With these methods the refactoring unit
provides the identifier of the class to rename and the
new class name. The rename method refactoring of the
refactoring feature module R4 (Fig. 3b) implements the
refactoring interface RenameMethodRefactoring and,
thus, has to implement the methods getOldMethodId()
and getNewMethodName(); the methods return values
for the parameters of that refactoring.
In Figure 4, we show an equivalent feature-oriented

design to that of Figure 1 but with the refactoring
feature modules R3 and R4 (R3 renames Deque into
Container; R4 renames Container.insert front() into
Container.add front()). That is, the refactoring feature

3



method id: Container.insert_front()−>void

MyRenameClass

new name: add_front

MyRenameMethod

new name: Container
class id: Deque

Deque

Deque
_elements

_depth
insert_front

L2

R3

R4

L1 insert_front

setElements

Figure 4. Refactoring feature modules.

MyRenameMethod

new name: add_front
method id: Container.insert_front()−>void

MyRenameClass

class id: Deque
new name: ContainerR3

R4R5

Figure 5. Composite refactoring feature module.

modules execute successively on the feature modules
L1 and L2. We use this figure as our running example.

Scaling refactoring feature modules. Refactoring
units only execute without errors in a certain order. The
feature model defines orderings for feature modules but
not the order for units inside feature modules. There-
fore, we allow only one refactoring unit in one refac-
toring feature module. However, this is not really a lim-
itation: Feature modules scale and can be nested [3].
Thus, feature modules can encapsulate a number of
refactoring feature modules – nested refactoring fea-
ture modules then can be ordered and build sequences
of refactorings where a sequence of refactorings yields
a (composite) refactoring [44].
In Figure 5, the refactoring feature modules R3 and

R4 encapsulate a refactoring unit each. However, R3
and R4 are nested in a composite feature module R5.
Henceforth, both refactoring feature modules R3 and
R4 can be ordered in the feature model and the com-
posite feature module R5 represents the sequence of R3
and R4.

Integrating refactorings into feature models. A
refactoring feature module corresponds to a feature in

Deque

base
L1

limited size
L2

as container
R5−>R3,R4

Figure 6. Feature diagram with refactoring features.

the feature model. A feature model allows to select fea-
ture modules and refactoring feature modules but does
not distinguish between them. That is, a user of this
feature model can create a program by selecting fea-
tures without knowing the program’s implementation
nor knowing the type of feature she selects (feature or
refactoring).
In Figure 6, we depict a sample feature diagram

(graphical representation of a feature model) for our
Deque data structure of Figure 4. In this diagram, fea-
tures of the class Deque like limited size are related to
refactorings like as container but, as mentioned, the
feature model (and so the feature diagram) does not
distinguish between features and refactorings. Further-
more, features are mapped to feature modules, e.g.,
base is mapped to L1, or to sequences of feature mod-
ules, e.g., as container is mapped to R5 and, thus, to
the sequence of R3 and R4.

Control the set of refactored classes. We propose
that refactoring feature modules should not transform
members and classes which are created in feature mod-
ules the refactoring feature module precedes accord-
ing to the feature model (so-called bounded quantifi-
cation [31]). Refactoring feature modules should trans-
form members and classes that are created in feature
modules that the refactoring feature module follows ac-
cording to the feature model. Bounded quantification of
refactoring feature modules supports the multiple cre-
ation of classes and members, i.e., it avoids overriding
for pieces of code that are created in different features
but expose the same identifier. When different feature
modules create code with the same identifier, a refac-
toring feature module that executes between both fea-
ture modules only refactors the one piece of code that
the refactoring feature module follows according to the
feature model. The code added by the subsequent fea-
ture module is not refactored. Bounding quantification
of refactoring feature modules avoids effects on classes
and members that are introduced after the refactoring
feature module.
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getDefaultValue()
1 public Map getSpecificValues(){
2  Map current = Super.getSpecificValues();
3  current.put("Deque.insert_front()−>void",
       "null");
4  return current;
5 }

getParameterType()
getMethodToChange()

<<refinement>>

getSpecificValues()

getSpecificValues()

MyAddParameter

MyAddParameter

Figure 7. Refining refactoring units.

In the running example of Figure 4, the classes refac-
tored by the refactoring feature modules R3 and R4 are
limited to classes created by feature modules they fol-
low. That is, R3 refactors the code of feature modules
L1 and L2 but not R4 because R4 executes after R3. An
additional feature module L5 (not depicted) introduces
another class Deque like feature module L1. But, with
bounding quantification, R3 only renames class Deque
of L1; L5 then creates Deque without overriding Deque
of L1.

