
Polyhedral Loop Parallelization:
The Fine Grain

Peter Faber
Fakulẗat für Mathematik und Informatik

Universiẗat Passau, D–94030 Passau, Germany

Martin Griebl
Fakulẗat für Mathematik und Informatik

Universiẗat Passau, D–94030 Passau, Germany

Christian Lengauer
Fakulẗat für Mathematik und Informatik

Universiẗat Passau, D–94030 Passau, Germany

Abstract

A safe basis for automatic loop parallelization is the polyhedron model which represents
the iteration domain of a loop nest as a polyhedron inZ

n. However, turning the parallel loop
program in the model to efficient code meets with several obstacles, due to which performance
may deteriorate seriously – especially on distributed memory architectures. We introduce a
fine-grained model of the computation performed and show howthis model can be applied to
create efficient code.

1 Introduction

In contrast to traditional code analysis and transformations that view loops as unpredictable con-
trol structures, the polyhedron model considers differentvalues of loop counters (or indices) in
different loop iterations as a set with loop bounds as restrictions in the corresponding dimensions
of Z

n [Fea92, Len93].

In this work, we describe a fine-grained model of computationthat employs the polyhedron model
in order to create a simple description of the calculation performed by a loop program and show
how this fine-grained model can be used to create efficient code. Section 2 describes the basic
model, Section 3 shows how to obtain a minimized representation of the computation performed,
and Section 4 describes how to determine suitable transformations.

2 The Basics

In the polyhedron model, a loop nest is modelled as a multi-dimensional space: each loop spans
one dimension and, for technical reasons, also every loop independent parameter, i.e., every sym-

bolic constant in the program fragment considered, spans one dimension. In addition, we always
add two artificial, program independent parameters:

• n1 represents the constant1; treating1 as a parameter enables us to use so-called homoge-
nous coordinates in order to represent affine expressions aslinear expressions in a vector
space that has an additional dimension for this parameter.

• n∞ must be allowed to be arbitrarily large; especially, it is larger than any value of a loop
counter in the program fragment.

Thus, the iteration domain – or index space of a loop nest – is expressed as a polyhedron in
Z

n+m, wheren is the number of loops, andm is the number of all (program specific or program
independent) parameters.

As usual, the dimensions ofZ
n+m are enumerated as follows:

• The firstn dimensions ofZn+m correspond to the loop counters in the textual order in which
the loops appear in the program text.

• The nextm−2 dimensions correspond to the program specific parameters.

• The last two dimensions correspond ton∞ andn1, in this order.

The usual property in the polyhedron model is that the order in which points in a polyhedron are
to be enumerated (according to the modelled code fragment) is the lexicographic order onZk (for
a k-dimensional polyhedron). This is guaranteed by associating thei-th loop in the program text
with thei-th dimension of the polyhedron.

In order to model the flow of data, and thus the computation performed, dependence analysis
algorithms consider memory accesses during program execution. The basic constructs are the
read A andwrite A operations – read and write accesses to an arrayA. As mentioned above,
these accesses follow the form

A(f(i, j, n, m, n∞, n1))

in the program text, wheref is a linear function in the indices (loop counter variables)i, j, the
(loop independent, but program specific) parametersn, m, and inn∞ andn1.

For an instancewise approach, we distinguish between different run-time instances, i.e., different
executions of the same access for different values of surrounding loop indices.

2.1 Going Fine Grain

In this work, we aim at constructing a code fragment that can be executed as efficiently as possible
on some given system. For this purpose, we eliminate as many redundant calculations as possible
and then try to produce efficient code from the description ofthe remaining calculations to be
performed. In order to obtain an accurate description of thecalculations of the code fragment, we
need a precise model of the program execution; i.e., our goalis to model the complete execution of
a code fragment by polyhedra and dependence relations between those polyhedra. In our refined

model, we want to maintain the property that the sequential program execution order corresponds
to the enumeration of the polyhedron in lexicographic order.

