
Toward Variability-Aware Testing

Christian Kästner
Philipps University Marburg

Alexander von Rhein
University of Passau

Sebastian Erdweg and
Jonas Pusch

Philipps University Marburg

Sven Apel
University of Passau

Tillmann Rendel and
Klaus Ostermann

Philipps University Marburg

ABSTRACT

We investigate how to execute a unit test for all products of a product
line without generating each product in isolation in a brute-force
fashion. Learning from variability-aware analyses, we (a) design
and implement a variability-aware interpreter and, alternatively, (b)
reencode variability of the product line to simulate the test cases with
a model checker. The interpreter internally reasons about variability,
executing paths not affected by variability only once for the whole
product line. The model checker achieves similar results by reusing
powerful off-the-shelf analyses. We experimented with a prototype
implementation for each strategy. We compare both strategies and
discuss trade-offs and future directions. In the long run, we aim at
finding an efficient testing approach that can be applied to entire
product lines with millions of products.

1. INTRODUCTION

Analysis of software product lines has attracted much attention by
researchers [26]. The addressed key problem is that traditional analy-
sis methods (type checking, static analysis, model checking, testing,
and so forth) target only individual programs, whereas a product
line with n optional compile-time features gives rise to O(2n) dis-
tinct configurations, and thus O(2n) distinct products. Traditionally,
obtaining an analysis result for the entire product line (e.g., whether
every product is well typed) would require to analyze each product in
isolation, in a brute-force fashion. Since a brute-force approach does
not scale due to the huge configuration space, practitioners resort to
sampling strategies [5,20–22]: They analyze only a few products cur-
rently produced, they analyze a few randomly selected products, or
they analyze a relatively small number of products selected by some
coverage criterion, such as t-way feature coverage. However, sam-
pling cannot yield reliable analysis results for the entire product line.

Recently, researchers have investigated alternative strategies to
analyze entire product lines without looking at the generated code of
each product. We call analyses following these strategies variability-

aware analysis (or family-based analysis [26]), because they take
the variability of the product-line implementation into account dur-
ing analysis. Roughly speaking, the idea is to analyze a generator
(the product-line implementation itself together with configuration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’12, September 24–25, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1309-4/12/09 ...$5.00.

knowledge) instead of analyzing the generated products. Variability-
aware analysis exploits the fact that products in a product line typ-
ically are generated from a common code base and share a signif-
icant amount of common code [10, 22]. When using brute force
or sampling, this common code is analyzed repeatedly. In contrast,
variability-aware analyses usually perform analysis on common
code only once, while only variable code that actually affects the
analysis result causes additional effort.

Researchers have successfully developed variability-aware anal-
yses for parsing, type checking, model checking, static analysis,
and theorem proving (see Sec. 5). Although testing of product lines
has received significant attention, researchers have concentrated on
sampling strategies [5, 20, 21], on test suite reduction [15, 24], and
on test generation [24, 28]. In all these approaches, though, individ-
ual tests are still executed on generated products, one by one. To
the best of our knowledge, there is no notion of variability-aware

test execution, where a test is run on an entire product line without
generating individual products.

Our goal is to transfer experience from existing variability-aware
analyses to product-line testing. We want to execute a test case (e.g.,

a unit test) in all configurations of a product line, without actually

generating a product for each configuration. In this workshop paper,
we explore early steps in this direction. In line with extended mech-
anisms used in variability-aware analyses, we build a variability-

aware interpreter to execute a test case in all configurations of a
product line in parallel (which resembles mixed concrete/symbolic
execution). Additionally, we explore an alternative strategy based
on variability encodings and off-the-shelf analysis tools, in our case,
JavaPathfinder (JPF) [29] and the extension jpf-bdd [30].

Specifically, our contributions are: We generalize strategies to
implement variability-aware analyses into white-box and black-box
strategies, which was only implicit in prior work. We design and im-
plement a variability-aware interpreter for a WHILE language (white
box). We apply JPF for variability-aware testing (black box). Finally,
while we cannot yet make claims about scalability to real-world
problems, we discuss trade-offs and limitations, and we outline
research directions.

We want to encourage researchers to investigate testing of whole
product lines without the usual sampling strategies. We are still in
an early exploration stage toward variability-aware testing. Here,
we present initial ideas and early experiences with prototypes and
cases studies. We appreciate any feedback and ideas.

2. VARIABILITY-AWARE ANALYSIS

Before we discuss test-case execution in product lines, we briefly
introduce variability-aware analysis in general, from which we then
adopt many concepts. We start with the general goal, outline how
we represent variability, and discuss two common implementation

Product Line

(AST with Variability)

Results with

Variability

(For all Products)

Result

(For one Product)

(4a) configure

(4b) aggregate

(1) configure

(2) traditional

analysis

(3) variability-aware

 analysis

Product

(AST without

Variability)

Figure 1: Variability-aware vs. brute-force analysis

1 case class Opt[T](pc: FeatureExpr, value: T)

2
3 abstract class Cond[T]

4 case class One[T](value: T) extends Cond[T]

5 case class Choice[T](pc: FeatureExpr, a: Cond[T], b: Cond[T])

extends Cond[T]

6
7 def condFlatMap[T, U](a: Cond[T], vctx: FeatureExpr,

8 fun: (FeatureExpr, T) => Cond[U]): Cond[U] = a match {

9 case One(t) => fun(vctx, t)

10 case Choice(pc, a, b) =>

11 Choice(pc, condFlatMap(a, vctx∧pc, fun),

12 condFlatMap(b, vctx∧¬pc, fun))

