Polyhedral Loop Parallelization:
The Fine Grain

Peter Faber
Fakul&t fur Mathematik und Informatik
Universi@t Passau, D-94030 Passau, Germany

Martin Griebl
Fakul&t fur Mathematik und Informatik
Universitat Passau, D-94030 Passau, Germany

Christian Lengauer
Fakultat fur Mathematik und Informatik
Universitat Passau, D-94030 Passau, Germany

Abstract

A safe basis for automatic loop parallelization is the petjfon model which represents
the iteration domain of a loop nest as a polyhedro'in However, turning the parallel loop
program in the model to efficient code meets with severakaibess, due to which performance
may deteriorate seriously — especially on distributed nmgraechitectures. We introduce a
fine-grained model of the computation performed and showth@model can be applied to
create efficient code.

1 Introduction

In contrast to traditional code analysis and transfornmatithat view loops as unpredictable con-
trol structures, the polyhedron model considers diffekahties of loop counters (or indices) in

different loop iterations as a set with loop bounds as r&stris in the corresponding dimensions
of Z™ [Fea92, Len93].

In this work, we describe a fine-grained model of computatti@ employs the polyhedron model
in order to create a simple description of the calculatiorigened by a loop program and show
how this fine-grained model can be used to create efficierg.c&kction 2 describes the basic
model, Section 3 shows how to obtain a minimized representaf the computation performed,

and Section 4 describes how to determine suitable transtomns.

2 The Basics

In the polyhedron model, a loop nest is modelled as a muttiedisional space: each loop spans
one dimension and, for technical reasons, also every |labgp@endent parameter, i.e., every sym-

bolic constant in the program fragment considered, spaasionension. In addition, we always
add two artificial, program independent parameters:

e n, represents the constanttreatingl as a parameter enables us to use so-called homoge-
nous coordinates in order to represent affine expressiolisess expressions in a vector
space that has an additional dimension for this parameter.

e 1., Must be allowed to be arbitrarily large; especially, it igyer than any value of a loop
counter in the program fragment.

Thus, the iteration domain — or index space of a loop nest xpsessed as a polyhedron in
Z"t™ wheren is the number of loops, and is the number of all (program specific or program
independent) parameters.

As usual, the dimensions @™ are enumerated as follows:

e The firstn dimensions oZ" ™™ correspond to the loop counters in the textual order in which
the loops appear in the program text.

e The nextm—2 dimensions correspond to the program specific parameters.
e The last two dimensions correspondig andn;, in this order.

The usual property in the polyhedron model is that the ondevhich points in a polyhedron are
to be enumerated (according to the modelled code fragmeetitpilexicographic order di* (for

a k-dimensional polyhedron). This is guaranteed by assogjdtiei-th loop in the program text
with thei-th dimension of the polyhedron.

In order to model the flow of data, and thus the computatiofiopsied, dependence analysis
algorithms consider memory accesses during program égacuihe basic constructs are the
read_Aandwri t e_A operations — read and write accesses to an a&ra#&s mentioned above,
these accesses follow the form

A(f(i7j7n7m>nooa nl))

in the program text, wherg is a linear function in the indices (loop counter variableg) the
(loop independent, but program specific) parameters, and inn., andn;.

For an instancewise approach, we distinguish betweerréliffeun-time instances, i.e., different
executions of the same access for different values of sndiag loop indices.

2.1 Going Fine Grain

In this work, we aim at constructing a code fragment that ;aeXecuted as efficiently as possible
on some given system. For this purpose, we eliminate as neslundant calculations as possible
and then try to produce efficient code from the descriptiothef remaining calculations to be

performed. In order to obtain an accurate description ot#ieulations of the code fragment, we
need a precise model of the program execution; i.e., ourigt@imodel the complete execution of
a code fragment by polyhedra and dependence relations éetivese polyhedra. In our refined

model, we want to maintain the property that the sequent@nam execution order corresponds
to the enumeration of the polyhedron in lexicographic arder

The structures we use for this purpose are generalizatihe @onventional polyhedron model.

