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ABSTRACT
Mobile devices such as cell phones and notebooks rely on battery
power supply. For these systems, optimizing the power consump-
tion is important to increase the system’s lifetime. However, this
is hard to achieve because energy-saving functions often depend
on the hardware, and operating systems. The diversity of hard-
ware components and operating systems makes the implementation
time consuming and difficult. We propose an approach to automate
energy optimization of programs by implementing energy-saving
functionality as modular, separate implementation units (e.g., fea-
ture modules or aspects). These units are bundled as energy fea-
tures into an energy-optimization feature library. Based on aspect-
oriented and feature-oriented programming, we discuss different
techniques to compose the source code of a client program and the
implementation units of the energy features.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Algorithms, Design

Keywords
Software Product lines, Energy consumption, Feature-oriented pro-
gramming

1. INTRODUCTION
The widespread use of battery-supplied systems such as note-

books and mobile phones leads to a design shift toward energy op-
timization. Increasing the lifetime of a system is considered more
important than an optimal performance. Moreover, due to increas-
ing energy costs, energy optimization techniques such as virtualiza-
tion are also in the focus of research for systems with direct power
supply [37]. It is expected that energy cost of servers will soon ex-
ceed the purchase cost of the servers [7, 33]. Beside improvements
in hardware architecture, the efficient use of hardware by software
is a key factor to reduce energy consumption.
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Consequently, various compilers have been developed to reduce
energy consumption (e.g., by instruction reordering and loop trans-
formation [38, 16, 13]). Furthermore, operating systems provide
their proprietary functionality to optimize energy consumption. For
example, Windows Mobile1 comes with an integrated power-
management-component that can be used by applications to set
different power modes for hardware components within the de-
vice. The Advanced Configuration and Power Interface (ACPI)
defines an open standard for the power management related con-
figuration of a system’s hardware [19]. It enables applications to
tune the energy consumption according the current workload. Lap-
tops, desktops, and other hardware systems are deployed with this
interface. However, in its current specification,2 it consists of 727
pages, which reflects the complexity developers have to face and
the required implementation effort for its realization.
Although there is a considerable number of energy optimiza-

tion strategies, it has been observed that many applications do not
use them [18, 25]. Reasons are heterogeneity of hardware with
its unique energy-management functionality as well as complexity
of software solutions (e.g., for ACPI) [4]. Adapting a software to
different hardware devices and operating systems often increases
development time and cost. Business constraints and release dead-
lines hamper the implementation of energy optimization techniques
further.
The problem of handling variability and heterogeneity of hard-

ware and operating systems in software development is not new.
Software product line (SPL) engineering has shown to be a suit-
able approach to tackle this problem [12, 34]. An SPL consists of
a set of features that represent end-user visible characteristics of
a software. A user generates a tailor-made programs by selecting
features that satisfy her requirements. This way, different programs
can be generated based on a common code base.
We propose an approach to automate the application of energy-

saving techniques (referred to as energy features) based on SPL
engineering. The energy features are bundled in a feature library.
The library consists of energy optimization functions for different
hardware and operating systems. For example, a feature imple-
ments the functionality to activate and deactivate the WLAN for
the Windows Mobile OS. By selecting energy features according
to given system and user requirements, we can apply energy-saving
functions to a target program. We use the feature library to achieve
an improved separation of concerns regarding energy-saving tech-
niques. Furthermore, the library allows us to reuse the energy fea-
tures in different programs and to cope with the required variability
(e.g., different hardware and operating systems). We make two
contributions: (i) We provide means to ease the development of

1We consider OS version 5 and 6.
2Revision 4.0: http://www.acpi.info/



energy-efficient software and (ii) we propose a method for creating
a library of energy-saving techniques. The expected advantages
are:

• With the feature library, developers do not require deep knowl-
edge about energy optimization. Energy-efficient features
can be added without investigating which energy-saving tech-
nique is available for a particular system.