13 }

Figure 2: Variability structures and core utility functions imple-

mented with Scala

strategies.
We can explain variability-aware analysis with the process pattern

illustrated in Figure 1. Instead of repeatedly generating a product
(Step 1) and analyzing each product with a traditional analysis (Step
2), we want to analyze the entire product line without generating indi-
vidual products (Step 3). Variability-aware analysis should produce
a result that describes the entire product line. The result explains
in which configuration which specific property holds (e.g., “all con-
figurations with feature FOO are ill typed, all other configurations
are well typed”). From this analysis result, we are able to deduce
the properties that we would establish for an individual product
with the traditional analysis (Step 4a). Alternatively, by applying the
traditional analysis in a brute-force fashion to all products, we could
aggregate the individual properties to describe the entire product
line (Step 4b). While the output should be equivalent, we expect
the variability-aware analysis (Step 3) to be much faster than the
brute-force strategy (repeating Steps 1, 2, and 4b). In this paper, we
want to apply this concept also to testing.

2.1 Variability representation

To perform variability-aware analysis, we need a structural represen-
tation of the product-line implementation that contains all compile-
time variability. In our work, we encode compile-time variability
directly in abstract syntax trees (ASTs) with presence conditions. A
presence condition is a propositional formula over features of the
product line that yields true iff the AST element (i.e, the correspond-
ing code fragment) should be included in the product for a given
configuration.

We manage variability with two constructs, as illustrated with
Scala code in Figure 2: First, program elements can be optional
(Opt[T] for elements of type T). An optional element is guarded by
a propositional presence condition, which is represented by type
FeatureExpr. Second, type Cond[T] encodes conditional elements,
that is, elements that differ between configurations. We have either
one element (One[T]) or a choice between two elements (Choice[T])
depending on a presence condition. Since choices can be nested,

1 abstract class Stmt

2 case class Block(s: List[Opt[Stmt]]) extends Stmt

3 case class Assign(n: String, e: Cond[Expr]) extends Stmt

4 case class If(e: Cond[Expr], s: Stmt) extends Stmt

5 case class While(e: Cond[Expr], s: Stmt) extends Stmt

6
7 abstract class Expr

8 case class Var(name: String) extends Expr

9 case class Lit(value: Int) extends Expr

10 ...

Figure 3: Abstract syntax of a WHILE language with variability

implemented in Scala

1 a = 1;

2 #ifdef FOO

3 b = true;

4 #endif
5 if (a < 3)

6 a = a + 1;

7 #ifndef FOO

8 b = false;

9 #endif
10 if (b)

11 a = 0;

12 #ifdef BAR

13 a = 0;

14 #endif
15
16 b =

17 #if BAR || FOO

18 true

19 #else
20 false

21 #endif
22 ;

AST Assign
“a”

LitOne

Opt true

Assign
“b”

trueOne

Opt FOO

If

“a”

Opt true
VarOne

Assign …

…

Assign
“b”

Choice BARvFOO
Opt true true

false

1

Lit

Lit

Lit

One

One

Assign
“b”

falseOne

Opt ¬FOO
Lit

3Lit

<

Figure 4: Example program with variability and corresponding

AST (choice nodes shown with black background color)

we can express multiple alternative elements. For example, we can
express that variable v has value 1 if feature X is selected, and
value 2 if feature Y but not Z is selected, and value −1 in all other
cases: v=Choice(X, One(1), Choice(Y∧¬Z, One(2), One(-1))).1 Op-
tional elements are typically used inside lists when 0..n elements
are supported (e.g., a list of optional statements can contain no,
one, or multiple statements in each configuration), whereas con-
ditional elements are used when exactly one element is required
in each configuration (e.g., an assignment always has exactly one
right-hand-side expression).

Using Opt and Cond, we can express variability directly in the dec-
laration of abstract syntax, as illustrated with the WHILE language
in Figure 3 (the WHILE language is a small but Turing-complete im-
perative language, standard in static-analysis research). To create an
AST with variability from source code with #ifdef directives, we use
our variability-aware TypeChef parser [14]. We show an example
WHILE program that contains variability in the form of preprocessor
directives and the corresponding AST with variability in Figure 4.

Based on our AST representation with variability, we can realize
variability-aware analyses for entire product lines, including the
interpreter we present in Section 3.

1
Our current implementation allows arbitrary propositional formulas in choice nodes

and uses a SAT solver to reason about variability. Instead of choice trees, we could
alternatively store lists of optional entries, or encode conditional values similar to
Boolean decision diagrams, or experiment with other representations, such as the
Choice calculus [11].

2.2 Granularity, locality, and sharing

When specifying the abstract syntax of a language, we can decide
where to inject variability in the AST. We can support variability at
different levels of granularity, for example, allow conditional expres-
sions inside assignments or merely allow optional elements at the
statement level. We can always replace a fine-grained variability rep-
resentation with a coarse-grained one at the cost of replication [11].
Usually, fine-grained granularity facilitates more sharing—sharing
which we can potentially exploit to reduce analysis effort.

A key insight for variability-aware analysis is that, in all analysis
steps, we want to keep variability as local as possible, to facilitate as
much sharing as possible. For example, it is usually more efficient
to store a map from names to conditional values than to store con-
ditional maps from names to values: If we want to change a value
in a single configuration in a representation of type Cond[Map[A,B]],
we would need to copy the entire map, whereas changing a value
in representation Map[A,Cond[B]] has a local effect and preserves
sharing for all other values.

2.3 White-box vs. black-box strategy

Researchers have explored different strategies for variability-aware
analysis. We observed that two general implementation strategies
emerge, which we call henceforth white-box and the black-box
strategy. Note that these terms are orthogonal to white-box vs. black-
box testing to describe tests with and without source code (we do
only white-box testing), but they refer to how analysis is performed
and implemented.