Linear expressions are considered atomic, i.e., they argutable at essentially no cost, and
represent a well defined value that only depends on the pfatteeipolyhedron where they are
evaluated. We work on expressions, which are compositibogarators and function calls. Thus,

we generalize the concept of read and write accesses to doeiteon of operators on a given

system.

Definition 2.1 LetF be a set of function symbols. In addition to procedure calld aser defined
function names, the following symbols are elements:of

+,-,*,/,max,mn,... intrinsic functions.

LaExpr A linear expression — considered atomic.
read.A Read access to an element of array
writeA Write access to an element of array

= Assignment operator.
Each function symbealp € F represents an operator that can be executed by the givesrsy3the
function symbols are associated with an input arity by a fiomz; : 7 — N and an output arity
by a functiona, : F — N, indicating the number of input, and output arguments, eetipely.
Thus the arity of a function symbab is a;(op) + a(op). Without loss of generality, we assume alll
input arguments obp to be the firsk; (op) arguments and the output arguments to be arguments
numbera;(op) + 1 to a;(op) + ae(op).

Next, we need to identify each textual occurrence of eacttioim symbol in the program fragment
to be considered. We use integer numbers for the identificatind we want these numbers to
correspond to the sequential execution order of a single ikeoation in the program fragment.

Definition 2.2 (Occurrence) With the operator symbolg defined in Definition 2.1 and the spe-
cial operator symboj as a sequence operator for statements, a code fragmentwyitsa@ontrol
statements can be viewed as a termfuo {; }. Each points in the program text corresponds to
a (sub)term and is assigned a unique integer nuntbeNr(s), its occurrence, such that:

o If s =; (i1,12), thenOccNr(i;) < OccNr(iz), i.e.,OccNr respects the order given by the
sequential composition operator.

e If s =o0p(i1,...,4,01,...,05) Withop € F, input arguments,, (m € {1,...,;}), and
output arguments,, (n € {1,...,k}), the occurrences are ordered in the following way:

— OcceNr(iy,) < OceNr(s) < OceNr(oy), i.e., OccNr respects that an operator is
executed only after its input arguments are evaluated, afdrb its output arguments
can be written.

— All 0, have the formv,, = write_A(o,1,...,0,,); the o, , are enumerated such
that: OccNr(o,,4) < OccNr(s), i.e., all memory addresses for the output variables
are computed before the operator is executed.

In order to re-establish the calculation to be performed,deéinel’() to be the inverse mapping
of OceNr().

For situations in which we are not interested in the subtefanguments) of a point in the program,
we define amapping : N — F that maps each occurrence to the corresponding functioteym
in the program text, such thati : i € N: (I'(:) = op(ey, ..., en)) = E(i) = op).

For the determination of suitable numbers for the occuesnwe use a syntax tree, in which
control structures govern their bodies as well as the argtsrteat control the execution, while
function and subroutine calls govern their arguments [A§U8raversing this tree following an
appropriate pattern, we can assign an increasing numbercasrence to every node so that the
execution order of a single loop iteration is defined by thdeopn the occurrences.

Note that, for modelling the execution of a point in the peogrtext itself, we still have to differ-
entiate between different argument positions, since eagingent position of an output argument
represents another “currently calculated value”. For phigose, we introduce one more integer
number:

Definition 2.3 With each occurrence, we associate the set of operand numbers

¥(0) = {—ai(E(0)),-.-,20(E(0)) — 1}
The execution of a single occurrence corresponds to the eration of its operand numbers in
increasing order:

1. A negative operand numberj corresponds to loading thgth input argument of the oper-
ator to be executedq(0)) onto the stack — or into a register, if appropriate.