Refining refactoring units. There are methods of
refactoring units that should be extensible, e.g., the
refactoring of adding a formal parameter to a method
is, among others, parameterized with a default value
for the formal parameter in according method calls and
a collection of mappings from individual method calls
to parameter values. Refining the latter method is ben-
eficial because we can define additional mappings of
method calls to parameter values and reuse the refac-
toring feature module.
To refine refactoring units, we apply the same rules

that are proven beneficial for refining classes. That is, to
refine a refactoring unit, we declare a refactoring refine-
ment (declared with the refines keyword) of the same
name in a subsequent feature module. The refactoring
refinement then extends the refactoring unit and adds
statements to the getter methods of the refined refactor-
ing unit.
In Figure 7, a refactoring unit MyAddParameter

adds a formal parameter into a method and parame-
ter values into every caller of this method. One getter
method getSpecificValues() of the refactoring unit re-
turns a map of parameter values to method calls. The
refactoring refinement MyParameterRef extends this
getter method and adds further mappings of actual pa-
rameters to method calls. For that, the refinement over-
rides the method getSpecificValues(), calls the refined
method using Super (Fig. 7, line 2), and adds mappings
to the returned map (line 3).

Refactorings are composed with their refinements
before the refactorings are executed and before feature
modules are composed. That is, refining a refactoring
unit delays the execution of the refactoring unit to the
refinement. But, we argue that a feature should execute
all of its transformations at the time defined in the fea-
ture model to avoid unintuitive side effects. A sample
side effect could occur for code that was added by fea-
tures after the refactoring unit but before the refactoring
refinement – this code is refactored when the refactor-
ing refinement executes (the refactoring gets delayed)
but not when the refactoring unit is not refined. To
avoid side effects of refactoring refinement, we restrict
refactoring refinements to follow the refined refactor-
ing unit directly. In the example of Figure 7, we do not
allow any feature module to execute between the fea-
ture modules (not depicted) that encapsulate the refac-
toring feature module MyAddParameter and its refine-
ment.

4. Application of Refactoring Feature
Module

Scalable software libraries (SSL). Feature-oriented
design reduces conflicts that occur when the system ar-
chitecture (classes and members) of an object-oriented
library precludes the library’s reuse (so-called SSL [4]),
e.g., when namespaces overlap by accident [35, 20, 22,
39]. For that, SSL strip the classes encapsulated in the
library. But, if the stripped library classes still cause
conflicts then the library still cannot be reused. Prob-
lems that arise when reusing libraries pertain incompat-
ible member names, member locations, and subtype-
relations of classes [20].
Refactoring feature modules restructure system ar-

chitectures of libraries to avoid conflicts in applications
that use the library. Thus, refactoring feature modules
facilitate the library’s reuse. However, refactoring fea-
ture modules do not reduce or change the functionality
provided by the restructured library. Refactoring fea-
ture modules can be abstracted and used with a name
but without knowing the implementation nor the refac-
toring effects; thus, even a stakeholder who does not
know the SSL implementation can restructure the SSL
(e.g., with a prepared sequence of refactorings that re-
moves conflicts to one application). Valid compositions
of refactoring feature modules are then, like valid com-
positions of feature modules, defined in the feature
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model and executed as part of the feature-oriented con-
figuration process.
The feature modules that separate class Deque in

Figure 1 implement an SSL [4] and so does our equiv-
alent running example in Figure 4. The refactoring fea-
ture modules R3 and R4 avoid adapter methods and
classes (as in layer L3 of Fig. 1) and, thus, simplify the
composed library program. In particular, the composed
library only encapsulates the desired class Container
but no obsolete class Deque additionally.