The structures we use for this purpose are generalizations of the conventional polyhedron model.
Linear expressions are considered atomic, i.e., they are computable at essentially no cost, and
represent a well defined value that only depends on the place in the polyhedron where they are
evaluated. We work on expressions, which are compositions of operators and function calls. Thus,
we generalize the concept of read and write accesses to the execution of operators on a given
system.

Definition 2.1 LetF be a set of function symbols. In addition to procedure calls and user defined
function names, the following symbols are elements ofF :

+,-,*,/,max,min,. . . intrinsic functions.
LaExpr A linear expression – considered atomic.
read A Read access to an element of arrayA.
write A Write access to an element of arrayA.
= Assignment operator.

Each function symbolop ∈ F represents an operator that can be executed by the given system. The
function symbols are associated with an input arity by a function ai : F → N and an output arity
by a functionao : F → N, indicating the number of input, and output arguments, respectively.
Thus the arity of a function symbolop is ai(op)+ao(op). Without loss of generality, we assume all
input arguments ofop to be the firstai(op) arguments and the output arguments to be arguments
numberai(op) + 1 to ai(op) + ao(op).

Next, we need to identify each textual occurrence of each function symbol in the program fragment
to be considered. We use integer numbers for the identification, and we want these numbers to
correspond to the sequential execution order of a single loop iteration in the program fragment.

Definition 2.2 (Occurrence) With the operator symbolsF defined in Definition 2.1 and the spe-
cial operator symbol; as a sequence operator for statements, a code fragment without its control
statements can be viewed as a term onF ∪{;}. Each points in the program text corresponds to
a (sub)term and is assigned a unique integer numberOccNr(s), its occurrence, such that:

• If s ≡ ;(i1, i2), thenOccNr(i1) < OccNr(i2), i.e.,OccNr respects the order given by the
sequential composition operator.

• If s ≡ op(i1, . . . , ij, o1, . . . , ok) with op ∈ F , input argumentsim (m ∈ {1, . . . , j}), and
output argumentson (n ∈ {1, . . . , k}), the occurrences are ordered in the following way:

– OccNr(im) < OccNr(s) < OccNr(on), i.e., OccNr respects that an operator is
executed only after its input arguments are evaluated, and before its output arguments
can be written.

– All on have the formon ≡ write A(on,1, . . . , on,l); the on,q are enumerated such
that: OccNr(on,q) < OccNr(s), i.e., all memory addresses for the output variables
are computed before the operator is executed.

In order to re-establish the calculation to be performed, wedefineΓ() to be the inverse mapping
of OccNr().

For situations in which we are not interested in the subterms(arguments) of a point in the program,
we define a mappingΞ : N → F that maps each occurrence to the corresponding function symbol
in the program text, such that(∀i : i ∈ N : (Γ(i) ≡ op(e1, . . . , en)) ⇒ Ξ(i) ≡ op).

For the determination of suitable numbers for the occurrences, we use a syntax tree, in which
control structures govern their bodies as well as the arguments that control the execution, while
function and subroutine calls govern their arguments [ASU86]. Traversing this tree following an
appropriate pattern, we can assign an increasing number as occurrence to every node so that the
execution order of a single loop iteration is defined by the order on the occurrences.

Note that, for modelling the execution of a point in the program text itself, we still have to differ-
entiate between different argument positions, since each argument position of an output argument
represents another “currently calculated value”. For thispurpose, we introduce one more integer
number:

Definition 2.3 With each occurrenceo, we associate the set of operand numbers

Ψ(o) = {− ai(Ξ(o)), . . . , ao(Ξ(o)) − 1}

The execution of a single occurrence corresponds to the enumeration of its operand numbers in
increasing order:

1. A negative operand number−j corresponds to loading thej-th input argument of the oper-
ator to be executed (Ξ(o)) onto the stack – or into a register, if appropriate.

2. Operand number0 represents the execution of the operator itself – by callinga function or
a processor instruction –, and storing back the return value.