• Reusing energy features of the library reduces the develop-
ment time of new products.

• We provide a simple configuration interface to utilize energy-
reduction techniques. This allows even non-expert develop-
ers to optimize their programs.

We think that the energy feature library is needed to handle the
diversity of techniques and make them available for practical use.
As we describe see in Section 2.3, the kinds of optimization tech-
nique can heavily differ. Due to these differences, a variety of
interfaces are required to make the features usable. In our cur-
rent work, we concentrate only on those energy-saving techniques
that are accessible by means of method calls. These techniques
are commonly cohesive and generally applicable so that a reuse for
different programs is possible. We show how feature-oriented pro-
gramming [5] and aspect-oriented programming [23] can be used to
compose a program with energy features. Furthermore, we present
an approach to use energy-saving techniques by means of code in-
strumentation to access energy-management code.

This paper discusses ideas to apply feature-oriented software de-
velopment to new domains such as energy optimizations. Our work
concentrates on challenges that arise during design time of a soft-
ware. Although, this work is at a theoretical level, it identifies prob-
lems that exist in other domains and present possible solutions.

2. BACKGROUND
Our approach is based on a library of features that implement

different energy optimization techniques. We use feature-oriented
programming (FOP) [35, 5] as a technique for modularizing the
code that implements a feature. Next, we give a short overview of
modeling features and how they can be implemented using FOP. Fi-
nally, we present some important representatives of energy-saving
techniques.

2.1 Feature Modeling
We use a feature model to design the features of our library and

their relations. A feature model is a hierarchical structure consist-
ing of features and their constraints among each other [22, 14]. Fig-
ure 1 shows a feature model for the energy feature library. Manda-
tory features (e.g., feature OS of Figure 1) have to be included in
every variant (denoted with a filled bullet) when the parent feature
is selected. Optional features (denoted with an empty bullet; e.g.,
feature Backlight) are not required for each variant; it is up to the
user to select them during the product configuration process. There
are also groups of features representing additional variability. Al-
ternative groups require the selection of exactly one feature of the
group (not more than one); or groups allow the selection of one or
more features of the group.

2.2 Feature-Oriented Programming
FOP is a technique that enables the implementation of features

as fundamental modules of abstraction and composition [5]. This
means, a feature exactly corresponds to a feature module. A feature
module encapsulates the source code otherwise scattered across
different classes inside a single modular code unit. It can define
new classes or extend existing classes (as refinements) originally
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Figure 2: Decomposition of classes (vertical bars) with respect
to features (horizontal layers).

defined by other feature modules. To derive a program, a set of fea-
ture modules is incrementally composed. This composition obtains
final classes from classes and their refinements. In Figure 2, we
show the architecture of a database management system (DBMS)
implemented with FOP. Horizontal layers represent the features of
the DBMS and the vertical bars represent classes. Starting from
a base implementation of a class, multiple refinements, which be-
long to different features, are added resulting in a layered design.
Refinements add new members to classes such as methods and at-
tributes or extend existing methods with additional functionality.
For example, if a user selects feature Query Engine, class DB would
consist of the base implementation and a refinement to handle SQL
queries.

2.3 Energy-Saving Techniques
There are different kinds of energy-saving techniques. We di-

vide them into two classes: code transformation techniques and
hardware- and operating-system–dependent techniques. Before we
describe the two classes, we clarify the differences between power
and energy, because it is necessary for understanding the tech-
niques. Unfortunately, power and energy are often used inter-
changeably in literature [40]. The consumed power P of a system
is the consumed energy E per time unit t:

P =
E

t
(1)

Given that a system consumes energy3, the intended goal is to
save energy for a given task (in contrast to saving power). Consid-
ering Equation 1, reducing the power consumption may also reduce
the energy consumption, but not necessarily. For instance, a task
can either be performed with high power in a short time period or
with low power, but for a longer time period. It depends on the task
and algorithm what saves more energy. For example, constant time
tasks should be performed with low power.

Code Transformation Techniques. The first category of en-
ergy optimization techniques contains different code transforma-
tion approaches. We first describe some solutions based on com-
pilers and continue with source-to-source transformations that are
compiler independent. Compiler approaches transform a software
such that the energy consumption is reduced. One of the first so-
lutions was proposed by Tiwary et al. [38]. The main idea is to
reorder processor instructions such that less switches in CPU reg-
isters are necessary. Furthermore, they show how a reduction of
memory operands in a program can lead to energy savings. Other
optimizations are based on method inlining and loop unrolling [26]
as well as on an energy efficient scheduling of a program’s instruc-
tion set [39]. A more recent approach allows developers to define

3For example, batteries are charged with a certain amount of energy
instead of power.
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Figure 1: Feature model of the energy feature library.

objective functions for the compilation process [13]. Based on the
objective function, the compiler selects suitable code transforma-
tions out of a pool.

Beside compiler-based optimizations, source-to-source transfor-
mations can also save energy. Fei et al. have shown that trans-
forming the source code based on the analysis of the program’s
control flow can achieve energy savings of up to 37.9% [15]. The
transformations reduce inter-process communication (reduces OS
overhead for context switches), minimize the number of concur-
rent processes, and reallocation of computations of one process to
another (reduces synchronization between processes).

Another study provides insights into energy consumption of lan-
guage constructs in the C# programming language [10]. For ex-
ample, dynamic anonymous methods consume 3 to 4 times more
energy than dynamic methods. Another interesting fact is that pro-
tected attributes require two times more energy than private or pub-
lic attributes. Of course, this may be different in other runtime en-
vironments; however, we observe that simple changes in the source
code can have a large impact on energy consumption.

Beside application-independent transformations of the source
code, the selection of a suitable algorithm is often more important
for large energy savings. Researchers proposed energy-efficient
algorithms such as for sorting large amounts of data [36] as well
as studies about choosing the optimal algorithm to reduce energy
consumption [11, 9] which can even be taken a step further to
combine hardware-dependent techniques with energy-efficient al-
gorithms. For example, Pisharath et al. reduces energy consump-
tion of queries in an in-memory database system by selectively set-
ting different memory banks into a certain power state [31]. Con-
trolled by an intelligent query engine of the database system, en-
ergy consumption could be decreased by up to 68%. Solutions that
are very specific for certain application scenarios are very difficult
to encapsulate into a single implementation unit. Thus, reuse in
different programs is unlikely. Therefore, we currently focus only
on generic algorithms for the feature library that fulfill reoccuring
tasks in different programs.

Hardware- and Operating-System–Dependent Tech-
niques. Beside code transformation techniques, software can also
efficiently control hardware components to save energy. The most
prominent techniques are dynamic voltage scaling [29, 21] and fre-
quency scaling of CPUs [30, 32]. Both approaches are used to

reduce the power when a system has a low workload. Since the
power P depends proportionally on the frequency f and the voltage
v squared, reducing the frequency as well as the voltage decreases
the used power:

P ∝ f ∗ v2 (2)

For constant-time tasks, reducing power consumption propor-
tionally reduces energy consumption (as it follows from Equation
1). Therefore, both factors (cf. Equation 2), frequency and voltage,
should be adjusted depending on the current workload of the sys-
tem. Some approaches analyze applications statically to include the
scaling commands into the application (e.g., when certain events
occur) [41]. Other solutions dynamically change the frequency or
voltage in a pre-defined time interval [3]. These techniques use pro-
filing mechanisms to predict the future workload of the system so
that dynamic adaptations are possible. Currently, we do not address
this kind of optimization because it is difficult to provide a general
applicable approach that saves more energy than already existing
solutions provided by operating systems.
ACPI is an industry-driven specification for power management

of hardware devices. It allows the operating system to control dif-
ferent power states of the hardware. For example, a device could be
set in four different states; beginning with a full powered on state
(D0) and ending with powered off state (D3). The different states
can be set by programs by means of operating system API calls.
Operating systems for mobile devices provide special power

management solutions similar to ACPI. For example, Windows
Mobile comes with its own power management.4 Applications can
control the power states of different devices such as the backlight,
the screen, etc. Setting the device into a specific state requires API
calls to the operating system. Another example is the Android5

power management that requires Wake Locks to request CPU re-
sources. If there is no wake lock active, the CPU will shut down
(and saves energy). As Windows Mobile, Android supports differ-
ent power states. Unfortunately, setting the device into a specific
state differs in both operating systems.
The described operating-system techniques are used by means of

4For detailed information, see
http://msdn.microsoft.com/
en-us/library/aa923906.aspx.
5http://www.android.com/



API calls. Thus, a feature that utilizes the provided energy manage-
ment functionality of operating systems can be easily implemented
as a separate, self-contained implementation unit. The energy fea-
ture library contains especially such features because a reuse be-
tween different programs is easy to achieve.

3. TOWARDS
AN ENERGY FEATURE LIBRARY

Due to the multitude of possible energy-saving techniques, it is
hard for developers to know every possible mechanism wasting a
large quantity of possible energy savings. This problem even grows
if the target hardware and operating systems varies for the same
program. In this section, we present our approach to cope with
the heterogeneity of techniques by developing a library of energy-
saving technique. Our idea for an automated optimization is the in-
tegration of code of the feature library in a client program. Depend-
ing on the execution of a feature’s code of the client program, we
(i) replace this code with the code of the library or (ii) (de)activate
hardware components. Unfortunately, we cannot implement every
mechanism to reduce energy consumption with this approach. For
example, compiler-based optimizations cannot be applied with a
feature library.

Thus, we include only operating-system-dependent techniques
as well as some code transformations in the energy feature library.
However, the idea is that the library can be extended by others pro-
viding their own techniques. Next, we describe the envisioned fea-
tures of the library. We illustrate how application engineers can use
the energy feature library to select proper energy-saving techniques
for their program.

3.1 Modeling the Energy Feature Library
We use a feature model to relate the different techniques for en-

ergy management. This allows us to define a view on the energy
optimization domain as well as to use the feature model for the con-
figuration process. In Figure 1, we depict an initial proposal for the
energy feature library. The energy feature library contains of two
main parts: Algorithm Collection and Hardware- and Operating-
System–Dependent Techniques.

Algorithm Collection. We create a library of algorithms that
minimize the energy consumption. Subfeatures of Algorithm Col-
lection implement common, recurring algorithms in an energy-
efficient manner. For example, feature Sort in Figure 1 contains two
subfeatures that sort data with a minimal energy consumption [36,
8]. Developers of different domains can further add their domain-
specific algorithms to enrich this algorithm library. Possible exam-
ples are energy-efficient read and write of data from and to persis-
tent storage [20], different data aggregation strategies for network
communication [24, 6], or data caching algorithms to reduce com-
munication [28]. Although a large amount of such algorithms are
often only reusable in a certain domain, we expect that the benefit
for the domain is still considerable.

The idea of algorithm collection is to replace the algorithms in
the target application with the algorithm features of the Algorithm
Collection. This way, we can exchange an algorithm of a program
with another one that has an equal functionality but requires less
energy. To use an algorithm, a developer has to encapsulate the
corresponding algorithms with a proper interface in her program.
For example, if a developer wants to exchange the algorithm for
sorting data, she has to separate the sort algorithm into a single im-
plementation unit, i.e., a feature module. This implementation unit
can then be replaced by the feature module of the algorithm collec-

tion (e.g., feature InsertionSort). If the interface of the algorithms
do not match, developers have to implement an adapter to integrate
the algorithm of the library into the program. The rational behind
different sorting algorithms is that the efficiency of a sorting algo-
rithm regarding energy consumption depends on the amount and
kind of data to be sort. Depending on these factors, a user selects
the sorting algorithm that fits best to her workload.