White-box strategy. One common strategy is to extend the in-
ternal algorithm and data structures of the analysis. The modified
analysis works on a representation with explicit variability, such as
the ASTs presented above. It reasons about variability in all steps of
the analysis and keeps variability local. Since we need to understand
and modify the internals of the analysis, we name the strategy the
white-box strategy.

For example, most variability-aware type checkers described in
the literature follow the white-box strategy [1, 7, 13, 25]. Such a
variability-aware type checker takes an AST with explicit variabil-
ity information and exploits variability during analysis. The type
checker knows in which configurations (described by a presence con-
dition) a method is declared, and may even reason about conditional
types of an expression. The analysis returns a list of conditional type
errors, describing exactly in which configurations each error occurs.

In a white-box strategy, we extend the analysis to reason about
variability. We perform analysis on shared code only once and only
split analysis where variability actually occurs locally (late split-

ting). Also, when the analysis yields the same subresult in different
configurations, the remaining analysis may be performed only once
on the common result (early joining). We present a variability-aware
interpreter using the white-box strategy in Section 3.

Black-box strategy. The white-box strategy has the disadvantage
that we need to modify an existing analysis (usually in a fundamental
and crosscutting way, affecting interfaces and internal data struc-
tures). Several researchers have investigated how to use existing
analyses out of the box instead [2, 23, 27]. They rewrite the product-
line implementation or rephrase the specification such that it can be
analyzed as a whole with an existing off-the-shelf tool. Typically,
we need a powerful existing analysis (such as model checking) that
can already deal with some form of variation. Since the analysis tool
is reused as is, we name the strategy the black-box strategy.

A typical example of the black-box strategy is to encode an anal-
ysis as specification for a model checker. Since model checkers are
already capable of dealing with different values of variables, we
can encode compile-time variability (as the #ifdef variability from

Figure 4 or the Cond and Opt elements in our AST) using normal
control-flow mechanisms of the host language (as if statements). A
model-checking tool then explores all feasible program paths (cov-
ering the paths of all configurations). As we encode compile-time
variability merely as additional run-time paths, the model checker is
able to reason about all configurations. If the model checker detects
a violation of the specification, we can reconstruct the erroneous
configuration from the problematic execution path. The efficiency
of the approach depends on the efficiency of the reused analysis.
Modern model checkers already contain sophisticated mechanisms
to deal with variations and many paths.

After introducing the basic strategies, let us adapt them for variability-
aware testing, first using a white-box strategy (Sec. 3), then with a
black-box strategy (Sec. 4).

3. WHITE BOX: A VARIABILITY-AWARE

INTERPRETER

As a first attempt to perform variability-aware testing, we imple-
mented an interpreter that is explicitly aware of variability and
represents variability locally in its data structures (white-box strat-
egy). For implementing the interpreter, we adopt patterns from prior
white-box variability-aware analyses.

A traditional textbook interpreter takes a code fragment, in the
form of an AST (without variability), as well as a store; executes
the code fragment; and returns an updated store with all variable
assignments. In contrast, our variability-aware interpreter takes an
AST with variability, a variability context, and a variable store;
executes it (covering the entire configuration space); and returns an
updated variable store. Let us go through these ingredients one by
one:

• AST with variability. We execute programs and program frag-
ments given as ASTs with variability, as described in Sec-
tion 2.1.

• Variability context. The variability context (vctx) describes
which part of the configuration space we are currently exe-
cuting. Like presence conditions, we represent the variability
context with a propositional formula. For example, true means
that we are analyzing all configurations, and X ∨ Y means
that we are analyzing all configurations in which feature X or
feature Y is selected. If the variability context is not satisfi-
able, we do not need to execute that code fragment, because
it cannot occur in any configuration. Typically, we aim at
executing code within a large variability context (describing
many products).

• Variable store. Where a traditional store maps names to values
(Map[String,Value]), a variable store maps names to condi-
tional values (Map[String,Cond[Value]]; so a variable can have
different values in different configurations). We store variabil-
ity as local as possible (cf. Sec. 2.2). If we were dealing with
more complicated values, such as objects or functions, we
would incorporate variability into the value representation,
for example, fields of an object would store conditional val-
ues. We show the implementation of our variable store and
corresponding access functions in Figure 5 (top).

3.1 Implementation

In Figure 5, we sketch a Scala implementation of our variability-
aware interpreter. For illustration, we also show three example traces
in Figure 6.

First, the interpreter does not perform any computation if the
variability context is not satisfiable, as determined with a SAT solver
(Line 10).

1 type Store = Map[String, Cond[Value]]

2 def updateStore(store: Store, vctx: FeatureExpr,

3 n: String, v: Cond[Value]): Store =

4 store + (n -> Choice(vctx, v,

5 store.getOrElse(n, One(VUndefined()))).simplify)

6 def lookupStore(store: Store, n: String): Cond[Value] =

7 store.getOrElse(n, One(VUndefined()))

8 def executeStatement(stmt: Stmt, vctx: FeatureExpr,

9 store: Store): Store =

10 if (!vctx.isSatisfiable()) store else stmt match {

11 case Assign(n, e) =>

12 val rhs: Cond[Value] = evalExpr(e, vctx, store)

13 return updateStore(store, vctx, n, rhs)

14 case Block(stmts) =>

15 for (Opt(fs, stmt) <- stmts)

16 store = executeStatement(stmt, vctx∧fs, store)

17 return store

18 case If(e, s) =>

19 val exprValue: Cond[Value] = evalExpr(e, vctx, store)

20 val x: FeatureExpr = whenTrue(exprValue)

21 return executeStatement(s, vctx∧x, store)