3. A positive operand numberj represents the storing of the(1 + j)-th output value of the
operator.1

Now we can model all the operations the system has to perform as elements of a polyhedron.
Therefore, we build polyhedra ofoccurrence instanceswhich have two dimensions more than the
index space. These dimensions represent variables for the occurrence and the operand number:

Definition 2.4 (Occurrence instance)Let o be an occurrence surrounded byn loops within a
code fragment containingm parameters (including the program independent parameters). We
call any instance ofo, enumerated by the loops, an occurrence instance.

LetP be the(n+m)-dimensional polyhedron that represents the index space ofthe loop nest con-
taining o. We represent an occurrence instance as a vectorα = (α1, . . . , αn+m+2) ∈ Z

n+m+2,
such that

(α1, . . . , αn, αn+3, . . . , αn+m+2) ∈ P

αn+1 = o

αn+2 ∈ Ψ(o)
1The first output value is the one with operand number0, which is the return value of the expression.

We denote the projection of an occurrence instanceα to coordinates1, . . . , n (the loop index
vector),n+1 (the occurrence) andn+2 (the operand number) withIndcs(α), Occ(α), and
Op(α), respectively.

Additionally, we define ther-argument ofα, ρr(α) = (α1, . . . , αn, αn+1, r, αn+3, . . . , αn+m+2).

As described above, we assume that there is a distinctlarge parameter,n∞, that represents an
arbitrarily large value. This idea has been suggested by Feautrier for his tool PIP [Fea03]. We use
this parameter in order to represent any occurrence instance α of a code fragment containingn
loops andm parameters as an(n + m)-dimensional vector, no matter how many loops actually
surroundo = Occ(α). If occurrenceo is not surrounded by thei-th loop of the code fragment, we
define thei-th component ofα as

αi =

{

−n∞ if o is textually placed abovei-th loop

n∞ if o is textually placed belowi-th loop

Encoding the occurrence instances in that way ensures that the lexicographical order on occurrence
instances corresponds exactly to the execution order of theoccurrence instances in the (sequential)
program.

We define OI as the set of all occurrence instances of the code fragment under consideration.

Example 2.5 Figure 1 shows the set of occurrence instances for the following code fragment

DO i=0,1
B(i)=A+2*n

END DO

The parameter dimensions are ignored in this figure, the occurrence dimension reaches from bot-
tom to top, the operand dimension from left to right, and the index dimension fori, together with
the operand dimension, build the ground plane (operand- andi-dimensions are shown slightly
skewed in order to fit into the figure). The arrows indicate dependence relations between a term
and its subterms (we will examine these dependences in greater detail in Section 3).

2.2 A Word about Dependences

i

=(+(A,*(2,n)),B(i))

write_B(i)

n

2

read_A

+(A,*(2,n))

*(2,n)

op

occ

i

Figure 1: Occurrence instances of the
code fragment of Example 2.5.

Dependences between memory accesses dictate the or-
der in which the occurrence instances of a code fragment
may be executed. We denote a flow dependence from
occurrence instanceα to β asα δf β, and input, anti and
output dependences asα δi β, α δa β, andα δo β, respec-
tively.

Dependence analysis algorithms, such as the one in-
troduced by Feautrier [Fea91], access instances as lin-
ear functions – so called h-transformations. An h-
transformation maps the index vector of a dependence’s

target to its source. In our framework, an h-transformationmaps target occurrence instances to
their respective souurce occurrence instances. In order tomodel the flow of data into and out of
the code fragment considered, we suppose that, for each array A, there are dummy loops that as-
sign each valueA(i) to the array cellA(i) itself. These dummy loops precede and follow the
considered program fragment. As a consequence, data flow to and from outside the considered
program fragment can be modelled as ordinary dependence relations.