2. Operand numbeb represents the execution of the operator itself — by caltifignction or
a processor instruction —, and storing back the return value

3. A positive operand numberrepresents the storing of th@ + j)-th output value of the
operator?

Now we can model all the operations the system has to perferegleanents of a polyhedron.
Therefore, we build polyhedra occurrence instanceshich have two dimensions more than the
index space. These dimensions represent variables foctherence and the operand number:

Definition 2.4 (Occurrence instance)Let o be an occurrence surrounded byloops within a
code fragment containing: parameters (including the program independent paramgtevge
call any instance ob, enumerated by the loops, an occurrence instance.

Let P be the(n + m)-dimensional polyhedron that represents the index spatteedbop nest con-

taining o. We represent an occurrence instance as a veetef (ai, ..., Qn1m+2) € Zrtmt2,
such that
(Q1,.v oy Qny Qg 3, Qnpmy2) € P
Qny1 = O

ante € Y(o)

1The first output value is the one with operand nunhewrhich is the return value of the expression.

We denote the projection of an occurrence instanct coordinatesl, ..., n (the loop index
vector),n + 1 (the occurrence) and + 2 (the operand number) witindes(a), Occ(), and
Op(«), respectively.

Additionally, we define the-argument ofy, p, () = (a1, ..., Qn, 1, 7y At 3, - -+ y Cpm+2)-

As described above, we assume that there is a didange parametern,, that represents an
arbitrarily large value. This idea has been suggested bytkeafor his tool PIP [Fea03]. We use
this parameter in order to represent any occurrence instared a code fragment containing
loops andm parameters as am + m)-dimensional vector, no matter how many loops actually
surroundv = Occ(a). If occurrence is not surrounded by thieth loop of the code fragment, we
define thei-th component ok as

—ns if ois textually placed aboveth loop
o = .
nso If ois textually placed belovirth loop

Encoding the occurrence instances in that way ensuregihbbticographical order on occurrence
instances corresponds exactly to the execution order afdbgrrence instances in the (sequential)
program.

We define Ol as the set of all occurrence instances of the cageent under consideration.

Example 2.5 Figure 1 shows the set of occurrence instances for the faligpwode fragment

DO i =0, 1
B(i)=A+2*n
END DO

The parameter dimensions are ignored in this figure, the weage dimension reaches from bot-
tom to top, the operand dimension from left to right, and tidek dimension for, together with
the operand dimension, build the ground plane (operand- iaftimensions are shown slightly
skewed in order to fit into the figure). The arrows indicateatetence relations between a term
and its subterms (we will examine these dependences ireg@eatiail in Section 3).

2.2 A Word about Dependences

Dependences between memory accesses dictate theripeo
der in which the occurrence instances of a code fragmettt @m.sm
may be executed. We denote a flow dependence fresrizny
occurrence instanceeto § asa 6/ 3, and input, anti and read_a
output dependences as’ 3, o 6 3, anda 6° 3, respec- “en)

tively. 2
Dependence analysis algorithms, such as the onenrin-
troduced by Feautrier [Fea91], access instances asilin-

ear functions — so called h-transformations. An h-
transformation maps the index vector of a dependenqgl’aure 1: Occurrence instances of the

op

code fragment of Example 2.5.

target to its source. In our framework, an h-transformati@aps target occurrence instances to
their respective souurce occurrence instances. In ordeotiel the flow of data into and out of
the code fragment considered, we suppose that, for each/Arthere are dummy loops that as-
sign each valué\(i) to the array celA(i) itself. These dummy loops precede and follow the
considered program fragment. As a consequence, data flondtéram outside the considered
program fragment can be modelled as ordinary dependeraters.