22 case While(e, s) =>

23 var exprValue: Cond[Value] = evalExpr(e, vctx, store)

24 var x: FeatureExpr = whenTrue(exprValue)

25 while (x.isSatisfiable()) {

26 store = executeStatement(s, vctx∧x, store)

27 exprValue = evalExpr(e, vctx, store);

28 x = whenTrue(exprValue)

29 }

30 return store

31 }

32 def whenTrue(v: Cond[Value]): FeatureExpr = v match {

33 case One(VInt(v)) if (v!=0) => True

34 case One(_) => False

35 case Choice(f, a, b) => (f∧whenTrue(a))∨(¬f∧whenTrue(b))

36 }

37 def evalExpr(ce: Cond[Expr], vctx: FeatureExpr,

38 store: Store): Cond[Value] =

39 condFlatMap(ce, vctx, (f, e) => evalExpr(e, f, store))

40 def evalExpr(e: Expr, vctx: FeatureExpr,

41 store: Store): Cond[Value] = e match {

42 case Var(n) => lookupStore(store, n)

43 case Int(v) => One(VInt(v))

44 case Neg(e) => condFlatMap(evalExpr(e, vctx, store), vctx,

45 { case (_, VInt(v)) => One(VInt(-v)) })

46 ...

47 }

Figure 5: Variability-aware interpreter for the WHILE lan-

guage, encoding variability in all execution steps (excerpt)

When interpreting an assignment (Line 11), we first evaluate
the expression to a conditional value in the current variability con-
text, then we store the value. If we execute the statement only in
a restricted variability context, we also only store the value in that
context.

The case for block statements (Line 14ff) illustrates how we re-
strict the variability context on optional statements. We execute each
statement with a variability context restricted by the presence con-
dition fs of that statement. If the statement has presence condition
true, the variability context remains unchanged.

To evaluate a conditional expression (Lines 37ff), we evaluate
every alternative expression separately in the corresponding variabil-
ity context (Line 39; using auxiliary function condFlatMap defined
in Figure 2). Variables are simply looked up in the store (Line 42),
negations are applied to all alternative values (Line 44; also using
auxiliary function condFlatMap). Notice, how we map over condi-
tional values to preserve potential variability; if the AST does not
contain variability, the interpreter behaves like a traditional inter-
preter.

As a novel concept, we use auxiliary function whenTrue when

a=1

a=1

a=1

b=true

b=true

if (a<3)

a=2

b=true

a=a+1

if (b)

a=0

b=true

a=0

a=1

a=1

if (a<3)

a=2

a=a+1

a=2

b=false

b=false

if (b)

a=1

true: a=1

a=1

b=Choice(FOO, true, ⊥)

FOO: b=true

true: if (a<3)

a=2

b=Choice(FOO, true, ⊥)

true: a=a+1

a=2

b=Choice(FOO, true, false)

¬FOO: b=false

true: if (b)

a=Choice(FOO, 0, 2)

b=Choice(FOO, true, false)

FOO: a=0

a=Choice(BARvFOO, 0, 2)

b=Choice(FOO, true, false)

BAR: a=0

Configuration

FOO, BAR

Configuration

BAR
Variability-Aware

(all configurations)

a=0

b=true

b = true

a=0

b=true

b = true

a=Choice(BARvFOO, 0, 2)

b=Choice(BARvFOO, true, false)

true: ď = …

a=0

b=false

a=0

a=0

b=false

a=0

Figure 6: Trace of the example of Figure 4 for two configura-

tions (left and middle) and variability aware (right). Indenta-

tion denotes scope; the edge labels denote the variability con-

text; unchanged stores omitted

executing if and while statements (Lines 18–30). First, we evaluate
the expression to a conditional value. Now, we need to decide when
to execute the body. We want to execute it in all configurations in
which the expression’s value is true, but only once. To this end, with
whenTrue, we determine a presence condition describing in which
configurations the value is true. Subsequently, we execute the body
only in the restricted variability context of those configurations in
which the expression is true. Note that if the expression’s value is
false in all configurations, whenTrue will also return an unsatisfiable
variability context false, so the body is never actually executed
(Line 10).

Finally, the variability context makes it straightforward to deal
with external specifications of valid feature combinations, as typi-
cally described in a variability model. We specify valid configura-
tions as a propositional formula and simply pass the formula as the
outermost variability context. As a consequence, the algorithm will
not execute code related only to invalid feature combinations.

3.2 Discussion

As many existing white-box variability-aware analyses, our inter-
preter incorporates variability locally in internal data structures (e.g.,
the store and intermediate values), which facilitates late splitting
and early joining (cf. Sec. 2.3).

First, as long as possible, we execute the program with a single
variability context, even in conditionals and loops. We split the
execution late, only when we actually encounter variability locally
in the AST or store. In our example in Figure 4, we execute the first
statements only once, even after conditional assignments in Lines 3
and 8, as long as those assigned values are not used. In Figure 6,
we see that we never execute any statement of our example twice.
In contrast, with a brute-force strategy, we would first generate all
products and then execute the initial statements in every product.
The local representation of variability ensures that we reason about
variability only for variables that actually have different values.

Furthermore, we can join intermediate results (with auxiliary
function simplify, not shown). For example, when we assign 0
to a again in Line 13 (Fig. 4), we store only distinct values of a

and their corresponding conditions (i.e., we simplify Choice(BAR,

0, Choice(FOO, 0, 2)) to Choice(BAR∨FOO, 0, 2)). If the variable is
assigned to the same value in all configurations, we can join the

0 10 20 30 40 50 60 70

0
2

4
6

8
1

0

Configurations

S
p

e
e

d
u

p
 o

ve
r

B
ru

te
 F

o
rc

e

Figure 7: Speed-up of the variability-aware interpreter over

a brute-force approach on 100 small, generated product lines

(break even at the gray line)

intermediate result and store only the single value. Joining can
reduce effort in subsequent computations, but executing the join
also requires computation effort, so there is a trade-off. However, we
leave an empirical evaluation of how relevant joins are in practice
for future work.