Example 2.6 Consider the following code fragment (ignoring the dummy loops):

DO i = 1, min(10, m)
DO j = i,i+n+5

! [9] [1] [2] [8] [6] [7] [5] [3] [4]
a (i , j) = c + a (i-1 , j)

END DO
END DO

Occurrences are written above the corresponding positionsin the program text in brackets. We
obtain the following flow dependence:

δf = {((i, j, 9 · n1, 0, n, m, n1, n∞, n1), (i + n1, j, 5 · n1, 0, n, m, n∞, n1))

1 ≤ i ≤ min(9 · n1, m − n1), i ≤ j ≤ i + n + 5 · n1, n∞ = ∞, n1 = 1}

This dependence is represented by an h-transformation (we omit the scope):

h1 : (i, j, 5 · n1, 0, n, m, n∞, n1) → (i − n1, j, 9 · n1, 0, n, m, n1, n∞, n1)

3 Alternative Program Description

Informally, the central question of code placement is whereto put the computation of an expression
in order to ensure that this computation is performed only ifit is needed, and at the same time
avoid recomputations of the same value. Relevant data flow information is on the one hand which
computations have to be performed before an expression can be computed, and on the other hand
which expressions share the same value. The technique we describe here, which we call loop-
carried code placement (LCCP), is also described in some detail in earlier work together with an
example and some timing results [FGL01].

We restrict ourselves to the purely syntactic – but loop-carried – equivalence of expressions. As a
cost model, we employ the number of function calls and arithmetic operations executed. Then we
minimize the amount of computations performed during the complete execution of the loop nest
by replacing computations of already computed values by array lookups.

For the sake of simplicity, we assume that all variables thatare written in the code fragment under
consideration are live – i.e., may be read – after execution of that code fragment. Actually, live
variables can be deduced from the fact that dependences to dummy loops originate from them.

Next, we define dependences between occurrence instances that do not just represent memory
accesses.

For flow dependences, the idea is that the application of a function or operator depends on its input
arguments, and the output arguments depend on the function application. Formally: Given an
occurrence instanceα0 with Op(α0) = 0 andΓ(Occ(α0)) ≡ f(e−1, . . . , e−l, e1, . . . , em), where
e−1, . . . , e−l are only read, whilee1, . . . , em are only written, and givenl+m occurrence instances
α−1, . . . , α−l, α1, . . . , αm with Op(αi) = 0, Indcs(αi) = Indcs(α0), andΓ(Occ(αi)) ≡ ei for
i ∈ {−l, . . . ,−1, 1, . . . , m}, we define:

(∀i : i ∈ Ψ(Occ(α0)) : i < 0 ⇒ ρ0(αi) δf ρi(α0)) (1)

(∀i : i ∈ Ψ(Occ(α0)) : i > 0 ⇒ ρi(α0) δf ρ0(αi)) (2)

We call these textually carried dependences defined by (1) and (2) structural dependences and
denote them byF . Using this definition, we create a graph that mimics the structure of the syntax
tree, and enables us to argue about different loop iterations. A vertex in this occurrence instance
graph (OIG)G = (OI, E) is an occurrence instanceα. In addition to the flow dependences
that are extended byF , the anti and output dependences (writtenδa andδo, respectively) that are
discovered by the access-based dependence test are included in the edge relationE:

E := δf
sup ∪ δa

sup ∪ δo
sup

The subscriptsup denotes a pessimistic approximation of the subscripted dependence relation.
Thus, the edges of the OIG are the “normal” dependences between occurrence instances: any or-
der@ on OI defines a valid execution of the program, if it is compatible with E and executes all
operands of a given occurrence instance together (α, β ∈ OI, Indcs(α) = Indcs(β), Op(α) =
Op(β) ⇒ (α 6 @ β ∧β 6 @α)).

Example 3.1 Let us review Example 2.5. The arrows in Figure 1 correspond to the structural de-
pendences of the program, pointing from source to destination. The relationship between different
instances for differing operand numbers could also be expressed byimplicit dependences. How-
ever, differing operand numbers are a special case in that theyhaveto be executed in an atomic
fashion on a single processor on the sole ground that they represent different arguments to a single
function call.2

So far, we have not considered input dependences. In order todefine equality on expressions, we
generalize the definition of input dependences to occurrence instances. We defineα δi β iff for
every input argument ofα there is an input dependence toβ.
More formally: Forα, β ∈ OI, with Op(α) = Op(β) = 0, Ξ(Occ(α)) = Ξ(Occ(β))

(∀i : i ∈ Ψ(Op(α)) : (∃γ, χ : γ, χ ∈ OI : i < 0, (γ, ρi(α)) ∈ F, γ δi χ, (χ, ρi(β)) ∈ F))

⇒ α δi β

Note that write references cannot be input dependent on eachother. Note further that we are only
interested indirect input dependences, i.e., in input dependences which are executed without any
write to the same memory cell executed in between. Formally:

α δi β =⇒ ¬(∃γ : γ ∈ OI : α δa γ ∧ γ δf β)

2In functional languages such as Haskell, one could in principle use currying viewall functions as unitary operators.