Example 2.6 Consider the following code fragment (ignoring the dumnopk):

DOi =1, nn(10, m
DOj =i,i+n+5
! (o] (11 [2] [8] [e] [7] [3] [3] [4]
a (i, j) = ¢ + a (i-1, j)
END DO
END DO

Occurrences are written above the corresponding positiarthe program text in brackets. We
obtain the following flow dependence:

5f = {(<17]79 : nlaoanvmanlanoovnl)v (Z +n17j75 : n1707n7 mvnooanl)) |

1<i<min(9-ny,m—-n1),i<j<i+n+5-n;,n,=o00,n =1}
This dependence is represented by an h-transformation ffuvetioe scope):

hl : (i7j75'n1707n7m7n007n1) - (i_n17j79'nlaoanamanlanOO7n1)

3 Alternative Program Description

Informally, the central question of code placement is whepit the computation of an expression
in order to ensure that this computation is performed oniy i needed, and at the same time
avoid recomputations of the same value. Relevant data fltaniration is on the one hand which
computations have to be performed before an expressionecaarhputed, and on the other hand
which expressions share the same value. The technique wealsekere, which we call loop-
carried code placement CCP), is also described in some detail in earlier work togethign an
example and some timing results [FGLO1].

We restrict ourselves to the purely syntactic — but loogiedr— equivalence of expressions. As a
cost model, we employ the number of function calls and arétticroperations executed. Then we
minimize the amount of computations performed during thmglete execution of the loop nest
by replacing computations of already computed values kgydaokups.

For the sake of simplicity, we assume that all variablesahatvritten in the code fragment under
consideration are live — i.e., may be read — after executfdhai code fragment. Actually, live
variables can be deduced from the fact that dependencesimyipops originate from them.

Next, we define dependences between occurrence instaratedotimot just represent memory
accesses.

For flow dependences, the idea is that the application of@ifumor operator depends on its input
arguments, and the output arguments depend on the fungtigication. Formally: Given an
occurrence instance, with Op(ap) = 0 andI'(Occ(ag)) = f(e—1,...,e_j,€1,...,em), Where
e_1,...,e_jareonlyread, whileq, ..., e, are only written, and giveh+m occurrence instances
Oy], O, ...y Qi With Op(ay) = 0, Indes(a;) = Indes(ag), andl'(Occ(ay;)) = e; for
ie{-1l,...,—1,1,...,m}, we define:

(Vi:i€ ¥(Occ(ap)) : i< 0= po(ai)d! pi(an)) 1)
(Vi :i € ¥(Occlag)) : i >0 = pilag) 6 polas)) (2)

We call these textually carried dependences defined by @)X2nstructural dependences and
denote them by. Using this definition, we create a graph that mimics thecstme of the syntax
tree, and enables us to argue about different loop iteratiBrnvertex in this occurrence instance
graph (OIG)G = (OI, E) is an occurrence instanee In addition to the flow dependences
that are extended b, the anti and output dependences (writtérandd°, respectively) that are
discovered by the access-based dependence test are thoiuttle edge relatiot:

E =67 gup Ud%up U %up

The subscriptup denotes a pessimistic approximation of the subscripte@rtignce relation.
Thus, the edges of the OIG are the “normal” dependences batagcurrence instances: any or-
derC on OI defines a valid execution of the program, if it is compatibléhwZ and executes all
operands of a given occurrence instance togethes € OI, Indcs(a) = Indes(3), Op(a) =

Op(B) = (o EANS Ea)).

Example 3.1 Let us review Example 2.5. The arrows in Figure 1 correspartti¢ structural de-
pendences of the program, pointing from source to destinafi he relationship between different
instances for differing operand numbers could also be esgmd byimplicit dependences. How-
ever, differing operand numbers are a special case in they ltaveto be executed in an atomic
fashion on a single processor on the sole ground that thaegsemt different arguments to a single
function call?

So far, we have not considered input dependences. In ordiefitte equality on expressions, we
generalize the definition of input dependences to occuerémstances. We defined’ 3 iff for
every input argument af there is an input dependenceio

More formally: Fora, 8 € OI, with Op(a) = Op(8) = 0, Z(Occ(a)) = E(Occ(S))

(Vi:ie ¥(Op(a): 3y, x:7,x €OI:i<0,(v,pi(a)) € F,v8 x, (x, pi(B)) € F))
= ad s

Note that write references cannot be input dependent onatheh Note further that we are only
interested irdirect input dependences, i.e., in input dependences which aoeixkewithout any
write to the same memory cell executed in between. Formally:

ad'f= —(Iy:y€OI:ad*y Ay p)

2In functional languages such as Haskell, one could in gulegise currying vievall functions as unitary operators.