We have not explored limitations in detail yet. While reflection
seems conceptually possible to support (operating on the variable
structure of the program), I/O poses a problem. If we cannot provide
a variability-aware test environment, we me might need to perform
testing sequentially from the first occurrence of I/O. The WHILE

language does not support I/O; hence, we leave also this problem
for future work.

3.3 Experience

We have implemented a variability-aware interpreter for the WHILE

language, with additional support for procedures. We can parse
WHILE programs with preprocessor directives, like those in Fig-
ure 4, using the TypeChef variability-aware parser framework [14].
We are using this implementation to experiment with different strate-
gies (e.g., granularity, different variability representation, when to
attempt to join results), and to get a better understanding of which
kinds of product-line implementations can be executed quickly and
for which the execution resembles the brute-force approach (or is
even slower due to the additional SAT solving).

We have developed a generator for random product lines written
in the WHILE language and have implemented a testing frame-
work following the pattern outlined in Figure 1. We generate all
distinct products from our product line and compare the result of
interpreting them without variability to the result of our variability-
aware interpreter. Specifically, we do not generate unit tests, but,
in a form of differential testing, we simply compare the stores fol-
lowing the equivalence in Figure 1 (4a, 4b). In Figure 7, we show
how the variability-aware interpreter improves performance over
the brute force approach for 100 generated product lines with at
most 6 features (for larger product lines, we were unable to reliably
generate random products that terminate, we leave this for future
work). Absolute times are within few milliseconds; we gathered
times as average from three runs. We can see an overhead for the
variability-aware interpreter, but also that it mostly outperforms the
brute-force analysis as the product-line size increases.

The implementation, which we currently extend with functions
and objects, is available together with the test framework at https:
//github.com/puschj/Variability-Aware-Interpreter.

1 bool FOO = randomBoolean(), BAR = randomBoolean();

2 int a; bool b;

3 a = 1;

4 if (FOO)

5 b = true;

6 if (a < 3)

7 a = a + 1;

8 if (!FOO)

9 b = false;

10 if (b)

11 a = 0;

12 if (BAR)

13 a = 0;

14 b = (BAR || FOO ? true : false);

15 a = 100 / a;

Figure 8: Code example with variability encoding

4. BLACK BOX: VARIABILITY ENCODING

In addition to implementing a variability-aware interpreter from
scratch, we also experimented with performing variability-aware
testing with existing tools (black-box strategy). We encoded variabil-
ity such that we can use an off-the-shelf model checker—JavaPathfinder

(JPF) and its extension jpf-bdd [30] in our case—to run test cases for
all configurations. We use the model checker to execute the program
paths of all valid configurations. This corresponds to seperate testing
of all configurations in the brute-force approach.

Since model checkers are already capable of dealing with differ-
ent values of variables, we encode compile-time variability using
normal control-flow mechanisms of the host language. For example,
we rewrite the code from Figure 4 as shown in Figure 8 (Lines 1–
14). We replace preprocessor macros with global Boolean vari-
ables (called feature variables; non-deterministically initialized) and
#ifdef directives with if statements or conditional expressions. Such
rewrites can be performed mechanically; then, we can proceed with
an existing analysis on traditional ASTs without variability. In the
general case, the encoding can be trickier, but it is always possible
to encode alternatives by renaming or code replication at statement
level, as explored elsewhere [2, 13, 27]. Even a variability model
can be encoded [2, 27]. We call the rewritten product a product-line

simulator (a.k.a. meta-product [27]).
After this rewrite, we use JPF to execute test cases. Where the test

case on a single product would run deterministically, we introduce
nondeterminism through feature variables. Still, JPF explores all
feasible program paths of the simulator and gives warnings if one of
the paths would result in runtime errors. To illustrate this behavior,
we introduced a division-by-zero bug that only occurs when features
FOO or BAR are selected (Fig. 8, Line 15). The model checker finds
this bug in paths that assign true to FOO or BAR.

Using a model checker for the verification of the simulator is re-
warding, because in model checkers “unknown” values for variables
are a common concept and model checkers provide out-of-the-box
support. However, by using model checking, we limit the set of
product lines that can be verified with the approach. For example,
we are not able to verify product lines that contain (potentially)
endless loops, need user interaction, or need file or network access.
For most of these issues, there is advanced research, but we leave
those for future work.

4.1 Gray-box extensions: jpf-bdd

Using an off-the-shelf model checker, such as JPF, ensures that
errors in all configurations are found. However, in its standard con-
figuration, JPF does not take advantage of the variability information
in the product simulator. In the white-box approach, we knew that

variability was always expressed in propositional formulas, and we
could reason about it with SAT solvers and attempt joins. Ideally,
also for model checking, we want an exploration strategy that ex-
ecutes a path until it encounters variability; then it should split the
path, execute both alternatives, and join the paths again as soon as
possible. In the standard configuration, JPF splits paths quite early
(when the variable is assigned to the “unknown” value). Also, stan-
dard JPF never joins paths after variability-related splits, because,
once it has chosen a value for a feature variable, that value is part
of the program state. Because each path has a different choice of
feature values, all paths have at least one difference in their states,
and different states can never be joined. That is, we split late, but
we never join. In the worst case, this results in one execution path
per configuration, much like in the brute-force approach.