Step-wise development (SWD). Software is devel-
oped in steps [54] and feature modules are used to
portray these steps [3]. Feature modules then improve
traceability of changes and understandability of the
software [6]. However, class and method refinements
rely on classes and members of preceding develop-
ment steps (of feature modules they follow in the
feature model) to apply extensions correctly. How-
ever, these classes or members maybe cumbersome to
evolve [40, 19, 39, 50, 54]. Refactorings may restruc-
ture the members and classes in feature modules to fa-
cilitate the subsequently performed development step.
But if the developer refactors existing feature modules
to permit new extensions she fails the aim of adding
evolutionary code (permanent edits to modules are con-
sidered problematic [15]). Refactoring existing feature
modules to permit extensions may also add members
and classes to even the first feature modules which then
become more complex. Dig et al. observed that over
80% of evolutionary changes are refactorings [12] so
if feature modules portray development steps we must
embed refactorings into SWD.
Refactoring feature modules restructure the program

that is composed from feature modules without restruc-
turing the sources of the feature modules. That is, refac-
toring feature modules avoid changes to existing fea-
ture modules but change the classes of the composed
program. If development steps (and according feature
modules) are iterated to re-engineer a program’s sys-
tem architecture the reviewer also benefits from feature
modules that are simple for as many development steps
as possible.
Feature modules in SWD are meant to extend but not

to redefine the refined class/refactoring. When refac-
toring refinements replace any method of the refined
refactoring unit, then the transformation of the refac-
toring unit is changed instead of extended, e.g., if a get-
ter method is refined to return a different method that

should be renamed then the transformation changes.
But we also showed examples that benefit from refac-
toring refinement, like add parameter refactoring.
We advise to limit refactoring refinements in SWD.

Refactoring refinements should extend only getter
methods that define transformations for pieces of code
that reference or depend on code that represents a refac-
toring parameter (refactored class or member). That is,
a method that defines the renamed method should not
be refined but a getter that maps parameter values can
be refined.

Software product lines (SPL). SPL aim at cover-
ing a wide range of programs and can be imple-
mented by composing modules in different combina-
tions [41]; feature-oriented design is used to implement
SPL [4, 30, 3, 52]. Features are mapped to members
and classes that belong to certain functionality a stake-
holder is interested in and that varies across programs.
Features must provide extension points (classes and
members) that can be refined in subsequently added
feature modules. Extension points of one feature mod-
ule exposed for single refinements then remain in the
classes of every program where that feature module
contributes. In the extreme case, members and classes
covering the extension points for all refinements of
the SPL (so-called domain architecture [18]) become
the system architecture of every program with num-
bers of extension points unused. This approach is ben-
eficial because a single domain architecture is easier
to learn and extend than a number of system archi-
tectures [21]. But, this approach also is problematic:
First, the system architectures (members and classes of
a program) become overcomplex and hard to learn and
reuse [42, 48, 44, 24]. Second, programs provide ac-
cess to methods and classes that are extension points
only and, thus, are not meant to be accessible outside
the SPL.
Refactoring feature modules inline methods and

classes that are extension points only, e.g., with the in-
line method refactoring (cf. Tab. 1). Thus, one domain
architecture can be used for refinements but the sys-
tem architecture of a single program is simplified auto-
matically at composition time – inlining also increases
the program’s performance. The program with the sim-
plified system architecture can then be analyzed and
reused easier than programs with the domain architec-
ture. Finally, methods and classes unmeant for access

6



can be inlined to become inaccessible; unused methods
and classes can even be removed.
Experience showed that for an SPL one domain ar-

chitecture which includes every extension point any re-
finement needs is easier to learn and extend than a num-
ber of system architectures with individual extension
points [21]. But, programs derived from the domain ar-
chitecture include numbers of unused extension points
and, thus, are overcomplex.
We advise to use refactoring feature modules as final

transformations in a feature model; that is, refactoring
feature modules should adjust and streamline the pro-
gram that is first composed from feature modules. This
way, one domain architecture is easy to use and refine
during development but every program’s system archi-
tecture is simple as well.

Debugging. Refactoring feature modules complicate
debugging because the classes of the debugged pro-
gram differ from the classes inside the feature mod-
ules. That is, the members and classes of the debugged
program correspond to members and classes in the fea-
ture modules that were restructured by refactorings. A
change done in the program’s classes, therefore, must
be transformed back to the classes inside the feature
modules. Hence, we need advanced debugging tools
that keep track of the executed refactorings such that
changes to the program’s classes are triggered back to
the feature modules automatically.

5. Implementation
We implemented refactoring feature modules as an ex-
tension to the Jak language which adds feature modules
to Java [3]. In Figure 8, we show the components of our
compiler and how these components interact. We reuse
the jampack tool of the AHEAD tool suite2 to compose
Jak refinements. We implemented a plugin mechanism
to support different refactorings for refactoring units
where one refactoring corresponds to one plugin, e.g.,
the rename method refactoring is implemented in its
own plugin. Our refactoring plugins follow a common
interface and are loaded by the compiler when accord-
ing refactoring units are executed. Inside every plugin,
a refactoring interface (RI) is declared that corresponds
to the refactoring, a refactoring interface which then is
implemented by according refactoring units. The plu-
gin further encapsulates the transformation of the refac-

2 http://www.cs.utexas.edu/users/schwartz/ATS.html

RI

RI

program

refactoring feature module

move method

feature modulesourcecode

jampack

compilation result

rename classcompilation composer

feature module

Figure 8. Compiler architecture.

toring. In Figure 8, we show the plugins for the refac-
torings rename class and move method which each de-
clares a refactoring interface and the transformation to
perform.
The compiler successively composes the selected

features modules and refactoring feature modules ac-
cording to the order in the feature model. That is, the
compiler executes refactoring feature modules alter-
nately with class refinements of feature modules but
not in advance. We do this because we found that for a
number of refactorings we must compose refinements
before we can execute the refactoring and for certain
refinements we must execute refactorings first (refac-
toring and refinement are not distributive operations).
For example, to inline a method we must compose
the method first (refinements cannot be refactored into
refinements of statements in Jak) and when a subse-
quently added feature module adds a new method of
the same identifier then the method to inline should al-
ready be processed (we cannot push the execution of
refactoring feature modules to the very end).

6. Related Work
Numerous researchers explore the role of transforma-
tions in feature-oriented design, materialized refactor-
ings, and stepwise development. However, to the best
of our knowledge no approach exists that combines
both – feature-oriented design and refactorings. We re-
port on the most related approaches now.

Languages. Different styles of adapter modules have
been proposed [17, 27, 8]. Adapter modules allow to
access an object using different interfaces (adapter and
adapted interface) at the same time where the adapter
modules only forward calls to according adapted meth-
ods. But, adapter modules may slow down the exe-
cution of the program, are tedious to write, and even
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harder to understand and maintain [20, 32].3 Adapter
modules wrap single classes but do not extend feature
modules as done by refactoring feature modules (Note
that even adapter layers in LayOM [8] adapt single
classes only.). Adapter modules, finally, imply main-
tenance for the application that uses the adapter when
the adapted object (and so the adapter) changes [14].
Comback layers encapsulate adapter classes to undo
refactorings on frameworks in an additional layer [10].
Refactoring feature modules do not create adapter
classes but adjust the program classes.
Meta-programming may restructure a program or

single classes [36, 22, 18, 23, 2]. The transforma-
tions existing meta-programming approaches provide
exceed refactorings and may affect the functionality of
programs – the refactorings, that we deal with, solely
restructure programs but do not affect the program’s
functionality. Further, meta-programming approaches
are not integrated into nor leverage from a feature-
oriented design as refactoring feature modules do by
refining refactorings.
JunGL [53] and Generic Refactorings [26] define

refactorings in units. Others propose certain refactor-
ings as concepts of the programming language, like
adding parameters to methods [28]. As refactoring fea-
ture modules, all these approaches hide the developer
from writing complex refactorings from scratch. But,
the refactorings in these approaches transform modules
permanently once executed, so these approaches do not
deal with refactorings as configurable features. None of
these approaches is integrated into a layered architec-
ture nor leverages from that. Refactoring feature mod-
ules are integrated into feature-oriented design and can
be selected and deselected. Refactoring feature mod-
ules can be refined to increase the refactoring feature
module’s reuse.
PARLANSE is a language to define program trans-

formations [5, 6]. PARLANSE integrates edits accord-
ing functionality and transformations. Although PAR-
LANSE deals with edits as with transformations, PAR-
LANSE is not integrated into a layered design and
transformations gain no synergy effects like transfor-

3 The adapter class Container in Feature L3 of Figure 1
wraps class Deque and allows to access class Deque and
method Deque.insert front() under the names Container and
Container.add front() respectively. The adapter class Container
needs additional maintenance and complicates the domain and sys-
tem architecture.