3.1 Code Placement by Affine Scheduling

Our aim is to perform code placement based on affine schedoigthods. The basic procedure
here is as follows:

1. Construct the OIG (with control structures like loopsrigeiepresented by sets of vertices).

2. Schedule equivalence classes of vertices in the OIG, anstruct a placement function
completing the schedule.

3. Generate the new syntax tree with loops governing assghstatements from the sched-
uled equivalence classes.

Step 1 is easily accomplished by a scan across the variatésses. The determination of equiv-
alence classes in Step 2 is based on the dependences comgutedependence test such as
Feautrier's [Fea91]. The subsequent calculation of a sdked Step 2 is based on flow depen-
dences resulting from the same dependence test. Step ZtgEstre resulting code.

Since we work with equivalence classes wrt. input deperglgribe actual representation is via
a representative mappirlg: O — OI to a representative of the equivalence class. For this
representative, we choose the lexicographic minimum ofwkekly connected component of
the OIG thata belongs to. For each level of structural dependences, mkirgng dependence
relations are rewritten td(«) as dependence source insteadwpfand correspondinglyp! is
rewritten tol(OI). We call the resulting graph the condensed OIG.

As the number of occurrences in a program may get rather,l@rgenot feasible to compute
space-time mappings for all sets of occurrence instancesveltkr, this is only necessary for
occurrence instances that build the source for severardifit targets — since then, the result has
to be written out into memory in order to be consumed severag —, or if it is the source of a
write reference to a live variable.

This technique effectively divides the computations intsses of different dimensionality, i.e.,
subexpressions that only depend on fewer index variabéeexdracted (similar to Loop Invariant
Code Motion, with the exception thatCCP can generate its own loops for such purposes). Cor-
respondingly, arrays have to be created that take up thésesyand we have to decide where to
place these arrays and the calculation for them. We will usteagght forward approach to tackle
this problem in the next section.

4 Program Transformation

LCCP is able to remove redundant computations that are exeautditferent iterations of a loop.
However, this improvement may come at the price of increasedmunication time. This is
because intermediate results have to be stored in arraghwiey introduce communications —
actually a problem that occurs in any parallel program.

Communication time may depend on various factors. An affeglacement method should take
into account as many specific traits of the underlying sysaepossible. Such specific traits may

include certain communication patterns for which efficiemtnmunication code can be generated
and should have the ability to use replicated data storagedier to decrease communication time.

Our present aim is to model as many of these traits as flex®lyossible with regard to some
underlying cost model. The idea is then to “plug in” a costclion that evaluates the current

placements and to choose the placements that incur thectesist

Example 4.1 Let us consider the following code fragments:

I HPF$ | NDEPENDENT

I HPF$ | NDEPENDENT

DO j =2, N-2 DO j =1, N
| HPF$ | NDEPENDENT trp(j)=y(j)*2
DO k=1, N END DO
L(k,j)= (y(j) *2)*k& !HPF$ | NDEPENDENT
-(y(j +2)*2) 1 k& DO j =2, N-2
+(y(j +1) *2) +k& ! HPF$ | NDEPENDENT
+(y(j-1)*2) DO k=1, N
END DO L(k,j)=tm(j) *k &
END DO tnp(j+2) /K &
+mp(j +1) +k &
+tnp(j-1)
END DO
END DO

The (synthetic) code fragment on the left contains four agatpns ofy(j)*2. The same
value is computed repeatedly for different iterations othbihe k-loop and thej -loop. LCCP
can transform this code fragment into the one on the righe &btual transformation depends on
the scheduler used). In the transformed codd,) * 2 is calculated once and then assigned to a
temporary.