Fortunately, JPF is extensible. For product-line verification, we
developed jpf-bdd [30], which enables joining by separating feature
variables from the remaining program state. Feature variables are
stored in separate binary decision diagrams (BDDs). Because the
program states do not contain the feature values any more, JPF can
split paths later and join more states (the extension joins the BDDs
accordingly), so potentially fewer program paths are executed.

In addition, a late splitting optimization in jpf-bdd, which is also
common in other model checkers, chooses the value for feature
variables at the last possible point of (execution) time. In our ex-
ample, this means to store an unknown value for BAR in Line 1
and to choose the concrete value (true or false) only in Line 14.
Lines 4–13 do not depend on BAR, so they only have to be executed
twice (once for every assignment of FOO). This simple optimiza-
tion (late splitting) saves nearly half of the analysis time compared
to a brute-force approach. Still, JPF always splits the entire state,
which corresponds to a store of the form Cond[Map[String,Value]],
and cannot take advantage of sharing between contexts as we do in
our interpreter (using Map[String,Cond[Value]]). Similarly, jpf-bdd

can join stores, but only if they are identical, except for feature
variables.

For more information on jpf-bdd and on performance improve-
ments, we refer to a recent workshop paper [30].

By extending JPF, we diverge from the pure black-box strategy
and actually extend an existing tool. We still reuse most existing
work. Hence, we call this a gray-box strategy. Actually, jpf-bdd was
developed independently of and prior to our testing efforts and is
not specific to product lines. Put differently, we reused the existing
tool jpf-bdd as black-box without further modifications. However,
the fact that the extension was developed by the second author gives
us some perspective on the effort of specific extensions.

4.2 Experience

To gain experience with JPF for variability-aware testing, we rewrote
the Graph Product Line [19] as a product-line simulator (as ex-
plained above). The Graph Product Line is a frequently used bench-
mark for product-line technology, a product line with 15 features,
giving rise to 42 configurations, written in about 1000 lines of Java
code, and (slightly) more realistic than the generated WHILE pro-
grams above. We attempted to detect 10 bugs carefully introduced
by Cohen et al. for prior work on testing with sampling strategies [5].
One of the defects introduces an endless loop, so it cannot be found
with JPF. Of the remaining defects, two defects already showed up
with exceptions; for the others, we encoded corresponding specifi-
cations using runtime assertions, analogue to how xUnit unit tests
indicate a failed test with an exception. We executed tests with two
provided test graphs.

We built 10 variants of the product-line simulator (9 variants with
one defect each, and 1 variant without defects). As a baseline, we

tested each of the 42 configurations of each variant in a brute-force
fashion in a standard Java execution environment. Next, we executed
JPF (henceforth called jpf-core) and our extension jpf-bdd on all 10
variants. We report the arithmetic mean of three executions and the
corresponding standard deviation, with 2 GB RAM on two 1 GHz
cores of an Opteron QuadCore machine.

Running tests in the brute-force strategy with Java took 13 ±

0 seconds per product line. In contrast, jpf-core needs 167 ± 50
seconds, jpf-bdd 14± 1 seconds per product line.

First, surprisingly, jpf-core is much slower than the brute-force
approach. However the difference can be explained because the
standard Java virtual machine is more optimized than the virtual-
machine part of JPF (which runs a custom byte-code interpreter
written in Java). Executing the brute-force approach with the JPF
virtual machine (deterministic, without performing additional model-
checking overhead) requires 230 ± 7 seconds per product line,
which indicates a conceptual speed-up. As the brute-force approach
behaves exponentially, we expect higher speed-ups in larger product
lines.

Second, jpf-bdd outperforms jpf-core by an order of magnitude,
because it can join many paths. In the Graph Product Line, joins are
particularly effective, because several features have no persistent
influence on the program state. For example, feature Cycle executes
searches for cycles in the graph, prints the result, but does not change
any variables shared with other features; so, jpf-bdd joins where
jpf-core can not.

Though we are at an early stage, our experiment is encouraging
to look at variability-aware testing with (extended) model checkers.

5. RELATED WORK

Product-line testing. As in all other domains, testing has been rec-
ognized as a crucial topic during product-line development. General
strategies, such as those discussed by Pohl et al. [22], emphasize
testing features in isolation (for example, unit tests on plug-ins) and
preparing test cases that should be run on each generated product.
Testing the integration of features remains hard, though. Pohl et al.
distinguish a brute-force strategy from a sampling strategy and an
application-only strategy (only products generated for customers
are tested). They encourage reuse of test artifacts, but they have no
means of testing all configurations of the product line, other than
brute-force.

Along these lines, many researchers have investigated suitable
sampling strategies according to some coverage criteria [5, 8, 18,
20, 21, 24]. A typical strategy is sampling with n-way feature cover-
age, such that each n-tuple of features appears in at least one tested
product [20]. Especially, 2-way feature coverage is frequently used,
since it seems to strike a good balance between number of products
that need to be tested and detection of interaction problems [16].
Nonetheless, sampling prevents establishing properties about the
entire product line.

Another strategy to scale product-line testing is to determine
which test cases need to be run in which configurations, to reduce
the number of test executions. Kim et al. have used static analysis
to conservatively approximate which test cases are influenced by
which features [15]. Shi et al. have used symbolic execution to an-
alyze the product line to reduce the number of products that need
to be tested [24]. Cichos et al. explore a strategy to generate tests
to achieve coverage for an entire product line [8], and Lochau et
al. explore test case generation such that products can be tested
incrementally [18]. All these approaches analyze the whole product
line (or its test model) in a variability-aware fashion to reduce the
number of tests, but the tests themselves are still executed on indi-
vidual products. In contrast, by construction, our interpreter and our

encoding with model checking cover the entire product line and split
test execution only when needed, without dedicated prior analysis.