Hardware- and Operating-System–Dependent Tech-
niques. To ease the selection of energy-saving techniques, we use
features for operating systems (feature OS and subfeatures) and for
hardware components (feature Devices and subfeatures). A selec-
tion of these features together map to the feature module(s) that im-
plement the energy-saving technique(s). In detail, feature OS pro-
vides energy management functions for different hardware compo-
nents as described in Section 2.3. Since these energy management
functions strongly dependent on the used device, we have to model
the hardware, too. The possible available hardware components
of a system are represented as subfeatures of feature Devices, in
Figure 1. Together with the selection of the operating system, we
can select a feature module that efficiently utilizes the hardware.
For example, if a developer selects feature WinMobile and feature
Backlight, we include the feature module in the program that pow-
ers the backlight on and off. The place for inclusion is defined
separately, as describe below. In Section 4, we show the usage of
features WinMobile and WLAN. Selecting the two features enables
a program to trigger the power mode of a WLAN device depending
on the current executed functionality. Overall, selecting the subfea-
ture of feature OS defines which operating system API calls have to
be composed and selecting a subfeature of feature Devices defines
which hardware component has to be controlled by the program.

3.2 Mapping Energy Features to Application
Functionality

To use energy features, we need a mapping between the function-
ality that has to be optimized and the feature module of the energy
feature. Thus, a developer configures the energy feature library for
client application feature that has to be optimized. This means,
each feature of the client program maps to a configuration of the
library. Based on this configuration, we derive the correct feature
module that maps to the functionality of the program. In Figure 3,
we show such a mapping between a program and the energy feature
library. In this example, the program is a variant of an SPL for data
management solutions targeting resource-constrained systems. On
the left side of Figure 3, we depict the features of the DBMS SPL
that should be optimized regarding energy consumption. For each
feature, we configure the energy feature library (right side of Fig-
ure 3) using the feature model of Figure 1. The configuration of
the energy library results in a set of feature modules that realize
the energy-saving functions. These feature modules are mapped
to the corresponding modules of the DBMS SPL (center of Figure
3). For example, to power the WLAN device only when feature
Distribution of the DBMS SPL is executed, we create a mapping
between this feature and the feature module W_W which is derived
from the configuration of the energy feature library. The result is
that the energy management for the WLAN device is controlled
by the program. The device is powered only when the program
uses its communication functionality. Establishing such mappings
is a straightforward process. It requires only little expert knowl-
edge about energy management of operating systems and hardware
components.
If a developer wants to use energy-efficient algorithms, she has

to create a mapping between the algorithm feature of the algorithm
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collection and the algorithm feature of her program. For example,
the mapping between feature Data Sort and feature module W_IS
in Figure 3 results in a DBMS variant that uses the InsertionSort
algorithm for sorting data; instead of the original implementation.
Beside the reduced energy consumption, the developer has to take
additional effects on non-functional properties into account. For
example, by applying feature InsertionSort the performance may
be decreased. If performance is more important than energy con-
sumption, the mapping should not be established.

4. PRODUCT GENERATION
A key contribution of our approach is the application of energy-

saving techniques to programs with a very small implementation
effort for the developer. The technique requires only a mapping
between features of the application SPL and features of the en-
ergy feature library. Depending on the selection of an algorithm
feature or an hardware-dependent feature, different composition
mechanisms have to be used. For algorithm features, we have to
exchange the implementation unit of the program with a feature
module of the feature library. When using FOP, this is a straight-
forward process because either the existing feature modules must
be physically replaced or the configuration of the application SPL
must be changed accordingly. For hardware-dependent techniques,
additional code from the library must be integrated into the pro-
gram. This requires new implementation techniques to connect
application features with energy-optimization code. We propose
three different implementation variants: Manual Layered Compo-
sition, Automated Layered Composition, and Energy Manager. We
explain all approaches in detail and discuss their advantages and
drawbacks.

4.1 Manual Layered Composition
The first approach to realize the integration of energy optimiza-

tion code is using the layered composition process of FOP. Fea-
tures modules are represented as layers. Similar to classes, meth-
ods are composed from multiple refinements resulting in a refine-
ment chain executing the functionality of all existing refinements
sequentially. This way, functionality of the method from differ-
ent feature modules is executed depending on the order of the re-
finement chain (or layers). To access the energy management, a
developer has to implement a feature module that refines the appli-
cation’s functionality. This means, a developer has to write method
refinements (consisting glue code) for those methods that have to be
optimized regarding energy consumption. To simplify manual im-
plementation, we envision a skeleton that enables a semi-automated
generation process. Such a skeleton can provide the implementa-
tion of the energy code for each feature of the energy feature li-

Feature Module WLAN_WinMobile_On (Win_WLan)

1 r e f i n e s c l a s s [CLASS_NAME] {
2 [RETURN_TYPE METHOD_NAME]([ARGS]) {
3 / / Turns t h e WLAN d e v i c e on
4 _energySplClass.SetDevicePower
5 (_energySplClass.getWirelessDeviceName(),1,0);
6
7 / / E x e c u t e t h e send f u n c t i o n a l i t y
8 [RETURN_TYPE RETURN_VALUE=]super::[METHOD_NAME(ARGS)];
9

10 / / Turns t h e WLAN d e v i c e o f f
11 _energySplClass.SetDevicePower
12 (_energySplClass.getWirelessDeviceName(),1,4);
13 [re turn RETURN_VALUE];
14 }
15 };

Figure 4: Skeleton of energy-optimization feature modules
(FeatureC++ example).

...

Communication

Deactivate Peripherie: WLAN
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Figure 5: Composing application features with energy opti-
mization code.

brary. It requires only the declaration of the method that is the
target for energy optimization. In Figure 4, we show an example
for such a skeleton based on FeatureC++6. FeatureC++ is a C++
language extension for FOP [1]. It comes with a source-to-source
compiler. FeatureC++ uses keyword super (Line 9) to execute the
next (above) method refinement of the composed method. In square
brackets, a developer has to include the name of the class and
method (Lines 1-2) that has to be refined with the energy-saving
code. Furthermore, if there is a return value, it has to be stored
temporarily (Line 8) and returned after the device is powered off
(Line 13). The benefits of this approach are the fine granularity
of changes to the program’s code (i.e., only selected methods are
surrounded with energy management code) and the direct control
of code changes by developers. This allows developers to have a
direct influence on the code changes.

4.2 Automated Layered Composition
Another solution to compose the energy features with the pro-

gram is based on aspectual feature modules7 [2], as illustrated in
Figure 6. The idea is to enclose the code of the program’s feature
with code of the feature library (cf. Figure 5) to manage hard-
ware components. In this solutions, features are implemented as
aspectual feature modules. An aspectual feature module can intro-
duce aspects, method refinements, and new classes to a program.
The aspects are weaved into the application to access the energy
management code. The energy management code can be imple-
mented, in turn, as classes, also part of the aspectual feature mod-
ule. In order to access the energy management functionality, we
use an around advice (Line 2–3) for each method belonging to a

6http://fosd.de/fcc
7Aspectual feature modules combine the concepts of FOP and
aspect-oriented programming (AOP) [23].



Aspectual Feature Module WLAN_WinMobile (Win_WLan)

1 a s p e c t WLAN_Energy_Management {
2 p o i n t c u t exWLAN() = e x e c u t i o n("%.Send_Receive%(...)");
3 advice exWLAN() : around (){
4 / / t u r n wlan on
5 _energySplClass.SetDevicePower
6 (_energySplClass.getWirelessDeviceName(),1,0);
7
8 proceed(); / / E x e c u t e t h e send f u n c t i o n a l i t y
9

10 / / t u r n wlan o f f
11 _energySplClass.SetDevicePower
12 (_energySplClass.getWirelessDeviceName(),1,4);}
13 }
14 c l a s s EnergySplClass {
15 / / Load o s s v c l i b r a r y
16 EnergySplClass(){..}
17 / / S e t d i f f e r e n t power modes
18 SetDevicePower(..){..}}
19 }

Figure 6: An Aspectual feature module to apply WLAN (de)
actionvation for feature Send_Receive (FeatureC++ example).

feature (of the application SPL) in a mapping. Depending on the
energy-optimization technique, the piece of advice activates or de-
activates different hardware. For example, we activate the WLAN
device in Lines 5–6 and deactivate it in Lines 11–12 (cf. Figure 6).
The whole aspectual feature module is stored in the library. The
only part which needs to be generated is the pointcut for each pub-
lic method of the program’s feature. In Figure 6, we include the
Send_Receive feature name in the execution pointcut. In order to
select join points of aspects of a single feature, the feature has to be
part of the pointcut definition.

4.3 Energy Manager
Another implementation technique is based on an energy man-

ager that stores the mappings between features of the application
SPL and the library. The energy manager is statically composed
with the program including the mappings. It is accessed each time
when the program execution reaches the code of a feature. Be-
fore feature code is executed, the manager checks whether it has
to activate or deactivate a certain device. For example, when the
DBMS calls the send method of feature Send_Receive, the man-
ager is called to check for existing mappings. In this case, we have
to execute the energy management to turn the WLAN on. To query
the manager for mappings, we have to integrate a method call at
the entry points of every method refinement of a feature. Such
a code instrumentation techniques is also used in dynamic AOP
approaches in which hook methods are generated to enable exe-
cution of additional code at runtime [17, 27]. FeatureC++ can be
used to generate such method calls during the composition pro-
cess for each program feature, which is the main difference to the
aspectual-feature-module solution. The method calls were orig-
inally intended to support activation and deactivation of features
at runtime. We use this technique to include a method OnExe-
cute(FEATURE_NAME). This method accesses the energy man-
ager to evaluate if there is an existing mapping for the current fea-
ture. If present, this code is executed (e.g., the WLAN device is
powered on). The device is turned off when the execution of the re-
finement has finished. This can be achieved by generating a method
OnExecuteExit(FEATURE_NAME) before each return statement.

4.4 Discussion

Reuse of Energy Features. Usually, features are reused
within different variants of a single software product line. In such
a case, reuse is the main goal of the design and architecture of fea-
tures. When using a library for energy optimization techniques,
features have to be reused in very different programs. For common
application features, a reuse would be very difficult to achieve. Ob-
vious reasons are application-dependent interfaces, heterogeneous
data structures, etc. However, the characteristics of energy opti-
mization techniques suggest that their reuse in very different pro-
grams is possible. Energy features that rely on code transformation,
are very generic. There is no application specific code in such a
feature. Features for utilizing the energy management for different
hardware components are often cohesive. That is, turning a hard-
ware component on and off does not require complex adaptations
of the application. An example for this case is ACPI that provides
an interface for energy management accessible in different operat-
ing systems.

Rapidly Switching Between Different Features. A prob-
lem arises if we quickly enter and leave the code of a feature that
belongs to a mapping. Putting a device in a certain power mode
consumes time, the performance decreases, and energy is wasted.
A possible solution is to use timers for the deactivation of hard-
ware. The time interval for deactivation should be defined during
the configuration and is stored together with the mapping. A finer
granularity may be used to set different timers for individual fea-
tures.

Performance. The execution of additional code due to the inte-
gration of the energy features may decreases the performance. This
is especially the case when using the energy manager implementa-
tion because we execute the OnExecute() method for each feature.
Hence, there is a trade-off between performance and energy opti-
mization. We have to evaluate how large the impact of such a real-
ization is. We will address this issue in further work. Nevertheless,
when an application performs a constant time task, performance
does not matter. This means, when we decrease the performance,
the performed task may not require more time to finish. For these
tasks, applying energy optimizations which come with small per-
formance degradation will not have a negative effect.

Architectural Adaptations. We need a feature model of the
program to create the mapping between program features and en-
ergy features. In some cases, a program’s feature has to be decom-
posed into two features when it is not feasible to apply the energy
management to the whole feature. For example, feature Distribu-
tion of the data management SPL consists of various functions that
realize data distribution for different databases. Only a small part of
this feature actually requires the WLAN device to send and receive
data. Thus, only this part should be mapped to an energy feature
of the library. Such an architectural change represents a way to ap-
ply the energy optimization code only at the point where it is really
needed. Thus, there is a trade-off between a good program design
and energy optimization. With additional implementation effort by
the application developers the manual layered composition and au-
tomated layer composition can solve this problem. For example,
pointcuts can be manually defined to address only the important
methods. This hampers a complete automated generation, but may
be more appropriate than a restructuring of the application SPL.
The first approach of the layered implementation already requires
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Figure 7: Dividing feature Distribution into two subfeatures to
apply the optimization only to the Send / Receive functionality.

a partial manual implementation of energy feature modules.

Handling Method Calls Inside Encapsulated Methods.
If the control flow leaves the functionality of a feature with en-
ergy management before it is completely executed, we may waste
energy because hardware components only are powered off at the
end of the feature’s functionality. As an example consider the
Send_Receive feature, if we have to wait for user input (e.g., to type
in a password) in the send method, we might have to wait a long pe-
riod of time and thus waste energy. The question is whether to turn
the device off before leaving the method or keep it active. We think
that an appropriate decomposition of application SPL features can
reduce the occurrence of such problems.

Application SPL. Currently, we consider programs developed
as SPLs, i.e., decomposed into features. However, this is not neces-
sarily required. We only need a description of the functionality of
the program that maps one-to-one to implementation artifacts (e.g.,
a feature model or a component model). We use this description
to attach energy optimizations to the application’s functions. This
way, we can determine which functionality requires which device
and can thus be optimized regarding energy consumption. To sum
up, a serious reduction of energy consumption may require a design
shift of software development towards energy optimizations. This
means, a program needs an appropriate design of its features with
respect to energy optimization (as we already discussed).

5. CONCLUSION
We presented an approach that allows programmers to use

energy-saving techniques without the need of special knowledge
about energy optimization. Developers do not have to invest time
to learn different energy saving techniques and to apply them to
their programs. We use software product line (SPL) techniques to
model and implement different energy-saving techniques such as
operating-system- and hardware–dependent functions. The func-
tionality is implemented as separate implementation units (feature
modules) and bundled in an energy feature library. Researchers
and developers can add their own energy-efficient algorithms as
features to the library.

To integrate the energy features into the program, we use map-
pings between program functionality and energy features. For ex-
ample, a feature for sending data in a software maps to a WLAN
feature of the energy feature library. Such a mapping is used to
compose the source code of the energy features with the code of the
program. We presented three approaches to implement this compo-
sition. The first two approaches use the layered design of feature-
oriented programming. Layers represent features (or functionality)
of a program. A program’s feature can be composed with a feature
of the library. The composition can be performed semi-automated
(based on a skeleton class that contains energy-optimization code)

or automatically by generated pointcuts of aspects. Furthermore,
code instrumentation can also be used to insert an access method
each time the program reaches feature code. The access method
calls an energy manager that checks for existing mappings. If a
mapping of the current feature exists the related energy optimiza-
tion is executed.
In future work, we will evaluate the different approaches regard-

ing energy-savings and the impact on performance. Furthermore,
we will analyze if such an approach can also be used to optimize
other non-functional properties such as performance and memory
consumption.
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