3.1 Code Placement by Affine Scheduling

Our aim is to perform code placement based on affine scheduling methods. The basic procedure
here is as follows:

1. Construct the OIG (with control structures like loops being represented by sets of vertices).

2. Schedule equivalence classes of vertices in the OIG, and construct a placement function
completing the schedule.

3. Generate the new syntax tree with loops governing assignment statements from the sched-
uled equivalence classes.

Step 1 is easily accomplished by a scan across the variable accesses. The determination of equiv-
alence classes in Step 2 is based on the dependences computedby a dependence test such as
Feautrier’s [Fea91]. The subsequent calculation of a schedule in Step 2 is based on flow depen-
dences resulting from the same dependence test. Step 3 generates the resulting code.

Since we work with equivalence classes wrt. input dependences, the actual representation is via
a representative mappingI : OI → OI to a representative of the equivalence class. For this
representative, we choose the lexicographic minimum of theweakly connected component of
the OIG thatα belongs to. For each level of structural dependences, all remaining dependence
relations are rewritten toI(α) as dependence source instead ofα, and correspondingly,OI is
rewritten toI(OI). We call the resulting graph the condensed OIG.

As the number of occurrences in a program may get rather large, it is not feasible to compute
space-time mappings for all sets of occurrence instances. However, this is only necessary for
occurrence instances that build the source for several different targets – since then, the result has
to be written out into memory in order to be consumed several times –, or if it is the source of a
write reference to a live variable.

This technique effectively divides the computations into classes of different dimensionality, i.e.,
subexpressions that only depend on fewer index variables are extracted (similar to Loop Invariant
Code Motion, with the exception thatLCCP can generate its own loops for such purposes). Cor-
respondingly, arrays have to be created that take up these values, and we have to decide where to
place these arrays and the calculation for them. We will use astraight forward approach to tackle
this problem in the next section.

4 Program Transformation

LCCP is able to remove redundant computations that are executed in different iterations of a loop.
However, this improvement may come at the price of increasedcommunication time. This is
because intermediate results have to be stored in arrays which may introduce communications –
actually a problem that occurs in any parallel program.

Communication time may depend on various factors. An effective placement method should take
into account as many specific traits of the underlying systemas possible. Such specific traits may

include certain communication patterns for which efficientcommunication code can be generated
and should have the ability to use replicated data storage inorder to decrease communication time.

Our present aim is to model as many of these traits as flexibly as possible with regard to some
underlying cost model. The idea is then to “plug in” a cost function that evaluates the current
placements and to choose the placements that incur the leastcost.

Example 4.1 Let us consider the following code fragments:

!HPF$ INDEPENDENT
DO j=2,N-2

!HPF$ INDEPENDENT
DO k=1,N
L(k,j)= (y(j) *2)*k&

-(y(j+2)*2)/k&
+(y(j+1)*2)+k&
+(y(j-1)*2)

END DO
END DO

!HPF$ INDEPENDENT
DO j=1,N

tmp(j)=y(j)*2
END DO

!HPF$ INDEPENDENT
DO j=2,N-2

!HPF$ INDEPENDENT
DO k=1,N
L(k,j)= tmp(j) *k &

-tmp(j+2)/k &
+tmp(j+1)+k &
+tmp(j-1)

END DO
END DO

The (synthetic) code fragment on the left contains four computations of y(j)*2. The same
value is computed repeatedly for different iterations of both thek-loop and thej-loop. LCCP
can transform this code fragment into the one on the right (the actual transformation depends on
the scheduler used). In the transformed code,y(j)*2 is calculated once and then assigned to a
temporary.

Let us suppose thatL is (BLOCK,BLOCK)-distributed. Depending on the distribution ofy, dif-
ferent distributions oftmp may be beneficial: most probably, an alignment withy is a good
approach; ify is replicated, it is probably more useful to align withL.

4.1 The Model for Replicated Placements

In this section, we discuss our model in closer detail. We give a representation of replicated storage
in our model, and finally show how to adapt dependence information to this representation.

4.1.1 Base Language

Our method depends on the presence of an initial data placement. We restrict ourselves toHPF
programs, in which the user has already defined some data placement. The result of our method
is a set of further placements that can be used in anHPF (or HPF-style) program for intermedi-
ate computations whose results are stored in arrays. Therefore, our method can be viewed as a
compilation phase within anHPF compiler, or possibly as a preprocessor.

4.1.2 How to Model Replication

Our aim is to use replication (of data and computations) to reduce communication costs. The
replicated mapping of a pointα ∈ Z

n+m+2 to a subset ofZp can be described as follows: we
introduce a templateT (corresponding toZp) and a pair of affine functionsΦ = (ΦV , ΦP). α is
then mapped toT via ΦV , while all the points ofZp to whichα should ultimately be mapped are
themselves mapped to that same template element byΦP .

The set of processors on which an occurrence instanceα is to be stored is:

Φ(α) = Φ−1
P ◦ ΦV (α)

A consistency condition is that the image ofΦV is a subset of the image ofΦP , which can safely
be assumed in this context.

This approach corresponds to the description of replicateddata inHPF. The functionsΦP and
ΦV occur as their inverse in the correspondingalign clause, and the vector space along which
replication takes place is represented inHPF as a set of unit vectors: each align-target that does
not correspond to an align-source – usually denoted by an asterisk – represents a unit vector of
processors that store copies of the elements.

4.2 Dependences in the Presence of Replication

In order to estimate the costs for communication induced by the target program, we view the
dependences with respect to space coordinates – i.e., afterapplication of the placement relation
Φ = (ΦV , ΦP). Since neither of the two functions defining the placement relation is necessarily
invertible, it is not immediately clear how to represent dependences in the target program.

p2

p1

p1

p2

h

Φo1,PΦo1,V

Φo2,PΦo2,V

o1

o2

Figure 2: Dependence from in-
stances of occurrenceo1 to in-
stances of occurrenceo2.

Figure 2 shows an example of a dependence given by an h-
transformationh as introduced by Feautrier [Fea92]. In the
upper part of the figure, four instances of an occurrenceo1 are
mapped to a virtual processor grid byΦo1,V ; physical proces-
sors are mapped to the same grid byΦo1,P . The instances of
occurrenceo1 are stored in a replicated fashion (all processors
with the samep1 coordinate own a copy of an occurrence in-
stance).3 The h-transformation maps a target occurrence in-
stanceα to its source occurrence instanceh(α). Just as the
mappings(Φo1,V , Φo1,P) define a placement relation for the in-
stances ofo1, the mappings(Φo2,V , Φo2,P) define a placement
for the instances ofo2, as depicted in the lower part of Fig-

ure 2. The instances ofo2 are only allocated on the first column of the processor space by their
placement.

This means that all instances of occurrenceo2, each of which depends on a different instance of
o1, may “choose” the source processor from which to load the data needed for computation.

With the names taken from Figure 2, the new dependence relation is

h′ = Φ−1
o1,P ◦ Φo1,V ◦ h ◦ Φ−1

o2,V ◦ Φo2,P

3Note that occurrence instances may represent computationsas well as data.

. We observe that there are two sets involved in the computation ofh′:

• Φ−1
o1,P ◦ Φo1,V (α): the possible sources ofα (copies of the same value).

• Φ−1
o2,V ◦Φo2,P (β): the set of occurrence instances to be executed on the processor with space

coordinatesβ.

If Φ−1
o1,P ◦ Φo1,V (α) is a set, we may choose any point within that set for our dependence repre-

sentation. Thus, we can account forΦ−1
o1,P by a generalized inverse that yields a single point.

However,Φ−1
o2,V ◦ Φo2,P has to be represented as a set, e.g., by using two mappings to represent

the relationh′, just as with placement relations.

4.3 The Placement Method

With this description of replicated placements and resulting dependence relations, we can compute
further placements. In order to allow almost any cost model to be “plugged in”, we choose a naı̈ve
approach that basically considers all possible placementsand selects the cheapest solution (names
as in Figure 2):

1. For all sets of occurrence instances: propagate a placement candidate from sourceo1 to
targeto2 (Φo1

◦ h) and from target to source (Φo2
◦ h−1).

2. For each combination of candidate placements for the occurrence instances:

(a) Compute the image of the dependence information under the current placements. Can-
didate placementsΦ1, Φ2 can be combined to a new placementΦ3 placing all occur-
rence instances to both sets by assertingΦ−1

3,P ◦ Φ3,V (α) ⊇ Φ1(α)∪Φ2(α) for all α.

(b) From each such image of the dependence information, compute the cost of the ac-
cording placement; select the combination of placements that incurs the lowest cost.

As already noted, it is not necessary to compute a placement for all occurrence instances of a
program. It can be deduced from the dependence information which sets need placements.

Placements are ultimately propagated from data. Therefore, we have to consider the transitive
closure of the dependence relation in Step 1. Then we computeplacement relations that can
be expressed by two affine mappings. If an occurrenceo2 depends on an occurrenceo1 with
h-transformationh, the placementsΦo1

, Φo2
should satisfy

Φ−1
o2,P ◦ Φo2,V (α) ⊆ Φ−1

o1,P ◦ Φo1,V (h(α)) (3)

If placement relations are propagated from source to target, this can be guaranteed by computing
theΦo2

as:Φo2,P := Φo1,P , Φo2,V := Φo1,V ◦ h.

If the placement is propagated from target to source, the computation is a bit more complex since
we have to consider dependences to several different targets. However, we can compute a place-
ment relation that ensures condition (3) by using replication: the smallest subspace for which
replication has to occur to satisfy condition (3) can be computed as the solution of a linear equal-
ity system.

4.4 Propagating Placement Relations

In Section 4.3 we formulated our assumption that it is cheapest for an occurrence instance to be
executed on the same processor as one of its sources or targets. When creating a list of possible
placements for a given setO of occurrence instances, this leads to the conclusion that optimal
placements can be calculated by placingO to the same processors as the occurrence instances it
depends on or the ones that depend onO. Since all distributed occurrence instances ultimately de-
pend on distributed array elements (if you consider the transitive closure of dependence relations)
and – vice versa – ultimately are source for a write access to an array, these placements are given
by the transitive closure of the dependence relation, i.e.,they can be “propagated” from the array
distribution at the “end” of each dependence chain. With this relation between instances of an
occurrenceo1 and those of occurrenceo2 defined by an h-transformation, the possible placements
for o2 can be computed by a variant of the Floyd-Warshall algorithmon the finite representation
of the condensed OIG.

Acknowledgements. This work is supported by the DAAD through project PROCOPE and by
the DFG through projectLooPo/HPF.

References

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers – Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[Fea91] P. Feautrier. Dataflow analysis of array and scalar references.Int. J. Parallel Program-
ming, 20(1):23–53, February 1991.

[Fea92] P. Feautrier. Some efficient solutions to the affine scheduling problem.Int. J. Parallel
Programming, 21(5/6), 1992. Two-part paper.

[Fea03] P. Feautrier.Solving Systems of Affine (In)Equalities: PIP’s User’s Guide, 2003. Addi-
tions by Jean-François Collard and C’edric Bastoul.

[FGL01] P. Faber, M. Griebl, and C. Lengauer. A closer look atloop-carried code replacement.
In Proc. GI/ITG PARS’01, PARS-Mitteilungen Nr.18, pages 109–118. Gesellschaft für
Informatik e.V., November 2001.

[Len93] C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor,CON-
CUR’93, LNCS 715, pages 398–416. Springer-Verlag, 1993.

