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Chapter 1

Introduction

This work was started as part of the DFG project LooPo/HPF. Its goal was to combine paral-
lelization methods based on the polyhedron model with syntax based HPF compilers that carry
out low level chores such as generating communication code for distributed memory machines or
partitioning of data and computations depending on the number of processors actually available
for the task. The main class of programs considered here are numerical computations on large
matrices. These computations are usually performed on large parallel computer architectures,
often with distributed memory.

HPF The abbreviation HPF stands for High Performance Fortran [Hig97], which is a standard-
ized programming language for parallel computers based on the Fortran standard [Int97]. HPF

particularly targets computers with distributed memory. It emerged from different approaches
for the automatic generation of parallel code from a sequential program. The main predeces-
sors of HPF are projects like Kali [MR91], the PARADIGM project [SPB93], the Vienna Fortran

Compiler [CMZ92], Fortran D [HT92, HKT94], and its successor, the dHPF compiler [AMCS97].
In HPF, computations are distributed across a processor mesh by distributing data: computations
are only executed at those places that are designated to store the results of these computations.
This convention is called the owner computes rule.

When HPF was first introduced, the dominant parallel computer systems where mainly mul-
tiprocessors or compute clusters. Both feature distributed memory architectures with high com-
munication costs between different nodes. In the meantime, the situation has gradually changed.
Symmetric multiprocessing (SMP) and other shared memory architectures have become increas-
ingly widespread. Moreover, multicore central processing units (CPUs) and graphics processing
units (GPUs) featuring advanced programming capabilities that enable parallel processing on the
GPU increase the possibilities of high performance computing with relatively low latency com-
munication between processing units (compared to inter-node communication). Yet, clusters are
still the dominating parallel architecture, because ever more ambitious applications never cease to
demand more processing power.

This hardware development has been accompanied by a development in software engineering.
HPF proved to be a very efficient language for expressing regular problems and exploiting syn-
chronous parallelism. But irregular problems cannot be handled well by HPF compilers, since they
lead to unstructured communication that can be optimized only insignificantly by the compiler.
Thus, inter-node communication is even today largely done with hand-written code that directly
calls communication libraries, rather than using compilers. In the late 1990s, other languages
have surfaced, such as High Performance Java [ZCF+99], which is based on the popular Java

language, but which uses strategies quite similar to HPF for the generation of parallel code. This
fact highlights the fundamental merits of the HPF approach. HPF identified basic problems with
the generation of efficient communication directives, which are unavoidably inherited by later
languages with similar goals.
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2 CHAPTER 1. INTRODUCTION

Another approach is the now widely adopted OpenMP standard [Ope00b, Ope00a]. OpenMP

defines language extensions for Fortran and C/C++. The problem of communication generation
does not strike OpenMP as much as HPF, since the former is designed only for the now widely
available shared memory architectures in which communication can be made much faster and more
efficient than inter-node communication, so that programs written in OpenMP may scale well up to
some dozen processors. However, the problem does not disappear, so that further scaling is often
hindered. Just as with HPF, data locality is a crucial performance factor in programs using OpenMP.
Being able to distribute data explicitly is therefore a very helpful feature for software designers
and compiler writers alike, since it provides an opportunity to convey semantic information to
the compiler and enforce a reasonable data alignment. Unfortunately, these features of HPF where
left out in the design of OpenMP – which otherwise resembles HPF in several ways – in favour of a
completely hardware managed memory distribution. With its comparatively powerful distribution
directives, HPF therefore still represents an invaluable development platform for an automatic
parallelizer. In Section 2.1 we will give a quick introduction to the way in which to represent
parallel computations in HPF.

Polyhedron Model The polyhedron model was originally developed by Leslie Lamport [Lam74]
for automatically parallelizing perfectly nested loop nests. Subsequently, it was taken up by many
researchers [Mol82, Qui87, Fea88, Len93] and extended to imperfectly nested loops and non-
uniform dependences [Fea92a, Fea92b] and to (possibly unbounded) polyhedra instead of poly-
topes [GC95, Gri96]. The polyhedron model has been applied in different areas such as generating
VLSI algorithms [Mol82], but also in code optimizations such as dead code elimination [Won01],
cache optimization [Slo99], and in general a wide range of loop transformations [BCG+03]. The
basic idea is to represent different iterations of an n-dimensional loop nest as vectors of Z

n. We
will describe the polyhedron model – and some extensions we use in this work – in greater detail in
Section 2.3. However, before we review this mathematical model, some basic algebraic definitions
are presented in Section 2.2.

Mission Statement The aim of this work is to employ code optimization techniques that
can identify different loop iterations to improve the code generation of standard syntax based
compilers. In order to model loop nests accurately, these optimization techniques are based on the
representation of a program as a set of inter-dependent polyhedra. As a first step, a code placement
method based on this fine grained framework is introduced. This transformation is mainly aimed
at reducing the number of computations executed and may come at the price of increased memory
transfer. In order to reduce this effect, we examine the possibilities of replicated data placement.
Both of these transformations may have impact on the final code generation, which we will also
inspect. In several places, the code generation itself may influence the ability of later compiler
stages to produce efficient code. Since the overall aim of this thesis is to improve automatic code
generation, we will also examine further code generation strategies based on our fine grained model
that can be employed to improve the resulting target code.

The basic idea behind the code placement method is to optimize the workload in a deep loop
nest improve utilization of parallel processors by producing new – transformed – loop nests that
contain only parts of the original computation, so that the deeper loop nest is only necessary
to combine and scatter the results computed previously. These are important opportunities for
optimizations in clusters as well as multicore CPUs [Ram06] that are programmed using parallel
computing directives. It may also be used in stream processing compilers [TKA02, GTA06, GR05]
and other architectures that feature single instruction multiple data (SIMD) units [Hes06] for
improved performance on data-parallel code.

HPF allows for explicit data distributions and directives for marking code segments as inde-
pendent (and thus executable in parallel) and is supported by stable compilers. Moreover, the
optimizations developed in the following chapters are suited quite well for the inclusion within
an HPF compiler as a separate phase. Therefore, our foremost interest here is the generation of
parallel programs using HPF compilers.



3

The overall performance of a program often depends not only on the description of the algo-
rithm but also on the compiler and libraries used, as well as on the target machine. We will restrict
ourselves to manipulating the first of these points and will therefore sometimes view everything
else as one atomic entity. We call this entity (i.e., the processor in the Fortran sense) the system.

Contents This thesis is organized as follows. The next chapter discusses the data-parallel pro-
gramming model and compilation techniques – with HPF chosen as the example language. It also
recalls some basic algebra that will be used throughout the thesis, and describes the framework
on which the techniques presented in the subsequent chapters are based. Depending on previous
knowledge, the reader might skip sections from this chapter or defer reading them until it appears
necessary when definitions and results presented there are used in later chapters. Chapter 3 in-
troduces an optimization strategy based on the polyhedron model that can be used to improve
automatically generated loop code – which does not necessarily have to be executed in parallel.
Chapter 4 then brings up important points that have to be considered when generating code for
parallel programs. In particular, we will shed some light on the placement of calculations on
processors. Finally, Chapter 5 will briefly show how all the previously described methods can be
combined to produce efficient code, before Chapter 6 concludes with an overview over the lessons
learned. Appendix A enumerates the options of the program implementing the optimization strat-
egy presented in chapter 3 and Appendix B contains notational conventions observed throughout
this thesis.
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Chapter 2

Fundamentals

2.1 Data-Parallel Programmming with Data Distributions

This section gives a brief introduction to the basic features of data-parallel languages. As already
pointed out, the generation of data-parallel programs leads to some basic problems and challenges
that do not depend on the language used for this task, be it kali [MR91], HPF [Hig97], High

Performance Java [ZCF+99] or others. In this work, we choose HPF as the language of choice
for its easily available and quite mature compilers and the explicit data distribution features and
parallel loops constructs. Section 2.1.2 uses HPF to sketch some points that should be observed
when programming in data-parallel languages. Further introductory material about data-parallel
programming (and programming using MPI, as well as Compositional C++, Fortran M and HPF)
can be found in Foster’s Designing and Building Parallel Programs [Fos94] and the High Perfor-
mance Fortran Handbook [KLS+94]. Another introduction into parallel programming in general
and data-parallel programming in particular, based on MPI and OpenMP is given in Michael Quinn’s
Parallel Programming in C with MPI and OpenMP [Qui04]. The ultimate source for HPF is, of
course, the HPF standard [Hig97], and an in-depth treatment of how data-parallel compilers work
can be found in High Performance Compilers for Parallel Computing by Michael Wolfe [Wol95].

2.1.1 Basic HPF Features

In HPF, the processors of the parallel machine are supposed to be arranged in meshes, so-called
processor arrays that can be either user defined or implicitly defined. The actual default ar-
rangement for an #pdim-dimensional processor array depends on several factors:

• The compiler – including its run time system – defines a mapping of operations to be executed
onto processes.

• A communication library like, e.g., the Message Passing Interface MPI [Mes95, Mes97] defines
a mapping of these processes to compute nodes.

• The operating system of the parallel computer – if there is one – defines a mapping of
processes on a given compute node to the actual CPU that executes the operations.

In general, a compiler will try to use a balanced mapping of these processor arrays to processes. In
this work we will mainly use the ADAPTOR HPF compiler of the Fraunhofer Gesellschaft [BZ94].
The following example illustrates the way in which ADAPTOR distributes physically available
processors onto a #pdim-dimensional processor mesh.

Example 2.1 Suppose we have #cpu processes given for the execution of our program. Within
this program, we may use an #pdim-dimensional processor array. The ADAPTOR compiler
then distributes the available processes across this processor array by using the greatest divisor

5



6 CHAPTER 2. FUNDAMENTALS

of #cpu that is smaller than #cpu as extent #cpu[#pdim] of the last dimension of the pro-
cessor array (i.e., #cpu[#pdim] is maximal with #cpu[#pdim]%#cpu = 0∧#cpu[#pdim] <
max(#cpu, 2)), while #cpu

#cpu[#pdim]
processes remain for distribution in #pdim− 1 further dimen-

sions according to the same scheme. This means that, if #cpu denotes the number of physical
processors in the #pdim-dimensional processor array, and the shape of the processor array is
defined as (1:ρ[1],...,1:ρ[#pdim]), ρ ∈ Z

#pdim, this shape is defined by the lexicographic
maximum of the vectors whose coordinates multiplied with each other give the number of proces-
sors and represent an increasing number sequence

ρ = max
≺

(
{

(r1, . . . , r#pdim)
T

r1 ≤ · · · ≤ r#pdim ∧#cpu =
∏#pdim

i=1 ri

}

)

For example, for #cpu = 6 and #pdim = 2, we have ρ =

(
2
3

)

.

In this thesis, we will actually only consider placements based on the processor arrangements
represented by the HPF processor arrays. Any underlying mapping that is done by the communica-
tion library, the operating system, or the parallel machine itself is outside of our area of influence;
the underlying infrastructure may or may not choose to distribute the resulting processes in a way
that actually corresponds to the processor array.

The basic way of creating a parallel program in HPF is to define an alignment of variable arrays
to processor arrays. Different iterations of a loop that is marked with the INDEPENDENT directive
are then executed according to the owner computes rule: a processor executes only those iterations
of the loop that write to local array elements, i.e., array elements that are declared to be owned
by that particular processor. However, even if all write accesses in a loop nest may be local, there
may still be read (and write!) accesses necessary to perform the given computation that refer to
non-local data. In addition, even a single statement may define several different write accesses and
therefore, both local and non-local write accesses. Thus, usually one write access is picked as the
one that is localized. On distributed memory machines, auxiliary variables have to be introduced
that serve as buffers for (possibly) non-local write or read accesses.

HPF supports several regular distribution schemes; accesses to regularly distributed arrays can
be implemented in an efficient manner, if the reference to corresponding subscript function is itself
regular (with compilers differing in the notion of a regular subscript function; we will go into
further detail in Section 2.1.2 and Chapter 4.1).

Distribution of an array dimension onto a dimension of a processor array is defined via the
DISTRIBUTE directive:

!HPF$ DISTRIBUTE <distributee> ( <dist-format-list> ) [ ONTO <processors-name> ]

The elements of <dist-format-list> may be one of:

BLOCK [ ( <int-expr> ) ]

CYCLIC [ ( <int-expr> ) ]

*

where <int-expr> is an integer expression. This directive specifies that the dimension of
<distributee> that corresponds to a <dist-format> in <dist-format-list> is distributed
across different processors, if the <dist-format> is not an asterisk (*). The i-th element of
<dist-format-list> that does specify a distribution (via BLOCK or CYCLIC) selects a distribution
format across the i-th dimension of the processor array specified by <processors-name>. If no
processor array is given, a default processor array is used whose dimension matches the number
of non-asterisk-elements of <dist-format-list>.

An asterisk may appear as an element of <dist-format-list>. In this case, the <distributee>
is not distributed along that dimension: array elements that only differ in that dimension are stored
on the same processor.
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Example 2.2 Consider the following program fragment:

!HPF$ PROCESSORS P(2,2)

!HPF$ DISTRIBUTE A(BLOCK,CYCLIC) ONTO P

In this example, the first dimension of A is distributed across a processor array P according to a
BLOCK distribution (contiguous elements are stored on the same processor) in the first dimension,
and according to a CYCLIC distribution (round-robin fashion) in the second dimension. Figure
2.1 illustrates this situation. The dotted lines separate different array elements, and the different
shadings represent the processors that store the respective elements.

Processor (1,2)

Processor (2,2)

Processor (1,1)

Processor (2,1)

Figure 2.1: Distribution of A onto P as defined in Example 2.2.

The mapping of array elements to a #pdim-dimensional processor array can be modeled by
#pdim functions that map array elements to processors.
The most general regular distribution scheme that can be obtained using DISTRIBUTE directives
is the BLOCK-CYCLIC distribution that is selected via a CYCLIC(b) directive. The BLOCK-CYCLIC

distribution (also called CYCLIC(b)) corresponds to a placement function

ΦBLOCK-CYCLIC : i 7→
⌊

i
b

⌋
%#cpu[j]

where #cpu[j] is the number of available processors in that dimension (j). The CYCLIC distribu-
tion can be viewed as a special case of a BLOCK-CYCLIC distribution, in which the block size b is
1.

Simpler distributions are BLOCK(b) and BLOCK distributions. In the first case, the corresponding
placement function is

ΦBLOCK : i 7→
⌊

i
b

⌋

and the user is responsible for asserting that this distribution scheme does not need more processors
than available. In the second case, b depends on the shape of the <distributee> and the number
of processors (the elements of the <distributee> will be partitioned into equally sized blocks
with a single block assigned to one processor).

In Example 2.2, <distributee> is the array A. In HPF, not only arrays can be distributed, but
also so-called templates. Templates can be viewed as arrays that do not occupy any memory. A
template can be used as a helper object in order to obtain a certain placement for an actual array.
The general idea is to distribute a template onto a processor array and align an actual array to
that template via a linear integer function (cf. Figure 2.3 on page 9). Of course, more complicated
combinations – such as an array A aligned to some template T , which is aligned to an array B
that is finally distributed to some user-defined processor array C are allowed in the HPF standard.
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However, we will only consider the case that an array is simply aligned to a template which is then
distributed onto some processor array. But let us first look at the way an alignment is defined in
HPF.

An alignee (an array or a template) is aligned to an align target by an ALIGN directive:

!HPF$ ALIGN <alignee> ( <align-dummy-list> ) &

WITH <align-target> ( <align-subscript-list> )

Example 2.3 The ALIGN directive

!HPF$ ALIGN B(i,j) WITH A(2*i,j+1)

specifies that array B has to be distributed across the processor array so that element B(i, j) is
stored on the same processor as A(2 ∗ i, j + 1). The resulting placement of B is shown in Figure
2.2. Arrows from array B to A indicate alignments – in order to keep the representation clear,
alignments are only shown for the first column and the first row of B.

Processor (1,2)

Processor (2,2)

Processor (1,1)

Processor (2,1)

B

A

Figure 2.2: Alignment of B with A as defined in Examples 2.2 and 2.3.

The only expressions allowed as a subscript in <align-dummy-list> are align dummies
(or a single asterisk). An align dummy is an identifier that is only used to identify a certain
dimension of an integer vector space Z

ntgt that may or may not correspond to a dimension of the
alignee. It is allowed at most once in <align-dummy-list>, so that there is a injective relation
between dimensions of the alignee and the align dummies in <align-subscript-list>. Note that
<align-dummy-list>may contain align dummies that do not occur in <align-subscript-list>.
Such an align dummy marks a dimension of <alignee> that does not have any relation to any
dimension of <align-target>. In other words: this dimension is collapsed – all array elements
that only differ in their coordinates in that dimension are stored on the same processor (just as
with asterisks in <dist-format-list> in the DISTRIBUTE directive), and, again, such an align
dummy can be replaced by an asterisk.

An element of <align-subscript-list> is a linear function in at most one align dummy
and constant expressions. The HPF standard even allows rather complicated functions that are
still viewed as constants (for example the application of intrinsic integer functions on constants).
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However, existing HPF compilers are usually more restrictive in the expressions they support.1 An
align dummy may appear at most once in <align-subscript-list>. This guarantees a simple
representation of the corresponding distribution as a linear function: for each dimension of the
align target (possibly an array or processor array, usually a template) that is subscripted with an
expression a · i+ k containing the align dummy i from the alignee’s subscript list, an element i in
that dimension of the alignee is colocated with the align target element given by

ΦALIGN : i 7→ a · i+ k

i.e., if the align target is a processor array and the alignee is an array, the placement function for
that array in the respective processor dimension is given directly by ΦALIGN.

Again, if an align dummy is used only in an element of <align-subscript-list>, but not in
<align-dummy-list>, there is no relation between the corresponding dimension of <align-target>
and any dimension of <alignee>. This means, the dimension is replicated: all elements of
<align-target> – possibly a processor array – that differ only in their coordinates in that di-
mension hold the same element of <alignee>. In other words: all the processors that differ
only in that dimension store copies of the same elements of <alignee>. And – just as with
<align-dummy-list> – an asterisk is equivalent to the use of an align dummy that does not occur
anywhere else in the ALIGN directive.

The align target may be a distributee of some DISTRIBUTE directive. In this case, the placement
function is given by the composition of the two placement functions

ΦALIGNDIST : i 7→
⌊

a·i+k
b

⌋

with b as above.

The following examples give an overview of the possibilities of data placement in HPF.

Processor (1,2)

Processor (2,2)

Processor (1,1)

Processor (2,1)

4

1 1 1 1 1 1 1 1

2 2 2 22222

3 3 3 3 33 33

44444 4 4

ALIGN

Array A Template T Processor Array P

DISTRIBUTE

1

2

3

4

Figure 2.3: Alignment of array A with template T and distribution onto processor array P as in
Example 2.4.

Example 2.4 Figure 2.3 depicts the alignment of an array A to a template T that is BLOCK-BLOCK
distributed onto a processor array P according to the following declarations:

DOUBLE PRECISION A(1:4)

!HPF$ PROCESSORS P(2,2)

!HPF$ TEMPLATE T(8,8)

!HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P

!HPF$ ALIGN A(i1) WITH T(2*i1,i2)

1E.g., ADAPTOR does not allow further variables in an output dimension of an align subscript function, if it
contains an align dummy.
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The elements of A are distributed along the first dimension of P, but replicated along the second
dimension of P. Which processor gets to own a copy of the respective array element, is indicated
by the shading: each array element is stored on two processors.

Processor 3

Processor 4

Processor 1

Processor 2

(1,*)

(2,*)

ALIGN

Array A Template T

DISTRIBUTE

Processor Array P

(1,*)

(2,*)(1,1)

(2,1)

(1,2)

(2,2)

Figure 2.4: Alignment of array A with template T and distribution onto processor array P as in
Example 2.5.

Example 2.5 On the other hand, an alignment of a two-dimensional array to a one-dimensional
processor array may look as follows:

DOUBLE PRECISION A(2,2)

!HPF$ PROCESSORS P(4)

!HPF$ TEMPLATE T(8)

!HPF$ DISTRIBUTE T(BLOCK) ONTO P

!HPF$ ALIGN A(i1,i2) WITH T(2*i1)

In this case, we have to decide, whether the first or second dimension of A should be aligned
(and distributed); the other one is collapsed. In this example, the first dimension is distributed;
of course, i2 could also be replaced by an asterisk in the ALIGN clause. Figure 2.4 visualizes this
alignment.

Processor (2,1)

Processor (1,2)

Processor (2,2)

Processor (1,1)

DISTRIBUTEALIGN

(1,*) (1,*)(1,*) (1,*)

(2,*) (2,*) (2,*) (2,*)

(1,*) (1,*)

(2,*) (2,*)

Array T PA Template Processor Array

(2,1)

(1,1) (1,2)

(2,2)

Figure 2.5: Alignment of array A with template T and distribution onto processor array P as in
Example 2.6.

Example 2.6 It is also possible to combine the collapsing of an array dimension with replicated
storage. Figure 2.5 shows the alignment corresponding to the following directives:
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DOUBLE PRECISION A(2,2)

!HPF$ PROCESSORS P(2,2)

!HPF$ TEMPLATE T(4,4)

!HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P

!HPF$ ALIGN A(i1,*) WITH T(2*i1,*)

As mentioned earlier, the restriction for an align dummy to be used at most once in any of
<align-dummy-list> or <align-subscript-list>, respectively, guarantees a simple placement
relation. However, it also inhibits some more complicated placement relations, as the following
example shows.

A P

Figure 2.6: Illegal HPF alignment of Example 2.7: only diagonal elements of the processor array P
store any part of array A.

Example 2.7 Figure 2.6 represents an alignment of a two-dimensional array A onto a two-
dimensional processor array P according to a placement function

Φ : Z2 → Z2 : (i1, i2) 7→ (i1, i1)

The arrows and the shadings indicate the processor to which an array element is mapped. This
alignment cannot be described in HPF, because the same align dummy would have to be used several
times. The placement can only be approximated by replicating the second dimension of A on all
processors of the same row or column of the processor array.

As noted earlier, the usual case is that an actual array is aligned to a template, which is
distributed onto some processor array of the same dimensionality. In Section 4.1, we will not
assume any specific distribution format, but will base our observations on alignments to BLOCK

distributed templates, since the regular nature of these distributions lends itself to a more pre-
dictable behaviour than a CYCLIC based distribution.

As we have seen, the lowest level of abstraction from the actual CPUs that is at the user’s
disposal in HPF is the processor array. However, the actual mapping of some user defined processor
array to the processes that execute the given code on some CPU core depends not only on the
compiler but also on many other factors such as the operating system. Usually, an HPF compiler
will at least expect to have as many processes available at run time as there are elements in the
processor array. However, we will mostly deal with loops whose bounds depend on values that
are only known at run time. And since the compiler cannot influence the number of processes
at run time (which could be used to adapt the number of processor arrays for which some given
processor is responsible), it is impractical to consider single elements of these HPF processor arrays.
Instead, the lowest level of abstraction we will use here is the level of templates: templates may
be of arbitrary size, since they can be distributed across a processor array such that the run
time system will guarantee that the template elements are evenly distributed across the actually
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available processes. Therefore, we can use templates as an HPF implementation of a processor
mesh – a rectangular mesh of points in Z#pdim with each point representing a processing unit
(may that processing unit be a process, an actual CPU core, or something completely different).
Since these processing units – the points in Z

#pdim – build the lowest level of abstraction from
actual CPU cores, we call these points the physical processors. The implementation of a physical
processor in HPF is an element of an HPF template.

Note that, for a BLOCK distribution of a template, different template extents will enforce dif-
ferent denominators in a placement function that defines a mapping to processes as ΦBLOCK above,
since the block size b in ΦBLOCK is calculated from the size of the template in the distributed dimen-
sion. Therefore, we model the alignment to templates T1, T2 with different extents as relations
between the respective array elements and different processor meshes of physical processors. This
liberates us from having to represent placements using non-linear expressions: the level on which
we compare the place of execution of certain calculations is the points of the processor mesh –
implemented by template elements: two calculations are executed in the same place, iff they are
placed on the same physical processor (the same template element).

In order to be able to talk about placements that only differ in the processor mesh to which
array elements (and executions of operations) are mapped, we have to be able to consider different
processor meshes. Therefore, we never consider a single processor mesh alone, but the space of all
processor meshes available. From now on, we will not only consider a #pdim-dimensional space
representing the processor mesh for a single template, but the #pdims-dimensional space of all
templates of a program fragment put together (with #pdims being the sum of all distributed
dimensions of templates included).

Since the advent of Fortran 90, Fortran supplies the programmer with a convenient way of
addressing regular array sections, which are sometimes used by the run time system of an HPF

compiler in order to produce efficient communication primitives. Array sections are commonly
represented in the triplet notation (the subscripts in this case are called subscript triplets):

A(lb:ub:st)

represents the array section from lb to ub, where only every st-th element is used. The notation
has its direct correspondence in a loop

DO i=lb, ub, st

... A(i) ...

END DO

The reverse, however, is not necessarily true: any loop nest in which the bounds of an inner loop
depend on the current value of an outer loop counter, cannot be represented as triplet, since there
is no way to represent this correlation. Consequently, an SPMD program cannot use a subscript
triplet for an array section that is to be stored locally in Example 2.7: the local section of the first
array dimension can be calculated as a subscript triplet, however, the second dimension is then
either the complete dimension or nothing at all, depending on the coordinate of the local processor
in the same dimension as was already used for the first array dimension. The corresponding loop
nest would introduce an if-statement or a loop that depends on the current value of an outer
loop. The reason is that im(Φ), as a k-dimensional subspace of Z

#pdim (here, k = 1, #pdim = 2),
cannot be generated by k unit vectors of Z

#pdim.

Of course, it would be possible to generate loop nests corresponding to more complex local
sections, e.g. for communication generation. However, many compilers restrict themselves to these
simple cases, and the HPF standard only requires support for these simpler alignment strategies.
For example, in Fortran – and in most other languages –, it is not possible to (statically) reserve
storage for any array section that cannot be described in triplet notation. Therefore, it is easier
to support only alignment directives that lead to these simpler variable declarations.
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2.1.2 Guidelines for Advanced Programming in Data-Parallel Languages

The guidelines presented in this section are not intended as an introduction to HPF but rather as a
collection of good coding practices for writing data-parallel code that can be compiled into efficient
target programs, e.g., by an HPF compiler. We will adopt these practices in our code generation
strategies, which can then be implemented in a fully automatic code generation module.

The main task of an HPF compiler is to transform a program written for a single memory
image into another program that uses local addressing where data is locally available and explicit
communications where it is not. The techniques for this transformation may differ from compiler
to compiler, depending on the degree in which a semantic analysis is performed. Here, we review
some basic heuristics a programmer should follow in order to enable a completely syntax oriented
compiler to generate efficient code for computations on array elements in a loop nest.

Note that the compiler techniques are usually only bound to the use of arrays in loops, and
therefore not actually dependent on the use of HPF, so that most of these heuristics will not only
apply to the compiler we used predominantly, ADAPTOR, or even HPF, but also to other compilers
and languages – such as HP Java [ZCF+99] and other approaches – that use similar techniques in
order to transform shared memory programs to distributed memory programs.

The basic way in which an data-parallel compiler reduces the workload in a parallel loop is by
reducing the range of values to which the loop variable is bound [CK89]. The values that a loop

DO i1=l1,u1,s1
...

S
...

END DO

enumerates can be changed by changing the values of l1, u1, or s1:

DO i1=l1’,u1’,s1’
...

S
...

END DO

Workload is reduced, if

l′1 > l1, or

u′1 < u1, or

s′1 > s1

In addition, s1%s ′1 = 0 and (l ′1 − l1)%s1 = 0 have to hold in order not to enumerate values
in the second loop that are not enumerated in the original one. If we restrict ourselves to such
changes, the resulting set of i1-values for which a statement S in the loop body is executed is
always restricted to a lattice in Z, i.e., a finite set of equidistant integers. Of course, one could
introduce more sophisticated control structures in order to be able to enumerate more complicated
subsets of the integer numbers. However, the plain modification of loop bounds and strides is the
main technique for syntax-directed restructuring compilers to reduce the workload, so that we can
safely assume that the quality of the resulting code will be directly connected to the possibility of
creating loops of that form with modified values for l ′1, u ′

1, and s ′1.
In order to avoid communication in each iteration of a parallel loop nest, which would probably

become quite inefficient, HPF disallows any dependence between different iterations of INDEPENDENT
loops.2 This restriction enables the compiler to execute any part of the workload that was deter-
mined as above at any time – possibly in parallel. Additionally, it enables the compiler to hoist

2Actually, parallel loops can also be expressed as FORALL loops in HPF. These loops define possible dependences
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all communication between different iterations of these loops out of the outermost INDEPENDENT

loop of the loop nest.
Since the compiler must be allowed to hoist all communication outside all INDEPENDENT loops,

dependencies between code fragments enclosed in INDEPENDENT loops have to be expressed in one
of the following two ways:

1. Place one INDEPENDENT loop nest containing such a program fragment below the other in
the program text.

2. Place both INDEPENDENT loop nests inside a sequential loop that is itself not enclosed by an
INDEPENDENT loop.

In other words, only synchronous programs [Len93] can be written in this way.

Pitfall: Different Homes within a Single Loop Nest

As discussed in Section 2.1.1, the compiler is guided in its decision as to which values to choose
for the new bounds and strides of a loop by the distribution and alignment of data. The result of
a computation has to be stored in some array element – of course, different iterations of a parallel
loop have to store the result in different places (since the loop nests have to be executed in a
synchronous fashion). However, the exact loop range depends on the distribution of the array
whose home (i.e. placement) is used as placement of the computation.

Example 2.8 Consider the loop initializing an array B with the value A − 2 · n.

!HPF$ TEMPLATE T(0:m)

!HPF$ DISTRIBUTE T(BLOCK)

!HPF$ ALIGN B(i) WITH T(i)

!HPF$ INDEPENDENT

DO i1=0,m

B(i1)=A-2*n

END DO

Since B is distributed across template T , which is BLOCK distributed, the loop bounds can be reduced
so that only those i1-values are enumerated that initiate a write to a local portion of B on any
given processor. This may result in code of the form:

BLOCKSIZE=((m+1-1)/SQRT_NCPU)+1

DO i1=0+BLOCKSIZE*MY_ID, MIN(m,BLOCKSIZE*(MY_ID+1)-1)

B(i1)=A-2*n

END DO

However, if B is not distributed across the elements of T but, for example, stored on a single
processor:

!HPF$ TEMPLATE T(0:m)

!HPF$ DISTRIBUTE T(BLOCK)

!HPF$ ALIGN B(i) WITH T(0)

!HPF$ INDEPENDENT

DO i1=0,m

B(i1)=A-2*n

END DO

between iterations of the loop, if the target statement syntactically succeeds the source statement in the loop body.
However, these dependences are not necessarily equivalent to the sequential execution. We do not consider these
loops here, since they do not provide any additional feature for our purposes.
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the situation is different – said processor has to do the complete initialization:

IF (MY_ID==0) THEN

DO i1=0,m

B(i1)=A-2*n

END DO

END IF

Of course, the same holds if B is stored in a replicated fashion. The only difference is that, in this
case, all processors have to do the initialization.

Example 2.9 reveals the problems occurring when several differently distributed write accesses
appear in the same loop body: since most compilers use only one home, i.e., only one placement
function, for a complete nest of parallel loops – i.e., loops that are marked as INDEPENDENT–, the
compiler may have to generate quite complicated communication code, for it is not necessarily
clear which write access should determine the placement.

Example 2.9 If we mix assignments to arrays that are distributed according to different place-
ments, e.g., one distributed array, the other one replicated:

!HPF$ TEMPLATE T(0:m)

!HPF$ DISTRIBUTE T(BLOCK)

!HPF$ ALIGN B1(i) WITH T(*)

!HPF$ ALIGN B2(i) WITH T(i)

!HPF$ INDEPENDENT

DO i1=0,m

! Statement S1:

B1(i1)=A-2*n

! Statement S2:

B2(i1)=A-2*n

END DO

the generated loop might look as follows:

DO i1=0,m

! Statement S1:

B1(i)=A-2*n

IF(MY_ID==i/m) THEN

! Statement S2:

B2(i)=A-2*n

END IF

END DO

I.e., the compiler chose to distribute the loop body in the same way as the first write access (the
one to B1), which happens to be replicated; therefore, the complete loop body is executed for every
i1-value. However, if the compiler had chosen to align loop executions according to Statement S2,
things would have looked different: the calculation would have been aligned to B2, and a broadcast
of B1 would have had to be created after calculation.

BLOCKSIZE=((m+1-1)/SQRT_NCPU)+1

DO i1=0+BLOCKSIZE*MY_ID, MIN(m,BLOCKSIZE*(MY_ID+1)-1)

B2(i1)=A-2*n

TMP(i1)=A-2*n

END DO

CALL BROADCAST_SENDRECV(B1,TMP,0,MY_ID)



16 CHAPTER 2. FUNDAMENTALS

More complicated communication structures than in Example 2.9 may arise, if completely
differently distributed arrays are assigned in the same loop.

Example 2.10 Consider this example:

INTEGER p1,p2

REAL A(100)

REAL B(100,100)

!HPF$ DISTRIBUTE A(BLOCK)

!HPF$ DISTRIBUTE B(BLOCK,BLOCK)

!HPF$ INDEPENDENT, NEW(p2)

DO p1=1,100

A(p1)=p1

!HPF$ INDEPENDENT

DO p2=1,100

B(p2,p1)=p1+p2

END DO

END DO

In this example, the home for the p1 loop cannot be determined. Let us suppose, we have four
processors; then the data layout may look as follows:

Processor 1 2 3 4
Part of A A(1:25) A(26:50) A(51:75) A(76:100)

Part of B B(1:50,1:50) B(51:100,1:50) B(1:50,51:100) B(51:100,51:100)

The loop counter values we have to enumerate for A and B, respectively, do not necessarily
have anything in common with each other. Of course, the same holds for communication generated
if array A or B is read in the loop nest.

However, if we fission the loops into

!HPF$ INDEPENDENT

DO p1=1,100

A(p1)=p1

END DO

!HPF$ INDEPENDENT, NEW(p2)

DO p1=1,100

!HPF$ INDEPENDENT

DO p2=1,100

B(p2,p1)=p1+p2

END DO

END DO

the compiler is perfectly able to generate very efficient code – in this case even without any com-
munication.

Note that the HPF standard actually obliges the user to specify the NEW directive for p2 in the
above example. The NEW directive tells the compiler that the given variable is written anew in
each iteration of the loop body before it is used in that loop, and that its final value is not used
anywhere outside the loop nest. In other words, it asserts that the compiler may hold private
copies of the variable on different processors, which corresponds to OpenMP’s PRIVATE directive.
Otherwise, we could not use that variable as loop counter of the nested loop (without asserting
that the final value is propagated correctly etc.). However, most compilers actually do not heed
this restriction, but use private copies as loop counters anyway.
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!HPF$ INDEPENDENT

DO i1=1,n

!HPF$ INDEPENDENT

DO i2=m,m

A(i2,i1)=B(i1)

END DO

END DO

!HPF$ INDEPENDENT

DO i1=1,n

DO i2=m,m

A(i2,i1)=B(i1)

END DO

END DO

!HPF$ INDEPENDENT

DO i1=1,n

i2=m

A(i2,i1)=B(i1)

END DO

Figure 2.7: Possibilities of implementing an assignment to an array with a constant value in a
subscript dimension: parallel loop, sequential loop, and assignment

As a rule of thumb, a compiler will probably be able to generate the most efficient code from an
INDEPENDENT loop nest, if the write accesses in its body all refer to the same template coordinates
in the same iteration.

Pitfall: Enumeration of Pathological Value Ranges

An INDEPENDENT loop whose counter does not appear in the subscript function of the array access
that defines where the compiler places the computation of the body of the loop nest is likely
to irritate the compiler. Although the HPF standard allows such INDEPENDENT loops that assign
several times to the same memory cell, the result of the calculation is not well defined in this case.
In order to yield the same results as a sequential compiler, a compiler may chose to execute the
corresponding loop sequentially, which will at the very best not lead to any speedup.

Now, let us suppose the opposite: an access to an array that has a completely loop invariant
component. This, seemingly, is quite a simple case:

!HPF$ DISTRIBUTE A(BLOCK,BLOCK)

!HPF$ INDEPENDENT

DO i1=1,n

A(m,i1)=i1

END DO

In this case, it may be quite important how the constant value (m) is expressed in the subscript
A(m, i1). This subscript defines which processor(s) execute(s) the loop body (note that, although
A is distributed in two dimensions, only one of those dimensions is actually enumerated by an
INDEPENDENT loop). If the compiler cannot deduce which processors to activate, it will have
to enumerate the loop nest sequentially. Of course, the straight-forward way to express such
an assignment is the one above – to use the value directly in the array subscript. However, in
automatic code generation we may have to generate code for some assignment

A(i2,i1)=i1

where i2 just happens to be constant for the copy of the assignment statement at hand. It can
be tedious to decide that, for this copy, we should replace the value of i2 by the constant entry,
while, for another one, we should replace i1. Therefore, it may be easier to use an assignment to
i2. Figure 2.7 shows different possibilities of how to implement this assignment.

Both the sequential loop (Figure 2.7, middle) and the assignment (Figure 2.7, right) have the
drawback that the compiler might not be able to determine whether such an assignment to i2
changes the processor set on which to execute the loop body. Therefore, the complete loop nest
may get enumerated sequentially. However, the INDEPENDENT loop can be translated in just the
same way as any other INDEPENDENT loop – if the loop counter is used in the array subscript.

The safest way to implement such an assignment is to extract it from the parallel loop nest,
if possible. Otherwise, the compiler may not be able to determine that the assignment to i1, and
with it the array access B(i1), is loop independent. If we help the compiler with this analysis by
extracting this assignment from the parallel loop, we assert that both communication generation
and the determination of active processors stay unaffected by that assignment.
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Simple Array Subscripts and Loop Bounds

As we have just seen, array subscript functions should be as simple as possible – for both write
and read accesses. Of course, it is highly compiler dependent, what function can be considered
simple.

One point that should be easy for any compiler to handle is the case in which the subscript
consists of a single constant – like the constant m above. This is because the value of this expression
cannot change during execution of the parallel loop nest. However, the use of variables that change
– even potentially – during execution may inhibit from the generation of efficient communication
code, since constant values are always easy to incorporate into communication statements, while
changing values are not. All loop counters enumerated in loops that are marked INDEPENDENT or
are themselves placed in the body of a parallel loop nest will be seen by the compiler as potentially
changing their values, i.e., the compiler assumes that several iterations of the loop will be executed.
Therefore, if it is a priori clear that such a loop only executes at most once, the use of its loop
counter should be avoided. In this case, one should try to use as many constants (integer constants
and variables that are known to stay constant) as possible.

As we have already seen, only synchronous programs (i.e., programs with sequential loops at
the outer loop level) can be expressed well in HPF (and other data-parallel languages). This is
because program execution is usually sequential up to the begin and after the end of a parallel
loop nest. Therefore, a strategy to produce expressions that can be handled well by data-parallel
compilers is to use as many constants and loop counters of loops that enclose as large a portion
of the loop nest as possible. Moreover, we can build a coarse hierarchy of subscript functions:

1. Function calls or variables that can change during the execution of the independent loop
nest lead to a subscript function that cannot be analyzed at all at compile time. A com-
piler may implement an inspector-executor scheme [MP87] or some other kind of run time
resolution [CK89].

2. Depending on the compiler, even affine functions in loop counters may be too complicated to
analyze – for example, ADAPTOR will not generate efficient communication for subscript
functions that contain the same loop counter in different subscript dimensions (e.g., the
subscript function Z

2 → Z
2 : (i1, i2) 7→ (i1, i1)).

3. Subscript functions that generate communication patterns that can be expressed by a se-
quence of subscript triplets – like a shift (e.g., Z → Z : i1 7→ i1 − n) or a permutation – do
lead to communication but, usually, this communication can be done very efficiently.

4. If the array elements accessed in a parallel loop are already stored locally, even copies between
memory elements may be avoided, and the overhead for being able to execute the loop body
in parallel instead of sequentially is minimized.

We will take a closer look at these levels of simplicity in Section 4.1. It should be noted, however,
that not only subscript functions may influence the efficiency of the generated communication code,
but also the loop bounds and strides.

As stated earlier, the basic idea behind communication optimization for this kind of compilers
is to hoist communication statements out of all parallel loops – since there is no dependence
between different iterations of parallel (INDEPENDENT) loops, this is always legal. However, since
the sending side of the communication has to know which array elements to send (and to which
receiver), communication can only be hoisted outside a loop if the areas of arrays that a processor
should send can be deduced.

2.2 Some Algebra

In this section, some basic algebraic concepts are recalled that sometimes differ in their exact
definition in the literature. The gentle reader may at first want to skip this section and come back
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if some definitions or properties used later on in this thesis seem unclear. For further information
we refer the reader to basic literature such as Usmani [Usm87] and the handbook by Bronstein
and Semendjajev [BS91].

In the remainder, we will work mostly with rational numbers, and sometimes with integer
numbers, although the following definitions and theorems could as well be defined on any field
or commutative ring, respectively. However, only the field Q and the commutative ring Z are of
importance in this work.

Matrix Forms For integer numbers r and s, any r-dimensional linear subspace U of Q
s can be

defined as the solution of a linear equation system:

U = {µ ∈ Q
s MU · µ = 0}

for a suitable matrix MU ∈ Q(s−r)×s. An approved method to find such a matrix is to write down
the linear constraints in a matrix and transform it into echelon form, which reduces the number of
non-zero rows in the matrix to r. A special case of the echelon form is the reduced echelon form.

Definition 2.11 (Reduced Echelon Form) Let M = (mi,j)i∈{1,...,r},j∈{1,...,s} ∈ Q
r×s be a r×s

matrix. M is said to be in reduced echelon form, if it is in echelon form, i.e.:

(
∀i : i ∈ {1, . . . , r} :

(
∃ki : ki ∈ {ki−1 + 1, . . . , s} :

(
∀j′ : j′ ∈ {1, . . . , ki − 1} : mi,j′ = 0

)))
(2.1)

(with k0 = 0), and the first non-zero entry of each row is 1, and is the only non-zero-entry in its
column:

(

∀i : i ∈ {1, . . . , r} :

(

∀i′ : i′ {1, . . . , r} : mi′,ki
=

{

1 if i = i′

0 if i 6= i′

))

(2.2)

(with the ki from Formula (2.1)).

Note that, for every M ∈ Q
r×s, there is a matrix U ∈ Q

r×r so that U · M is in re-
duced echelon form. Moreover, the reduced echelon form of a matrix is unique, i.e., for each
matrix M ∈ Q

r×s, there is exactly one matrix M ′ ∈ Q
r×s in reduced echelon form so that

(
∀x : x ∈ Q

s : M · x = 0 ⇔M ′ · x = 0
)
.

Note further that we can also define a reduced echelon form of a matrix over the commutative
ring Z instead of the field Q. However, in that case, we cannot guarantee the first non-zero element
of a row to be 1. Instead, the corresponding condition is that the greatest common divisor (gcd)
of all entries in a row be 1.

Generalized Inverses Singular matrices are not invertible, i.e., there may be several pre-image
points for each image point of the corresponding linear mapping. However, one can always choose
some pre-image point as a representative for a solution, if the given point for which we want a
pre-image is actually part of the image of the linear mapping. For example, the point (1, 2) is
clearly not an image point of the function Ψ : Q

2 → Q
2 : (i1, i2) 7→ (i1, i1). However, in the case

that ν ∈ im(Ψ), i.e., ν[1] = ν[2], for example ν = (1, 1), any point ν ′ ∈ Z
2 that has the same

first coordinate, ν′[1] = ν[1], is a valid pre-image point – in our example any (1, i2) for i2 ∈ Q.

A generalized inverse can be used to pick some possible pre-image point for a given image
point. Formally, a generalized inverse is defined as follows.

Definition 2.12 (Generalized Inverse) Let A ∈ Q
r×s. A matrix X ∈ Q

s×r is said to be a
generalized inverse of the matrix A if and only if X satisfies the property:

A ·X · A = A (2.3)
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This definition means that the associated function ΨX : µ 7→ X · µ of X maps all image
points µ of the function ΨA associated with A to some point ν in the pre-image of ΨA so that
ΨA(ν) = µ. This is the definition we will use, although for different purposes, sometimes other
properties defining generalized inverses are adopted in the literature [Usm87, p. 84]. Note that
Definition 2.12 does not necessarily define a unique matrix X for some arbitrary matrix A. If it is
irrelevant which exact matrix to use, we denote a generalized inverse of A with Ag . The following
algorithm can be used to obtain a particular unique generalized inverse.

Algorithm 2.2.1 [GeneralizedInverseMin]:
Input:

A : matrix A ∈ Q
r×s.

Output:

X : generalized inverse X ∈ Q
s×r of A.

C : matrix C ∈ Q
(r−rk(A))×r representing conditions for a vector µ to be in the image of A:

(
∃ν : ν ∈ Q

s : A · ν = µ
)
⇔ C · µ = 0.

Procedure:
Let A′ = L ·A be the echelon form of A;
/* Solve the inhomogeneous equation system for each column of L */

/* as solution vector */

X := 0;
for j = 1 to r
/* For each row of A′, solve for a different column entry */

for i = rk(A) to 1, step −1
k := min({k′ A′[i, k′] 6= 0});

X[k , j] := L[i,j]−A′[i,·]·X[·,j]
A′[i,k]

;

endfor

endfor

C :=






L[ rk(A) + 1, ·]
...

L[r, ·]




;

return (X,C);

Theorem 2.13 Algorithm 2.2.1 calculates a generalized inverse X of the given matrix A ∈ Q
r×s.

For each given vector µ, X · µ is the vector whose componentwise absolute value in reverse order
is lexicographically minimal in the set of vectors {ν A · ν = µ}.
Matrix C represents a condition for a vector µ to be in the image of A (i.e., only for vec-
tors µ ∈ Qr that satisfy C · µ = 0, there is at least one vector ν ∈ Qs so that A · ν = µ):
(
∃ν : ν ∈ Q

s : A · ν = µ
)
⇔ C · µ = 0.

Proof:

The proof proceeds in two steps. First, we verify that Algorithm 2.2.1 computes a generalized
inverse of A. Then we examine the additional properties of the resulting matrices.

Generalized Inverse X Algorithm 2.2.1 actually performs a simple backward substitution.
For each step j, it calculates a solution χj for the equation system

A′ · χj = L[·, j]
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which is solvable iff the equations A′[·, i]χj = L[i, j] are solvable for all i ∈ {1, . . . , r}. The
unique solution for the i-th component of χj is then

L[i, j]− A′[i, ·] · χj

A′[i, k]

since
(
∀l : l ∈ {1, . . . , k − 1} : χj[l] = 0

)
, and thus the values of components 1, . . . , k−1 of χj are

irrelevant, while the values of components k, . . . , s are already chosen so that the corresponding
linear equations are satisfied. However, this does not hold for rows consisting entirely of zeros in
A′ whose corresponding row in L does not consist entirely of zeros. These represent equations
that define a condition for a vector µ to be part of the image of A. This means there may be no
solution for a χj with A′ ·χj = L[·, j], which is equivalent to A ·χj = ιj ; however, there is always
a solution for A · χj = ν with ν ∈ im(A). Put it differently, these rows represent conditions for
L[·, j] to be in the image of A. So, the calculated solution does not hold for any ν ∈ Qs, but only
for some ν ∈ im(A). Since the columns of A represent a base of im(A), we can only solve for an
X with A′ ·X · A = L ·A.

Therefore, each column j of X , separately, represents a solution to obtain column j of L =
L · Ir,r · A and, since in matrix multiplication, the result matrix can be built by consecutively
calculating its columns from the corresponding columns of the right hand side matrix, X is a
solution for A′ ·X · A = L · Ir,r ·A, and thus A ·X · A = A.

By setting X to 0 at the beginning, we implicitly choose the value 0 for an entry of χj – and
thus of X – that is not explicitly defined by a constraint. In the case that rk(A) < r, there is
at least one constraint that contains several variables that are not defined in earlier steps of the
algorithm. In that case, only the lowest numbered component of χj that occurs in that constraint
is defined – the other components are left at their default value 0. Thus, if several components of
a vector ν with A · ν = µ can be freely chosen, Algorithm 2.2.1 chooses all but the least numbered
component to be zero – the minimal absolute value possible. Therefore the absolute value of the
result vector is always minimal with respect to a lexicographic order in which the precedence of
the components of vectors is reversed.

Conditions represented by C The role of C becomes clear when we look at the condition

A · ν = µ

⇔

L ·A
︸ ︷︷ ︸

=A′

· ν = L · µ (with L as in Algorithm 2.2.1)

Read as a system of equalities, the first rk(A) equalities






A′[1, ·]
...

A′[ rk(A), ·]




 · ν =






L[1, ·]
...

L[ rk(A), ·]




 · µ

always have a solution for ν, given any µ (and vice versa). Yet, the rest of the equalities






A′[ rk(A) + 1, ·]
...

A′[r, ·]






︸ ︷︷ ︸

=0

· ν =






L[1, ·]
...

L[ rk(A), ·]




 · µ
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also has to be met. Since this part of A′ is a zero matrix, this is possible if and only if






L[1, ·]
...

L[ rk(A), ·]






︸ ︷︷ ︸

=C

· µ = 0

which is exactly the definition of C. X

By iterating through the j -loop, Algorithm 2.2.1 calculates a generalized inverse of a matrix
A ∈ Qr×s by solving the inhomogenous equation system

A ·X = Ir,r

for each column of Iq,q . I.e., for each j, we solve the equation system

A · χj = ιr

and thus obtain χj as column j of the solution X (since each column of X only depends on its
corresponding column of Ir,r and on matrix A, we can compute each column independently of
the others) [BS91]. Since we always choose 0 for a coordinate that remains undetermined in the
equation system, we obtain a unique generalized inverse that maps a vector µ ∈ im(A) to a vector
ν such that ν has as many zero coordinates as possible (in as highly numbered dimensions as
possible) [Fab97]. We denote this generalized inverse by Ag0 . Note, however, that this specific
property that makes Ag0 unique is not actually needed in this work. We will only use this as our
implementation of a generalized inverse.

Example 2.14 The matrix MΨ defining the mapping Ψ : Q2 → Q2 :
(
i1 i2

)T
7→
(
i1 i1

)T

above is:

MΨ =

(
1 0
1 0

)

The corresponding unit matrix is I2,2, and L =

(
1 0

−1 1

)

, i.e., we solve

(
1 0
1 0

)

︸ ︷︷ ︸

=A

·X =

(
1 0
0 1

)

⇔
(

1 0
0 0

)

︸ ︷︷ ︸

=A′

·X =

(
1 0

−1 1

)

︸ ︷︷ ︸

=L·I2,2=L

Algorithm 2.2.1 assigns the echelon form of MΨ to A′. The rest of the algorithm is devoted to
calculating X column by column – iterating through column j.
For this task, we only have to solve the equation system

A′ · X[·, j] = L[·, j]

by Gaussian elimination. This is performed for each row i of X[·, j], stepping from the last row
to the first one; for each row, we perform the following steps:

1. Assign the number of the first column of A′[i, ·] to k – in our example, this yields k = ⊥
(undefined) for i = 2, and k = 1 for i = 1, since the only non-zero entry of A′ is A′[1, 1].
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With the assignment to k, we choose the row of X[·, j] that we want to define in this

(
i
j

)

-

iteration. If – contrary to this example – there were several non-zero entries in the i-th row
of A′ (with only zero-entries below those entries), we could actually choose k from a set of
column numbers. In the algorithm, we fill all other rows of X[·, j] that we could have chosen
for k with a default value of 0 (by assigning X = 0 at the beginning). Always choosing the
same value for k in different j-iterations asserts that it is always a complete row of X that is
filled with such a default value. And choosing 0 as this default value ensures that this default
value does not influence the value of X[·, j] in other rows; a different default value might
lead to other values – but does not necessarily have to.

2. If k is well defined – which is the case in our example if i = 2, independent of the j-iteration,
we leave X as it is and proceed to the next iteration. In particular, this means that X[·, j]
stays 0 where we originally defined it to be 0. Note that k is undefined iff row A′[i, ·] = 0.
Note further that, in this case, the corresponding row L[i, ·] does not necessarily have to
be 0 – in our example, we even have L[2, ·] =

(
−1 1

)
. This means that we have an

additional condition to meet, namely that, given a vector µ, this vector has to satisfy

−1 · µ[1]+ 1 · µ[2] = 0

in order for our resulting generalized inverse X to “work”, i.e., in order for X · µ to return
a vector such that A ·X · µ = µ. Here, this condition is that the first component of µ equals
the second component of µ, which is not astonishing, since the mapping Ψ, from which we

obtained A′, is defined as
(
i1 i2

)T
7→
(
i1 i1

)T
, i.e., both output coordinates are equal.

3. If k is well defined – which, in our example, is the case if i = 1, independent of the j-iteration,
the equation that has to hold to satisfy the equation system reads

X[k, j] · A′[i, k] + (
∑
l : l ∈ {k + 1, . . . , s} : A′[i, l] · X[l, j]) = L[k, j]

Since X is filled with 0 for all entries not defined yet, this can be satisfied with the assignment

X[k, j] =
L[i, j]− A′[i, ·] · X[·, j]

A′[i, k]

Since k is only well defined for i = 1 in this example, this equation defines the first row of
X. The values for the different j-iterations are:

j X[1, j]

1 1−0·0
1 = 1

2 0−0·0
1 = 0

So, in our example, the algorithm first sets X to 0. Then it leaves the second row of X untouched,
but changes its first row to

(
1 0

)
. The result is a matrix

X =

(
1 0
0 0

)

We see that

MΨ ·X ·MΨ =

(
1 0
1 0

)

·

(
1 0
0 0

)

·

(
1 0
1 0

)

=

(
1 0
1 0

)

which fits exactly with the definition of a generalized inverse.

Linear Relations Viewed as sets, functions are a special case of relations. However, their
representation as matrices may differ. We always represent a linear function Ψ : Q

r → Q
s : ν 7→
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MΨ · ν by its defining matrix MΨ. However, sometimes we may have to represent more general
relations that still are solutions to linear equation systems:

Definition 2.15 (Linear Relation) Let R be a ring. A linear relation Λ⊆Rr×Rs is a relation
such that

Λ =

{

(υ, ν) ∈ Rr × Rs MΛ ·

(
υ
ν

)

= 0

}

for a suitable matrix MΛ ∈ Rq×(r+s) with

(
∀i : i ∈ {1, . . . , q} :

(
∃j, k : j ∈ {1, . . . , r} , k ∈ {r + 1, . . . , r + s} : MΛ[i, j] 6= 0∧MΛ[i, k] 6= 0

))

(2.4)

Equation 2.4 may come as a bit of a surprise: it actually only states that each row in MΛ really
has to define a relation between some element of the domain Rr and the image Rs of the relation
with Rr and Rs being unrestricted R-moduli. This does not mean that we disallow degenerate
relations. It may be a helpful representation in an implementation of the algorithms presented in
this thesis but does not really restrict the relations we work with in any way. We will only consider
R = Q or R = Z. Note that in the definition of a (non-scoped) linear relation, it is actually not
necessary to use a matrix of rational numbers even for R = Q, since we can always multiply the

condition MΛ ·

(
υ
ν

)

= 0 with the least common multiple (lcm) of the denominators:

(
∑
i : i ∈ {1, . . . , r} : mi

di
· υ[i]

)

+
(
∑
i : i ∈ {1, . . . , s} : mr+i

dr+i
· ν[i]

)

= 0

⇔

lcm(d1, . . . , ds, ds+1, . . . , dr+s) ·

(
(
∑
i : i ∈ {1, . . . , r} : mi

di
· υ[i]

)

+
(
∑
i : i ∈ {1, . . . , s} : mr+i

dr+i
· ν[i]

)

) = 0

For the same reason, a linear relation based on rationals also represents a linear relation based
on integers by virtue of convention: we may just restrict ourselves to the integer solutions to
the above equations. However, the inclusion of scoping information – i.e., the information which
dimension is restricted by which bounds – into a linear relation raises the need for distinguishing
rational from integer numbers.

We distinguish between the representation of a linear function as a function and its represen-
tation as a linear relation above, although, of course, any linear function also has a representation
as linear relation.

Example 2.16 Any homomorphism

Ψ : Q
r → Q

s : υ 7→ MΨ · υ

can be represented as a linear relation Λ⊆Q
r × Q

s, where MΛ ∈ Q
r×(r+s) has the form




 MΨ

−1
. . .

−1






In Section 2.4 we will discuss the issue of different representations in greater detail.

2.3 The Polyhedron Model

In contrast to traditional code analysis and transformations in which loops are viewed as unpre-
dictable control structures, the polyhedron model considers different values of loop counters (or
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indices) in different loop iterations as a subset of an integer vector space with the loop bounds
as restrictions in the extents of the corresponding dimensions of the vector space [Fea92a, Fea92b,
Len93, Ban93, Ban94]. This so-called index space of a loop nest – and thus the index space IS(S)
of a statement S – can be expressed as a polyhedron in Z

nsrc+nblob where nsrc is the number of
loops and nblob the number of loop independent (structural) parameters (also called blobs) of
the source program fragment considered. In contrast to the usual conventions in the polyhedron
model, we view IS(S) as a subspace of the index space of a complete program fragment, i.e., as
a subset of a vector space whose dimensions are spanned by all indices in the program fragment.
This enables a simple mapping between index space dimensions and corresponding program vari-
ables in an implementation. Another possible representation would be to use only loop indices of
embracing loops, reducing the complexity of matrix computations. As we will later see, one may
easily convert from the first representation to the second one if necessary. The elements of the
index space are called index vectors. Both indices and parameters are scalar variables in the
source program. The difference between indices and parameters is that indices may change their
respective value during program execution (albeit in a well defined, regular manner), while pa-
rameters do not change their values. In addition to the symbolic constants defined in the program
fragment considered, we always consider two special parameters:

• mc is known to be 1; this enables us to use so-called homogeneous coordinates in order to
represent affine expressions as linear expressions in a vector space that has an additional
dimension for this parameter.

• m∞ is known to be infinity – we will discuss this parameter later in detail.

In general, we call an expression linear if it is a linear expression in the indices and parameters
(including the special parameters above) of the program fragment under consideration. We suppose
the loop indices and parameters to be integers – otherwise they are not suitable as parts of subscript
expressions (languages like Fortran even disallow the usage of any other type as loop counters or
array subscripts).

Usually, the dimensions of Z
nsrc+nblob are enumerated as follows:

• The first nsrc dimensions correspond to the loop counters in the textual order in which the
loops appear in the program text.

• The next nblob − 2 dimensions correspond to structural parameters.

• The next dimension corresponds to m∞.

• The last dimension of Z
nsrc+nblob is the one reserved for mc.

In order to represent the index space as a polyhedron, it is necessary for the loop bounds to
represent hyperplanes of Z

nsrc+nblob , i.e., they have to be linear expressions in surrounding loop
variables, parameters and the additional dimension for mc. Thus, in general, it is not possible
to analyze a complete program. But intraprocedural program fragments can be analyzed in the
polyhedron model if they

• contain only statements without side effects, i.e., only assignments and calls to PURE functions
and subroutines as defined in HPF [Hig93, Hig97] and Fortran [Int97, MR98], and

• contain only accesses to scalars or arrays subscripted by linear expressions, and

• contain only loops as control structures, and

• loop bounds are linear expressions and strides are integer constants, or lower bounds are
minima, upper bounds maxima, of linear expressions.

The last two conditions can be lifted somewhat [Gri96]. Nonetheless, in this work, we assume that
all these restrictions hold, if not stated otherwise.

Strides in loops create holes in the index space. For example, the program fragment
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DO i1=l1,u1,s1

DO i2=l2,u2,s2

A(i2,i1)=A(i2-1,i1)+A(i2,i1-1)

END DO

END DO

i1

i2

Figure 2.8: Polyhedron with holes rep-
resenting non-unit strides in a loop pro-
gram.

corresponds to the polyhedron shown in Figure 2.8 for
the values l1 = 0, l2 = i1, u1 = u2 = 10, s1 = 2,
and s2 = 3. Such polyhedra can be represented by a
combination of

1. their borders (so-called faces), defined by the hy-
perplanes that tightly surround the index space,
and

2. an integer lattice defining the exact integer points
of the index space inside the rational polyhedron.

In Figure 2.8, the boundaries of the polyhedron are given
by continuous lines. With unit strides, the lattice men-
tioned above is just the one built from all integer vectors
(of appropriate dimension), represented by the dotted
lines. This lattice can be represented in implementations
by an implicit restriction to only integer values inside a
rational polyhedron. With non-unit strides, we have to
use a lattice that depends on these strides. The integer
polyhedron is then also called a Z-polyhedron. The
lattice may be a bit more complicated, as shown by the
actual index space points in the figure, where we have holes between the actual index points that
correspond to integer coordinates but not to any index vector. These holes can be represented by
a polyhedron without holes, if we introduce additional parameter dimensions to the index space
(and adhere to the implicit rule of just considering the integer points in any given polyhedron).
Restricting the original index vectors to multiples of these so-called pseudo parameters then
results in holes in the projection of the polyhedron onto the corresponding original dimension.
In contrast to normal index vector dimensions, these additional dimensions represent existen-
tially quantified variables that do not have to be enumerated, but only tested for the existence
of a solution. Section 3.7 describes the code corresponding to those dimensions in more detail.
For example, the index space corresponding to Figure 2.8 above can be defined by the following
restrictions (with b1, b2 as newly introduced existentially quantified variables as described above):

i1 ≥ 0

−i1 + 10 ≥ 0

−i1 + i2 ≥ 0

−i2 + 10 ≥ 0

i1 − 2 ∗ b1 = 0

i2 − i1 − 3 ∗ b2 = 0

Note that the maximal number of these artificially introduced, existentially quantified parameters
is given by the maximal depth of loop nests in the considered program fragment.

The usual case in the polyhedron model is that the order in which points in a polyhedron
are to be enumerated (according to the modelled program fragment) is the lexicographic order
on Z

n (for an n-dimensional polyhedron). We denote this order with ≺. This is guaranteed by
associating the i-th loop in the program text with the i-th dimension of the polyhedron.

In order to model the flow of data – and thus the computation performed – dependence
analysis algorithms consider memory accesses during program execution. The basic construct
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is the textual access: a textual access is a reference t to a memory cell in the program. As
mentioned before, these accesses are array accesses of the form

A(Ψ(i1, i2,m1,m2,m∞,mc))

with Ψ being a linear function in the indices (loop counter variables) i1, i2, (loop independent)
parameters m1, m2, m∞, and mc. Note that it is thus possible to write down expressions that are
linear in ∞ – in this case, the usual rules apply and, for any rational q, we have:

1. q ·m∞ = sgn(q) ·m∞.

2. q · (−m∞) = − sgn(q) ·m∞.

3. q +m∞ = m∞.

4. q −m∞ = −m∞.

5. −m∞ < q < m∞.

However, these rules are relevant only when simplifying polyhedra: there we can assume a poly-
hedron that implies a finite m∞ to be empty.

For an instancewise approach, we distinguish between different run time instances, i.e., different
executions of the same access for different values of surrounding loop indices. Thus, an access
instance 〈ν, t〉 of a textual access t in a statement S is defined by the index vector ν ∈ IS(S ) and
the textual access t. It is the atomic item of the dependence analysis algorithms employed here.

An access instance of a program can either be a read or a write access (i.e., load from memory
or store into memory). A dummy argument of a subroutine that may be written as well as read
is, for this purpose, replaced by a read access followed by a write access.

Transformations or dependence relations between polyhedra are usually expressed by linear
mappings or – more generally – by linear relations.

2.3.1 Going Fine Grain

In this thesis, we aim at constructing a program fragment that can be executed as efficiently as
possible. For this purpose, we eliminate as many redundant calculations as possible and then try
to produce efficient code from the description of the remaining calculations to be performed. In
order to obtain an accurate description of the calulations in the program fragment, we aim at
a precise model of the program execution; i.e., our goal is to model the complete execution of
a program fragment by polyhedra and (dependence) relations between these polyhedra. In our
refined model, we want to keep the property that the sequential program execution corresponds
to the enumeration of the polyhedron in lexicographic order.

The structures we use for this purpose are generalizations of the conventional polyhedron
model. We will therefore introduce some extensions to the model in this section.

Linear Expressions Linear expressions are considered atomic, i.e., they are computable at
essentially no cost, and represent a well defined value that only depends on the place in the
polyhedron where they are evaluated. Only the top level operator of a linear expression has a
representation in our graphs – there is no reason to represent the complete text of the linear ex-
pression. Note, however, that even this top level operator does not actually need to be represented,
if we can encode the value represented by this linear expression in a dependence relation. The
question is rather: do we want to be able process linear expressions in the same way as non-linear
expressions, e.g., do we want to extract a loop independent linear expression term 2*n+m from a
loop iterating through an index i? If the answer is no, we do not actually need to represent linear
expressions at all.

We work on expressions which are compositions of several textual accesses, including operators
and function calls. Thus, we generalize the concept of single textual accesses to the execution of
operators.
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Definition 2.17 Let F be a set of function symbols. In addition to constants and user defined
function names, the following symbols are elements of F :

+,-,*,/,max,min,CALL,. . . :

Intrinsic functions.

LaExpr: Linear expression – considered atomic.

read A: Read access to an element of array A.

write A: Write access to an element of array A.

Assign: Assignment operator.

Each function symbol � ∈ F represents an operator that can be executed by the processor. The
function symbols are associated with an input arity by a function ArityIn : F → N and an output
arity by a function ArityOut : F → N indicating the number of input and output arguments,
respectively. Thus the arity of a function symbol � is ArityIn(�) + ArityOut(�). Without loss
of generality, we assume all input arguments of � to be the first ArityIn(�) arguments and the
output arguments to be arguments number ArityIn(�) + 1 to ArityIn(�) + ArityOut(�). In ad-
dition to output arguments as described above, every function is expected to return some return
value (which might be ignored for some functions). A write access thus has an output arity of 0
(ArityOut(write ·)=0).

In order to identify the operation the processor has to execute, it does not suffice to identify
the values of the loop indices, since the order of execution also depends on the sequence of the
operators in the program text. Beside the value of indices, the order of execution is defined by:

Statement order:
The statements are executed from top to bottom of the program text.

Argument evaluation:
Before the processor can perform a computation, the input must be present; in general,
an operation is executed in three steps:

1. Evaluate the memory locations and stored values of input arguments, and the
memory locations of output arguments.

2. Compute the operation itself.

3. Write the calculated values of output arguments into memory for later use.

In correspondence to this definition of execution order – which holds for most strict pro-
gramming languages – we define two more dimensions of the polyhedra that model the program
execution: occurrences and operand numbers. These definitions represent the central building
blocks for our transformation framework.

Definition 2.18 (Occurrence) With the operator symbols F defined in Definition 2.17 and the
special operator symbols ;, if and loop representing control statements, a program fragment can
be viewed as a term on F ∪ {;, if, loop}. In contrast to the usual definition of a term [BCL82],
the arguments of a function symbol can be input or output arguments. Each point t in the program
text is assigned a unique integer number Occ(t), its occurrence, such that:

• If t = ;(t1, t2), then Occ(t1) < Occ(t2).

• If t = �(t1, . . . , tj , s1, . . . , sk) with � ∈ F , tj′ input arguments and sk′ output arguments,
then the occurrences of these arguments are ordered in the following way:

– Occ(tj′) < Occ(t) < Occ(sk′).

– All sk′ have the form sk′ = write A(sk′ ,1, . . . , sk′,l); the sk′,l′ are enumerated such that:
Occ(sk′,l′) < Occ(t).



2.3. THE POLYHEDRON MODEL 29

This definition guarantees that occurrences are enumerated in the order of execution within a single
loop iteration.

In addition, the memory location of an output parameter is determined before execution of
an operator; this property is actually only relevant if we admit non-linear subscript expressions –
which we will not consider in this work.

In order to re-establish the calculation to be performed, we use the inverse mapping of Occ,
Occ−1, and apply a function called head to the result which yields the corresponding function
symbol, as sketched in Figure 2.10.

Note the differences of the definitions presented here with the usual definitions in computer
algebra:

• A term can have several output arguments. We also consider all operators to have at least
one output argument, which stands for the execution of the operation and can be identified
with its return value. This return value may be void – which is the case for the CALL and the
Assign operator. The return value is the single output argument that can be put directly
into expressions (such as F (i) + 1) in order to use a result of the performed calculation.
The only reason for such a distinguished output argument is the fact that most existing
programming languages allow up to one output argument to be treated in this way.

• According to the above definition, an occurrence is given by a single integer. In computer
algebra, it is usually a sequence of integers defined by the argument positions of the subtrees
containing the one subtree that is to be identified by the given occurrence. Our approach
corresponds to a linearization of this sequence.

For the determination of occurrence numbers, we use a syntax tree, in which control struc-
tures govern their bodies as well as the arguments that control the execution, while function and
subroutine calls govern their arguments [ASU86]. By traversing this tree following an appropriate
pattern, we can assign occurrence numbers in increasing order to each node so that the execution
order of a single loop iteration is defined by the order on the occurrence numbers.

Example 2.19 The following simple program fragment contains five occurrences whose executions
depend on each other:

A=2*n-A

The five occurrences are:

Occurrence 1:

read A is an operator without input arguments (in general, there may be input arguments
– the array subscripts that specify the exact location from where to read); the operator
returns the current value of the 0-dimensional array A in its single output argument (its
return value).

Occurrence 2:

n*2 is a linear expression composed of the structural parameter n and the integer con-
stant 2; since linear expressions are atomic, this corresponds to a single occurrence with
no input arguments and one output argument.

Occurrence 3:

The addition -(2*n,read A) takes the output arguments of Occurrences 1 and 2 as
input arguments.

Occurrence 4:

The assignment operation Assign(-(*(2,n),read A),write A) takes the output of Oc-
currence 3 as input argument and passes this value through to its single output argument.

Occurrence 5:

write A is an operator without input arguments (just as read A) that writes the cur-
rently calculated value to memory.



30 CHAPTER 2. FUNDAMENTALS

Note that, although Occurrence 1 does not take any input arguments, the result of its execution
will depend on the current value of A. This dependence is discovered by the usual dependence
analysis in the polyhedron model. Likewise, the calculation (writing to memory) to be performed
depends on the currently calculated value, which may be some i-th output argument of an operator
execution.

In order to model the complete program text, we still have to have a way of telling the argument
position of an expression in a function call: in Example 2.19, it is important that we want to
compute the expression A− 2 ·n, and not 2 ·n−A, i.e., we have to be able to distinguish between
the different argument positions in the model. Since our model is based on points in Z

n and
relations between these points, this difference should be expressed as different positions in Zn. For
this purpose, we introduce one more integer number:

Definition 2.20 With each function symbol �, we associate the set of operand numbers via a
function OpSet : F → P(Z):

OpSet(�) = {−ArityIn(�), . . . ,ArityOut(�)}

The execution of a single occurrence corresponds to the enumeration of its operand numbers in
increasing order:

1. A negative operand number −j corresponds to loading the j-th input argument of the operator
someOp to be executed onto the stack – or into a register, if appropriate.

2. Operand number 0 represents the execution of the operator itself (by calling a function or a
processor instruction), and storing back the return value.

3. A positive operand number j represents the storing of the (j + 1)-st output value of the
operator.3

Now we can model all the operations the processor has to perform as elements of a polyhedron.
Therefore, we build polyhedra of occurrence instances.

Definition 2.21 (Occurrence instance) Let o be an occurrence within a program fragment con-
taining nblob parameters and nsrc loops. Let P be the (nsrc + nblob)-dimensional polyhedron that
represents the index space of the loop nest. An occurrence instance α ∈ Znsrc+nblob+2 is a vector

α = (α1, . . . , αnsrc+nblob+2)
T

such that

(α1, . . . , αnsrc+nblob
)T ∈ P

αnsrc+nblob+1 = o

αnsrc+nblob+2 ∈ OpSet(head(Occ−1(o)))

We denote the mapping of an occurrence instance α to its occurrence number (o) and its operand
number with OccId(α) and OpId(α), respectively. I.e., in the source program OccId(α) =
α[occdimsrc], OpId(α) = α[opdim src], and in the target program OccId(α) = α[occdim tgt],
OpId(α) = α[opdim tgt].
Let us now consider an occurrence instance α representing the application of an operator
head(Occ−1(OccId(α))) = �. In order to execute α, we first have to load the corresponding
operands in registers or on the stack (depending on the machine architecture). Somehow, the

3The first output value is the one with operand number 0, which is the return value of the expression.
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operand have to be identified and associated to an argument position. For determining the occur-
rence instance representing operand i of α, we define an operand selector

OpndSel : {−ArityIn(�), . . . ,ArityOut(�)} × OI → OI : (i, α) 7→








α[1]
...

α[opdim − 1]
i








(where opdim = opdim src if α is taken from the source index space and opdim = opdim tgt if α is
taken from the target index space).

We define the set OI above as the set of occurrence instances of the program fragment under
consideration. The index vector of an occurrence instance α (its position in the index space) is de-
noted with Idx(α) (i.e., the first nsrc dimensions of Znsrc+nblob+2 as Idx(α) = (α[1], . . . , α[nsrc]).
Note that we will usually argue about a subset Oi ⊆ OI. If Oi is a polyhedron, we usually assume
that all its elements exhibit the same occurrence number – i.e., # (OccId(Oi)) = 1. In this way,
we can easily identify Oi with a single mathematical operator that is computed in this set.

Example 2.22 Figure 2.9 shows the set of occurrence instances of the following program fragment

DO i1=0,1

B(i1)=2*n-A

END DO

The parameter dimensions are ignored in this figure, the occurrence dimension reaches from bottom
to top, the operand dimension from left to right, and the index dimension for i1 together with the
operand dimension, forms the ground plane. The arrows indicate dependence relations between a
term and its subterms. Linear expressions are atomic, write accesses are executed after computa-
tions, and memory locations (defined by the subscript i1 of B(i1)) are calculated before the complete
expression. Note that, since it is clear whether an array access is a read or write here, we represent
the term Assign(-(read A,*(2,n)),write B(i)) just as Assign(-(A,*(2,n)),B(i)). We will
do so where appropriate to save space. Note further that, since write B(i) is the output argu-
ment of the assignment operator, it is placed above the complete term representing the assignment.
Correspondigly, the dependence emerging from i goes to write B(i) but not to the complete term
Assign(-(A,*(2,n)),B(i)).

op

occ

i

write B(i)

-(*(2,n),A)

Assign(-(*(2,n),A),B(i))

read A

*(2,n)

i

Figure 2.9: Occurrence instances of the code fragment of Example 2.22.

Since a single term t is now associated with several values from OpSet(head(t)), we can identify
different operand positions for the function execution represented by an occurrence instance α.
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The mappings between occurrences, occurrence instances, and points in the program text, are
sketched in Figure 2.10.

DO i=1,n
  A(i)=2*i
END DO

operand numbersoccurrence numbers

*

+
−

/

=

terms in program text function symbol

occurrence instances OI

OpSet (maps to P(Z))Occ−1

OccId

head

Occ

OpId

Figure 2.10: Mappings between occurrence numbers, operand numbers, occurrence instances,
points in the program text, and operator symbols.

As described above, we assume that there is a distinct parameter m∞ representing infinity.
This is a convention suggested by Feautrier for his PIP tool [Fea03] – where this is called a big
parameter. We use this parameter in order to represent any occurrence instance α of a program
fragment containing nsrc loops and nblob parameters as an (nsrc + nblob)-dimensional vector, no
matter how many loops actually surround Occ−1(OccId(α)). If the term of an occurrence instance
α is not surrounded by the i-th loop of the program fragment, we define the i-th component of α
as

αi =

{

−m∞ if α is textually placed above the i-th loop

m∞ if α is textually placed below the i-th loop

This encoding of the occurrence instances ensures that the lexicographic order on occurrence
instances corresponds exactly to the execution order of the occurrence instances in the (sequential)
program:

Theorem 2.23 Let α, β be occurrence instances of a loop program. Then α ≺ β iff α is executed
before β in the program.

Proof:
Let us first consider occurrence instances α ≺ β; let i be minimal with α[i] 6= β[i]. We

discern the following cases:

1. Dimension i belongs to a loop surrounding both α and β: then, the index of that loop is
smaller for α, i.e., it is executed before β.

2. Dimension i belongs to a loop surrounding α, but not β: in this case, α[i] > −m∞,
since it is enumerated in the corresponding loop; since β is not surrounded by the loop,
β[i] ∈ {−m∞,m∞}. Therefore β[i] = m∞, i.e., β is placed below the corresponding loop
in the program and will therefore be executed later than α.
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3. Dimension i belongs to a loop surrounding β, but not α: just as above, but with the order
the other way round (β[i] > −m∞ ⇒ α[i] = −m∞), therefore α is placed textually before
the loop).

4. Dimension i belongs to a loop surrounding neither α nor β: in this case, α[i] = −m∞, β[i] =
+m∞. Therefore α is placed before the loop in question, β below the loop, and α is executed
before β.

On the other hand, if α is executed before β, there may be two alternative reasons:

1. α is textually ordered before β, but the indices of the loops embracing both α and β have the
same values in both α and β. For a non-surrounding loop, α and β may be placed on the same
side of the loop (either before the loop or after), in which case the corresponding coordinate
of α and β are equal, or α may be placed before, and β after the loop, in which case α is
executed before β. For all loops textually between α and β corresponding to the i-th index
space dimension, we have −m∞ = α[i] < β[i] = m∞; therefore (since the coordinates of all
non-surrouding loops for which α and β are on the same side are equal), we have α ≺ β. If
α and β are nested within exactly the same nest of loops, OccId(α) < OccId(β) (remember:
occurrences are represented as integers), and therefore α ≺ β.

2. α executes before β, and some loops surrounding both α and β first enumerate α. For all
loops not surrounding α or β that appear textually before a loop that surrounds α and β,
the coordinates of α and β must be −m∞ (both appear textually below that loop). The
first loop that surrounds both α and β and whose coordinate differs between α and β must
therefore make the difference in the lexicographic ordering. Since α is executed before β, its
index value for that coordinate is smaller, and thus α ≺ β.

X

2.3.2 Dependences in the Polyhedron Model

Dependences between memory accesses dictate the order in which the occurrence instances of a
program fragment may be executed. If there is a dependence from occurrence instance α to β,
α ≺ β, we write α∆β (for (α, β) ∈ ∆). Note that the lexicographic order on occurrence instances
corresponds exactly to the execution order, even if α and β only differ in their textual order. This
dependence relation may fall into one of four classes:

1. Input Dependence (α∆i β): α is a read access, β is a read access.

2. Anti Dependence (α∆a β): α is a read access, β is a write access.

3. Flow Dependence (α∆f β): α is a write access, β is a read access.

4. Output Dependence (α∆o β): α is a write access, β is a write access.

Dependences between read and write accesses can be calculated by a variety of dependence anal-
ysis algorithms with differing accuracy [Kei97]. Dependence analysis algorithms such as the array
dataflow analysis (ADA) of Feautrier [Fea91] or fuzzy array dataflow analysis (FADA) [BCF97]
and the improved version CfFADA [CG99] represent dependences between access instances as
linear functions – so-called h-transformations.

An h-transformation maps the index vector of a target access instance to the index vector
of the unique source access instance. Since we view access instances as special cases of occurrence
instances, we view an h-transformation as a mapping from a target occurrence instance to its
source occurrence instance (which means that the places in the program text are also defined
in the h-transformation). In the settings defined above (linear array accesses and loop bounds),
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such an h-transformation that describes the dependence relation between different iterations of
the same statements can be defined by a linear mapping

H : O → im(H) : α 7→ MH · α

with O ⊆ OI ⊆ Z
n and MH ∈ Q

n×n for a suitable O. Otherwise it is defined by a piecewise
linear function (as we will see in Section 2.3.2 below). For the analysis of the source program, we
have n = nsrc + nblob + 2. Note that, for such a representation of a dependence relation, MH has
to be rational, since otherwise we cannot represent dependence relations like the flow dependence
in the following code fragment:

DO i1=1,n

A(2*i1)=i1

END DO

DO i2=1,n

B(i1)=A(i1)

END DO

Here, iteration i2 of the second loop depends on i2
2 . In addition, since both source and target

space of a dependence are not rational but integer, i.e., OI ⊆ Zn, this dependence relation does

not hold for the whole index space {

(
∞
1

)

, . . . ,

(
∞
n

)

}. The dependence holds only for even

values of i2 (the targets of odd values for i2 are not integer vectors and, thus, this relation would
not be a subset of Z

n × Z
n). Therefore, matrix MH does not suffice to define mapping H . We

also need to add the index space in which the dependence holds. In the above case, this is

{

(
∞

2 · i

)

i ∈
{
1, . . . ,

⌊
n
2

⌋}
}.

Note further that a single linear mapping does not suffice to represent all dependences between
array accesses in a program fragment. If we provide an additional loop initializing array A in the
above example, we obtain code like the following:

DO i1=1,2*n

! Statement S1:

A(i1)=0

END DO

DO i1=1,n

! Statement S2:

A(2*i1)=i1

END DO

DO i2=1,n

! Statement S3:

B(i1)=A(i1)

END DO

In this case, Statement S3 depends on both Statement S1 and S2, in turn. Although each depen-
dence relation itself can be described by a linear mapping, this does not hold for the complete
dependence relation! The h-transformation is therefore defined by a piecewise linear function – or,
equivalently, by several scoped linear functions whose domains are mutually disjoint and cover the
complete domain of the target statement. In this thesis, we assume the latter representation, i.e.,
a single h-transformation is always defined as a scoped linear function (a linear function defined
on some restricted domain), possibly representing part of a dependence relation that is completely
defined by a family of h-transformations.

A dependence (α, β) ∈ ∆ is direct if there is no access executed between α and β that conflicts
with α (and β).

In order to model the flow of data into and out of the program fragment considered, we suppose
that, for each array defined as A(m:n), dummy loops of the following form are inserted:
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DO i=m,n

A(i)=A(i)

END DO

With these loops, it is actually not necessary to calculate output dependences directly using a
dependence analysis algorithm; it is also possible, to calculate output dependences from flow
dependences. Correspondingly, input dependences can be deduced from flow dependences that
originate from the dummy loops at the beginning of the program. Note that it actually suffices to
create two imperfectly nested loops (one at the beginning of the program fragment, and one at the
end) with each dimension enumerated from −m∞ to m∞. The occurrence instances representing
the write accesses enumerated by dummy loops can be viewed as a way to represent the position
in memory occupied by the corresponding array element: the index values represent the value to
be added to the base address of the array, and the base address is represented by the occurrence
of the write access.

Example 2.24 Consider the following program fragment:

DO i1 = 1, min(10, m2)

DO i2 = i1,i1+m1+5

! [13] [1] [2] [12] [7] [3] [4] [9] [8] [5] [6] [11] [10]

a ( i1 , i2 ) = a ( i1-1 , i2 ) + a ( i1-2 , i2-2 ) + c

END DO

END DO

Occurrences are written above the corresponding positions in the program text in brackets. We
obtain the following flow dependences:

∆f = {((i1, i2, 13, 0,m1,m2,m∞,mc), (i1 + 1, i2, 7, 0,m1,m2,m∞,mc))

1 ≤ i1 ≤ min(9,m2 − 1), i1 ≤ i2 ≤ i1 +m1 + 5}

∪ {((i1, i2, 13, 0,m1,m2,m∞,mc), (i1 + 2, i2 + 2, 8, 0,m1,m2,m∞,mc))

1 ≤ i1 ≤ min(8,m2 − 2), i1 ≤ i2 ≤ i1 +m2 + 3}

These are represented by h-transformations (we omit the scope):

H1 : (i1, i2, 7, 0,m1,m2,m∞,mc)
T 7→ (i1 − 1, i2, 13, 0,m1,m2,m∞,mc)

T

H2 : (i1, i2, 8, 0,m1,m2,m∞,mc)
T 7→ (i1 − 2, i2 − 2, 13, 0,m1,m2,m∞,mc)

T

In addition, we insert special occurrence instances that correspond to a loop of the form

DO i=-m∞ ,m∞

num(i)=i

END DO

The instances of this loop correspond to integer numbers. In this way, the execution of a read
of an integer number can be represented by an occurrence instance whose value depends on the
corresponding instance of the write access num(i). This is necessary in order to deduce the equiv-
alence of terms like

A(i)*2 and A(j)*2

(which holds for i = j) while asserting that terms like

A(i)*2 and A(i)*3

are not equivalent.
Note that the restriction to integer values is not really necessary. It stems only from the

representation of the original write access (num(i)) by a point in Z
n. In order to include real
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numbers in our representation, we could for example represent a real number x by the instance of
a different occurrence, where the binary representation of the instance corresponds to the binary
representation of x. Note further that, with a dimension of Z

n reserved for mc, whose unit
value represents the integer number 1, it is not really necessary to reserve also a dimension for
representing integer numbers. However, we feel this strategy to be the conceptually cleanest one.
The reason for this is a bit complicated: In order to ensure that every computation of the program
fragment depends on some other computation, we need a special computation that stands for
an integer value – just as we need artificial read and write operations that represent the actual
memory addresses with which read and write operations in the considered program fragment
interact. We could work around this representation by not assuming that every n-ary operator
has to be dependent on all its n operands. This would have the side effect that we would not be
able to argue about linear expressions, for example if we wanted to extract the calculation of linear
expressions from loops. But for the sake of a cleaner representation, we prescribe that an n-ary
operation depends on all n operands. Since this representation requires a special dummy loop, we
also need an index bound by this dummy loop. Conceptually, the variable bound by this dummy
loop actually has to be an index, because any integer can be referenced in the considered program
fragment. Only counting dimensions, one might think it a good idea to use the dimension reserved
for mc as the one enumerated by the index of this dummy loop. But in order not to mix up indices
with parameters, we neglect to use this reserved dimension, so that mc is a parameter that only
takes the value 1 throughout the whole program execution (enabling simplification of polyhedra
that might be empty, if that component can only take the value 1). Thus, independently of the
polyhedron given, we only have two parameters with a special meaning – mc is always guaranteed
to be 1 and m∞ is guaranteed to be ∞.

We view dependences as relations between occurrence instances. So far, we have only consid-
ered dependences between access instances. However, since the value of any term

�(t1, . . . , tj , s1, . . . , sk)

depends on the values of its subterms t1 . . . , tj , we have to introduce non-loop-carried flow de-
pendences between the occurrences representing the subterms and those representing the term
constructed by these subterms. Figure 2.9 shows an example of these dependences.

Definition 2.25 (Structural Dependences) Let α = (α1, . . . , αnsrc+nblob+2)
T

be an occur-
rence instance with OpId(α) = 0, OccId(α) = o, Occ−1(o) = �(. . . , t, . . . ), � ∈ F . Let β be
the occurrence instance with OpId(β) = 0, Occ−1(OccId(β)) = t and Idx(β) = Idx(α). For each
i ∈ OpSet(head(t)), we define a structural dependence

(β, (α1, . . . , αn, o, i)) ∈ ∆s if i < 0, and

((α1, . . . , αn, o, i), β) ∈ ∆s if i > 0

A structural dependence represents the fact that a term t = �(t1, . . . , tn) can only be evaluated
after all subterms t1, . . . , tn have been evaluated. This holds for all programming languages that
follow an eager evaluation scheme. As discussed above, an operator may have several operands,
some of which may be input arguments and therefore correspond to read accesses, others may be
output arguments corresponding to write accesses. So, a single operation � is performed as an
interplay of three different parts.

1. A loading stage that transfers all data needed for the calculation to a place at which it can be
used by the operation (occurrence instances α with negative operand numbers, OpId(α) < 0).

2. A computation stage that does the actual algorithmic operation – we identify this stage
with the result value of the operation (occurrence instances α with operand number 0,
OpId(α) = 0).
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3. A storing stage that transfers all additional result values – if there are any explicit out-
put arguments – to their actual destination (occurrence instances α with positive operand
numbers, OpId(α) > 0).

Of course, these three stages have to be executed in this order (i.e., again, the lexicographical
order on occurrence instances). Therefore, we always assume implicit structural dependences
∆s

impl 6⊆ ∆s between occurrence instances that differ only in their operand position (opdim src in
the original program, opdim tgt in the target program):

(

∀α : α ∈ OI :
OpId(α) < max(OpSet(head(Occ−1(OccId(α))))) ⇒
((α[1], . . . ,OpId(α)), (α[1], . . . ,OpId(α) + 1)) ∈ ∆s

impl

)

.

However, although we have to ascertain that every execution of an operation obeys the order
defined by ∆s

impl, we will not handle these dependences explicitly. Moreover, there are two special
cases to the execution in three stages:

Write accesses:
These represent only the output of a certain value to a place in memory. Therefore, they
are represented only by the execution occurrence instance (formally,
(
∀α : α ∈ OI : head(Occ−1(OccId(α))) = write · ⇒ OpId(α) = 0

)
).

Read accesses:
These represent exactly the opposite action – namely the input of a certain value. Again,
these operations are represented only by the execution occurrence instance (formally,
(
∀α : α ∈ OI : head(Occ−1(OccId(α))) = read · ⇒ OpId(α) = 0

)
).

dummy output argument to Assign

dummy input argument to write B

write B

i

*(2,n)

read A

-(·,·)

Assign(·,·)

dummy input arguments to Assign

dummy input arguments to -

Figure 2.11: Structural dependences of Example 2.22 for a single iteration, including implicit
dependences.

Consequently, we always assume implicit dependences between the different occurrence in-
stances performing any given operation. Figure 2.11 shows the structural dependences of the first
iteration of Example 2.22, including implicit dependences between occurrence instances that to-
gether represent a single operation. The coordinates of the occurrence instances are not related
to their positions in the figure. Rather, the positions represent the partial order on occurrence
instances induced by the structural dependences. Each operator that takes input arguments is
represented by several occurrence instances on which the actual operator execution depends; if
an operator has (explicit) output arguments – such as the assignment operator Assign – these
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are represented by additional occurrence instances. As noted earlier, these occurrence instances
do not represent the actual arguments (as *(2,n) and read A for the subtraction operator in the
example), but the dummy (or formal) arguments. I.e., the occurrence instances that differ only
in the operand dimension are needed in a dependence graph representation in order to discern,
e.g., the first from the second output argument of a procedure with several output arguments,
or the first from the second operand of an operation with arity > 1, such as the subtraction in
the example. Otherwise, a dependence graph representation of the calculation 2*n-A would not
differ from A-2*n. This use of several occurrence instances representing a single operation is only
hinted at in the figure by different positions from left to right. The dependences represented by
the arrows reflect the fact that all input arguments have to be evaluated before the execution of
an operator, and the operator before writing to the output arguments. Read and write accesses do
not take arguments besides the subscript expressions, because they only represent the respective
memory access.

Note that one may also choose a representation as three-address code instead of the one sup-
porting a varying number of arguments that we choose here. Although three-address code is the
state-of-the-art representation for intermediate code today, it does not hold any benefits for our
purpose here. Quite to the contrary, our representation with varying argument number is easier
to extend to the analysis of associative and commutative operators and also allows an easier code
generation in a source-to-source compiler such as LooPo. When using three-address code, the
graph presented in Figure 2.11 does not get any simpler either, because we still need to represent
the complete flow of data: there are only more kinds dependences to consider for the graph.

Structural dependences generally fall into one of two dependence classes:

Structural flow dependences:
A dependence between a storage stage and a read stage model the transfer of a value
from a subterm to a larger one, and thus is a structural flow dependence. We will
denote the set of structural flow dependences of the program fragment given by ∆(s,f).

Structural output dependences:
A dependence between two storage stages is a structural output dependence. These
are exactly those dependences that exist between the output operand position of an
operator and the actual write access to a memory cell (e.g., the dependence between the
rightmost occurrence instance for the Assign operator in Figure 2.9 and the occurrence
instance representing the execution of write B). We denote the set of structural output
dependences of the program fragment given by ∆(s,o).

Note that there are no structural anti or input dependences. This is because structural dependences
are not defined for the ; operator. Otherwise, one might be inclined to define such dependences,
e.g. for occurrence instances writing to the same array element A(1). Flow dependences that
are loop-carried or that hold between terms that are not related via a term-subterm-relation hold
between occurrence instances with operand coordinate 0 (i.e., between the read or write accesses
themselves).

Example 2.26 In the following code fragment, an assignment is appended to the loop of Example
2.22.

DO i1=0,1

B(i1)=2*n-A

END DO

C=2*B(0)+2*B(1)

In this example, we can see both structural and non-structural flow dependences. Figures 2.12(a)
through 2.14 show dependence graphs for this example as used in the conventional polyhedron
model and in our more finely grained model. Non-structural dependences are here marked with
bold arrows.
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statements

C=2*B(0)+2*B(1)

B(i1)=2*n-A

i1

(a) Dependence graph on operations.

C=2*B(0)+2*B(1)

B(i1)=2*n-A, i1 ∈ {0, . . . , 1}

H1 : Z
0 → Z : 0 7→ 1

H2 : Z
0 → Z : 0 7→ 0

(b) Reduced form of the dependence graph in Figure 2.12(a).

Figure 2.12: Dependence graphs of Example 2.26 at the granularity of statements.

Combining non-structural and structural flow dependences enables an accurate model of the
flow of data in the code fragment considered. As usual in the polyhedron model, place and time
of the execution of a given occurrence instance are determined by a space-time mapping, a
piecewise linear mapping from the index space into a target space representing sequential and
parallel loops. The usual granularity of the polyhedron model is the statement. Therefore, the
space-time mapping is usually calculated on the grounds of a dependence graph based on statement
instances, as depicted in Figure 2.12(a) for the code in Example 2.24 – each iteration of the loop
creates a new instance of the statement in the loop body. Figure 2.12(a) shows the dependence
graph with the loop laid out in one dimension and the different statements in the other: the
calculation of C dependens on the values – and thus the calculations – of B(0) and B(1). Since such
a graph can get infinitely large, actual algorithms represent it in a reduced form. Figure 2.12(b)
shows this reduced dependence graph in which a set of statement instances (whose index space can
be described as a polyhedron) is represented as a single vertex in the graph. The edges represent
again dependences; however the h-transformationsHj with which the edges are labelled, represent
a mapping from the target index space of the dependence to its source index space (thus, edges
point in the opposite direction as h-transformations). Note that the index space of a statement
not enclosed in any loop in the usual polyhedron model is actually Z

0 = {0}.4 Figures 2.13 and
2.14 show the finer granularity of occurrence instances. The calculations and dependences between
them in the finely grained model based on occurrence instances use the Occurrence Instance Graph
(OIG) and its reduced form – shown in Figures 2.13 and 2.14, respectively. Note that in Figure
2.14, the different iterations of the loop in Example 2.24 are represented by the same axis as the
different iterations of the dummy loop representing integer values. That is, they are implicitly

4Any vector space must contain the neutral element of vector addition, and therefore be non-empty. This has
a correspondence in the space of array elements of a 0-dimensional array (a scalar), which does have exactly one
element (and not – as one might think – none) and in the index space of a statement that is not enclosed in any
loop (it is executed once).
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occ

op

i

write C

Assign(+(*(2,read B(0)),*(2,read B(1))),write C)

+(*(2,read B(0)),*(2,read B(1)))

*(2,read B(1))

read B(1)

1

2

*(2,read B(0))

read B(0)

0

write B(i1)

Assign(-(*(2,n),A),B(i1))

read A

*(2,n)

i

num(i)

2

-(*(2,n),A)

Figure 2.13: Fine grain dependence graph at the granularity of occurrences.
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occ

op

H1 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(mc, −m∞, −m∞,−m∞, 0, 0, n, m∞, mc)
T

H3 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(m∞, m∞, mc,−m∞, 6 · mc, 0, n, m∞, mc)
T

H4 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(m∞, m∞, 0, −m∞, 6 · mc, 0, n, m∞, mc)
T

H5 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(2 · mc, −m∞,−m∞, −m∞, 0, 0, n, m∞, mc)
T

H6 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(0, −m∞,−m∞, −m∞, 0, 0, n, m∞, mc)
T

H7 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(2 · n, −m∞, −m∞,−m∞, 0, 0, n, m∞, mc)
T

H8 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(i1, −m∞,−m∞, −m∞, 0, 0, n, m∞, mc)
T

H2 : (i, i0, i1, i2, occ, op, n, m∞, mc)
T 7→

(2 · mc, −m∞,−m∞, −m∞, 0, 0, n, m∞, mc)
T

write C

Assign(+(*(2,read B(0)),*(2,read B(1))),write C)

+(*(2,read B(0)),*(2,read B(1)))

*(2,read B(1))

read B(1)

1

2

read B(0)

0

write B(i1), i1 ∈ {0, . . . , 1}

Assign(-(*(2,n),A),B(i1)), i1 ∈ {0, . . . , 1}

-(*(2,n),A), i1 ∈ {0, . . . , 1}

read A, i1 ∈ {0, . . . , 1}

*(2,n), i1 ∈ {0, . . . , 1}

i1, i1 ∈ {0, . . . , 1}

num(i1), i1 ∈ Z

2

*(2,read B(0))

Figure 2.14: Reduced form of the dependence graph in Figure 2.13.

prepended to each program fragment, as discussed in Section 2.3.2. On the other hand, the
dummy loops for the arrays of the program fragment are completely dropped in the figure. The
implicit dependences between occurrence instances representing different operands of an operation
are omitted in the figures to avoid clutter; these dependences would otherwise always point from
the left to the right and either start or end at operand position 0.

Definition 2.27 An Occurrence Instance Graph is a graph OIG = (OI,∆), where OI is
the set of occurrence instances of the program fragment and ∆ is a set of dependences between
occurrence instances, ∆ ⊆ OI × OI.

Note that the calculations performed by a given program fragment are completely described
by its set OI of occurrence instances and the mapping Occ−1 which associates an operator to each
occurrence. The occurrence instance graph, i.e., the set of occurrence instances together with a
dependence relation on these occurrence instances, however, is a convenient way of representing
all constraints that actually hold with respect to the execution order of occurrence instances.
Depending on which task we want to accomplish, it may be helpful to view different occurrence
instance graphs with different edge relations – ∆f , ∆a, ∆i, ∆o, ∆s, or any combination thereof.
Since the type of a dependence only depends on the operators of its source and target occurrence
instances, all these subgraphs can be obtained from a single graph (OI,∆f ∪∆a ∪∆i ∪∆o ∪∆s).

As Example 2.24 clearly shows, an OIG is obviously by far larger and more complicated than
a graph based on statement instances. Even the reduced form of the graph is rather complicated.
However, this fine grained structure is only necessary for the loop-carried code placement technique
in Chapter 3. The computation of space-time mappings in Chapter 4 is done on a more compact
form.
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2.4 Relation Representations

In the polyhedron model, the complete source code of a loop program is represented by polyhedra.
Dependences are defined as relations between different polyhedra, and in the same way, we may
also define a space-time mapping as a relation between a polyhedron which defines the occurrence
instances executed by the original program and another polyhedron whose axes represent space
and time, and which defines the occurrence instances of a transformed, parallel program. In
Chapter 4.1, we will take a closer look at the placement part of such a space-time mapping.

Sometimes it is necessary to restrict a polyhedron to the exact index space in which its elements
are executed – for example, if the corresponding index space is to be enumerated. However, in some
cases, these restrictions are not necessary. In this section, we consider different representations of
relations between polyhedra.

Let us start with an example:

Example 2.28 Consider the following data distribution in an HPF program:

!HPF$ TEMPLATE T(0:3,0:3,0:3)

!HPF$ DISTRIBUTE T(BLOCK,BLOCK,BLOCK)

!HPF$ ALIGN A(i1,i2) WITH T(0,i1,*)

The asterisk in the WITH-clause tells the compiler to store each row A(i,:) of array A on
different coordinates of the three-dimensional processor array, but to keep copies of each of these
rows on the complete third dimension of the processor array. Only processors whose first coordinate
is 0 store any data at all.

Space
Virtual Processor
Mesh

Physical Processor
Mesh

Array Index

ΦL ΦR

p1

p2
p3

j

i

Figure 2.15: Representation of a placement relation by a pair of mappings ΦL and ΦR..

The distribution of Example 2.28 is sketched in Figure 2.15. It represents a linear relation
between the processors that have to store a given element A(i, j) and its array subscript. This
relation can easily be represented by a pair of linear mappings Φ = (ΦL,ΦR) that define a data
distribution: a given virtual processor (p1, p2) has to store a given element (i1, i2), iff

0 = p1

and

1 · i1 = 1 · p2

without any condition for p3, i.e., the condition is

(p1, p2, p3) ∈ Φ−1
R ◦ ΦL(i1, i2)
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with

ΦR : Z3 → Z2 : (p1, p2, p3) 7→ (1 · p1, 1 · p2)

and

ΦL : Z2 → Z2 : (i1, i2) 7→ (0, 1 · i2)

Although the distribution cannot be described by a linear function, it is possible to describe
it by a pair of mappings that map into a common subspace. The information we left out of our
description here are the ranges of the processor array and the array to be distributed – we only
supposed “given coordinates”. This information may not even be available until run time and is
not necessary for expressing the alignment of different data elements with respect to each other.

Note that the fact that function images – i.e., the finite bounds of the polyhedra representing
array and processor index space – are ignored effectively eliminates the differences between con-
sidering linear relations on Q or on Z, since a solution in Z is always also a solution in Q, and
a solution in Q also defines a solution in Z, if only the nominator is considered (considering the
denominator, on the other hand, is only of interest if there is some boundary value for the solution
that must not be exceeded).

The virtual processor mesh in Figure 2.15 is determined by the number of equalities that can
be established between the index space of the array to be distributed and the processor array.
This connection will be made clear in Section 2.4.1.

Actually, the data distributions allowed by HPF are quite restrictive; i.e., many linear relations
are not legal HPF distributions, as we have seen in Section 2.1.1. However, this is of minor interest
at this point.

2.4.1 Higher-Dimensional Polyhedra

The most general way to represent linear relations between integer vector spaces is to build a new
polyhedron that – possibly in addition to domain restrictions – expresses the relation between
them. This is the standard representation of, e.g., CLooG [Bas03, Bas04]. The advantage of this
representation is that it is able to capture restrictions on relations between (lower-dimensional)
polyhedra, i.e., subsets of vector spaces, rather than whole vector spaces, so that the complete
description of a loop program can be stored.

Given two polyhedra P1 = {ν1 ∈ Zr1 MP1 · ν1 ≥ 0} and P2 = {ν2 ∈ Zr2 MP2 · ν2 ≥ 0} with
defining matrices MP1 ∈ Z

q×r1 and MP2 ∈ Z
q2×r2 , the cross product of these polyhedra is given

by:

P1 × P2 =

{(
ν1
ν2

)

∈ Zr1+r2

(
MP1 0

0 MP2

)

·

(
ν1
ν2

)

≥ 0

}

A relation between these polyhedra is then expressed as a subset of P1 × P2, i.e., in addition
to the constraints given by MP1 and MP2 , further constraints have to hold: for a relation

P =

{

(ν1, ν2) ∈ P1 × P2 MP1,P2 ·

(
ν1
ν2

)

= 0

}

as in Definition 2.15, constraints of the form

(
MP1,P2

−MP1,P2

)

·







ν1
ν2
ν1
ν2







≥ 0

are added so that the complete relation can be expressed as a polyhedron.5

5Of course the equations do not really have to be rewritten into inequations – this is just to show that the
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2.4.2 Pairs of Mappings

Section 3.3 will focus on the generation of equivalence classes of occurrence instances. In order
to find candidate occurrence instances that may be equivalent to other occurrence instances, it is
not useful to take the exact bounds of the index space of these occurrence instances into account:
we may well want to view some occurrence instances as equivalent if they were executed by the
program, even if they are actually not executed due to restrictions in their loop bounds. When we
are only interested in the relation of points with respect to each other, but not in the respective
domains, it suffices to view a linear relation as a composition of two mappings as in Example 2.28.
The set R of points to be associated with a vector ν is the pre-image Λ−1

R of an image point ΛL(ν)
of the other mapping:

R := (Λ−1
R ◦ ΛL)(ν)

(In the example, ΛL = ΦL and ΛR = ΦR.) This pre-image can be described by a specific solution
and a linear subspace:

R = (Λg
R ◦ ΛL(ν)) + ker(ΛR)

Λg
R yields a specific solution υ for a pre-image of a point µ under ΛR (i.e., it yields an υ with

ΛR(υ) = µ), provided that µ indeed is the image of ΛR. All other points that are mapped to µ
by ΛR differ from υ only by the addition of vectors from ker(ΛR).

As can be gleaned from Figure 2.15, the advantage of this approach lies in the symmetric
description of relations: we can choose whether we are only interested in a point (as existence
proof) satisfying the relation, whether we need the whole set of points within the relation, or
whether we want to view the “image” or the “pre-image” of our relation.

The vector space into which both ΛL and ΛR map here depends on the number of equations
that have to hold. In our context, the sets U and V are actually Z-polyhedra; however, since
the domains are unimportant, we view Z as subset of Q and only consider vector spaces on the
rationals.

For technical reasons, we want to be able to compare these representations; therefore we need
a unique representation of a linear relation in this form.

The correspondence between the equalities defining a relation and the mappings that can be
used to express these equalities is as follows:

Theorem 2.29 Consider a linear relation Λ⊆Q
nL × Q

nR such that

Λ =

{

(ν, υ) ∈ UL × UR MΛ ·

(
ν
υ

)

= 0

}

with MΛ ∈ Q
q×(nL+nR). Then there are linear mappings ΛL : Q

nL → Q
r : ν 7→ MΛL

· ν,
ΛR : Q

nR → Q
r : υ 7→ MΛR

· υ such that

(ν, υ) ∈ Λ ⇔ ΛL(ν) = ΛR(υ)

with r = rk(MΛ).

Proof:

The proof is actually trivial, since the reduced echelon form of MΛ yields exactly the desired
result. Let MΛ

′ ∈ Q
q×(nL+nR) be the reduced echelon form of MΛ; MΛ

′ is unique and contains
r = rk(MΛ) non-zero rows. Since MΛ

′ is obtained from MΛ via basic row transformations,

MΛ
′ ·

(
ν
υ

)

= 0 ⇔MΛ ·

(
ν
υ

)

= 0.

general description using only inequations can be obtained from the added equation system.
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Put differently, MΛ ·

(
ν
υ

)

= 0, iff for each row i of MΛ
′, we have

(∑
j : j ∈ {1, . . . , nL} : MΛ

′[i, j] · ν[j]
)

+
(∑

j : j ∈ {nL + 1, . . . , nL + nR} : MΛ
′[i, j] · υ[j − nL]

)
= 0,

i.e., we can split the matrix MΛ
′ in two parts,

MΛL
=

(
−MΛ

′[1, 1] . . . −MΛ
′[1, nL]

−MΛ
′[r, 1] . . . −MΛ

′[r, nL]

)

and

MΛR
=

(
MΛ

′[1, nL + 1] . . . MΛ
′[1, nL + nR]

MΛ
′[r, nL + 1] . . . MΛ

′[r, nL + nR]

)

Since only the first r rows of MΛ
′ are non-zero, MΛL

and MΛR
need only r rows. Thus, it is

possible to create a pair of mappings that define our new representation and that only use rk(MΛ)
dimensions in the image of both ΛL and ΛR. X

Theorem 2.29 shows that we can derive a representation of a linear relation via the reduced
echelon form. This representation can be used to compare linear relations syntactically, since the
reduced echelon form of a matrix is unique.

Note that the model works with rational coordinates. This means that we may have rational
valued occurrence instances that are in relation with each other. Of course, we will ultimately cre-
ate these occurrence instances by counting through loops that enumerate integer values; however,
with these integer values representing the nominator of the fraction of the occurrence instance, we
can represent the rational occurrence instance by simply dividing by the denominator.

Linear Function and Subspace

Let us suppose a linear relation Λ⊆Qr ×Qs is given by a mapping T and a linear subspace W⊆Qs

such that
(ν, υ) ∈ Λ ⇔ (∃ω : ω ∈ W : ν = T (υ) + ω)

Using a pair of mappings as sketched in Figure 2.16 instead of a single mapping and a subspace
is a more symmetric approach (and thus better suited for non-scoped relations, especially when
building their inverses), and is equivalent to this representation, as we will see now.

Actually, this problem is closely related to the homomorphism theorem of linear algebra: the
idea is to partition Q

s into the quotient space Q
s/W and its complement in Q

s. Then we can
map a vector ν to some representative of T (ν) + W by a function ΛL. Correspondingly, a second
mapping ΛR maps all elements of W to 0 – so that the pre-image of ΛR is given by a specific
solution for obtaining the above representative of T (ν) + W in addition to the kernel of ΛR, i.e.,
W.

Qr Qs Qs ⊇ W
T

ΛRΛL

Figure 2.16: Representation of a relation T + W by two mappings ΛL and ΛR.
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Theorem 2.30 Let T : Q
r → Q

s be a linear mapping, W⊆Q
s a q-dimensional Q-vector space.

Then, there exist linear mappings ΛL : Qr → Qs and ΛR : Qs → Qs such that

im(ΛL)⊆ im(ΛR) (2.5)

and

(
∀ν : ν ∈ Qr : (Λ−1

R ◦ ΛL)(ν) = T (ν) + W
)

(2.6)

Proof:

The second condition (2.6) can be written as:

(

∀ν : ν ∈ Qr :

(

∃{a1, . . . , aq} : a1, . . . , aq ∈ Q :
(−(Λg

R ◦ ΛL))(ν)+
(
∑
j : j ∈ {1, . . . , q} : aj · ωj) = T (υ)

))

(2.7)

and
(
∀ν : ν ∈ Qr :

(
∀υ : υ ∈ (Λ−1

R ◦ ΛL)(ν) :
(
∃ω : ω ∈ W : T (ν) + ω = υ

)))
(2.8)

The subspace W is generated by some spanning vectors {ω1, . . . , ωq}. Therefore, the kernel of ΛR

must be created by exactly the same vectors (the only way to define a relation between some point
ν and a whole set of points in Qs using this approach is that the pre-image of ΛR is a set instead
of a single point).

Therefore, we partition the source space of ΛR into its designated kernel W = Span(ω1, . . . , ωq)
and an extension to the full space Q

s consisting of unit vectors:

1. Let B = {ω1, . . . , ωq}.

2. Let W =






ωT
1
...

ωT
q




 be the matrix consisting of the vectors in B as row vectors and W ′ the

echelon form of W .

3. For each row i of W ′, let ji be the column of the first non-zero entry of this row; we define
jq+1 = s+ 1.

4. For each row i, define the set of completing unit vectors Ci =
{

ι(1+ji), . . . , ι(j(i+1)−1)

}

.

5. Define C =
⋃

i∈{1,...,q}

Ci.

Note that although Ci, as defined in Step 4, always exists and is well defined, the definition at this

point is rather arbitrary – we could as well define Ci =
{

ι(ji), . . . , ι(j(i+1)−2)

}

or something similar

– this is just the definition that comes naturally with the echelon form. In this setting, we define
ΛR as the unique linear mapping that maps Q

s as follows:

ΛR : Qs → Qs : υ 7→

{

0 if υ ∈ B

υ if υ ∈ C
(2.9)

Since ΛR is defined as an endomorphism, this mapping always exists. Also note that ΛR is
defined in dependence on C. Therefore, the choice for Ci does have impact on the mapping ΛR –
depending on that choice, one or the other row of the defining matrix (and thus one or the other
image dimension of the mapping) will be 0.

In addition, Qs is thus divided into the subsets Qs = W⊕ im(ΛR). Therefore, we have

(
∀υ : υ ∈ Q

s :
(
∃c1, . . . , cq : cj ∈ Q : Λg

R ◦ ΛR(υ) = υ + (
∑
j : j ∈ {1, . . . , q} : cj · ωj)

))
(2.10)
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This holds, since otherwise there are υ, υ0 ∈ im(ΛR) so that Λg
R ◦ ΛR(υ0) =

υ0 + υ + (
∑
j : j ∈ {1, . . . , q} : cj · ωj) with υ 6= 0, which implies that ΛR ◦ Λg

R ◦ ΛR(υ0) =
ΛR(υ0 + υ + (

∑
j : j ∈ {1, . . . , q} : cj · ωj)) = ΛR(υ0) + ΛR(υ), with ΛR(υ) 6= 0, and thus

ΛR ◦ Λg
R ◦ ΛR 6= ΛR, which contradicts the definition of Λg

R.
We now go on to define ΛL. The purpose of ΛL is to “act like” T but with the restriction

im(ΛL)⊆ im(ΛR). This can be asserted by chosing

ΛL := ΛR ◦ T

Thereby, we guarantee proposition (2.5), and it is now straightforward to see proposition (2.6):
Q

s is partitioned into W and another subspace that can be spanned using unit vectors; i.e., we
can represent any T (ν) as linear combination of vectors from those two vector spaces:

T (ν) = (
∑
i : i ∈ {1, . . . , s− q} : bi · υi) + (

∑
j : j ∈ {1, . . . , q} : aj · ωj)

Note that this decomposition does not have to be orthogonal (in general it will not be or-
thogonal); it suffices to use linearly independent vectors. On the other hand, ΛL is defined as
ΛR ◦ T :

ΛL(ν) = ΛR ◦ T (ν) = ΛR((
∑
i : i ∈ {1, . . . , s− q} : bi · υi) + (

∑
j : j ∈ {1, . . . , q} : aj · ωj))

= ΛR((
∑
i : i ∈ {1, . . . , s− q} : bi · υi)) since W = ker(ΛR)

Therefore, with Equation (2.10) and suitable cj , we have

Λg
R ◦ ΛL(ν) = Λg

R ◦ ΛR((
∑
i : i ∈ {1, . . . , s− q} : bi · υi))

= (
∑
i : i ∈ {1, . . . , s− q} : bi · υi) + (

∑
j : j ∈ {1, . . . , q} : cj · ωj)

and thus condition (2.7). Correspondingly, condition (2.8) is met, since Λ−1
R (0) = W and thus

Λ−1
R ◦ ΛL(ν)⊆T (ν) + W. X

The above theorem states that we can represent any (rational) linear relation of the form

Λ = {(ν, T (ν) + ω) ν ∈ Q
r, ω ∈ W = Span(ω1, . . . , ωq), T (ν) + ω ∈ Q

s}

with two linear mappings, ΛL and ΛR, as Λ−1
R ◦ ΛL. Thus, using the polyhedra P and Q as

additional restrictions for the source spaces of our two mappings ΛL and ΛR, we can describe the
complete relation by these mappings in combination with their source space.

A representation “in-between” polyhedra and this representation using a pair of mappings can
be obtained by leaving out the dimensions in the target space of ΛL and ΛR whose coordinates
are always 0 in both im(ΛL) and im(ΛR). This is stated by the following corollary.

Corollary 2.31 Let Ψ : Qr → Qs be a linear mapping, W⊆Qs a q-dimensional Q-vector space.
Then, for each q0 ∈ {1, . . . , q}, there exist linear mappings ΛL : Q

r → Q
s−q0 and ΛR : Q

s →
Qs−q0 such that

im(ΛL)⊆ im(ΛR) (2.11)

and

(
∀ν : ν ∈ U : Λ−1

R ◦ ΛL(ν) = Ψ(ν) + W
)

(2.12)

Proof:
The only difference to the situation in Theorem 2.30 is that ΛR is no longer restricted to

being an endomorphism. In Theorem 2.30, ΛR is constructed as the unique mapping satisfy-
ing Equation (2.9). Since we chose unit vectors for completing W to an s-dimensional vector
space, it is easy to see that, for each dimension i of W, ΛR will exhibit a dimension ji so that
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(
∀υ : υ ∈ Q

s : ΛR(υ)[ji] = 0
)
, since, for each i, ωi 6∈ C and therefore

(
∀υ : υ ∈ Q

s : ωT
i · υ = 0

)
.

And, since ΛL is defined as a composition with ΛR ◦ T , the dimensions ij are also set to 0 in the
image of ΛL. Therefore, the restrictions 0 = ΛL(ν)[ji] = ΛR(υ)[ji] = 0 are always true. They
do not define any further restriction on the relation. Thus, these dimensions can be disregarded.X

This means that we can represent any linear relation by a pair of a homomorphism and an
endomorphism – or, equivalently, by a pair of two homomorphisms. This is the representation
chosen for array placement relations in Section 4.1.2.

Operations on Pairs of Mappings

When representing a relation by pairs of mappings instead of complete equation systems, we
will need some operations on this new representation in order to do calculations. These basic
operations are presented here.

Inversion Inversion is the simplest operation: since the relation represented by (ΛL,ΛR) is
actually Λ−1

R ◦ ΛL, the inverse relation is simply given by (ΛR,ΛL) which represents Λ−1
L ◦ ΛR.

Composition The relation representing the composition of two linear relations (Λ1L,Λ1R) and
(Λ2L,Λ2R) is given by

Λ2
−1
R ◦ Λ2L ◦ Λ1

−1
R ◦ Λ1L

Since ΛiL and ΛiR are linear functions, the sets Λi
−1
L (α) and Λi

−1
R (β) (for some α and some β)

can be computed using arbitrary generalized inverses Λi
g
L and Λi

g
R, together with the appropriate

kernel – ker(ΛiL) and ker(ΛiR), respectively:

Λ2
−1
R ◦ Λ2L ◦ Λ1

−1
R ◦ Λ1L = Λ2

g
R ◦ Λ2L ◦ Λ1

g
R ◦ Λ1L + ker(Λ2R) + Λ2

g
R ◦ Λ2L(ker(Λ1R)) (2.13)

This composition can be expressed by two mappings as defined in Theorem 2.30 above.
We observe that there are two terms in this expression, where sets come into play:

1. Λ1 may define a set that is associated with any given point due to the term Λ2
g
R◦Λ2L(ker(Λ1R)).

2. Λ2 may define a set that is associated with any given point due to the term ker(Λ2R).

In general, there are at least two ways to handle the resulting new sets: either we unite them, or
we build the difference. For each of these options, we define an individual operator. Let us first
examine the case of building the union:

Definition 2.32 (Operator ◦+) The composition as shown in Equation 2.13 above – using the
union of the two sets in question – defines the composition operator ◦+:
Let Λ1 = (Λ1L,Λ1R),Λ2 = (Λ2L,Λ2R) be two linear relations. The operator ◦+ defines a result
relation Λ2 ◦+ Λ1 as:

(Λ2L,Λ2R) ◦+ (Λ1L,Λ1R) = (Λ3L,Λ3R) such that

Λ3
−1
R ◦ Λ3L = Λ2

g
R ◦ Λ2L ◦ Λ1

g
R ◦ Λ1L + ker(Λ2R) + Λ2

g
R ◦ Λ2L(ker(Λ1R))

An implementation may compute (Λ3L,Λ3R) = Λ2◦+Λ1 by defining Λ3L and Λ3R as the mappings
ΛL and ΛR of Theorem 2.30 that represent the above relation.

Thus, the union is quite easily described, and this is the usual case found: all points for which
a relation exists have to be considered. And yet, sometimes it may be appropriate to take the
difference of the sets above: Λ1 = (Λ1L,Λ1R)⊆Q

r×s specifies a set that has to be considered
for each point υ of Qr, while for each point in Qs, Λ2 = (Λ2L,Λ2R)⊆Qs×t defines a subset
of Q

t, from which we may choose any point. This will be the case in Section 4.1, when some
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data element is stored in a replicated fashion. There, the processor reading some data may
choose the specific copy that it actually reads. For this case, we now need another composition
operation ◦− that picks a single point υ from the possibilities supplied by Λ2 (for some given
ν, υ ∈ (Λ2

−1
R ◦ Λ2L ◦ Λ1

−1
R ◦ Λ1L)(ν) should hold as discussed above). Since we now have the

freedom to choose some point, we need a notion of what may be a good point to choose. The
criterion we apply here is as follows: with ultimate source and target space being identical, the
resulting mapping is such that, given some input vector ν, the output vector υ features the same
coordinates as ν for as many dimensions as possible. Moreover, the result of the ◦− operator is
again a linear relation. Theorem 2.34 will show how to select a vector υ that features the same
coordinates as ν in as many dimensions as possible: the resulting linear relation that picks the
appropriate value for υ can be derived from the relation obtained from the ◦+ operator by adding
appropriate base vectors to the defining matrix. But, in order to prove this, Lemma 2.33 first tells
us how to obtain a linear mapping Ψ′ from an original mapping Ψ and a subspace V so that we
have Ψ′(ν) ∈ Ψ(ν) + V for all vectors ν.

Lemma 2.33 Let Ψ : Q
r → Q

u : µ 7→ MΨ · µ and V ∈ Q
u×s, C ∈ Q

s×r arbitrarily, then the
mapping Ψ′ : Qr → Qu : µ 7→ MΨ′ · µ with

MΨ′ = MΨ + V · C

maps any point µ ∈ Q
r to an element of Ψ(µ) + Span(V [·, 1], . . . ,V [·, s]).

Proof:
This property follows directly from the linearity of the matrix-vector product. Let υ = Ψ(µ) =

MΨ · µ, υ′ = Ψ′(µ) = MΨ′ · µ. Then we have

υ[i] = (
∑
k : k ∈ {1, . . . , r} : MΨ[i, k] · µ[k])

= (
∑
k : k ∈ {1, . . . , r} : (MΨ′[i, k]− (V · C )[i, k]) · µ[k])

= (
∑
k : k ∈ {1, . . . , r} : MΨ′[i, k] · µ[k]) − (

∑
k : k ∈ {1, . . . , r} : (V · C )[i, k] · µ[k])

= υ′[i]− (
∑
k : k ∈ {1, . . . , r} : (

∑
p : p ∈ {1, . . . , s} : V [i, p] · C[p, k]) · µ[k])

= υ′[i]− (
∑
k : k ∈ {1, . . . , r} : (

∑
p : p ∈ {1, . . . , s} : V [i, p] · C[p, k] · µ[k]))

= υ′[i]− (
∑
p : p ∈ {1, . . . , s} : V [i, p] · (

∑
k : k ∈ {1, . . . , r} : C[p, k] · µ[k]))

= υ′[i]−







∑
p : p ∈ {1, . . . , s} : V [i, p] · (C[p, ·] · µ)

︸ ︷︷ ︸

=:xp∈Q







I.e., there is a vector χ = C · µ ∈ Q
s with components χ[p] = xp so that using xp as the

coefficient of vector V [·, p] in the sum (
∑
p : p ∈ {1, . . . , s} : xp · V [·, p]) guarantees that υ =

υ′ − (
∑
p : p ∈ {1, . . . , s} : xp · V [·, p]), i.e., υ′ = υ + (

∑
p : p ∈ {1, . . . , s} : xp · V [·, p]). Thus,

the resulting image point υ′ = Ψ′(µ) lies within υ + Span(V [·, 1], . . . ,V [·, s]). X

Now, given a linear subspace V ⊆ Qu and a linear function Ψ : Qr → Qu, we want to obtain a
linear function Ψ′ that maps each element to an element of the same equivalence class wrt. Q

u/V
as Ψ but otherwise leaves as many dimensions as possible constant – in the case that r = u.6

Theorem 2.34 Let Ψ : Q
r → Q

u : µ 7→ MΨ · µ be a linear function, defined by matrix MΨ,
and V = Span(ν1, . . . , νn) be a subspace of Qu. Let j1 < · · · < jm ∈ {1, . . . , r} ,m ≤ min(n, r),
be a sequence of different integers. Then there is a sequence of integers (j ′1, . . . , j

′
m) and a linear

6If r 6= u, we want to pick at least a set of corresponding dimensions in the source and target space of Ψ′ whose
coordinates are left unchanged by the application of Ψ′.
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function Ψ′ : Q
r → Q

u : µ 7→ MΨ′ · µ such that

(
∀µ : µ ∈ Qr : Ψ′(µ) ∈ Ψ(µ) + V

)
(2.14)

and for each i ∈ {1, . . . ,m}:

(
∀µ : µ ∈ Q

r : Ψ ′(µ)[j′i] = µ[ji]
)

(2.15)

Proof:

Let N =






νT
1
...
νT

n




 be the matrix whose rows consist of the base vectors of V. Let N ′ be the

reduced echelon form of N , and V = N ′T . Then we define the sequence (j ′1, . . . , j
′
m) as:

j′i = min({j ∈ {1, . . . , u} V [i, j] 6= 0})

Let us further define the matrix C ∈ Q
n×r as follows:

C[i, j] =







1 −MΨ[i, j] if i ≤ m, j = ji

−MΨ[i, j] if i ≤ m, j 6= ji

0 if i > m

(2.16)

With these definitions, we obtain the new mapping Ψ′ as Ψ′ : µ → MΨ′ · µ with

MΨ′ = MΨ + V · C (2.17)

Note that, for m < n, we define the rows of C below row m to be zero – this results in changing
the mapping Ψ in only m dimensions.

Equation 2.14 follows immediately from Lemma 2.33, since Span(V [·, 1], . . . ,V [·,m]) ⊆
Span(ν1, . . . , νm).

For Equation 2.15, we examine dimension j ′i in the result vector for some given i:

Since, according to the definition in Equation 2.17,

MΨ′[i, j] = MΨ[i, j]+ (
∑
k : k ∈ {1, . . . , n} : V [i, k] · C[k, j])

we have

MΨ′[j′i, j] = MΨ[j
′
i, j] + (

∑
k : k ∈ {1, . . . , n} : V [j′i, k] · C[k, j])

=

V T in reduced echelon MΨ[j
′
i, j] +













∑
k : k ∈ {1, . . . , n} : V [j′i, k]

︸ ︷︷ ︸

=

8

>

<

>

:

1 if k = i

0 otherwise

· C[k, j]













=

Equation 2.16 MΨ[j
′
i, j] + C[i, j]

︸ ︷︷ ︸

=

8

>

<

>

:

1 −MΨ[j
′
i, j] if j = ji

−MΨ[j
′
i, j] otherwise

=

{

1 if j = ji

0 otherwise
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And therefore,

MΨ′[j′i, ·] = ιTr,ji

and thus

(Ψ ′(µ))[j′i] = (MΨ′ · µ)[j′i]

= (MΨ′[j′i, ·]) · µ = ιr,ji
· µ = µ[ji]

X

With the help of this theorem, we build a mapping Ψ′ that acts like Ψ up to the addition of
vectors from a subspace V. Note that, in general, the choice of Ψ′ is actually quite arbitrary at
first, since the choice of sequences (ji)i∈{1,...,m} and (j′i)i∈{1,...,m} is somewhat arbitrary. However,
the interesting case for us is the case r = u, in which we can pick ji := j′i (with j′i being not
the only choice, but a natural one, for dimensions in the target space of Ψ that we may arrange
ourselves). In this case, our aim is to create a mapping with as many unit vectors as possible as
eigenvectors. However, even then, it is not immediately clear which Ψ′ to use – choosing Ψ′ as in
the proof of Theorem 2.34 (and later by Algorithm 2.4.1) may even be counterproductive, as the
following example shows.

Example 2.35 Let MΨ =





2 0 0
0 2 0
0 1 1



. Let V = Span(ν1), ν1 =





1
1
1



. We may now

obtain matrix MΨ′ from MΨ by adding some product of a rational number with ν1 for each column
separately, i.e., we build

MΨ′ =





2 0 0
0 2 0
0 1 1



+





1
1
1



 ·
(
c1,1 c1,2 c1,3

)

Since
(

1 1 1
)

is already in reduced echelon form, our procedure in the proof of Theorem 2.34
chooses to map the first dimension by the identity, i.e., we obtain:

MΨ′ =





2 0 0
0 2 0
0 1 1



+





1
1
1



 ·
(
−1 0 0

)

=





1 0 0
−1 2 0
−1 1 1





Thus, we have sacrificed the possibility of obtaining a unit vector in rows two or three for a unit
vector in the first row. But we may also choose different coefficients c1,1, c1,2, c1,3. The mapping

MΨ′ =





2 0 0
0 2 0
0 1 1



+





1
1
1



 ·
(

0 −1 0
)

=





1 −1 0
0 1 0
0 0 1





maps two dimensions according to the identity – not only one.

In general, we can obtain a unique solution by introducing a larger linear equation system and
removing iteratively different combinations of equations in order to make the system satisfiable
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again – a procedure that is reliable, but complex. However, we are mainly interested in the case
that V = Span(ιF (1), . . . , ιF (n)) (for some function F ). And in this case, defining ji = F (i) is
a straightforward way to obtain a unique Ψ′ that maps as many dimensions as possible to the
identity – since we may only add unit vectors to MΨ in order to satisfy Equation 2.14, and adding
unit vectors has an impact in only one image dimension. I.e., adding such a vector to the different
columns of a given matrix can only take effect on one row of the matrix (for which we already
compute the corresponding coefficients in order to obtain the desried result) – unlike the situation
in Example 2.35, other rows of the matrix cannot be influenced.

We have introduced the ◦+ operator that computes the usual composition of linear relations.
And yet, sometimes it may be appropriate to take the difference of the sets above. In this thesis,
this is the case in Chapter 4. When some data element is stored in a replicated fashion – which is
defined by a linear relation – one has to choose which of the copies to read when this data element
should be processed. Therefore, we define the ◦− operator. In contrast to the ◦+ operator, a
composition with the ◦− operator will be used where relation Λ2 actually allows us to pick some
point of its source space, while relation Λ1 determines a set of target points that is to be considered.
This means that, for the composition of these relations, we actually want to build the difference
instead of a union as with the ◦+ operator. In this case, we will not necessarily have to represent
the complete set Λ2

g
R ◦Λ2L(ker(Λ1R)). The formal definition of the ◦− operator that implements

this strategy is as follows.

Definition 2.36 (Operator ◦−) Let Λ1 = (Λ1L,Λ1R)⊆Q
r ×Q

s and Λ2 = (Λ2L,Λ2R)⊆Q
s ×Q

r

be two relations. We define the operator ◦− as follows:

(Λ2L,Λ2R) ◦− (Λ1L,Λ1R) = (Λ3L,Λ3R)

where Λ3R is the endomorphism on Q
r with kernel (Λ2

g0

R ◦ Λ2L)(ker(Λ1R)) from Theorem 2.30,
where the subspace W of the theorem is W = (Λ2

g0

R ◦ Λ2L)(ker(Λ1R)). The proof of Theorem
2.30 constructs a unique mapping with this property. Let V = Λ3R(ker(Λ2R)) = Span(ν1, . . . , νn),

V =






νT
1
...
νT

n




, and let V ′ be the reduced echelon form of V . Then we define Λ3L as the function

Ψ′ from Theorem 2.34, defining Ψ and the ji of Theorem 2.34 as: Ψ = Λ3R◦Λ2
g0

R ◦Λ2L◦Λ1
g0

R ◦Λ1L

and, for i ∈ {1, . . . , n}, ji = min({j ∈ {1, . . . , r} V ′[i, j] 6= 0}).

Note that, in contrast to ◦+, ◦− is only defined for the case that dom(Λ2R) = dom(Λ1L),
i.e., Λ2

−1
R maps back to the domain of Λ1L. Therefore, the result of the ◦− operator is always a

relation between elements of the same vector space: Λ2 ◦− Λ1⊆Qr. This enables us to introduce
a notion of maximum simplicity: having as many unit vectors as possible as eigenvectors.

It is clear how to compute ◦+. Obtaining ◦− algorithmically, however, may not be completely
straightforward. Algorithm 2.4.1 computes Λ2 ◦− Λ1 with the help of Theorem 2.34.

Algorithm 2.4.1 [CompositionSubset]:
Input:

Λ1 : linear relation Λ1 = (Λ1L,Λ1R) ⊆ Q
r × Q

s.

Λ2 : linear relation Λ2 = (Λ2L,Λ2R) ⊆ Q
s × Q

r.
Output:
Λ3 = (Λ3 L,Λ3 R) :

subset composition of Λ3 = Λ2 ◦− Λ1.

Procedure:
/* STEP 1: create the base vectors for the set to be represented */

Let MΛ1L
, MΛ2L

be the defining matrices so that Λ1L : µ 7→ MΛ1L
µ, Λ2L : µ 7→ MΛ2L

µ;
Let MΛ1R

, MΛ2R
be the defining matrices so that Λ1R : µ 7→ MΛ1R

µ, Λ2R : µ 7→ MΛ2R
µ;

Let W = Span(κ1, . . . , κm) = Λ2
g0

R ◦ Λ1L(ker(Λ1R));
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/* STEP 2: build an equation system A ·X = R whose solution ensures that exactly the set K */

/* is represented by ker(XT ) */

Let A,R ∈ Q
r×r arrays of rationals;

/* S will now be filled with the expressions that have to evaluate to 0 in the first n rows */

/* and with unit vectors (that are mapped to themselves) in the rest of the row; */

Let K =






κT
1
...

κT
m




, and K ′ be the reduced echelon form of K;

Let FirstNonZero be an array of m+ 1 integers;
for i = 1 to m
/* Let FirstNonZero[i] be the column of the first non-zero entry of K[i, ·] */

FirstNonZero[i] := min({j K[i, j] 6= 0});
endfor

FirstNonZero[m + 1] := r + 1;
/* Those dimensions of our output space Q

r that are not specified */

/* in FirstNonZero will be mapped to themselves; */

/* the others have to be mapped to 0 */

k := 0;
for i = 1 to m

k := k + 1;
A[k , ·] := K ′[i, ·];
R[k , ·] := 0;
for j = FirstNonZero[i] to FirstNonZero[i+ 1]

k := k + 1;
A[k , ·] := ιr,j;
R[k , ·] := ιr,j;

endfor

endfor

/* STEP 3: compute mappings Λ3L, Λ3R from the condition */

/* XT · AT = RT with XT defining Λ3R */

For each column j of R, solve the system A · X[·, j] = R[·, j] to obtain a column j of X;

Let Λ3R be the function Λ3R : Q
r → Q

r : µ 7→ XT · µ;
/* We now build Λ3L according to Theorem 2.34 */

L := XT ·MΛ2R

g0 ·MΛ2L
·MΛ1R

g0 ·MΛ1L
;

/* We may choose the mapping we use for Λ1L according to Lemma 2.33: */

Let Span(ν1, . . . , νn) = Λ3R(ker(Λ2R));

Let V =






νT
1
...

νT
n




;

Let V ′ the reduced echelon form of V ;
Let FirstNonZeroV be an array of n integers;
for i = 1 to n
/* Let FirstNonZeroV [i] be the column of the first non-zero entry of V ′ */

FirstNonZeroV [i] := min({j V ′[i, j] 6= 0});
endfor

Let C ∈ Qn×r, C = 0;
for i = 1 to n
for j = 1 to r

C[i , j] :=

{

1 − L[FirstNonZeroV [i], j] if j = FirstNonZeroV [i]

− L[FirstNonZeroV [i], j] else
;

endfor

endfor
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/* Compute MΛ3L
*/

MΛ3L
:= L+ V T · C;

Let Λ3L be the function Λ3L : Q
r → Q

r : µ 7→ MΛ3L
· µ;

return (Λ3L,Λ3R);

Algorithm 2.4.1 works as follows:

1. Get the defining matrices. In the case of W , the non-zero columns of the reduced echelon
form of MΛ2

g0
R

·MΛ1L
·X , with X solving MΛ1R

·X = 0, build the base vectors κ1, . . . , κm.

2. ComputeMΛ3R
. This is the unique solution for the equation system that assertsMΛ3R

·κi = 0
and for which the following holds: Going from one row to the next in the reduced echelon

form K ′ =






κT
1
...

κT
m




 of the base vectors for W, if there is a step from column j to j ′ larger

than 1 (j′ > j + 1), then we have MΛ3R
· ιr,j+1 = ιr,j+1, . . . ,MΛ3R

· ιr,j′−1 = ιr,j′−1

3. MΛR
is then easily computed using Theorem 2.34. An initial version of MΛL

, called L =
(
λ1 . . . λr

)
, is also easily obtained; however, we may still modify MΛL

by adding the

transposed rows of V ′ =






ν′T1
...

ν′Tn




 (with V ′ as in Definition 2.36). Figure 2.17 sketches how

we proceed here: we accumulate the coefficients needed for a sweep of each row ν ′i of V ′ after
transposition over the columns of L so that we can guarantee that the row of L + V ′T · C
which corresponds to the first non-zero coordinate of ν ′i has the desired form (the unit vector
corresponding to that first non-zero coordinate).

Combination A placement in Chapter 4 can be defined by a linear relation. The basic procedure
in that chapter is to examine different placement relations for a given set of set of occurrence
instances. Placement candidates may define completely different placements for a given data
element, such as Φ1 and Φ2 in

Φ1(α) = {0} Φ2(α) = {1}

(we only view dimensions interesting for us at the moment in this representation). Nevertheless
it is also possible that two placement candidates select placements that do not contradict each
other, for example if one placement defines a superset of the other one, as in the following example:

Φ′
1(α) = {0} Φ′

2(α) = {1, . . . , n}

The idea is now to combine placement candidates into a new placement that represents the
linear hull of the union of the two. In the example above this yields a placement

Φ′
3(α) = Φ′

2(α) = {1, . . . , n}

Although we will not pursue this idea further in this thesis, this combination into the linear
hull of the union may lead to new placement relations that possibly should also be considered in
a compiler.

In order to compute the linear hull of the union, we introduce the combination of relations:
the combination of two linear relations Λ1,Λ2 is is a superset of both Λ1 and Λ2, and therefore
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λr[r]−

λr[1] · ν′
1[r]

. . .

λr[r]−

(
P

. . . )

ν ′n[r]0 . . . 0

ν ′1[r]1 . . .

λ1[r] λr[r]

ν ′2[r]0 1
...0 0

. . .

...
... . . . . . .

0

...

...

... . . .
...

(−λr[1])·

...

λr[1]λ1[1]

λr[2]−
λr[1] · ν′

1[2]

...

= L = V ′

1 . . .

0 . . .

λ1[r]−

(
P

. . . )

= L+ V ′T · C

0

0

Figure 2.17: Addition of a vector ν ′T1 of V ′ to a set of vectors L = (λ1 . . . λr), modifying the
image of L.

does not contradict either, Λ1 or Λ2. However, the combination operator will occur only briefly
as an interesting idea in Section 4.1.

Definition 2.37 Let Λ1 = (Λ1L,Λ1R),Λ1
−1
R ◦Λ1L⊆Qk×Ql and Λ2 = (Λ2L,Λ2R),Λ2

−1
R ◦Λ2L⊆Qk×

Ql be linear relations. The combination of Λ1 and Λ2, Comb(Λ1,Λ2), is the linear hull of Λ1 ∪Λ2.

Algorithm 2.4.2 [Combination]:
Input:
Λ1 : linear relation Λ1 = (Λ1L,Λ1R)

Λ2 : linear relation Λ2 = (Λ2L,Λ2R)
Output:
Λ3 = (Λ3 L,Λ3 R) :

the combination of Λ1 with Λ2

Procedure:
Let ker(Λ1R) = Span(υ1, . . . , υk);
Let ker(Λ2R) = Span(υk+1, . . . , υk+l);
Let im(((Λ1

g0

R ◦ Λ1L) − (Λ2
g0

R ◦ Λ2L))) = Span(υk+l+1, . . . , υk+l+m);
Let K = ker(Λ1R)∪ ker(Λ2R)∪ im(((Λ1

g0

R ◦ Λ1L) − (Λ2
g0

R ◦ Λ2L)));

MK :=






υT
1
...

υT
k+l+m




;

/* i.e., matrix MK consists of base vectors of K as row vectors */

Let MK⊥ be a matrix consisting of a base for K⊥ as row vectors;

Let MΛ3R
∈ Q

l×l be the unique solution to

(
MK

MK⊥

)

·MΛ3R

T =

(
0

MK⊥

)

;
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let Λ3R be the linear mapping defined by MΛ3R
;

Λ3 L := Λ3R ◦ Λ1L;

return Λ3 = (Λ3L,Λ3R);

Algorithm 2.4.2 computes the combination of two relations. It defines first the mapping Λ3R

as the unique endomorphism with kernel K that maps all elements of the orthogonal complement
K⊥ of K to themselves. This mapping is obtained as the solution of a linear equation system (the
uniqueness follows from the fact that MK together with MK⊥ in the definition has full row rank).
Then Λ3L is defined according to Theorem 2.30 so that the resulting relation corresponds to Λ1

and Λ2 where these relations do not differ. Λ3L can be defined via either Λ1L or Λ2L, since the
difference between the two mappings will be non-existent in the resulting relation Λ3

−1
R ◦Λ3L due

to the definition of Λ3R.

Example 2.38 Let Φ1 = (Φ1L,Φ1R) with Φ1L : ν 7→

(
1 0
0 1

)

· ν, Φ1R : ν 7→

(
1 0
0 1

)

· ν,

and Φ2 = (Φ2L,Φ2R) with Φ2L : ν 7→

(
1 0
0 0

)

· ν, Φ2R : ν 7→

(
1 0
0 0

)

· ν. Φ1 represents the

identity on Q
2, while Φ2 represents a relation between all elements of Q

2 whose first coordinates
are equal. Since Φ2 ⊇ Φ1, the smallest relation that is compatible with both Φ1 and Φ2, is Φ2. In
this case, Algorithm 2.4.2 iterates through the following steps:

1. ker(Λ1R) = ∅ ⇒ k = 0.

2. ker(Λ1R) =

(
0
1

)

· Q ⇒ l = 1, υ1 =

(
0
1

)

.

3. im((Λ1
g0

R ◦ Λ1L) − (Λ1
g0

R ◦ Λ1L)) =

((
1 0
0 1

)

−

(
1 0
0 0

))

· Q
2 =

(
0 0
0 1

)

· Q
2 =

(
0
1

)

· Q, i.e., m = 1, υ2 =

(
0
1

)

.

4. K =

(
0
1

)

· Q +

(
0
1

)

· Q.

5. MK =

(
0 1
0 1

)

.

6. There are several ways to obtain a matrix for MK⊥ . Schmidt’s orthogonalization [Usm87, p.
143] yields MK⊥ =

(
1 0

)
.

7. MΛ3R
is the unique solution to





0 1
0 1
1 0



 ·MΛ3R
=





0 0
0 0
1 0



, i.e., MΛ3R
=

(
1 0
0 0

)

.

8. MΛ3R
defines Λ3R.

9. MΛ3L
=

(
1 0
0 0

)

·

(
1 0
0 1

)

=

(
1 0
0 0

)

; MΛ3L
defines Λ3L.

We see that the result is exactly Φ2 – the smallest relation containing both Φ1 and Φ2.
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Testing Relations for Equality In order to argue about different relations between polyhedra,
it may be necessary to determine whether two representations indeed represent the same relation.
This question will crop up in Section 4.1. For a single set of points that we want to place on the
processor array, there may be several placement relations whose quality we want to evaluate for
their. In order to evaluate as few placement relations as possible, duplicates should be eliminated.

We have established that we can represent a relation Λ between two polyhedra P and Q of
the form

Λ = {(ν, T (ν) + W ν ∈ P ⊆ U,W ⊆ V,W = Span(ω1, . . . , ωn),Q ⊆ V}

by two linear mappings, ΛR : U → V and ΛL : V → V and descriptions of source and target space
of these mappings using inequations (P = {ν ∈ U MP · ν ≥ 0} and Q = {υ ∈ V MQ · υ ≥ 0}).

For the purpose of deciding, whether two representations (Λ1L,Λ1R,P1,Q1) and
(Λ2L,Λ2R,P2,Q2) represent the same relation, we generate a normal form from the relation
representations as described below. These normal forms consist of series of matrices that are
unique for a given relation. Note that unions of linear relations are not transformed into a unique
form in this way. We only consider the transformation of a single – convex – linear relation. Such
a representation is produced as follows.7

1. Create a matrix Mi defining Pi and Qi: Mi has a column for each dimension of Pi, Qi, and
each target dimension of ΛiL (or ΛiR), as described in Section 2.4.1.

2. Simplify the inequations by computing the dual representation of the defined polyhedron as
vertices, rays and cones employing Chernikova’s algorithm [Che64, Che65, Che68], and create
the corresponding equations and inequations again – this step creates a unique representation
of the polyhedron up to the order of (in)equations, the use of equalities, and the value of
parameters.

3. Separate the resulting relations into equations and inequations.

4. Disambiguate equality relations (since equality relations cannot have been deleted by the
previous step, we have at least one equality relation for each target dimension of ΛiL).
Compute the reduced echelon form of the matrix defining the equalities from above. As
noted earlier, this form is unique.

5. Regenerate the representation as pair of mappings as discussed in Section 2.4.1.

Actually, our only application of this comparison of linear relations is to reduce memory and
time requirements of the implementation of the placement method described in Chapter 4 (which
we will not discuss in any greater detail). In this case we do not care about the scope of our
mappings, which is represented by the inequations of Pi and Qi. Therefore, in our case it suffices
to view the equations that are defined by ΛiL and ΛiR and compare the reduced echelon forms of
the corresponding matrices.

7In order to get a usable description of our mappings, the bases have to be ordered as above, i.e. first the target
dimensions of the mapping, then the source dimensions, then parametric dimensions, and finally the dimension for
the constant part in homogenous coordinates.
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Chapter 3

Loop-Carried Code Placement

Optimization techniques like dead code elimination, strength reduction [ACK81], value number-
ing [RL77], and (loop invariant) code placement [MR79, ASU86, KRS94, Muc97, Mor98] are well
understood and are widely and successfully applied to increase in performance in the calculation
of scalar expressions. However, the basic ideas behind these optimizations apply to arrays just
as well as to scalars and, with the advent of precise dependence analysis algorithms for loop-
carried dependences [Fea92a, Fea92b, CG97, CC96, BCF97, CG99], it is now possible to lift these
optimization techniques to the case of array references in loop nests.

In this thesis, we focus on the generalization of code placement to the case of loop-carried
dependences [FGL01c, FGL01a, FGL04]. The basic idea behind loop-carried code placement
– or LCCP, for short – is to create a simple, “minimized” representation of the computation to
be performed: if we can prove a certain value to be computed several times during the execution
of a loop nest, we generate a new loop nest with as few loops as possible that computes each
value only once. To this end, we take advantage of term equivalences as much as possible. Since
each occurrence instance in our model represents an action the CPU has to take, reducing the
number of occurrence instances also reduces the number of actions to be performed. Therefore, it
is a natural choice to search for occurrence instances that represent the same value as others and
eliminate them, so that recomputation of a given value does not occur.

Specifically, we aim at a representation that sorts the polyhedra representing computations
according to their dimensionality. On a parallel machine, this procedure has the advantage that
we can choose either to make use of the available processors in an #pdim-dimensional layout for
a k-dimensional expression (i.e., an expression that actually depends on k indices), and possibly
calculate the same value several times on different processors, or to compute each value on only one
processor of a k-dimensional processor arrangement: using the same number of available processors
in a lower-dimensional configuration results in more available processors in a given dimension and
thus in better processor utilization, albeit at the possible cost of increased communication needs.

In sequential programs, these communication needs translate into increased costs for memory
references in sequential, since the above expressions have to be stored in auxiliary variables. These
communication needs come as increased costs for memory references in sequential programs, since
the above expressions have to be stored in auxiliary variables. Since these auxiliary variables
usually have to be arrays, their handling is quite expensive compared to the original program,
where intermediate results are usually stored in registers. There are exceptions to the rule that
intermediate results are stored in extremely fast register memory: There are also memory-to-
memory architectures that do not use registers at all with explicit load and store commands
or allow for a very flexible management of the memory area containing registers [Bal98, SM98].
However, even with these architectures, one may encounter increased costs due to the fact that
the auxiliary arrays used do not necessarily fit in a single memory page, or due to (possibly false)
data sharing between threads in a parallel execution scheme. So, in general, we may assume that
storing these auxiliary arrays results in more expensive memory references. In the parallel setting
with distributed memory, these references may even refer to memory on different compute nodes

59
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that do have to be realized by explicit communication between those nodes. Therefore, especially
in the parallel setting, we need a data placement strategy that may reduce these communication
costs again by (partially) undoing the effects of LCCP, if this seems appropriate. This case will
be examined in Chapter 4.

DO i=1,m
 DO j=1,n

 END DO
END DO
DO i=1,m
 DO j=1,n

   A(i)=D(i,j)+A(i)*C(j)**2
!       −−P5−−
 END DO

   A(i)=A(i)+C(j)**2

!  _______P1________
!            __P2___

!  _______P3_______________
!                   __P4___

END DO

Loop Carried Code Placement

Generation of Polyhedra

Identification of Interesting Sets

  A(p)=A(p)+T(t)

 T(p)=C(p)**2
END DO

DOPAR p=1,n

 END DO

DOPAR p=1,n
!____P2/4____

 END DO

! ______P1______

END DO

  A(p)=D(p,t)+A(p)*T(t)
! _________P3__________

END DO

DO t=1,n
 DOPAR p=1,m

 DO t=1,m

Computation of Placement

Scanning of Polyhedra

Computation of Schedule

P2/4

P1

P3

P1

P3
P4

P2

P5

P2/4
P1

P3

P5

P2/4

P1

P3

P2/4
P1

P3

Figure 3.1: Overview of the sequence of code transformations.

Figure 3.1 sketches this approach. The program transformation is done in six steps:

1. Generation of Polyhedra: Convert the syntactic program representation into a represen-
tation by polyhedra and dependence relations between these polyhedra. Figure 3.1 shows
polyhedra P1 to P5 with the corresponding code fragments marked with P1 to P5 in the
comments above or below the program text, respectively. Note that the program is repre-
sented by even more polyhedra that represent non-linear subexpressions. This is because
every place in the code is represented by an occurrence, whether the corresponding subterm
is a linear expression or not. For the sake of clarity, we leave out these additional polyhedra
representing non-linear subexpressions in the model.
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2. Loop-Carried Code Placement: LCCP takes the description of the polyhedra generated
in Step 1 and creates new polyhedra with appropriate dimensionality for the given subexpres-
sion. In the figure, the polyhedra P2 and P4 can be combined into a single, one-dimensional
polyhedron P2/4.

3. Identification of Interesting Sets: In order to obtain a legal execution order for the
occurrence instances of a code fragment, we need not consider all occurrences, but only
certain sets. These so-called interesting sets are polyhedra that represent values that may
be reused later and therefore have to be stored in a variable. Polyhedron P5 does not have
to be distinguished from polyhedron P3 for the purpose of computing a space-time mapping.

4. Computation of a Schedule: Find a legal execution order for the points enumerated in
the representation as polyhedra. The operations represented by both P1 and P3 have to be
executed sequentially. The operations represented by P2/4 can all be executed in parallel.

5. Computation of a Placement: Find a processor dependent placement for the polyhedra.
In order to minimize communication, it may pay off to replicate the computation of an, e.g.,
1-dimensional expression along the second dimension of a 2-dimensional processor array.
Note that, in this case, the effect of reducing the number of dimensions of a polyhedron in
Step 2 may be undone.

6. Scanning of Polyhedra: Placement and schedule represent together define a new basis in
the coordinate system. Use the polyhedra in their new bases to regenerate loop code.

Note that – although, in this procedure, we compute space-time mappings for the polyhedra
representing the program – we do not necessarily aim at producing a parallel program. The only
important step is the computation of a schedule that guarantees a legal execution order. Reducing
the dimensions of polyhedra, and thus the number of iterations executed by the target program,
represents an optimization for a sequential program as well as for a parallel one. Depending on
the way we produce polyhedra of reduced dimensionality in Step 2 above, we may or may not
have to determine a legal execution order of the points in the polyhedra; if we do have to create a
new execution order, and if this execution order does not already specify different time steps for
each point in the generated polyhedra, we may execute some of these points in parallel (for which
we then have to create a placement). However, we do not really have to execute those points in
parallel – we just have to execute them at all (otherwise we would change the semantics of the
program). Let us consider the following example.

Example 3.1 The program fragment on the left enables loop invariant code placement for the
term C*D, yielding the code on the right:
!HPF$ INDEPENDENT, NEW(i2)

DO i1=1,n

!HPF$ INDEPENDENT

DO i2=1,n

A(i2,i1)=B(i2,i1)+C*D

END DO

END DO

T=C*D

!HPF$ INDEPENDENT, NEW(i2)

DO i1=1,n

!HPF$ INDEPENDENT

DO i2=1,n

A(i2,i1)=B(i2,i1)+T

END DO

END DO
These two program fragments may lead to different communication patterns. Let us suppose that
C, D, and T are aligned with A(1,1). Then, in the first case, we need to broadcast the values of
C and D while, in the second case, only communication for T is necessary. The code generated by
ADAPTOR-7.1 for these two program fragments looks as follows (the code on the left corresponds
to the left program fragment):
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! -------- P A R T I --------

! COMMUNICATION FOR READ ACCESS TO C

call DALIB_home_set_var &

&(A_DSP,2,2,1,1,1)

call DALIB_home_set_all ()

call DALIB_home_assign (TMP0,C,8)

! COMMUNICATION FOR READ ACCESS TO D

call DALIB_home_set_var &

&(A_DSP,2,2,1,1,1)

call DALIB_home_set_all ()

call DALIB_home_assign (TMP1,D,8)

! -------- P A R T I I --------

!ACTUAL COMPUTATION

call DALIB_array_my_slice &

&(A_DSP,2,1,N,A_START2,A_STOP2)

do I=A_START2,A_STOP2

call DALIB_array_my_slice &

&(A_DSP,1,1,N,A_START1,A_STOP1)

do J=A_START1,A_STOP1

A(A_ZERO+I*A_DIM1+J) = &

&B(B_ZERO+I*B_DIM1+J)+TMP0*TMP1

end do

end do

! -------- P A R T I --------

! COMPUTATION FOR C*D

if (DALIB_is_local(A_DSP,2,1)) then

if (DALIB_is_local(A_DSP,1,1)) &

&then

T = C*D

end if

end if

! COMMUNICATION FOR T

call DALIB_home_set_var &

&(A_DSP,2,2,1,1,1)

call DALIB_home_set_all ()

call DALIB_home_assign (TMP0,T,8)

! -------- P A R T I I --------

! ACTUAL COMPUTATION

call DALIB_array_my_slice &

&(A_DSP,2,1,N,A_START2,A_STOP2)

call DALIB_array_my_slice &

&(A_DSP,1,1,N,A_START1,A_STOP1)

do I=A_START2,A_STOP2

do J=A_START1,A_STOP1

A(A_ZERO+I*A_DIM1+J) = &

&B(B_ZERO+I*B_DIM1+J)+TMP0

end do

end do

For the sake of a clearer representation, we have augmented the ADAPTOR output is with
comments indicating the action performed by the respective part of the code. Although the right
program fragment is a bit longer, we may expect higher performance from it: in Part I, the program
fragment on the left broadcasts both C and D; however, in Part I of the second code fragment, these
variables are both locally available for the computation of C ·D, and whether this computation has
to be done is guarded by two relatively inexpensive if-statements, so that only T has to be broadcast
in the following code snippet. In Part II, we can see the effect of loop invariant code motion: in
the program fragment on the left, the value C · D has to be calculated for each iteration of the
loop nest (which is done using the term TMP0*TMP1), while this calculation is replaced by a simple
lookup to TMP0 in the program fragment on the right.

As Example 3.1 shows, even conventional optimization techniques as loop invariant code motion
may have an impact on the communication structure of a parallel program. This communication
is often managed by subroutine calls that are inserted into the program in order to mimic the
communication pattern on a distributed memory machine and may even represent the dominating
cost factor of a parallel program. Therefore, it is vital for distributed memory architectures to
apply optimization techniques that change the communication pattern of the program before the
insertion of communication code.

3.1 Input Dependences and Equivalence Relations

The first step of LCCP consists of identifying redundant computations. Conventional code motion
techniques use data flow analysis based on syntactic structures such as basic blocks [MR79, ASU86,
KRS94, Mor98] or statements [KKS98]. Data flow analysis in the polyhedron model supplies us
with the information as to which occurrence instance uses input of which other occurrence instance.
An occurrence instance α of a read access (i.e., head(Occ−1(OccId(α))) = read A) represents the
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same value as another occurrence instance β (head(Occ−1(OccId(β))) = read A) if there is a direct
input dependence between α and β ((α, β) ∈ ∆i or (β, α) ∈ ∆i). In other words, equality of read
accesses can be defined as the equivalence relation induced by the input dependences ∆i – i.e., its

symmetric, reflexive, and transitive closure (∆i−)
∗
.

Let us briefly recall how dependence analysis in the polyhedron model works. Consider a depen-
dence between occurrence instances α, Occ−1(OccId(α)) = A(Ψ1(α)), and β, Occ−1(OccId(β)) =
A(Ψ2(β)), that is to be discovered by a dependence analysis algorithm. Then, the analysis algo-
rithm usually performs three steps:

1. Conflict equation system: there has to be a conflicting memory access, i.e., the dependence
relation ∆ = {(α, β) β depends on α} holds only if condition Ψ1(α) = Ψ2(β) is satisfied.

2. Existence inequation system: both source and destination of the dependence have to exist,
i.e., ∆ is restricted to the index space of the occurrences of α, β (∆⊆OI × OI). Actually,
we restrict ∆ even further, depending on what kind of dependence is to be computed (anti,
flow, input, output), to occurrences that represent the corresponding array accesses.

3. Optimization: in order to find direct dependences, such that β depends on α, we have to
find the lexicographically maximal α, for which the above conditions hold and for which
α ≺ β. Here, even if we compute input dependences, α has to be larger than any occurrence
instance representing a write access.

Up to the third step, our conditions represent a reflexive, symmetric, and transitive relation, in
other words, an equivalence relation. However, this is not the reflexive, symmetric, and transitive
closure of the input dependences (which we actually need): there could still be a conflicting write
access executed between two read accesses that are related to each other in the above. In such a
case, these read accesses do not refer to the same value and should not be considered equivalent.
Therefore, we have to compute the actual dependence relation, and the equivalence we want to
represent is the reflexive, symmetric, and transitive closure of this relation.

Whether two terms represent the same value depend not only on the environment (i.e., the
values of variables in the term) but also on the underlying algebra. The method described here can
be adapted to the case in which operators may have certain properties, such as associativity and
commutativity. However, we do not restrict ourselves to these special cases in this thesis. Instead
we consider the the general case of Herbrand equivalences. I.e., the interpretation of a function
symbol is that function symbol itself; it does not stand for any given algebraic function on, say,
the integers. We will not go into further details of algebra and logic. Instead, the interested reader
is referred to the literature [HK91, BN98].

Limits of Equivalence Detection Overall, we want to achieve performance improvements by
detecting equivalent occurrence instances. Note that the program fragments we consider here –
with the restrictions presented in Section 2.3 – can be represented by systems of affine recur-
rence equations (SAREs). The only necessary step apart from the reformulation of the loops
is a conversion into static single assignment form (SSA form) [Fea91, Coh99]. The equivalence of
two SAREs is undecidable, as proven by Barthou, Feautrier and Redon [BFR01]. Such statements
depend on the underlying algebra in which the recurrence equations are formed. However, this
undecidability is true even in the simplest case in which the recurrence equations are formed in the
Herbrand algebra. Therefore, we cannot expect to be able to devise an algorithm that can identify
all equivalent occurrence instances, even if we restrict ourselves to purely syntactic equivalence
(up to affine expressions). We can only hope to identify “many” equivalences. This will be our
aim in the rest of this thesis.

3.1.1 Deducing Equivalences of Larger Terms

Once we have established an equivalence relation on read accesses, the question arises how to
deduce the equivalence of larger terms. We will extend the equivalence relation to larger terms
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using a set of equivalence propagating dependences. The following operator is used to propagate a
relation from some operands to the combined term of operator and operands.

Definition 3.2 Let α and β be occurrence instances. Let Λ be a relation on occurrence in-
stances. Let ∆ be a set of flow dependences (represented relations with source occurrence in-
stances as first elements and target occurrence instances as second elements), α, β ∈ im(∆), and
head(Occ−1(OccId(α))) = �. Then we define LiftRel∆(Λ):

(α, β) ∈ LiftRel∆(Λ) : ⇔ OpId(α) = 0 = OpId(β)∧ head(Occ−1(OccId(β))) = �∧




∀i : i ∈ {s, . . . , t} :
(

∃γi, δi : γi, δi ∈ OI :
(γi, δi) ∈ Λ∧
(γi,OpndSel(−i, α)) ∈ ∆∧ (δi,OpndSel(−i, β)) ∈ ∆

)





with

(s, t) =

{

(0, 0) if ∆−1(OpndSel(0, α))∪∆−1(OpndSel(0, β)) 6= ∅

(1,ArityIn(�)) otherwise

The flow dependences ∆ here are called equivalence propagating dependences. Equivalence
propagating dependences are usually denoted with ∆e.

The operator LiftRel lifts the relation Λ one level higher in direction of ∆. It formally defines
the equality of two occurrence instances that represent the execution on the same operator � on
the same input data ((γi, δi) ∈ Λ). If ∆ represents the structural flow dependences of Definition
2.25 and Λ is the symmetric, reflexive, and transitive closure of input dependences on arrays,
then we can use the operator LiftRel to deduce the equivalence on occurrence instances, given the
equivalence of all occurrence instances that are related to each other by Λ. The case distinction
in the definition of (s, t) plays the role of a special dependence on operand 0: if we know that
an operator that depends on a certain input will produce a certain output regardless of the other
operands, a relation between this input and operand position 0 can be built to express that
dependence. This is actually only used for instances of read accesses, which are known to read a
specific value due to the dependence analysis.

Example 3.3 Let us again consider the code of Example 2.22:

DO i1=0,1

B(i1)=2*n-A

END DO

Figure 3.2 sketches the closure of input dependences Λ := (∆i−)
∗

(dashed arrows) along with the
(structural) flow dependences (solid arrows) of this code fragment. The closure of the input depen-
dences (whose reflexive part is omitted) is lifted along the structural dependences ∆ := ∆s. The
equivalence classes of occurrence instances that can be shown to represent the same value corre-
spond to this lifted equivalence relation Λ1 (dotted arrows). In this example, the two computations
of 2 · n are clear to represent the same value from the start; likewise, the two lookups of array
A are already known to represent the same value. The application of LiftRel then results in Λ1

showing the equivalence of the two computations of 2 · n−A.

LiftRel represents the usual equality for operators that states that any two applications of
the same operator on the same (i.e., equivalent wrt. Λ) input data will, again, yield the same –
equivalent – result. This also means that LiftRel , applied to an equivalence relation, has to be an
equivalence relation, again.

Lemma 3.4 If Λ is an equivalence relation, so is LiftRel∆(Λ).

Proof:
In the following, let I (α) := ArityIn(Occ−1(OccId(α))).



3.1. INPUT DEPENDENCES AND EQUIVALENCE RELATIONS 65

occ

op

∆(s,f) Λ1Λ

i

num(i)

i

read A

-(*(2,n),A)

write B(i)

Assign(-(*(2,n),A),B(i))

*(2,n)

Figure 3.2: Occurrence instances of Example 3.3 with structural flow dependences (∆(s,f)), origi-
nally given equivalences (Λ) and propagated equivalences (Λ1).

Transitivity:
If (α, β) ∈ LiftRel∆(Λ) and (β, γ) ∈ LiftRel∆(Λ), we also have predecessors (input
arguments) αj , βj and γj (j ∈ {1, . . . , I (α)}), so that (αj ,OpndSel(−j, α)) ∈ ∆,
(βj ,OpndSel(−j, β)) ∈ ∆, (γj ,OpndSel(−j, γ)) ∈ ∆ and (αj , βj) ∈ Λ, (βj , γj) ∈ Λ.
Therefore, we also have (αj , γj) ∈ Λ for all j and thus (α, γ) ∈ LiftRel∆(Λ).

Symmetry:
In just the same way, if (α, β) ∈ LiftRel∆(Λ), we also have predecessors (input argu-
ments) αj and βj (j ∈ {1, . . . , I (α)}), so that (αj ,OpndSel(−j, α)) ∈ ∆,
(βj ,OpndSel(−j, β)) ∈ ∆ and (αj , βj) ∈ Λ. Again, it also follows that (βj , αj) ∈ Λ
and therefore (βj , αj) ∈ Λ for all j and thus (α, γ) ∈ LiftRel∆(Λ).

Reflexivity:
Reflexivity follows immediately from the reflexivity of Λ.

X

The overall equivalence that tells us which occurrence instances actually represent the same
value (in a Herbrand universe) is defined by all equivalences that may be deduced from the

application of LiftRel∆(s,f)((∆i−)
∗
). Formally, it is defined via the corresponding functional given

in the following Theorem 3.5. Not surprisingly, the equivalence we need is easily computed by
repeatedly applying the LiftRel operator. Let us state this property formally.

Theorem 3.5 Let ∆ be the structural flow dependences of a program fragment and Λ an equiva-
lence relation that defines an equivalence on some terms in the program fragment. Then the least
fixed point (wrt. the lattice (P(OI) ×P(OI),⊆)) Λ∞ of

LiftRelΛ→
∆ : (P(OI) ×P(OI)) → (P(OI) ×P(OI)) : O 7→

{

Λ if O = ∅

O∪LiftRel∆(O) otherwise

as defined elementwise in Definition 3.2 exists and defines an equivalence on occurrence instances,
iff the corresponding terms are Herbrand equivalent to each other for every environment that
satisfies the equivalence Λ.
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Proof:

• For all i, LiftRel i∆(Λ) and thus (LiftRelΛ→
∆ )i(∅) is an equivalence relation according to Lemma

3.4.

• LiftRelΛ→
∆ is monotonically increasing in the complete lattice (P(OI) × P(OI),⊆), since

the definition guarantees that, for Λi ⊆ Λ′
i, LiftRelΛ→

∆ (Λ′
i) defines a relation between all

elements that are related via Λi, and possibly some others. Therefore, the least fixed point
Λ∞ of LiftRelΛ→

∆ exists according to the Knaster-Tarski Theorem [Kna28, Tar55] and can
be computed as Λ∞ = (LiftRelΛ→

∆ )∞(∅).

• A term t0 = �(t1, . . . , tn) with input arguments ti is equivalent to some other term u0 =
⊗(u1, . . . , um), if � = ⊗, m = n, and

(
∀i : i ∈ {1, . . . , n} : ti = ui

)
. The Herbrand equiv-

alence holds if and only if this condition is true. In our case, equivalence Λ is enforced in
addition to the above rule. However, a relation between occurrence instances α and β is
established iff the equivalence of the input occurrence instances on which α and β depend is
already established, i.e., the least fixed point represents exactly the equivalence of occurrence
instances that is deducible from Λ.

X

So, indeed, we may just repeatedly apply LiftRel in order to obtain the equivalence that tells us
of the same value being computed several times. However, since equivalence is propagated along
the levels of the operator tree of the program fragments (which is mimicked by the structural flow
dependences), we can make life even easier by just traversing once through the operator tree from
bottom to top.

Corollary 3.6 If the transitive closure of ∆ in Theorem 3.5, denoted ∆+, is a strict partial order
on OI, (O1, . . . ,On) is a topologically sorted sequence in (OI,∆) (i.e.
(
∀i : i ∈ {2, . . . , n} :

(
∀β : β ∈ Oi :

(
∃α : α ∈ Oi−1 : (α, β) ∈ ∆

)))
) and Λ is a relation on OI such

that
(
∀α, β : (α, β) ∈ Λ : α ∈ Oi ⇒ β ∈ Oi

)
, then

Λ1 = Λ|O1

...

Λi = LiftRel∆(Λi−1)∪Λ|0
@

⋃

j∈{1,...,i}

Oj

1

A

...

Λn = LiftRel∆(Λn−1)∪Λ|0
@

⋃

j∈{1,...,n−1}

Oj

1

A

Λ∞ = Λn

I.e., the fixed point Λ∞ can be calculated by traversing the partitioning of occurrence instances
only once in the direction of the strict partial order ∆+.

Proof:
According to Definition 3.2, the operator LiftRel only adds pairs to a relation in the direction

of ∆+, i.e.,

(α, β) ∈ LiftRel∆(Λ) ⇒
(
∃γ, δ : γ, δ ∈ OI : (γ, α) ∈ ∆∧ (δ, β) ∈ ∆∧ (γ, δ) ∈ Λ

)

Since (γ, δ) ∈ Λ ⇒
(
∃i : i ∈ {1, . . . , n} : γ ∈ Oi 3 δ

)
, i.e., γ and δ are not comparable, neither

(α, δ) ∈ ∆+ nor (β, γ) ∈ ∆+ can hold – otherwise, we could compare γ to δ via γ∆+ α∆+ δ or
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δ∆+ β∆+ γ, respectively. Therefore, the calculation of LiftRel∆(Λi−1) can only introduce pairs
(ε, ζ) with ε ∈ Oi 3 ζ, i.e., LiftRel∆(Λi−1) ⊆ Oi ×Oi. And, since no new relation between occur-
rence instances in Oj , j < i is introduced in any step i, and new relations are always introduced
between occurrence instances that are greater wrt. ∆ than the occurrence instances they are com-
puted from, we always have LiftRel∆(Λi−1) = LiftRel∆(LiftRel∆(Λi−1)) = Λi. In particular, this
holds for Λn and thus Λ∞. X

In our case, Corollary 3.6 tells us that Λ∞ can be computed by a single bottom-up traversal of
the operator tree represented by the structural dependences ∆ = ∆s, since ∆s+ is obviously a strict
partial order. But our case is still simpler: we do not even need to take into account equivalences
originally defined by the original equivalence relation Λ, if they do not hold between occurrence
instances on the lowest level of the operator tree (which is essentially just the read accesses).
Indeed, we will choose not to take any additional equivalences into account. It should be noted,
however, that even if we ignore such dependences here, our method can be trivially extended to
support additional equivalences. For example, additional equivalences could be specified by the
user. And this extension does not need to be restricted to array elements and memory locations:
operations representing the same calculation could also be identified as equivalent by the user.
Thus, the Fortran EQUIVALENCE statement could also be integrated into our approach as a way
to introduce equivalences that cannot be detected by the compiler.1

The following lemma is actually just a reformulation of the definition of the LiftRel operator,
Definition 3.2, that shows how to implement this operator. Here, we use the composition of
linear relations and the notation OpndSel 0,i for a mapping taking an occurrence instance α that
represents the i-th input argument of an operation and returning an occurrence instance that
represents the execution of that operation:

Lemma 3.7 Let head(Occ−1(OccId(O1))) = {�} = head(Occ−1(OccId(O2))), Λ ⊆ O3 × O4,
∆ ⊆ (O3 × O1)∪ (O4 × O2) relations, and for i ∈ {0, . . . ,ArityIn(�)} OpndSel 0,i : {αi ∈
OI OpId(αi) = −i} → OI : αi 7→ OpndSel(0, αi). Then

LiftRel∆(Λ) = (OpndSel0,0 ◦ ∆) ◦ Λ ◦ (OpndSel0,0 ◦ ∆)−1 ∪
⋂

i∈{1,...,ArityIn(�)}

(OpndSel0,i ◦ ∆) ◦ Λ ◦ (OpndSel0,i ◦ ∆)−1

Proof:

Note that OpndSel0,i is an injective mapping – i.e., α = OpndSel 0,i(αi) ⇔
(α = OpndSel(0, αi)∧ OpId(αi) = −i). For occurrence instances α, β, we then have:

(α, β) ∈
⋂

i∈{1,...,ArityIn(�)}

(OpndSel0,i ◦ ∆) ◦ Λ ◦ (OpndSel0,i ◦ ∆)−1

⇔
(
∀i : i ∈ {1, . . . ,ArityIn(�)} : (α, β) ∈ (OpndSel 0,i ◦ ∆) ◦ Λ ◦ (OpndSel 0,i ◦ ∆)−1

)

where

(OpndSel0,i ◦ ∆) ◦ Λ ◦ (OpndSel0,i ◦ ∆)−1 = (OpndSel0,i ◦ ∆) ◦ Λ ◦ (∆−1 ◦ OpndSel−1
0,i )

1Note, however, that only adding equivalence relations here does not immediately suffice to handle EQUIVALENCE

statements in the dependence analysis stage. Even if we extend our method to capture such equivalences, the
dependence analysis stage also has to take them into account in order to enable later stages of the compiler to find
a legal execution order for the program.
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⇔

(

∀i : i ∈ {1, . . . ,ArityIn(�)} :

(

∃αi, βi :
β = OpndSel0,i(βi),
α = OpndSel0,i(αi)

: (αi, βi) ∈ ∆ ◦ Λ ◦ ∆−1

))

⇔

(

∀i : i ∈ {1, . . . ,ArityIn(�)} :

(

∃αi, βi :
OpndSel(−i, β) = βi,
OpndSel(−i, α) = αi

: (αi, βi) ∈ ∆ ◦ Λ ◦ ∆−1

))

Since OpndSel is well-defined for these α, β, αi, βi do exist. Therefore, the above relation holds, iff:

(
∀i : i ∈ {1, . . . ,ArityIn(�)} : (OpndSel(−i, α),OpndSel(−i, β)) ∈ ∆ ◦ Λ ◦ ∆−1

)

⇔

(

∀i : i ∈ {1, . . . ,ArityIn(�)} :

(

∃γi, δi :
(γi,OpndSel(−i, α)) ∈ ∆,
(δi,OpndSel(−i, β)) ∈ ∆

: (γi, δi) ∈ Λ

))

This represents exactly the case (s, t) = (1,ArityIn(�)) of Definition 3.2. However, Definition
3.2 also declares (α, β) ∈ LiftRel∆(Λ), if ∆−1(OpndSel(0, α))∪∆−1(OpndSel(0, β)) 6= ∅ and
(
∃γ, δ : γ, δ ∈ OI : (γ, δ) ∈ Λ∧ (γ,OpndSel(0, α)) ∈ ∆∧ (δ,OpndSel(0, β)) ∈ ∆

)
. This is (corre-

spondingly) the case iff (α, β) ∈ ((OpndSel 0,0 ◦ ∆) ◦ Λ ◦ (OpndSel0,0 ◦∆)−1). X

Let us now state some basic properties of LiftRel . Since we will use it to follow equivalences from
the reflexive, symmetric, transitive closure of input dependences by propagating these equivalences
along structural dependences, with all dependence relations defined by h-transformations (i.e.,
linear functions), the result of applying LiftRel should not only be well-defined, but also in some
sense well-behaved – i.e., we should be able to handle it within our framework of linear functions
and polyhedra. The following corollary states that, indeed, we can handle the result as union of
polyhedra.

Corollary 3.8 In the situation of Lemma 3.7, the following holds:

1. If ∆ and Λ are invertible mappings, so is LiftRel∆(Λ).

2. If ∆ and Λ are linear mappings (linear relations), so is LiftRel∆(Λ).

3. If ∆ and Λ are polyhedra representing linear relations, LiftRel∆(Λ) is a polyhedron repre-
senting a linear relation (that is possibly further restricted in its domain or image).

4. If ∆ and Λ are unions of polyhedra representing linear relations, LiftRel∆(Λ) is a union of
polyhedra representing linear relations (that are possibly further restricted in their domain
or image).

Proof:

1. For each i, (OpndSel0,i◦∆)◦Λ◦(OpndSel0,i◦∆)−1 = OpndSel0,i◦∆◦Λ◦∆−1◦OpndSel−1
0,i is

an invertible mapping (since all mappings above are invertible). Since mappings always map
each input element to exactly one output element, the intersection of mappings is always
either the same as the first mapping – aside from possibly reducing its domain – or the
empty set (which we will consider an invertible mapping for this purpose).

2. The composition of linear mappings (linear relations) is, again, a linear mapping (linear
relation).

3. The difference to the above point is the restriction in the domain (or image) of the relation;
however, it is clear that the composition of relations honours domain/image restrictions
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of the original relations. For example, if ∆(α) =

{

∆1(α) if α ∈ A ⊆ OI

∆2(α) if α ∈ B ⊆ OI,A∩B = ∅
, the

result is the union of the OpndSel 0,i ◦ ∆ ◦ Λ′ ◦ ∆−1 ◦ OpndSel−1
0,i with Λ′ being one of

Λ′
1 : OpndSel0,i(∆1(A)) → OI : α 7→ (OpndSel0,i ◦ ∆1 ◦ Λ ◦ ∆−1

1 ◦ OpndSel−1
0,i )(α)

Λ′
2 : OpndSel0,i(∆2(B)) → OI : α 7→ (OpndSel0,i ◦ ∆2 ◦ Λ ◦ ∆−1

2 ◦ OpndSel−1
0,i )(α)

4. The composition of the unions of relations is the union of the compositions of these relations:

(R1 ∪R2) ◦ (S1 ∪S2) = (R1 ◦ S1)∪ (R1 ◦ S2)∪ (R2 ◦ S1)∪ (R2 ◦ S2)

X

In particular, if ∆ is a set of structural dependences, represented by corresponding h-transformations

H1,1 : OpndSel(−1,O1) → O3

...

H1,ArityIn(�) : OpndSel(−ArityIn(�),O1) → O3

H2,1 : OpndSel(−1,O2) → O4

...

H2,ArityIn(�) : OpndSel(−ArityIn(�),O2) → O4

and Λ is a polyhedron representing a linear relation that is restricted in its scope

Λ : OΛ ⊆ O3 × O4

the resulting polyhedron again represents a linear relation that is restricted by its scope Λ′ =
LiftRel∆(Λ) is defined by

Λ′ =
⋂

i∈{1,...,ArityIn(�)}

OpndSel0,i ◦H
−1
2,i ◦ Λ ◦H1,i ◦ OpndSel−1

0,i

In our case, ∆ is defined by a family of linear mappings – the h-transformations of equivalence
propagating dependences. Due to the fact that the basic equivalences on read accesses and linear
expressions are defined by linear equation systems as described on page 63 – only with possible
additional restrictions representing conflicts with write accesses, the original equivalence relation
Λ that we start with is defined by a union of polyhedra.

Let us now define our equivalence on occurrence instances formally:

Definition 3.9 Let ∆i be a set of input dependences on read accesses and ∆(s,f) a set of structural
flow dependences. We define the (∆(s,f),∆i)-equivalence ≡(∆(s,f), ∆i) on occurrence instances as

the equivalence that we can follow from the input dependences:

≡(∆(s,f), ∆i) := (LiftRel
(∆i−)

∗
→

∆(s,f) )∞(∅)

It is plain to see that, for ∆(s,f) comprising of all structural flow dependences and ∆i containing
all input dependences of the program fragment, Definition 3.9 is exactly the definition of Herbrand
equivalence with only the basic equivalence on constants replaced by the equivalence relation

(∆i−)
∗
.
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Note, however, that, as was mentioned earlier, these equivalence classes by no means represent
the equivalence of all occurrence instances one might actually find to represent the same value:

Example 3.10 Let us reconsider the code fragment of Example 2.26:

DO i1=0,1

B(i1)=2*n-A

END DO

C=2*B(0)+2*B(1)

The execution of the loop results in both B(0) and B(1) representing the same value (2 · n − A).
However, a subsequent use of B(0) cannot be identified as equivalent to a use of B(1). In the
example, we could actually assign 2*B(1)+2*B(1) to C instead of 2*B(0)+2*B(1). However, since
there is no input dependence between the occurrence instances representing the read accesses B(0)

and B(1), respectively, these occurrence instances are not ≡(∆(s,f), ∆i)-equivalent. Therefore, we

will not consider the above alternate formulation for the result C a valid alternative. In other
words, although the corresponding SAREs clearly define the same values for B(0) and B(1), we
cannot confirm this equivalence using the above scheme.

The above example shows that the ≡(∆(s,f), ∆i)-equivalence does not suffice to determine

whether two code fragments actually compute the same value – despite Theorem 3.5. The prob-
lem is that ≡(∆(s,f), ∆i)-equivalence does not hold between variable accesses that do represent the

same value, as soon as this value has been stored in different memory cells.
The above situation can be improved by introducing equivalences also on write accesses (or

introducing direct flow dependences between output occurrence instances and read access, elim-
inating the need for most write accesses in the program). Equivalences of terms can then be
propagated beyond the sequence of a write and a read access using the following scheme:

1. Propagate input dependences ∆i along the structural flow dependences ∆(s,f) calculating

the least fixed point ≡(∆(s,f), ∆i) of LiftRel
(∆i−)

∗
→

∆(s,f) .

2. Define input dependences between write accesses by propagating along structural output

dependences, i.e. calculating the least fixed point ≡(∆(s,f), ∆i)
′ of LiftRel

≡
(∆(s,f), ∆i)

→

∆(s,o) .

The propagation of input dependences along structural output dependences then defines input
dependences between write accesses that do actually write the same value to memory. With the
expanded equivalence induced by the resulting input dependences, situations as those in Example
3.10 can be solved: once the equality of write accesses is established, we can also deduce equality
on the corresponding read accesses and so on. But what do we do if there is not a single write
access between creation of a value and its use, but a whole chain as in the following Example 3.11?

Example 3.11 Let us obfuscate the code of Example 3.3 even further: now, the value 2 · n − A
is not directly written to memory and then read again, but copied over and over again to different
places in memory. Each of these places can then be used as a valid address to access this value:

DO i1=0,1

! Statement S1:

T00=2*n

! Statement S2:

T10=2*n-A

! Statement S3:

T11=T10

! Statement S4:

B(i1)=T11

END DO
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! Statement S5:

T12=B(0)

! Statement S6:

T13=B(1)

! Statement S7:

T14=T00-A

Not only B(0) can be used to refer to value 2 · n − A, but also T10, T11, T12, T13, and T14.
However, in order to discover this fact, e.g., for T12, one must not only trace back the assignment
to T12 in Statement S5, but also the assignments in Statements S2 through S4. This problem is not
a simple trace. We cannot just call occurrence instances equivalent as long as a value is only copied
from one occurrence instance to the other and no additional calculation is done: in Statement S7,
we compute 2 · n −A from T00 and A. Therefore, it is always the complete equivalence relation –
and not just some small piece of information – that has to be propagated through these assignments.

Limits of the Method Again, we cannot determine the equivalence of all occurrence instances
that represent the same value in Example 3.11. If we apply the above scheme using two steps
– propagation along structural flow dependences and structural output dependences, respectively
– not only once, but over and over again, the resulting equivalence relation represents all these
equivalences. However, the termination of this repeated calculation of equivalence relations is not
guaranteed. This is where the undecidability of the equivalence of two SAREs comes into play
again: we cannot hope for an algorithm to compute an equivalence relation precisely. Of course,
we can use some heuristics that decides when all interesting equivalences have been found or just
iterate through the above scheme any given number of times – in this case an indirection through
as many write and read accesses could be analyzed. In particular, the equivalence of A and B in
the following example cannot be deduced with this scheme.

Example 3.12 In the following code fragment, A and B always represent the same value. How-
ever, an equivalence cannot be deduced using our present procedure:

A=0

B=0

DO i1=1,n

A=A+1

B=B+1

END DO

Although the first results of the calculations in the first iteration of the loop can be determined
to be equivalent, if we allow propagation of equivalences over write accesses, the equivalence at
the next iteration can only be deduced by propagating equivalence classes over write accesses once
more, and so on: we can only deduce an equivalence of finitely many iterations.

Equivalence on Write Accesses The examples show that some semantic equivalences may
only be discovered when equivalences on write accesses are allowed. Some of these equivalences
may only be discovered with an infinite number of unrolling steps. Therefore, we consider only
the simple case in this thesis: propagation is done only along structural flow dependences, and
write accesses are never considered ≡(∆(s,f), ∆i)-equivalent to each other.

3.1.2 How to Obtain Equivalences on Read Accesses

Up to now, we just assumed that all dependence information – including input dependences that
define an initial equivalence on input data – is supplied by the run of a dependence analysis algo-
rithm. We have also seen that in order to determine, which occurrence instances can be removed
from the original code dueto their equivalence, we need to consider the reflexive, symmetric and
transitive closure of these input dependences. However, we did not really address the problem
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of computing this reflexive, symmetric and transitive closure that we need in order to define this
(∆(s,f),∆i)-equivalence. Computing the transitive closure is not necessarily possible – but as it
turns out, we do not really need to compute any closure at all.

On the one hand, the transitive closure of an integer linear relation is not in general com-
putable [KPRS94]. On the other hand, two occurrence instances α and β are (directly) input
dependent on one another if they read from the same write access (and α immediately precedes β
among the occurrence instances reading from the same write access). The (∆(s,f),∆i)-equivalent
occurrence instances of an occurrence instance α are those that read from the same write access as
α, i.e., we can directly compute the reflexive, symmetric and transitive closure of the input depen-
dences from direct flow dependences. Formally, this simplification is expressed by the following
theorem.

Theorem 3.13 Let ∆f be the direct flow dependences of the program fragment considered and ∆i

its direct input dependences. Then

(∆i−)
∗

= LiftRel∆f (id)

Proof:

1. Since id is an equivalence relation, LiftRel∆f (id) is so, too (Lemma 3.4).

2. ∆i ⊆ LiftRel∆f (id):

(α, β) ∈ ∆i ⇒
(
∃γ : γ ∈ OI : (γ, α) ∈ ∆f ∧ (γ, β) ∈ ∆f

)

⇒ (α, β) ∈ LiftRel∆f (id)

according to Defintion 3.2, since ArityIn(read ·) = 0

3. (∆i−)
∗
⊇ LiftRel∆f (id):

Let (α, β) ∈ LiftRel∆f (id). Suppose α 6= β (otherwise, this is a trivial case). Without loss
of generality, we assume α ≺ β (we may do so, since LiftRel∆f (id) is symmetric)

⇒
(
∃γ : γ ∈ OI : (γ, α) ∈ ∆f ∧ (γ, β) ∈ ∆f

)

In particular, α and β, both represent read accesses to the same memory cell. This means,
we either have

(a) (α, β) ∈ ∆i, or

(b) there is another memory access γ ′ to the same memory cell between these two accesses
(α ≺ γ′ ≺ β). In the latter case, γ ′ has to be a read access, too, since otherwise
(γ, β) ∈ ∆f would not hold, i.e., by induction:

⇒
(

∃γ′ : γ′ ∈ OI : (α, γ′) ∈ ∆i ∧ (γ′, β) ∈ ∆i+
)

i.e., in any case, we have:

⇒ (α, β) ∈ (∆i−)
∗

X

Corollary 3.14 In the situation of Theorem 3.13 and with ∆(s,f) being the structural flow de-
pendences of the program fragment, the equivalence on occurrence instances defining the Herbrand

equivalence with (∆i−)
∗

as basic identity is given by computing the fixed point of
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LiftRel id→∆(s,f) ∪∆f (∅):

≡(∆(s,f), ∆i) = ≡(∆(s,f) ∪∆f , id)

Proof:
This follows directly from Theorem 3.13. X

In other words, we do not need to compute the reflexive, symmetric and transitive closure of
∆i to obtain a basic equivalence relation for determining equivalent read accesses. Everything
we need can already be computed directly from the flow dependences without even knowing the
exact input dependences: we only need to take the structural flow dependences and the usual
flow dependences from a write access to a read access into account. We then need one more step

in the fixed point iteration for computing ≡(∆(s,f) ∪∆f , id). Note that ∆(s,f) ∪∆f +
is a strict

partial order on occurrence instances (and so is ∆e together with the implicit dependences above):
the transitivity is clear and, if (α, β) ∈ ∆e+, (β, α) cannot be element of ∆e+ (i.e., we have
(β, α) 6∈ ∆e+), since targets of structural dependences always have greater occurrence numbers
than their sources, and non-structural flow dependences always have write accesses as sources –
which are excluded as targets of dependences in ∆e. Thus, Corollary 3.8 still applies, and the
least fixed point is still easily computable with only this single additional step.

3.2 Optimizing the Program

As already hinted on in the previous section, the next step in our method – after identifying
equivalent occurrence instances – is to reduce the number of calculations to be executed. From
now on, we do not aim to produce code for the calculations represented by OI, but for those
represented by the different equivalence classes OI/≡(∆(s,f), ∆i).

op

occ

op

occ

i

write B(i)

-(*(2,n),A)

Assign(-(*(2,n),A),B(i))

read A

*(2,n)

i

num(i)

i

write B(i)

-(*(2,n),A)

Assign(-(*(2,n),A),B(i))

read A

*(2,n)

i

num(i)

α1

β2

β1

α2

α1

β2

β1

α2

Figure 3.3: Left hand side: original OIG for Example 3.3; equivalences (dotted arrows) between
basic expressions can be concluded. Right hand side: mixed graph with equivalent expressions
condensed.

Example 3.15 In Example 3.3 on page 64, the term 2*n-A represents a loop independent value
2 · n − A that is computed by occurrence instances α1 and α2 and assigned to B(i) by occurrence
instances β1 and β2. Figure 3.3 shows the OIG in a three-dimensional coordinate system. The two
instances of 2*n are equivalent, as indicated by the dotted arrows. Likewise, the two instances of
the read access to A are equivalent. This can be used to form new equivalence classes, represented
by the occurrence instances in the foreground. This results here in a mixed graph with rewritten
dependences on the right hand side of Figure 3.3. From this representation, new equivalences
between α1 and α2 can be deduced with the help of the LiftRel operator, depicted as dotted arrows
on the left side of Figure 3.4. These equivalences lead to the transformed OIG on the right side.
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op

occ

op

occ

i i

write B(i)

Assign(-(*(2,n),A),B(i))

-(*(2,n),A)

read A

*(2,n)

i

num(i)

write B(i)

-(*(2,n),A)

Assign(-(*(2,n),A),B(i))

read A

*(2,n)

i

num(i)

β2

β1

α1

α2

α1

β2

β1

Figure 3.4: Left hand side: equivalences between the computations of 2*n-A can be derived. Right
hand side: possible transformed OIGwith a single occurrence instance α for 2*n-A.

The graph on the right represents a program that computes the loop invariant value 2 · n−A once
and reuses it twice in the assignment in the loop. In the transformed OIG, this is represented by
only one instance for all occurrences that are needed to build the term 2*n-A. We obtain a single
occurrence instance α1 that represents this complete term. However, now, there are two occurrence
instances β1 and β2 representing assignments that each depend on α1.

In particular, the dependence relation between α2 and β2 does no longer exist and is replaced
by a new dependence relation between α1 and β2.

For the code generation later, this means that we will have to introduce new memory cells in
which these values can be stored until all references to these values have been made.

The transformed OIG on the right hand side of Figure 3.4 is the goal we are aiming at. First,
we will sketch the coarse structure of the method. Section 3.3 will then go into further detail
about choosing representatives for equivalence classes, with two possibilities laid out in Sections
3.5.1 and 3.5.2.

But let us begin the description of this transformation to a graph based on equivalence classes
with a formal definition of this new graph.

Definition 3.16 The condensed graph of an occurrence instance graph OIG = (OI,∆)
relative to an equivalence relation ≡, the condensed occurrence instance graph
(COIG) of OIG, is the graph COIG = OIG/≡ = (OI/≡,∆/≡) with ∆/≡ =
{
(A,B)

(
∃α, β : α, β ∈ OI : (α, β) ∈ ∆∧A = [α]≡,B = [β]≡

)}
(where [α]≡ is the equivalence

class of α under ≡).

The simple strategy is then to generate code not for the OIG of a program fragment, but for
its COIG. Since code is generated for vertices of the COIG – which may represent several vertices
in the OIG, we enumerate fewer occurrence instances in the transformed program than in the
original one. In particular the fact that we now deal with occurrence instance sets of reduced
dimensionalities leads to a potential performance improvement (if occurrence instances along a
complete dimension of the original index space are equivalent to each other, this dimension can
be safely removed in the transforemd index space).

The COIG is prepared using GroupOccurrenceInstances and LCCPHighLevel . Algorithm 3.2.1
(GroupOccurrenceInstances) partitions the OIG so that we can compute the equivalence classes
of occurrence instances in a single sweep through the partitioned graph. This computation of
equivalence classes is then performed by Algorithm 3.2.2 (LCCPHighLevel ), for which we will
present a refined version using several helper algorithms in later sections.

As sketched in Figure 3.1, the first step in the target code generation is to compute a space-
time mapping that determines when and where to execute the occurrence occurrence instances. It
should be noted that it is not necessary to compute a space-time mapping for all sets of occurrence
instances to produce the target code. As long as each occurrence instance of a set is a source for at
most one target occurrence instance, it is not necessary to compute a space-time mapping: it may
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simply be inherited from the (unique) target occurrence instance. Moreover, this means that the
code for the source occurrence instance may be produced as a subterm of the term corresponding
to the target occurrence instance. For example, consider some read access A(i). If the program
under consideration contains a computation in the form of the term A(i)+B(2*i), the read access
A(i) may simply be inserted into A(i)+B(2*i) itself (thus enabling the compiler to use registers
for A(i) and). However, if several occurrence instances may read from a single source occurrence
instance α, the value represented by α has to be stored in order to be copied into each of the use
sites, and it has to be available until all uses are done. This means that a space-time mapping
has to be computed that puts the space-time coordinates of the occurrence instance at hand in
relation to the execution time (and space) of the other occurrence instances. For write accesses,
the same restrictions hold. The following definition establishes sets containing such occurrence
instances as special sets that will be of further interest to us in Chapter 4.

Definition 3.17 (Interesting Set) Consider a COIG (OI/≡(∆(s,f) ∪∆f , id),∆≡
(∆(s,f) ∪ ∆f , id)

).

An interesting set of this COIG is a set O ⊆ OI/≡(∆(s,f) ∪∆f , id) of occurrence instances that

contains at least one element α that either

• represents a write access

head(Occ−1(OccId(α))) = write ·

or

• is the source of several dependences in ∆≡
(∆(s,f) ∪ ∆f , id)

:



∃β, β′ : β 6= β′ ∈ OI/≡(∆(s,f) ∪∆f , id) :
(α, β) ∈ ∆≡

(∆(s,f) ∪ ∆f , id)
∧

(α, β′) ∈ ∆≡
(∆(s,f) ∪ ∆f , id)





For example, in Figure 3.4 on page 74, the (singleton) set of occurrence instances for the term
2*n-A is an interesting set; all sets of occurrence instances that are not supersets thereof are not
interesting sets.

Theorem 3.13 in Section 3.1.2 states that ≡(∆(s,f), ∆i) = ≡(∆(s,f) ∪∆f , id). So we would like

to use ∆e := ∆(s,f) ∪∆f , the set of structural and non-structural flow dependences, as the set of
equivalence propagating dependences and the very easily computable relation id as basic equiv-
alence relation. Note that, with this choice, ∆e+ and (∆e+ ∪∆s

impl) are strict partial orders.
Moreover, together with the implicit structural flow dependences ∆s

impl, input dependences only
hold between read accesses (and between linear expressions), i.e., between occurrence instances
that are minimal wrt. (∆e ∪∆s

impl)
+. Therefore, if we do not define any additional equivalences

(for example in order to implement some user defined equivalence exceeding the power of the
Fortran EQUIVALENCE statement already discussed above), we can compute the entire equivalence
relation ≡(∆e, ∆i) according to Corollary 3.6 in a single sweep in direction of ∆e. Here, we will
assume that, indeed, we do not add equivalences artificially but are only interested in the equiva-
lence ≡(∆e, ∆i). In this case, Corollary 3.6 and Theorem 3.13 (which states that we can compute
input dependences from flow dependences) also tell us that we only need to compute the prop-
agation of equivalences, i.e., a sequence Λ1 = id, . . . ,Λi = LiftRel∆e(Λi−1), . . . Thus, sweeping
through the occurrence instances grouped according to ∆e and always rewriting the current level
and dependence information regarding this level appropriately, only requires the application of the
LiftRel operator – we do not need to compute the full union as presented in Corollary 3.6. So the
first step is to partition the set OI into a sequence of subsets through a topological sort wrt. ∆e.
This is done by the following Algorithm 3.2.1.
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Algorithm 3.2.1 [GroupOccurrenceInstances]:
Input:
OI : set of occurrence instances of the program fragment under consideration.

∆e ⊆ OI × OI :
equivalence propagating dependences (relation from source to target occurrence in-
stances).

Output:
Level : topologically sorted array of sets of occurrence instances, with each element holding one

level of incomparable elements wrt. ∆e.

Procedure:
workset := OI;

depWorkset := ∆e;

Level := ∅;
i := 1;
while workset 6= ∅
/* Throw all occurrence instances with occurrence numbers that occur in */

/* dependence targets into the next workset */

/* occurrences that do not belong to dependence targets build */

/* the current level */

targets := depWorkset(workset )[occdim src];

worksetNew := ∅;
depWorksetNew := ∅;
/* Append element number i to Level and initialize to ∅ */

Level := append(Level , ∅);
Level[i] := {α ∈ workset OccId(α) 6∈ targets};
worksetNew := {α ∈ workset OccId(α) ∈ targets};
depWorksetNew := {(α, β) ∈ depWorkset α[occdim src] ∈ worksetNew};
i := i + 1;
workset := worksetNew;

depWorkset := depWorksetNew;

endwhile

return Level;

The levels of occurrence instances produced by Algorithm GroupOccurrenceInstances represent
the different levels in the (combined) operator trees of the expressions found in the program
fragment, as shown, e.g., in Figure 3.3 on page 73. Note that the level of an occurrence is defined
by the longest path from a write access to that occurrence.

For this formulation of the algorithm, we suppose that the dependences between the different
operand positions of occurrence instances with the same index vector and the same occurrence
are not given explicitly. We can do so, because the definition of LiftRel (Definition 3.2) does not
depend on these implicit dependences. Therefore, we view all occurrence instances with the same
occurrence number as incomparable wrt. ∆e and push them into the same element of the array
Level . Note that, since ∆e+ is a strict partial order, as we have established in Section 3.1.2 on
page 73, the resulting levels are connected by ∆e, and an occurrence instance on level i may have
a successor wrt. ∆e on one or more levels i′ > i, but not on any levels i′′ < i.

Algorithm 3.2.2 represents the actual program transformation:
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Algorithm 3.2.2 [LCCPHighLevel ]:
Input:
OccurrenceLevels :

array of sets of occurrence instances, sorted by Algorithm 3.2.1.

∆ ⊆ OI × OI :
flow, anti, or output dependences holding between occurrence instances of OI that also
have to be respected by the transformed program.

∆e ⊆ OI × OI :
dependence relation on OI along which the equivalences are to be propagated.

≡(∆(s,f ) ∪∆f , id) ⊆ OI × OI :
equivalence relation defining read accesses that are to be considered equivalent,

≡(∆(s,f) ∪∆f , id) = (∆i−)
∗
.

Output:
CondensedOccurrenceLevels :

array of sets of equivalence classes representing the different values cal-
culated by the program fragment – with n = size(OccurrenceLevels),
⋃

i∈{1,...,n}

CondensedOccurrenceLevels[i] =

⋃

i∈{1,...,n}

OccurrenceLevels[i]/LiftRel∞∆e(≡(∆(s,f) ∪∆f , id)).

∆′ : dependences between the occurrence instances of CondensedOccurrenceLevels – ∆′ =
∆/LiftRel∞∆e(≡(∆(s,f) ∪∆f , id)).

Procedure:
∆′ := ∅;
EqRel[1] := ≡(∆(s,f) ∪∆f , id);

for i = 1 to size(OccurrenceLevels)
CondensedOccurrenceLevels[i] := OccurrenceLevels[i]/EqRel[i];
for j = 1 to i− 1
forall A ∈ CondensedOccurrenceLevels[i]

forall B ∈ CondensedOccurrenceLevels[j]
∆′ := ∆′ ∪

{
(A,B)

(
∃α, β : α ∈ A, β ∈ B : (α, β) ∈ ∆

)}
;

∆′ := ∆′ ∪
{
(B,A)

(
∃α, β : α ∈ A, β ∈ B : (β, α) ∈ ∆

)}
;

end forall

end forall

endfor

EqRel[i + 1] := LiftRel∆e(EqRel[i]);
endfor

return (CondensedOccurrenceLevels ,∆′);

Note that, formally, an occurrence instance graph is quite distinct from a condensed occurrence
instance graph in that the vertices of the former are occurrence instances, while the vertices of
the latter are sets of occurrence instances. In practice, the question arises how to represent a
condensed occurrence instance graph in a computer. One point is again that a COIG can get
infinitely large – for the same reason that a OIG can get infinitely large. Another point is that
each single equivalence class building a vertex of a COIG may also be infinitely large. The simple
solution is to create an isomorphism between the equivalence classes of occurrence instances to
be represented and some other (finite) objects. In other words, we choose a representative of
a complete equivalence class and, since it is possible that each occurrence instance of a OIG is
the sole element of its equivalence class (i.e., ≡= {(α, α) α ∈ OI}), the objects representing
equivalence classes have to be occurrence instances. Thus, a COIG can be represented in the same
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way as an OIG: as a reduced OIG of occurrence instances, each of which is a representative for a
whole set of equivalent occurrence instances.

3.3 Program Representation by Representatives of Equiv-

alence Classes

Let us briefly recall what we have learned up to now. In the polyhedron model, the actual
data structures that algorithms work on are never infinitely large but finite representations of
possibly infinite sets. The reduced form of a possibly infinite graph is a finite graph that uses –
possibly infinite – sets in order to represent possibly infinite homogenous collections of operations.
An OIG OIG = (OI,∆) that describes the original program is represented in its reduced form
by a partitioning OI =

⋃

i∈{1,...,n}

OIi with each partition representing a set of the form OIi =

{α MOIi
· α ≥ 0} and each vertex being tagged with one such set. An edge in the reduced OIG

is a labelled edge (A,B, H), a, b ∈ {OI1, . . . ,OIn}, where the exact dependence of an occurrence
instance in B from one in A is given as a linear mapping H : O → A (O ⊆ B); O also has the
form described above.

Now we want to represent a reduced COIG in just the same way. In contrast to the sets
represented in a COIG, the sets we want to represent in a reduced COIG are sets of the form
OI≡,i = {Ξ(α) MA · α ≥ 0} with Ξ being a function such that

Ξ(α) = Ξ(β) ⇔ α≡β (3.1)

That is, Ξ takes an occurrence instance α and returns a single unique representative for the
equivalence class of α. Correspondingly, vertices in the reduced COIG have essentially the same
form as the ones in the COIG – however, now they have to hold between occurrence instance sets
as described above. Using representatives instead of equivalence classes, the code to be generated
is then represented in exactly the same way as for a simple reduced OIG. From now on, we will
assume that a COIG uses representatives of equivalence classes (correspondingly, a reduced COIG
is actually represented by a reduced OIG). The only question that remains is: which representative
do we choose? We will consider this question in detail in Sections 3.5.1 and 3.5.2. However, for
the time being, let us suppose that we can find some representative for an equivalence class, for
example the lexicographic minimum of the equivalence class, as suggested in the following example.

i2 i2

i1 i1

Figure 3.5: Choosing a unique representative for the read access A(i1+i2) in Example 3.18 by
lexicographic minimum.
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Example 3.18 Consider the code fragment

DO i1=1,4

DO i2=1,6

B(i2,i1)=A(i1+i2)**3

END DO

END DO

The value A(i1 + i2) (and thus A(i1 + i2)
3) does not change for increasing i1 if i2 is decreased by

the same amount. Figure 3.5 shows the different access instances to the array A for the different
(

i1
i2

)

-coordinates. The circles on a dotted line are in the equivalence relation ≡. In other words,

they represent the same value. As an example, the value A(8) is distinguished by fat circles.

The right hand side of Figure 3.5 shows only the lexicographic minima of the corresponding
equivalence classes.

An occurrence instance α in our new COIG now represents the complete set [α]≡ of equivalent
occurrence instances. Therefore we have to rewrite the edges of the original OIG (and thus of the
reduced OIG) so that only representatives are used. We have seen the result of such a procedure
in Example 3.15.

In the reduced form, the edges of an OIG are labelled with one or more h-transformations
(defined on disjunct domains), which map a given target occurrence instance to the unique oc-
currence instance it directly depends on. Correspondingly, redefining the dependence relations
so that the representative occurrence instances are used instead of the original ones, is primarily
done by defining new h-transformations from the original ones.

3.4 The Transformation Algorithm

Algorithm 3.2.2 sketches the calculation of a COIG. Since we are working with a reduced OIG that
we want to condense into a reduced COIG, the actual algorithm looks a bit different. However, the
actual handling of sets and mappings between these sets consists – for the most part – of standard
operations that we will not discuss any further here. Implementations of these standard operations
for integer vector spaces can be found in several specific libraries such as the Polylib [Wil93, Loe99],
or the Omega library [Pug93, KMP+96a].

In this situation, an OIG is represented by finitely many vertices, each representing a set of
occurrence instances (in our case usually with the restriction of a constant common occurrence
number within that set) and finitely many edges between these vertices, each represented by h-
transformations. In the algorithms below, only the representation with h-transformations is used
– i.e., a connection between two sets O1 and O2 exists if there is an h-transformation whose
domain intersects with O2 and the image intersects with O1. One may speedup these algorithms
by actually using graph representations that employ explicit edges between the vertices, e.g. in the
form of an adjacency matrix; however, these representations would act to obfuscate the algorithms
below.

Actual implementations may of course vary, for example, in the use of representing any ver-
tices at all, in the use of libraries representing polyhedra (which may use polyhedra or unions of
polyhedra as basic structures), as well as in the use of one large set as occurrence instance set
(as suggested in Algorithm 3.2.1) or an array or a hash table of sets whose elements only contain
sets of occurrence instances of a certain occurrence number (note that every finite input program
only contains a finite number of different occurrences). All the algorithms discussed below were
implemented and incorporated into the LooPo system [GL97].

Along the same lines, we suppose in the following that dependences ∆ are given as h-transfor-
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mations as described in Section 2.3.2. Each h-transformation is of the form

H1 : D1 → E : α 7→ MH1 · α

...

Hn : Dn → E : α 7→ MHn
· α

with D,E ⊆ Z
nsrc+nblob+2 being Z-polyhedra. Although it is strictly speaking not necessary, it

is helpful to view each set of occurrence instances in the following as being defined over a single
pair of occurrence and operand number, i.e., # (OccId(D)) = # (OpId(D)) = 1. Correspondingly,
the h-transformations are then restricted to these sets. In this representation, each load, store,
and each computation operator is represented by an individual set. For example, an addition is
represented by three sets: one set each for the left operand of the + operator, for its right operand,
and, finally, for the computation itself. Different instances of this computation, however, are still
represented by the same number of sets – albeit with an extended index space that defines several
iterations. This representation is also implicitly assumed in the formulation of Algorithm 3.2.1
above.

The basic procedure is then as follows:

1. We suppose two occurrence instances to represent the same computation if the occurrence
instances representing their operational arguments depend on the same computation, as
described in Section 3.3. This equivalence is defined and implemented by the LiftRel operator
(see Definition 3.2). Therefore, we first have to group occurrence instances – as already
specified by Algorithm 3.2.1 – so that occurrence instances comparable wrt. the equivalence
propagating dependences ∆e – that LiftRel uses to determine equivalence – will be assigned
to different groups (thus, equivalence in one group may be propagated to equivalence in the
next group).

2. The previous step introduced a topologically sorted sequence (O1, . . . ,On) wrt. ∆e so that
⋃

i∈{1,...,n}

Oi = OI. Each set Oi is represented as a union Oi =
⋃

j∈{1,...,m}

Oi,j of sets of

occurrence instances (since Oi is not necessarily a polyhedron). We apply LiftRel∆e to
each set Oi,j of that level of occurrence instances and combine the result to produce a
representative function that maps each occurrence instance of Oi to an instance of a newly
created occurrence.

The transformation algorithm of Step 2 is then given by Algorithm 3.4.1. The structure is the
same as of Algorithm 3.2.2. A main loop iterates through all the levels of ∆e bottom up, which
are essentially the levels of the operator tree (plus the flow dependences at the bottom used to
obtain basic equivalences). In this loop, the procedure is as follows:

1. Represent occurrence instance level by representatives. Here, we use a (piecewise
linear) representative mapping Ξ, which maps an occurrence instance to its representative.
Applying this function to the polyhedra comprising this occurrence instance level yields the
desired result.

2. Rewrite equivalence propagating dependences. In order for a representative occur-
rence instance to represent the same calculation as all the occurrence instances in the equiv-
alence class, the dependences have to be rewritten.

3. Rewrite other dependence information. Actually, this only occurs at the highest and
lowest levels (i.e., the first and last iteration of the algorithm), since read and write accesses
are minimal, resp., maximal elements wrt. ∆f ∪∆(s,f).

4. Propagate equivalences. This is done by applying the LiftRel operator – initially to the
identity function. The actual computation is done according to Corollary 3.7.
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Steps 2 and 3 assert that the computation represented by the COIG is still the same as for
the OIG. We have seen this rewriting of dependences already in Example 3.15 and visualized in
Figures 3.3 and 3.4. Essentially, a dependence relation given by an h-transformation H whose
source occurrence instances are to be represented according to the representative mapping Ξ have
to be rewritten to

H ′ = Ξ ◦H

On the other hand, if the dependence targets are to be represented according to a mapping
≡(∆(s,f) ∪∆f , id), the new dependence has the form

H ′ = H ◦ Ξg

Note that this is only valid because our definition of equivalence asserts that
α≡(∆(s,f) ∪∆f , id) β ⇒ H(α) = H(β) and thus # (H(Ξ−1(α))) = 1, i.e. two occurrence instances

are only equivalent if they depend on the same source occurrence instance. This was exactly our
intention when designing this equivalence and, now, this design allows us to pick any possible
pre-image. The only exception to this rule consists of anti dependences, for which dependence
targets are write accesses. However, for these, Ξ = id holds.2

In our method, the occurrence instances to be represented by equivalence classes are grouped
into levels by Algorithm 3.2.1 (GroupOccurrenceInstances), while the dependence information
is not (since this is a relation between instances of occurrences that might lie on completely
different levels). Therefore, rewriting the dependence information according to Ξ is not as simple
as applying Ξ to all available h-transformations. Since Ξ need not be defined on all occurrence
instances that appear in h-transformations, this could lead to an empty result in the composition.
What we intend for such a composition is of course to keep the dependence information unchanged
as long as we do not have any representatives for the respective occurrence instances. Therefore,
Algorithm 3.4.1 first expands Ξ to an identity mapping for the complete index space for which Ξ
does not already define a different mapping.

The representative mapping Ξ (repMaps in the algorithm) that is to be applied is determined
by Algorithm 3.5.2 (CreateRepresentativeMappings ), which we shall discuss in Section 3.5.3. Note
that CreateRepresentativeMappings in this algorithm only has to produce some mapping that can
be used to produce new index space and dependence information and does not necessarily already
have to be a mapping to the actual representatives. The latter is produced by an additional
algorithm called PrepareRepMap which is used at the beginning of Step 4 in Algorithm 3.4.1.
In Section 3.5.2, this strategy will turn out to be useful for the kind of representative selection
employed. However, for the time being, we may think of PrepareRepMap as an identity function
that just passes through the array of mappings passed to it.

2For an extension of this method to the case that write accesses can be equivalent to each other, one may use
the union of all possible dependence sources – leading to several h-transformations.
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Algorithm 3.4.1 [LCCPLowLevel ]:
Input:
OccurrenceLevels :

array of sets of occurrence instances, sorted by Algorithm 3.2.1 (corresponds to
OccurrenceLevels in Algorithm 3.4.1).

RestDeps :
array of dependences defined by h-transformations (corresponds to ∆ in Algorithm
3.4.1).

EqPropDeps :
array equivalence propagating dependences defined by h-transformations (corresponds
to ∆e in Algorithm 3.4.1).

BasicRepMaps :
array of representative mappings for the occurrence instances of OccurrenceLevels[1];
a representative mapping is defined by an h-transformation (corresponds to
≡(∆(s,f ) ∪∆f , id) in Algorithm 3.4.1).

Output:
CondensedOccurrenceLevels :

array of sets of occurrence instances with each occurrence instance represent-
ing an equivalence class of the input occurrence instances (corresponds to
CondensedOccurrenceLevels in Algorithm 3.4.1).

RestDepsNew :
array of dependences between the elements of CondensedOccurrenceLevels (corresponds
to ∆′ in Algorithm 3.4.1).

Procedure:
CondensedOccurrenceLevels := ∅;
RestDepsNew := RestDeps;
EqPropDepsNew := EqPropDeps;
RepMapsNew := BasicRepMaps;
/* main loop: */

for i = 1 to size(OccurrenceLevels)
/* STEP 1: represent occurrence instance level by representatives */

RepMaps := CreateRepresentativeMappings(OccurrenceLevels[i],RepMapsNew );
CondensedOccurrenceLevels[i] := ∅;
forall ≡(∆(s,f ) ∪∆f , id) ∈ RepMaps

forall P ∈ OccurrenceLevels[i]
Q := P∩ dom(≡(∆(s,f) ∪∆f , id));

if Q 6= ∅ then

CondensedOccurrenceLevels[i]:=
append(CondensedOccurrenceLevels[i],≡(∆(s,f) ∪∆f , id)(Q))

endif

end forall

end forall

/* STEP 2: rewrite equivalence propagating dependences */

/* rewrite sources of original dependences */

EqPropDepsNew := RepMaps ◦ EqPropDepsNew;

/* rewrite targets of original dependences */

/* (however, first we have to create an inverse mapping of repMaps) */

InvRepMaps := ∅;
for j = 1 to size(RepMaps)

Let invMap be an arbitrary inverse mapping to RepMaps[j]:
invMap = im(RepMaps[j]) → dom(RepMaps[j]) : α 7→ (RepMaps[j])g(α);



3.5. HOW TO CHOOSE REPRESENTATIVES 83

InvRepMaps := append(InvRepMaps , InvMap);
endfor

EqPropDepsNew := RepMaps ◦ EqPropDepsNew;

/* STEP 3: rewrite other dependence information */

/* rewrite sources of original dependences */

RestDepsNew := RepMaps ◦ RestDepsNew;

/* rewrite targets of original dependences */

RestDepsNew := RestDepsNew ◦ InvRepMaps;
/* STEP 4: propagate equivalences */

/* we may have to incorporate a preprocessing phase to obtain a */

/* representative mapping suitable for propagation */

RepMapsToPropagate := PrepareRepMap(RepMaps);
RepMapsNew := LiftRelEqPropDeps−1(RepMapsToPropagate);

endfor

return (CondensedOccurrenceLevels ,RestDepsNew);

3.5 How to Choose Representatives

In the previous section, we have introduced an algorithm for computing a semantically equiv-
alent COIG from an OIG. However, the algorithm, and thus the COIG, depend heavily on
CreateRepresentativeMappings in order to decide, which representative to choose for a set of oc-
currence instances. In the following sections, we will develop an algorithm for this task. Of course,
there are several possibilities to obtain representatives. Section 3.5.1 will introduce a straightfor-
ward method that includes quite difficult computations and may result in rather complex results.
We will then go on to examine another method in Section 3.5.2 that is based on a change of basis.

3.5.1 A Straightforward Method: The Lexicographic Minimum

Probably the most intuitive choice of a representative of an equivalence class [α]≡ is some α′ ∈
[α]≡, i.e., choose some element of the equivalence class that represents the complete set. Within
the equivalence class, a natural choice is the lexicographic minimum min≺([α]≡), since it is the
first instance in the original program that computes the given value: if we compute the value
at this time, it will be defined before every use. Therefore, enumerating the representatives
in lexicographic order produces a correct program that is semantically equivalent to the input
program. We only have to ensure that the value is stored in a place where it will not be deleted
before the last use.

Example 3.19 An example of a representation by the lexicographic minimum is depicted in Fig-
ure 3.5 on page 78, which depicts the selection of a representative for the read access A(i1+i2)

of Example 3.18. The representatives are found along a parallel to the i2-axis for the first six oc-
currence instances; the following four occurrence instances are enumerated at the maximal i2-level
along a parallel to the i1-axis. Since the equivalence of the read accesses to array A propagates to
the exponentiation operator, the maximal occurrence instances wrt. ∆e that are combined into new
equivalence classes are those that represent the exponentiation. Just as in Example 3.15, there
are now several occurrence instances that depend on the same computation. Therefore, we have to
introduce new arrays TMP 1 and TMP2 that store the result values:

! enumerate the parallel to the i2-axis

DO i2=1,6

! Statement S1:

TMP1(i2)=A(1+i2)**3

! Statement S2:
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B(i2,1)=TMP1(i2)

END DO

! enumerate the rest of the rectangle

DO i1=2,4

! within the rectangle, there is a lower triangle that

! reads from the parallel to the i2-axis

DO i2=1,7-i1

! Statement S3:

B(i2,i1)=TMP1(i1+i2-1)

END DO

! within the rectangle, there is an upper triangle that

! reads from the parallel to the i1-axis (once those values are written)

DO i2=8-i1,5

! Statement S4:

B(i2,i1)=TMP2(i1+i2-6)

END DO

! new values are produced along a parallel to the i1-axis

! Statement S5:

TMP2(i1)=A(i1+6)**3

! Statement S6:

B(6,i1)=TMP2(i1)

END DO

In this example, the result is a program that computes the values to be assigned to B in statement S1

and S5 and assigns them to their destinations in the other statements. These assignments are done
in several statements, firstly in order to honour the lexicographic ordering wrt. the computation
statements, S1 and S5, and secondly because they have to read from different memory locations.
These read accesses from different sources are due to the fact that the computation statements
represent occurrence instances enumerated along two different dimensions; therefore, they have to
assign their result values to different arrays so as to not interfere with each other (for example, in
this straightforward version of the program, both statements assign to element 1 of their respective
output arguments – S1 to TMP1 (1), and S5 to TMP2 (1)). This split of one polyhedron into two,
on the other hand, is due to the fact that the lexicographic minimum of equivalent occurrence
instances describes a “break”: it is defined by a piecewise linear mapping and cannot be described
by a closed linear form.

Note that the output program in Example 3.19 represents only the occurrence instances of the
COIG of the input program in Example 3.15, enumerated in lexicographic order. The choice of
the lexicographic minimum actually yields a schedule for the statements S1 and S5 that have to be
inserted in order to maintain the flow of data. Thus, it immediately leads to an output program
that is equivalent to the input program.

However, the representation by the lexicographic minimum also has some drawbacks:

1. The calculation of the lexicographic minimum of an integer polyhedron is a complex calcu-
lation (it is NP-complete).

2. The representation of the resulting set is quite complicated, even if we only search for the
lexicographic minimum of the equivalent points within a single polyhedron.

3. If points of several different polyhedra are equivalent, the representation becomes even more
complicated, and these complicated representations propagate along the direction in which
equivalences on larger terms are calculated.

Clearly, the first point represents a major drawback, since the number of polyhedra in a
reduced OIG, and thus a reduced COIG, is greatly increased in comparison to a simple statement
based dependence graph, as we have already seen in Section 2.3.2. Therefore, the run time of the
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algorithm will suffer a lot from choosing such a complex calculation for selecting representatives.
Choosing the lexicographic minimum implicitly computes a schedule for the supplied occurrence
instances simply in order to find representatives. This is especially important if we are aiming
at obtaining a parallel loop program since, in this case, a schedule is usually computed anyway
(as discussed at the beginning of this chapter with the presentation of Figure 3.1), thus, we do
not really gain anything from determining representatives whose lexicographic order also defines
a legal execution order.

The other two points above can in part be gleaned from Example 3.19. The partitioning of the
computation occurrence instances into two areas that are mapped by different linear mappings
to their corresponding lexicographic minima leads to two different polyhedra (and thus to the
statements S1 and S5) that have to be enumerated. Additionally, these two source polyhedra also
lead to a partitioning of the dependent polyhedron describing the assignment to B . Furthermore,

since the rank of the linear subscript function

(
i1
i2

)

7→ i1 + i2 for array A is 1, we only should

need a single dimension to enumerate the resulting points. An alternative which addresses this
issue is presented in the next section.

3.5.2 A Twisted Method: Change of Basis

One alternative to using the lexicographic minimum in Example 3.18 is depicted in Figure 3.6:

j1i2

i1

Figure 3.6: Choosing a unique representative for the read access A(i1+i2) in Example 3.18 by a
simple linear function.

The dotted lines representing equivalent occurrence instances meet the i2-axis in an interval of
integer points. In this example, we could represent the equivalence classes by occurrence instances
with an index space of {j1 2 ≤ j1 ≤ 10}. Thus, the “break” that we observed in the case of
selecting the lexicographically minimal occurrence instance depicted in Figure 3.5 is removed and
only one (relatively simple) polyhedron is generated. The drawback is, of course, that this approach
leaves us with a completely different index set and thus without an a priori legal execution order.

Let us take one step back now. Why should we care at all about the original index space of α,
when searching for a representative? For example, we could act as if the occurrence OccId(α) were
enumerated for all finite index space vectors – effectively forgetting about each and every loop
bound, as long as we only enumerate those occurrence instances at the end that are equivalent
to some occurrence instance that is actually enumerated in the original program. Consider the
following example.

Example 3.20 The left side of Figure 3.7 shows the index space of A(i2-i1)**3 in the code
fragment

DO i1=1,10
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DO i2=MAX(1,5-i1),10

B(i2,i1)=A(i2-i1)**3

END DO

END DO

Index vectors that define the same value for (A(i2 − i1))
3 – and thus represent equivalent occurrence

instances – are connected through dotted lines. The lexicographic minima of these equivalent index
vectors are marked with fat circles. They can only be represented by several polyhedra:

{(
1
i2

)

4 ≤ i2 ≤ 10

}

∪

{(
i1
1

)

4 ≤ i1 ≤ 10

}

∪

{(
i1
i2

)

max(2, 5 − i2) ≤ i1 ≤ 6 − i2 ∧ i2 ≥ 2

}

This is because, in order to stay within the original index space, we have to enumerate points on
the line i2 = 5− i1 (or the smallest integer above – the non-integer points on this line are marked
as thin, dashed circles). This is due to the lower bound 5 − i1 for i2. If we were allowed to also
consider points outside the actual index space, as done on the right hand side of Figure 3.7, things
would be easier. Here, we ignore the lower bound 5 − i1 for i2, so that the set of index vectors
representing the different equivalent classes is given just by two intercepts of the i1- and the i2-axis,
respectively. I.e., it suffices to enumerate the sets

{(
1
i2

)

1 ≤ i2 ≤ 10

}

∪

{(
i1
1

)

2 ≤ i1 ≤ 10

}

Of course, neglecting the correct lower bound amounts to considering a slightly different program
– in our case, this would read:

DO i1=1,10

DO i2=1,10

B(i2,i1)=A(i2-i1)**3

END DO

END DO

However, this is irrelevant for the plain purpose of creating new occurrence instances, since we do
not use this program to obtain the pre-image of our representative mapping, but only to construct
an image of that mapping – i.e., we do not use the occurrence instances of this second program to
find out, which points were originally enumerated – for this, we still use the first program above.

Selecting the lexicographic minimum appeared advantageous because it asserts a legal execution
order. But – as already hinted in the previous section – if we employ a scheduling algorithm after
LCCP anyway, we do not gain anything. So, if we decide to ignore bounds just for finding a
representative, what consequences do we have to face?

Essentially, there are three points that have to be observed:

Regard Original Loop Bounds:
In the COIG, we have to a ascertain that the bounds of the polyhedra defined by the
vertices encompass exactly those integer vectors that correspond to occurrence instance
sets that are indeed enumerated in the original program. I.e., we have to make sure
that the transformed index space does not include integer vectors that correspond to
occurrence instances that are not executed by the original program. On the other hand,
we also have to ensure that, for all occurrence instances in the original program, there
is a representative in the transformed index space.
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i2

i1

i2

i1

Figure 3.7: Left side: Index space of the expression A(i2,i1)**3 in the program fragment of
Example 3.20 with equivalent instances connected by dotted lines. Right side: lexicographic
minima for relaxed lower i2-bound i2 ≥ 1.

Stay Within the Integers:
Ignoring loop bounds – and thus linear inequalities – is akin to using an (nsrc+nblob+2)-
dimensional vector space over the rational numbers instead of a Z-module as the space
containing our representatives, since linear equalities always hold independently of a
non-zero denominator (as discussed in Chapter 2.2). However, we have to make sure
that, in the end, we will only enumerate integer values (so as not to enumerate over an
infinite set).3

Scheduler Issues:
If there is no order of the representatives that is related to the lexicographic order
of the original occurrence instances (which define the execution order in the original
program), dependence information may be inconclusive for a subsequent scheduler (see
Figure 3.1 on page 60). In this case, dependence sources may appear lexicographically
larger than their targets, which should never be the case for an input program – and
is in fact guaranteed not to occur with the usual dependence analysis algorithms. A
scheduler that only guarantees not to change the direction of any dependence will not
be good enough, since such a scheduler cannot guarantee that all dependence sources
are executed before their respective targets.

Actually the first two points here are but two sides of the same coin, considering the solvability
of imposed constraints, since they both come directly from ignoring the loop bounds (and thus
changing from integer spaces to rational ones). However, the first point considers the restrictions
that define the function’s domain within a free module (Qnsrc+nblob+2 or Z

nsrc+nblob+2, respec-
tively), and thus considers only the domain of that function. This is in contrast to the second
point, which states the necessity for the functional matrix of the mapping to ensure that any
vector of the free module Znsrc+nblob+2 is mapped to an element of Znsrc+nblob+2 (and never to
some β ∈ Q

nsrc+nblob+2 \ Z
nsrc+nblob+2), thus enabling the switch back to a module based on Z

instead of a vector space based on Q by just reintroducing loop bounds (i.e., domain restrictions).
We have to keep these compatibility issues in mind when pursuing an alternative way to obtain
representatives. Note that it also suffices to satisfy these compatibility issues in order to obtain
a 1-to-1 mapping from original occurrence instances to representatives. This means that for each
value computed in the original OIG we obtain a representative in the target COIG. On the other

3Note that, in contrast to the rational numbers, which form a topological space that is dense-in-itself, the
integers are nowhere dense within the rationals, so that any finitely bounded set of integers is a finite set, whereas
any finitely bounded set of rationals is still infinite.
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hand, the first two points also guarantee that our transformation does not introduce any additional
computations that are not part of the original code fragment. In other words, heeding all of the
above rules ensures the correctness of the transformation.

We will now first consider the case of a single polyhedron (rather than a union of polyhedra)
as a representation of a set of occurrence instances. This is the case of instances of a single
occurrence. We shall then go on to tackle the case of determining representatives for a union of
occurrence instance sets with possibly different occurrences. In both these cases, we will have to
consider the first two points above very closely. Section 3.6 is then devoted entirely to the last
point.

Equivalences on Instances of the same Occurrence

The idea is to create a piecewise linear function Ξ : OI → OI/≡(∆(s,f) ∪∆f , id) (with

OI/≡(∆(s,f) ∪∆f , id) ⊆ Znsrc+nblob+2 being the set of representatives) that is defined by a union

of linear functions Ξ =
⋃

i∈{1,...,nΞ}

Ξi. A linear function Ξi maps two vectors α and β to the

same output vector, γ = Ξi(α) = Ξi(β) iff it maps the difference between α and β to 0, i.e., iff
α− β ∈ ker(Ξi). Correspondingly, α and β are equivalent wrt. ≡(∆(s,f) ∪∆f , id) iff their difference

is equivalent to 0 (α≡(∆(s,f) ∪∆f , id) β ⇔ 0≡(∆(s,f) ∪∆f , id) β − α). All in all, this means that

the representative mapping Ξ just has to be constructed from linear mappings whose kernels are
exactly the sets that are ≡(∆(s,f) ∪∆f , id)-equivalent to 0, i.e.,

⋃

i∈{1,...,nΞ}

ker(Ξi)=
{

α α≡(∆(s,f) ∪∆f , id) 0
}

(3.2)

We now aim at producing a single one of these linear functions Ξi above, namely one that
deals with the simplest of possible equivalences: the equivalence of occurrence instances of the
same occurrence. Let us call our prototype Ξ=. Restrictions regarding the part of the index space
in which Ξ= is to be valid are not of our concern at the moment, neither are we interested in the
image of Ξ=. Therefore, we assume the prototype

Ξ= : Q
nsrc+nblob+2 → Q

nsrc+nblob+2 : α 7→ MΞ= · α (3.3)

for now. Of course, Ξ= is not surjective, if it represents a non-trivial equivalence relation. Since we
are not concerned with index space restrictions, we can leave them out of an underlying equivalence
relation Λ ⊆ ≡(∆(s,f) ∪∆f , id). In the following, we will denote the equivalence relation without

index space restrictions by Λ= ⊇ Λ. Suppose

≡(∆(s,f) ∪∆f , id) =

{

(α, β) ∈ Z
2·(nsrc+nblob+2) MΛ,≥ ·

(
α
β

)

≥ 0∧MΛ= ·

(
α
β

)

= 0

}

(3.4)

We are now just interested in MΛ= . So, combining Equations (3.2) and (3.4), we seek a function
Ξ=, whose kernel is

ker(Ξ=) =

{

α MΛ= ·

(
α
0

)

= 0

}

(3.5)

The function matrix MΞ= can then be derived in part from

M :=
(
MΛ=[·, 1] . . . MΛ=[·, nsrc + nblob + 2]

)

Let B be the matrix whose columns consist of base vectors of the kernel of M , ker(M). And let B ′

be the matrix whose columns consist of base vectors of the complement of ker(M) in Q
nsrc+nblob+2,

ker(M)
C

(i.e., Span(B) = ker(M), Span(B′) = ker(M)
C

). The one condition that MΞ= has to

satisfy up to now is MΞ= · α = 0 ⇔ M ·

(
α
0

)

= 0. This is the case iff MΞ= · B = 0 and
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MΞ= · B′ 6= 0, which holds iff MΞ= is a solution to

BT ·MΞ=

T = 0 (3.6)

and for all i ∈ {1, . . . , nsrc + nblob + 2 − rk(M)} :

(B ′T ·MΞ=

T )[·, i] = B′T ·MΞ=

T · ιi = B′T · (ιTi ·MΞ=)T 6= 0 (3.7)

Example 3.21 The code of Example 3.18

DO i1=1,4

DO i2=1,6

B(i2,i1)=A(i1+i2)**3

END DO

END DO

contains the expression A(i1+i2)**3 whose equivalence classes are sketched in Figure 3.5. With
the notation as above, the equivalence ≡ of the corresponding occurrence instances is defined by
the following system of (in)equalities:

i1 − 1 ≥ 0 (3.8)

−i1 + 4 ≥ 0 (3.9)

i2 − 1 ≥ 0 (3.10)

− i2 + 6 ≥ 0 (3.11)

i ′1 − 1 ≥ 0 (3.12)

− i ′1 + 4 ≥ 0 (3.13)

i ′2 − 1 ≥ 0 (3.14)

− i ′2 + 6 ≥ 0 (3.15)

and

occ − 3 = 0 (3.16)

op = 0 (3.17)

occ′ − 3 = 0 (3.18)

op′ = 0 (3.19)

i1 + i2 − i ′1 − i ′2 = 0 (3.20)

mc −m′
c = 0 (3.21)

which in turn is expressed by the matrices MΛ,≥, representing inequations (3.8) to (3.15), and
MΛ= , representing Equations (3.16) to (3.21):

MΛ,≥ =















1 0 0 0 −1 0 0 0 0 0
−1 0 0 0 4 0 0 0 0 0

0 1 0 0 −1 0 0 0 0 0
0 −1 0 0 6 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 −1 0 0 0 6
0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 −1 0 0 6
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MΛ= =











0 0 1 0 −3 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −3
0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 0 0 −1











Note that the last row of MΛ= is due to the fact that mc – the value 1 – does not change between
the potentially equivalent occurrence instances, and neither does any other parameter. Instead of
including this row, we could just have collapsed the parameter dimensions of the two index spaces
into a single interval of dimensions to obtain a 5×7 matrix for MΛ= , in this case (2·nsrc+nblob+2 =
7).4

The function matrix we want to produce only depends on the left part of MΛ= , leading to

M =











0 0 1 0 −3
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 1











A possible matrix B representing the kernel of M is then any matrix

B ∈ Q ·









−1
1
0
0
0









Since it is more convenient to stay within the integers, we choose B from Z
5×1 – and, for the

sake of simplicity, we just use
(
−1 1 0 0 0

)T
. For B′, we simply choose an appropriate

part of the unit matrix whose columns span Span(B)
C
. In addition, we decide arbitrarily that the

former unit vectors spanning Span(B)
C

as a subspace of Q
nsrc+nblob+2 shall also be mapped to unit

vectors in the target space by our new mapping Ξ=. We further deem arbitrarily the i-th index
vector to be mapped to the (i − 1)-st unit vector. We do so by using appropriate unit vectors for
the rows of N and B′T in B′T ·MΞ=

T = N . Thus, the conditions for MΞ= become:

(
−1 1 0 0 0

)
·MΞ=

T = 0 and







0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







·MΞ=

T =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

=:N

This is an inhomogenous linear equation system that is easily solved:









−1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









·MΞ=

T =









0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









⇔ MΞ= =







1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







4Note that, even with the reduced dimensionality, we still use all source indices here, not only the ones bound
by loops enclosing some given statement.



3.5. HOW TO CHOOSE REPRESENTATIVES 91

MΞ= above represents a possible function matrix for the mapping to representatives for the
exponentiation of Example 3.18. However, we are completely free to choose the matrix N in
Example 3.21, and this is not the only possible choice. In the following, we will take a closer look
at what traits might be desirable for matrix MΞ= and how to achieve this.

Original Loop Bounds We are now able to create an endomorphism on Qnsrc+nblob+2 that
maps exactly those occurrence instances to the same point in Q

nsrc+nblob+2 that represent the
same value wrt. ≡(∆(s,f) ∪∆f , id). Going back to the first point identified above on page 87, we

have to make sure that our mapping does not introduce occurrence instances that represent a
value that was never computed in the original program. The following slight modification of the
example above shows how something like this might happen.

Example 3.22 As in Example 3.21, we consider the computation A(i1+i2)**3, in which only
the value of A(i1 + i2) changes. However, A(i1 + i2) is only a one-dimensional expression, which
can be considered completely independent of one of the loops (either i1 or i2). We choose to view
this expression as independent of i2. This means the kernel of the representative mapping is the
complete i2-dimension, which may therefore be totally ignored in the output code. However, if
we replace one of the i2-bounds of Example 3.21 by a value that is not available at compile time,
ignoring this bound may lead to an unnecessary execution of exponentiation operations. Let us
assume that the following code fragment is to be processed:

DO i1=1,4

DO i2=1,n

B(i2,i1)=A(i1+i2)**3

END DO

END DO

Since the structure of the bounds does not affect the choice of a representative mapping, we
apply the same mapping as in Example 3.21, which defines the new loop bound j1 for the execution
of the exponentiation as j1 := i1+i2. The result is (depending on the scheduler etc.) code fragment
similar to the following one.

DO j1=2,n+4

TMP(j1)=A(j1)**3

END DO

DO j1=1,4

DO j2=1,n

B(j2,j1)=TMP(j1+j2)

END DO

END DO

For n = 0, the original program fragment does not define any iteration, while the created code
fragment still computes the set

{
A(j)3 j ∈ {2, . . . , 4}

}
– which is not even guaranteed to be well

defined, since it includes a potentially illegal access to array A. Of course, we would like to
avoid such a situation. On the other hand, if the original code fragment also contained another
computation of A(i1)

3, we would have expected a transformation of

DO i1=1,4

DO i2=1,n

B(i2,i1)=A(i1+i2)**3

END DO

C(i1)=A(n+i1)**3+A(i1)**3

END DO

into:
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DO j1=1,n+4

TMP(j1)=A(j1)**3

END DO

DO j1=1,4

DO j2=1,n

B(j2,j1)=TMP(j1+j2)

END DO

C(j1)=TMP(n+j1)+TMP(j1)

END DO

This means that, somehow, the original loop bounds still have to be observed. The original
loops that introduce these bounds just do not need to be executed for the complete index space they
span, but for at most a single iteration of the computation statements in their body.

j2

i1 j1

i2

Figure 3.8: Original and transformed index space of A(i1+i2)**3 in Example 3.22 for n = 6.

Figure 3.8 depicts the transformation of the index space of A(i1+i2)**3 in this example,
for n = 6. However, here the dimension along which occurrence instances are equivalent is not
removed but instead used for the j2-dimension of the new coordinate system. As a result, it
features the dotted lines indicating equivalent occurrence instances along its direction. This also
gives a hint of how to go about keeping the original index space: if we augment our representative
mapping Ξ= to a complete base transformation, we obtain a loop nest that enumerates the same
(original) occurrence instances using standard techniques [CF93, Len93, Xue93, Xue94, Wet95,
Xue96, QRW00]. This is essentially the same idea as applied to singular space-time mappings in
LooPo [Wet95, GLW98]. However, these dimensions represent a special case insofar as they do
not actually have to be enumerated – they just have to be checked as to whether there exists an
integer number between their respective lower and upper bound. This becomes even clearer if we
use yet another – slightly unconventional – pair of bounds for i2 in Example 3.21.

Example 3.23 The rational inequation

i1
3

≤ i2 ≤
i1 + 1

3
(3.22)

may or may not have an integer solution for i2 – in fact, enumerating i1 with a stride of 1 always
yields two integer solutions in succession, then no integer solution, then again two successive
solutions, and so on. To be more specific, an integer i2 solving Inequation (3.22) exists iff

⌈
i1
3

⌉
≤

⌊
i1+1

3

⌋

⇔
⌊
i1−1

3

⌋
+ 1 ≤

⌊
i1+1

3

⌋
(3.23)
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Since, for non-negative integers, the Fortran integer division is equal to the floor of the division,
a loop nest that executes its body for solutions of Inequation (3.22) in {1, . . . , 6} is given by

DO i1=1,6

DO i2=(i1-1)/3+1,(i1+1)/3

B(i2,i1)=A(i1+i2)**3+C(3)

END DO

END DO

The index space of A(i1+i2)**3 in this code fragment is depicted on the left hand side of Figure
3.9. The right hand side shows the same transformation as before: the j2-axis now represents
the enumeration of equivalent values, while the j1-axis is exactly the same as the i1-axis before.
Not checking for the existence

(
∃i2 : i2 ∈ Z : i1

3 ≤ i2 ≤ i1+1
3

)
now corresponds to enumerating the

complete orthogonal projection of that polyhedron onto the j1-axis – indicated by the fat section of
the axis. In particular, an occurrence instance with a j1-coordinate of 4 is executed in this case –
represented by the point with the dashed border in Figure 3.9. However, the original program does
not define any occurrence instances equivalent to this point: while the original program enumerates
4 occurrence instances, the transformed one executes 5. This is because the additional occurrence

instance,

(
4
11
2

)

, although not an integer vector, features only integers in the coordinates checked

by the loops in the transformed program (which do not check j2).

i1 j1

j2i2

Figure 3.9: Original and transformed index space of A(i1+i2)**3 in Example 3.23.

This set of examples shows that there still has to be a check of bounds of dimensions that
actually need not be enumerated in a transformed program. Otherwise occurrence instances not
executed by the original program may be executed by the transformed one. In order to do so, we
may need to store example values of solutions within these bounds in pseudo parameters. This
makes clear that the enumeration of pseudo parameters actually forms a third level of execution,
different from both indices and parameters. We now have

• parameters that have a given value from the start of the code fragment,

• indices that change their value during execution of the code fragment, and

• pseudo parameters that do not actually define iterations to be enumerated by the target
program, but represent restrictions on the target index space that have to hold to execute a
given program fragment.
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Pseudo Parameters Pseudo parameters are existentially quantified integer variables. They
can also be used to model families of dependence relations [Kei97]. Usually, pseudo parameters
represent a restriction of the index space that can be implemented by a simple check – an if-
statement that tests, whether the coordinates enumerated by an enclosing loop nest represent a
multiple of some given integer or belong to some half space that restrains the index space to be
enumerated. However, in general, pseudo parameters also have to be enumerated, as Example
3.23 shows: if we view the access C(3) in the program fragment, both dimensions, i1 and i2, are
irrelevant for the outcome of the lookup operation. However, as already shown, not every value
of i1 also leads to a solution for i2. Therefore, several different possible values for i1 have to be
enumerated in order to find a solution for i2. But as soon as such a solution has been found,
there is no reason to enumerate any other value of a pseudo parameter – as long as there is not
also a change in another dimension. So, pseudo parameters differ from parameters insofar as a
pseudo parameter is not bound to a value on execution of the considered program fragment, i.e.,
a solution for its value has to be found at run time, possibly by enumerating through possible
solutions with a loop. Pseudo parameters also differ from indices insofar as a pseudo parameter
does not need to be enumerated for the complete range of values it may take, but only until some
value is found that defines a non-empty polyhedron.

We have established that we will need a complete change of basis in order to represent our
transformation. The fact that some occurrence instances are equivalent is then represented by the
fact that these occurrence instances only differ in their coordinates of certain dimensions, namely
those dimensions that we have set aside as LCCP pseudo parameter dimensions. Projecting two
equivalent occurrence instances α and β with α≡(∆(s,f) ∪∆f , id) β onto dimensions that do not

correspond to LCCP pseudo parameters always results in the same points for both occurrence in-
stances, α and β. We have not introduced these pseudo parameters to the program, yet. However,
in Section 2.3, we already discussed pseudo parameters used to represent Z-polyhedra with holes
by higher-dimensional polyhedra without holes. We solved this by setting aside some pseudo pa-
rameter dimensions that were used to check whether a certain index is an integer multiple of some
stride. Assuming ndepth to be the maximum depth of loop nests in the program to be processed,
we only needed to assume the existence of ndepth such pseudo parameters. The same reasoning
holds for these new pseudo parameters we meet here: since each of these pseudo parameters is
only used as a replacement of an index of an embracing loop, we only need up to ndepth many.
And, again, this means that these parameters can be added to each input program artificially.
So, for each index in the deepest loop nest of the original program, we now have to introduce
one pseudo parameter to check whether there is an integer number between the lower and upper
bound of this index and one pseudo parameter to check, whether this solution is a multiple of
some stride. Therefore, from now on, we assume all these 2 · ndepth pseudo parameters to be
already among the nblob parameters of the input program. Since pseudo parameters represent a
combination of indices and parameters, they are represented by index space dimensions adjacent
to both index and parameter dimensions. We suppose that the pseudo parameters introduced
are the first 2 · ndepth parameters of the original program fragment and are thus represented by
dimensions nsrc +1 through nsrc +ndepth in the polyhedra in Z

nsrc+nblob+2 representing the input
program fragment.

In order to distinguish used pseudo parameters from unused ones, we will assume the initial
values of these pseudo parameters to be m∞ – just as with unbound indices. Thus, using the new
pseudo parameters, we are able to reconstruct the original loop bounds. Since pseudo parameters,
always represent integer values (just as indices and parameters), we also have to ascertain the rep-
resentative mapping to map back into its domain, i.e., to be defined by a piecewise endomorphism
on Z

nsrc+nblob+2. Let us now take a closer look at how to accomplish this.

Stay Within the Integers One reason for choosing a specific base may be the first important
property of our representative mapping that we reviewed on page 86: we need to map integer points
to integer points. The easiest way to do so is to use a unimodular transformation. Unimodular
transformations are linear mappings that guarantee the pre-image of any integer vector within
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its image to be an integer vector, too. These mappings can be characterized by their defining
matrix M : |det(M)| = 1 iff M is unimodular (and with it the function α 7→ M · α). Now, the
crucial question is: is it always possible to get a unimodular transformation? A transformation is
unimodular iff its inverse is unimodular, e.g., if we start with some subspace (the kernel ker(M)), we
have to find vectors ν1, . . . , νm ∈ Z

n that span this subspace and that can be expanded by integer
vectors νm+1, . . . , νn, so that the overall matrix

(
ν1 . . . νn

)
is unimodular. In the following

theorem, we consider some base vectors µ1, . . . , µm spanning the given subspace. Theorem 3.24
then tells us that it is not generally possible to find such vectors ν1, . . . , νn.

Theorem 3.24 Let µ1, . . . , µm ∈ Z
n (m ≤ n) be linearly independent integer vectors, M =

Span(µ1, . . . , µm).

1. It is not generally possible to find some ν1, . . . , νn ∈ Zn so that both Equation (3.24) and
Property (3.25) hold:

M = Span(ν1, . . . , νm) (3.24)

and
(
ν1 . . . νn

)
is unimodular (3.25)

2. If n = 2, there are always vectors ν1 and ν2 so that both Equation (3.24) and Property (3.25)
hold.

3. If µ1, . . . , µm do not share a common non-zero dimension, i.e.,
(
∀i, j : i 6= j ∈ {1, . . . ,m} :

(
∀k : k ∈ {1, . . . , n} : µi[k] 6= 0 ⇒ µj[k] = 0

))
, then there are

vectors ν1, . . . , νn ∈ Zn so that both Equation (3.24) and Property (3.25), hold.

Proof:

1. It suffices to consider the following counterexample: let µ1 =





2
0
1



 and µ2 =





0
2
1



. Let

ν1 = a·µ1+b·µ2 and ν2 = a′ ·µ1+b′·µ2. Let ν3 ∈ Z
n be some arbitrary integer vector that can

be adapted so as to make the matrix N =
(
ν1 ν2 ν3

)
=





2 · a 2 · a′ ν3[1]
2 · b 2 · b′ ν3[2]
a+ b a′ + b′ ν3[3]





unimodular. Let us now determine the determinant of N :

det(N) = (2 · a) · (2 · b′) · ν3[3]

+(a+ b) · (2 · a′) · ν3[2]

+(2 · b) · (a′ + b′) · ν3[1]

−(a+ b) · (2 · b′) · ν3[1]

−(2 · a) · (a′ + b′) · ν3[2]

−(2 · b) · (2 · a′) · ν3[3]

= 2 · (2 · a · b′ · ν3[3]

+(a+ b) · a′ · ν3[2]

+b · (a′ + b′) · ν3[1]

−(a+ b) · b′ · ν3[1]

−a · (a′ + b′) · ν3[2]

−2 · b · a′ · ν3[3])

This means, for any integer vector ν3, the determinant is always even. Thus, the matrix N
cannot be unimodular.
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2. In the case of n = 2, we can easily enumerate the different possibilities for m:

m = 0: We may choose whatever vectors we like. The trivial solution is ν1 = ι1 and ν2 = ι2.

m = 1: Let d = gcd(µ1[1], µ1[2]). Then we can safely set ν1 = µ1

d
, since µ1

d
∈ Z

2 and
Span(µ1) = Span(µ1

d
). Leaving ν2 undetermined for the moment, we have:

det
(
ν1 ν2

)
= det

(
µ1 [1]

d
ν2[1]

µ1 [2]
d

ν2[2]

)

=
µ1[1]

d
· ν2[2]−

µ1[2]

d
· ν1[1]

Corresponding values for ν2[1], ν2[2] solving

µ1[1]

d
· ν2[2]−

µ1[2]

d
· ν1[1] = 1

can then be found by a generalized Euclidean Algorithm. Since µ1 [1]
d

, µ1 [2]
d

are rela-
tively prime, a solution always exists.

m = 2: Again, the solution is ν1 = ι1 and ν2 = ι2, because we may choose both base vectors as
long as they span M = Q

2.

3. We now assume that

(
∀i, j : i 6= j ∈ {1, . . . ,m} :

(
∀k : k ∈ {1, . . . , n} : µi[k] 6= 0 ⇒ µj[k] = 0

))

Additionally, the vectors µi are cancelled, i.e., the coefficients of each vector are relatively
prime. We will now try to find integer vectors ν1, . . . , νm that span the same rational vector
space as µ1, . . . , µm and integer vectors νm+1, . . . , νn so that the matrix N is unimodular,
i.e., so that the absolute value of its determinant is 1, det(N) = ±1. Thus, matrix N is
roughly of the following from:

ν1 νm′ νm νm+1 νn

n






























6= 0 . . . 0 . . . 0 a1 . . . z1

0
...

...
...

...
...

... 0
...

...
...

... 6= 0
...

...
...

... 0
...

...
... 0

...
...

...
... 6= 0

...
...

...
... 0 0

...
...

0 . . . 0 . . . 6= 0 an . . . zn
























︸ ︷︷ ︸

m′

︸ ︷︷ ︸

m−m′

︸ ︷︷ ︸

m

︸ ︷︷ ︸

n−m
︸ ︷︷ ︸

n

The role of m′ above will become clear in a moment. First, let us recall how to obtain the
determinant of this matrix – which has to evaluate to 1 or −1. Following Laplace’s formula,
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we calculate the determinant by expansion along a column j:

det(N) =
(∑

i : i ∈ {1, . . . , n} : (−1)i+j · N [i, j] · det(Ni,j)
)

(3.26)

Here, Ni,j is the matrix obtained from N by omitting the i-th row and the j-th column.
Any vector of µ1, . . . , µm that contains only one non-zero entry can be replaced by the
corresponding unit vector, without changing the generated space. Therefore, if a vector
µi ∈ {µ1, . . . , µm} contains only a single non-zero entry µi[j] 6= 0, we will use a vector
νi = ιj in its place. This means that the absolute value of the determinant is the same
as with Ni,j , i.e., it stays constant if we ignore column i and the corresponding row j, for
which µi contains a non-zero entry. Let us now assume that, for some m′ < m, the vectors
µ1, . . . , µm′ , were exactly those vectors that contained only one non-zero entry each and
have been replaced by corresponding unit vectors ν1, . . . , νm′ . Since we supposed that no
two vectors of µ1, . . . , µm share a non-zero position, which in particular holds for µ1, . . . , µm′ ,
and since the matrix is square (i.e., there are at most n dimensions in which any vector of
µ1, . . . , µm′ may show a non-zero entry), there are only n−m′ possible dimensions left, in
which the other m −m′ vectors (µm′+1, . . . , µm) may feature non-zero entries. Since these
m−m′ vectors have at least two non-zero entries each, they have to exhibit 2·(m−m′) distinct
dimensions with non-zero entries overall. This leaves us with the fact that the number of
these at least 2 · (m −m′) non-zero dimensions cannot be greater than the number of the
n−m′ dimensions that are not already occupied by non-zero entries in vectors µ1, . . . , µm′ .
In other words, we have:

2 · (m−m′) ≤ n−m′ (3.27)

⇔

m−m′ ≤ n−m′ −m+m′

⇔

m−m′ ≤ n−m (3.28)

Inequation (3.28) tells us directly that, for each of the m−m′ vectors left that may exhibit
more than one non-zero entry, there is also at least one of the n−m vectors νm−n+1, . . . , νm

that we may choose ourselves.

In general, there may be more than 2 · (m−m′) non-zero dimensions covered by the vectors
µm−m′ , . . . , µm, say 2 · (m − m′) + x. But still, the number of all non-zero dimensions of
these vectors taken together has to be smaller than the n−m′ dimensions left over from the
vectors µ1, . . . , µm′ :

2 · (m−m′) + x ≤ n−m′ (3.29)

⇔

(m−m′) + x ≤ n−m′ − (m−m′) = n−m′ −m+m′

⇔

(m−m′) + x ≤ n−m (3.30)

In other words, for each of the x additional non-zero dimensions of one or more of the
vectors µm−m′ , . . . , µm, there is one of the n − m vectors in νm+1, . . . , νn that we may
choose for ourselves, plus there is also one of these freely choosable vectors for each µi from
µm−m′ , . . . , µm that may feature non-zero coordinates in at least two dimensions.

Let us assume we have simply copied the µi to the corresponding νi:

(
∀i : i ∈ {m−m′, . . . ,m} : νi := µi

)

We will now compute the determinant of N including the part of vectors featuring more than
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one non-zero coordinate. From the restriction defined in Inequation (3.30), we can deduce
that we may apply row and column permutations to our matrix N (which only influences
the sign, not the absolute value of the determinant) so that the resulting matrix has the
form




















1 0
. . .

0 1




 0

A1

. . .

0 Am−m′















where each Ai is a quadratic matrix containing the non-zero entries of vector µi in the
first column and possibly non-zero elements of vectors from νm+1, . . . , νn in the remaining
columns – Inequation (3.30) assures us that there are enough freely choosable vectors for
extending each µi to such a quadratic matrix. The determinant of the overall matrix now
evaluates to the product of the Ai. Therefore, we only have to prove that, given any of these
Ai, we can determine values for the matrix entries in the columns behind the first one so
that det(Ai) = ±1.

Suppose Ai has the form

Ai =






A[1, 1] . . . A[1, y]
...

...
A[y, 1] . . . A[y, y]






where y is the number of non-zero entries in the vector µi. We may then choose all values
A[k, j] freely, for which j ≥ 2. Only the values A[k, 1] are given (and all are integer).
With appropriate unimodular row transformations, we can even assert that, for all k, we
have A[k, 1] > 0. We can then transform Ai using unimodular transformations so that the
resulting matrix has the form:








1 (
∑
k : k ∈ {1, . . . , y} : c1,k · A[k, 2]) . . . (

∑
k : k ∈ {1, . . . , y} : c1,k · A[k, y])

0 (
∑
k : k ∈ {1, . . . , y} : c2,k · A[k, 2]) . . . (

∑
k : k ∈ {1, . . . , y} : c2,k · A[k, y])

...
...

...
0 (

∑
k : k ∈ {1, . . . , y} : cy,k · A[k, 2]) . . . (

∑
k : k ∈ {1, . . . , y} : cy,k · A[k, y])








The procedure here is again a kind of generalized Euclidean algorithm: we always pick two
rows k1 and k2 in turn and subtract the row with the greater entry in the first column
from the other one until we reach the greatest common divisor of the corresponding entries
A[k1, 1] and A[k2, 1] in the first column (this is an unimodular transformation). The result
– possibly after row permutation – is a matrix whose only non-zero entry in the first column
is the gcd of the original column entries. In our case, this is 1, because we assume the µi to
be cancelled, and their non-zero entries are therefore relatively prime.



3.5. HOW TO CHOOSE REPRESENTATIVES 99

For each column j, we now create the following system of linear equations:

(
∑
k : k ∈ {1, . . . , y} : c1,k · A[k, j]) = 0

...

(
∑
k : k ∈ {1, . . . , y} : cj−1,k · A[k, j]) = 0

(
∑
k : k ∈ {1, . . . , y} : cj,k · A[k, j]) = 1 (3.31)

(
∑
k : k ∈ {1, . . . , y} : cj+1,k · A[k, j]) = 0

...

(
∑
k : k ∈ {1, . . . , y} : cy,k · A[k, j]) = 0

with the given values c·,k and variables A[k, j]. A solution to these equations yields a
determinant of 1 for the submatrix Ai, because with such a solution we have shown that
Ai can be transformed to a unit matrix using unimodular transformations. These equation
systems (one for each value of j) are all solvable, because they all consist of y equations
with y variables. Therefore, the determinant of N , as the product of the determinants of
the submatrices Ai (aside from the sign due to row and column permutations) evaluates to
1. We have thus devised a way to create a unimodular matrix N .

X

So, it is not in general possible to create a unimodular representative mapping. However, the
third point of Theorem 3.24 asserts that such a mapping can be created if ker(M) can be spanned
by integer vectors that do not share any non-zero dimension. The proof of this fact also sketches
a way to create a corresponding matrix. Since applying non-unimodular matrices to a polyhedron
results in holes in the transformed polyhedron, which may be more difficult to enumerate, it is a
valid decision to restrict oneself to this simpler case. A secondary effect is that, if only vectors
that do not share any non-zero dimension build the subspace of equivalent occurrence instances,
the dimensions in the resulting polyhedron are less likely to depend on each other. This in turn
means that the loops enumerating these dimensions in which only one integer solution has to be
found may be simplified.5 However, we will not restrict ourselves to this special case and instead
take the risk of choosing a non-unimodular transformation. Therefore, we have to find some other
way so that the image of our mapping is still contained in Znsrc+nblob+2. We will now pursue this
goal for arbitrary integer matrices.

Scaling the index space A way to circumvent this problem – at the price of creating holes in
the space to be enumerated – consists of scaling the index space so that the points to be enumerated
– viewed as integer points embedded in a rational space – also lie on integer coordinates in the
transformed space. This approach is illustrated in the following example.

Example 3.25 Figure 3.10 shows the occurrence instances of A(2*i1+3*i2) in the following
code fragment:

DO i1=1,4

DO i2=1,6

B(i2,i1)=A(2*i1+3*i2)+C(i2,i1)

END DO

END DO

Equivalent occurrence instances are, again, connected by dotted lines. The occurrence instances
equivalent to A(20) are marked by fat circles. On the right hand side, all occurrence instances are
replaced by occurrence instances representing their respective equivalence classes, varying only in

5In such cases, we may be able to replace a for-loop by an if-statement.
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a single dimension. In the upper part, we chose the i2-dimension as variable while, in the lower
part, the i1-dimension is used. I.e., the right hand side of Figure 3.10 corresponds to a projection
along the direction in which reuse happens (along the dotted lines) onto either one of the original
index space dimensions. Note that we have already established that we will not use a projection in
this case, but instead a base transformation that asserts that reuse occurs along a well defined base
vector – which we just ignore in this representation. It turns out that, no matter which dimension
we choose to keep, we always get both integer points (large circles), and non-integer points (small
circles) that have to be enumerated in order to represent all the different equivalence classes (if we
keep the i1-dimension, we have to enumerate multiples of 1

2 , while keeping the i2-dimension leads
to multiples of 1

3 ).
Note that we have already shown in Theorem 3.24 that, in a two-dimensional space, it is always
possible to find a unimodular mapping that asserts that the resulting points to enumerate are all

integer – in this case, a projecting onto

(
1

−1

)

yields the desired result. However, since it is not

generally possible to find a unimodular mapping (which is also stated by Theorem 3.24), we choose
to ignore this fact for the sake of the argument. Figure 3.11 shows another solution: if we scale the
original polyhedron by a factor of 2, we can retain the i1-dimension while the resulting projection,
shown on the right of Figure 3.11 only enumerates integer values. However, this comes at the price
of holes in the polyhedron, which have to be modelled by pseudo parameters, as described above.

i1

i2

i2

i1

Figure 3.10: Choosing a unique representative for the read access A(2*i1+3*i2) by change of
basis and projection onto either i1 or i2 in Example 3.25.

The need for the scaling in Example 3.25 emerges from the inversion of a matrix Mbase

(defining the new base of the index space) that is done in order to compute a base transfor-
mation from the base represented by the columns of Mbase: although the matrix itself is inte-
ger, its inverse does not have to be. Let us suppose that we have such a non-singular matrix
Mbase ∈ Z(nsrc+nblob+2)×(nsrc+nblob+2). Inverting Mbase is finding a solution X to the equation

Mbase ·X = Insrc+nblob+2,nsrc+nblob+2

We can bring this matrix into echelon form by determining the least common multiple m =
lcm(Mbase[·, c]) of the rows in each column c in turn. Picking one row r with a non-zero entry in
column c, we add that row m

Mbase[r,c]
times to each other row i, multiplied by − m

Mbase[i,c]
, leaving

only row r with a non-zero entry in column c of the resulting matrix. After iterating through all
columns, the matrix is in echelon form, up to a row permutation. Having the matrix – that we
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j2

j1

i2

i1 j1

Figure 3.11: Original index space of A(2*i1+3*i2) in Example 3.25 (left), the index space scaled
by 2 (right), and (below) the projection onto the first dimension, relabelled j1 to indicate the
change of basis.

now call Mbase
′ – in echelon form, we can solve for X by solving column by column (for column

d) the equation system
Mbase

′ · X[·, d] = ιd

Without loss of generality, we assume that no row permutation was necessary in order to arrive at
an echelon form. Viewing our single row r in column c, again, the result for X[c, d] is computed
from the equation

Mbase[r, c] · X[c, d] = ιd[c]− (
∑
i : i ∈ {r + 1, . . . , nsrc + nblob + 2} : Mbase[r, i] · X[i, d])

In other words, the integer on the right hand side is divided by Mbase[r, c] – a common denom-
inator for the complete row r of matrix X . Therefore, multiplying by the product of coefficients
that can be chosen as leading coefficients in a row of Mbase

′ always leaves an integer matrix.

So, let us assume some given vectors κ1, . . . , κn that have to span one part of our transformed
index space (because, in the program, reuse occurs along their directions). I.e., Mbase consists in
part of the column vectors κi. For each of these vectors, we choose a dimension ri to obtain a
scaling factor. In this case, the scaling factor introduced by κ1, . . . , κn evaluates to

∏n
i=1 κi[ri].

The vectors for the other part we may choose ourselves. We cannot do anything about the resulting
matrix being non-unimodular, so a first idea is to just use simple vectors – such as unit vectors.
This will also reduce the scaling factor s we have to apply, since we will have to pick these unit
vectors for the calculation of s in an appropriate row of the matrix Mbase, and there is no smaller
non-trivial integer factor than the 1 found in a unit vector (in terms of its absolute value). Thus,
we have already reduced the possible maximum size of the holes generated by our technique. This
is far from optimal (as we have already seen for the case of a two-dimensional index space) but it
may reduce overhead in real applications. With just a little more work, we can reduce this factor
even further, as the next example shows.



102 CHAPTER 3. LOOP-CARRIED CODE PLACEMENT

Example 3.26 Example 3.25 introduced an array access A(2*i1+3*i2). The instances of this

array access represent values that are reused along the vector

(
3

−2

)

. If we want to exploit this

reuse by merging all occurrence instances along this vector into one occurrence instance, we first
need to scale the original occurrence instance set so that we can restrict ourselves to the integer
points in the target space of the transformation to describe the same array accesses as in the original
program. Of course, the scaling factor we have to apply here may depend on the vectors we choose

in addition to

(
3

−2

)

as a new basis for Q
2. However, we have restricted ourselves to selecting

unit vectors for this task, which leaves us with a choice of ι1 and ι2. In the previous example,

we arrived at a scaling factor of 2 using ι1 and thus a transformation matrix

(
1 3
0 −2

)−1

· 2.

The other possibility using unit vectors is

(
0 3
1 −2

)−1

· 3 with its scaling factor of 3. Both of

these possibilities are depicted in Figure 3.12: a scaling factor of 3 leads to integer values on the
i2-axis, while a factor of 2 leads to integer values on the i1-axis. The minimal scaling factor 1,

however, is only reached if we use integer multiples of the non-unit vector

(
1

−1

)

, leading to

(
1 3

−1 −2

)−1

.

Example 3.26 shows that the decision to restrict ourselves to unit vectors may prevent us from
selecting a base that would lead to an optimal scaling factor. As the next example shows, this
may even lead to quite huge factors in general.

Example 3.27 Let us just look at some general subspaces for a moment, without considering
particular program fragments. Another example where our approach may lead to several different

possible scaling factors is the – quite arbitrary – subspace spanned by the vectors









15
10
6
0
0









,









2
0
5
3
0









,

and









7
0
0

15
3









. Assuming that we do not have to do any row permutation, the algorithm we will

use later (Algorithm 3.5.4) completes this basis to a transformation matrix









15 2 7 1 0
10 0 0 0 1
6 5 0 0 0
0 3 15 0 0
0 0 3 0 0









−1

leading to a scaling factor of 6 · 3 · 3 = 54, whereas a different possibility for choosing unit vectors
to complete the matrix is









15 2 7 0 0
10 0 0 1 0
6 5 0 0 0
0 3 15 0 0
0 0 3 0 1









−1

which would lead in our algorithm to a scaling factor of 5 · 152 = 1125 (although, as should be
mentioned, in this case a factor of 1071 also suffices to finally obtain an integer matrix).
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i1

i2

i1

i2

Figure 3.12: Scaled index spaces of A(2*i1+3*i2) from Example 3.25 with equivalent occurrence
instances marked. Left: scaled by 3. Right: scaled by 2.

Example 3.26 and Example 3.27 illustrate that an intelligent choice of unit vectors may reduce
the scaling factor. For example, we could reserve a dimension ri for each vector κi so that

1. only κi and no other κj (j 6= i) has a non-zero coordinate in dimension ri and

2. among these dimensions that are only non-zero in κi, |κi[ri]| is minimal.

Then we use only unit vectors of not already reserved dimensions in order to extend M =
(
κ1 . . . κn

)
to a full rank matrix. This can be easily achieved: we can find dimensions

satisfying the first point by bringing the columns of M into echelon form (we may change M as
long as we do not change Span(M)), and among these it is easy to select a dimension with minimal
coordinate value in a vector. Although this procedure does not guarantee minimal scaling factors,
it is is quite effective, as Example 3.27 demonstrates.

We have now devised a way to obtain a function which maps several distinct but equivalent
instances of the same occurrence to new occurrence instances that only differ from each other in
certain reserved dimensions – conversely, occurrence instances that only differ in these reserved
dimensions are equivalent. Projecting out the reserved dimensions from the resulting occurrence
instance sets then produces occurrence instances that represent the equivalence classes of the
original ones. However, this only holds for instances of the same occurrence. We will now tackle
equivalences between different sets of occurrence instances.

Going Multi-Occurrence

In order to merge instances of different occurrences, it is necessary to create a representative
mapping that maps them to the same representative. Suppose two occurrence instance sets O1

and O2. Suppose further that we have already established equivalences within O2, which are
represented by a function Ξ′

2 : O2 → Z
nsrc+nblob+2, i.e., two equivalent occurrence instances are

mapped to the same coordinates in Z
nsrc+nblob+2 – aside from the coordinates in LCCP pseudo

parameter dimensions. Correspondingly, there may be a mapping Ξ′
1 : O1 → Znsrc+nblob+2.

However, both mappings will map to different occurrence numbers, i.e., we may have the case
that im(Ξ′

1)∩ im(Ξ′
2) = ∅. Instead, we aim at two mappings, Ξ1 : O1 → Z

nsrc+nblob+2 and
Ξ2 : O2 → Znsrc+nblob+2, whose images at least overlap. The strategy is here simply to produce
Ξ1 from Ξ2 – which, in turn, we define directly by Ξ′

2, i.e., Ξ2 := Ξ′
2. Suppose an equivalence
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relation Λ1,2 ⊆ O1×O2 between O1 and O2. As before (for Ξ1,Ξ2), this relation can be represented
by a function Ξ1,2. Then we only have to create a mapping from the composition of these relations
in order to create the representative mapping for O1: Ξ1 := Ξ2 ◦Ξ1,2. The common representative
mapping for O1 and O2 is then Ξ1 ∪Ξ2. It is not even necessary that im(Ξ1,2) ⊆ O2, as hinted in
the above description: since Ξ′

2 is based on the equivalences in O2, ignoring domain restrictions, it
will map equivalent occurrence instances that exceed the boundaries of O2 to the same points as
occurrence instances that actually belong to O2. The only important point here is that equivalent
occurrence instances of both sets, O1 and O2, are mapped in the same way, i.e., there has to be
a decision for a final set of occurrence instances that is good for representing both O1 and O2.
Using an adjacency matrix for the relation between these sets with the exact relations occupying
the elements of the matrix, these representative mappings can be determined by first creating
a representative mapping that takes the equivalences within each set itself into account, i.e., the
entries on the diagonal of the adjacency matrix, and then calculating compositions of this mapping
with all relations in the same row of the matrix.

When all sets of occurrence instances have associated functions that map their elements to
possible representatives, we only have to choose these mappings so that equivalent occurrence
instances are mapped to the same point (up to projection onto index dimensions). It suffices to
sort all possible representative mappings for a set of occurrence instances Oi in the same way
for all the Oj , j 6= i. “In the same way”, here means “according to the last function applied”,
i.e., the function Ξj on the diagonal element of the adjacency matrix that was applied to obtain
the current representative mapping (since using the same mapping here implies equivalent result
values). Then we go through this sorted sequence in turn and use the corresponding mapping
in its complete domain, (aside from the already considered parts) until the union of all mapping
domains covers the occurrence instance set Oi to be represented.

A possible sorting criterion is the rank of the projection of Ξj onto the index dimensions: the
larger the rank, the more different occurrence instance dimensions lie in its image. Note that the
ranks of the functions on the diagonal define a bound on how many dimensions may be omitted
for a given computation, since these ranks are by definition minimal. If we prefer functions with
higher rank, we represent an occurrence instance by a more general expression – for example, we
may express A(2) by A(i). One may also choose the opposite approach and identify each tiny
bit of the index space that may be computed in a nest with lower dimensionality than the other
occurrence instances as an individual special case. We will assume the first strategy, since this
approach tends to lead to simpler code. If the ranks are equal, we sort for the occurrence number.
This is completely arbitrary, but it guarantees a unique choice.

Example 3.28 In the following example code, the accesses A(2) and A(i) – and thus the terms
A(2)**2 and A(i)**2 – can be equivalent; however, this equivalence only holds for i = 2:

DO i=0,10

! [11] [10] [1] [3] [2] [7] [4] [6] [5]

B(i) = A(2) ** 2 + A(i) ** 2

END DO

The loop nest above contains the number of each occurrence in the comment above the corresponding
piece of code. Interesting for us are the occurrences number 3 and 6, because they represent the
possibly equivalent exponentiations.

The equivalences of Example 3.28 can be represented in an adjacency matrix like the following:
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O1 ≡ O2 O1 =

8

<

:

0

@

i

3
∞

1

A 0 ≤ i ≤ 10

9

=

;

O2 =

8

<

:

0

@

i

6
∞

1

A 0 ≤ i ≤ 10

9

=

;

O1

Λ1,1 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

3
∞

i′

3
∞

1

C

C

C

C

C

C

A

i, i′ ∈ Z

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

∩

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

3
∞

i′

3
∞

1

C

C

C

C

C

C

A

0 ≤ i, i′ ≤ 10

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Λ1,2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

3
∞

2
6
∞

1

C

C

C

C

C

C

A

i ∈ Z

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

∩

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

3
∞

2
6
∞

1

C

C

C

C

C

C

A

0 ≤ i ≤ 10

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

O2

Λ2,1 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

2
6
∞

i′

3
∞

1

C

C

C

C

C

C

A

i′ ∈ Z

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

∩

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

2
6
∞

i′

3
∞

1

C

C

C

C

C

C

A

i = 2∧ 0 ≤ i′ ≤ 10

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Λ2,2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

6
∞

i

6
∞

1

C

C

C

C

C

C

A

i ∈ Z

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

∩

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

6
∞

i

6
∞

1

C

C

C

C

C

C

A

0 ≤ i ≤ 10

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

The vectors in the adjacency matrix here only present the interesting dimensions:

1. The loop index i .

2. The occurrence number.

3. The pseudo parameter nLCCP for the dimension that replaces i .

The diagonal elements of the adjacency matrix hold relations with constant occurrence num-
ber. In the case of O1, all elements of the complete index space are equivalent. For O2, occurrence
instances are only equivalent if their coordinate in the i-dimension is the same (i = i ′) (i.e., an
occurrence instance is equivalent only to itself). Furthermore, all elements of O1 are equivalent to
the single elements of O1 that is enumerated by the i-iteration 2 (i.e., i ′ = 2) and, correspondingly,
this element of O1 is equivalent to all elements of O2. The diagonal relations can then be replaced
by functions as follows:
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O1 ≡ O2 O1 =

8

<

:

0

@

i

3
∞

1

A 0 ≤ i ≤ 10

9

=

;

O2 =

8

<

:

0

@

i

6
∞

1

A 0 ≤ i ≤ 10

9

=

;

O1 Ξ1 : O1 → Z3 :

0

@

i

3
∞

1

A 7→

0

@

∞

3
i

1

A

Λ1,2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

3
∞

2
6
∞

1

C

C

C

C

C

C

A

i ∈ Z

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

∩

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

i

3
∞

2
6
∞

1

C

C

C

C

C

C

A

0 ≤ i ≤ 10

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

O2

Λ2,1 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

2
6
∞

i′

3
∞

1

C

C

C

C

C

C

A

i′ ∈ Z

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

∩

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

B

B

B

B

B

B

@

2
6
∞

i′

3
∞

1

C

C

C

C

C

C

A

i = 2∧ 0 ≤ i′ ≤ 10

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Ξ2 : O2 → Z3 : α 7→ α

Note that there is no reason to leave the occurrence numbers in im(Ξi) at the same value as
in the pre-image. The important point here is that, while Ξ1 exchanges the loop dimension with
the pseudo parameter dimension, Ξ2 leaves these dimensions just as they were. This expresses
the equivalence of all elements in O1 (whereas there is no equivalence between distinct elements
of O2). We can now create actual representative mappings by calculating the composition of the
mappings in the diagonal element with the relations in the corresponding row of the adjacency
matrix. Representing these relations by a pair of functions (ΞL,ΞR), as in Section 2.4.2, we may
represent this relation as Ξg

R ◦ΞL with an arbitrary generalized inverse Ξg
R, as we have established

above (since all points obtained by any such mapping are equivalent and thus result in the same
point when projecting onto the first two dimensions – ignoring the nLCCP-dimension); with the
same reasoning, the domain of Ξ2 is irrelevant in the composition. We decide for Ξg0

R , which uses
the coordinate 0 for a dimension that may be chosen freely. This results in the following adjacency
matrix:

O1 ≡ O2 O1 =

8

<

:

0

@

i

3
∞

1

A 0 ≤ i ≤ 10

9

=

;

O2 =

8

<

:

0

@

i

6
∞

1

A 0 ≤ i ≤ 10

9

=

;

O1 Ξ1 : O1 → Z3 :

0

@

i

3
∞

1

A 7→

0

@

∞

3
i

1

A

Ξ1,2 : O1 → Z3 :
0

@

i

3
∞

1

A 7→

0

@

2
6
∞

1

A

O2

Ξ2,1 :

8

<

:

0

@

2
6
∞

1

A

9

=

;

→ Z3 :

0

@

2
6
∞

1

A 7→

0

@

∞

3
0

1

A

Ξ2 : O2 → Z3 : α 7→ α
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Note that the choice of 0 as last coordinate in the target of Ξ2,1 is arbitrary: this coordinate
can be chosen at will due to the fact there is an equivalence relation between instance i = 2 of
Occurrence 6 and all instances of occurrence 3. Following the definition of Ξg0

R , we choose coordi-
nate 0. As discussed above, the sorting step yields sequences of the following form:

O1 Ξ1,2 : O1 → Z3 :

0

@

i

3
∞

1

A 7→

0

@

2
6
∞

1

A Ξ1 : O1 → Z3 :

0

@

i

3
∞

1

A 7→

0

@

∞

3
i

1

A

O2
Ξ2 : O2 → Z3 : α 7→ α

Ξ2,1 :

8

<

:

0

@

2
6
∞

1

A

9

=

;

→ Z3 :

0

@

i

6
∞

1

A 7→

0

@

∞

3
0

1

A

Note that Ξ2,1 is only defined for i = 2. Since Ξ2 is the mapping with the higher rank, it
defines the preferred representative mapping. The representatives of both sets are thus:











i
6
∞



 0 ≤ i ≤ 10






∪











2
6
∞










=











i
6
∞



 0 ≤ i ≤ 10







There is just one further point to be observed. With the change of basis, we have just ex-
changed dimensions. However, the unique representative of an occurrence instance is given by a
subsequent projection that simply removes the dimensions nLCCP through nLCCP +ndepth. Thus,
all occurrence instances that only differ in the coordinates of dimensions nLCCP to nLCCP +ndepth

are finally mapped to the same point and thus identified with a single unique representative. This
is implemented by the function PrepareRepMap that we have encountered during the discussion of
Algorithm 3.4.1 in Section 3.4. It removes the last dimensions in which representatives may have
differed to produce a unique representative. In Algorithm 3.4.1 this is necessary in order to be
able to decide that two occurrence instances α and α′, α 6= α′, reading from different, but equiva-
lent, occurrence instances β 6= β′, (β, β′) ∈ ≡(∆(s,f), ∆i), are actually equivalent: PrepareRepMap

produces a representative mapping Ξ so that Ξ(β) = Ξ(β ′), and the equivalence of α with α′ can
be followed.

We have now sketched a way to find representatives using a change of basis. The next section
is devoted to a more detailed discussion of the actual algorithms implementing this method.

3.5.3 The Algorithms for the Change of Basis

The basic procedure for selecting representatives is now clear. For the following detailed discussion,
we will proceed in the reverse order of Section 3.5.2 and start with an algorihm that can be plugged
into Algorithm 3.4.1 on page 82 and work from there towards a more precise description of the
selection process.

For the sake of a clean representation, we use the (trivial) algorithm CreateIDAliases (Algo-
rithm 3.5.1) to create an enumeration of sets of occurrence instances. The point here is just to
have some enumeration of occurrence instance sets. Which algorithm to use is of no importance
to the method itself. Algorithm 3.5.1 (CreateIDAliases) implements a mapping that represents an
enumeration of all the sets of occurrence instances (defined by unions of polyhedra) that make up
the original loop program to be processed by sorting according to occurrence number.
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Algorithm 3.5.1 [CreateIDAliases]:
Input:
O ⊆ Z : finite set of not necessarily contiguous integer numbers.
Output:
F : {1 , . . . ,# (O)} → O :

strictly monotonous enumeration of O.

Procedure:
workset := O;

i := 1;
while workset 6= ∅

o := min(workset);
F[i] := o;
workset := workset \ {o};
i := i+ 1;

endwhile

return F;

This enumeration is used for an adjacency matrix in Algorithm 3.5.2
(CreateRepresentativeMappings ). The algorithm uses ReduceImageDimension (Algorithm 3.5.4)
to create a linear function Ξ :

{
α ∈ Znsrc+nblob+2 OccId(α) = o∧ OpId(α) = 0

}
→ Znsrc+nblob+2

that maps two instances of occurrence o to new occurrence instances differing only in their coor-
dinates in the reserved dimensions nLCCP, . . . , nLCCP + ndepth − 1 iff they are deemed equivalent
by the input equivalence relation ≡(∆(s,f) ∪∆f , id). Applying Ξ to the index space of o creates,

in principle, a new polyhedron with minimal dimensionality. I.e., if the (projection of the) new
polyhedron covers more than a single point in some given dimension, then this polyhedron defines
several different values (wrt. the Herbrand universe).

Algorithm 3.5.2 composes polyhedra in Z
n.6 For the sake of clarity, we do not go into

the details of how to compute these relations. Instead, we refer to the literature [KMP+96b,
Sch86]. Note that, due to the restriction to the integer numbers as the underlying ring of

Z
(nsrc+nblob+2)×(nsrc+nblob+2), the description for the resulting set may include the requirement

that this newly defined set is not only a polyhedron, but a Z-polyhedron; i.e., the relation may
only be expressible as an intersection with an integer lattice – which can be represented by addi-
tional constraints in existentially quantified variables (called exist variables in Omega [Pug93] and
pseudo parameters in LooPo [Kei97]) that can be used to express the fact that a certain linear
combination of indices and parameters should be a multiple of some given integer. The need for
these parameters arises independently of those needed for the LCCP transformation itself (see
page 94 in Section 3.5.2). Note, however, that the number of these additional parameters is
always bounded by the number of indices of the deepest loop nest in the original program. There-
fore, we can add these parameters already at the beginning of the program analysis and view
them as a part of the nblob parameters of the program. Since, furthermore, we never need more
index dimensions in any target program than in the input program in order to express the same
calculations, we can always stay within Z

nsrc+nblob+2. In addition, we suppose that the functions
dom and im are defined not only for functions, but for general relations:

6Note that the polyhedra used here are special cases in that they have distinct source and target dimensions.
Source and target dimensions are only related by equations, while inequations only hold among source dimensions
or among target dimensions.
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dom : P(Zr×s) → P(Zr×s) :

R =

{(
α
β

)

∈ Z
r+s M= ·

(
α
β

)

= 0∧M≥ ·

(
α
β

)

≥ 0

}

→

{
α ∈ Zr

(
∃β : β ∈ Zs : (α, β) ∈ R

)}

im : P(Zr×s) → P(Zr×s) :

R =

{(
α
β

)

∈ Z
r+s M= ·

(
α
β

)

= 0∧M≥ ·

(
α
β

)

≥ 0

}

→

{
β ∈ Zs

(
∃α : α ∈ Zr : (α, β) ∈ R

)}

We can now formulate the Algorithm 3.5.2 (CreateRepresentativeMappings), which determines
the representation of a set of occurrence instances.

Algorithm 3.5.2 [CreateRepresentativeMappings]:
Input:
O : set of occurrence instances – one level as produced by GroupOccurrenceInstances (Al-

gorithm 3.2.1).

Λ : equivalence relation on O defined as a union of polyhedra Λ =
⋃

i∈{1,...,n}

(Λi,= ∩Λi,≥) with Λi,= =

{

(α, β) ∈ O × O MΛi,= ·

(
α
β

)

= 0

}

and

Λi,≥ =

{

(α, β) ∈ O × O MΛi,≥
·

(
α
β

)

≥ 0

}

. Each Λi only holds between in-

stances of a single input and a single output occurrence.
Output:
Ξ : piecewise linear mapping Ξ =

⋃

i∈{1,...,nΞ}

Ξi, Ξi : Oi ⊆ Z
nsrc+nblob+2 → O′

i ⊆

Z
nsrc+nblob+2,

⋃

i∈{1,...,nΞ}

O′
i = O mapping each occurrence instance of O to its repre-

sentative wrt. equivalence relation Λ.

Procedure:
Occs := OccId(O);
/* Create a hash function for an adjacency matrix */

Hash := CreateIDAliases(Occs);
/* Create an adjacency matrix representing the equivalence relation */

/* The adjacency matrix is a two-dimensional matrix with each element representing */

/* the relation between the instances of the corresponding occurrences */

/* as an array of polyhedra. */

/* STEP 1: initialization */

for i = 1 to # (Occs)
for j = 1 to # (Occs)

AdjMatrix[i , j] := ∅;
endfor

endfor

for i = 1 to n
AdjMatrix[Hash(OccId(dom(Λi))),Hash(OccId(im(Λi)))] :=

append(AdjMatrix[Hash(OccId(dom(Λi))),Hash(OccId(im(Λi)))],Λi);
endfor

/* STEP 2: dimension minimization */

for i = 1 to # (Occs)
/* reassign AdjMatrix to a version whose image dimensionality is minimized */
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MinVersion := ∅;
/* note that since ≡(∆(s,f) ∪∆f , id) is an equivalence relation, */

/* AdjMatrix[i, i] 6= ∅ is guaranteed */

forall (Λi,= ∩Λi,≥) ∈ AdjMatrix[i, i]
Ξ ′

= := ReduceImageDimension(Λi,=);
MinVersion := append(MinVersion ,Ξ ′

=|Λi,≥
);

end forall

AdjMatrix[i , i] := MinVersion;
endfor

/* STEP 3: transformation of output occurrence instance sets to minimized versions */

for i = 1 to # (Occs)
NewVersion := ∅;
for j = 1 to # (Occs)
forall Λi ∈ AdjMatrix[i, j]

forall Ξ ′ ∈ AdjMatrix[j, j]

Let Λi = Λi,≥ ∩Λi,=
−1
R

◦ Λi,=L
;

Let Ξ′ : dom(Ξ′) → Z
nsrc+nblob+2 : α 7→ Ξ′

=(α)

with Ξ′
= : Z

nsrc+nblob+2 → Z
nsrc+nblob+2;

NewVersion := append(NewVersion ,Ξ′
= ◦ Λi,=

g
R ◦ Λi,=L

);
end forall

endfor

AdjMatrix[i , j] := NewVersion;
endfor

/* STEP 4: choose the actual representative mapping for each partition of OI */

nΞ := 0;
for i = 1 to # (Occs)

PossibleMappings := ∅;
for j = 1 to # (Occs)

PossibleMappings := append(PossibleMappings ,AdjMatrix[i, j]);
endfor

Sort PossibleMappings in increasing order according to
the comparison function CompareRelations (Algorithm 3.5.3);

stillUnmapped := Z
nsrc+nblob+2;

for k = 1 to size(PossibleMappings )
Ξi := PossibleMappings[k]|stillUnmapped;

stillUnmapped := stillUnmapped \ dom(PossibleMappings[k]);
nΞ := nΞ + 1;

endfor

endfor

Ξ :=
⋃

j∈{1,...,nΞ}

Ξi;

return Ξ;

Step 1 of Algorithm 3.5.2 initializes an adjacency matrix wrt. Λ, whose element (i, j) contains
the part of the given equivalence relation that holds between the occurrenceinstanceset number
i and the set number j – where set number i is thought of as the domain of the relation and
set number j as its image. In other words, the entry (i, j) represents the possibility to select an
occurrence instance of set i by an occurrence instance of set j.

Step 2 replaces the part of the equivalence relation Λ that defines equivalences on the same oc-
currence by a representative mapping – yielding a simple base transformation that maps equivalent
occurrence instances to points that only differ in some well-defined pseudo parameter dimensions.7

7Note that the different values for Ξ′
= in each iteration denote mappings whose image does not overlap, since
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In Step 3, the mappings generated in the previous step are composed with the parts of the
equivalence relation that connect different sets of occurrence instances: if there is a connection
between set number i and set number j, the algorithm computes the composition Ξ′◦Λi,=

g
R◦Λi,=L

of the corresponding relation Λi connecting set i with set j and the representative mapping for set
j itself. Note that, as we have established in Section 3.5.2 (page 104), we may use any generalized
inverse of Λi,=R

in this composition, since every element of Λi,=
g
R ◦Λi,=L

(α) is equivalent not only
to α, but to every other element of Λi,=

g
R◦Λi,=L

(α). The only respect, in which the selection of the
inverse makes a difference is the fact that, when Algorithm 3.4.1 collects the occurrence instances
to be executed, this particular inverse may lead to unusual bounds in some dimensions, since the
specific pre-image point that Λi,=

g
R maps to does not necessarily lie in the original domain of Λi,=.

It may therefore create new occurrence instances that were not enumerated before. However, this
does not change equivalence relations between occurrence instances. Therefore, the image of Ξ′

only changes in that there are additional polyhedra that are possibly offset from the previous
image in LCCP pseudo parameter dimensions. No additional occurrence value is added to the
image of Ξ′. In the collection of new occurrence instances in Step 1 of Algorithm 3.4.1, this leads
to a disjunction of polyhedra that differ in coordinates in the pseudo parameters dimensions for
the LCCP parameters. The result is a function that maps the original occurrence instances of set
number i to occurrence instances that use the reserved LCCP pseudo parameters wherever possible
– due to the final application of a mapping produced by Algorithm 3.5.4 (ReduceImageDimension .
Here, it suffices to iterate only once through the adjacency matrix, because the relation stored in
it is already transitive, so that AdjMatrix[i, ·] represents all possible mappings we could use to
find representatives for occurrence instance set Hash(i). We can therefore go straight to the next
step to select the appropriate representative function.

At the beginning of Step 4, there are several possible representative functions stored in the
adjacency matrix for each set of occurrence instances. In order to represent equivalent occurrence
instances that come from different sets by the same representative, the same mapping has to be
selected for these different sets of occurrence instances. The algorithm does this by sorting the
possible representative mappings found in the adjacency matrix according to an unambiguous
criterion, which is supplied by Algorithm 3.5.3 (CompareRelations). The suitable mappings are
stored in the sequence possibleMappings , sorted increasingly, and the complete set of occurrence
instances is mapped according to the first matching function that in that sorted sequence.

This sequence of possible mappings can be sorted in different ways. The only important thing
is that equivalent occurrence instances will be ultimately mapped to the same set. Algorithm 3.5.3
presented here is just one possible solution.

Algorithm 3.5.3 [CompareRelations]:
Input:
((Ξ1 ◦ Λ1 ,=)∩Λ1 ,≥) :

polyhedron to be compared to (Λ2,=,Λ2,≥).

((Ξ2 ◦ Λ2 ,=)∩Λ2 ,≥) :
polyhedron to be compared to (Ξ1 ◦ Λ1,=,Λ1,≥).

Output:
{−1 , 0 , 1} :

−1, if (Λ1,=,Λ1,≥) is supposed to be less than (Ξ2 ◦ Λ2,=,Λ2,≥), +1, if its to be consid-
ered greater, 0 otherwise.

Procedure:
if rk(Ξ1) > rk(Ξ2) then

return −1;
else

they all come from minimizing the dimensionality of instances of the same occurrence. Therefore, Algorithm 3.5.4
returns either the same mapping (with different domain) for the given relation ≡(∆(s,f) ∪∆f , id)i,=

or a mapping

with one or the other unit vector mapped to itself instead of an LCCP pseudo parameter, which creates a completely
different target index space with different dimensionality.
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if rk(Ξ1) < rk(Ξ2) then

return 1;
else

/* the image has the same dimensionality – we use the occurrence numbers for arbitration */

return sgn(OccId(im(Ξ1)) − (OccId(im(Ξ2))));
endif

endif

Note that Algorithm 3.5.3 (CompareRelations) depends on the way in which we compute the
relations that are to be compared. These relations come from Algorithm 3.5.2. However, since
all relations in the adjacency matrix in the algorithm are essentially computed in the same way,
this is not really a problem. Algorithm 3.5.3 decides that a relation R1 is to be sorted before a
relation R2 if the final linear function used for building R1 has a larger overall image (in terms
of dimensionality) than the function used for building R2. Since both functions have to map
equivalent occurrence instances in the same way, this only happens if the set O1 of occurrence
instances for which R1 is computed is larger (enumerates more dimensions) than the one leading
to R1 (O2). In other words, O2 can be viewed as a special case of O1. In this case, we want
the occurrence instances to be represented by the set representing O1, because this opens up the
opportunity to have all occurrence instances represented by a single set – in the reverse case,
one might be left with a partition of O1 that still has to be represented by some other relation.
In terms of code generation, this means that not every piece of code is really minimized to the
smallest possible dimension: if we can deduce that there are more occurrence instances doing a
similar computation, we create only one set doing this computation everywhere instead of one
set responsible for the special case of the calculations that are used twice and another set for the
calculations that are only used once. Although this is not a fundamental problem, we may find
ourselves creating unnecessarily large and inefficient programs, if we do not consider this point.

However, one can also make a point for preferring large code with lots of special cases – which
can be implemented by sorting for smaller image dimensions: this represents the pure idea behind
LCCP– the dimensionality of every computation is minimized as far as possible, resulting in several
small sets that can be computed in a way that utilizes the resources in an optimized fashion (for
example by using a larger, one-dimensional processor array than a smaller, two-dimensional one).
Therefore, one might also choose to replace this algorithm by one in which the comparison is done
in exactly the opposite manner.

The remaining comparison step in Algorithm 3.5.3 – comparing the occurrence number of the
corresponding sets – is only a way finally to achieve an unambiguous mapping in the case that the
first criterion did not yield a decision.

The algorithms above rely on an algorithm ReduceImageDimension to obtain a representative
mapping in which the dimensions are rearranged in such a way that enumeration in a direction
in which equivalent values are computed is somehow removed. In Algorithm 3.5.4, we reduce the
dimensionality (actually, only the number of index dimensions that potentially enumerate several
different index values) of a polyhedron by producing a function that maps occurrence instances α
and β to the same point (after projection onto index dimensions), if they are equivalent ((α, β) ∈
≡(∆(s,f) ∪∆f , id)). This mapping is computed from a polyhedron defining a relation Λ= ⊆ Λ that

represent a part of the equivalence relation Λ ⊆ ≡(∆(s,f) ∪∆f , id) ⊆ OI×OI. With matricesM ′, M

andMΛ,≥ defining the relation Λ= =

{

(α, β)
(
−M ′ M

)
·

(
α
β

)

= 0∧MΛ,≥ ·

(
α
β

)

≥ 0

}

,

Algorithm 3.5.5 produces a base of the kernel of M , ker(M). Ignoring the restrictions defined by
M≥, ker(M) characterizes those occurrence instances β that are related to the same occurrence
instance α. Therefore, it suffices to create a mapping Ξ so that its kernel – after projection onto
dimensions that actually are to be enumerated (i.e., onto index dimensions) – is the same as
ker(M), i.e., ker(π1,...,nsrc

◦ Ξ) = ker(M).
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Algorithm 3.5.4 [ReduceImageDimension]:
Input:

Λ= : linear relation Λ=

{

(α, β) MΛ= ·

(
α
β

)

= 0

}

defining an equivalence relation (MΛ= ∈

Zq×(nsrc+nblob+2)).
Output:

Ξ= : Z
nsrc+nblob+2 → : Z

nsrc+nblob+2 :
linear function mapping occurrence instances to their representatives wrt. Λ=.

Procedure:
/* STEP 1: preparation */

/* we may ignore the target space restrictions, since we build a new target space ourselves. */

/* Let M ∈ Zq×(nsrc+nblob+2) be the source space portion of matrix MΛ= : */

for i = 1 to q
for j = 1 to nsrc + nblob + 2

M [i , j] := MΛ=[i, j];
endfor

endfor

/* STEP 2: compute basis of the kernel of M ; */

(C ,KernelBase) := CreateKernelBase(M, 0,−1);
/* we suppose the vectors returned by CreateKernelBase to be */

/* arranged in a specific manner (see page 114); */

/* in particular, the actual base vector for a vector κ ∈ KernelBase */

/* is given by the row permutation C · κ */

/* STEP 3: build matrices defining a complete change of basis; */

Mbase := Insrc+nblob+2,nsrc+nblob+2;

Let nLCCP ∈ {1, . . . , nblob} be the number of the first pseudo parameter added
to hold the new dimensions needed for LCCP (see discussion on page 94);
currLCCPParam := nLCCP;
scaleFactor := 1;
for k = 1 to size(KernelBase)
/* we call the current kernel base vector κ */

κ := KernelBase[k];
/* swap the kernel base vector with a */

/* unit vector for a one of the pseudo parameter dimensions */

Let lastDim be the last dimension with a non-zero coefficient in κ,
(
∀j : j ∈ {lastDim + 1, . . . , nsrc + nblob + 2} : κ[j] = 0

)
;

Mbase[·, currLCCPParam] := κ;
Mbase[·, lastDim] := ιcurrLCCPParam;

currLCCPParam := currLCCPParam + 1;
/* in addition, if κ has two non-zero components, we may have to scale; */

scaleFactor := scaleFactor · κ[lastDim];

endfor

/* STEP 4: build the actual mapping */

Let Ξ= : Znsrc+nblob+2 → Znsrc+nblob+2 : α 7→ scaleFactor · (C ·Mbase)
−1 · α;

return Ξ=;

Step 1 of Algorithm 3.5.4 (ReduceImageDimension) represents an initialization using the input
matrixMΛ= , ignoring scoping information of the linear relation. The kernel of matrixM represents
the part of the equivalence relation to be represented by the result function.

Step 2 then uses Algorithm 3.5.5 (CreateKernelBase) to produce a matrix KernelBase ∈

Z
(nsrc+nblob+2)×rk(M), whose columns consist of base vectors of ker(M). This is the central opti-



114 CHAPTER 3. LOOP-CARRIED CODE PLACEMENT

mization step, since it determines the shape of the transformed index space. We can think of the
set ker(M) as being cut out of the index space of the instances of the particular occurrence at
hand, reducing the dimensionality of this index space and thus the number of occurrence instances
to be enumerated. The arguments in the call represent just an initialization and are not relevant
at this point. The matrix C ∈ Z

(nsrc+nblob+2)×(nsrc+nblob+2) represents a row permutation that
has to be applied to the column vectors of KernelBase to obtain the actual base vectors. This is
because Algorithm 3.5.5 guarantees the matrix KernelBase to be of a specific form, which is used
in the next step. Intuitively, each row number r of a matrix in this form consists of three areas:

1. Row r starts with zeroes (which go as far as possible).

2. The next section consists of non-zero entries – below each such non-zero entry, there are only
zeroes in the matrix (so we can solve for the non-zero entries of row r when creating base
vectors for the kernel).

3. The last section starts at the column that represents the first non-zero entry in row number
r+1 and may hold non-zero entries as well as zeroes. This last section determines a possible
non-zero value v resulting from the current binding obtained from solving rows r′ > r. The
coefficients for the entries in the second section of row r have to be chosen so that they add
up to −v for each solution generated.

Formally, this matrix form can be described as follows:

• With KernelBase =
(
κ1 . . . κn

)
, for each c with associated vector κc, we have:

(
∃rc : rc ∈ {1, . . . , nsrc + nblob + 2} :

(
∀c′ : c′ ∈ {1, . . . , c− 1} : κc′[rc] = 0

))
(3.32)

• With c, κc, rc as above, rc−1 correspondingly, we have

(
∀r : r ∈ {rc + 1, . . . , nsrc + nblob + 2} : κc[r] = 0

)
∧

|κc[rc]| = min({|κc[r
′]| r′ ∈ {1, . . . , rc+1 − 1} ∧κc[r

′] 6= 0})) (3.33)

We have already encountered this form as basis of a simple heuristics to select a small scaling
factor in the discussion of Example 3.27.

Step 3 makes use of this form by picking the dimension with the smallest absolute coordinate
value as the last non-zero element κ[lastDim] of this vector. Note that this is the point at which
we could also decide to consider only base vectors that do not share any non-zero dimension (which
is easily done by filtering the vectors appropriately). As we have already observed on page 99 in
Section 3.5.2, we could then use unimodular transformations – at the expense of not detecting all
possible reuses. However, this case is not considered in this thesis. Note further that the scaling
factor gets unnecessarily large if the base vectors, i.e., the single columns ofMbase, are not cancelled
(i.e., if the row entries of the respective column vectors are not relatively prime). Additionally,
in Step 3 of Algorithm 3.5.4, we assume that the LCCP pseudo parameters introduced for index
space dimensions along which recomputations of the same values are encountered are coded as
consecutive dimensions in Znsrc+nblob+2 and start at some dimension number nLCCP.

Step 4 finally computes the actual mapping. As we have seen before in Section 3.5.2 (on pages
99 and following), we may need to apply a scaling of the mapping produced in the previous step
in order to ascertain that the transformed index space is still an integer lattice and can thus be
enumerated using loops. The mapping produced in Step 3 is scaled by scaleFactor as computed
above, and Mbase is inverted. Due to the use of the column transformation C, however, calculating
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the inverse of Mbase now means solving Equation (3.34) in

Mbase ·X = Insrc+nblob+2,nsrc+nblob+2

⇔

(Mbase · C) · (C−1 ·X) = Insrc+nblob+2,nsrc+nblob+2

⇔

Mbase
′ · Y = C (with Y = C−1 ·X) (3.34)

Algorithm 3.5.4 makes use of Algorithm 3.5.5 (CreateKernelBase) to obtain a matrix con-
sisting of base vectors so that it is easy to obtain the right unit vectors for completing the base
transformation in a way that heuristically reduces the scaling needed. This algorithm is presented
next.

Algorithm 3.5.5 [CreateKernelBase]:
Input:
M ∈ Z

q×(nsrc+nblob+2 ) :
integer matrix.

ε ∈ Z
nsrc+nblob+2 :

vector defining the current binding that guarantees that the product of all rows of M
below row r with ε equals zero:

(
∀r′ : r′ ∈ {r + 1, . . . , q} : M [r′, ·] · ε = 0

)
.

r ∈ Z : −1 on the first call; otherwise the row in matrix M for which we have to find further
constraints in order to create new kernel vectors of M .

Output:
KernelBase :

array of base vectors of ker(M ·C), in the form required by Equation (3.32) and Equation
(3.33)

C : matrix representing a row permutation that has to be applied to the result vectors in
KernelBase in order to obtain the actual base vectors of ker(M).

Procedure:
if r < 0 then

/* STEP 1: initialization – assert that each row of M consists of */

/* - a contiguous part filled with zeroes and */

/* - a coniguous part filled with non-zero values */

Let M ′ be the echelon form of matrix M;

C := ColumnTransformation(M ′);
(KernelBase ,D) := CreateKernelBase(C ·M ′, 0, rk(M));
return (KernelBase , C);

else

KernelBase := ∅;
/* let end be the column before the first non-zero column of M [r + 1, ·], or, if r = rk(M), */

/* the last column (nsrc + nblob + 2) of M */

end :=

{

min({c M [r + 1, c] 6= 0}) − 1 if r < rk(M)

(nsrc + nblob + 2) if r = rk(M)
;

/* let start be the first non-zero column of M [r, ·], or, if r = 0, the first column (1) of M */

start :=

{

min({c M [r, c] 6= 0}) if r > 0

1 if r = 0
;

/* STEP 2: decide which case we have for creating new non-trivial solutions */

/* if we need a non-zero entry in the current row, we take the one in in column start */

/* if r = 0 (which is no legal row), we either have to: */
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/* - return the current binding (if it is non-zero) or */

/* - create new non-trivial solutions by giving each coefficient of the columns start to end − 1 */

/* (which are the zero-columns of M) arbitrary values (we choose 1) */

if r = 0 then

if ε 6= 0 then

/* return the cancelled binding */

return ( ε
gcd(ε[1],...,ε[nsrc+nblob+2]) , Insrc+nblob+2,nsrc+nblob+2);

else

for c = start to end
/* a non-trivial solution is given by the c-th base vector */

KernelBase := append(KernelBase , ι(nsrc+nblob+2),c);
endfor

endif

else

/* STEP 3: ascertain this row to add up to 0 */

/* in any case, a possible solution is to maintain the old binding; */

/* get the value of this row – without the coefficients that we may still choose */

restOfRow := M [r, ·] · ε;
/* if restOfRow evaluates to 6= 0, we have to find */

/* a non-zero entry whose coefficient we may still choose */

if restOfRow 6= 0 then

lcmOfCoefs := lcm(restOfRow ,M [r, start]);

ε′ := lcmOfCoefs
restOfRows

· ε;

ε′[start] := − lcmOfCoefs
M[r,start]

;

(K ,D) := CreateKernelBase(M, ε′, r − 1);
KernelBase := append(KernelBase ,K);

endif

/* STEP 4: start the backward substitution with a new non-zero value; */

/* if we have not yet chosen non-zero values for the binding */

/* in the rows below, we need solutions that assert that this row adds up to 0 */

/* – we always need two columns to obtain 0, and we have to use a coefficient 6= 0 */

/* once for each column between start and end */

if ε = 0 then

for colOffset = 0 to end − start − 1
lcmOfCoefs := lcm(M [r, end − colOffset],M [r, start + colOffset]);
/* Create a new binding */

ε′ := 0;

ε′[start + colOffset] := lcmOfCoefs
M[r,start+colOffset]

;

ε′[start] := − lcmOfCoefs
M[r,start]

;

(K ,D) := CreateKernelBase(M, ε′, r − 1);
KernelBase := append(KernelBase ,K);

endfor

endif

endif

return (KernelBase , Insrc+nblob+2,nsrc+nblob+2);
endif

Algorithm 3.5.5 (CreateKernelBase) is a recursive algorithm that should be called on a matrix
in echelon form. Therefore, the first step consists of transforming the given matrix into echelon
form. Step 1 does this initialization – asserting that the given matrix is in echelon form and
computing a column transformation so that the resulting matrix will be in a form suitable for
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choosing the correct completion with a low scaling factor. This is done by calling Algorithm 3.5.6
presented below. The second argument of Algorithm 3.5.5 is a binding for the actual values in the
vector currently under consideration as new base vector; it is therefore initialized to 0.

The echelon form of the matrix is then traversed row by row from bottom to top. The corre-
sponding code is marked as Step 2 in the algorithm. For each recursive invocation, the current
solution vector ε is passed through, with KernelBase consisting of the sequence of all solution
vectors finally returned as column vectors.

Steps 3 and 4 are more tightly coupled. Let us assume that M ∈ Z
q×(nsrc+nblob+2) is already

in echelon form. Then rows 1 through rk(M) are non-zero, and the number of base vectors the
algorithm has to return is dim(ker(M)) = c − rk(M). Therefore, we may compute a kernel by
setting each coordinate of the c− rk(M) dimensions that do not start any step in the echelon form
to a non-zero value in turn and always use the first non-zero entry of a row (the one that does
start a step) to an appropriate value so that the row still adds up to 0. This is done in the loop
in Step 4. In the following recursive invocations of CreateKernelBase , this new binding of ε may
lead to one of the upper rows to evaluate to a non-zero value (for the summands considered so
far). In this case, we set the coefficient for the first non-zero entry of this row in Step 3 so that
the complete row adds up to 0 again.

In order to obtain this useful matrix form discussed above, Algorithm 3.5.5 permutes the
columns of its input matrix with the column transformation obtained from Algorithm 3.5.6
(ColumnTransformation). As discussed above, this form defines three well defined sections per
row so that one section defines the dimensions that can be used to create new base vectors and
one section defines a possible non-zero value that has to be cancelled out to obtain a solution. In
addition, the column transformation reduces the scaling factor heuristically by sorting the non-
zero entries of a row according to their absolute values (so that the first non-zero value of a row
has the smallest absolute value of the entries of that row section). We have discussed the problem
of minimizing the scaling factor in Section 3.5.2 (page 99 and following).

Algorithm 3.5.6 [ColumnTransformation]:
Input:
M ∈ Q

q×(nsrc+nblob+2 ) :
matrix in echelon form, with each row cancelled as far as possible.

Output:
C ∈ Z

(nsrc+nblob+2 )×(nsrc+nblob+2 ) :
matrix defining a column transformation C for M so that for all r ∈ {1, . . . , q + 1},
there is a cr ∈ {1, . . . , (nsrc + nblob + 2) + 1} with

(
∀c : c ∈ {1, . . . , cr − 1} : (M · C )[r, c] = 0

)
∧

(
∀c : c ∈ {cr, . . . , cr+1 − 1} : (M · C )[r, c] 6= 0

)

and c1 < · · · < cq+1. In addition, with notation as above, M · C satisfies

|(M · C )[r, cr]| = min(|(M · C )[r, 1]| , . . . , |(M · C )[r, cr+1 − 1]|)

Procedure:

Let C ∈ Z
(nsrc+nblob+2)×(nsrc+nblob+2);

/* for each column, find the maximal row that has a non-zero coefficient */

/* in this column (or 1, if the whole column is 0) */

for c = 1 to (nsrc + nblob + 2)
LastNonZeroRow[c] := max({r M [r, c] 6= 0} ∪ {1});

endfor

/* each column c with the same row entry LastNonZeroRow[c] now competes to be */

/* the first non-zero column of row r; */

/* we may sort them arbitrarily, but we choose to sort them according to |M [r, c]| */

newColumn := 1;
for r = 1 to q
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/* get the columns that compete for row r */

C := ∅;
for c = 1 to (nsrc + nblob + 2)
if LastNonZeroRow[c] = r then

C := C∪ {(|M [r, c]| , c)};
endif

endfor

while C 6= ∅
/* sort them according to their coefficient */

/* (second sorting criterion is their original column number */

/* – i.e. we sort the pairs in C lexicographically) */

minColPair := min≺(C);
/* we just need to set column newColumn of C to the minColPair[2]-th unit vector */

C[·,newColumn] := ι(nsrc+nblob+2),minColPair[2];

C := C \ {minColPair};
newColumn := newColumn + 1;

endwhile

endfor

return C;

Algorithm 3.5.6 takes a matrix in echelon form. Its main purpose is to permute the columns
of this matrix so that, for each row r, there is a contiguous area of non-zero elements, namely
the elements for which r is the last row featuring non-zero coefficients, so that their value may
be chosen freely when the bottom-up traversal of the matrix in Algorithm 3.5.5 reaches row r.
On the other hand, the scaling factor is optimized if the smallest coefficient in such a contiguous
non-zero area within a row of the resulting matrix is found in the leftmost column of that area.
This is, because a larger coefficient will result in a solution with a smaller factor in the sum
restOfRow + ε′[start] · M [r, start] that has to add up to 0 in Algorithm 3.5.5 – and in this
algorithm, every dimension up to the leftmost one in the non-zero area is in turn set to a non-zero
value. Therefore, the entries of a row of M are sorted in increasing order of their absolute value
in the while-loop.

Note that the algorithms presented here leave room for optimizations in many places. They
are intensionally kept simple for the sake of the argument. Nonetheless, they implement reliable
procedures for merging equivalent occurrence instances based on the theory presented in the
previous sections. However, there is still one problem we have not yet addressed in detail –
namely finding a correct execution order. We will consider this problem in the next section.

3.6 Scheduler Issues

The previous sections introduced methods for creating a COIG, a condensed representation of
the values computed by a program fragment, in which occurrence instances representing the same
value are merged to a single occurrence instance, or – as is the case for the change of basis – to
a set of occurrence instances that differ only in well-defined coordinates, so that an appropriate
projection finally represents them as a single point. The next step – as sketched in Figure 3.1
at the beginning of this chapter – is to create a space-time mapping. In particular, we need to
define a legal execution order to obtain a semantically equivalent transformation. Therefore, it is
necessary to compute a schedule that ensures that the resulting program defines a legal execution
order so that all dependences are obeyed and the transformed program is semantically equivalent
to the original one.

Section 3.5 introduced two different possibilities to find representatives for this new program
representation. The first one, using the lexicographic minimum of equivalent points, as detailed
in Section 3.5.1, already leads to a schedule by itself, so that finding a space-time mapping for the
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program is no problem. Even if the computed schedule may not be the best choice, it is clear that
a schedule exists and that a space-time mapping for the program can be computed.

For the representative selection strategy presented in Section 3.5.2, this is not immediately
clear, as we have hinted at in the last point that we have identified to be crucial for representative
selection on page 87. On the contrary, it is evident that some scheduling strategies are bound to
fail to create a legal schedule for the output program. One such scheduler is Lamport’s hyperplane
method [Lam74], which relies on all dependence vectors (i.e., the difference β − α between target
β and source α of a dependence (α, β) ∈ ∆) to be positive, since it only ensures to leave the
lexicographic order of dependence vectors constant. However, with the method presented here,
the direction of a dependence may very well change, as the following example shows.

Example 3.29 Consider the following code fragment:

DO i=1,100

! Statement S1:

! [5] [4] [1] [3] [2]

B(i) = A(i+1) ** 2

! Statement S2:

! [10] [9] [6] [8] [7]

C(i) = A(i) ** 2

END DO

The original occurrence instance sets for the exponentiations (with only the interesting dimensions

shown – index, then operand, and occurrence numbers) are
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(the instances of A(i) in S2). Assuming

that the original occurrence numbers are retained, the rules laid out in Sections 3.5.2 and 3.5.3
transform these sets to:
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This means that, for i < 100, iteration i of Occurrence 9 now reads from iteration i + 1 of
Occurrence 3 (instead of iteration i of Occurrence 8). Thus, for this case, the dependence vector
is 
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and thus negative, in contrast to the distance vector for Occurrence 4, which evaluates to the usual
vector 
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This means that a scheduling method like Lamport’s hyperplane method is not applicable to
a reduced COIG generated by our method. However, our method still ascertains that the COIG
does not contain any cycles (in other words, the reduced COIG does not contain any cycles with
a weight of zero – when we adorn the edges in the reduced COIG with the h-transformations
as weight). This is because the definition of the LiftRel operator (Definition 3.2) excludes write
accesses from being equivalent. This means that any dependence cycle – which has to go through
a read and a write access – can only exist in the COIG, if a corresponding cycle exists in the
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OIG. The following expresses the same idea in closer detail. The following lemma states that,
if there exists an h-transformation in the transformed program (for which we ignore dimensions
of LCCP pseudo parameters) mapping from a representative of an occurrence instance α to the
representative of a write access instance β, then the original program featured an h-transformation
mapping α to β.

Lemma 3.30 Let (OI,∆) be an OIG. Let Ξ be a representative mapping obtained from the equiva-
lence relation ≡(∆(s,f) ∪∆f , id) by Algorithm 3.5.2 as described in Section 3.5.3. Further, let H be a

piecewise linear mapping such that H = ∆−1, π : γ 7→ π1,...,nLCCP−1,...,nLCCP+ndepth,...,nsrc+nblob+2(γ)
a projection that eliminates the LCCP pseudo parameters. We extend ·g canonically to linear re-
lations as a piecewise linear version of the generalized inverse. With α, β ∈ OI, where β is a write
access, we have

(π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)((π ◦ Ξ)(α)) = (π ◦ Ξ)(β) ⇒ H(α) = β

Proof:
Without loss of generality, we assume only one dependence on which a target of a write access

may depend. Definition 3.2 guarantees that

(π ◦ Ξ)(α) = (π ◦ Ξ)(α′) ⇒ H(α) = H(α′)

We now have

(π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)((π ◦ Ξ)(α)) = (π ◦ Ξ)(β)

β is a write access, and write accesses are never equivalent to one another – they are thus repre-
sented by themselves. Therefore, we have write accesses on the left hand side and the right hand
side of the above equation. Thus, we may omit the application of π ◦ Ξ in both. Therefore, the
equation transforms into

(H ◦ (π ◦ Ξ)g)((π ◦ Ξ)(α)) = β

According to the definition of (π ◦ Ξ)g , this is equivalent to:

H(α) = β

X

Lemma 3.30 asserts that any occurrence instance α directly depending on a write access β in
the original OIG is represented by an occurrence instance that, again, directly depends on the very
same write access β. This does not only hold for an immediate successor of a write access, but also
for occurrence instances that depend on that successor through equivalence propagating depen-
dences, since, as the following Lemma states, a sequence of equivalence propagating dependences
essentially stays just the same in the COIG as in the OIG.

Lemma 3.31 With the notation as in Lemma 3.30, for each path in the COIG that consists of
structural flow dependences, there is also a path in the original OIG. Formally:

π ◦ Ξ(α) = α′ ⇒ (π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)n(α′) = π ◦ Ξ(Hn(α))

Proof:
n = 0 is the trivial base case. So, let n > 0. We recall that if α and β are targets of structural

flow dependences, the definition of LiftRel , and thus the definition of equivalence on occurrence
instances, guarantees that

π ◦ Ξ(α) = π ◦ Ξ(β) ⇒ H(α) = H(β) (3.35)
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With this in mind, we simply rewrite the above formula:

(π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)n(α′) = (π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)((π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)n−1(α′))

= (π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)(π ◦ Ξ(Hn−1(α)))

due to induction hypothesis

Thus, we have:

(π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)(π ◦ Ξ(Hn−1(α))) =

π ◦ Ξ(H( (π ◦ Ξ)g(π ◦ Ξ(Hn−1(α)))
︸ ︷︷ ︸

= η with π ◦ Ξ(η) = π ◦ Ξ(Hn−1(α)
(due to the definition of (π ◦ Ξ)g)

︸ ︷︷ ︸

= η s.t. H(η) = H(Hn−1(α)) = Hn(α)
(due to Equation 3.35)

)

︸ ︷︷ ︸

= H(η) with H(η) = Hn(α)
︸ ︷︷ ︸

=Hn(α)

)

︸ ︷︷ ︸

=π◦Ξ(Hn(α))

= π ◦ Ξ(Hn(α))

X

With these lemmata, each cycle in the COIG can be traced back to a cycle in the OIG.

Theorem 3.32 Let (OI/≡(∆(s,f) ∪∆f , id),∆≡
(∆(s,f) ∪ ∆f , id)

) be the COIG corresponding to the

OIG (OI,∆) condensed via equivalence relation ≡(∆(s,f) ∪∆f , id). If

(OI/≡(∆(s,f) ∪∆f , id),∆≡
(∆(s,f) ∪ ∆f , id)

) contains a cycle, there is also a corresponding cycle in

(OI,∆).

Proof:
With the notation as in Lemma 3.30, we first observe that the mapping Ξ, as produced by

Algorithms 3.5.2 to 3.5.6, cannot introduce any cycle in a subgraph that contains edges from
∆e = ∆(s,f) ∪∆f only, since ∆e+ is a strict partial order and occurrence instances that are
mapped to the same point via π ◦ Ξ are always incomparable wrt. ∆e+. Input dependences are
completely eliminated by the transformation and cannot be part of a path (and, thus, a cycle) in
the condensed graph; all other forms of dependences necessarily contain a write access as a vertex.

Without loss of generality, we assume again that each occurrence instance in the original OIG
depends on at most one other occurrence instance due to a equivalence propagating dependence
(there may be additional dependences of other classes).8 9 Let us now assume a cycle

α′ = (π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)n(α′)

According to Lemma 3.31, for each path consisting of structural flow dependences

(π ◦ Ξ ◦H ◦ (π ◦ Ξ)g)m(β′) = γ′

8This is not a problem since, the only point where this is not the case – the implicit dependences between
the different operand positions of an occurrence and its operand 0 – are again either incomparable to each other
wrt. ∆e+, which builds the only dependence connection between them, or can be examined by simply chosing the
right predecessor relation (e.g., consider the i-th input argument as a source for the j-th output argument of an
occurrence instance).

9There is only one case in which a target occurrence instance α depends on several different source occurrence
instances, and this is the execution of an operator (i.e., OpId(α) = 0). In this case, the different sources are either
incomparable wrt. ∆e+ or can be examined by simply chosing the right predecessor relation (e.g., consider all input
arguments before output arguments). Therefore, this assumption does not introduce any restrictions.
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and for all γ ∈ π ◦ Ξ−1(γ′), there is a β ∈ π ◦ Ξ−1(β′) and a corresponding path Hm(β) = γ in
the original OIG. Now, let δ′ = (π ◦ Ξ ◦H0 ◦ (π ◦ Ξ)g)(γ′) be an edge that does not belong to a
structural flow dependence. This leaves the following cases:

1. γ′ is a read access, δ′ is a write access (the dependence is a flow dependence).

2. γ′ is a write access, δ′ is a write access (the dependence is an output dependence).

3. γ′ is a write access, δ′ is a read access (the dependence is an anti dependence).

4. γ′ is a write access, δ′ is an operator execution (the dependence is a structural output
dependence).

However, for each of these cases and all γ ∈ π ◦Ξ−1(γ′), there is, again, an edge δ = H0(γ) in the
OIG with δ ∈ π ◦ Ξ−1(δ′):

1. With γ′ a read access and δ′ a write access, this edge exists in the OIG, according to Lemma
3.30 (with δ′ being the write access β in the lemma).

2. With both γ′ and δ′ write accesses, again, the edge exists in the OIG according to Lemma
3.30.

3. With γ′ a write access and δ′ a read access, we again have γ ′ = π ◦ Ξ(γ) = γ. There has
to be some read access δ so that δ = H0(γ) (otherwise, Algorithm 3.4.1 does not create a
dependence relation). In fact, since all the occurrence instances in π ◦Ξ−1(H0(γ)) read from
the same occurrence instance (according to the definition of equivalence), there has to be a
path from γ to all the elements of π ◦ Ξ−1(H0(γ)) in the OIG.

4. With γ′ a write access and δ′ an operator execution, we have once more the case that γ ′

did not get replaced: γ′ = π ◦ Ξ(γ) = γ. However, δ′ may now be different from H0(γ).
Still, if there were a direct cycle involving δ′, Lemma 3.30 asserts that we would also have
H(δ) = γ for all δ ∈ π ◦Ξ−1(δ′), and thus the cycle H(H0(γ)) = γ in the OIG. If there is an
indirect cycle, the next edge in the COIG would have to be a (sequence of) structural flow
dependences. And, for these, Lemma 3.31 again asserts that there is a corresponding path
in the original OIG.

X

Theorem 3.32 guarantees that a COIG is acyclic, if the original OIG is acyclic. Therefore
any scheduling method that needs only consistent (acyclic) dependence graphs as input will work
with our method. The scheduling methods by Feautrier [Fea92a, Fea92b] and by Darte and
Vivien [DV94] belong to this class [DRV00].

Note that the only reason that the transformation into an OIG can never introduce cycles is
the fact that the definition of equivalence on occurrence instances specifically does not include
write accesses. If write accesses could be equivalent to each other, there could be problems, since
it may then not be clear, when to execute the resulting (merged) write access, as the following
example shows.

Example 3.33 In the assignment sequence

! Statement S1:

A=B

! Statement S2:

A=C

! Statement S3:

D=A

! Statement S4:

A=B
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the read access A in Statement S3 has to refer to the value C (otherwise a wrong value for D may
leave the program fragment). On the other hand, after both statement S1 and S4, an access A has
to refer to B (there may well be further computations involving A – and possibly also D – between
S1 and S2), one may be inclined to view the occurrence instances representing these write accesses
as equivalent. Figure 3.13 illustrates this situation. The left hand side depicts the OIG for the
program fragment. Flow dependences are represented by solid arrows, the output dependence by a
dashed arrow, and the anti dependence by a dashed and dotted arrow. The image on the right shows
a COIG as it could result from application of LCCP– the two read accesses to B are equivalent,
so that everything but the write access can be replaced in one of the statements. Figure 3.14 then
shows an illegal COIG due to identifying write accesses with each other: the two write accesses
of statements S1 and S4, are represented by a single occurrence instance there. The effect is a
dependence cycle (fat lines) consisting of an output, a flow, and an anti dependence. Therefore,
this dependence graph cannot be scheduled at all.

Assign(read C,write A)

Assign(read B,write A)

Assign(read A,write D)

Assign(read C,·)

Assign(read B,·)

Assign(read A,·)

read C

read B

read A

Assign(read C,write A)

Assign(read B,write A)

Assign(read A,write D)

Assign(read C,·)

Assign(read B,·)

Assign(read A,·)

read C

read B

read A

Figure 3.13: Left hand side: OIG of the code in Example 3.33. Right hand side: COIG for the
same example..

When introducing additional, e.g., user defined, equivalences, this fact has to be observed.
An implementation may still be possible, e.g., by node splitting, or by implementing only safe
features, such as the Fortran EQUIVALENCE statement (which only needs equivalence on statements
in dummy loops, and thus does not interfere with calculations). Nevertheless, this problem has
to be taken into account when introducing such an extension. In this thesis, we will only consider
the simple case and not handle such an extended notion of equivalence.

3.7 Code Generation

So far, the LCCP transformation has produced a COIG in the form of an optimized OIG that
represents a loop program with reduced recomputations. It is now time to examine how this
representation can be turned back into program code. It is not always straightforward how to
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Assign(read C,write A)

Assign(read B,write A)

Assign(read A,write D)

Assign(read C,·)

Assign(read B,·)

Assign(read A,·)

read C

read B

read A

Figure 3.14: COIG with illegally merged write accesses.

produce code that can be compiled efficiently into an executable parallel program. Some central
points of code generation have been identified in earlier work [FGL01b]. The two most important
points are the regularity of the subscript functions and the regularity of the loop bounds, as
pointed out in Section 2.1.2. We will now describe the principle of code generation in LCCP and
some techniques to obtain efficient code.

We have established that a space-time mapping has to be computed for interesting sets in
order to decide when and where to execute the newly created occurrence instances. And we
have established that, when selecting representatives according to the change of basis approach
presented in Section 3.5.2, it is absolutely necessary to employ a scheduling algorithm, and that
scheduling methods like Feautrier’s [Fea92a, Fea92b] and the scheduling algorithm by Darte and
Vivien [DV94] can be applied to get the “time” part of this mapping. Chapter 4 will consider
the placement (i.e., the “place” part) in more detail. For now, we will just assume to have some
placement relation given. However, we will assume both the schedule and the placement to be
defined by linear relations, i.e., neither necessarily has to be a linear function.

Most standard techniques in code generation in the polyhedron model are based on the as-
sumption that the space-time mapping is a function rather than a linear relation [CF93, Len93,
Xue93, Xue94, Wet95, Xue96, QRW00]. Bastoul extended the work of Quilleré, Radjopadhye and
Wilde [QRW00] to a loop scanning algorithm that is capable of processing any linear relation as
a space-time mapping [Bas03, Bas04]. Due to its flexibility and the low overhead in the produced
code, this method, implemented in the tool CLooG, has been chosen for the code generation in
the implementation of LCCP in LooPo. Nevertheless, any loop scanning technique can be used in
conjunction with LCCP and the code generation technique described here.

In our case, the transformation is defined by a space-time mapping T and a generalized in-
verse of T , which we denote by T g< . T g< is not only a generalized inverse but also a bijection
between source and target index space. I.e., for each occurrence instance representative, there is
a unique point in the target index space and, for each point in the target index space, there is a
unique occurrence instance representative. This corresponds to Bastoul’s extended enumeration
method [Bas03] with the exception that Bastoul’s method may select indices from the original
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index space in order to obtain a function from the given relation, viewing source and target space
as one large polyhedron, while we make an explicit distinction between source and target space.
Therefore, we have to introduce new index dimensions to the target space, here. We will take a
look at the specific form of the function T g< later. For the moment, let us just assume that it is
a generalized inverse of T .

General Loop Structure As pointed out in Section 2.1.2, HPF compilers strongly prefer rect-
angular loop nests. In the case of Version 7.1 of ADAPTOR, which we used for our experiments,
the compiler is not able to create any optimized communication for non-rectangular nests of par-
allel (INDEPENDENT) loops. Restricting oneself to such simple loop nests is not a good approach
for transformations in the polyhedron model. An inspection of ADAPTOR’s run time library,
DALIB, revealed the possibility of specifying array sections in DALIB communication routines
that are larger than the referenced arrays. We were therefore able to create artificial rectangu-
lar INDEPENDENT loop nests and introduce comments that trigger a textual replacement of loop
bounds created by ADAPTOR to the actual (non-rectangular) form in a postprocessing step.
With the run time library’s communication routines being able to handle out-of-bounds array
accesses (which may now appear), the compiler is thus able to create quite efficient code, even
for non-rectangular parallel loop nests. We also experimented with a more elaborate technique of
tiling the index space with rectangular loop nests, until only loop nests enumerating the borders
induce expensive communication. However, this latter technique turned out to have no advantage
over the former.

The target index space defines ntgt = ntime + #pdims+ nILP + ndepth indices. These indices
are divided into

1. ntime sequential dimensions as indicated by the scheduler,

2. #pdims parallel dimensions used by the placement method,

3. nILP additional potentially parallel dimensions,

4. ndepth pseudo parameters as introduced in Section 3.5.2 on page 94; these are partly enu-
merated in a loop and partly represented by an if-statement.

We propose to produce loop nests with a nesting that corresponds to this enumeration. For
example, parallel dimensions have to be enumerated within sequential dimensions, since otherwise
we cannot guarantee the correctness of the result program (without a sophisticated message passing
scheme). The target code resulting from this nesting is sketched in Figure 3.15. In the following,
the role of each index kind is be examined more closely.

ntimentimentime Schedule Loops The outer sequential loops represent the schedule. Since neither our tar-
get language HPF nor other prominent languages or language extensions like OpenMP offer explicit
synchronization mechanisms short of explicitly specifying all communication using a communi-
cation library like MPI [Mes97] or PVM [Sun90], the output program has to be synchronous, i.e.,
synchronization occurs at least at the end of a sequential loop. Since the execution time of all
the occurrence instances is defined wrt. the same time coordinates, all statements enumerate the
same index variables.

#pdims#pdims#pdims Explicit Placement Loops The loops within the sequential loops required by the
schedule can be executed in any order insofar as correctness is concerned. However, they still
enumerate (universally quantified) indices, i.e., they have to be enumerated completely. There
may still be different levels on which it may be beneficial to aggregate the execution of these
different occurrence instances to the same point in space:

1. On a distributed memory system, data is shared between different cluster nodes (resulting
in very expensive communication).
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DO t 1=t 1 low,t 1 up
...

DO t ntime=t ntime low,t ntime up

!HPF$ INDEPENDENT, NEW(p 2,...,ilp 1,...,lccp ndepth)

DO p 1=p 1 low,p 1 up
...

!HPF$ INDEPENDENT, NEW(ilp 1,...,lccp ndepth)

DO p #pdims=p #pdims low,p #pdims up

!HPF$ INDEPENDENT, NEW(ilp 2,...,lccp ndepth)

DO ilp 1=ilp 1 low,ilp 1 up
...

!HPF$ INDEPENDENT, NEW(lccp 1,...,lccp ndepth)

DO ilp ndepth=ilp ndepth low,ilp ndepth up

DO lccp 1=lccp 1 low,lccp 1 up
...

IF lccp ndepth low<=lccp ndepth up THEN
...

! occ op dim is the occurrence number, operand number, and dimensionality of the

! occurrence instance set enumerated here

TMP occ op dim(lccp ndepth,ilp ndepth,...,p #pdims,...,t 1)=...
...

END IF
...

END DO

END DO
...

END DO

END DO
...

END DO

END DO
...

END DO

Figure 3.15: Basic structure of a generated loop nest.
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2. Within a single node, there may be several CPUs, not necessarily uniformly connected to
the memory banks.

3. Within a single CPU, modern processors may still feature different cores and processing
units (e.g., integrated GPUs or support for multimedia extensions).

On all these levels, communication between dependent occurrence instances can slow down the
computation, so that placing dependent occurrence instances on the same element of the respective
structure may be beneficial – although the extreme case, using only one ressource, is most probably
not advisable either, because it eliminates all parallelism on this level. Therefore, we suggest to
produce the placement part of the space-time mapping through a sequence of runs of placement
algorithms for each level of granularity – starting from the most expensive cost factor (which will
be the inter-node communication in most cases). However, this approach goes beyond the scope of
this thesis, so that we shall restrict ourselves to the inter-node communication usually in the focus
of HPF parallelizations. A corresponding placement algorithm will be presented in Chapter 4. Since
HPF is our primary target language, the placement algorithm is expected to use different target
indices for the enumeration of occurrence instances that are placed on different processor arrays.
Additionally, the bounds of the parallel loops directly indicate the position in this processor array
at which the loop body is to be executed. This avoids the problems with inconsistent homes of
loop bodies described in Section 2.1.2 on page 14 and produces efficient HPF code.

nILPnILPnILP Implicit Placement Loops Dimensions of the original source index space that are not
associated with space or time dimensions have to be enumerated, nevertheless. Since they are
independent of the schedule, these dimensions are marked as independent in Figure 3.15. However,
since they are not considered by the placement, they can be specified as parallel only outside of the
placement method, such as by multimedia instructions or by ILP that is automatically handled
by the CPU itself. For our purpose, they are enumerated sequentially.10

ndepthndepthndepth LCCP Pseudo Parameters As mentioned in Section 3.5.2 (on page 94), LCCP pseudo
parameters in general do lead to loops in the target code. Possible solution values for pseudo
parameters may have to be enumerated until the first time that the statement corresponding to
the considered occurrence instance set is executed for any given value of embracing loop indices.
This is although pseudo parameters represent existentially quantified variables, because the values
of these variables do not have to be defined by the environment of the program, and we may have
to iterate through several possible solutions in order to find an example solution prooving the
non-emptyness of the corresponding index space. Example 3.34 illustrates this case.

Example 3.34 Reconsider Example 3.23. Let us now suppose that the value computed in the
loop body of the code fragment is independent of the indices of the enclosing loops; in addition, we
generalize the bounds of the outermost loop to m and n, respectively:

DO i1=n,m

DO i2=(i1-1)/3+1,(i1+1)/3

B(i2,i1)=A(m)**3

END DO

END DO

For the computation of A(m)3, it suffices to know that there are indices i1 and i2 that comply
with the loop bounds, execute the computation once and then copy the result value out to B. In
Figure 3.9, where we need to determine whether an instance of A(i1+i2)**3 is to be executed
by the program, this corresponds to searching a point with an integer i2-coordinate on the dotted

10Actually, in the implementation in LooPo, these loops are not only enumerated by sequential loops, but also
outside of the parallel loops discussed in the previous paragraph. This is because, depending on the HPF compiler,
declaring INDEPENDENT loops that do not enumerate an index in a subscript expression of an array access may
confuse the compiler. Since none of the parallel loops carry any dependence, this is a legal transformation.
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TEST S1=.TRUE.
...

TEST Sn=.TRUE.
...
...

i=o

DO WHILE(i<=u.AND.(TEST S1.OR.....OR.TEST_Sn))
...

IF(TEST Sk) THEN

! Statement Sj:

...

TEST Sk=.FALSE.

END IF
...

END DO

Figure 3.16: General structure of a loop enumerating an LCCP pseudo parameter.

IF(CEILING(o)<=FLOOR(u)) THEN
...

END DO

Figure 3.17: A loop enumerating an LCCP pseudo parameter may be simplified to an if-statement
under certain circumstances.

vertical lines originating from the area on the i1-axis marked with a fat line. This area covers the
values from m to n. However, as we have seen, the existence of such a point – within the region
defined by the i2-bounds, i.e., within the area between two straight lines through the long sides of
the parallelogram of Figure 3.9 – depends on the exact value of i1: it does not suffice to know that
there is some i1 within the defined bounds m and n.

Therefore LCCP pseudo parameters are, in general, enumerated just like indices. The general
structure of such a loop enumerating i ∈ {o+ j · s j ∈ N∧ o+ j · s ≤ u} is given in Figure 3.16.
In order to be able to stop execution of these loops as soon as all statements have been executed
once, they are enumerated as the innermost loops of the loop nest. For each statement Sk in
the body of the loops, there is a test variable TEST Sk that indicates whether Sk still needs to
be executed. These variables are first set to TRUE , and reset to FALSE in the same context in
which Sk is executed; the following test in the (transformed) LCCP pseudo parameter loop then
may shortcut this loop. Here, the initialization of the variables TEST Sk is done only before
the outermost loops binding a LCCP pseudo parameter (otherwise statements may get executed
unnecessarily often, because the guarding variable has been reset). Note that this scheme leaves
much room for further optimization. For example, it is not really necessary to guard each statement
with an if-statement and an own variable – it suffices to use one variable for each basic block that
is to be executed in the same context. In addition, if the body of a loop binding index i (with
i as above) only contains loops that are independent of i , the i-loop can be simplified to an if,
as shown in Figure 3.17. This case is actually very common (it appears, e.g., if the original code
enumerates a rectangular index space). If all these loops can be replaced by if, there is no need
for the test variables Sk and the corresponding control structures. These cases can be detected
easily and taken advantage of in the code generation phase.
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One Additional Placement Dimension We assume one additional dimension in the output
of the placement algorithms. This dimension does not appear in the enumeration of loops above.
The reason for this is that its natural representation is rather a variable declaration than a loop:
in the model of nested placement methods, one placement method has to be responsible for the
placement of the result value in the memory of the process executing a given occurrence instance.
Aside from the loop indices, the place in memory depends on the array the computed value is to
be stored in. Of course, there must not be any conflict between write accesses to such an array
element within the lifetime of these accesses. Therefore, a safe choice is, for example, to allot the
arrays according to the occurrence and operand numbers and dimensionalities of the occurrence
instance sets to be stored. In Figure 3.15, the corresponding numbers are appended to the prefix
TMP to accomplish this allotment. A more elegant method may be, for example, a greedy colouring
scheme as proposed in Cohen’s dissertation [Coh99, Section 5.3.5].

Computation Statements Code generation for LCCP consists of generating the loops via one
of the established polyhedron scanning techniques (with LCCP pseudo parameters disguised as
the innermost loop indices), replacing and simplifying the loops enumerating pseudo parameters as
discussed above, and finally filling placeholders for each statement with the code to be executed.
Note that only dimensions with finite bounds have to be enumerated (with an infinite value
representing dimensions of non-embracing loops, as in Section 2.3). In general, all values calculated
by an interesting set have to be assigned to new array variables. Remember that we assume a
single polyhedron representing a set of occurrence instances to have a unique occurrence number
(see Section 2.3.1). Therefore, an interesting set, which also has only one occurrence number,
defines the application of the same operator on different sets of data, depending on the iteration.
So, the general form of the code for an interesting set O with o ∈ OccId(O) and Occ−1(o) =
G(i1), . . . , iArityIn(G), o1, . . . , oArityOut(G)) with n finite index coordinates (i.e., embraced by n loops
with loop indices i1,. . . ,in) is basically the same for all α ∈ O. Depending on the operator G , the
output looks roughly as follows:

read access A(F (i1, . . . , in)):
A read access is always represented in the straightforward way.

write access to A(F (i1, . . . , in)):
A write access, in general, reads from an interesting set, which creates new variables
for storing intermediates (see below). Therefore, the implementation is to look up that
newly created auxiliary variable:

A(F (i1, . . . , in))=TMP occ op dim’(Idx(H(α)))

However, if there is a unique write access that depends on each of the elements of a given
interesting set, we can optimize this assignment away by replacing the write access to
the auxiliary variable by the access to A.

general operator application:
For each output operand (including operand 0 – the function’s return value), a new
array is created that stores the corresponding output value:11 Note that this generates
essentially a program in single assignment form for the intermediate values computed
in the COIG.

TMP occ op dim(in,...,i1)=G(createTerm(OccId(H(OpndSel(−ArityIn(G), o)))),
...,

createTerm(OccId(H(OpndSel(−1, o)))),
TMP occ 1 dim(in,...,i1),

11Note that each output operand is an element of an interesting set, so that there will be a space-time mapping
for it, with a placement defining the array to be written to. Note further that, up to this point, the space-time
mapping can be copied from α.
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...,

TMP occ ArityOut(G) dim(in,...,i1))

For each input operand, the corresponding h-transformation is used to obtain the
(unique) source. If this source is itself an element of an interesting set, a lookup to
the corresponding auxiliary variable is created. Otherwise, we simply reiterate the
above scheme.

createTerm is here a recursive call of the function creating output code for a given set of
occurrence instances – whose properties we have just described. Note that the output code here
is completely defined by the COIG. In particular, although instances of write accesses represent
interesting sets and although the target program features assignments and write accesses for
every interesting set, there are no additional write accesses defined in the reduced COIG for the
interesting sets. They are merely implemented in this way in the target program. A write access
α in a reduced COIG represents the programmer’s wish to store the value from which α depends
in a variable, probably for future use outside the considered program fragment.

The h-transformations above may not hold on the complete index space in which the code is
executed. Thus, the corresponding code may have to be guarded with conditionals that test for
the domain of the h-transformation. This can be achieved by something similar to the ?-operator
in C. However, operators like this are likely to irritate compilers (and in the case of HPF, there is
not even such an operator). Therefore, we choose to create a hierarchy of if-statement around
the code to be generated that creates a version for each possible combination of sources.

The h-transformations above are defined in the target index space of the program (consisting
mainly of time and placement dimensions). This holds for all linear expressions in the program
text. When creating such linear expressions defined by a linear function F in the produced code
following a space-time mapping T , the new expression is defined by

F ′ = F ◦ T g<

This new function F ′ then defines linear expressions in time and processor coordinates. Therefore,
the way T g< is formed for a space-time mapping T has an impact on the final expression generated:
with the target space also containing implicit placement loops as discussed above, T is invertible.
However, it may be overdetermined as in the following example.

Example 3.35 Consider a space-time mapping defined by the (simplified) matrix

t
p
n
1

i n 1






1 0 0
1 0 0
0 1 0
0 0 1







for a code fragment like the following:

DO i=1,n

A(i)=B(i,i)*A(i-1)

END DO

I.e., the subscript function in the read access to B is defined by a matrix

(
1 0 0
1 0 0

)

. The

corresponding code in the output program may well read B(p,p), B(t,t), or even B(t,p). Which
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one to choose now depends on T g< :

(
1 0 0
1 0 0

)

·





1 0 0 0
0 0 1 0
0 0 0 1



 =

(
1 0 0 0
1 0 0 0

)

corresponds to B(t,t)

(
1 0 0
1 0 0

)

·





0 1 0 0
0 0 1 0
0 0 0 1



 =

(
0 1 0 0
0 1 0 0

)

corresponds to B(p,p)

Note that the options B(t,p) and B(p,t) do not occur here, although they are also valid
representations of the same expression. This is because both appearences of i (which are both
represented as

(
1 0 0

)
) are subject to the same space-time mapping defined by T . Therefore,

the target expression for both is determined by the same multiplication
(

1 0 0
)
· T g< and,

therefore, both yield the same target expressions.
This is an opportunity for the code generation phase to tune subscript expressions to the need of

the subsequent compiler run. We construct the matrix for T g< so that each dimension that can
be chosen freely prefers parameters to sequential loop indices, which, themselves, are prefered to
indices of implicit placement loops, which are in turn prefered to genuine parallel loop indices. This
alleviates the work for an HPF compiler further, as it simplifies the subscript functions as discussed
in Section 2.1.2, because it reduces the possibilities for several parallel indices in a target subscript
expression.

In a similar approach, the order of the dimensions of the auxiliary arrays can be chosen so that
the write accesses to auxiliary arrays are executed in a cache-friendly manner (i.e., for Fortran-like
languages, the time dimensions should be enumerated in the last subscript dimensions, for C-like
languages in the first subscript dimensions).

Further Optimizations A further straightforward optimization consists of the composition of
subscript functions for the auxiliary variables: since the order of loops is always the same, the
write accesses to auxiliary variables can always be subscribed with the embracing loop indices in a
cache-friendly manner (in the order of the embracing loops for C-style languages and in the reverse
order for Fortran-like languages). In addition, it is not necessary to introduce any dimension in
the auxiliary array for pseudo parameters, since each pseudo parameter is existentially quantified
and thus always defines a single coordinate.

As mentioned already, the introduction of new auxiliary arrays, as sketched in Figure 3.15,
leads to an single assignment form of the portion of the COIG that computes the intermediate
values. This also means that vast space is occupied by these auxiliary arrays. In order to reduce
space consumption, storage memory optimizations as the one proposed by Lefebvre [LF98] (with
Feautrier) and improved in joint work with Cohen [CL99, Coh99] should be applied to the auxiliary
arrays created.12

Finally, the control structures enumerating LCCP pseudo parameters may be completely elim-
inated if the existence of an integer solution can be shown. For example, if an index space
{(

i
j

)

1 ≤ i, j ≤ n

}

is to be enumerated, where j is actually a pseudo parameter, it suffices

to enumerate the space {i 1 ≤ n}, since a solution for i implies a solution for j. An optimization
like this can be achieved by quantifier elimination using a feasibility test such as PIP [Fea03] or
the Omega test [Pug92] (for further discussion of quantifier elimination applications, see the work
by Größlinger, Griebl and Lengauer [GGL06]). This optimization may be part of the scanning
method, or a pre- or postprocessing step thereof.

12Unfortunately, our implementation of LCCP in LooPo does not include this optimization, since work on this
module could not be finished in time.
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Let us conclude with a simple – synthetic – example to see the basic LCCP transformation at
work.

Example 3.36 Consider the following example:

!HPF$ INDEPENDENT

DO i1=1,n

!HPF$ INDEPENDENT

DO i2=1,n

A(i1,i2)=A(i1,i2)-B(i1)*B(i1)+B(i1)

END DO

END DO

The read accesses B(i1) in the same i1-iteration all represent the same value, because they
read from the same write access. This write access takes place in a dummy loop, an artificially
added loop representing initial input data introduced in Section 2.3.2. B(i1) always represents

the same value, because the i2-dimension is a kernel dimension of the function

(
i1
i2

)

7→ i1.

One level higher along the structural flow dependences, it is clear that the different i2-iterations
of B(i1) · B(i1), correspondingly, represent the same value, since they both read from the same
(unchanged) array elements. At this point, going one level higher in the operator tree, again, the
precedence used by the compiler determines the final result:

• One may observe that the whole expression -B(i1)*B(i1)+B(i1) stays constant for different
i2-iterations and arrive at a loop program like the following one:

! time step 0

t1=0

!HPF$ INDEPENDENT

DO p1=1,n

TMP1(p1)=B(p1)

END DO

! time step 1

t1=1

!HPF$ INDEPENDENT

DO p1=1,n

TMP2(p1)=-TMP1(p1)*TMP1(p1)+TMP1(p1)

END DO

! time step 2

t1=2

!HPF$ INDEPENDENT

DO p1=1,n

!HPF$ INDEPENDENT

DO p2=1,n

A(i1,i2)=A(i1,i2)+TMP2(p1)

END DO

END DO

• There is also the possibility that the compiler parses the right hand side of the assignment
as (A(i1,i2)-(B(i1)*B(i1)))+B(i1), in which case the term A(i1,i2)-(B(i1)*B(i1))

is already two-dimensional so that different i2-iterations never represent the same value. In
this case, a program like the following is generated:

! time step 0

t1=0
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!HPF$ INDEPENDENT

DO p1=1,n

TMP1(p1)=B(p1)

END DO

! time step 1

t1=1

!HPF$ INDEPENDENT

DO p1=1,n

TMP2(p2)=TMP1(p2)*TMP1(p2)

END DO

! time step 2

t1=2

!HPF$ INDEPENDENT

DO p1=1,n

!HPF$ INDEPENDENT

DO p2=1,n

A(i1,i2)=A(i1,i2)-TMP2(p1)+TMP1(p1)

END DO

END DO

Note that, in both versions, B is copied into an auxiliary variable, although this is not necessary.
But, in both cases, there are several distinct targets of flow dependences from the same occurrence
instance reading B – still, they appear in the same statement in the first case. This identifies
the occurrence instances that represent read accesses to B as an interesting set and forces us to
scrutinize the possible execution times and places for these occurrence instances more closely.

In this particular case, let us assume the following initial distribution:

!HPF$ TEMPLATE TEMP1(1:n,1:n)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN A(i1,i2) WITH TEMP1(i1,i2)

!HPF$ ALIGN B(i1) WITH TEMP1(i1, 1)

The placement method presented in the next chapter determines a distribution according to the
following scheme for the second version of the LCCP output:

!HPF$ ALIGN ARRAY1(i1,i2) WITH TEMP1(i2, *)

!HPF$ ALIGN ARRAY2(i1,i2) WITH TEMP1(i2, *)

I.e., the computation of B(i1) · B(i1), which is independent of i2, is replicated along the processor
array dimension onto which the different i2-coordinates are distributed. Thus, the value is still
computed for several i2-coordinates. Nevertheless, the second LCCP version indeed performs better
than the original version by about 3.5%–7% for n = 7000 and 8 down to 2 nodes in our experiments.
This is because the replication along this axis means that only one such computation has to be done
for each block of i2-coordinates computed on a specified physical processor, which may still be less
than the original computations due to the tiling done by the HPF compiler.

3.8 Summary and Future Work

The basic goals of LCCP are the optimization of the workload in a deep loop nest and a better
utilization of parallel processors by reducing the depth of transformed loop nests containing parts
of the original computation. These are important opportunities for optimizations in cluster (and
other parallel) architectures for high performance computing, multicore CPUs [Ram06] that need
parallel computing directives to make full use of their computation capabilities, and can also be
used in stream processing compilers [TKA02, GTA06, GR05], which in turn can contribute to
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performance improvement, especially of processors with integrated GPUs as a SIMD-extension
unit [Hes06].

The interesting sets identified by LCCP represent the vertices defined by a reduced OIG that
deserve closer examination. As a first step, they represent sets with a minimized dimensionality
whose results may be used by other – possibly higher-dimensional – interesting sets. The initial
optimization – computing the occurrence instances of an interesting set and assigning the result
values to auxiliary variables for future use – leaves plenty of room for further optimizations,
especially since the storing of data is an expensive operation itself – in both memory space and
execution time – and should not be employed without reason.

One possible solution for performance degragation due to this introduction of additional ref-
erences to main memory is to bring source and destination of dependences closer together again.
One such way will be examined in the next chapter. We have already seen the result in Example
3.36. Although the LCCP version in this example actually performed better, there are also cases
in which it is better to undo the work of LCCP completely and avoid the overhead of storing
data. This may be achieved, e.g., by inspecting the transformed dependences and removing the
status of interesting set from a set of occurrence instances if the dependence relation is “too sim-
ple” wrt. some metric (e.g., choosing a projection with which the h-transformation reduces to an
identity function).

An additional variation would be to clone interesting sets into several collections of almost
identical sets (with only the occurrence number changed to indicate the difference). This would
in part undo the transformations achieved by LCCP, so there should be some mechanism to
determine whether a set should be cloned or not.

One iteration of LCCP corresponds to the compilation of a conflict equation system in the
usual dependence analysis in the polyhedron model. Although the results provided by LCCP are
directly only useful for a must conflict approximation, an iterative dependence analysis based on
the result of LCCP could increase the applicability of code motion techniques further so that at
least some irregular computations may be handled efficiently by automatic parallelizers. Another
way to increase the applicability of LCCP– and at the same time reduce the number of occurrence
instance sets produced by LCCP– is to ignore domain restrictions even further during the selection
of a common representative mapping in Section 3.5.2 (see pages 103ff ). Occurrence instances that
are originally mapped to different sets may thus be mapped to the same set of representatives.

Probably most important, however, is the fact that LCCP does not introduce equivalences
on different instances of write accesses. This restriction prevents many possible optimizations.
In particular, LCCP can be used to identify all the points automatically that lend themselves
to the storage of intermediate values. As discussed in Section 3.6, this restriction is not to be
overlooked, since the correctnes of the transformation depends on it. However, it can be lifted if
we introduce new occurrences for occurrence instances that write only intermediate values (i.e.,
those that are not sources of dependences to dummy loops at the end of the program fragment).
The LCCP algorithm can then be called repreatedly with the set of equivalence propagating
dependences alternating between structural output dependences on the one hand and (structural
and non-structural) flow dependences on the other hand.

Similarly, user defined equivalences could be taken into account, which could increase the
applicability, and thus the value of the LCCP transformation, greatly. Similarly, associativity and
commutativity may be supported in a straightforward way.

3.9 Related Work

Code optimization techniques have a long history. Methods like loop-invariant code motion or
strength reduction have been standard techniques in the context of scalar variables for a long
time [MR79, ASU86, KRS94, Mor98]. LCCP can be viewed as an extension of the original code
motion technique to the case of arrays referenced in for-loops.
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Extended Code Motion There exist several extensions of the traditional, scalar-based tech-
nique: Rüthing, Knoop, and Steffen extend partial dead code elimination on scalars by a semantic
component building equivalence classes of representations of the same value [SKR90, RKS98].
These equivalence classes – which are still based on scalars – do not directly correspond to those
used in the LCCP method in its present form. In their semantic code motion algorithm, assign-
ments are analyzed explicitly in order to identify values that are equivalent, although possibly
reading from a completely different set of variables. Such an analysis is not supported by the
LCCP method, as described above. However, a similar effect could be achieved with an iterative
application of LCCP and a subsequent dependence analysis.

Agrawal, Saltz and Das extend the traditional fixed point analysis in that they build a graph
called the Full Program Representation (FPR) [ASD95]. The FPR connects function calls to
the same function within different procedures. This leads to an interprocedural code motion tech-
nique, called Interprocedural Partial Redundancy Elimination (IPRE). IPRE is targeted
at assigning very expensive function calls to different procedures: call sites of the same function
in several procedures A and B may be deleted due to a new call site in some other procedure
C . This is in contrast to LCCP, which is presented here only as an intraprocedural optimization.
The fixed point approach of their technique handles loops and other control structures simply
as unpredictable and thus yields quite coarse dependence information. In later work, Agrawal
proposes another code motion strategy called Interprocedural Balanced Code Placement
(IBCP) based on the same framework. ICBP calculates predicates which define the movement of
start and end statements for asynchronous (split-phase) functions, such as checkpointing [Agr99].
Parallelizing compilers face a similar problem when generating communication statements within
a procedure or for redistribution at procedure boundaries. In this context, IPRE can be used
to implement message coalescing. Asynchronous communication routines can take advantage of
IBCP to overlap communication with computation once they are extracted from enclosing loops.
In contrast, the focus of LCCP is to extract subexpressions (that lead to communication) from as
many loops as possible within a procedure.

Common Subexpressions with Arrays Dehbonei describes in his dissertation [Deh90] a
generation algorithm for parallel loop code loosely based on a parallel code generation algorithm
by Allen, Callahan, and Kennedy [ACK87]. Dehbonei’s code generation algorithm determines
syntactically equivalent common subexpressions containing arrays in loop nests and hoists these
subexpressions out of a loop, if the loop index is not contained in the array subscripts. However,
this work predates an exact dependence analysis on loops and thus is not able to analyze more
complicated expressions. E.g., it fails to recognize A(i1+i2)**2 as an expression that can actually
be computed in a one-dimensional loop.

Polyhedron Scanning in HPF compilers HPF compilers like the dHPF compiler [MCA97,
AJMCY98] have long improved their communication code through optimizations like message
coalescing (sending the same array element only once to a target processor) and message
vectorization (sending a sequence of array elements in one message) [HKT91]. While ear-
lier compilers used a purely syntactic approach to communication generation, newer versions
moved to polyhedron scanning techniques in order to copy data speedily into a communication
buffer [ACIK95, AMC98]. The LCCP transformation can make some of these optimizations ex-
plicit in that read accesses to the same memory cell are represented by the same occurrence
instance in the COIG. Thus, some message coalescing can be done via an application of LCCP:
the occurrences for which communication should be generated are identified by the interesting
sets computed. Communication code generation for HPF compilers is thus simplified and can
be improved substantially, in particular for compilers that feature efficient communication code
generation for simple access patterns such as subscript triplets but only less efficient methods for
arbitrary linear subscripts (which is the case, e.g., for ADAPTOR and the Portland Group’s pghpf
compiler).
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Subspace Model Knobe and Dally introduce a so-called subspace model [KD95], which
is described in greater detail in Knobe’s dissertation [Kno97]. This model essentially relates a
subexpression with the set of indices found in this expression, ignoring loop bounds. Index space
restrictions that may limit the domain of flow dependences (and thus the validity of equivalences)
are modelled by converting the code to SSA form prior to applying the methods of this model.
Operations are executed in a loop nest whose depth corresponds to the number of indices associated
with a given subexpression, reducing the number of dimensions to be enumerated, and different
subexpressions that can be proven to be associated with the same range of arrays and subscript
values are combined into a single operation. The model also handles non-affine subscript functions.
However, since a dedicated affine analysis is not employed, the equivalence of array accesses cannot
be established if these subscripts differ in some respects other than a permutation of index names
or a constant shift. Thus, expressions like A(i1+i2)**2 are, again, not identified as essentially
one-dimensional. Neither can a term like C(i,i) be identified as a special case of the term C(i,j).

Common Subexpressions in Numerical Codes A very powerful common subexpression
elimination (CSE) system called dice (Domain-shift Invariant Common subexpression Eliminator)
is part of the Ctadel compiler [vE98]. Ctadel is a language for numerical codes based on a
restricted SSA form. This simplified input format almost eliminates the need for a dependence
analysis and simplifies the procedure for determining equivalent expressions. Equivalence is de-
termined by a set of rules for a term rewriting system which even exploits associativity and
commutativity laws. Thus, the method is able to find a range of equivalences that escape the
presented LCCP method. However, a methodical reduction of index space dimensions as for the
example above (A(i1+i2)**2) is not within the focus of that work. CSE may increase commu-
nication overhead due to the fact that values are stored in memory at their definition sites in
order to be reused later. Therefore, dice features switches with which the user can decide how
aggressively the CSE algorithm should operate.

Wonnacott’s Dead Code Elimination Wonnacott extends dead code elimination to arrays
by removing elements from the set of operations to be executed, if they are not in the domain
of a dependence relation (i.e., in our framework in the image of an h-transformation) [Won01].
This strategy fits well into the framework presented here: there is no reason to keep track of the
set OI of occurrence instances to be executed – it suffices to execute the pre-image sets of the
h-transformations defining dependence relations. We do not explicitly consider this case. Instead,
our approach removes computations of values that are needed but already computed. However,
Wonnacott’s approach can be implemented as part of our code generation phase.

Program Equivalence and Template Recognition Barthou, Feautrier, and Redon examine
the problem of comparing two SAREs [BFR02], which is in essence the same problem as deciding
whether two occurrence instances belong to the same equivalence class in LCCP. However, the idea
behind this transformation is conceptually orthogonal to the approach discussed in this chapter.
In contrast to LCCP, they compare a code fragment to some template code fragment stored in
a database so that the code in question can be replaced, e.g., by a simple library call to an
optimized version of the same calculation. In order to do so, they create a memory state
automaton (MSA) – a finite state automaton that is augmented by index space information –
from the cross products of the MSAs representing the two SAREs. Equivalence of the SAREs
can then be rephrased as the reachability problem in the combined MSA [BFR02, AB03]. Due to
the undecidability of the equivalence of two SAREs, this is a semi-decision procedure. Christophe
Alias expands this to a complete framework for template substitution [AB05, Ali05], extending
the comparison algorithm to a matching algorithm so that subterms may be left unspecified in
a template. The decision algorithm presented is very powerful and able to detect equivalences
not covered by LCCP, such as reduction recognition. On the other hand, LCCP can be extended
easily to include associative-commutative operators by standard techniques in computer algebra
(introducing n-ary operators and sorting the operands accordingly) [Che86]. These operators
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cannot be handled as easily by the template matching algorithm. While the template matching
approach recognizes known patterns in program fragments, LCCP identifies equivalent portions
of arbitrary code fragments and creates directly optimized code from the given source program.

Reduction Optimization Data reuse may lead to the computation of a series of similar values
that may be obtained from each other. For example, in the code

DO i=1,n

Y(i)=0

DO j=1,i

Y(i)=Y(i)+X(j)

END DO

END DO

X is reused along the i-axis. This code can also be expressed as the following SARE:

Y (i) = (
∑
j : j ∈ {1, . . . , i} : X (j)) (3.36)

The reuse of X in this case implies that the elements of Y can be obtained from each other by
adding or subtracting corresponding values of X :

Y (i+ 1) = Y (i− 1) + X (i+ 1) (3.37)

Equation (3.37) can then be computed in a single scan. Following this idea, which is profoundly
similar to the approach of LCCP, Gupta and Rajopadhye propose a method for optimizing reduc-
tions [GR06]. In contrast to our method, their approach is solely based on the simplifications of
reductions, which have to be defined in a form like the following:

Y = reduce(+, (

(
i
j

)

7→ i),X ) (3.38)

This form can be produced from the SARE of a program (which, in turn, is based on the pro-
gram’s SSA form) and is rewritten into equivalent definitions in this method. Problems due to
reassignments etc. do not come into play, here. LCCP works directly on the arrays of the program
and simplifies general expressions based on Herbrand equivalence; however, it is problematic to
extend to the case of recursion and thus reductions. On the other hand the method by Gupta
and Rajopadhye depends on a representation that already identifies reductions and specifically
optimizes them – which does not, in general, include the expressions optimized by LCCP.
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Chapter 4

Placement Computation and

Replication

The previous chapter introduced the LCCP transformation, which can be used to reduce the
number of occurrence instances to be executed by removing index space dimensions along which
the same value is computed. With the method for representative selection presented in Section
3.5.2, which we employ here, the resulting reduced COIG needs to be scheduled in order to obtain
a legal execution order. This is completely independent of the fact that one may want to execute
independent occurrence instances in parallel: we just need to have some legal execution order
of occurrence instances in order to assure that the target program is semantically equivalent to
the input program, as discussed in Section 3.6. On the other hand, a schedule already suffices
to produce a legal output program with reduced occurrence instance sets: a schedule can be
extended easily to a complete injective mapping (which is needed for program transformation in the
polyhedron model) by appending an identity mapping on dimensions that are linearly independent
on the schedule and among each other. However, especially in the context of parallel execution,
it is important to produce also a placement function that distributes work in an beneficial way.
In particular, on modern architectures, the communication cost is very high compared to the
computation cost, so that communication should be avoided as much as possible. As already
hinted in Section 3.7, this applies to on several levels:

1. Communication between nodes is usually done using communication libraries like MPI [Mes97]
or PVM [Sun90] and incurs the largest time penalty – one may divide this cost by discerning
on-site communication from off-site communication.

2. Communication between processes on the same node is not as expensive as communication
between nodes but still involves possibly time consuming copy operations within the node’s
memory. It is sometimes also managed by communication libraries as above.

3. Threads share the same memory within a common process. However, they can be distributed
on different CPUs, which incurs communication cost in form of cache invalidations and
misses. This is the level of parallelization usually employed by OpenMP (notwithstanding
cluster implementations of OpenMP [Hoe07]).

4. Within a single thread, instruction level parallelism (ILP), dedicated graphics processing
units (GPUs) or other coprocessors may be used to exploit further parallelism. This may
again lead to communication between registers, cache and possibly main memory (for com-
munication between processing units).

At all the levels enumerated above, locality, both between source and targets of a dependence
(which roughly translates to temporal locality), and between different accesses to consecutively
stored (computed) values (spatial locality) is an important performance factor. Especially the
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latter two points of the enumeration above gain from locality of consecutive accesses, since current
cache architectures usually fetch data in contiguous chunks.

A comparison between the INDEPENDENT loops of the loop nest of Figure 3.15 in Section 3.7 with
the above points suggests to implement the former two points with the outer INDEPENDENT loops
– enumerating p 1,. . . , p #pdims – and the latter two points with the inner loops – enumerating
ilp 1,. . . ,ilp ndepth.

The connection between an occurrence instance α in the original (or LCCP-transformed) pro-
gram and the iteration of INDEPENDENT loops that is used to enumerate α is given by a placement.
We propose to create a placement for the loops corresponding to each of the points above by
algorithms especially taylored for the task, starting from point 1 onward, with each placement
algorithm possibly using the scheduling information and placement information of previous mod-
ules, since that order reflects the influence on execution time. This may possibly make some or
all of these placements non-invertible, i.e., they may represent replicated placements.1 With the
usual HPF and MPI implementations that hide the mapping between virtual and physical proces-
sors, it is not even possible to draw a line between the first two points with a pure source-to-source
transformation. Therefore, we will only consider the first point – communication and placement
between nodes in this thesis. In our approach, the other placement dimensions do not necessarily
have to be defined by an explicit placement. However, one might also choose to use the placement
method we will now examine in closer detail with adjusted parameters to obtain placements of
the lower levels. The placement method presented in the following sections has been introduced
in previous work [FGL03, FGL04]. Wondrak implemented and evaluated this approach in his
diploma thesis [Won05].

4.1 Computation Placement Based on Initial Data Place-

ment

Although the use of replicated placements as described above is not limited to this scenario, we
are primarily concerned with creating a placement for a COIG, i.e., for an LCCP generated loop
program. In particular, the nodes in the reduced COIG that correspond to interesting sets need
to be associated with a placement, since these occurrence instances represent computations whose
results have to be stored somewhere. In contrast, the occurrence instances of non-interesting sets
are trivially best executed where their respective (unique) targets are executed.

Example 4.1 Let us consider the following program fragments:

!HPF$ INDEPENDENT

DO i1=2,n-2

!HPF$ INDEPENDENT

DO i2=1,n

A(i2,i1)=(B(i1) *2)*i2 &

& -(B(i1+2)*2)/i2 &

& +(B(i1+1)*2)+i2 &

& +(B(i1-1)*2)

END DO

END DO

!HPF$ INDEPENDENT

DO i1=1,n

TMP(i1)=B(i1)*2

END DO

!HPF$ INDEPENDENT

DO i1=2,n-2

!HPF$ INDEPENDENT

DO i2=1,n

A(i2,i1)=TMP(i1) *i2 &

& -TMP(i1+2)/i2 &

& +TMP(i1+1)+i2 &

& +TMP(i1-1)

END DO

END DO

1Only at the lowest level (which does not necessarily have to be the level of source code), the space-time mapping
– and thus the placement – has to be a function, since different tasks cannot be handled by the same unit within
a CPU at the same time.



4.1. COMPUTATION PLACEMENT BASED ON INITIAL DATA PLACEMENT 141

The program fragment on the left contains four computations of B(i) · 2.The same value is
computed repeatedly for different iterations of both the i2-loop and the i1-loop. LCCP can transform
this program fragment into the one on the right (the actual transformation depends on the exact
space-time mapping used). In the transformed code, B(i) ·2 is calculated once and then assigned to
a temporary. As discussed in Section 3.7 (page 130), this assignment is not explicit in the reduced
COIG and does not correspond to a write access in the reduced COIG, but is implemented as a
write access in the target code.

The least expensive placement in terms of communication cost is, of course, to place all oc-
currence instances at the same place. However, this trivial placement should be avoided in most
cases, since it does not leave any room for performance improvement through parallelization. As-
suming that the user has specified non-trivial data placements, one way to avoid this, which we
adopt here, is to use placements derived from the user-given ones as follows. We suppose that
basic interesting sets, i.e., interesting sets that represent write accesses, already have a placement.
Instances of write accesses have to be executed at the place of the memory cell to which to write
is located. This information is given by the placement defined for the dummy loops introduced
in Section 2.3.2. Since parallelism in HPF is completely defined by data placements, this is a safe
assumption for HPF programs. But, if we handle programs in some language other than HPF, in
which placement directives may be not quite as explicit, this is no unrealistic supposition either:
the only additional assumption is that a placement of input and result data has been decided upon
before computations and placement of intermediate results is tackled. And we can assume with
good reason that input and output data may be somehow restricted in their possible placement,
since, e.g., in a cluster system, this data is often already distributed for larger problems.

Depending on the distribution of A and B in Example 4.1, different distributions of TMP may
be beneficial: most probably, an alignment with B is a good approach. But if B is replicated, it
is probably more useful to align with A.

However, whether or not a certain data distribution actually improves performance may depend
on several factors such as the ability of the underlying compiler to produce efficient (communica-
tion) code and the target machine. Therefore, our aim is to create a flexible placement method for
occurrence instances. Note that we do not distinguish between occurrence instances that represent
calculations and occurrence instances that represent memory accesses or even memory cells: an
occurrence instance α is just the execution of an operation whose result value may be needed
sometime at some place, possibly several times and at several places – in which case we have to
store the result in memory. Since α is executed only at a certain location, the result has to be
stored there first (even if it is only used somewhere else, we do need some buffer). The basic idea
behind our placement method is thus to propagate the placements of all sources and targets of an
occurrence instance set O (along the transitive closure of flow dependences and structural output
dependences) to O itself. For a sequence O1, . . . ,OnO

, this results in a set of possible placement
relations AOi

for each such set Oi. The method then estimates the communication cost for each
combination of placements for the different occurrence instance sets O1, . . . ,OnO

. I.e., for each
element of

∏nO

i=1 AOi
a graph representing the communication structure in the target program is

constructed and an associated cost is computed. The combination producing the lowest cost is
then selected as the set of placement relations to be used for the loop program.

LCCP identifies those points in the code whose result values should be stored in memory,
because they are needed more than once during program execution. For the same reason, these
are also the occurrence instance sets where redistribution of data may be appropriate. It is
therefore important to select the right placement relation for these interesting sets. Note that the
points in the code need not consist of complicated computations, but may well represent plain
read accesses, as the following example shows.

Example 4.2 Let us reconsider the code from Example 3.23, this time with explicit placements
for the arrays used:

!HPF$ DISTRIBUTE PROCS1(BLOCK)

!HPF$ DISTRIBUTE PROCS2(BLOCK,BLOCK)
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!HPF$ ALIGN B WITH PROCS2

!HPF$ ALIGN A WITH PROCS1

!HPF$ ALIGN C WITH PROCS1

!HPF$ INDEPENDENT

DO i1=1,6

!HPF$ INDEPENDENT

DO i2=(i1-1)/3+1,(i1+1)/3

B(i2,i1)=A(i1+i2)**3+C(3)

END DO

END DO

The placements for these arrays are quite intuitive: assuming all the elements of C (there should be
more than just C (3) – otherwise one would not store it in an array) can be computed independently,
a placement along a 1-dimensional processor mesh is a good choice, since it leads to the best
processor utilization for the computation of C . The same statement holds for A. For B, however,
one may want to exploit as much parallelism as possible, perhaps in the context of the later use of B.
However, since C (3) is used for every iteration of the loop nest, it would most certainly be best to
replicate this value. The usage in every iteration is reflected by the fact that the occurrence instance
set representing the read access is a singleton and in fact an interesting set. It will therefore be
considered for an alternate placement, and the corresponding code might look as follows:

!HPF$ ALIGN TMP WITH PROCS1(*,*)

:

TMP=C(3)

:

This code prescribes the explicit communication of C (3) to all processors.

As the example shows, the placement we create in this case through propagation is not neces-
sarily a function, but a relation: there is only a scalar TMP , which is stored on all processors of
the processor mesh PROCS 1. Therefore, the placement is replicated – several copies of the same
occurrence instance are placed onto several different physical processors. Thus, the computation
to be done to produce the corresponding value is executed on several processors, and the result is
also stored on this set of physical processors.

The remainder of this section introduces our main representation of these replicated placements
and how to obtain such a representation from a given HPF program. Our placement algorithm is
then developed in Section 4.2. This placement algorithm is based on a general cost model. Section
4.3 presents a benchmark suite for developing a cost model for a specific system and contains a
case study in which we develop such a cost model for the ADAPTOR compiler with the Passau
hpcLine cluster as the target computer.

4.1.1 How to Model Replication

Our aim is to use replication (of data and computations) to reduce communication costs. Example
2.28 in Section 2.4 (page 42) shows that (possibly replicated) HPF distributions can be expressed
by polyhedra. Ignoring the array bounds, we can also create a placement description that only
consists of two linear mappings. In our approach, the vertices of the reduced COIG are at some
point transformed into vertices representing partitions so that the actual placement description
does not need to contain a domain description but can be defined by a linear relation, i.e., by a
pair of unrestricted linear mappings between Qnsrc+nblob+2 and Qntgt+nblob+2. Section 2.4 already
shows the basic representation for such a relation. Here, we consider the specifics of representing
an HPF placement relation for occurrence instances and dependences between occurrence instances.

Example 4.3 An HPF placement of the form

!HPF$ DISTRIBUTE T(BLOCK(B1),BLOCK(B2),BLOCK(B3)) ONTO P

!HPF$ ALIGN A(i1,i2) WITH T(a1*i1+c1,*,i2)
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defines an alignment of the alignee A onto an align target T. This alignment is represented by two
mappings

ΦL :

(
i1
i2

)

7→







⌊
a1·i1+c1

b1

⌋

0
⌊

i2
b3

⌋







and

ΦR :





p1

p2

p3



 →





p1

0
p3





We do not consider CYCLIC or BLOCK-CYCLIC distributions as non-linear, special distributions,
but approximate them by a corresponding linear function: since the number of processors is
unknown at compile time, we cannot make any assertion as to which elements may get aligned.
The only statement we can make is that two elements will be aligned if the nominators and
denominators of their alignment function are the same. Since the denominator, again, may depend
on the number of processors and even the value of parameters at run time, we only consider
alignments to the same template object as pertaining to the same denominator. Alignment to
different template variables is always seen as an alignment to different arrangements of processors
that are completely independent of each other.

In HPF, placements for arrays are defined while, in our model, there is no difference between
occurrence instances representing data and those representing calculations. But every calculation
that is executed does yield some result value. This result value has to be stored somewhere –
otherwise the calculation would be unnecessary and could be discarded. The process of storing
the result value for future use is made explicit in our method by assigning this value to an array
variable. This determines the placement of the execution through the placement of the array.2 Note
that we assume a placement to be defined via an alignment to a template that is distributed across
a processor array. If an array is distributed directly via a DISTRIBUTE directive, we can rewrite
this definition so that an element (i1, . . . , ir)

T
of an array A is aligned to element (i1, . . . , ir)

T
of

a new template of the same shape and extent as A that is distributed across the processor array
just as A was before.

We will now first describe how to obtain basic placements technically from the HPF distributions
specified by the programmer. Section 4.1.3 shows how our method handles dependences between
occurrence instances that are distributed in a replicated fashion. The actual placement algorithm
is then examined in the following sections.

4.1.2 Parsing HPF Placements

In this section, we will briefly sketch the technicalities of obtaining a placement description, as
discussed above for the arrays in an HPF program, from the distribution directives.A possible
implementation for translating an HPF-like description of distributions to a version using two
mappings is presented in Algorithm 4.1.1.

In Step 1, Algorithm 4.1.1 (ParseHPF ) creates two matrices:

M ′′
L: defines a mapping from the space spanned by the identifiers used in the ALIGN clause

to the space defined by the subscript dimensions of the alignee.

M ′′
R: defines a mapping from the space spanned by the identifiers used in the ALIGN clause

to the space defined by the subscript dimensions of the template.

2Actually, there is one exception since, in contrast to our framework, HPF supports the notion of a subroutine
call without any return value. Therefore, in the case of subroutine calls, a placement has to be implemented by
creating a template T that “stores” the (non-existent) result value and places the calculation by determinig the
home of the enclosing loops with respect to the coordinates of T using the HOME directive.
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We suppose that a function LinearExpr is defined that is used here to create the matrix rows
representing these linear expressions.

In Step 2, the matrices M ′′
L and M ′′

R are inverted in order to obtain mappings to the common
space of identifiers used. M ′′

L is per definitionem of full rank and thus invertible. But M ′′
R may

define a relation so that several elements of the alignee are aligned with only one specific coordinate
in a template dimension, i.e., there is a condition on template elements to store any element of the
alignee at all. In this case, this condition is defined by a matrix M ′′C

R , as discussed in the context
of Algorithm 2.2.1 (GeneralizedInverseMin) in Section 2.2.

Step 3 transforms these matrices so that their source spaces are the index space of the original
program – i.e., array dimensions are represented by the index dimensions enumerated by the corre-
sponding dummy loops, and template dimensions are represented by parallel indices of the target
program. We suppose that these embeddings are defined by a call to a function CreateProjections.
In addition, this step transforms the function mapping the (parallel) target indices to the common
vector space into an endomorphism by prepending and appending sufficiently many zero-rows.
This means that the common subspace is actually a virtual processor mesh, as shown in Section
2.4.

Algorithm 4.1.1 [ParseHPF ]:
Input:
alignDirective :

an ALIGN directive of the form
ALIGN alignee (alignDummyList) alignTarget (alignSubscriptList).

templateNameToIndex :
mapping from the template name to the number of the first dimension in the target
program that represents a dimension of that processor array.

identifierList :
list of all identifiers used in alignDummyList or alignSubscriptListorasparameters.

parameterList :
list of all structural parameters in the (source and target) program; the i-th element in
the list contains the identifier of the parameter dimension i.

Output:
Φalignee = (ΦL,ΦR) :

placement for alignee as a relation between the index space of the dummy loop for
alignee and the processor mesh alignee is placed onto.

Procedure:
/* STEP 1: initialize matrices M ′′

L, M ′′
R defining mappings from a common identifier space */

/* to the data space of the alignee on the one hand and */

/* to the data space of the template on the other hand */

let M ′′
L ∈ Q

(size(alignDummyList)+size(parameterList))×size(identifierList);

for i = 1 to size(alignDummyList)
set the i-th row of M ′′

L to the vector

LinearExpr(alignDummyList[i], identifierList) ∈ Z
size(identifierList)

that represents the linear expression alignDummyList[i];
endfor

/* Parameters are mapped to themselves */

for i = 1 to size(parameterList)
set the size(alignDummyList) + i-th row of M ′′

L to the vector

LinearExpr(parameterList[i], identifierList) ∈ Z
size(identifierList) that represents

the i-th parameter in parameterList;
endfor

let M ′′
R ∈ Q(size(alignSubscriptList)+size(parameterList))×size(identifierList);

for i = 1 to size(alignSubscriptList )
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set the i-th row of M ′′
R to the vector

LinearExpr(alignSubscriptList[i], identifierList) ∈ Z
size(identifierList) that represents

the linear expression alignSubscriptList[i];
endfor

for i = 1 to size(parameterList)
set the size(alignSubscriptList) + i-th row of M ′′

R to the vector

LinearExpr(parameterList[i], identifierList) ∈ Zsize(identifierList) that represents
the i-th parameter in parameterList;

endfor

/* STEP 2: invert the mappings above to create mappings from the alignee’s data space and */

/* from the template’s data space back top the space of common identifiers */

/* The placement relation can basically be expressed by the inverses of */

/* M ′′
L and M ′′

R now. */

/* What remains are restrictions of the relation, e.g., to a single template coordinate. */

/* Only copy rows of M ′′
L/M ′′

R into M ′
L/M ′

R, */

/* if they define actual conditions. . . */

let M ′
L ∈ Q(size(alignSubscriptList)+size(parameterList))×(size(alignDummyList)+size(parameterList));

let M ′
R ∈ Q(size(alignSubscriptList)+size(parameterList))×(size(alignSubscriptList)+size(parameterList));

currRow := 1;
for i = 1 to size(identifierList)
/* If row i of M ′′g0

L or M ′′g0

R is zero, */

/* neither that row nor the corresponding row of the other matrix */

/* have to be considered for constraints; */

/* otherwise, those two rows together define a constraint for the placement relation. */

if M ′′g0

R [i] 6= 0 then

M ′
L[currRow] := M ′′g0

L [i];
M ′

R[currRow] := M ′′g0

R [i];
currRow := currRow + 1;

endif

endfor

/* There may have been additional contitions for the processors that store a given element. */

/* These are represented by the rows of M ′′C
R . */

NumberOfConditions := size(arraySubscriptList) + size(parameterList) − rk(M ′′
R);

for i = 1 to NumberOfConditions
M ′

L[currRow] := 0;
M ′

R[currRow] := M ′′C
R [i];

currRow := currRow + 1;
endfor

/* STEP 3: produce a relation based on the actual indices of dummy loops */

/* for the arrays to be allocated as target space for the placement */

CreateProjections(alignDirective , templateNameToIndex ,MPL
,MPR

);
ML := M ′

L ·MPL
;

MR := M ′
R ·MPR

;

/* currRow is less or equal size(alignSubscriptList ); */

/* i.e., we can now extend MR so that the corresponding function is an endomorphism */

prepend templateNameToIndex (alignee) rows containing only zero to MR and ML;

append enough zero-rows to MR and ML so that MR becomes quadratic;

let ΦL : Qnsrc+nblob → Q#pdims+nblob : ν 7→ ML · ν;

let ΦR : Q#pdims+nblob → Q#pdims+nblob : ν 7→ MR · ν;
return Φ = (ΦL,ΦR);
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The following example shall give a short impression on the structure of such a placement
relation.

Example 4.4 The following code fragment defines two templates – a 2-dimensional and a 3-
dimensional one – that together build a 5-dimensional target space (ignoring time dimensions for
now). The 3-dimensional array A is then aligned with the 3-dimensional template.

REAL A(1:50,1:100)

!HPF$ TEMPLATE T1(1:100,1:100)

!HPF$ DISTRIBUTE T1(BLOCK,BLOCK)

!HPF$ TEMPLATE T2(1:100,1:100,1:100)

!HPF$ DISTRIBUTE T2(BLOCK,BLOCK,BLOCK)

!HPF$ ALIGN A(i,j,k) WITH T2(2*i,3,1)

The only actually aligned dimension of A is the first one, which is aligned to the first dimen-
sion of T2; but only template elements with second coordinate 3 and third coordinate 1 store
any elements at all. This is sketched in Figure 4.1. With parameterList = (m∞,mc) and
identifierList = (i , j , k ,m∞,mc), the initial matrices produced are:

i j k m∞ mc

M ′′
L =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









i j k m∞ mc

M ′′
R =









2 0 0 0 0
0 0 0 0 3
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1









The generalized inverses and the corresponding conditional matrices produced by Algorithm
2.2.1 are then:

(M ′′
L)g0 =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









(M ′′
L)C ∈ Q0×5

(M ′′
R)g0 =









1
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1









(M ′′
R)C =

(
0 0 1 0 −1
0 1 0 0 −3

)

As expected, there is no condition defined by (M ′′
L)C . (M ′′

R)C , on the other hand, defines the
condition that the second coordinate of the template is 3 and the third is 1. The algorithm then
replaces the rows from the mappings for which M ′′g0

R contains only zero-entries by the conditions
defined in M ′′C

R .3 This results in the following matrices:

M ′
L =









1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1









M ′
R =









1
2 0 0 0 0
0 0 1 0 −1
0 1 0 0 −3
0 0 0 1 0
0 0 0 0 1









A placement relation only exists between array elements and template elements that are mapped
to the same element by M ′

L and M ′
R, i.e., the coordinate in the first array dimension has to be

half as large as the coordinate in the first template dimension. This relation, too, can be gleaned
from Figure 4.1.

3These zero-rows come from the fact, that the corresponding coordinates in the template dimension was free to
choose during inversion, i.e., a placement is defined for all these coordinates, which means that the array elements
are replicated along these dimensions.
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The final step of Algorithm 4.1.1 introduces zero-columns and rows so that the domains of the
mappings are the indices of dummy loops and the target indices, respectively. In particular, the
first two dimensions are reserved for the unused template T1. We suppose that the program does
not contain any additional loops and also ignore the operand and occurrence dimensions. This
results in the matrices:

M ′
L =













0 0 0 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1













M ′
R =













0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 −1
0 0 0 1 0 0 −3
0 0 0 0 0 1 0
0 0 0 0 0 0 1













These matrices finally define a placement relation whose associated function of MR is an en-
domorphism in Q

ntgt+nblob+2 mapping from physical processors to virtual processors as discussed
in Section 2.4.

M ′′
R

M ′
L

M ′′
L

M ′
R

i

j
k

p1

p2
p3

p1

p2
p3

Figure 4.1: Placement relation of Example 4.4. The array elements A(·, 2, 1) and their placements
are marked with boxes. In particular, A(2, 2, 1) is marked with dark grey boxes and fat borders.

Given a placement relation defined by two mappings (ΦL,ΦR), the set of processors on which
an occurrence instance α is to be stored is:

Φ(α) = Φ−1
R ◦ ΦL(α)

A consistency condition is that the image of ΦL is a subset of the image of ΦR. For the placements
given as input, we can safely assume this; the placements we compute in Section 4.2 satisfy this
property by construction.

This approach corresponds to the description of replicated data in HPF, as sketched in Sections
2.1 and 2.4. Algorithm 4.1.1 describes a way to obtain a linear relation for a placement of an array
in an HPF program. In order to obtain placements for interesting sets that are newly created by
the LCCP transformation, we will view the COIG of the program fragment to be considered with
output and anti dependences removed. Our method is based on following these dependences and
propagating the placement relation from the final read and write access instances. The placement
selection is then done based on the communication taking place in the transformed program –
which is modelled by the flow dependences and structural output dependences in the target index
space of the program. The following section will therefore focus on how to treat dependences to
occurrence instances that might be distributed according to a replicated placement.

4.1.3 Dependences in the Presence of Replication

The transformation in the polyhedron model is represented by a space-time mapping. This map-
ping is usually a piecewise linear function that can be represented by a family of linear functions
(Ti)i∈{1,...,nT } where each function Ti is defined on a polyhedron of occurrence instances and has
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the form Ti =

(
Θi

Φi

)

. In this function definition, Θi is a schedule (i.e., the time component of

the space-time mapping) and Φi a placement (the space component). LCCP returns a transformed
dependence graph in the form of the reduced COIG. A space-time mapping is then computed for
the vertices of the reduced COIG that define interesting sets – possibly after an additional par-
titioning of the sets represented by these vertices. For the computation of a placement, we view
the expected dependence graph for the currently considered space-time mapping in order to esti-
mate communication cost. Since at this point we may have replicated placements, the space-time
mapping is not defined by a mapping but by a linear relation.

In order to estimate the costs for communication induced by the target program, we view the
dependences with respect to space coordinates – i.e., after application of the placement relation
(ΦL,ΦR). These space coordinates determine in our case the nodes in a cluster on which to execute
some computation and store the result. Since neither of the two functions defining the placement
relation is necessarily invertible, it is not immediately clear how to represent dependences in the
target program.

p2

p1

p1

p2

i

i

H

Φo1L

Φo2R
Φo2L

o1

o2

Φo1R

Figure 4.2: Dependence of several different instances of occurrence o2 from the same instance of
occurrence o1.

Example 4.5 Consider the following code fragment:

INTEGER i,j

REAL A(1:4)

REAL B(1:4,1:4)

!HPF$ TEMPLATE PROCS(1:4,1:4)

!HPF$ DISTRIBUTE PROCS(BLOCK,BLOCK)

!HPF$ ALIGN B(j,i) WITH PROCS(j,i)

!HPF$ ALIGN A(i) WITH PROCS(j,i)

!HPF$ INDEPENDENT

DO i=1,4

!HPF$ INDEPENDENT

DO j=1,4

B(j,i)=B(j,i)+A(i)**3

END DO

END DO

An application of LCCP yields the common subexpression A(i)**3 which is assigned to an
auxiliary variable in the transformed code and needs a placement for computation (and assign-
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ment to this auxiliary variable). Let o1 be the occurrence of the write access in the dummy loop
representing the placement of A specified by the user. This dummy loop is not present in the code
above. Let o2 be the occurrence of the exponentiation A(i)**3, which indirectly depends on o1.
Since the read access instances of A(i) do not form an interesting set, this dependence becomes
direct in a compressed graph that only contains interesting sets. Figure 4.2 represents a placement
as defined in the following code fragment:

INTEGER i,j

REAL A(1:4)

REAL B(1:4,1:4)

REAL TMP(1:4)

!HPF$ TEMPLATE PROCS(1:4,1:4)

!HPF$ DISTRIBUTE PROCS(BLOCK,BLOCK)

!HPF$ ALIGN B(j,i) WITH PROCS(j,i)

!HPF$ ALIGN A(i) WITH PROCS(j,i)

!HPF$ ALIGN TMP(i) WITH PROCS(1,i)

!HPF$ INDEPENDENT

DO i=1,4

TMP(i)=A(i)**3

END DO

!HPF$ INDEPENDENT

DO i=1,4

!HPF$ INDEPENDENT

DO j=1,4

B(j,i)=B(j,i)+TMP(i)

END DO

END DO

The auxiliary array TMP storing the intermediate values A(i)3 is replicated along the first
dimension of the physical processor mesh and distributed along the second dimension. This is
because the instances of occurrence o1 are stored in a replicated fashion (all processors with the
same p1 coordinate own a copy of an occurrence instance). Physical processors storing the lowest
respective instance of an occurrence are marked by fat circles. Just as the mappings (Φo1L,Φo1R)
define a placement relation for the instances of o1, the mappings (Φo2L,Φo2R) define a placement
for the instances of o2, as depicted in the lower part of Figure 4.2. The instances of o2 – the
exponentiations – are only allocated on the first column of the processor space by their placement.

We now view only the dependence of the exponentiation A(i)**3 on the write access to A.
Figure 4.2 shows this dependence as an h-transfromation H. In the upper part of the figure, four
instances of occurrence o1 are mapped to a virtual processor array by Φo1L; physical processors
are mapped to the same processor array by Φo1R. The h-transformation maps a target occurrence
instance α (with OccId(α) = o2) to its source occurrence instance H(α) (OccId(H(α)) = o1).

This means that all instances of occurrence o2, each of which depends on a different instance
of o1, may select the source processor from which to load the data needed for computation.

Example 4.5 shows a single placement for each interesting set. To assess the cost of executing
the target program, our method will iterate over different possible combinations of placements for
the different interesting sets and estimate the cost (in our case the plain communication cost) of
executing the program generated for this particular placement combination.4 In the situation of
the transformed code of Example 4.5, an occurrence instance that computes the value A(i) for
some given i can choose among several different places from where to get the value A(i): since A
is stored in a replicated fashion, any one of the copies in the p1-dimension will do.

4Actually, the placement of the computation of A(i)3 and thus of the auxiliary array TMP in the example
follows neither the placement of the source nor the targets of the computed expression – it will therefore not be
generated as a valid possibility in our method. This placement relation is only used for the sake of the argument,
here.
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Correspondingly, if TMP were distributed in a replicated fashion, we would have the obligation
to compute the corresponding value on several processors. Let us take a closer look at what options
and obligations replicated placements incur.

Which Copy to Read from The set of copies to choose from for the execution of an occurrence
instance α (with OccId(α) = o1) in Example 4.5 is given by

(Φo1

−1
R ◦ Φo1L ◦H)(α)

With Φo1 and H represented as pairs of mappings, as introduced in Section 2.4.2, this becomes
either

(Φo1 ◦− H)(α)

or

(Φo1 ◦+ H)(α)

Let us now take a closer look in order to decide which operator is appropriate here. Which one
of the copies is actually chosen during execution may depend on various factors that are beyond
our control: the final choice may depend on the compiler or even the hardware. Especially in
the context of inter-node communication, which is our concern here, it is usually advantageous
to choose a copy for which as many dimensions as possible feature the same coordinates as the
occurrence instance α. In our example, in which the copies are layed out along the p1-dimension,
this is the one with p1-coordinate 1, marked as a shaded fat circle in Figure 4.3 (for the case i = 1).
If copies can only be placed along an axis of the processor mesh, as is the case for HPF, this is also
the nearest copy. The ◦− operator from Definition 2.36 is designed to produce exactly this copy.
Therefore, we suppose to choose the copy of an occurrence instance α as in the example according
to the following mapping.

H ′ = (Φo1 ◦− H ◦+ Φ−1
o2

)(α) (4.1)

with H and H ′ being represented as pairs of mappings – a representation that can be used for
mappings, according to Corollary 2.31. This leaves the dependence in the portion of the target
index space that we consider here as the identity: each occurrence instance has a copy of the
source of its dependence available on the local processor. Note that we have not yet justified the
◦+ operator in the formula above. This will follow immediately.

Which Copies to Execute We have seen that we may pick any copy of a replicated dependence
source. On the other hand, several target occurrence instances may have to be executed on the
same processor. Considering a placement relation defined by (ΦL,ΦR), a non-empty kernel of ΦR

(as can be observed for Φo1R in Example 4.5) defines several places to execute/store an occurrence
instance and thus represents a choice from which processor to read the source of a dependence.
A non-empty kernel of ΦL, on the other hand, represents several occurrence instances that have
to be executed on the same processor. Thus, this non-empty kernel represents the obligation to
consider several occurrence instances. Therefore, Equation (4.1) contains the ◦+ operator which
returns the complete set of occurrence instances placed on the same physical processor indicated
by α. Example 4.6 shows this case.

Example 4.6 Let us change the code of Example 4.5 a little bit. Instead of A(i)**3, we now
write A(1)**i. This means that the occurrence instances of the eyponentiation operator still form
an interesting set, and this interesting set is non-trivial (A(1)**i represents different values for
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p2

p1

p1

p2

i

i

Φo1L

Φo2R
Φo2L

o1

o2

Φo1R

H H
′

Figure 4.3: Dependence from several instances of occurrence o2 to the same instance of occurrence
o1.

different values of i), but all these occurrence instances read the same element of A. The resulting
code looks as follows.

INTEGER i,j

REAL A(1:4)

REAL B(1:4,1:4)

REAL TMP(1:4)

!HPF$ TEMPLATE PROCS(1:4,1:4)

!HPF$ DISTRIBUTE PROCS(BLOCK,BLOCK)

!HPF$ ALIGN B(j,i) WITH PROCS(j,i)

!HPF$ ALIGN A(i) WITH PROCS(j,i)

!HPF$ ALIGN TMP(i) WITH PROCS(j,1)

!HPF$ INDEPENDENT

DO i=1,4

TMP(i)=A(1)**i

END DO

!HPF$ INDEPENDENT

DO i=1,4

!HPF$ INDEPENDENT

DO j=1,4

B(j,i)=B(j,i)+TMP(i)

END DO

END DO

Figure 4.3 shows the occurrence instances for the exponentiation (o2) stored in the auxiliary
array TMP and the write access (o1) in the dummy loop for array A, from which o2 effectively
reads. The complete set of o2-instances is executed on each of the processors on the lowest row
of the processor mesh. All the instances of o2 depend on the same instance of o1 – the one that
defines A(1). Therefore, the corresponding computation is placed on the same set of processors as
this single element. The resulting dependence in the target index space is named H ′ in Figure 4.3.
Again, the dependence is essentially the identity, but only because all instances of o2 are executed
on the same virtual processor.

Recapitulating, we observe that, when modelling a dependence in the target index space, there
may be two sets to consider:
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• Within the set of copies of the source occurrence instance of a dependence, the copy to read
from may be chosen freely (this is done by the ◦− operator).

• The set of dependence targets executed on the same processor has to be enumerated com-
pletely. Therefore, we cannot just chose a single element, but have to take into account the
complete set (this set is returned by the ◦+ operator).

We have now established how to handle dependences between processors in the target index
space. In the next section, we will develop the algorithms that use these transformed dependences
in a selection criterion for good placements of occurrence instances.

4.2 The Placement Algorithm

This section discusses the placement algorithm in detail. The description is based on Wondrak’s
diploma thesis [Won05], in particular, most of the algorithms can also be found there in a slightly
different formulation.

Our placement method follows a simple approach: in HPF, the placement of arrays is always
defined by the user – and can be obtained using Algorithm 4.1.1. It only remains to introduce
placement relations for the interesting sets created by LCCP. These interesting sets mark the
points in the computation which lend themselves naturally to storing in main memory, since the
result of these operations are needed at several different places of the program. It is now our aim
to produce placement relations for these interesting sets.

4.2.1 Restriction to Interesting Sets

As already observed in Section 3.2, it is not necessary to compute a space-time mapping for vertices
of the reduced COIG (RCOIG) that do not represent interesting sets. Therefore, we assume
the reduced COIG to be given in a compacted form that only consists of vertices representing
interesting sets. An algorithm for producing such a reduced COIG that only consists of interesting
sets is presented in Wondrak’s diploma thesis [Won05, Algorithm 3]. This transformation consists
in removing each vertex v representing a non-interesting set and replacing the edges originating
and ending in v with the combination of each edge ending in v with each edge originating in v.
Example 4.7 shows this transformation.

occ occ

i

+(read B(i-1),**(read B(i),2))

Assign(+(read B(i-1),**(read B(i),2)),write A(i))

**(read B(i),2)

read B(i)

write A(i)

i

read B(i)

write A(i)

Figure 4.4: COIG and compacted COIG for Example 4.7.

Example 4.7 Figure 4.4 shows a simplified COIG of the following code fragment (occurrence
instances representing different operands are folded into a single instance, linear expressions are
omitted).

!HPF$ INDEPENDENT

DO i=2,5

A(i)=B(i-1)+B(i)**2

END DO
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The right hand side of Figure 4.4 shows a COIG of the same program fragment with elements of
non-interesting sets removed. Only the instances of the write access and the read accesses represent
interesting sets. There are two possible ways to reach an instance of the write access from a read
access instance and vice versa: either through the fat edge or through the fat dashed edges. Figure
4.5 shows the reduced forms of the graphs from Figure 4.4.

5

1

5

4

3

2

1

{2, . . . , 5} → Z :

i 7→ i − 1

{2, . . . , 5} → Z :

i 7→ i

i ∈ {2, . . . , 5}

occ = 6

write A(i)

i ∈ {1, . . . , 5}

occ = 1

read B(i)

{2, . . . , 5} → Z : i 7→ i

{2, . . . , 5} → Z : i 7→ i

i ∈ {2, . . . , 5}

occ = 6

write A(i)

i ∈ {2, . . . , 5}

occ = 5

i ∈ {2, . . . , 5}

occ = 4

i ∈ {2, . . . , 5}

occ = 2

i ∈ {1, . . . , 5}

occ = 1

Assign(+(read B(i-1),
**(read B(i),2)),write A(i))

{1, . . . , 5} → Z : i 7→ i

{2, . . . , 5} → Z : i 7→ i

+(read B(i-1),**(read B(i),2)

**(read B(i),2)

read B(i)

i 7→ i − 1
{2, . . . , 5} → Z :

Figure 4.5: Reduced COIG and compacted reduced COIG for Example 4.7.

Considering Example 4.7, we observe that the number of vertices in the COIG is greatly reduced
(and thus in the reduced COIG, too). Both possible ways to reach a write access from a read access
have to be retained for the placement selection phase. These dependence relations are constructed
from the composition of the appropriate h-transformations. In the following, we suppose that the
reduced COIG processed by the placement method presented only contains vertices representing
interesting sets.

4.2.2 Initial Placement Relations

We assume that the best placement for some given occurrence instance α is to align it either
with one of the values that are necessary to calculate the value of α (i.e., align α with one of
its input arguments) or with one of the occurrence instances that need output from α in order
for their values to be computed (i.e., align α with one of its output arguments). In this way,
at least the communication for the input argument or for the output of α can be done in an
inexpensive manner. We will therefore propagate the placement information from source to target
and from target to source for each flow dependence (and each structural output dependence). This
propagation yields a set of possible placement relations for each interesting set. Each combination
of these possible placement relations incurs different communication costs, which we will estimate
by examining a communication graph based on the dependences in the target index space of the
loop program, as discussed in Section 4.1.3. The placement combination with the least cost will be
selected as the set of placement relations for the program. One may argue that, in order to align
α effectively with one of its dependence targets, from the point of view of efficient communication,
it suffices to distribute α to a superset of processors that need the output value(s) of α. However,
we will only take a superficial glance at this topic.5

5See the discussion of placement combination on page 160.
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The only occurrence instances that feature an a priori placement are occurrence instances of
write accesses – note that interesting sets, which lead to write accesses in the target program, do not
necessarily represent write accesses. These occurrence instances need to have a definite placement,
because they have to be executed at the same places at which the array element to be written
to is stored (i.e., at its homes) – any other convention would only introduce a placeholder for
some messaging scheme that finally introduces an instance of a write access to be executed at the
home of the array element considered. However, since dummy loops also enumerate write accesses,
every read access in the program is dependent on some write access. Therefore, a read access may
also propagate a possible placement to an interesting set through this dependence on some write
access. Algorithm 4.1.1 creates a representation of placement relations for array elements. In
order to obtain the placement relation for an occurrence instance set representing write accesses,
it is necessary to consider its subscript function and the actual placement of the array written
to. Algorithm 4.2.1 produces such an initial placement for all write accesses of the program. The
algorithm just applies the placement relation of the array written to to the subscript function of
the write access. The resulting composition defines the single possible placement relation for the
occurrence instance set containing instances of this write access and thus for the corresponding
vertex v of the reduced COIG. The set of possible placement relations for v, Av, is thus a singleton.

Algorithm 4.2.1 [InitPlacement]:
Input:
GRCOIG = (VRCOIG ,ERCOIG) :

the reduced COIG of a loop program, with only flow dependences represented as edges
in ERCOIG .

∼

Φ =
{

ΦA1
, . . . ,ΦAnsrcArrays

}

:

for each array Ai in the source program the placement relation ΦAi
.

Output:
Vwrite : the set of vertices representing write accesses.

A = {Av v ∈ Vwrite} :
for each vertex v representing write access instances the corresponding set of possible
placements Av.

Procedure:

Vwrite :=
{
v v ∈ VRCOIG ∧ write Aj(...) = Occ−1(OccId(v)), j ∈

{
1, . . . , nsrcArrays

}}
;

forall v ∈ Vwrite

Let Occ−1(OccId(v)) = write Aj(ϕv(i1, . . . , insrc
,n1, . . . ,nnblob

));

/* i.e., ϕv is the subscript function to Aj in the dummy loop */

Φv := ΦAj
◦ ϕv;

Av := {Φv};
end forall

A :=
⋃

v∈Vwrite

Av;

return (Vwrite,A);

Applying Algorithm 4.2.1 to a reduced COIG yields a graph with each of the vertices rep-
resenting write accesses augmented by a set containing the single placement relation eligible for
the occurrence instance set represented by that vertex (we recall that write access instances have
to be executed on exactly the processors that hold the array element written to). The following
deduction of possible placements for the other vertices proceeds roughly according to these steps:

1. Partition the graph so that a placement relation propagated from a write access to a vertex
v (and from there further on) is well defined for all the instances represented by v.
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2. Compute the transitive closure of dependence relations in the partitioned graph.

3. Create new possible placements by building the composition of the transitive dependence
relation with the placement relation of the corresponding write access.

4. Postprocess the created placement relations to obtain only placement relations compatible
with the (HPF) compiler.

5. Evaluate the possible placement relations for each vertex in the graph according to a pa-
rameterized cost model depending on the compiler and target machine.

In order to create additional placement possibilities, we may then reiterate these steps in
reverse (from dependence target to source or vice versa). The following sections will elaborate on
these steps.

4.2.3 Partitioning

The polyhedron model solves the problem of representing infinite dependence graphs by repre-
senting a whole set of instances of dependence sources or targets by a vertex in the dependence
graph. This also holds for the input to our placement method, which is given by a compact form
of the reduced COIG discussed in the previous section. The question then arises which occurrence
instances to include in one of the sets to be represented as a vertex.

Our next step will be to propagate placement relations along the edges of the reduced COIG
RCOIG = (VRCOIG ,ERCOIG). We can ignore the domains and images of the dependences rep-
resented by the edges of the graph, if for each edge ERCOIG 3 e = (vs, vt, He) the following
holds:

dom(He) ⊇ OccInst(vt) (4.2)

im(He) ⊇ OccInst(vs) (4.3)

Where OccInst(v) yields the set of occurrence instances for vertex v. If Equation (4.2) holds, it
is possible to propagate a relation from dependence source to target without considering domain
and target of the respective relations, because it guarantees that the relation defined by the edge
e actually holds for the complete target set represented by vt. Thus, a relation computed as
He ◦Hn · · · ◦H1 holds for the complete set represented by vt. Correspondingly, if Equation (4.3)
holds, it follows that a relation computed as H−1

en
◦ · · · ◦ H−1

1 ◦ H−1
e holds for the complete set

represented by vs. If both Equations (4.2) and (4.3) held, placement relations could be propagated
from source to target and from target to source of a dependence without problems, i.e., there would
be no need to consider the domain of the dependence relation along which to propagate the original
placement relation to obtain a new one.

occ occ

write B(i)

i

read B(i)

write A(i)

write B(i)

i

read B(i)

write A(i)

Figure 4.6: COIG for Example 4.8 with partitioning for Equation (4.3).
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Example 4.8 Reconsider the code fragment from Example 4.7, augmented by distribution direc-
tives, here:

REAL A(2:5)

REAL B(1:5)

!HPF$ TEMPLATE T1(2:5)

!HPF$ TEMPLATE T2(1:5)

!HPF$ DISTRIBUTE T1(BLOCK)

!HPF$ DISTRIBUTE T2(BLOCK)

!HPF$ ALIGN A(i) WITH T1(i)

!HPF$ ALIGN B(i) WITH T2(i)

!HPF$ INDEPENDENT

DO i=2,5

A(i)=B(i-1)+B(i)**2

END DO

The left hand side of Figure 4.6 shows the COIG of this code fragment, with the write access
instances of the dummy loop defining B also represented. After LCCP, the read accesses B(i) and
B(i-1) can be represented by the same occurrence instance set, as shown on the left hand side of
Figure 4.7.

As can be gleaned from this figure, the graph on the left hand side has Property (4.2). It is
thus possible to propagate a placement from source to target, i.e., from the write accesses to B to
the write accesses to A along the dependences.

On the other hand, the graph on the right side does not meet Property (4.2). In the code above,
array A is aligned with a 4-element template T1. This does not suffice for all 5 elements of B,
should we try to distribute them according to the same placement of A. In order to satisfy Equation
(4.2), a partitioning of the write accesses to B is necessary that discerns which combination of
targets depend on a specific subset of occurrence instances. This partitioning is shown on the
right hand side of Figure 4.6 as the separating dashed lines. Figure 4.7 shows the partitioned
reduced COIG as resulting from the application of Algorithm 4.2.2 (Partition) with direction =
target to source. Note, however, that the graph on the right hand side of Figure 4.7 has now
gained Property (4.3), but also lost Property (4.2).

Algorithm 4.2.2 (Partition) generates a partitioned reduced COIG as shown on the right hand
side of Figure 4.7 for Example 4.8. The input is here expected to be in the form of sorted ar-
rays occurrenceLevels and restDeps as produced by Algorithm 3.2.1 (GroupOccurrenceInstances),
which is also used by Algorithm 3.4.1 (LCCPLowLevel ). The first step initializes the data struc-
tures. In particular, the direction in which relations are to be propagated defines the order
in which the vertices are visited – just as for the computation of ≡(∆(s,f) ∪∆f , id). In the sec-

ond step, each of the vertices v on the same level i of occurrenceLevels is partitioned into ver-
tices v′1, . . . , v

′
n with OccInst(v) =

⋃

j∈{1,...,n}

OccInst(vj) so that all elements of vj read from the

same combination of source vertices, if direction = source to target. This partitioning from de-
pendence sources to targets guarantees that Equation (4.2) is satisfied. On the other hand, if
direction = target to source, the partitioning is done in the opposite direction. In this case, each
of the vertices v on the same level i of occurrenceLevels is partitioned so that into vertices v ′1, . . . , v

′
n

with OccInst(v) =
⋃

j∈{1,...,n}

OccInst(vj)so that all elements of vj write to the same combination of

target vertices. This procedure then guarantees that the resulting graph satisfies Equation (4.2).
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−1

1

5

76

−1

5

1

i ∈ {1, . . . , 5}

occ = -1

write B(i)

{1, . . . , 5} → Z :

i 7→ i

i ∈ {2, 3, 4}

occ = 1

read B(i)

occ = 6

write A(i)

i ∈ {2, . . . , 5}

{3, 4} → Z :

i 7→ i − 1

{3, 4} → Z :

i 7→ i

{1} → Z :

i 7→ i

{5} → Z :

i 7→ i

i ∈ {5}

occ = 1

read B(i)

i ∈ {1}

occ = 1

read B(i)

{2} → Z :

i 7→ i − 1

{5} → Z :

i 7→ i

i ∈ {1, . . . , 5}

occ = -1

write B(i)

{2, 3, 4} → Z :

i 7→ i

{2, . . . , 5} → Z :

i 7→ i − 1

{2, . . . , 5} → Z :

i 7→ i

occ = 6

write A(i)

i ∈ {1, . . . , 5}

occ = 1

read B(i)

i ∈ {2, . . . , 5}

Figure 4.7: Reduced COIG for Example 4.8 with partitioning for Equation (4.3).

Algorithm 4.2.2 [Partition]:
Input:
occurrenceLevels :

array of sets of occurrence instances, each set occurrenceLevels[i] representing
a union of vertices of an reduced COIG RCOIG = (VRCOIG ,ERCOIG). I.e.,
each set occurrenceLevels[i] corrsponds to one level produced by Algorithm 3.2.1
(GroupOccurrenceInstances).

restDeps :
array of flow dependences and structural output dependences between the elements of
occurrenceLevels .

A = {Av v ∈ VRCOIG} :
for each vertex v ∈ VRCOIG the corresponding set of possible placements Av.

direction ∈ {source to target, target to source} :
direction in which to partition GRCOIG .

Output:
occurrenceLevelsNew :

array of sets of occurrence instances, each set occurrenceLevelsNew[i] representing a
union of vertices of a partitioned reduced COIG G′

RCOIG = (VRCOIG
′,ERCOIG

′).
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restDepsNew :
array of flow dependences and structural output dependences between the elements
of occurrenceLevelsNew . restDepsNew represents the edges of the partitioned reduced
COIG G′

RCOIG . G′
RCOIG has the following property:

if direction = source to target:
(

∀e : e = (vs, vt) ∈ ERCOIG :
dom(He) = OccInst(vs)∨
write · = Occ−1(OccId(vt))

)

if direction = target to source:
(

∀e : e = (vs, vt) ∈ ERCOIG :
im(He) = OccInst(vt)∨
write · = Occ−1(OccId(vt))

)

A′ =
{
A′

v v ∈ VRCOIG
′
}

:
for each vertex v ∈ VRCOIG

′ the corresponding set of possible placements A′
v .

Procedure:
/* STEP 1: initialization */

Let restDepsSource be a function that takes a node v of RCOIG
and returns a set of edges E from restDeps with
(
∀e = (vs, vt) : e ∈ E : vs = v

)
;

Let restDepsTarget be a function that takes a node v of RCOIG
and returns a set of edges E from restDeps with
(
∀e = (vs, vt) : e ∈ E : vt = v

)
;

/* if we partition from source to target, step up (forward) */

/* in occurrenceLevels , otherwise down (backward) */

if direction = source to target then

start := 2;
end := size(occurrenceLevels);
stride := 1;

else

start := size(occurrenceLevels);
end := 2;
stride := − 1;

endif

/* the lowest level of occurrenceLevels represents write accesses – which are not partitioned */

occurrenceLevelsNew[1] := occurrenceLevels[1];
/* STEP 2: for each level, partition each set of occurrence instances according to the */

/* comnbination of source (or targets, depending on direction) */

/* for this occurrence and create appropriate dependence relations */

for i = start to end, step stride
/* for each set of occurrence instances */

forall v ∈ occurrenceLevels[i]
if direction = source to target then

currInEdges := restDepsTarget(v);
currOutEdges := restDepsSource(v);

else

currInEdges := restDepsSource(v);
currOutEdges := restDepsTarget(v);

endif

toBePartitioned := OccInst(v);
/* for each combination of sources (or targets)... */

for i = # (currInEdges) to 1, step −1
forall {e1 , . . . , ei} ∈ {E ∈ P(currInEdges) # (E) = i}
/* ... partition the set according to the possible sources/targets */
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vNew := toBePartitioned ∩
⋂

j∈{1,...,i}

dom(Hej
);

toBePartitioned := toBePartitioned \ OccInst(vNew );
/* any possible placement already found for v may also be used for vNew */

if OccInst(vNew) 6= ∅ then

A′
vNew := A′

v;

A′ := A′ ∪ {A′
vNew};

occurrenceLevelsNew[i] := append(occurrenceLevelsNew[i], vNew);
/* adapt the dependence relation to the created partition */

if direction = source to target then

forall eo = (v , vo ,Heo
) ∈ currOutEdges

Hen
:= Heo

|H−1
eo (OccInst(vNew));

if dom(Hen
) 6= ∅ then

restDepsNew := append(restDepsNew , (vNew , vo, Hen
));

endif

end forall

else

forall eo = (vo , v ,Heo
) ∈ currOutEdges

Hen
:= Heo

|OccInst(vNew);

restDepsNew := append(restDepsNew , (vo, vNew , Hen
));

end forall

endif

endif

end forall

endfor

end forall

endfor

/* as an optimization, one could add an additional Step 3: */

/* optimize graph by compacting it once more */

return (occurrenceLevelsNew , restDepsNew ,A′);

The reduced COIG to which the placement method should be applied is now either in a form
in which placement relations can safely be propagated in the direction from the dependence source
to the dependence target or vice versa. The actual propagation is based on the computation of
the transitive closure of the dependence relations discussed in the next section.

4.2.4 Transitive Closure

The transitive closure of relations defined by polyhedra, as discussed in Section 2.4.1, is not in
general computable [KPRS94]. In contrast, the transitive closure of a finite graph is computable
– and ignoring the exact h-transformations (the weights of the edges), the reduced COIG is
such a finite graph. A straightforward solution of this problem is given by the Floyd-Warshall
Algorithm [Flo62, War62]. The derivation given by Algorithm 4.2.3 (TransitiveClosure) computes
the transitive closure of the reduced COIG seen as a finite graph RCOIG = (VRCOIG ,ERCOIG)
with an edge ERCOIG 3 e = (vs, vt, He) consisting of a source and a target vertex and an associated
linear function He (represented as linear relation) as a weight.

Algorithm 4.2.3 [TransitiveClosure]:
Input:
RCOIG = (VRCOIG ,ERCOIG) :

reduced COIG representing the COIG (OI/≡(∆(s,f) ∪∆f , id),∆≡
(∆(s,f) ∪ ∆f , id)

).

Output:
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RCOIG = (VRCOIG ,ERCOIG) :
approximation RCOIG ′ = (VRCOIG

′,ERCOIG
′) (representing a COIG

(OI/≡(∆(s,f) ∪∆f , id)
′
,∆≡

(∆(s,f) ∪ ∆f , id)
′)) of the transitive closure of RCOIG :

ERCOIG⊆ERCOIG
′⊆ERCOIG

+

Procedure:
VRCOIG

′ := VRCOIG;

ERCOIG
′ := ERCOIG;

forall v1 ∈ VRCOIG
′

forall v2 ∈ VRCOIG
′

forall v3 ∈ VRCOIG
′

forall e1 ∈ {e′ = (v′1, v
′
2, H1) ∈ ERCOIG v′1 = v1 ∧ v′2 = v2}

forall e2 ∈ {e′ = (v′2, v
′
3, H2) ∈ ERCOIG v′2 = v2 ∧ v′3 = v3}

/* view H1, H2 as linear relations, ignoring */

/* the domains; these are irrelevant here */

ERCOIG
′ := ERCOIG

′ ∪ {(v1, v3, H1 ◦+ H2)};
end forall

end forall

end forall

end forall

Remove cycles from (VRCOIG ,ERCOIG);
return (VRCOIG ,ERCOIG);

The result of Algorithm 4.2.3 represents a composition of finitely many applications of linear
relations that are obtained from the weights of the edges in ERCOIG by removing the domain
constraints – these constraints are not relevant after partitioning with Algorithm 4.2.2. The plain
Floyd-Warshall Algorithm does not handle cycles in any special way. The resulting graph may
contain paths with one or two cycles. This is where the finiteness of the result graph comes into
play: in a single run, the algorithm cannot introduce paths with an arbitrary number of cycles.
A cycle in this graph has to contain a write access. We have also established that write accesses
have a fixed placement relation. Any path from some occurrence over a write access to – which
has a fixed placement – to another occurrence (or back to the original occurrence, as is the case
for a simple cycle) does not introduce a good placement choice, since the communication to (or
from) the fixed write access will be the same.

The only point in which a cycle can be useful for determining a placement relation is the
combination discussed in Section 2.4.2. Definition 2.37 defines the combination of linear relations
that behaves like both the input relations as long as they yield the same home; if they differ in the
home for some elements, the result placement defines a replication of copies of these elements along
the dimensions in which the original placements differ. Thus, the combination of two placements
defines a placement on a superset of both original placement relations. The combination of several
possible placements Φv for a given node v can therefore yield a new placement relation that only
distributes data along axes, if this is advantegous for several dependences. The result could very
well be a good placement candidate for v. This is true especially for the combination of an already
generated placement Φv and the placement relation Φv ◦+ Ψ obtained from Φv by traversing a
cycle ending in v, since this cycle then represents the reuse of a value generated with the same
term. However, Considering these placements greatly increases the number of combinations to be
assessed by our placement method. We therefore decide not to include such placements in the
set Av of possible placements for a node v. In particular, cycles are completely removed from the
result graph of Algorithm 4.2.3 before returning the graph.
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4.2.5 Placement Propagation

After the computation of the transitive closure, the set of possible placements is easily computed
by applying the placement of a set of write access instances O to the composition of the linear
relations representing the path to the vertex representing O. This propagation is done by the
following algorithm.

Algorithm 4.2.4 [Propagate]:
Input:
GRCOIG = (VRCOIG ,ERCOIG) :

reduced COIG with VRCOIG =
{

v1, . . . , vnVRCOIG

}

.

A =
{

Av1
, . . . ,AvnVRCOIG

}

:

for each v ∈ VRCOIG the set of possible placement relations Av.

direction ∈ {source to target, target to source} :
direction in which to propagate placement relations.

Output:

A′ =
{

A′
v1
, . . . ,A′

vnVRCOIG

}

:

for each v ∈ VRCOIG the set of possible placement relations A′
v including those propa-

gated from dependence sources/targets.

Procedure:
/* STEP 1: compute the transitive closure of the graph using Algorithm 4.2.3 */

ERCOIG
′ := TransitiveClosure((VRCOIG ,ERCOIG));

/* STEP 2: propagate placement information in the given direction */

if direction = source to target then

forall e = (vs , vt ,He) ∈ ERCOIG
′

Φvt
:= Φvs

◦+ He;

A′
vt

:= A′
vt
∪ {Φvt

};
end forall

else

forall e = (vs , vt ,He) ∈ ERCOIG
′

Φvs
:= Φvt

◦+ H
−1
e ;

A′
vs

:= A′
vs
∪ {Φvs

};
end forall

endif

return A′ =
{

A′
v1 , . . . ,A

′
vnVRCOIG

}

;

Algorithm 4.2.4 computes the set of possible placement relations from the approximated tran-
sitive closure applied in Step 1. Depending on the direction in which to propagate the placement
relations (from source to target or from target to source), the placement relations for a node v
are computed as a compositions of the placements of write accesses reachable from v with the
composition of the h-transformations or the inverse h-transformations building the weights of the
corresponding paths.

Example 4.9 Let us return to the code from Examples 4.7 and 4.8. This time, we use a replicated
placement for array A than in Example 4.8:

REAL A(2:5)

REAL B(1:5)

!HPF$ TEMPLATE T1(2:5)
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!HPF$ TEMPLATE T2(1:5)

!HPF$ DISTRIBUTE T1(BLOCK)

!HPF$ DISTRIBUTE T2(BLOCK)

!HPF$ ALIGN A(i) WITH T1(*)

!HPF$ ALIGN B(i) WITH T2(i)

!HPF$ INDEPENDENT

DO i=2,5

A(i)=B(i-1)+B(i)**2

END DO

Let us now determine the possible placements for the instances of the read access to B that we
have determined to constitute an interesting set. For the sake of simplicity, we will only consider
the dimensions of the index space of the corresponding occurrence instances here. For the read
access to B, this is OB := {i} 1 ≤ i ≤ 5, because we have read access to all elements from element
number 1 to element number 5 in this program fragment.
When propagating placements from source to target in this case, the read access may obtain its
placement from the corresponding write access in the dummy loop. The h-transformation in this
case is a linear function H1 : ı 7→ i. B – and thus the write access to B in the dummy loop – is
distributed to a template according to a placement relation

ΦB =







i 1




1 0
0 0
0 1




,

p1 p2 1




1 0 0
0 0 0
0 1 0











with p1 being the target index for template T1 and p2 the target index for T2. The resulting possible
placement for the read access is then (due to the simple h-transformation) the same distribution

Φread B ◦+ H1 =







i 1




1 0
0 0
0 1




,

p1 p2 1




1 0 0
0 0 0
0 0 1











For the propagation from target to source, the graph has to be repartitioned as shown in Figure 4.8.
This results in three sets representing the read access (again, we only represent the index space
without occurrence number etc.): OB ,1 := {i} i = 1, OB ,2 := {i} 2 ≤ i ≤ 4, OB ,3 := {i} i = 5.
Figure 4.7 shows the reduced COIG partitioned for placement propagation from source to target.
For each of these three sets, we not only have the possible placement computed above from the
write access in the dummy loop, but also one computed from the placement of the write access to
A, which is distributed in a replicated fashion according to the placement relation

Φwrite A =







i 1




0 0
0 0
0 1




,

p1 p2 1




0 0 0
0 0 0
0 0 1











Let us now calculate the respective placements for each of the sets OB,1, OB,2 and OB,3 that
are propagated from the write access to A.

OB,1: The only h-transformation along which we may propagate has the form H2 : i 7→ i− 1.
The result is therefore the placement relation

Φwrite A ◦+ H
−1
2 =
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i 1




0 0
0 0
0 1




,

p1 p2 1




0 0 0
0 0 0
0 0 1











◦+





i 1
(

1 0
0 1

)
,

i 1
(

1 −1
0 1

)





=







i 1




0 0
0 0
0 1




,

p1 p2 1




0 0 0
0 0 0
0 0 1











This placement generates a copy of part of the array B on all processors.

OB,2: In this case, we have two h-transformations according to which we can propagate a
placement: in addition to H2, we also have H3 : i 7→ i. However, since A is stored in
a replicated fashion, the result of the composition with the ◦+ operator is the same:

Φwrite A ◦+ H
−1
3 =







i 1




0 0
0 0
0 1




,

p1 p2 1




0 0 0
0 0 0
0 0 1











◦+





i 1
(

1 0
0 1

)
,

i 1
(

1 0
0 1

)





=







i 1




0 0
0 0
0 1




,

p1 p2 1




0 0 0
0 0 0
0 0 1











In this case, we have actually generated only one new placement relation when prop-
agating from target to source (i.e., we have only two possible placements for this set).
In order to notice this fact, we compare the resulting placement relations as discussed
in Section 2.4.2 and only add placement relations as new possibilities that we have not
encountered before.

OB,3: As Figure 4.7 shows, only the h-transformation H3 connects OB,3 with the write access.
Therefore, we have the same possible placement relations for this set as for OB,1 and
OB,2.

The propagation algorithm described above may produce placement relations that are not
expressable in HPF. The next section will handle this case.

4.2.6 Postprocessing Placement Relations

Not every placement relation computed by Algorithm 4.2.4 represents a placement that we can
actually use in the target program. In our case, the restriction is that we only allow legal place-
ments according to the HPF standard [Hig97]. As already discussed in Section 2.1.1, there are
placements representable by linear relations that – for good reason – do not define a legal HPF
placement. Example 2.7 on page 11 shows an illegal placement in HPF. HPF is not capable of
processing general linear relations as placements. Example 4.10 shows why we may have to deal
with the illegal placement of Example 2.7 at this point.

Example 4.10 Consider the following legal HPF code:

REAL A(10)

REAL B(10,10)

!HPF$ TEMPLATE T(10,10)



164 CHAPTER 4. PLACEMENT COMPUTATION AND REPLICATION

!HPF$ DISTRIBUTE T(BLOCK,BLOCK)

!HPF$ ALIGN A(i,j) WITH T(i,j)

!HPF$ ALIGN B(i,j) WITH T(i,j)

!HPF$ INDEPENDENT, NEW(j)

DO i=1,10

!HPF$ INDEPENDENT

DO j=1,10

A(j,i)=2*B(i,i)+A(j,i)

END DO

END DO

LCCP will extract the repeated computation of the 1-dimensional expression 2*B(i,i) to produce
code like the following:

REAL A(10)

REAL B(10,10)

REAL TMP(10)

!HPF$ TEMPLATE T(10,10)

!HPF$ DISTRIBUTE T(BLOCK,BLOCK)

!HPF$ ALIGN A(i,j) WITH T(i,j)

!HPF$ INDEPENDENT

DO i=1,10

TMP(i)=2*B(i,i)

END DO

!HPF$ INDEPENDENT, NEW(j)

DO i=1,10

!HPF$ INDEPENDENT

DO j=1,10

A(j,i)=TMP(i)+A(j,i)

END DO

END DO

The only thing missing in this transformed code is the placement for TMP. A straightforward
placement would be to propagate the placement of B to its target TMP according to the flow
dependence H : i 7→ (i, i)T . Leading to a placement defined by:

!HPF$ ALIGN TMP(i) WITH T(i,i)

Unfortunately, this is an illegal alignment, since the align-subscript (i,i) contains the align
dummy i twice. We can circumvent this problem by introducing replicated placements. The two
placements

!HPF$ ALIGN TMP(i) WITH T(i,*)

and

!HPF$ ALIGN TMP(i) WITH T(*,i)

are both legal HPF placements. They define a replication in either the first or the second dimension
of T . Thus, TMP is always stored on a superset of the processors specified by the original place-
ment. Thus, copies will be available at least on the processors specified in the original placement.

The following theorem, taken from Wondrak’s diploma thesis [Won05], formalizes the restric-
tions a placement relation has to satisfy in order to be expressible in HPF. In the following, we will
convert between the representation of a linear relation by two functions and its defining matrix
by a function RelMat:

RelMat : (ΦL,ΦR) 7→ d ·
(
MΦL

−MΦR

)
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where ΦL : α → MΦL
· α and ΦR : β → MΦR

· β (and d is the lcm of all entries of MΦR
and

MΦL
).

Theorem 4.11 Let (ΦL,ΦR) be two mappings representing a linear relation defining a placement
and let MΦ = RelMat((ΦL,ΦR)) be the corresponding matrix. Let MΦ

′ be the reduced echelon
form of MΦ ∈ Q

q×nsrc+nblob+2+ntgt+nblob+2. Then the placement defined by (ΦL,ΦR) is a legal
HPF placement, iff each of the following conditions hold

1. No row of MΦ contains non-zero entries in more than one source index dimension:

(
∀r : r ∈ {1, . . . , q} : # ({c ∈ {1, . . . , nsrc} MΦ[r, c] 6= 0}) ≤ 1

)
(4.4)

2. No row of MΦ contains non-zero entries in more than one target index dimension:

(
∀r : r ∈ {1, . . . , q} : # ({c ∈ {nstart, . . . , nend} MΦ[r, c] 6= 0}) ≤ 1

)
(4.5)

with nstart = nsrc + nblob + 2 + ntgt and nend = nsrc + nblob + 2 + ntgt + nblob.

3. No column of MΦ representing a source index features more than one non-zero entry:

(
∀c : c ∈ {1, . . . , nsrc} : # ({r ∈ {1, . . . , q} MΦ[r, c] 6= 0}) ≤ 1

)
(4.6)

4. No column of MΦ representing a target index features more than one non-zero entry:

(
∀c : c ∈ {nstart, . . . , nend} : # ({r ∈ {1, . . . , q} MΦ[r, c] 6= 0}) ≤ 1

)
(4.7)

with nstart = nsrc + nblob + 2 + ntgt and nend = nsrc + nblob + 2 + ntgt + nblob.

Proof:

The theorem is an obvious reformulation of the constraints to the ALIGN directive in the HPF

standard [Hig97, Section 3.4]. Conditions for columns in the above theorem come from overall
statements about the complete directive; a conditions on a row comes from the relation between
an element of a <align-dummy-list> and an element of an <align-subscript-list>. The gentle
reader is referred to Wondrak’s work [Won05] for a detailed discussion. X

Note that the restrictions imposed by HPF are not arbitrary, but guarantee that arrays can be
defined statically with a rectangular shape. Otherwise, a processor might have to test whether its
coordinates in the processor mesh satisfy some constraint in order to determine, whether it has to
hold any data at all.

The following algorithm (MakeHPFConform) takes a set of possible placements for a vertex of a
reduced COIG, as produced by Algorithm 4.2.4, and returns a set of placements that all conform
to the restrictions imposed by HPF. Each of the generated placements defines a distribution of
array elements to a superset of the processor mesh elements onto which the original placement
distributed the same array elements. This is guaranteed by the fact that a new placement is
generated from an old one by zeroing out one or more of the rows in the matrix defining the
placement. Thus, one or more of the conditions defining the placement relation is deleted. The
näıve approach of Algorithm 4.2.5 is to delete every possible combination of conditions from the
original in turn, each time testing, whether the result defines a legal HPF placement. Note that a
row may also contradict the rules of Theorem 4.11, if one of its columns contradicts those rules.
Another approach may be to heuristically delete some preferred set of rows.
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Algorithm 4.2.5 [MakeHPFConform]:
Input:
Av : the set of possible placements for a vertex v.
Output:
A′

v : a transformed set of possible placements, each of which is representable in HPF and
defines a superset of homes defined by a placement from Av.

Procedure:
forall Φ ∈ Av

if Φ is not representable in HPF according to Theorem 4.11 then

MΦ := RelMat(Φ);
Determine the set H of rows of MΦ that do not conform to HPF according to Theorem 4.11;
/* U is the set of all combinations of numbers of illegal rows */

U := P(H) \ ∅;
forall R ∈ U

MΦ
′ := MΦ;

forall r ∈ R

MΦ
′[r , ·] := 0;

if MΦ
′ is HPF conform according to Theorem 4.11 then

A′
v := A′

v ∪ RelMat−1(MΦ
′);

endif

end forall

end forall

endif

end forall

Algorithms 4.2.4 and 4.2.5 generate a large number of placements for each node v of the reduced
COIG. These placement relations – represented by (unscoped) linear relations – are stored in a
set Av. In order to implement such a set, it is necessary to eliminate duplicate entries, which are
identified as discussed in Section 2.4.2. Thus, placement relations that define the same placement
are handled only once. We have already encountered this problem in Example 4.9. Practical
experience showed that storing these reduced sets of placement can be a challenge for even quite a
simple program fragment. This is because a very large number of quite similar placement relations
is generated. Our implementation in LooPo therefore stores the placement relations in the form of
sparse matrices. With all the possible placements generated for each vertex of the reduced COIG
now, it is time to evaluate these placements.

4.2.7 Placement Evaluation

The last step proposed for placement generation on page 154 is the evaluation of the gener-
ated placements. Algorithm 4.2.6 (Evaluate) performs this evaluation simply by generating each
possible combination of placements, generating a reduced COIG transformed by the space-time
mapping corresponding to that placement relation and returning the least expensive placement
combination according to a cost function that assigns a cost to the transformed reduced COIG.
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Algorithm 4.2.6 [Evaluate]:
Input:
RCOIG = (VRCOIG ,ERCOIG) :

reduced COIG with VRCOIG =
{

v1, . . . , vnVRCOIG

}

.

A =
{

Av1
, . . . ,AvnVRCOIG

}

:
for each vertex v ∈ VRCOIG a set Av of possible placements.

CostFunc :
a cost function for the transformed reduced COIG CostFunc : RCOIG ′ → N.

Output:
Φ =

⋃

v∈VRCOIG

Φv :

placement relation consisting of a linear relation Φv for each vertex v.

Procedure:
/* STEP 1: initialization */

costbest := ∞;

K := Av1 × . . .× AvnVRCOIG

;

/* STEP 2: evaluate the costs for each combination of placements */

forall (Φv1
, . . . ,ΦvnVRCOIG

) ∈ K

/* compute the transformed reduced COIG */

VRCOIG
′ := VRCOIG;

ERCOIG
′ := ∅;

forall e = (vs , vt ,He) ∈ ERCOIG

/* additional information such as placement relations from */

/* other levels and schedule may be taken into account here */

(ΨL,ΨR) := Φvs
◦− He ◦+ Φvt

;

ERCOIG
′ := ERCOIG

′ ∪ {(vs, vt, (ΨL,ΨR))};
end forall

/* estimate the cost for the transformed graph */

cost := CostFunc((VRCOIG
′,ERCOIG

′));
if costbest > cost then

costbest := cost;

Φ :=
{

Φv1 , . . . ,ΦnVRCOIG

}

;

endif

end forall

return Φ;

Any cost function can be used here to determine the expected cost of executing the transformed
program fragment. Thus, the cost model can be tuned to the compiler and the hardware. Section
4.3 will examine how to obtain a cost model for a given compiler (and machine). But first, let us
put the single parts together to obtain the complete algorithm.

4.2.8 The Final Algorithm

The algorithms presented in the previous sections can, by and large, be plugged into each other.
Only Algorithm 4.2.2 (Partition) depends on the representation of the set of vertices in the reduced
COIG by an array. With this representation, it is possible to partition the graph for propagation
in one dependence direction just as with Algorithm 3.4.1 (LCCPLowLevel ), since the set of flow
dependences (both structural and non-structural) represents a strict partial order in its transitive
closure. And since structural output dependences always go from an operator instance to a write
access instance, the same holds for the transitive closure of structural flow dependences together
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with structural output dependences. The other algorithms use a simpler representation so that
they are easier to follow.

Thus, the overall algorithm in principle consists of a loop that performs the steps:

1. Partition the reduced COIG for relation propagation from source to target of flow depen-
dences.

2. Propagate placement relations from source to target.

3. Partition the reduced COIG for relation propagation from target to source of structural flow
dependences and structural output dependences to their sources.

4. Propagate placement relations from these targets back to their sources.

After completion of the loop, the algorithm still has to accomplish the following tasks:

5. Filter out illegal placements (note that the restrictions HPF raises here actually do have some

merit in general). This results in a set
{

Av1 , . . . ,Avn
VRCOIG

′

}

containing a set of possible

placements for each vertex of the partitioned reduced COIG.

6. For each combination of these placements, i.e., each element of Av1 × . . . × Avn
VRCOIG

′ ,

compute a transformed reduced COIG and from that a (communication) cost, which is used
to identify the optimal placement in this search space.

These steps are performed by the following algortihm:

Algorithm 4.2.7 [OIAllocator ]:
Input:
RCOIG = (VRCOIG ,ERCOIG) :

a reduced COIG.

A = {Av v ∈ Vwrite} :
for each vertex v representing write access instances the corresponding set of possible
placements Av.

CostFunc :
a cost function for the transformed reduced COIG CostFunc : RCOIG ′ → N.

Output:
RCOIG ′ = (VRCOIG

′,ERCOIG
′) :

a newly partitioned reduced COIG.

Φ =
⋃

v∈VRCOIG
′

Φv :

a placement relation Φv for each vertex v ∈ VRCOIG
′.

Procedure:
Let crit be some criterion indicating when to stop placement propagation;

Let ERCOIG denote the flow dependences of ERCOIG (ERCOIG = ∆f ∪∆(s,f));
/* call Algorithm 3.2.1 to obtain a sorted array of occurrence instance sets */

occurrenceLevels := GroupOccurrenceInstances(VRCOIG ,ERCOIG);
Let restDeps be an array representing the h-transformations of ERCOIG;

while crit
/* propagate from source to target */

(occurrenceLevels , restDeps ,A) := Partition(occurrenceLevels , restDeps ,A, source to target);
Let RCOIG ′ = (VRCOIG

′,ERCOIG
′) be the representation of occurrenceLevels , restDeps as sets;

Let depsSrcToTgt be an array representing the h-transformations of flow dependences of restDeps;
A := Propagate(RCOIG ,A, source to target);
/* propagate from target to source */

(occurrenceLevels , restDeps ,A) := Partition(occurrenceLevels , restDeps ,A, target to source);
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Let RCOIG ′ = (VRCOIG
′,ERCOIG

′) be the representation of occurrenceLevels , restDeps as sets;
Let depsTgtToSrc be an array representing the h-transformations of structural flow dependences
and structural output dependences of restDeps;
A := Propagate(RCOIG ,A, target to source);

endwhile

/* restrict search space to legal placements */

A := MakeHPFConform(A);
/* get the placement combination with the least cost */

Φ := Evaluate(RCOIG ,A, costFunc);
return (RCOIG ′,Φ);

Practical experience shows that it is in general not worthwhile iterating through the while-
loop more than once, if cycles are not handled in some special way – as proposed above in Section
4.2.4 (page 160). This is true even though, as the following example shows, cycles are not the only
way to obtain additional placement candidates. However, the repeated partitioning simply results
in such fine a granularity that the additional computation needed to evaluate even more possible
placement relations does not pay off, since the resulting additional placements usually only differ
marginally from those that can be determined in a single sweep. Therefore, we propose to use
only a single loop iteration or a bound on the number of generated possible placements as abort
criterion crit above. Another possibility for the abort criterion would be to check, whether each
vertex v in the graph has already obtained a placement relation from each other vertex v ′ which
is connected to v via a path that does not contain any write access.

Yet, the only point at which the strategy of iterating through the loop only once loses placement
information that might be interesting is where different points in a larger expression influence each
other. This is the case, for example, if we need to generate placements for terms B(i), C(i) and
B(i)+C(i) so that the read access to C may determine where to place the read access to B .
However, these cases rarely reveal new good choices for a placement relation.

Example 4.12 shows the basic procedure behind Algorithm 4.2.7 and the placement strategy.

40

2

3

1

(i1, i2)T ∈ {1, . . . , 4} × {1, . . . , 6}

occ = 4

write B(i2,i1)

i1 ∈ {1, . . . , 10}

occ = -1

write A(i1)

{1, . . . , 4} × {1, . . . , 6} → Z :
„

i1
i2

«

7→ i1 + i2

i1 ∈ {2, . . . , 10}

occ = 2

**(read A(i1),3)

occ = 3

i1 ∈ {2, . . . , 10}

{2, . . . , 10} → Z : i1 7→ i1

Assign(**(read A(i1),3),·)

i1 ∈ {2, . . . , 10}

occ = 1

{2, . . . , 10} → Z : i1 7→ i1

read A(i1)

{2, . . . , 10} → Z : i1 7→ i1

Figure 4.8: Reduced COIG of the code fragment of Example 4.12.
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40

3

(i1, i2)T ∈ {1, . . . , 4} × {1, . . . , 6}

occ = 4

write B(i2,i1)

i1 ∈ {1, . . . , 10}

occ = -1

write A(i1)

H2 : {1, . . . , 4} × {1, . . . , 6} → Z :
„

i1
i2

«

7→ i1 + i2

occ = 3

i1 ∈ {2, . . . , 10}

Assign(**(read A(i1),3),·)

H1 : {2, . . . , 10} → Z : i1 7→ i1

Figure 4.9: Compacted reduced COIG of the code fragment of Example 4.12.

Example 4.12 Let us revisit the code of Example 3.18, this time augmented with an HPF place-
ment:

DOUBLE PRECISION A(1:10)

DOUBLE PRECISION B(1:4,1:6)

!HPF$ TEMPLATE T1(1:10)

!HPF$ TEMPLATE T2(1:4,1:6)

!HPF$ DISTRIBUTE T1(BLOCK)

!HPF$ DISTRIBUTE T2(BLOCK,BLOCK)

!HPF$ INDEPENDENT

DO i1=1,4

!HPF$ INDEPENDENT

DO i2=1,6

B(i2,i1)=A(i1+i2)**3

END DO

END DO

Let us suppose that LCCP created a new, 1-dimensional, occurrence instance set for the computa-
tion of A(i)3 resulting in the following code:

DOUBLE PRECISION A(1:10)

DOUBLE PRECISION B(1:4,1:6)

!HPF$ TEMPLATE T1(1:10)

!HPF$ TEMPLATE T2(1:4,1:6)

!HPF$ DISTRIBUTE T1(BLOCK)

!HPF$ DISTRIBUTE T2(BLOCK,BLOCK)

!HPF$ INDEPENDENT

DO i1=2,10

TMP(i1)=A(i1)**3

END DO

!HPF$ INDEPENDENT

DO i1=1,4

!HPF$ INDEPENDENT
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DO i2=1,6

B(i2,i1)=TMP(i1+i2)

END DO

END DO

In fact, here the complete assignment – viewed as a function application – is a 1-dimensional
expression. Figure 4.8 shows the reduced COIG for this example. Figure 4.9 shows only the inter-
esting sets of this reduced COIG. The fat dotted arrows indicate non-structural flow dependences,
and the fat dashed arrows indicate structural output dependences. The graphs mirror the sorting
of Algorithm 3.2.1 (GroupOccurrenceInstances): the lowest levels produced by the algorithm are
depicted at the bottom of the figure.
With the parallel index p1 corresponding to template T1 and the parallel indices p2 and p3 cor-
responding to template T2, we can use Algorithm 4.1.1 to obtain the following placement relations:

A ΦA =



i1 7→





i1
0
0



 ,





p1

p2

p3



 7→





p1

0
0









B ΦB =





(
i1
i2

)

7→





0
i1
i2



 ,





p1

p2

p3



 7→





0
p2

p3









A partitioning in direction from source to target concerns the vertices 0 and 3 of the figures
(the only place that involves as flow dependence). However, since dom(H1) covers the complete
set represented by vertex 3, Equation 4.2 holds; i.e., it is immediately possible to propagate the
placement ΦA that holds for vertex 0 can be propagated to vertex 3. The corresponding placement
is

Φ1 = ΦA ◦+ H1 =



i1 7→





i1
0
0



 ,





p1

p2

p3



 7→





p1

0
0









In the next step, placements are propagated from target to source. The propagation in this direc-
tion concerns vertices 3 and 4, which are connected by a structural output dependence. Again, a
paritioning is not necessary, since im(H2) covers the complete set represented by vertex 3. We
obtain

Φ2 = ΦB ◦+ H
−1
2 =



i1 7→





0
0
0



 ,





p1

p2

p3



 7→





0
−p2 + p3

0









As discussed above, we choose to iterate only once through the while-loop, which means that we
have now found all possible placement relations for the one vertex that did not have an associated
placement from the beginning on. This leaves us with the following sets of placements for the
interesting sets represented by vertices 0, 3 and 4 in Figure 4.9:

A0 = {ΦA}

A3 = {Φ1,Φ2}

A4 = {ΦB}

With a set of placements created for each node, we have to check all the placements in turn for
legality. For ΦA and ΦB, this is clear. Φ1 is represented by matrices
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i1 i2



1 0
0 0
0 0




,

p1 p2 p3



1 0 0
0 0 0
0 0 0




(4.8)

Not surprisingly, this placement is representable in HPF.
Φ2 is represented as

i1 i2



0 0
0 0
0 0




,

p1 p2 p3



0 0 0
0 −1 1
0 0 0




(4.9)

which does represent an illegal placement according to Theorem 4.11, since several target dimen-
sions are present in a single row of the matrix on the right. The only condition we can remove
from this placement is −p2 + p3 = 0. This results in a single alternative placement

i1 i2



0 0
0 0
0 0




,

p1 p2 p3



0 0 0
0 0 0
0 0 0




(4.10)

which means to replicate all occurrence instances onto all processors. Let us denote this resulting
placement with Φ3.

We now proceed to the evaluation. For this, we compute the transformed h-transformations
H ′

1 and H ′
2, which correspond to the original h-transformations H1 and H2, respectively. This

is a trivial case again, since we have only a single vertex with more than one associated possi-
ble placements. The following tables associate the different combinations with the corresponding
dependences in the target space:

vertex 0 vertex 3 vertex 4 H ′
1 =

Φv0 Φv3 Φv4 Φv0 ◦− H1 ◦+ Φ−1
v3

cost

ΦA Φ1 ΦB









p1

p2

p3



 7→





p1 + p2
0
0



 ,





p1

p2

p3



 7→





p1

0
0







 100

ΦA Φ3 ΦB









p1

p2

p3



 7→





0
0
0



 ,





p1

p2

p3



 7→





0
0
0







 10

vertex 0 vertex 3 vertex 4 H ′
2 =

Φv0 Φv3 Φv4 Φv3 ◦− H2 ◦+ Φ−1
v4

cost

ΦA Φ1 ΦB









p1

p2

p3



 7→





0
0
0



 ,





p1

p2

p3



 7→





0
0
0







 10

ΦA Φ3 ΦB









p1

p2

p3



 7→





p2

p3

0



 ,





p1

p2

p3



 7→





p2

p3

0







 1

The final columns in the tables represent some (communication) costs that we assign to the
corresponding h-transformation somewhat arbitrarily. We choose these costs roughly from what can
be expected to be handled well by HPF compilers. For estimating the cost of a specific transformed
reduced COIG, we just sum up the costs of the edges. We thus obtain 110 for Φ1 and 11 for
Φ3. With this estimation, we would choose the second placement, Φ3 for the assignment – the
replication. This may not seem to be a good choice at first glance. But the replication actually
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(a) Regular accesses (b) Irregular accesses

Figure 4.10: Run time for a 1D-shift in dependence of communication set value and number of
processors

allows the compiler to broadcast the complete array A to all processors, which may indeed be less
time consuming than finding the correct owner of the array element to read from.

In the example above we introduced some more or less random cost function to evaluate the
placement relation for an occurrence instance set. In the next section, we will examine how to
obtain a cost function that actually models the behaviour of an HPF compiler.

4.3 Cost Models

We have now introduced a placement method that is guided by a function (CostFunc) in selecting
a promising placement relation. It is therefore important to choose this cost function appropriately
for the system at hand.

When developing a cost model, one may view different factors that may influence the per-
formance (or other cost). The Bulk Synchronous Parallelism programming model (BSP) [Val90,
SHM97] comes with its own coarse but very effective cost model. Program execution consists of
a series of so-called supersteps. Between these supersteps, the processors are synchronized and
data is exchanged among the distributed memory banks. The time for program execution is thus
modelled as the actual computation time plus for each superstep the communication cost, which
conists itself of a startup-time l and a communication volume dependent time:

cost of superstep = max({wi i ∈ processes}) + max({hi i ∈ processes}) · g + l (4.11)

where wi is the workload of process i and g is the normalized bandwidth of the system and hi

a so-called h-relation – which is not to be confused with the h-transformation. An h-relation is
usually modelled as the maximum of the send and receive operations to be performed by the
processes (although variations are possible). The machine-dependent parameters wi, g and l are
inferred from a run of a benchmark suite.

We also take the approach of a global time step in that the programs produces here are all
synchronous programs – with outer loops enumerating these global time steps. Asynchronous
loop programs are not well (easily and efficiently) representable in languages like HPF (or language
extensions like OpenMP). With each time step of the synchronous program generated viewed as a
superstep, we will take a similar approach. However, as the following example shows, the BSP
model does not supply enough information to select an appropriate placement.
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Example 4.13 The following code fragment is an implementation of a shift:

!HPF$ DISTRIBUTE(BLOCK,BLOCK)::S,T

!HPF$ INDEPENDENT

DO i1=l1,u1

!HPF$ INDEPENDENT

DO i2=l2,u2

T(i2,i1)=S(i2-(l2-1),i1)

END DO

END DO

This loop nest shifts the array S by l2 − 1 elements in the first dimension (the second dimension
is left unchanged). An equivalent formulation of the same communication pattern is given by the
following code – assuming that idx (1, i2, i1) = i2 − (l2 − 1) and idx (2, i2i1) = i1:

!HPF$ DISTRIBUTE(BLOCK,BLOCK)::S,T

!HPF$ INDEPENDENT

DO i1=l1,u1

!HPF$ INDEPENDENT

DO i2=l2,u2

T(i2,i1)=S(idx(1,i2,i1),idx(2,i2,i1))

END DO

END DO

with idx replicated on all processors. Since the communication pattern is the same in both codes –
and so is the size of the sets to be communicated – one would not expect too large a difference in
the resulting performance according to a BSP-like cost model. Actual run times of these two codes
for the ADAPTOR-7.1 compiler on the Passau hpcLine computer (SCI-connected 1 GHz Pentium
III nodes) without any further optimization switches are depicted in Figure 4.10(a) for the first
code and in Figure 4.10(b) for the second one. We see that the communication set volume per
node (corresponding to an hi in Equation 4.11 of the BSP cost model) actually has no significant
impact on the time spent for this communication. In the first version, there is some variation to
be observed, however, we cannot deduce any direct dependence from either the communication set
volume or the number of participating nodes. A difference of more than two orders of magnitude,
however, exists between the execution times of the first and the second program versions: see the
different scales of the time axis in Figure 4.10(a) and Figure 4.10(b).

The different run times of Example 4.13 are explained by the different communication code
introduced by ADAPTOR for the two access patterns (we observed similar behavious with the
Portland Group’s HPF compiler). A short description of how syntactically driven HPF compilers
(and in particular ADAPTOR) create communication code can be found in Wondrak’s diploma
thesis [Won05, Chapter 5]. As soon as the compiler is not able to use an optimized library
call, performance drops dramatically. Therefore, the first of our goals is to avoid this worst-
case scenario. A similar observation can be made for the shape of the index space: a non-
rectangular index space often leads to run times comparable with those in the presence of indirect
array adressing. When developing our cost model, these factors should be taken into account.
Different kernels varying in this respect will therefore be a part of the benchmark suite on which
we will base our cost estimations. However, most non-trivial transformations in the polyhedron
model will result in a non-rectangular parallel loop nest. The restrictions resulting for the target
programs appeared just too restrictive to us. Therefore, we implemented the work-around for the
ADAPTOR compiler discussed in Section 3.7 (page 125) instead of penalizing placement relations
on the grounds of index set shapes.

The benchmark suite we use to develop a cost model for the target system will be the subject
of the next section. Section 4.3.2 shows the application of that benchmark suite to the ADAPTOR
compiler in combination with the hpcLine PC-Cluster at the University of Passau.
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4.3.1 The Benchmark Suite

In order to design a benchmark suite that is able to measure the influence of several possible
aspects that may have an impact on the overall performance of the parallel program, we start
from a simple copy operation of the form

!HPF$ DISTRIBUTE(BLOCK)::S,T

!HPF$ INDEPENDENT

DO i1=1+shift1,N1

! Statement S1:

T(i1)=S(i1-shift1)

END DO

which implements a 1-dimensional shift of S . Then we vary the following factors:

1. Array dimensionality.

2. Index space size.

3. Index space form.

4. Communication pattern.

5. Communication set size (if possible).

In the following, we review each of these points in closer detail.

Array Dimensionality Varying array dimensionality is implemented by using multidimensional
distributed arrays assigned to in a multiply nested loop of the form

!HPF$ DISTRIBUTE(BLOCK,BLOCK)::S,T

!HPF$ INDEPENDENT

DO i1=1+shift1,N1

!HPF$ INDEPENDENT

DO i2=1+shift2,N2

! Statement S1:

T(i1)=S(i1-shift1,i2-shift2)

END DO

END DO

Index Space Size The index space size is tuned simply by setting shift 1, shift2 and N1,N2

appropriately. Note that the communication set volume also changes with these variables in the
2-dimensional case (in the 1-dimensional case, this value only changes with shift 1). In order to
keep the array alignment constant relative to the enlarged index space, the array shapes are also
changed accordingly.

Index Space Form As discussed above, non-rectangular parallel loop nests may not be handled
well by an HPF compiler. A more complicated index space is generated from the code fragment
above simply by splitting the index space into two triangular index spaces:

!HPF$ DISTRIBUTE(BLOCK,BLOCK)::S,T

!HPF$ INDEPENDENT

DO i1=1+shift1,N1

!HPF$ INDEPENDENT

DO i2=1+shift2,i1-1
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! Statement S1:

T(i1)=S(i1-shift1,i2-shift2)

END DO

END DO

!HPF$ INDEPENDENT

DO i1=1+shift1,N1

!HPF$ INDEPENDENT

DO i2=MAX(i1,1+shift2),N2

! Statement S2:

T(i1)=S(i1-shift1,i2-shift2)

END DO

END DO

As reported earlier, ADAPTOR-7.1 generates very inefficient code in this case. For this com-
piler we have decided to work around this problem. However, a comprehensive benchmark suite for
a general cost model needs to include this variant because it represents a common result of target
codes automatically generated from polyhedra and at the same time may have a large impact on
the overall run time of the program.

Communication Pattern The communication pattern is actually always a completely local
communiation or a shift. This may be made explicit to the compiler or hidden, depending on the
subscript expression used. Syntactically, the subscript expression of the right hand sides of S1 and
S2 above varies from the local access i1 and the shift i1-shift1 through a permutation and a
broadcast to the most general indirect addressing via idx(i1).

Communication Set Size Finally, the communication set size is changed by varying the value
of shift . This determines the amount of data to be exchanged between processors.

By default, the benchmark suite works with the following array sizes and shift values:

Dimensionality Array Size Shift Values
1 N1 ∈ {128, 256, 512, 1024, 2048, 8192, shift1 ∈ {0, 1, 5, 128, 1024}

16384, 32768, 65536}
2 N1 = N2 ∈ {128, 256, 512, 1024, 2048} shift1 = 0

shift2 ∈ {0, 1, 5, 128, 1024}

The benchmark kernels are developed with the functionality of the shift operator in mind. This
is actually a quite natural approach: copying data can be viewed as special case of shift, and the
shift operator is usually already an optimized communication primitive in HPF compilers (Fortran
even defines intrinsics for array shifts), and any communication pattern can be represented as a
composition of a copy between templates and a series of shifts.

Wondrak divides these benchmark kernels into four groups:

1. Kernels that copy data between arrays that are aligned to each other.

2. Kernels that copy data between arrays aligned to different templates; these arrays are thus
placed onto different processor meshes.

3. Kernels that measure the cost of executing floating point operators.

4. Kernels that identify the influence of the index space form (here, this is a single kernel).

The following table gives an overview of these kernels, the actual assignment statement S1 used
in the respective kernel, and the associated group.
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Kernel Central Code Group
local1D T(i1)=S(i1) 1
local2D T(i2,i1)=S(i2,i1) 1
shift1D T(i1)=S(i1-shift1) 1
shift2D T(i2,i1)=S(i2-shift2,shift1) 1
permute2D T(i2,i1)=S(i1,i2) 1
broadcast T(i2,i1)=S(shift2,1) 1
general T(i2,i1)=S(idx(i2),idx(i1)) 1
copy1D2D T(i1,1)=S(i1) 2
copy1D2Ddiag T(i1,i1)=S(i1) 2
copy2D1D T(i1)=S(i1,1) 2
copy2D1Ddiag T(i1)=S(i1,i1) 2
calcPlus T(i2,i1)=S(i2,i1)+5.87328344 3
calcMinus T(i2,i1)=S(i2,i1)-5.87328344 3
calcMult T(i2,i1)=S(i2,i1)*5.87328344 3
calcDiv T(i2,i1)=S(i2,i1)/5.87328344 3
calcExp T(i2,i1)=S(i2,i1)**5.87328344 3

DO i1=low1,up1
DO i2=low2,i1-1

triangle T(i2,i1)=S(i2-shift2,i1-shift1) 4
END DO

END DO
. . .

Each of the kernels is run repreatedly in order to yield accurate time measurements, and each
of these measurements is again repeated several times during a run of the benchmark suite. The
minimal time measured is then used for comparing kernels. All results are normalized wrt. to the
simplest kernel – local1D for 1-dimensional kernels and local2D for 2-dimensional kernels. With
this strategy, we will now put our benchmarks suite to work.

4.3.2 A Case Study: ADAPTOR

We have run the benchmark suite developed in the previous section with the HPF compiler
ADAPTOR-7.1. Our platform was the Passau hpcLine PC-cluster, which consists of SCI-connected
dual-processor Pentium III nodes running at 1 GHz with 512 MB RAM per node. We used a single
CPU per node in all tests. The tests were conducted by Wondrak [Won05], who also developed a
cost model for the ADAPTOR compiler based on these results, which we shall describe here.

As we have already seen above, the main contributing factor in the overall performance of
an HPF program compiled with ADAPTOR is the subscript function: a shift with a constant
element count is implemented with an optimized communciation function in the compiler’s run
time library. A slightly more complicated subscript function already forces the compilerto use run
time resolution. The following table lists the factors of the time taken for each of the kernels wrt.
the time for the corrsponding run of local for a representative sample of array sizes:
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Kernel Array Size Number of Factor wrt.
(N1) Processors local·

shift1D 65536 4 10
general1D 65536 4 259
shift1D 2048 4 13
general1D 2048 4 551
shift2D 2048 4 2
permute2D 2048 4 3
general2D 2048 4 477
broadcast 2048 4 1
shift1D 65536 8 13
general1D 65536 8 691
shift1D 2048 8 18
general1D 2048 8 870
shift2D 2048 8 2
permute2D 2048 8 5
general2D 2048 8 759
broadcast 2048 8 1
shift1D 65536 16 13
general1D 65536 16 1383
shift1D 2048 16 25
general1D 2048 16 1528
shift2D 2048 16 3
permute2D 2048 16 3
general2D 2048 16 1611
broadcast 2048 16 1
triangle 2048 16 15

We observe that, indeed, the different subscript functions have a crucial impact on performance
which is even almost constant wrt. array size and number of processors, with the exception of the
general communication pattern, whose run time increases roughly linearly with the number of
participating processors. We can therefore use Algorithm 4.3.1 to determine the actual cost of a
target program by adding up the average factors obtained from the benchmark suite for a given
class of subscript functions.6 This class is determined by Algorithm 4.3.2 (Classify ).
Algorithm 4.3.1 [CostFuncADAPTOR]:
Input:
RCOIG ′ = (VRCOIG

′,ERCOIG
′) :

transformed reduced COIG.
Output:
c : estimated communication cost for the target program.

Procedure:
c := 0;
forall e = (vs , vt , (H

′
L,H

′
R)) ∈ ERCOIG

′

/* Algorithm 4.3.2 yields the class of the communication introduced by this edge in the graph */

class := Classify ((H ′
L, H

′
R));

c := c+







1 if class = local

2 if class = shift

3 if class = permutation

146 if class = diffTemplates

700 if class = general

;

end forall

return c;

6These factors are taken as the average over all runs of the benchmark kernels (not just from the table above).



4.3. COST MODELS 179

Algorithm 4.3.2 (Classify) determines the class of a communication defined by an h-transformation
in the target space. This h-transformation is obtained as decribed in Section 4.1.3 and thus defined
by two mappings, one of which can be thought of defining the processor mesh from which to read
the value. If source and target space of this mapping differ, we have to deal with a redistribu-
tion across processor meshes, which is indicated by the classification diffTemplates. The other
mapping defines the subscript expression with which to read that value:

• If it is defined by the unit matrix, the communication is a local.

• If the mapping of the indices is the unit matrix, but there is also a non-zero entry on the
part of the parameters, the communication is a shift.

• If the mapping of the indices is a permutation (and there is no parameter in the resulting
expression), the communication is a permutation (which can be handled by an optimized
function in the ADAPTOR run time library).

• Otherwise, the communication represents some general pattern that ADAPTOR can only
implement using run time resolution.

Algorithm 4.3.2 [Classify ]:
Input:
(H ′

L,H
′
R) :

dependence relation in the target space.
Output:
classification ∈ {local, shift, permutation, diffTemplates, general} :

classification of the communication generated by (H ′
L, H

′
R).

Procedure:
/* STEP 1: initialize and determine the templates to which to be aligned */

c1 := min({c ∈ {1, . . . ,#pdims} MH′
L
[·, c] 6= 0});

c2 := min({c ∈ {1, . . . ,#pdims} MH′
R
[·, c] 6= 0});

Let t1 be the dimension of the outermost index of the nest of dummy loops also
containing index c1;
Let j1 be such that #pdim[j1] is the depth of the nest of dummy loops containing index c1;
Let t2 be the dimension of the outermost index of the nest of dummy loops also
containing index c2;
Let j2 be such that #pdim[j2] be the depth of the nest of dummy loops containing index c2;
/* STEP 2: classify the accesses */

/* STEP 2.1: communication between processor meshes */

if t1 6= t2 then

return diffTemplates;

else

/* 2.2: detailed consideration of function matrices */

Let M2 = L ·MH′
R

be the reduced echelon form of MH′
R
;

M1 := L ·MH′
L
;

t ′1 := t1 + #pdim[j1] − 1;
t ′2 := t1 + #pdim[j2] − 1;
/* only the dimensions t1,. . . ,t

′
1 – from which the subscript expression for */

/* the fetch is built – are of interest from now on */

Let R=
{
r1, . . . , rneqs

}
, r1 < · · · < rneqs

be the set of rows such that:
(

∀r : r ∈ {1, . . . ,#pdims} :

(
∃c : c ∈ {t1, . . . , t′1} : M1[r, c] 6= 0

)

⇔ r ∈ R

)

;

/* expressions in dimensions of the dependence target space */
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MT :=






M1[r1, t1] . . . M1[r1, t
′
1]

...
...

M1[rneqs
, t1] . . . M1[rneqs

, t′1]




;

/* expressions in dimensions of the dependence source space */

MT ′ :=






M2[r1, t2] . . . M2[r1, t
′
2]

...
...

M2[rneqs
, t2] . . . M2[rneqs

, t′2]




;

/* expressions in dimensions of constants */

MK :=






M2[r1, 1 + #pdims] . . . M2[r1, nblob + #pdims]
...

...

M2[rneqs
, 1 + #pdims] . . . M2[rneqs

, nblob + #pdims]




;

if MT = I#pdim[t′1+1],#pdim[t′1+1] then

if MT ′ = I#pdim[t′2+1],#pdim[t′2+1] then

if MK = 0 then

return local;

else

return shift;

endif

else

if MK = 0∧ (MT ′ is a permutation of I#pdim[t′2],#pdim[t′2]
) then

return permutation;

else

return general;

endif

endif

else

return general;

endif

endif

Recapitulating Example 4.12, the assessment of the different placements roughly corresponds
to the cost model presented here. The placement we choose would actually be chosen for the
ADAPTOR compiler. Note that, although this is a replicated placement, which basically annihi-
lates the effect of minimizing the dimensionality of an expression that is gained through LCCP,
there is still a second order effect that could improve run time: the reduced dimensionality effec-
tively removed the computation of A(i)3 from a loop that is distributed in a blocked fashion over
processors. Even if the same value is now computed on different processors, it is not computed
inside the corresponding loop enumerating a block of operations to be executed on each single
processor.

4.4 Related Work

Determining a placement for a loop program is quite naturally an important step in the code
generation of programs represented in the polyhedron model, since it completes the space-time
mapping of which the schedule is only a part: to obtain a parallel program, we also have to specify
on which processor to execute the operations of the program. On the one hand, one should try to
utilize as many processors as possible in order to reduce the wall-clock time needed to perform a
sequential step of the program. On the other hand, communication between different processors
may well be more expensive than the time saved by parallelism. Therefore, it is a non-trivial task
to produce a placement that leads to good performance results. Here, we want to highlight just
some methods of placement computation that are relevant to this work.
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Feautrier’s Placement Method The placement method introduced by Feautrier [Fea93] views
local accesses as essentially no-cost operations and any non-local access as some expensive constant-
cost operation. The placement method is based on the granularity of statements. The counterpart
of the occurrence instance there is therefore an operation, i.e., a statement instance that combines
write access and read access of the respective statement. The strategy is then to define a linear
function

ΦO : Qnsrc+nblob → Q#pdim

for each set of occurrence instances O with

ΦO′ ◦He = ΦO (4.12)

if the reduced dependence graph features a dependence of O from O′ defined by the h-transfor-
mation He. Equation (4.12) then defines a linear equation system. The placement functions ΦOi

solving all the program’s constraints of the form of Equation (4.12) may lead to a trivial placement,
i.e., all operations (or occurrence instances) are placed on the same processor. In order to avoid this
situation, the h-transformations to be taken into account – and thus the dependences to be cut –
are sorted according to the expected communication volume, i.e., according to the dimensionality of
the image im(He) of the corresponding h-transformation. These h-transformations are only taken
into account as long as they guarantee non-trivial placements. The heuristic employed here to
obtain non-trivial placements does not take into account any particular system characteristics, nor
does it consider replication in any way. The approach is therefore quite different from ours, which
basically just enumerates placement candidates (which may well define replicated placements) but
evaluates each placement candidate with a cost function that is taylored for the target system.

The Placement Method by Dion and Robert Dion and Robert propose a placement method
based on a so-called access graph [DR95]. This is a bipartite graph with one set of vertices
representing arrays and the other set representing statements reading or writing access these arrays.
Depending on the rank of the subscript function F that defines the weight of an edge (v1, v2, F )
between the vertices v1, v2, either a placement for v1 or v2 is computed from a placement of the
other vertex (for full rank mappings, both directions are possible). This means that placements
are obtained for both data and statements (i.e., computations). Both methods, the one by Dion
and Robert and ours, allow the placement of both computations and data. Our approach does not
distinguish between computations and data at all: we assign placement relations to computations
that represent interesting sets, which are then also associated with arrays, since the resulting values
have to be stored somewhere, and thus arrive at data placements. The result of the placement
method of Dion and Robert – as of Feautrier’s – is always a family of linear functions defining
the placements. Again, not every edge of the graph can be honored for placement computation.
Therefore, a maximum branching of the graph is calculated and only the edges in this maximum
branching are used for placement computation. The maximum branching is based on the rank of
the functions associated with the edges as their priorities. The placements for inner nodes of the
graph are derived from those for root vertices for which placements are found by heuristically
trying to minimize direct communication. In comparison to our method, this approach is quite
similar to Feautrier’s placement algorithm. While Dion and Robert use families of functions, which
are calculated according to one hard-coded heuristic, our method may yield placement relations
defining replication and uses a quite simple enumeration scheme to evaluate different placement
candidates using a cost function that can be adapted to the target system. In principle, our
method can be extended to compute data placements (starting from some default placements), as
the method by Dion and Robert already does, but it is actually targeted at propagating placement
relations from already given data placements to computations (and auxiliary variables associated
with those computations).

Beletskyy’s Placement Method Beletskyy [Bel03] proposes a modification of an algorithm by
Lim and Lam [LL97]. The method by Lim and Lam classifies different program fragments accord-
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ing to their communication behaviour. Beletskyy’s extension considers the case of synchronization-
free parallelism. The basic idea behind this modification is remotely similar to the basic idea behind
LCCP: as a first step, statements are enforced to be placed on the same processor by linear con-
straints corresponding to Equation (4.12) – the difference here being that, while LCCP combines
equivalent occurrence instances, the operations combined in Beletskyy’s method are dependence
sources with their targets (and vice versa). The actual placements are then computed from a
kernel base of the resulting equation

(ΦO′ ◦He) − ΦO = 0 (4.13)

This is more efficient than the original method proposed by Lim and Lam, which uses the Farkas
Lemma to linearize the placement constraints and obtain systems of linear equations. As with the
previous two methods, the result is again a family of linear functions, based on general placements
heuristics, so that it compares to our placement method roughly the same as the previous methods
did.

Placement Propagation in the dHPF Compiler The technique closest to our work is the
placement propagation of the HPF compiler dHPF which has been developed at Rice Univer-
sity [MCA97, AJMCY98, AMC98, AMC01]. The dHPF compiler is not only able to implement a
replicated placement (as defined in the HPF standard), it is also capable of implementing the union
of different HPF representable placements as a placement for a statement (which even exceeds the
set placements examined in this chapter) and to use the placement for any of the arrays referenced
in a statement S as the placement for S . Thus, the compiler may avoid the owner computes
rule. An additional aim is to find placements for statements that write to privatizable arrays and
auxiliary (control) statements. The dHPF compiler propagates the HOME directive along the edges
of the dependence graph of the program in static single assignment form from source to target
and determines the most promising placement description from a set of candidates according to
an internal cost model. The basic idea is thus similar to our approach. In addition to the dHPF
approach, our method also propagates from target to source; this propagation is made possible
by the additional partitioning phase discussed in Section 4.2.3. Moreover, the dHPF approach
chooses placements employing heuristics for this one specific compiler, whose characteristics are
already well known, while our approach can be adapted to different compilers.

Communication Visualization with HPF-Builder HPF-Builder was developed at the Uni-
versity of Lille in order to help the HPF programmer to find good data placements [DL97]. HPF

data placements are represented with the same approach using pairs of mappings as described in
Section 2.4.2 that is also used by our placement method (albeit without using the operators ◦−
and ◦+). HPF-Builder creates a visualization of the amount of data that has to be communicated
between processors due to a given HPF placement. This amount is computed by counting the
integer points in a polytope via Ehrhart polynomials, a technique rediscovered and introduced to
linear loop transformations by Clauss [Cla96]. In contrast to our work and other related work
cited here, HPF-Builder is a pure visualization tool. The actual selection of placements is left to
the user.

Loop Transformations for Cache Improvement Ehrhart polynomials are polynomials whose
coefficients are not necessarily plain numbers of the underlying ring K, but periodic num-
bers. I.e., depending on some (parameter) value n, the coefficient is actually defined as some
cn%p ∈ {c0, . . . , cp−1}⊆K. Clauss and others have been using Ehrhart polynomials for determin-
ing the (integer) volume of a polytopes in different areas. In particular, Clauss determines the
number of accesses to distributed array elements [Cla97]. Clauss and Meister also use Erhart
polynomials to determine a mapping of array elements to actual memory cells in RAM in order to
improve spatial cache locality [CM00]. In later work, Loechner, Meister, and Clauss suggest a loop
transformation based on a subspace creating temporal reuse and a completion to the full space in
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order to improve cache locality [LMC02]. Again, not all accesses can be optimized. Instead, the
optimization selects iteratively as large as possible a set of accesses that have been least optimized
up to the current iteration.
Slowik also creates a loop transformation that can be seen as a placement [Slo99]; again, the aim
is improving cache locality. Slowik constructs transformations by enumerating a range of values at
predefined places in the transformation matrix and evaluating the influence on cache performance
by calculating the corresponding Ehrhart polynomials.
Bastoul and Feautrier compute chunking functions that define a chunk of operations to be
executed together in order to improve data locality. As with the approach of Loechner, Meister
and Clauss, the basic step here is to compute bases for data reuse within the index space; in
contrast to this approach, Bastoul uses a heuristic to prioritize sets in order to avoid to compute
a parameter dependent and possibly unknown value. This method has been implemented in the
optimizer chunky.
All these transformations can be viewed as additional placement relations refining replicated place-
ments, as proposed in the introduction of this chapter. However interactions between these ap-
proaches have not been studied yet.

4.5 Summary and Future Work

In this chapter, we have introduced a method for computing possibly replicated placement relations
for occurrence instances. Placements are propagated from dependence sources and targets, which
ultimately have to be associated with a user-defined placement.7 All combinations of placements
are then compared to each other by means of a cost function, which can be tuned for the target
system. In order to design and adjust an appropriate cost model, we have developed a benchmark
suite that systematically tests the performance of programs generated by the compiler. We have
also established a cost model for the ADAPTOR compiler in combination with the Passau hpcLine
cluster. The costs are here mainly influenced by the communication pattern and thus by the
subscript functions in the target code. Apart from recalibrating the numerical values associated
with a placement combination (which can simply be read from the results of the benchmark suite),
this cost model should also be applicable to other HPF compilers.

However, the cost model as it is favours replicated placements, since there is no provision
for estimating the amount of work placed on a single processor. In addition, computation of
placements in practice is very time consuming. This is because all combinations of placement
relations are evaluated. Other placement methods use heuristics at this point in order to restrict
the search space. These restrictions usually make assumptions about the target system. Our
goal here was to make as few such assumptions as possible. So, another possibility is to use
combinatorial methods such as genetic algorithms to examine only part of the search space while
still delivering useful results.

On the other hand, we already restricted the search space by ignoring paths containing cycles in
the dependence graph (cf. Section 4.2.4, page 160). Including these paths into our considerations
increases the search space, but could add valuable placement relations. Even without including
cycles, the combination operator defined in Section 2.4.2 may yield further placement relations
that may be worthwhile to include in our search space.

In addition, further placement relations may be obtained by repeatedly propagating placement
relations – recall that we decided to iterate only once through the main loop of Algorithm 4.2.7.
Our decision prohibits for example the propagation of a placement from one read access (which
may get a placement from the array it reads) to another read access within the same expression.
Placements like these may well be worth considering.

The main point for future work, however, is to extend our current simplistic strategy of com-
puting only crude placements for processes running on different nodes to a truly hierarchical
placement strategy. Ideally, each level representing a finer granularity should be able to take into
account transformations already defined on the levels of coarser granularity.

7Note that one could also use some predefined default placement instead of a user-defined one.
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Chapter 5

Putting It All Together

We have seen the theory behind the LCCP transformation in Chapter 3. This transformation
ejects so-called interesting sets. These are sets of occurrence instances that each need to be
associated with space-time mappings, i.e., with a schedule and a placement. We decided to stay
with well-known methods for the time part of this transformation, and Chapter 4 introduced a
method for obtaining a possibly replicated placement for the space part. It is now time to regard
the results of applying all these methods together.

For this purpose, we have assembled a series of synthetic examples in Section 5.2 and an
example based on a real application in Section 5.3. We used an implementation of the LCCP and
OIAllocator placement algorithms presented in Chapters 3 and 4 that has been integrated into the
LooPo source-to-source compiler to perform the transformations of these examples automatically.
Section 5.1 gives a short overview over this implementation.

The automatically transformed code presented in Sections 5.2 and 5.3 was scheduled using the
LooPo implementation of Feautrier’s scheduler [Fea92a, Fea92b, Wie95]. The resulting polyhedra
were scanned using CLooG [BCG+03] in combination with a postprocessing step that identifies
LCCP pseudo parameters and produces actual code fragments following the strategy described in
Section 3.7 to produce annotated HPF code. We used the HPF compiler ADAPTOR-7.1 and ran
the resulting parallel program on a varying number of processors on the Passau hpcLine cluster
(consisting of 32 SCI-connected dual Pentium III-PCs running at 1 GHz with 512 MB per node),
with only one process allocated to a node (i.e., one CPU per node was kept idle). The ADAPTOR
compiler produces Fortran code with calls to its run time library, DALIB, which in turn uses
(in our case) MPI for communication. For the compilation of the transformed Fortran code, the
g77 compiler was used without any further optimizations turned on in order to evaluate only the
changes caused directly by our transformations. The ScaMPI MPI library for SCI was used as the
underlying communication library. This is the same testbed as the one used for the computation
of placement relations in Section 4.3.2.

5.1 Implementation in LooPo

In order to test the algorithms presented in the previous chapters, they have been implemented and
integrated as modules into the LooPo system. LooPo is a modular system that consists of several
independent programs which communicate with each other via files that are placed in the /tmp

directory. Section 5.1.1 discuss the transformation steps applied to the original polyhedra that
define the input program. Section 5.1.2 then describes the generation of target code from these
transformed polyhedra after LCCP transformation and the subsequent application of a space-
time mapping. Finally, Section 5.1.3 sketches a wrapper that calls all LooPo modules necessary to
transform a complete HPF program with appropriate options (including lccp, the implementation
of the loop-carried code placement technique).

185
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5.1.1 Transformation of Polyhedra

The algorithms for the LCCP transformation have been added as a module that can be run
optionally after completion of a dependence test. The transformed polyhedra are then passed to
the usual scheduling, placement and code generation algorithms. This section is devoted to the
processing steps before the code generation phase.

For our implementation of LCCP to work correctly, the dependence test needs to yield exact re-
sults – i.e., the dependence information must contain neither over- nor underapproximations. This
is because, as described in Section 3.7, the target code is constructed in the code generation phase
directly from the transformed dependence graph. If the input program satisfies the conditions for
applying the polyhedron model discussed in Section 2.3, different dependence analysis methods can
be used to obtain such exact dependence results, in particular the method by Feautrier [Fea91].
Therefore, we choose to run lccp only in conjunction with the LooPo implementation of the
Feautrier dependence test.

Let us now consider the general implementation of the LCCP algorithm. There are some
points in which the actual implementation in LooPo differs from the model discussed in Chapter
3, which we will address on the way. We will then take a look at the interactions between LCCP
and scheduling and placement techniques.

General Procedure

Basically, the implementation of LCCP, realized in the program lccp, follows the same steps as
presented in Algorithm 3.4.1. However, in order to apply a transformation in our finer grained
model presented in Section 2.3.1, we need a program representation based on the two additional
dimensions: occurrence number and operand number. Since these additional dimensions are not
used by any other module, lccp first inserts them into the program’s symbol table – along with
entries for LCCP pseudo parameters and the parameter m∞. For historic reasons, the order of the
dimensions for operand numbers and occurrence numbers in the occurrence instance vectors are
reversed in the actual LCCP implementation, i.e., the dimension of the occurrence numbers is the
last index dimension in an occurrence instance vector. This has no adverse effect on the dependence
analysis phase. Then, the structural dependences are computed and the OIG is determined.

Linear Expressions During the generation of occurrence instance sets (i.e., the vertices of the
COIG), linear expressions do not have to be decomposed and analyzed any further. Therefore,
they do not need to be associated with an occurrence. However, the largest (uppermost) linear
expression is represented by an occurrence in the model presented in Section 2.3 (c.f. Example
2.19). The first reason for this is that, if there were only a single representative for all linear
expressions, terms like a(i)+2 and a(i)+3 would be assumed equivalent and one would be sub-
stituted with the other by lccp.1 In contrast to this decision in the model, linear expressions are
not represented by any occurrence instance in the LCCP implementation. The only exception is
the set of instances of occurrence 0 (i.e., num(i), introduced in Section 2.3.2), which represents
the abstract concept of an integer number. The reason is as follows. As noted on page 27 in
Section 2.3.1, we may omit the other occurrence instances, since every occurrence instance α rep-
resenting a linear expression is dependent on a certain instance of occurrence 0. Therefore, we
can just replace a dependence of β on α with a dependence of β on the corresponding instance
of occurrence 0. Since we assume linear expressions to be essentially zero cost operations, it does
not have any particular merit to represent them in our algorithms. However, in order to avoid
performance penalties due to representing even more occurrence instances than needed, we omit
them completely in the implementation.

1On systems on which calculations on integers are expensive, this behaviour might be desirable, since it would
enable the removal of computations of integer expressions. However, since transformations in the polyhedron model
usually change the integer expressions occurring in a program without considering different integer expressions as
incurring different costs, such a strategy does not integrate well into the framework employed here.
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Non-Linear Expressions Definition 2.18 prescribes an enumeration scheme for occurrences
that asserts that the execution order of the program corresponds to the lexicographic order of
occurrence instances. In particular, output arguments of a procedure call have to be executed
after input arguments. In our implementation, arguments are always visited from left to right so
that the lexicographic order no longer defines the original execution order. As discussed in Section
3.5.1 (page 85), this is not a problem because the occurrence instances of the lccp output are
always scheduled according to the exact dependence information.

Groups of Occurrence Instances In the next step, the occurrence instance sets representing
the program are sorted according to their respective levels in the operator tree by an implementa-
tion of Algorithm 3.2.1 (GroupOccurrenceInstances). After these preprocessing steps, the LCCP
algorithm is invoked.

Equivalence Classes of Occurrence Instances As decribed in Section 3.2, the LCCP algor-
tihm consists of a single sweep from the bottom of the operator tree upwards with a condensation
phase on each level that creates a new set of representatives for each equivalence class of occur-
rence instances on this level. The vertices of the operator tree are represented by the structural
dependences in the OIG. This walk through the operator tree, and the condensation phases, em-
ploy set operations that are implemented by calls to the Omega library. Practical experience has
shown that the algorithms often produce an excessive number of empty sets. As an example, such
an empty set in the implementation using Omega may be of the form











i
1
0



 1 ≤ i ≤ −m∞







which is empty because, by definition, no integer is smaller than −m∞. These sets should be
immediately identified and removed. However, the current implementation removes them late in
the process, before they are stored and forwarded to other LooPo modules, leading to extremely
high memory consumption and slow program execution. Performance is further degraded by the
fact that occurrence instances representing different operand positions of the same occurrence are
stored in separate sets in our implementation, although it would suffice to use a single set.

Selection of Representatives The core algorithm of the condensation procedure and, thus,
of the complete LCCP algorithm is the selection of representatives discussed in Section 3.5. Our
implementation lets the user choose between the selection methods presented in Section 3.5.1
(lexicographic minimum) and Section 3.5.2 (change of basis). As discussed earlier, the former
method leads to very complicated set representations. The method employing a change of basis
performs much better on our test examples. Therefore, this is the default in our implementation
(and the development of the lccp program was done mainly with this approach in mind). The
generation of representative occurrence instances with this method partly ignores the extents of
occurrence instance sets, in particular during the generation of a matrix representing the change
of basis for a single occurrence with equivalent instances. In addition, the Omega library does
not directly support generation of a function matrix (and an associated function) as defined by
Algorithms 3.5.4 to 3.5.6. Therefore, equivalence relations computed by the LiftRel operator are
transformed into a matrix representation (with each matrix expressing the equality constraints
holding in a given relation) and transformed back into an Omega relation after Algorithm 3.5.4 has
computed a function matrix that can be used to map instances of the same occurrence to their
respective representatives. The implementation of Algorithm 3.5.4 allows for a more complex
result than described in Section 3.5.3: the input may be a disjunctive normal form of Omega

relations and the result may consist of several separate Omega relations (again in disjunctive
normal form). In this case, the implementation may create new occurrences in order to avoid
mapping occurrence instances that are not equivalent to the same representative. In theory, this
could happen for general representative mappings, since non-equivalent occurrence instances may
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be mapped to their respective representatives by completely unrelated mappings. However, with
the representative mappings we use in the method described in Section 3.5.2, this case cannot
occur. This is because equivalences between instances of the same occurrence are reused along the
same directions in the index space and thus lead to the same change of basis. The only exception
is the case that one of the values needed to compute the expression at hand is reassigned in the
meantime. This may only lead to different transformations insofar as the reuse space is the span
of the original reuse space (without taking onto account other occurrence instances) minus the
space spanned by a set of unit vectors. I.e., if we have two different representative mappings for
two subsets of the original index space, these mappings differ only in the set of index variables
that are eliminated in the corresponding images: e.g., one mapping may replace indices i and j by
an LCCP pseudo parameter, whereas another may only replace index i . All condensed occurrence
instance sets of the same occurrence that represent polyhedra in the same coordinate system (i.e.,
with a non-trivial extent in the same set of dimensions) are the result of the same change of
basis. This implies that they contain the same integer vector only if this integer vector actually
represents the same value in the original program. Therefore, this feature of the implementation
is actually redundant.

Space-Time Transformation

Figure 3.1 on page 60 shows LCCP as a transformation that can be simply plugged in between the
dependence test and the computation of a space-time mapping. However, there are some points
that have to be considered for modules that are invoked after lccp.

Placement Method We have already established that it is advisable to use a placement method
like the one suggested in Chapter 4, so the natural choice for a placement method is the OIAllocator
placement detailed in that chapter. Indeed, within the LooPo framework, the implementation of
the OIAllocator placement method is the only one that is fully compatible with lccp. The reason
is as follows. A central design decision in the OIAllocator algorithm is to produce replicated
placements for the results of lccp. Therefore, the implementation of OIAllocator uses a different
file format than other implementations of placement algorithms. The program cloogInterface

is called after schedules and placements have been computed in order to generate a syntax tree
representing the transformed program. This module only supports reading linear functions if
they define schedules. Placements have to be supplied in the file format defining linear relations.
Additionally, for example, the placement algorithm suggested by Dion and Robert [DR95] is not
necessarily supplied with all the information it expects. This is because this method bases its
placement decisions on an access graph that contains array accesses. However, the array accesses
to auxiliary variables in which the results of computations are stored that have been generated by
lccp as new interesting sets do not yet have an associated array (actually, in our framework, this
association is done by the placement method). Therefore, we always use the implementations of
LCCP and OIAllocator together.

The OIAllocator placement method is based on an iterative partitioning of the reduced COIG.
As discussed in Section 4.2.8 (page 169), we have decided to partition the reduced COIG only once
for practical reasons. We have also noticed that partitioning in one direction wrt. the operator tree
is done automatically by the LCCP method. Therefore, partitioning in the opposite direction was
included in the lccp program rather than in the implementation of OIAllocatior . The OIAllocator
algorithm has been implemented by Wondrak as part of his diploma thesis [Won05, Chapter 4].

Scheduler Method Section 3.6 showed that Lamport’s hyperplane method cannot be used in
conjunction with LCCP because dependences may reverse their directions in the program fragment
transformed by LCCP. We have also noticed that this is no problem for algorithms like the
Feautrier scheduler [Fea92a, Fea92b] or the scheduling method due to Darte and Vivien [DV94].
In practice, the implementation of the Feautrier scheduler in LooPo turned out to run more stable
for our examples. Therefore, we use this method by default (in particular, this module was used
for all examples in the following sections).
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5.1.2 Target Code Generation

The usual procedure in the polyhedron model, after schedules and placements have been computed,
is to use a scanning technique like the targgen module of LooPo [Wet95, GLW98] or the algorithm
by Quilleré, Radjopadhye and Wilde [QRW00]. Bastoul developed and implemented an improved
version of the latter algorithm in his tool CLooG [BCG+03, Bas03, Bas04]. We make use of his
implementation for our own code generation phase by embedding a call to the CLooG program in
a pre- and a postprocessing phase. The preprocessing phase generates a CLooG input file defining
the interesting sets and the transformation into space and time coordinates. The second phase
generates a LooPo syntax tree from the output of CLooG. In particular, the interesting sets repre-
senting computations (and not array accesses) have to be implemented as assignment statements
assigning to auxiliary variables. Both these phases are handled by the program cloogInterface.

For the implementation of the preprocessing phase, it is necessary to represent the parameter
m∞. CLooG allows us to define relations between parameters so that we are able to define m∞

as larger than any other parameter multiplied by a huge coefficient (which essentially represents
infinity by the largest number used in the input file).

When aiming for HPF output, a placement relation can be represented by DISTRIBUTE and
ALIGN directives alone – with loop bounds enumerating a normalized range – or by HPF directives
that define only replicated or non-replicated storage and defining alignments by appropriate loop
bounds (the traditional way in the polyhedron model). In our implementation, we decided for the
latter option.

As noted in Section 3.7, lccp pseudo parameters may have to be enumerated in order to find
a legal value. Our implementation does not generate the elaborate code presented in Figure 3.15.
Instead, lccp pseudo parameters are presented to CLooG as loop indices. The loops generated for
these indices by CLooG are then transformed to if statements.

The postprocessing phase of cloogInterface uses the original syntax tree of the program
fragment as a lookup table that maps an occurrence number to the corresponding operator. Thus,
the syntax tree can be said to implement the function Occ−1 (and, thus, head ◦Occ−1). The
remaining code (the relation between the different occurrences) is generated according to the
reduced COIG as produced by lccp.

For the sake of easier coding, both the implementation of OIAllocator and the cloogInterface
program ignore the dimension storing the operand number in the description of interesting sets.
Therefore, the computation statements produced by cloogInterface only assign to at most one
output variable. Procedure calls with more than one output argument are not implemented. As
discussed in Section 3.7, storage mapping optimization (SMO), as introduced by Lefebvre [LF98],
should be applied to the code produced by the postprocessing phase in order to reduce overhead.
However, this technique was not included in our implementation due to time constraints. This
does not show in any of the examples discussed below: due to the dependences in these exam-
ples, the target code with SMO applied does not differ from the one presented here. Instead,
the cloogInterface module generates a new auxiliary array for each interesting set (i.e., a set
of occurrence instances for which a schedule and a placement is defined) with the result of each
instance stored in a different array element. This technique is, in general, not optimal but repre-
sents a safe choice that guarantees that each individual value computed by a occurrence instance
is stored separately.

5.1.3 Embedding the Transformation in a Compiler Framework

In order to apply lccp to a complete HPF program, it is necessary to preprocess the input, since
LooPo is only able to transform (small) loop nests that satisfy the properties identified in Sec-
tion 2.3. In the course of his diploma thesis, Wondrak implemented a wrapper module for this
task [Won05, Chapter 4].

The wrapper program consists of preprocessing programs and a script called loopohpf, which
calls all these programs and the necessary LooPo modules with the appropriate options in the
coorect order:
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1. A parser for HPF directives (basicallocs) is called (which also parses additional directives
prefixed with !LOOPO$).

2. For each program fragment to be processed by LooPo, as identified in the previous step, the
following modules are called:

(a) The LooPo parser (scanpars) is called.

(b) A dependence test (in our tests the implementation of Feautrier’s method, fr depend)
is called.

(c) The LCCP main program (lccp) is called.

(d) A scheduler (in our tests the implementation of Feautrier’s scheduler) is called.

(e) The OIAllocator placement algorithm (oiallocator) is called.

(f) The script cloogTransf uses the LCCP postprocessing program cloogInterface to
adapt the lccp output to the needs of the polyhedron scanning module CLooG. CLooG
generates a parse tree from the reduced COIG supplied by lccp. Finally, cloogTransf
calls cloogInterface again; this time, it transforms the output of CLooG back into a
form readable by the LooPo core modules.

(g) The modules genAlign and targout generate source program text representing the
code produced with CLooG in the previous step.

3. All occurrences of the program fragments identified in Step 1 in the original program are
replaced by the corresponding transformed code fragments.

4. The HPF compiler (ADAPTOR’s source-to-source transformation module fadapt) is called.

5. As discussed in Section 3.7 on page 125, the bounds of parallel loop nests are replaced by
bounds that define a rectangular loop nest in the HPF compiler input. These artificial bounds
are replaced with the original loop bounds after the run of fadapt.

6. The g77 compiler is used to compile the resulting Fortran program and link it with ADAP-
TOR’s DALIB and an MPI library (in our case ScaLi’s ScaMPI library).

With these steps, loopohpf transforms an HPF input program automatically into an executable
program whose loop nests have been processed by lccp. We used this wrapper for the compilation
of all the examples discussed in the following sections.

5.2 Some Synthetic Examples

The examples presented in this section were specifically designed to be amenable to the LCCP
transformation and yet show some limits of the transformation. Similar code can also be found
in real applications and benchmark kernels, such as the multigrid solver of the NAS Parallel
Benchmarks [BHS+95].

Example 5.1 lccp transforms the following code fragment on the left to the code fragment on
the right. The placement relations obtained from our placement method are also presented in the
code on the right.
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Figure 5.1: Run times for Example 5.1

REAL A(n,n)

REAL B(n)

!HPF$ TEMPLATE TEMP1(n,n)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN A(i,j) WITH TEMP1(i,j)

!HPF$ ALIGN B(i) WITH TEMP1(i,1)

!HPF$ INDEPENDENT

DO i=1,N

!HPF$ INDEPENDENT

DO j=1,N

A(i,j)=A(i,j)-B(i)*B(i)+B(i)

END DO

END DO

REAL A(n,n)

REAL B(n)

REAL ARRAY1(2:2,n)

REAL ARRAY2(1,n)

!HPF$ TEMPLATE TEMP1(n,n)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN A(i,j) WITH TEMP1(i,j)

!HPF$ ALIGN B(i) WITH TEMP1(i,1)

!HPF$ ALIGN ARRAY1(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY2(*,j) WITH TEMP1(j,*)

t1=1

!HPF$ INDEPENDENT

DO p7=1,n

ARRAY2(1,p7)=B(p7)

END DO

t1=2

!HPF$ INDEPENDENT

DO p7=1,n

ARRAY1(2,p7)=ARRAY2(1,p7)* &

& ARRAY2(1,p7)

END DO

t1=3

!HPF$ INDEPENDENT

DO p7=1,n

!HPF$ INDEPENDENT

DO p8=1,n

A(p7,p8)=ARRAY2(1,p7)+ &

& A(p7,p8)- &

& ARRAY1(2,p7)

END DO

END DO
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Figure 5.1 shows the run times of the original version and the LCCP transformed version of
this code fragment for n = 7000 with 2, 4, and 8 processors, respectively.

The original code in Example 5.1 contains several instances of the occurrences representing
the terms B(i) and B(i)*B(i). The occurrence instances of B(i) represent an interesting set,
because the values B(i) are used both in the multiplication and in the subtraction and because
the same value B(i) is used for several different iterations of the j -loop. Therefore, it may pay off
to generate a copy of B at another place closer to the respective use site. On the other hand, the
same value B(i) · B(i), too, is used in several iterations of the j -loop. Therefore, the basic idea
behind code placement applies: we may hoist the multiplication out of the j -loop. Then, we may
use another placement for this interesting set in order to improve processor utilization. So, LCCP
generates one-dimensional occurrence instance sets for each, B(i) and B(i) ·B(i) and new arrays
ARRAY 2 and ARRAY 1 storing the corresponding results.
The placement method now has to select placements from the following possibilities:

Result Array Placement from A Placement from B

ARRAY 1

(

i 7→

(
i
0

)

,

(
p7

p8

)

7→

(
p7

0

)) (

i 7→

(
i
1

)

,

(
p7

p8

)

7→

(
p7

p8

))

ARRAY 2

(

i 7→

(
i
0

)

,

(
p7

p8

)

7→

(
p7

0

)) (

i 7→

(
i
1

)

,

(
p7

p8

)

7→

(
p7

p8

))

So, there are the same possibilities open for both arrays. However, since all these possible
placement relations represent alignments to the same two-dimensional template TEMP 1 – corre-
sponding to parallel indices p7 and p8 – there is no possibility to actually improve processor utiliza-
tion due to the idenification of the corresponding occurrence instance set as one-dimensional. A
better processor utilization could only be achieved through alignment to a template that contains
only one distributed dimension. Unfortunately, since we only propagate already given placements
and do not introduce new template dimensions in our method, this is no option here. Moreover, it
turns out that B is not distributed very well: it is only aligned with the first column of TEMP 1,
but the same element of B is used for the complete row of A – and thus TEMP 1. Therefore,
the copy of B in ARRAY 2 is distributed according to the distribution of A. The same holds for
ARRAY 1.

If an interesting set of the target program leads to the generation of a new auxiliary array, we
have to take care not to overwrite any data in this auxiliary array. Therefore, all index dimensions
of this interesting set that enumerate finite values are present as subscript dimensions in the
generated auxiliary array. In particular, this holds for the time dimensions. Therefore, ARRAY 1

and ARRAY 2 also feature an additional dimension (which is not distributed) corresponding to
the (one-dimensional) time step in which a given occurrence instance is executed.
Note that the auxiliary arrays generated by LCCP should actually be subject to storage mapping
optimization as proposed by Lefebvre and Feautrier [LF98]. In the examples presented here, this
is not necessary, since all occurrence instances that are to be stored in the same array can be
computed in the same time step and are all referenced in the following time step, so that no
further optimization can be done (using this schedule). In practice, such a strategy would be
essential, although it is not implemented in the LooPo code generation module.2

With the additional time dimension, the above placement relations correspond to the following
HPF placement directives:

2In addition, the subscripts of write accesses to auxiliary arrays in the transformed program are actually not
ordered in a cache-friendly manner, as suggested in Section 3.7. For example, the assignment to ARRAY 1 in
the transformed code of Example 5.2 features the time dimension as the first subscript dimension of ARRAY 1

instead of the last one (as would be appropriate for Fortran). This is merely due to a bug in the code generation
implementation in LooPo. And yet, this flaw hardly influences the examples presented in this chapter, since we
have to store only a single time step anyway, so that the behaviour of the program wrt. caches is not affected by
this shortcoming.
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Figure 5.2: Run times for Example 5.2

Result Placement from A Placement from B
Array (unused)
ARRAY 1 !HPF$ ALIGN ARRAY1(*,j) WITH

TEMP(j,*)

!HPF$ ALIGN ARRAY1(*,j) WITH

TEMP(j,1)

ARRAY 2 !HPF$ ALIGN ARRAY2(*,j) WITH

TEMP(j,*)

!HPF$ ALIGN ARRAY2(*,j) WITH

TEMP(j,1)

In this case, the OIAllocator placement method chooses the first possibility (propagate from
A). Since both ARRAY 1 and ARRAY 2 are now stored in a replicated fashion, we cannot expect
the LCCP transformed program to perform any better than the original. Since we have introduced
copies to new arrays, we may even expect lower performance. Still, Figure 5.1 reveals an improve-
ment of 3.5% to 6.5%. This improvement is due to the fact that the computation of B(i) ·B(i) is
still hoisted out of one of the loops. In the target program, many p8-iterations now depend on the
same value B(p8) ·B(p8 ) that may be computed once in a single one-dimensional loop before these
uses. Since there are far fewer processors available than iterations to be executed, each processor
may now compute a value of B(i) · B(i) before using it over and over again in the following loop
nest – in which the corresponding value does not need to be re-evaluated each time (it should even
be present in the cache after an initial read). This effect does improve overall performance, but
becomes weaker with increasing numbers of processors and thus decreasing number of iterations
per processor (and decreasing reuse of the same value).

Example 5.2 Figure 5.2 (above) shows the run times of the following original code fragment (the
left one below) and the code fragment transformed by lccp (the right one below) for n = 4000 and
1 to 8 processors.
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REAL A(n, n)

REAL B(n, n)

REAL C(n, n)

REAL E(n, n)

!HPF$ TEMPLATE TEMP1(n,n)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN A(i,j) WITH TEMP1(i,j)

!HPF$ ALIGN B(i,j) WITH TEMP1(j,i)

!HPF$ ALIGN C(j,*) WITH TEMP1(j,*)

!HPF$ ALIGN E(i,*) WITH TEMP1(i,*)

!HPF$ INDEPENDENT

DO i=1,n

!HPF$ INDEPENDENT

DO j=1,n

A(i,j)=B(j,i)*(C(i,i))

E(i,j)=E(i,j)*(C(i,i))

END DO

END DO

REAL A(n, n)

REAL B(n, n)

REAL C(n, n)

REAL E(n, n)

REAL ARRAY1(2:2,n)

!HPF$ TEMPLATE TEMP1(n,n)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN A(i,j) WITH TEMP1(i,j)

!HPF$ ALIGN B(i,j) WITH TEMP1(j,i)

!HPF$ ALIGN C(j,*) WITH TEMP1(j,*)

!HPF$ ALIGN E(i,*) WITH TEMP1(i,*)

!HPF$ ALIGN ARRAY1(*,j) WITH TEMP1(j,*)

t1=2

!HPF$ INDEPENDENT

DO p4=1,n

ARRAY1(2,p4)=C(p4,p4)

END DO

t1=3

!HPF$ INDEPENDENT

DO t2=1,n

!HPF$ INDEPENDENT

DO p4=1,n

E(p4,t2)=E(p4,t2)*ARRAY1(2,p4)

END DO

END DO

!HPF$ INDEPENDENT

DO p4=1,n

!HPF$ INDEPENDENT

DO p5=1,n

A(p4,p5)=B(p5,p4)*ARRAY1(2,p4)

END DO

END DO

The transformed program of Example 5.2 first copies the elements needed from C into a new
array ARRAY 1. If C is distributed in a suboptimal manner, this can lead to an improvement in
run time, in particular for a term like C(i,i), as in the code above, since communication code in
which the subscript dimensions depend on each other (such as a condition like “the first subscript
dimension equals the second one”, which is the case for C(i,i)) can be complicated to build and
induce more run time overhead. Yet, in the case of Example 5.2, C is replicated in one dimension
(the same placement as chosen for ARRAY 1), so we were not able to find any better placement
than already given. The main improvement in run time, which ranges from 58% to over 72%,
is due to other effects, as we will see in a moment. In this case, where we cannot find a better
distribution for an interesting set anyway (and do not gain from combining several occurrence
instances into one), a further optimization step could consist of redeclaring an occurrence instance
set as non-interesting, if its space-time mapping defines (essentially) the same transformation as
the ones for its dependence destinations. This would eliminate time and space overhead due to
the introduction of auxiliary arrays and the ensuing copy operations to these auxiliary arrays.

Although the t2-loop in the transformed code of Example 5.2 is marked INDEPENDENT, it has
to be enumerated by a sequential loop. This is because the second dimension of E is collapsed
– i.e., all elements are stored on the same processor. Thus, we can identify the t2-loop as an
implicit placement loop (we discussed these loops in Section 3.7 on page 127). The strategy
outlined in Section 3.7 suggests to place this loop insider the actual parallel (explicit placement)
loop. Nevertheless, we have decided against this strategy and placed the loop outside the parallel
loop. The reason for this decision is is that ADAPTOR does not handle this case well (it may



5.2. SOME SYNTHETIC EXAMPLES 195

Figure 5.3: Run times for Example 5.3

not extract communication outside such loops). Therefore, we have adapted our code generation
module to automatically produce this nesting order instead.

Let us now revisit the run time improvements witnessed above. These improvements actually
come from the pure use of code generation in the polyhedron model. As discussed in Section 3.7,
we view each target occurrence instance as a vector featuring dimensions for all parallel indices
in the target program. However, we only enumerate coordinates with a finite bound. In this way,
computations that are actually aligned with different template elements are not executed in the
same parallel loop nest, avoiding the pitfall of using different homes in the same INDEPENDENT

loop nest that we encountered in Section 2.1.2. This is not a result of applying LCCP, but rather
of parallelization using the polyhedron model, since the loop fissioning in this case is only possible
because the scheduling phase has generated a program in which all dependences are already carried
by the outer loops. Note that, although, in this chapter, we have adorned the original code in
the examples with INDEPENDENT directives, we do not need this information in order to produce
parallel code. The usual parallelization in the polyhedron model already takes care of this. The
next example shows how lccp performs with rather time consuming mathematical operations.

Example 5.3 Figure 5.3 shows the run times of the following original code fragment (the left one
below) and the code fragment transformed by LCCP (the right one below) for n = 7000 and 2 to 8
processors.
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REAL A(n)

REAL B(n)

REAL C(n)

REAL D(n,n)

REAL E(n,n)

!HPF$ TEMPLATE TEMP1(n,n)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN A(i) WITH TEMP1(i,1)

!HPF$ ALIGN B(i) WITH TEMP1(i,1)

!HPF$ ALIGN C(i) WITH TEMP1(i,1)

!HPF$ ALIGN D(i,j) WITH TEMP1(i,j)

!HPF$ ALIGN E(i,j) WITH TEMP1(i,j)

!HPF$ INDEPENDENT

DO i=1,n

!HPF$ INDEPENDENT

DO j=1,n

D(i,j)=(A(i)*B(i))+ &

& SQRT(C(i))

E(i,j)=SIN(A(i)*B(i))

END DO

END DO

REAL A(n)

REAL B(n)

REAL C(n)

REAL D(n,n)

REAL E(n,n)

REAL ARRAY1(3:3,n)

REAL ARRAY2(3:3,n)

REAL ARRAY3(2:2,n)

REAL ARRAY4(1:1,n)

REAL ARRAY5(1:1,n)

!HPF$ TEMPLATE TEMP1(n,n)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN A(i) WITH TEMP1(i,1)

!HPF$ ALIGN B(i) WITH TEMP1(i,1)

!HPF$ ALIGN C(i) WITH TEMP1(i,1)

!HPF$ ALIGN D(i,j) WITH TEMP1(i,j)

!HPF$ ALIGN E(i,*) WITH TEMP1(i,*)

!HPF$ ALIGN ARRAY1(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY2(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY3(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY4(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY5(*,j) WITH TEMP1(j,*)

t1=1

!HPF$ INDEPENDENT

DO p7=1,n

ARRAY5(1,p7)=A(p7)

ARRAY4(1,p7)=B(p7)

END DO

t2=2

!HPF$ INDEPENDENT

DO p7=1,n

ARRAY3(2,p7)=ARRAY5(1,p7)* &

& ARRAY4(1,p7)

END DO

t2=3

!HPF$ INDEPENDENT

DO p7=1,n

ARRAY2(3,p7)=SQRT(C(p7))+ &

& ARRAY3(2,p7)

ARRAY1(3,p7)=SIN(ARRAY3(2,p7))

END DO

t4=4

!HPF$ INDEPENDENT

DO p7=1,n

!HPF$ INDEPENDENT

DO p8=1,n

D(p7,p8)=ARRAY2(3,p7)

E(p7,p8)=ARRAY1(3,p7)

END DO

END DO

Just as with Example 5.1, array B is distributed unfavourably in Example 5.3 and copied to
ARRAY 4 in the first step of the transformed program. Similarly, A is copied to ARRAY 5. Since
both A and B are used several times in the following computation, this can be viewed as explicit
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message coalescing (we now only need to communicate A and B once each, whereas, previously,
both arrays had to be transferred twice). C is not copied to an auxiliary array, because it is only
needed in the term (A(i)*B(i))+SQRT(C(i)), whose execution itself is already represented by an
interesting set. Both the value represented by this term and the expression sin(A(i) · B(i)) are
needed on a complete row of the processor mesh and therefore get a replicated placement, just as
B(i) ·B(i) in Example 5.1. The computations of A(i) ·B(i)+

√

C (i) are extracted from the j -loop
enumerating that row of the processor mesh. Each such computation is therefore only executed
once by each physical processor that is responsible for a range of that row. The same holds for
the computations of A(i) · B(i), since the same multiplication result is needed for both adding it
to
√

C (i) and for taking its sine. In contrast to the previous examples, the homes of the result
arrays (D and E ) are identical. In this case, the fact that the relatively expensive operators SIN
and SQRT do not have to be called as often as in the original program, combined with the message
coalescing of A and B is responsible for a run time improvement of 26% to almost 69%.3

5.3 A Case Study: Binary Black Hole

This section is devoted to a small fragment of the Pittsburgh Binary Black Hole code as a real
world example [GWI92]. This code was developed in the Binary Black Hole Grand Challenge
project for the computation of gravitational waves [HM95]. We only consider a small loop nest
of this code in Example 5.4, which is originally given in FORTRAN 77, but also available in an HPF

version, which enumerates all loops that may be executed in parallel by FORALL-loops. We choose
to use the same placement declarations, but the more appropriate INDEPENDENT directive for the
parallel loops.4 Another discussion of this example, primarily focussing on the application of our
placement method, can be found in Wondrak’s diploma thesis [Won05, Chapter 8].

Example 5.4 Figure 5.4 shows the run times of the original program fragment for nx = ny =
6000 and 2 to 16 processors, and a version with loops fissioned by hand (which is similar to the
HPF version of the original). One might expect better performance from the fissioned version due
to the fact that it guarantees a single home description for each loop nest. Nevertheless, the time
measurements of these two versions are nearly identical so that their graphs in Figure 5.4 overlap
almost completely. However, there is a third line (the lowest one) in the figure, which belongs to the
LCCP transformed program fragment of the first version. The complete code for the transformed
fragment is very large. Therefore, we will only review a small part of this code later on.

Our HPF program for the Binary Black Hole code, which is based on a sequential version and
has been parallelized by hand, looks as follows:

REAL L2(0:ny,0:nz)

REAL GYY(0:ny,0:nz)

REAL GY(0:ny,0:nz)

REAL GZ(0:ny,0:nz)

REAL GZZ(0:ny,0:nz)

REAL Y(0:ny)

!HPF$ TEMPLATE T1(0:Ny,0:Nz)

!HPF$ DISTRIBUTE T1(BLOCK,BLOCK)

!HPF$ ALIGN L2(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN GY(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN GZZ(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN GYY(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN Y(p1) WITH T1(p1,*)

3Note that this holds even though the computation of the more expensive operators is done in a replicated
fashion.

4Note again that, due to the scheduling phase applied in our approach, the INDEPENDENT directives are actually
not necessary to identify these loops as parallel.
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Figure 5.4: Run times for Example 5.4

!HPF$ INDEPENDENT

DO k=0,nz

L2(0,k)=-4.0 &

& *(gm_south-g_south) &

& /(dz*dz)

L2(ny,k)=-4.0 &

& *(gm_north-g_north) &

& /(dz*dz)

!HPF$ INDEPENDENT

DO j=1,ny-1

L2(j,k)=-(((1.0-Y(j)) &

& *(1.0-Y(j))) &

& *GYY(j,k) &

& -2.0*Y(j)*GY(j,k) &

& +GZZ(j,k) &

& /(1.0-Y(j)*Y(j)))

END DO

END DO

The hand-fissioned – not LCCP transformed – code, which is similar to the HPF version of the
Binary Black Hole Grand Challenge project, is given below:

REAL L2(0:ny,0:nz)

REAL GYY(0:ny,0:nz)

REAL GY(0:ny,0:nz)

REAL GZ(0:ny,0:nz)

REAL GZZ(0:ny,0:nz)



5.3. A CASE STUDY: BINARY BLACK HOLE 199

REAL Y(0:ny)

!HPF$ TEMPLATE T1(0:Ny,0:Nz)

!HPF$ DISTRIBUTE T1(BLOCK,BLOCK)

!HPF$ ALIGN L2(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN GY(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN GZZ(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN GYY(p1,p2) WITH T1(p1,p2)

!HPF$ ALIGN Y(p1) WITH T1(p1,*)

!HPF$ INDEPENDENT

DO k=0,nz

L2(0,k)=-4.0 &

& *(gm_south-g_south) &

& /(dz*dz)

END DO

!HPF$ INDEPENDENT

DO k=0,nz

!HPF$ INDEPENDENT

DO j=1,ny-1

L2(j,k)=-(((1.0-Y(j)) &

& *(1.0-Y(j))) &

& *GYY(j,k) &

& -2.0*Y(j)*GY(j,k) &

& +GZZ(j,k) &

& /(1.0-Y(j)*Y(j)))

END DO

END DO

!HPF$ INDEPENDENT

DO k=0,nz

L2(ny,k)=-4.0 &

& *(gm_north-g_north) &

& /(dz*dz)

END DO

The original program fragment in Example 5.4 contains the following terms represented by
occurrence instances that are combined into interesting sets:

Term Reason for Applicability of LCCP Array
Y(j) independent of k , appears several times

in body
ARRAY 8

1.0-Y(j) independent of k , appears several times
in body

ARRAY 7

Y(j)*Y(j) independent of k , appears several times
in body

ARRAY 4

(1.0-Y(j))*(1.0-Y(j)) independent of k ARRAY 6

2.0*Y(j) independent of k ARRAY 5

1.0-Y(j)*Y(j) independent of k ARRAY 3

dz*dz independent of k , independent of j
(scalar)

–

-4.0*(gm south-g south)/(dz*dz) independent of k , independent of j
(scalar)

–

-4.0*(gm north-g north)/(dz*dz) independent of k , independent of j
(scalar)

–
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Unfortunately, our prototype implementation of LCCP in LooPo was not able to combine the
last three – scalar – expressions to (singleton) sets of representatives due to excessive memory
usage during compilation. Therefore, equivalence recognition was turned off for scalars, and only
the first 6 expressions were actually transformed into new occurrence instance sets. The table also
shows the respective arrays storing the values calculated for the corresponding expressions. As
already hinted, the result of our LCCP transformation is rather large, so that we only show the
central part of the target code here:

REAL L2(0:ny,0:nz)

REAL GYY(0:ny,0:nz)

REAL GY(0:ny,0:nz)

REAL GZ(0:ny,0:nz)

REAL GZZ(0:ny,0:nz)

REAL Y(0:ny)

:

REAL ARRAY3(3:3,1:ny-1)

REAL ARRAY4(2:2,1:ny-1)

REAL ARRAY5(2:2,1:ny-1)

REAL ARRAY6(3:3,1:ny-1)

REAL ARRAY7(2:2,1:ny-1)

REAL ARRAY8(1:1,1:ny-1)

:

!HPF$ TEMPLATE TEMP1(0:ny,0:nz)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ TEMPLATE TEMP1(0:ny,0:nz)

!HPF$ DISTRIBUTE TEMP1(BLOCK,BLOCK)

!HPF$ ALIGN L2(p1,p2) WITH temp1(p1,p2)

!HPF$ ALIGN GY(p1,p2) WITH temp1(p1,p2)

!HPF$ ALIGN GZZ(p1,p2) WITH temp1(p1,p2)

!HPF$ ALIGN GYY(p1,p2) WITH temp1(p1,p2)

!HPF$ ALIGN Y(p1) WITH temp1(p1,*)

:

!HPF$ ALIGN ARRAY3(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY4(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY5(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY6(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY7(*,j) WITH TEMP1(j,*)

!HPF$ ALIGN ARRAY8(*,j) WITH TEMP1(j,*)

:

t1=1

!HPF$ INDEPENDENT

DO p7=1,ny-1

ARRAY8(p7)=Y(p7)

:

END DO

:

t1=2

!HPF$ INDEPENDENT

DO p7=1,ny-1

:

ARRAY7(2,p7)=1.0-ARRAY8(1,p7)

:

ARRAY5(2,p7)=2.0*ARRAY8(1,p7)

:
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ARRAY4(1,p7)=ARRAY8(1,p7)*ARRAY8(1,p7)

:

END DO

:

t1=3

!HPF$ INDEPENDENT

DO 1,ny-1

ARRAY6(3,p7)=ARRAY7(2,p7)*ARRAY7(2,p7)

ARRAY3(3,p7)=1.0-ARRAY4(2,p7)

END DO

t1=4

!HPF$ INDEPENDENT

DO p8=0,nz

!HPF$ INDEPENDENT

DO=1,ny-1

L2(p7,p8)=(-(GZZ(p7,p8)/ARRAY3(3,p7)+ARRAY6(3,p7)*GYY(p7,p8)&

& -ARRAY5(2,p7)*GY(p7,p8)))

END DO

END DO

In this case, Y is already distributed very well, so that we do not gain anything from introducing
ARRAY 8, which is distributed exactly as Y . Since, for all interesting sets, both sources and targets
suggest the same placement relation, there is only one possible placement for all the auxiliary
arrays (and the corresponding computations): aligning the (single) parallel dimension with the
first dimension of the processor mesh and replicating the arrays along the second dimension.

Figure 5.4 shows an improvement of the LCCP generated version of at least 6% up to over 20%
wrt. the original program fragment. Further details can be gathered from the following table:

Number Time Relative Efficiency Time Relative Efficiency Improvement
of LCCP Speedup (LCCP) Original Speedup (Original) (LCCP vs.

Processors in ms (LCCP) in ms (Original) Original)
2 2414 2.2 110% 2752 2.0 100% 12.63%
4 1331 3.99 99.8% 1535 3.56 89.0% 13.96%
8 901 5.89 73.6% 969 5.69 71.1% 6.83%

16 581 9.14 57.1% 743 7.49 46.8% 20.95%

The table also shows the relative speedup of the program run on the respective number of
processors wrt. exactly the same program version run on only one processor. We observe that the
relative speedup, and thus the efficiency, of the LCCP transformed program is consistently better
than the one of the original program.

It should be noted that there are also examples that do not favour the LCCP transformation
at all. Nevertheless, this transformation and its theoretical background, in combination with a
placement method tuned to the respective target system, can be viewed as a first step towards a
method for generating more efficient target code.
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Chapter 6

Conclusion

Traditional code analysis does not handle loop ranges, i.e., it handles loops as completely unpre-
dictable control structures. The polyhedron model represents an approach based on integer sets
that removes this drawback. This model offers a mathematical representation of a code fragment,
which has to be reconstructed into an executable program. In particular, for parallel programs
running on distributed memory architectures, this has turned out to be a non-trivial task. Pre-
vious work either concentrated on elaborate scanning techniques in order to generate code that
can be compiled into efficient executable code by traditional compilers, or (as in the case of loop
transformations for cache optimizations) used this approach only as a coarse model of the loop
nest in a program fragment.
This thesis presents two optimization techniques for loop programs that aim at improving the code
on the model level. These techniques enable the code generation phase to produce source code
for which a traditional (completely syntax-based) compiler generates efficient target code. This
holds in particular for the case of the aforementioned parallel programs for distributed memory
architectures. Both techniques are based on a common framework developed in Chapter 2. The
usual granularity used in the polyhedron model is refined here further to the level of function and
operator arguments. On this level, each argument position can be identified. Each of these low
level operations is called an occurrence instance.

The Basic Framework In order to define intraprocedural code optimizations, it is necessary
to represent the input program in great detail, close to the level of the actual program execution
by the hardware. For this purpose, we have created the framework introduced in Section 2.3.
This framework builds on the polyhedron model. Adding two further dimensions to the usual
representation used in the polyhedron model enables us to examine not only statements or even
instances of operator applications, but load and store operations (i.e., read accesses and write
accesses) within call sites. Thus, not only the order of arguments in an argument list, but even
actual and dummy arguments of a function call can be distinguished. This is as close as one can get
to the executable code represented by the input program without knowledge of the implementation
of function calls (for example, whether a given operator is to be implemented by a machine
instruction or a call to some library function). The smallest entity considered in this model is the
single read access, write access, or compute operation that is executed in a single well-defined loop
iteration. These entities are called occurrence instances in our refined model. Each occurrence
instance is associated with a function symbol that indicates whether the occurrence instance
represents a compute operation (and, if so, which compute operation) or a read or write access.

Code Optimization in the Polyhedron Model Chapter 3 makes use of this approach by
comparing occurrence instances based on the function symbols associated with them and on the
occurrence instances on which they depend. The result is a procedure for the detection of subex-
pressions that compute the same value wrt. Herbrand equivalence, where terms may contain array
references. This procedure, which we have dubbed loop-carried code placement (LCCP), can easily
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be extended to support also associativity and commutativity laws. LCCP creates a new program
representation using polyhedra – as usual in the polyhedron model. In contrast to the usual
transformation in the polyhedron model, LCCP introduces a new class of existentially quantified
variables that have to be checked for an integer solution, but which are not used for the actual com-
putation. The new (transformed) polyhedra are derived via a change of basis. We have observed
that the safest way of obtaining valid target polyhedra (which have to consist of integer numbers),
namely using unimodular transformations, is not in general possible (as Theorem 3.24 shows).
Therefore, the generated polyhedra may have to be expressed in a more complicated manner than
the original ones: they may contain holes even if the original ones do not. Since detecting all the
redundancy in a program is not computable, we cannot expect this method to do so. In fact, it
is limited to equivalences that do not follow from assignments: it cannot deduce the equivalence
of A and B after an assignment of A to B . In future work, this could be improved somewhat by
introducing equivalences on write accesses and defining a class of operators other than linear com-
bination whose result can be predicted. One candidate for this is the assignment operator, which
only passes on the value it reads. We could then rewrite the program representation according
to the appropiate rules. However, although these improvements are straightforward extensions of
the framework presented here, they also introduce new problems, whose consideration is beyond
the scope of this thesis.
With its redundant code recognition features, LCCP can be used to reduce the number of occur-
rence instances to be executed in a given loop nest. However, this comes possibly at the price
of additional assignments in the final executable. Nevertheless, in the parallel setting, this code
placement technique can lead to improved processor utilization.
The method also distinguishes between plain sets of occurrence instances, which have to be repre-
sented as a computation in the target program, and interesting sets, which compute values that are
needed in several places of the program fragment. Thus, the method is also useful for identifying
occurrence instances for which it is worthwhile to determine an individual space-time mapping
and review the possible placements in a distributed memory architecture.

Occurrence Instance Placement Determining a placement for an interesting set of occurrence
instances is therefore an important aspect, not only of code generation in the polyhedron model
in general, but also of postprocessing the results of LCCP transformations. With the placement
method developed in Chapter 4, we aim at a universal strategy for producing placements for any
target system. Of course, this means that we have to employ a highly adaptive cost model. We
impose only a few assumptions on the cost model: in particular, we assume that it will predict lower
costs if an occurrence instance is aligned with sources or targets of dependences pertaining to this
occurrence instance. I.e., we assume that costs are decreased by data alignment and increased by
the absence of alignment. The straightforward approach we follow here is to propagate placements
in both directions and then evaluate all possible combinations of placements, which leads to the
need of further partitioning the interesting sets so that the domain of a placement relation may
be modeled accurately. This strategy produces an extremely large search space, which might
better be examined using genetic algorithms or different heuristics (which might make additional
assumptions about the cost model). However, this point is left for future work.
Still striving for a general placement method, we do not restrict ourselves to placement functions,
but allow placement relations, i.e., a value may be computed and stored in several places. Although
this replication may not utilize all the parallelism inherent in the program, it may pay off in the
overall cost due to reduced communication requirements. Communication takes place in a parallel
program at different levels (inter-node communication in a coarser view, communication between
registers in a very fine-grained view). We propose to adopt a hierarchical approach to the placement
of occurrence instances, in which placements are determined for several of these levels, moving
from the coarser view to the finer one. However, for the discussion in this thesis, we restrict
ourselves to placement relations on the level of inter-node communication. Placement relations
on this level are easily expressed in HPF and, indeed, an HPF compiler can take advantage of these
explicit placements quite well if some additional (still sometimes compiler dependent) issues are
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observed (as pointed out in Sections 2.1.2, 3.7 and 5.2).
Regarding the inter-node communication using an HPF compiler, it can be observed that the
complexity of array subscript expressions in the loop body has a strong impact on the performance.
With the help of the benchmark suite we developed (which is described in Section 4.3.1), the
cost model we have adapted to the ADAPTOR compiler as an example in Section 4.3.2 can be
recalibrated to other (HPF or non-HPF) compilers that also rely heavily on the syntactic forms of
subscript expressions for communication generation.

Future Work As discussed in Section 3.8 and Section 4.5, there are quite some points left for
future work, some of which we want to revisit here. Let us first review possible future work on the
LCCP algorithm. We will then proceed to discuss some points for improvement in the placement
method.

A possible approach to eliminate performance penalties of the lccp transformation is to clone
interesting sets into several collections of almost identical sets (with only the occurrence number
changed to indicate the difference). This reverses some of the transformations achieved by LCCP,
so there should be some mechanism to determine whether a set should be cloned or not.

A very important point for the general applicability of lccp is that with the version of lccp
presented here, write accesses are never equivalent to each other. This restriction prevents many
possible optimizations. With an equivalence on write accesses, LCCP could be used to eliminate
unnecessary writes and identify all the points automatically that lend themselves to the storage of
intermediate values. As discussed in Section 3.6, this restriction is not to be overlooked, since the
correctnes of the transformation depends on it. However, it may be possible to circumvent these
problems.

We have also observed that the transformation performed by lccp may give valuable hints
for places where code optimizations may be perfromed in order to increase processor utilization
not only for clusters but also for modern mulitcore architectures as well as stream processors and
general purpose GPU (GPGPU) programming. For example, in the case of GPGPU programming,
kernels may be optimized for better ressource utilization internally. Also, with the interesting sets
identified by lccp, this technique may possibly be used to cluster code fragments into kernels
automatically so as to both increase ressource utilization and to minimize kernel startups (in
conjunction with a corresponding scheduler). A problem here may be to adequately model limited
resources such as shared memory.

The placement algorithm presented in Chapter 4 is rather simple. It is important to choose
an appropriate cost model for the problem system at hand.

The cost model we have introduced in Chapter 4 favours replicated placements, since there
is no provision for estimating the amount of work placed on a single processor. In addition,
computation of placements in practice is very time consuming. This is because all combinations
of placement relations are evaluated. It remains to examine where our flexible method should
employ heuristics or other search mechanisms in order to reduce the run time of the placement
algorithm.

And yet, our placement method is already artificially restricted in its search space: cycles in
the reduced dependence graph and the combination operator introduced in Section 2.4.2 may lead
to further placement candidates. It may be worthwhile to include these placement candidates in
later versions of the placement algorithm.

In addition, further placement relations may be obtained by repeatedly propagating place-
ment relations (our placement method is parameterized with the number of propagating steps, in
Chapter 4, we only use a single step).

Although the placement algorithm presented in Chapter 4 is thought to be embedded in a
hierarchical placement process, we only considered a single run of the placement algorithm. Future
work should take into account different levels of granularity and employ several consecutive runs of
the placement algorithm with different cost models suited for the respective granularity, with each
run of the placement algorithm being aware of the results of previous runs (and of the scheduler).
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Final Observation We have presented a framework for performing code optimization in the
polyhedron model and introduced two transformation methods based on this framework. The first
transformation, LCCP, directly changes the complete program representation and may increase
processor utilization as well as identify candidates for redistribution. The second method, the
OIAllocator placement, uses replication to bring the source and target of a computation closer
together. Both methods leave room for improvement but, as Section 5.3 shows, the combination of
these transformation techniques, in conjunction with some heuristics in the target code generation,
represents an important step towards more efficient target code by itself.



Appendix A

Options of the Program lccplccplccp

In Chapter 3, we were faced with several different choices on numerous occasions. For the sake of
the argument, we always selected the one for which we could make the best case. Nevertheless, the
program lccp that implements the method offers a set of options in order to change the default
behaviour. Here, we present these options that can be supplied to the program lccp to change
the default settings.1

const stat:

Usually, Occurrence 0 represents integer numbers. If option const stat is supplied, the
first statement encountered in the program is used to represent integer numbers (i.e., a
dependence on a linear expression is represented as a dependence on the head node of
this statement). The integer number represented is always the value of the first index
variable (which may or may not lie in the actual index space of the statement).

guess dep type:

Usually, dependences in the output are only marked as having an undefined type (as
opposed to flow, anti, input or output dependence). If this option is given, the correct
type of a dependence is set according to its source and target occurrences.

highdim:

This option causes lccp to sort equivalence classes so that a set of occurrence instances
is represented by a polyhedron with as many dimensions as possible. This is the method
that we chose in Section 3.5.2 on page 104 for sorting the polyhedra that may represent
an occurrence instance set. If the option is not given, the opposite sorting criterion is
used.

ignoredeps:

This option defines a set of dependence types that are ignored by lccp for generating
equivalence classes. As discussed in Section 2.3.1, usually only flow dependences are
helpful in determining equivalence classes. Therefore, the default behaviour is to use
flow dependences, user given dependences (which are interpreted as flow dependences),
and input dependences.

interesting reads:

interesting writes:

interesting readwrites:

interesting stats:

Definition 3.17 in Section 3.17 defines sets of write accesses as interesting sets. With
these options, different sets can be made interesting.

keep range:

1Purely technical options that only handle format conventions between modules are omitted.
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scoped deps:

With these options switched on, the exact domains, i.e., the bounds of occurrence
instance sets are not ignored when searching for equivalent occurrence instances in
contrast to the procedure selected in Section 3.5.2 on page 86.

lexminmap:

projectmap:

These options are mutually exclusive. They tell lccp which method to use for select-
ing representatives. If lexminmap is given, the lexicographic minimum (as outlined in
Section 3.5.1) is used. Otherwise, representatives are selected according to our method
employing a change of basis (discussed in Section 3.5.2).

memory: The list following this option defines dummy statements (the statements inside
dummy loops introduced in Section 2.3). Usually, dummy statements are recognized by
certain reserved function names.

norm deps:

This option asserts that the dependence descriptions in the output are defined by h-
transformations that represent simple expressions (as discussed in Section 3.7 on page
131). This leads to subscript expressions that can be handled well by HPF compilers.

op is big:

Setting this option forces the operand coordinates in the complete output to be set to
infinity. This marks the dimension as corresponding to a loop that does not contain any
statement in its body. This is done in order to be able to call subsequent modules that
work on the usual granularity of statements rather than on our refined model.

partition dep stat:

If this option is supplied to lccp, an initial partitioning of occurrence instance sets
from target to source is done as discussed in Section 4.2.2. Since a partitioning in the
opposite direction is automatically done by the LCCP method itself, this precludes the
partitioning step of the placement method discussed in Section 4.2.3.

time: Option time tells lccp to print out timing statistics at the end of the program run.

v: This option sets the verbosity level:

on: Print all messages.

norm: Print only warnings and errors.

off: Run in silent mode.



Appendix B

Notation

Often, notations and definitions are taken for granted. But, as Wittgenstein tells us, “only facts
can express a sense, a set of names cannot” [Wit18]. This work is no exception: although most of
the notation encountered here is quite common, there may well be basic definitions and notations
that may not be clear immediately. Therefore, we give the following small translation table in the
hope that it may unveil the exact meaning of all expressions that are not immediately clear to the
reader.

# (A) Number of elements of a finite set A.
WC Complement of a linear subspace W.
W⊥ Orthogonal complement of a linear subspace W.
F : A → B Function F maps from set A (its domain) to

set B (the image of F , some authors call this the range of F ).
F (x) Image of x by a function F .
F : A → B : x 7→ y Function F maps each x ∈ A (the pre-image of y) to

y ∈ B (the image of x).
F : x 7→ y Function F maps each x to y.

Domain and image of F are clear from the context,
and therefore not stated explicitly.

dom(F ) Domain A of a function F : A → B.
im(F ) Image of a function F : A → B; im(F ) = F (A) ⊆ B.
im(M) Image of matrix M , i.e., the image of the linear function Ψ : ν → M · ν.
Fn n applications of F : F n = F ◦ · · · ◦ F

︸ ︷︷ ︸

n times

.

F−1 Inverse of function/relation F – possibly maps a single element to a set.
ker(Ψ) Kernel of a linear function Ψ.
(x, y) ∈ F Relation F contains the pair (x, y).

If F is a function, this means that x is mapped to y.
xF y different notation for (x, y) ∈ F .
R|A Restriction of relation (or function) R to domain A.

R|A = {(a, b) (a, b) ∈ R∧ a ∈ A}.
R= Reflexive closure of relation R.
R− Symmetric closure of relation R.
R+ Transitive closure of relation R.
R∗ Reflexive, transitive closure of relation R.
(R−)

∗
Reflexive, symmetric transitive closure of relation R.

Ψg Any generalized inverse of a linear function Ψ [Usm87, p. 84].
See Section 2.2

Mg Generalized inverse of a matrix M.
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Ψg0 Generalized inverse of a linear function Ψ,
in which undefined dimensions are mapped to 0.

Mg0 Generalized inverse (as above) for matrix M.
T g< Generalized inverse of T that simplifies result expressions; see page 124.
ΨC Conditions that have to hold for a vector to lie in the image of a

singular linear function Ψ.

MΨ
C Matrix representing the conditions ΨC above for a vector α

as MΨ · α = 0C ; (this is for a
linear function Ψ : µ 7→ MΨ · µ).

νT Vector ν, transposed.
V/W Quotient space V modulo W.
ιd,i i-th unit vector in a d-dimensional space.
ιi i-th unit vector within a space whose dimension is clear from context.
Ik,k k-dimensional unit matrix.

Ik,l k × l-matrix E with E[i, j] =

{

1 if i = j

0 otherwise
.

id The identity function.
Span(ν1, . . . , νn) Span of the vectors ν1, . . . , νn.

I.e., Span(ν1, . . . , νn) =
{
(
∑
i : i ∈ {1, . . . , n} : ai · νi)

(
∀i : i ∈ {1, . . . , n} : ai ∈ Q

)}
.

Correspondingly, Span(N) =
⋃

ν∈N

Span(ν).

V � W Direct sum V ∪W , where V ∩W = ∅.
P(M) Powerset of set M.
Km×n m× n-matrix with elements from ring K.
rk(M) Rank of matrix M.
〈ν, r〉 Access instance – see Section 2.3.
OpndSel(i, ν) Occurrence instance representing operand i of the operation ν.

See definition 2.21 in Section 2.3.
m∞ Big parameter (m∞ = ∞) [Fea03] – Section 2.3.
mc Constant parameter known to be 1 (mc = 1) – see Section 2.3.

a%b a modulo b (a%b = a−
⌊

a
|b|

⌋

· b).

∆i,∆f ,∆a,∆o Input-, flow-, anti- or output-dependence relation (defined in Section 2.3.2).
In the reduced form, these dependences are usually defined by
piecewise linear h-transformations of the form

H∆ : D ⊆ im(∆) → OI : α 7→







MH∆,1 · α if α ∈ D1

...

MH∆,n
· α if α ∈ Dn

.

However, in this work, such a relation is usually represented by a family of n
linear h-transformations of the form

H∆,1 : D1 ⊆ im(∆) → OI : α 7→ MH∆,1 · α

...

H∆,n : