
The Road to Feature Modularity?

[Discussion Paper]

Christian Kästner
Philipps University Marburg

Sven Apel
University of Passau

Klaus Ostermann
Philipps University Marburg

ABSTRACT
Modularity of feature representations has been a long stand-
ing goal of feature-oriented software development. While
some researchers regard feature modules and corresponding
composition mechanisms as a modular solution, other re-
searchers have challenged the notion of feature modularity
and pointed out that most feature-oriented implementation
mechanisms lack proper interfaces and support neither mod-
ular type checking nor separate compilation. We step back
and reflect on the feature-modularity discussion. We distin-
guish two notions of modularity, cohesion without interfaces
and information hiding with interfaces, and point out the
different expectations that, we believe, are the root of many
heated discussions. We discuss whether feature interfaces
should be desired and weigh their potential benefits and
costs, specifically regarding crosscutting, granularity, feature
interactions, and the distinction between closed-world and
open-world reasoning. Because existing evidence for and
against feature modularity and feature interfaces is shaky
and inconclusive, more research is needed, for which we
outline possible directions.

Categories and Subject Descriptors: D.2.2 [Software]:
Software Engineering—Design Tools and Techniques; D.3.3
[Software]: Software Engineering—Language Constructs
and Features

General Terms: Design, Languages

Keywords: modularity, interfaces, module systems, vari-
ability, granularity, crosscutting, feature interactions, feature
modules, feature models

1. INTRODUCTION
Over the last years, we have frequently discussed what mod-
ularity means for feature-oriented software development. We
and others have typically claimed that we want to modu-
larize feature representations to make features explicit in
design and implementation, to reason about their implemen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC’11 August 21-26, 2011, Munich, Germany.
Copyright 2011 ACM 978-1-4503-0789-5/11/08 ...$10.00.

tation locally, and to compose them flexibly. In contrast,
others have repeatedly challenged that many contemporary
forms of feature-oriented programming provide merely syn-
tactic compositions, lack proper interfaces, and provide only
closed-world reasoning.
We led numerous heated discussions and found that dif-

ferent people have very different assumptions of what to
expect from modularity, which is also enforced by different
notions of modularity in different communities. We distin-
guish a notion of cohesion and locality often found in the
software-engineering community and a notion of informa-
tion hiding using interfaces currently coming more from the
programming-languages community. In our understanding,
the major part of the community around feature-oriented
software development focuses on cohesion and neglects infor-
mation hiding and interfaces.
Behind the discussion of modularity is lurking another

discussion about taking an open-world view or a closed-world
view on features. In an open-world view not all features
are necessarily known, whereas, in a closed-world view, we
globally reason about a closed set of feature implementations.
How suitable are open-world and closed-world views for
applications such as software product lines?
In this discussion paper, we share and discuss our current

understanding of this debate. Although we aimed at a neutral
view, we cannot avoid bias from our own background, which
certainly shaped much of this paper. Although not intended
as retrospect justification, our discussion can be interpreted
as such. Hence, we are open about our bias: The first
two authors have a background rooted in the locality and
cohesion notion, increasingly learning to appreciate other
notions, whereas the third author has a background rather
rooted in the programming-languages community and has a
more critical view on lacking interfaces.
Although we cannot present a general solution for feature

modularity—we are not even entirely convinced that feature
interfaces should be a dominating goal—we discuss challenges
(especially fine granularity and feature interactions) and
possible research directions. Most insights are not new in
isolation, but we hope to contribute a personal view on the
debate that we gathered over several years.

2. FEATURE MODULARITY
So what is feature modularity? Already the term modularity
is so overloaded with different definitions and interpreta-
tions that it seems infeasible to extract one general meaning.
Hence, we explore two different notions of feature modularity
(and probably bluntly forget others): one based on cohesion

kaestner
Textfeld
© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use.(References fixed compared to the printed version) 



and one based on information hiding. But first, we need to
clarify what kind of feature representations we are discussing.

2.1 Representing features
There are different views on what a feature is and how it
manifests in a program. In previous work on feature-oriented
languages and tools, researchers view features mostly from
a syntactic or structural perspective: When added to a
program, a feature manifests in additions or modifications
of development artifacts [5]. Hence, such work focuses on
the representation of features in the sense of concerns in
design documents and implementations. Interesting issues
that arise from this view are how to arrange a code base
such that features become explicit and composable.
At the same time, there is an alternative perspective on

features, inspired by early work on feature-interaction de-
tection in telecommunication systems: Features are viewed
in terms of the behavior they induce. They are semantic
units that interact and give rise to the observable behavior
a user is interested in [28,30,34]. The code structures that
implement a feature are of less interest in this perspective.
The two perspectives are two sides of the same coin, both

encourage abstraction, but both emphasize different proper-
ties. Here we take side with the syntactical and structural
perspective, as it guided our research for many years. Of
course that does not mean that the semantic perspective is
less important; nevertheless, we address the issue of modu-
larity from our perspective.

2.2 Locality and cohesion
The core idea of feature-oriented programming was to use
features as an additional dimension of decomposing a pro-
gram [60] (as addition, not as replacement for other forms
of decomposition using packages, classes, methods, abstract
data types, functions, and so forth). When decomposing a
program into features, the individual parts are typically called
feature modules [11]. Seminal papers on feature-oriented pro-
gramming claim that feature-oriented programming “allows
to compose objects from individual features or abstract sub-
classes in a fully flexible and modular way” [60] and that “fea-
ture refinements are modular, albeit unconventional, building
blocks of programs” [11].
In this context, a feature module is regarded as a unit

of composition (and often as a transformation that applies
changes to other features [11,51]). Decomposing a program
into feature modules has the goal of making features explicit
in design and implementation. Modularity in this context
means locality and cohesion. The idea is to place everything
related to a feature into a separate structure (file or folder),
which is then called feature module. For example, in the
simple feature-oriented program in Figure 1, everything re-
lated to the implementation of feature Undo is localized in a
separate file.
Most concepts and tools in feature-oriented software devel-

opment follow this notion of modularity, focusing on locality
and cohesion. We found that this notion is pervasive in large
parts of the aspect-oriented-programming community and
the software-engineering community as well.1

1We avoid the term separation of concerns, because it is
overloaded and used inconsistently. Intuitively, we would
equate separation of concerns with the cohesion notion of
modularity, but it can equally be regarded as rooted in
information hiding, encapsulation, and abstraction.

Feature module Base

1 class Stack { ...
2 void push(int v) {/*...*/}
3 int pop() {/*...*/}
4 }

Feature module Top

1 refines class Stack {
2 int top() {/*...*/}
3 }

Feature module Undo

1 refines class Stack { ...
2 int backup;
3 void undo() {/*...*/}
4 void push(int v) {
5 backup=top();
6 original(v); //calling push of Base
7 }
8 }

Figure 1: AHEAD-style feature-oriented implemen-
tation of a stack with three feature modules.

We believe that, for many tasks, locality and cohesion
provide a significant advantage compared to implementations
of a feature in which feature code is scattered across the
code base and tangled with code of other features. Locality
and cohesion help developers to get an overview and to
focus their attention when maintaining source code. For
example, in annotative approaches [39]—such as using #ifdef
directives of the C preprocessor to mark scattered feature
implementations—we need to perform a global search to
find all fragments of a feature. (It is this context in which
we argue that views as in FeatureMapper [31], C-CLR [65],
CIDE [38], and others provide a virtual separation of concerns
and emulate locality and cohesion, cf. [38, 39].)

2.3 Information hiding
Information hiding and encapsulation, enforced with inter-
faces and typically associated with module systems, are
another side of modularity, typically emphasized in the
programming-language community.2 The idea behind in-
formation hiding and encapsulation is to distinguish between
an internal and an external part of a module. The internal
part is hidden (encapsulated) from other modules. The exter-
nal part is called an interface (described more or less formally
in different contexts) and describes a contract with the rest
of the world. The contract enforces the desired abstraction
and corresponding invariants. To understand a module, we
need to look only at the module itself and at (imported)
interfaces of other modules. Furthermore, interfaces can also
be detached from specific modules, also known as abstract
interface [18].
In that sense, interfaces enable modular reasoning: We

can understand a module in isolation without looking at in-
ternal parts of other modules. Hence, we reduce complexity
with a divide and conquer strategy. Note that the locality
2When linking notions to communities, we refer to where
we currently and subjectively observe the active discussants
in this debate. Modularity as means for information hiding
originated from the software-engineering community; but
more recently, many developments from this community take
a more syntactic, cohesion-based path. In contrast, many
outspoken members of the programming-language community
have adopted the interface view point and strongly argue for
it.



and cohesion notation may support local reasoning to some
degree, but without interfaces there are no hidden parts and
abstraction is not enforced, so global whole-program analysis
might still be necessary. For example, to understand feature
Undo in Figure 1, we might need to look at the implementa-
tion of both Top and Base, because there are no interfaces
that would enforce abstraction from their implementations.
We frequently experienced the need to look at code from
other features in various case studies. (Interestingly, the
notion of modular reasoning has stirred quite some debate in
the aspect community, discussing to what degree locality is
still useful for reasoning without formal interfaces—without
apparent consensus [2, 42,57,66, and others].)
Another goal of many module systems is to enable modu-

lar type checking (and other modular checks), prevent name
clashes, and support separate compilation with binary link-
ing [20]. Just as humans should not need internal parts of
other modules for understanding, type systems should check
a module only relying on imported interfaces, but not on
implementation details of other modules (not possible in Fig-
ure 1). Whereas modular reasoning has a human component
and allows different interpretations, modular type checking
and separate compilation can be defined and proven for-
mally. Many module systems developed in the programming-
language community formally underpin the separation be-
tween internal and external part and guarantee properties
such as modular type checking [15,20,49,54, and others].
Enforcing interfaces encourages an open-world view on

modules. We can reason about or check a module (potentially
against imported interfaces) without knowing about the
remainder of the program. The result will not change when
we add a new module to the system—a property we cannot
guarantee just with cohesion.
Many other advantages are associated with this notion of

modularity, including black-box reuse, independent multi-
person development, and modular testing. In all cases, in-
terfaces provide contracts (more or less formal, more or less
mechanically enforced) between independent stakeholders.
In feature-oriented software development, the information-

hiding notion of modularity seems underrepresented. Ex-
cept for attempts that use languages with a strong mod-
ule system to encode the style of feature-oriented program-
ming [4, 21, 22, 32, 33, 43, and others], we are not aware of
any languages designed for feature-oriented programming
that support explicit formal or informal interfaces for fea-
ture modules. Instead, previous feature-oriented type check-
ers performed closed-world checks on all feature modules
together [6, 25, 40, 70]. Already Java, which many feature-
oriented approaches extend, is often rather frowned upon for
lacking a proper module system [12,24, and others].
Hence, researchers with a background in programming

languages and module systems (especially those with a fo-
cus on formal guarantees) sometimes look rather critically
at current feature-oriented-programming approaches. We
believe they have a point, and it is a point worth discussing.

3. CHALLENGES OF
FEATURE MODULARITY

So, is there a reason not simply to define interfaces for feature
modules and hide internal implementations of a feature?
That seems feasible and we could start right away with
encodings in existing module systems. However, there are

additional challenges that are specific to features.

3.1 Modularity costs
Before we come to feature-specific challenges let us keep in
mind that modularity always causes costs in the form of
development effort, maintenance effort, and so forth. We
need to invest additional effort into design, we need to decide
between hidden and exposed parts, we need to design suitable
interfaces, and we need to write and maintain the interfaces.
In addition, modularity may introduce architectural over-
head. Deciding on an interface is a difficult decision that
should take prospective future developments into account.
When we decide on what to hide, we commit to this decision
and fix the interface. Changing this interface later on is
nonmodular; it will affect other modules as well. In this
sense, information hiding can hinder evolution (explored in
more detail elsewhere [58]).
During development, a nonmodular solution is typically

cheaper. Modularity is beneficial if the expected benefits—
such as modular reasoning, easier maintenance, and the
possibility to develop open systems—outweigh the additional
costs. Hence, when developing a mechanism for feature
modularity, we have to consider costs and benefits.

3.2 Crosscutting and granularity
Crosscutting and fine granularity challenge feature modu-
larity. First, features often crosscut other dimensions of
modularization. The implementation of a feature may scat-
ter across multiple classes and methods, and implementations
of multiple features may be tangled in the same underlying
module. For example, the feature transaction system in a
database will extend and interact with many other parts of
the system. Especially, the view of feature-oriented program-
ming as code transformations [11]—each feature transforms
the program and produces a new program—lets it appear
quite naturally that features have crosscutting effects.
Second, in scenarios that we typically looked at, features

often implement fine-grained extensions. It is quite common
for features to change source code at expression, statement,
or parameter level [39]. For example, feature Undo in Fig-
ure 1 adds a statement to an existing method. In contrast,
traditional module systems rather focus on coarse-grained
structures. Contemporary interfaces usually describe func-
tions, modules, classes, packages, events, and so forth, so
that we hide large parts of the implementation behind a
comparably small interface—the goal of information hiding.
We could argue that fine-grained scattered feature imple-

mentations are poor style (often originating from decompos-
ing legacy applications) and that we should redesign such pro-
grams. However, we argue that this is not realistic in practice:
Although we might be able to avoid some fine-grained cross-
cutting with a suitable architecture, we believe that imple-
menters want the flexibility and that introducing (or extract-
ing) variability in existing systems is an important use case.
Alternatively, we can always use coarse-grained interface

mechanisms to hide internals of fine-grained implementations,
but such encodings introduce overproportional overhead [39].
When a feature makes fine-grained changes in many positions,
we need to expose extension points at all positions, resulting
in a potentially large interface that is difficult to understand.
Specifically, the interface can become so large that it out-
weighs the size of the original implementation. So, is the
additional effort for the interface really worth the achieved



hiding? We may reach a point at which the interface con-
tains the whole information of the feature implementation,
thus rendering information hiding expensive but pointless,
because we expose all internal information anyway.
Investigating possible interface mechanisms for fine-grained

crosscutting extensions is an interesting avenue for research.
Those should hide internals of fine-grained extensions at low
costs. Work on interfaces for aspect-oriented programming [2,
23, 67, 68, and others] is highly related to this issue and
has yielded some interesting mechanisms; however, such
solutions can limit flexibility and impose costs that may
make using aspects less attractive. For example, instead of
matching on events in the whole program (quantification),
some approaches require that join points are announced
locally [2, 67]. How such interface mechanisms affect code
comprehension and modular reasoning by humans needs to
be evaluated.
There seems to be a trade-off between expressiveness and

modularity mechanisms in current solutions. The more we re-
strict the kind of extensions a feature can make (by restricting
granularity or crosscutting) the easier it becomes to design
interfaces and module systems. It remains an interesting
research question whether we can also build useful inter-
faces for highly expressive feature mechanisms or whether
we should strive to find a sweet spot between expressiveness
and modularity costs.

3.3 Feature interactions
Feature interactions, both intended and accidental ones, are a
second significant challenge for feature modularity. Features
should often influence the behavior of other features. For
example, a statistics feature in a database engine should col-
lect statistics about all parts of the database, but the extent
of collecting statistics will vary depending on whether other
features such as transactions and persistence are included.
In addition, we want to avoid accidental feature interac-
tion, when two features work fine without the other, but
behave unexpectedly when composed, as in the famous call
waiting/call forwarding examples of open telecommunication
systems [19] and the flood control/fire control example [37].
Feature interactions are interesting for module systems,

because they raise the question of how to modularize inter-
acting feature implementations and the question to what
degree interfaces can protect from accidental interactions
(and ensure intended ones).

Implementing intended interactions: For illustration,
we pick up a simple but well-known example of an expression
product line providing different terms (plus, power, logarithm,
etc.) and different operations (eval, print, simplify, etc.). We
want to modularize all terms and operations as features and
compose them flexibly to derive different expression libraries.
This scenario is based on the well-known expression problem,
but has the additional challenge that all features should be
freely composable (i.e., we not only want to add new terms
and operations, but also be able to omit existing terms and
operations) [53]. The expression product line is an example
of a simple structural form of feature interactions, far less
complex and easier to recognize than the typical interactions
in telecommunications systems [19]. Yet, these structural
interactions already let us illustrate modularity problems.
In Figure 2a and b, we illustrate the typical strategy to

modularize terms or operations. In each scenario, we can
hide information about the internal implementation, but we

lnplus power

eval

print

simplify

plus power

eval

print

plus power

eval

print

(a) (b) (c)

Figure 2: Unsuitable modularizations of the expres-
sion product line

eval

print

simplify

lnplus power

Figure 3: Micromodularization of the expression
product line

cannot flexibly select which terms (in Fig. 2b) or operations
(in Fig. 2a) to compose. This problem of interacting features
is related to the tyranny of the dominant decomposition [69].
Common solutions to the expression problem typically arrive
at implementations, in which we can add additional terms
or operations modularly to existing implementations, as
illustrated in Figure 2c, but this still does not allow freely
selecting and composing features (e.g., we cannot compose
all features except feature print).
The typical solution to modularizing such interacting fea-

tures in feature-oriented programming is to decompose the
problem even further as shown in Figure 3, called micro-
modularization and also known as lifters [60], tiles [45],
origami [10], or derivatives [51].3 That is, we create a module
for each feature and an additional module for each interac-
tion. Each additional module can be seen as adapter or
binding that adds glue code between two or more features.
With a suitable module system, technically, we could create
interfaces and hide internal implementations for each of these
modules. Essentially, micromodularization separates the core
of a feature from (intended) interactions with other features.
Although we can (micro-)modularize interactions, again,

we need to weigh costs and benefits. We add quite a number
of additional modules (one for each interaction), causing
increasing development effort. In addition, modules may
become so small that, again, there remains little to hide and
little to reason about modularly. In many cases, we have
observed that most complexity of a feature’s implementa-
tion is in the interactions with other features, whereas the
implementation of the feature’s core is almost trivial. The
expression example above illustrates this in an extreme form:
A feature such as print without interactions has a minimal
implementation; but also each interaction module introduces
only a small behavior extension (evaluating additions, sim-
plifying multiplication, etc.), of which we cannot hide much
and about which we cannot reason much in isolation.

3We credit the term micromodularization for this problem
to Shriram Krishnamurthi, coined at Dagstuhl #11021. We
adopt this term over previous ones, because it better reflects
the problem of many small modules in our discussion.



Micromodularization is a technical necessity and usually
not a desired property. We are interested in larger structures,
such as all behavior of an operation or term (dotted line in
Figure 3); however, as shown in Figure 2, we cannot mod-
ularize one feature without scattering the other. Although
hierarchical module systems enable composing and nesting
of smaller modules into larger modules [15], it is not obvi-
ous how to build larger building blocks in the presence of
variability, when modules are often composed in different
combinations and belong to multiple larger concepts. In sev-
eral case studies, we found that intended feature interactions
between optional features are quite common, and we experi-
enced significant overhead of micromodularity and usually
opted for nonmodular solutions to avoid that effort [41].
It seems that the root of the problem is that we cannot sim-

ply partition code hierarchically into features since features
interact. Module relationships do not form a tree structure,
but a directed acyclic graph (aligning with knowledge rep-
resentations that are also structured as graphs and not as
trees) or an n-dimensional matrix (cf. Fig. 3).
We conjecture that developers would be more interested in

aggregated views on multiple modules, with different tasks
requiring different (overlapping) views. An on-demand zoom-
ing and aggregation environment could provide suitable views
(or projections) [35,38,56,61]. This raises the questions (a)
whether reasoning about features is really a modularity issue
or rather a tooling issue and (b) whether feature modules
should be designed for developers or whether they should
be the hidden underlying building blocks of a sophisticated
development environment.
Still, investigating how to support micromodularity with

lightweight (possibly inferred) interfaces, investigating the
costs and benefits of micromodularity in practice, and search-
ing for alternatives to micromodularity (e.g., with architec-
tures that avoid or channel interactions uniformly) remains
an interesting research avenue.

Preventing accidental interactions: In addition to
the question of how to modularize features despite intended
interactions, there is also the challenge of how to detect
unintended feature interactions. Feature modularity and
feature interfaces seem promising for this task. Ideally, all
interactions are specified in interfaces, so that we can reason
about modules locally using only imported interfaces; in a
modular setting there should be no chance for accidental
interactions to occur.
To detect accidental feature interactions automatically,

however, we need more powerful interfaces, beyond struc-
tural information known from mainstream programming
languages. We need to give semantic (behavioral) guarantees
in interfaces in order to reason automatically about behavior
modularly.
This raises the question of what a feature must know

about other features to work properly (i.e., what information
must be exposed in an interface, formally or informally),
or alternatively what a feature is allowed to do. May a
feature intercept input and output, change variables, suppress
actions, modify the control flow, or add states? The more
we allow a feature to do, the more expressive our interfaces
must be to detect or prevent feature interactions modularly.
Detecting or preventing feature interactions in feature-

oriented programming is a prime example for the need of
semantic interfaces in software analysis, as explored in design
by contract [46,55].

Exploring suitable interfaces to automatically detect fea-
ture interactions, again balancing costs and benefits, can be
the killer application for feature modularity. For example,
several researchers have extensively explored compositional
model checking to detect feature interactions [16, 47, 50, and
others].

3.4 Feature model
What is the role of the feature model in all this? A feature
model describes a set of features and their relationships [36].
Most approaches expect a global feature model describing all
features. The global feature model decides how to compose
feature modules; hence, features in a global feature model are
typically linked directly to feature modules. Because a global
feature model describes all features of the product line, it is
inherently antimodular (closed-world view). Although there
has been work on composing feature models from smaller
feature models [1, 14], there has been little discussion of
what information hiding and interfaces would mean for a
feature model and how feature models should relate to feature
modules.
We believe that many interesting design decisions remain

to be explored, including but certainly not limited to: Do we
want to modularize feature models in an open-world fashion?
Should features and their attributes and dependencies be
part of an interface of feature modules? Should feature
modules and feature models be linked (e.g., so that feature
modules import a feature model or vice versa)?

3.5 Other concerns
We believe that granularity, crosscutting, interactions, and
feature models are the most important challenges for feature
modularity, but there are many more design decisions to
investigate.
In the context of feature-oriented programming, we and

several others have explored language-independent solutions
(or solutions that can easily be extended toward other lan-
guages, including noncode languages such as grammars or
HTML) [4, 7, 11, 26]. Was this merely a syntactic exercise
or can we translate that effort to language-agnostic inter-
faces or to module systems that can be applied to multiple
languages? In this context, the gDeep calculus [4], which
divides the type system into a language-independent core
and language-dependent extensions, may guide the way for
various kinds of interfaces.
Another interesting question is whether we should de-

clare or infer interfaces. Already for current feature-oriented
programming languages, we can infer structural and cer-
tain semantic interfaces (using whole-program analysis) as
done internally by Thaker’s safe composition approach [70],
Schaefer’s compositional type checking of delta modules [63],
Ribeiro’s emergent feature modularization [61], and the ver-
ification approaches by Fisler, Li, et al. [27, 47]. Whereas
inferring interfaces lifts some burden from developers, explic-
itly declared interfaces provide more local checks, guarantees,
and error messages at the costs of additional specification
effort.

4. FEATURE MODULARITY FOR AN
OPEN WORLD

After discussing potential modularity costs, let us come back
to the open-world versus closed-world discussion to judge



potential benefits of feature modularity.
Feature-oriented software development is often seen as a

technique for implementing software product lines. Software
product lines are traditionally planned centrally and devel-
oped in coordination [9, 59]. The entailing closed-world view
might justify focusing on whole-program analysis (or more
precisely whole-product-line analysis) and neglecting feature
interfaces.
In the product-line context, it makes sense that feature

implementations are tied to the base code or to other fea-
tures of the product line. Product lines reuse a feature’s
implementation in many products derived from the product
line, whereas reusing a feature outside the product line (e.g.,
using feature Undo from Figure 1 in a different context) is
rarely a goal.
Of course, developers can significantly benefit from inter-

faces also in closed systems. But, we conjecture that in a
closed-world product-line setting, the benefits of feature mod-
ularity (modular reasoning, modular type checking, separate
compilation, and so forth) appear less urgent. This may ex-
plain, in retrospect, why many researchers rather neglected
interfaces for features so far.
The picture changes, when considering an open world. For

example, we might want to develop a feature-based library,
such as the notorious graph-library example [52], that is sup-
posed to be used in yet unknown contexts. We might even
want to reuse a product line inside another separately devel-
oped product line [44,62]. Finally, we can consider extensions
in open platforms as features, such as plugins in Eclipse, apps
in Android, or packages in Debian; these features are inde-
pendently developed in a software ecosystem [13,64]. Also
in the product-line community, such open-world scenarios
gradually gain attention [17, 64, and others]. For example,
software ecosystems can also encourage a community process
and third-party contributions of features [17].
In all these open-world scenarios, developers deviate from

central planning and attempt to reuse features in a poten-
tially distributed setting. Here, feature modularity promises
significant benefits, especially when whole-program analysis
is no longer acceptable: Even when features are developed
independently and unaware of each other, we want to check
them modularly. We want guarantees that independently de-
veloped features do not change the behavior of other features.
We even want to detect inadvertent feature interactions mod-
ularly, which are especially problematic in such open-world
settings. In this context, research on feature interfaces can
pay off.
In an open world, some form of feature modularity seems

essential. Whether we need novel fine-grained semantic fea-
ture interfaces or whether simpler mechanisms are sufficient
remains open. These questions are an interesting avenue for
research. We believe that our community should not hide
behind scenarios of closed-world product lines. We should
investigate benefits and costs also in the light of the closed-
world versus open-world debate; eventually we will arrive at
different approaches for different scenarios.

5. SHAKY EVIDENCE
So far we have only shaky evidence that could provide insights
about costs and benefits and that could guide the design of
a module system and of feature interfaces.
On the one hand, we have experienced fine-grained and

scattered feature implementations in many product lines [39,

48], and we observed numerous intended structural feature
interactions that would require micromodularization [41].
Many further studies have similarly shown the problematic
nature of feature interactions [29,47,51]. Such studies indi-
cate that feature modularity might produce substantial or
even overwhelming costs.
On the other hand, when analyzing the structure of exist-

ing feature-oriented implementations (using whole-program
analysis), we found that most code fragments are not refer-
encing code from other features [8] and found that feature
implementations are mostly cohesive [3]. Both studies can
be carefully interpreted as encouragement for feature modu-
larity: Despite all problems, we might be able to hide certain
parts of a feature implementation behind an interface.
Furthermore, there are several open systems, such as

Eclipse, the Android platform, or the Debian package sys-
tem, that can be interpreted as further encouragement for
feature modularity. Although rather coarse grained and with
comparably few interactions, individual plugins, apps, or
packages can be regarded as features that are separately
developed and modularly compiled and that have explicit
interfaces (e.g., extension points, intentions) [64]. At least
in this coarse-grained context, modular open systems seem
to pay off.
In summary, evidence about potential costs and benefits of

feature modularity is not only shaky, but not even conclusive.
That makes research about feature modularity even more
important. In addition, it shows that we should not focus
only on designing module systems and proving properties
about them. We need to emphasize empirical research (case
studies, data collection, controlled experiments) on the costs
and benefits of modularity and need to look at practice.

6. CONCLUSION AND
FUTURE DIRECTIONS

Feature modularity has been a long-standing goal of our
community. Many approaches have been developed to sep-
arate the representation of features and to compose them
back again. Yet, feature interfaces, modular type checking,
and separate compilation have usually not been the focus—a
reason why several researchers have challenged our claims of
modularity.
We have learned that conflicts arise due to different notions

of modularity. Many researchers are satisfied with locality
and cohesion of feature modules and do not see the need for
enforcing explicit interfaces. As discussed, feature interfaces
come at a cost, especially if fine-grained crosscutting exten-
sions and feature interactions are involved. On the other
hand, interfaces promise significant benefits for detecting
feature interactions and handling open-world scenarios. Evi-
dence exists both for and against feature interfaces, but is
too shaky to draw sound conclusions.
We would like to encourage research toward feature modu-

larity. In summary, we propose the following directions:
• Module systems for feature-oriented programming.
• Low-cost feature interfaces for fine-grained crosscutting
extensions.

• Implementation patterns for intended feature interac-
tions.

• Working with micromodularization: lightweight lan-
guage mechanisms vs. tooling.

• Semantic feature interfaces to detect accidental feature



interactions.
• Modularity for feature models.
• Empirical evaluation of costs and benefits of feature
modularity mechanisms in a closed/open world.

Acknowledgements. We thank all the colleagues and re-
viewers who challenged our view on modularity over the
years. In particular, we thank Shriram Krishnamurthi and
the anonymous FOSD reviewers for their constructive feed-
back on this submission. Most recently, a heated discussion in
a session about modularity at Dagstuhl #11021, which went
completely haywire, served as a catalyst to clarify the root
of many arguments and misunderstandings and paved the
way for constructive discussions; we thank all participants.
This research was supported by the ERC grant #203099 and
DFG grants AP 206/2 and AP 206/4.

7. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. France. Comparing

approaches to implement feature model composition. In
Proc. European Conf. Modelling Foundations and
Applications (ECMFA), volume 6138 of Lecture Notes in
Computer Science, pages 3–19. Springer-Verlag, 2010.

[2] J. Aldrich. Open modules: Modular reasoning about advice.
In Proc. Europ. Conf. Object-Oriented Programming
(ECOOP), volume 3586 of Lecture Notes in Computer
Science, pages 144–168. Springer-Verlag, 2005.

[3] S. Apel and D. Beyer. Feature cohesion in software product
lines: An exploratory study. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 421–430. ACM Press, 2011.

[4] S. Apel and D. Hutchins. A calculus for uniform feature
composition. ACM Trans. Program. Lang. Syst. (TOPLAS),
32(5):1–33, 2010.

[5] S. Apel and C. Kästner. An overview of feature-oriented
software development. Journal of Object Technology (JOT),
8(5):49–84, 2009.

[6] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type
safety for feature-oriented product lines. Automated
Software Engineering, 17(3):251–300, 2010.

[7] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-independent, automated software composition. In
Proc. Int’l Conf. Software Engineering (ICSE), pages
221–231. IEEE Computer Society, 2009.

[8] S. Apel, S. Kolesnikov, J. Liebig, C. Kästner,
M. Kuhlemann, and T. Leich. Access control in
feature-oriented programming. Science of Computer
Programming (Special Issue on Feature-Oriented Software
Development), 2012. in press.

[9] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, Boston, MA, 1998.

[10] D. Batory, J. Liu, and J. N. Sarvela. Refinements and
multi-dimensional separation of concerns. In Proc. Europ.
Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE), pages 48–57. ACM Press, 2003.

[11] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Trans. Softw. Eng. (TSE),
30(6):355–371, 2004.

[12] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms for
secure modular programming in Java. Software: Practice
and Experience, 33(5):461–480, April 2003.

[13] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki,
A. Wąsowski, and S. She. Variability in software ecosystems:
How to manage and how to encourage? 2011. under review.

[14] T. Berger, S. She, R. Lotufo, A. Wąsowski, and
K. Czarnecki. Variability modeling in the real: A perspective
from the operating systems domain. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages 73–82. ACM
Press, 2010.

[15] M. Blume and A. W. Appel. Hierarchical modularity. ACM
Trans. Program. Lang. Syst. (TOPLAS), 21(4):813–847,
1999.

[16] C. Blundell, K. Fisler, S. Krishnamurthi, and P. V.
Hentenryck. Parameterized interfaces for open system
verification of product lines. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 258–267. IEEE
Computer Society, 2004.

[17] J. Bosch. From software product lines to software
ecosystems. In Proc. Int’l Software Product Line Conference
(SPLC), pages 111–119. Carnegie Mellon University, 2009.

[18] K. H. Britton, R. A. Parker, and D. L. Parnas. A procedure
for designing abstract interfaces for device interface modules.
In Proc. Int’l Conf. Software Engineering (ICSE), pages
195–204. IEEE Computer Society, 1981.

[19] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec.
Feature interaction: A critical review and considered
forecast. Computer Networks, 41(1):115–141, 2003.

[20] L. Cardelli. Program fragments, linking, and modularization.
In Proc. Symp. Principles of Programming Languages
(POPL), pages 266–277. ACM Press, 1997.

[21] W. Chae and M. Blume. Building a family of compilers. In
Proc. Int’l Software Product Line Conference (SPLC), pages
307–316. IEEE Computer Society, 2008.

[22] W. Chae and M. Blume. Language support for
feature-oriented product line engineering. In Proc. GPCE
Workshop on Feature-Oriented Software Development
(FOSD), pages 3–10. ACM Press, 2009.

[23] S. Chiba, A. Igarashi, and S. Zakirov. Mostly modular
compilation of crosscutting concerns by contextual predicate
dispatch. In Proc. Int’l Conf. Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages
539–554. ACM Press, 2010.

[24] J. Corwin, D. F. Bacon, D. Grove, and C. Murthy. MJ: A
rational module system for Java and its applications. In
Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 241–254.
ACM Press, 2003.

[25] K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints.
In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 211–220. ACM
Press, 2006.

[26] M. Erwig and E. Walkingshaw. The choice calculus: A
representation for software variation. ACM Trans. Softw.
Eng. Methodol. (TOSEM), 21(1), 2011. to appear.

[27] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In Proc. Europ.
Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE), pages 152–163. ACM Press, 2001.

[28] K. Fisler and S. Krishnamurthi. Decomposing verification
around end-user features. In Proc. Verified Software:
Theories, Tools, Experiments (VSTTE), pages 74–81.
Springer-Verlag, 2005.

[29] R. J. Hall. Fundamental nonmodularity in electronic mail.
Automated Software Engineering, 12(1):41–79, 2005.

[30] J. D. Hay and J. M. Atlee. Composing features and
resolving interactions. In Proc. Int’l Symposium Foundations
of Software Engineering (FSE), pages 110–119. ACM Press,
2000.

[31] F. Heidenreich, I. Şavga, and C. Wende. On controlled
visualisations in software product line engineering. In Proc.
SPLC Workshop on Visualization in Software Product Line
Engineering (ViSPLE), pages 303–313. Lero, 2008.

[32] S. S. Huang and Y. Smaragdakis. Morphing: Structurally
shaping a class by reflecting on others. ACM Trans.
Program. Lang. Syst. (TOPLAS), 33(2):6:1–44, 2011.

[33] D. Hutchins. Pure Subtype Systems: A Type Theory For
Extensible Software. PhD thesis, University of Edinburgh,
2009.

[34] M. Jackson and P. Zave. Distributed feature composition: A



virtual architecture for telecommunications services. IEEE
Trans. Softw. Eng. (TSE), 24(10):831–847, 1998.

[35] D. Janzen and K. De Volder. Programming with crosscutting
effective views. In Proc. Europ. Conf. Object-Oriented
Programming (ECOOP), volume 3086 of Lecture Notes in
Computer Science, pages 195–218. Springer-Verlag, 2004.

[36] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21,
SEI, Pittsburgh, PA, 1990.

[37] K. Kang, J. Lee, and P. Donohoe. Feature-oriented project
line engineering. IEEE Software, 19:58–65, July 2002.

[38] C. Kästner and S. Apel. Virtual separation of concerns – A
second chance for preprocessors. Journal of Object
Technology (JOT), 8(6):59–78, 2009.

[39] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
software product lines. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 311–320. ACM Press, 2008.

[40] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. ACM Trans. Softw. Eng.
Methodol. (TOSEM), 2011. accepted for publication.

[41] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller,
D. Batory, and G. Saake. On the impact of the optional
feature problem: Analysis and case studies. In Proc. Int’l
Software Product Line Conference (SPLC), pages 181–190.
Carnegie Mellon University, 2009.

[42] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 49–58. ACM Press, 2005.

[43] K. Klose and K. Ostermann. Modular logic
metaprogramming. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA), pages 484–503. ACM Press, 2010.

[44] C. W. Krueger. New methods in software product line
development. In Proc. Int’l Software Product Line
Conference (SPLC), pages 95–102. IEEE Computer Society,
2006.

[45] T. Kühne. A Functional Pattern System for Object-Oriented
Design. PhD thesis, Darmstadt University of Technology,
1999.

[46] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation
for detailed design. Behavioral Specifications of Businesses
and Systems, pages 175–188, 1999.

[47] H. C. Li, S. Krishnamurthi, and K. Fisler. Interfaces for
modular feature verification. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 195–204. IEEE
Computer Society, 2002.

[48] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze.
An analysis of the variability in forty preprocessor-based
software product lines. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 105–114. ACM Press, 2010.

[49] B. Liskov. Modular program construction using abstractions.
In Abstract Software Specifications, volume 86 of Lecture
Notes in Computer Science, pages 354–389. Springer-Verlag,
1979.

[50] J. Liu, S. Basu, and R. R. Lutz. Compositional model
checking of software product lines using variation point
obligations. Automated Software Engineering, 18:39–76,
March 2011.

[51] J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 112–121. ACM Press,
2006.

[52] R. Lopez-Herrejon and D. Batory. A standard problem for
evaluating product-line methodologies. In Proc. Int’l Conf.
Generative and Component-Based Software Engineering
(GCSE), volume 2186 of Lecture Notes in Computer Science,
pages 10–24. Springer-Verlag, 2001.

[53] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
support for features in advanced modularization technologies.
In Proc. Europ. Conf. Object-Oriented Programming

(ECOOP), volume 3586 of Lecture Notes in Computer
Science, pages 169–194. Springer-Verlag, 2005.

[54] D. MacQueen. Modules for Standard ML. In Proc. Conf.
LISP and Functional Programming (LFP), pages 198–207.
ACM Press, 1984.

[55] B. Meyer. Applying “design by contract”. Computer,
25:40–51, October 1992.

[56] H. Ossher and P. Tarr. On the need for on-demand
remodularization. In ECOOP Workshop on Aspects and
Dimensions of Concerns, June 2000. published online.

[57] K. Ostermann. Reasoning about aspects with common sense.
In Proc. Int’l Conf. Aspect-Oriented Software Development
(AOSD), pages 48–59. ACM Press, 2008.

[58] K. Ostermann, P. G. Giarrusso, C. Kästner, and T. Rendel.
Revisiting information hiding: Reflections on classical and
nonclassical modularity. In Proceedings of the 25th European
Conference on Object-Oriented Programming (ECOOP).
Springer-Verlag, 2011. to appear.

[59] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, Berlin/Heidelberg, 2005.

[60] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In Proc. Europ. Conf. Object-Oriented
Programming (ECOOP), volume 1241 of Lecture Notes in
Computer Science, pages 419–443. Springer-Verlag, 1997.

[61] M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba. Emergent
feature modularization. In Companion Int’l Conf.
Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 11–18. ACM Press, 2010.

[62] M. Rosenmüller and N. Siegmund. Automating the
Configuration of Multi Software Product Lines. In Proc.
Int’l Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 123–130.
University of Duisburg-Essen, Jan. 2010.

[63] I. Schaefer, L. Bettini, and F. Damiani. Compositional
type-checking for delta-oriented programming. In Proc. Int’l
Conf. Aspect-Oriented Software Development (AOSD),
pages 43–56. ACM Press, 2011.

[64] K. Schmid. Variability modeling for distributed development:
A comparison with established practice. In Proc. Int’l
Software Product Line Conference (SPLC), volume 6287 of
Lecture Notes in Computer Science, pages 151–165.
Springer-Verlag, 2010.

[65] N. Singh, C. Gibbs, and Y. Coady. C-CLR: A tool for
navigating highly configurable system software. In Proc.
AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), page 9. ACM Press, 2007.

[66] F. Steimann. The paradoxical success of aspect-oriented
programming. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA), pages 481–497. ACM Press, 2006.

[67] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types
and modularity for implicit invocation with implicit
announcement. ACM Transactions on Software Engineering
and Methodology (TOSEM), 20(1):Article 1; 43 pages, 2010.

[68] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan. Information hiding interfaces for
aspect-oriented design. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering
(ESEC/FSE), pages 166–175. ACM Press, 2005.

[69] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N
degrees of separation: Multi-dimensional separation of
concerns. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 107–119. IEEE Computer Society, 1999.

[70] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE), pages
95–104. ACM Press, 2007.