Variability-aware analysis. Although a rather recent research
topic, many researchers have investigated strategies for variability-
aware analysis for parsing (white-box [14]), type checking (white-
box [1,7,13,25] and black-box [23]), model checking (white-box [9,
17] and black-box [2, 23]), static analysis (white-box [4] and black-
box [3]), and theorem proving (black-box [27]). For a detailed
overview of that field, we defer the interested reader to a recent
survey [26].

The specific style of writing a variability-aware analysis by map-
ping over conditional data structures was inspired by variational

programming by Erwig and Walkingshaw [11, 12]. They also pre-
sented and formalized a type system for the lambda calculus in this
style [7]. Our encoding differs from theirs in that we encode choices
and feature models with arbitrary propositional formulas, instead
of using atomic feature names defined within the conditional data
structure. This difference makes our approach potentially simpler
and more flexible, but also more expensive to compute (we rely on
SAT solvers or BDDs).

Our interpreter implements a form of mixed concrete/symbolic
execution—see [6] for an overview of that field. Conceptually, in the
variability-encoded version, we consider all feature variables as sym-
bolic and execute the remaining program with concrete values. We
have not yet experimented with existing tools for symbolic execution.
They seem promising as black-box tools for the variability-encoding
strategy. There is a rich and advanced collection of tools to explore
for product-line testing in future work.

6. DISCUSSION AND CONCLUSIONS

We have investigated variability-aware testing with a white-box strat-
egy (variability-aware interpreter), a black-box strategy (variability
encoding for JPF), and even a gray-box strategy (variability encod-
ing for jpf-bdd). In all cases, we run a test case on all configurations
of a product line at once, as opposed to a brute-force or sampling
strategy. Although it is too early to draw sound conclusions, we want
to share our observations and encourage feedback at this early stage.
We have gained interesting insights into the spectrum between white-
box, gray-box, and black-box analyses regarding implementation
effort and flexibility.

Effort. The white-box strategy obviously requires more effort to
implement than the black-box strategy. We need to write our own in-
terpreter from scratch or significantly rewrite an existing interpreter,
because variability pervades all data structures and execution steps.
While writing interpreters is well understood, writing an interpreter
for a full language such as Java, C, or JavaScript requires significant
effort. In contrast, reusing existing and optimized tools in the black-
box strategy allowed us to experiment directly with Java code with
much less effort.

Flexibility. The white-box strategy is more flexible than the black-
box strategy. The black-box strategy depends very much on the
power of the existing analysis and how efficiently it deals with
variability. We have to ‘hope’ that their optimizations fit to our
use cases (test case execution despite variability in our case). The
variability encoding does not necessarily have the shape of typical
programs for which general-purpose analysis may be optimized.

Product-line analysis is special in that variability follows only few
restricted patterns, reducible to propositional formulas and Boolean
satisfiability problems. Those specifics are usually not considered
by the black-box tools or might even get lost in the encoding (i.e.,
analyzing arbitrary expressions in if statements is much harder than
analyzing presence conditions in choice nodes). By extending exist-
ing tools (gray-box strategy; jpf-bdd in our case), we can attempt to

1 int a, c, res;

2 #ifdef FOO

3 a = 3;

4 #else
5 a = 2;

6 #endif
7 c = 1;

8 res = 1;

9 while (c < a) {

10 c = c + 1;

11 res = res * c;

12 }

13 assert(res < 10);

a=Choice(FOO, 3, 2)
c=1

res=1

true: a=…; c=1; res=1

true: while (c<a)

a=Choice(FOO, 3, 2)
c=2

res=2

true: c=c+1; res=res*c

true: while (c<a)

a=Choice(FOO, 3, 2)
c=Choice(FOO, 3, 2)
res=Choice(FOO, 6, 2)

FOO: c=c+1; res=res*c

FOO: while (c<a)

false: c=c+1; res=res*c

true: assert...

Figure 9: Example program calculating the factorial of a and

the corresponding execution trace of our variability-aware in-

terpreter (unchanged stores omitted)

add some product-line specific optimizations. In the white-box strat-
egy, however, we have full control over the execution and how to
store variability internally. We can weigh where and how to encode
variability (e.g., Cond[Map[T, U]] vs. Map[T, Cond[U]]), when to join
results, and so forth. We exploit that variability is always expressed
with propositional formulas, allowing more specific analyses, such
as the one we performed with whenTrue.

We illustrate the difference in internal behavior between our
variability-aware interpreter and the strategy of JPF with a con-
structed favorable example of the factorial function in Figure 9. The
interpreter attempts to execute the body of the while loop three times.
The first time with variability context true, that is, all values are
updated together. Only in the second iteration, the body is executed
in a restricted context; so, all values are updated conditionally. The
final iteration then has variability context false and is not executed
at all. This is an instance of storing variability locally and splitting
as late as possible. In the same example, JPF (and jpf-bdd) sepa-
rately computes the while loop 1 and 2 times without any sharing.
This constructed example can demonstrate significant performance
differences between both strategies, when using larger values for a.

We are still exploring different strategies within the spectrum
between pure white-box and pure black-box approaches. The gray-
box strategy appears promising, although extending existing black-
box tools depends on predefined interfaces. Also experimenting
further with white-box implementations should yield useful insights
in the specifics of product-line testing. As next step, we want to
grow our interpreter to support a real language. We are still at the
beginning of the road to variability-aware testing and encourage
others to join this path.

Acknowledgments. This work is supported by ERC grant ScalPL
#203099 and the DFG grants AP 206/2, AP 206/4, and LE 912/13.
We thank Myra Cohen for sharing the GPL bug scenarios.

7. REFERENCES

[1] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type safety for
feature-oriented product lines. Automated Software Engineering,
17(3):251–300, 2010.

[2] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer.
Detection of feature interactions using feature-aware verification. In
Proc. Int’l Conf. Automated Software Engineering (ASE), pages
372–375. IEEE, 2011.

[3] E. Bodden. Position paper: Static flow-sensitive & context-sensitive
information-flow analysis for software product lines. In Workshop on

Programming Languages and Analysis for Security (PLAS), 2012.

[4] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba. Intraprocedural
dataflow analysis for software product lines. In Proc. Int’l Conf.

Aspect-Oriented Software Development (AOSD), pages 13–24. ACM,

2012.

[5] I. Cabral, M. B. Cohen, and G. Rothermel. Improving the testing and
testability of software product lines. In Proc. Int’l Software Product

Line Conference (SPLC), volume 6287 of LNCS, pages 241–255.
Springer, 2010.

[6] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser. Symbolic execution for software testing in
practice: Preliminary assessment. In Proc. Int’l Conf. Software

Engineering (ICSE), pages 1066–1071. ACM, 2011.

[7] S. Chen, M. Erwig, , and E. Walkingshaw. Extending type inference to
variational programs. Technical report (draft), School of EECS,
Oregon State University, 2012.

[8] H. Cichos, S. Oster, M. Lochau, and A. Schürr. Model-based
coverage-driven test suite generation for software product lines. In
Proc. Int’l Conf. Model Driven Engineering Languages and Systems

(MoDELS), volume 6981 of LNCS, pages 425–439. Springer, 2011.

[9] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model checking lots of systems: Efficient verification of temporal
properties in software product lines. In Proc. Int’l Conf. Software

Engineering (ICSE), pages 335–344. ACM, 2010.

[10] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,

Tools, and Applications. ACM Press/Addison-Wesley, New York,
2000.

[11] M. Erwig and E. Walkingshaw. The choice calculus: A representation
for software variation. ACM Trans. Softw. Eng. Methodol. (TOSEM),
21(1):Article 6, 2011.

[12] M. Erwig and E. Walkingshaw. Variation programming with the
choice calculus. In Proc. Int’l Summer School on Generative and

Transformational Techniques in Software Engineering (GTTSE), 2011.

[13] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. ACM Trans. Softw. Eng. Methodol.

(TOSEM), 21(3), 2012.

[14] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-aware parsing in the presence of lexical macros
and conditional compilation. In Proc. Int’l Conf. Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA),
pages 805–824. ACM, 2011.

[15] C. H. P. Kim, D. S. Batory, and S. Khurshid. Reducing combinatorics
in testing product lines. In Proc. Int’l Conf. Aspect-Oriented Software

Development (AOSD), pages 57–68. ACM, 2011.

[16] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault
interactions and implications for software testing. IEEE Trans. Softw.

Eng. (TSE), 30:418–421, 2004.

[17] K. Lauenroth, K. Pohl, and S. Toehning. Model checking of domain
artifacts in product line engineering. In Proc. Int’l Conf. Automated

Software Engineering (ASE), pages 269–280. IEEE, 2009.

[18] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity. Incremental
model-based testing of delta-oriented software product lines. In Proc.

Int’l Conf. Tests and Proofs (TAP), volume 7305 of LNCS, pages
67–82. Springer, 2012.

[19] R. Lopez-Herrejon and D. Batory. A standard problem for evaluating
product-line methodologies. In Proc. Int’l Conf. Generative and

Component-Based Software Engineering (GCSE), volume 2186 of
LNCS, pages 10–24. Springer, 2001.

[20] S. Oster, F. Markert, and P. Ritter. Automated incremental pairwise
testing of software product lines. In Proc. Int’l Software Product Line

Conference (SPLC), volume 6287 of LNCS, pages 196–210. Springer,
2010.

[21] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. le Traon. Automated
and scalable t-wise test case generation strategies for software product
lines. In Proc. Int’l Conf. Software Testing, Verification, and

Validation, pages 459–468. IEEE, 2010.

[22] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line

Engineering: Foundations, Principles and Techniques. Springer,
Berlin/Heidelberg, 2005.

[23] H. Post and C. Sinz. Configuration lifting: Verification meets software
configuration. In Proc. Int’l Conf. Automated Software Engineering

(ASE), pages 347–350. IEEE, 2008.

[24] J. Shi, M. Cohen, and M. Dwyer. Integration testing of software
product lines using compositional symbolic execution. In Proc. Int’l

Conf. Fundamental Approaches to Software Engineering, volume

7212 of LNCS, pages 270–284. Springer, 2012.

[25] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of
product lines. In Proc. Int’l Conf. Generative Programming and

Component Engineering (GPCE), pages 95–104. ACM, 2007.

[26] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and
G. Saake. Analysis strategies for software product lines. Technical
Report FIN-004-2012, School of Computer Science, University of
Magdeburg, 2012.

[27] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-based
deductive verification of software product lines. In Proc. Int’l Conf.

Generative Programming and Component Engineering (GPCE).
ACM, 2012.

[28] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. A
specification-based approach to testing software product lines. In Proc.

Europ. Software Engineering Conf./Foundations of Software

Engineering (ESEC/FSE), pages 525–528. ACM, 2007.

[29] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model
checking programs. Autom. Softw. Eng., 10(2):203–232, 2003.

[30] A. von Rhein, S. Apel, and F. Raimondi. Introducing binary decision
diagrams in the explicit-state verification of Java code. In Proc. Java

Pathfinder Workshop, 2011.