mation refinements. PARLANSE transformations are
defined by the developer and exceed refactorings be-
cause they may affect functionality. In PARLANSE,
the definition of transformations is fragile because
it is based on tokens [6], e.g., the transformation
’Δ0:order→price@1:17’ changes token 17 in line 1
from order to price. Token-based approaches are ad-
ditionally cumbersome for refactorings because ref-
erential integrity in the resulting program must be
ensured manually. Refactoring units are pre-defined
meta-proagrams that are parameterized only and auto-
matically ensure referential integrity. Refactoring fea-
ture modules can be refined.
Collaboration-based phasing transforms models

where transformations may be wrapped by other trans-
formations [11]. Phases may also be optional which
make them very similar to refactoring feature modules
(although designed for model transformation we con-
sider phasing to be applicable for programs). Phasing
is not embedded in a layered design and transforma-
tions may affect the program’s functionality. Refac-
toring feature modules do not affect functionality of
a program. In contrast to phasing, refactoring feature
modules do not introduce new programming concepts
to refine refactoring definitions but reuse the refine-
ment mechanism of feature-oriented design. Mens et
al. formalize refactorings with graph rewrite rules and
map graphs that represent programs to graphs that rep-
resent the refactored program [33]. They analyze the
properties of refactorings on a formal level but do not
investigate in refactorings as configurable items.
Transformation-based generators (TBG) are trans-

formations that are successively executed on a pro-
gram [7]. TBG can transform other transformations like
modules and, thus, correspond to refinements; refac-
toring refinements use feature-oriented mechanisms
to transform a refactoring. TBG are programmed by
the developer from scratch and exceed refactorings,
refactoring feature modules only parameterize a meta-
program that implements a refactoring.
Multi-dimensional separation of concerns and

subject-oriented programming divide a software into
slices [19, 34, 39, 49]. Composition rules are meta-
programs that integrate different slices. Composition
rules rename and superimpose classes and methods of
different slices but do not restructure the composed pro-
gram. The developer of composition rules must ensure
that the functionality of composed modules is not af-

8



fected; refactoring feature modules do not affect func-
tionality by definition.
Aliases in traits adapt method names for method

calls but do not change the system architecture of the
composed program [45, 38]. Refactoring feature mod-
ules change the composed system architecture and can
provide arbitrary refactorings in feature modules.
Feature-oriented refactoring [29, 51] and aspect-

oriented refactoring [37] decompose a program into
feature modules of a feature-oriented design and as-
pects respectively. In contrast, refactoring feature mod-
ules execute object-oriented refactorings on system ar-
chitectures of programs which are composed from fea-
tures.

Tools. Compatiblity layers is a tool-based approach
to adapt libraries to applications that use the library
where these applications rely on outdated interfaces of
that library [14]. The integrated development environ-
ment of the library developer records edits and refac-
torings and replays the edits (without the refactorings)
onto the outdated library version. Refactoring feature
modules and compatibility layers allow to change a
library to some extend without affecting the applica-
tion that reuses the library. In compatibility layers, ed-
its cannot be composed selectively which is possible
for refinements in feature-oriented design. To replay
a refactoring on different programs with compatibility
layers one must compose every program first – this is
impractical for a number of programs [25]. Refactoring
feature modules integrate into feature-oriented design
and, thus, edits can be selected and deselected. Fur-
ther, refactoring feature modules refactor arbitrary pro-
grams at the time their according features are selected
so refactoring feature modules can refactor programs
that were never composed before.
The tool MolhadoRef records edits and refactorings

on library programs and replays them in the application
that uses the library [13]. Refactorings and edits cannot
be selected by the user; refactoring feature modules and
refinements in feature-oriented design can be selected
and deselected.
Different researchers optimize the system architec-

ture of programs with transformations: Smith proposes
correctness-preserving transformations that are cho-
sen by the user to improve performance, e.g., par-
tial evaluation [47, 46]. Refactoring feature modules
restructure programs to simplify reuse and integra-
tion of composed programs. However, by inlining

classes and methods, refactoring feature modules may
also improve the performance of the composed pro-
gram. Smith’s transformations, unlike refactoring fea-
ture modules, are not integrated into a layered design
and cannot be refined. Critchlow et al. [9] optimize pro-
grams with refactorings toward metrics automatically.
Refactoring feature modules are not selected automati-
cally but manually in a feature model.

7. Conclusions
In this paper, we introduced refactoring feature mod-
ules. Refactoring feature modules are a new approach
that combines feature-oriented design and refactorings.
Refactoring feature modules adjust programs that are
composed from features to encourage software reuse.
Refactoring feature modules transform programs of
feature-oriented design and leverage from the feature-
oriented mechanism of refinements. In particular, refac-
toring feature modules facilitate reuse for classes that
conflict to other classes and, thus, could not be reused
before.
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