Let us suppose that is (BLOCK, BLOCK) -distributed. Depending on the distributionyof dif-
ferent distributions ot np may be beneficial: most probably, an alignment wijthis a good
approach; ify is replicated, it is probably more useful to align with

4.1 The Model for Replicated Placements

In this section, we discuss our model in closer detail. We givepresentation of replicated storage
in our model, and finally show how to adapt dependence infoomé#o this representation.

4.1.1 Base Language

Our method depends on the presence of an initial data pladeiiée restrict ourselves tdPF
programs, in which the user has already defined some datarpéat. The result of our method
is a set of further placements that can be used iil# (or HPF-style) program for intermedi-
ate computations whose results are stored in arrays. Tdreredur method can be viewed as a
compilation phase within aHPF compiler, or possibly as a preprocessor.

4.1.2 How to Model Replication

Our aim is to use replication (of data and computations) ttuce communication costs. The
replicated mapping of a point € Z"*™*2 to a subset oZ” can be described as follows: we
introduce a templat&' (corresponding t&”) and a pair of affine function® = (®y, ®p). ais
then mapped t@" via @y, while all the points ofZ? to whicha should ultimately be mapped are
themselves mapped to that same template elemesdizby

The set of processors on which an occurrence instaris¢o be stored is:
P(a) = &' o Dy (a)

A consistency condition is that the image®y is a subset of the image @p, which can safely
be assumed in this context.

This approach corresponds to the description of replicdtgd inHPF. The functions®p» and

®y, occur as their inverse in the correspondaig gn clause, and the vector space along which
replication takes place is representedHP- as a set of unit vectors: each align-target that does
not correspond to an align-source — usually denoted by amisist- represents a unit vector of
processors that store copies of the elements.

4.2 Dependences in the Presence of Replication

In order to estimate the costs for communication inducedhaytarget program, we view the
dependences with respect to space coordinates — i.e. aafpication of the placement relation
® = (®y, Pp). Since neither of the two functions defining the placemelattian is necessarily

invertible, it is not immediately clear how to representeiegences in the target program.

Ol%,v Poy,p Figure 2 shows an example of a dependence given by an h-
=2 transformationh as introduced by Feautrier [Fea92]. In the
E 000 o upper part of the figure, four instances of an occurrencare
Pl mapped to a virtual processor grid By, v; physical proces-

¢ m sors are mapped to the same griddy, ». The instances of

——0G00 0000 gccurrence, are stored in a replicated fashion (all processors

~ Ow with the samep; coordinate own a copy of an occurrence in-
stancef The h-transformation maps a target occurrence in-

stancea to its source occurrence instankéy). Just as the
Figure 2: Dependence from inmappings®,, v, P,, p) define a placement relation for the in-
stances of occurrencg to in- stances ob;, the mapping$®,, v, ®,, p) define a placement
stances of occurreneg. for the instances oby, as depicted in the lower part of Fig-
ure 2. The instances @b are only allocated on the first column of the processor spgdadir
placement.
This means that all instances of occurrengeeach of which depends on a different instance of
01, may “choose” the source processor from which to load tha deeded for computation.

With the names taken from Figure 2, the new dependenceaeliti

CI)027V (I’OQ,P

/ —1 -1
h = ®01,P (@] q)017V (e] h (e] (pOQ,V (o) CI)027P

3Note that occurrence instances may represent computations|| as data.

. We observe that there are two sets involved in the computafih’:

° <I>;117P o ®,, v(a): the possible sources af(copies of the same value).

o CD;le o®,, p(): the set of occurrence instances to be executed on the gayaeith space
coordinates’.

If <I>O‘117P o &, v(a) is a set, we may choose any point within that set for our degeceirepre-
sentation. Thus, we can account m)jllp by a generalized inverse that yields a single point.

However,ég;v o ®,, p has to be represented as a set, e.g., by using two mappinggrasent
the relation®/, just as with placement relations.

4.3 The Placement Method

With this description of replicated placements and resgltiependence relations, we can compute
further placements. In order to allow almost any cost maalbkt “plugged in”, we choose aive
approach that basically considers all possible placensmiselects the cheapest solution (names
as in Figure 2):

1. For all sets of occurrence instances: propagate a plateraadidate from source, to
targetos (®,, o h) and from target to source(,, o h~1).

2. For each combination of candidate placements for theromoce instances:

(a) Compute the image of the dependence information undentirent placements. Can-
didate placement$,, &, can be combined to a new placeméntplacing all occur-
rence instances to both sets by asserdigg, o @3 v (a) 2 ®1(a) U Py(a) for all a.

(b) From each such image of the dependence information, otarthe cost of the ac-
cording placement; select the combination of placemeitsiticurs the lowest cost.

As already noted, it is not necessary to compute a placemet|foccurrence instances of a
program. It can be deduced from the dependence informatmeivgets need placements.

Placements are ultimately propagated from data. Therefaeehave to consider the transitive
closure of the dependence relation in Step 1. Then we conmmatement relations that can
be expressed by two affine mappings. If an occurrenpcdepends on an occurrenee with
h-transformatiork, the placement®,, , ®,, should satisfy

Ol po®y,v(a) C D0, v(h(a)) 3)

If placement relations are propagated from source to tatfgistcan be guaranteed by computing
the®,, as: ®,, p := @y, p, Po,,v 1= P, v 0 I

If the placement is propagated from target to source, thepatation is a bit more complex since
we have to consider dependences to several different sargetvever, we can compute a place-
ment relation that ensures condition (3) by using replisatithe smallest subspace for which
replication has to occur to satisfy condition (3) can be coteg as the solution of a linear equal-
ity system.

4.4 Propagating Placement Relations

In Section 4.3 we formulated our assumption that it is chelfoe an occurrence instance to be
executed on the same processor as one of its sources ostaVgleen creating a list of possible
placements for a given sé of occurrence instances, this leads to the conclusion thi&nal
placements can be calculated by placingo the same processors as the occurrence instances it
depends on or the ones that dependorgince all distributed occurrence instances ultimately de
pend on distributed array elements (if you consider thesttae closure of dependence relations)
and — vice versa — ultimately are source for a write access @ray, these placements are given
by the transitive closure of the dependence relation,they, can be “propagated” from the array
distribution at the “end” of each dependence chain. Witk tkiation between instances of an
occurrence; and those of occurreneg defined by an h-transformation, the possible placements
for o, can be computed by a variant of the Floyd-Warshall algorittimthe finite representation

of the condensed OIG.

Acknowledgements. This work is supported by the DAAD through project PROCOPH an
the DFG through projedtooPo/HPE

References

[ASU86] A. V. Aho, R. Sethi, and J. D. UllmarCompilers — Principles, Techniques, and Tools
Addison-Wesley, 1986.

[Fea91] P. Feautrier. Dataflow analysis of array and scafarencesint. J. Parallel Program-
ming, 20(1):23-53, February 1991.

[Fea92] P. Feautrier. Some efficient solutions to the affeieeduling problemint. J. Parallel
Programming 21(5/6), 1992. Two-part paper.

[Fea03] P. FeautrieSolving Systems of Affine (In)Equalities: PIP’s User’'s @uRD03. Addi-
tions by Jean-Francois Collard and C’edric Bastoul.

[FGLO1] P. Faber, M. Griebl, and C. Lengauer. A closer lookoap-carried code replacement.
In Proc. GI/ITG PARS'01PARS-Mitteilungen Nr.18, pages 109-118. Gesellscliaft
Informatik e.V., November 2001.

[Len93] C. Lengauer. Loop parallelization in the polytopedal. In E. Best, editorCON-
CUR’93 LNCS 715, pages 398-416. Springer-Verlag, 1993.

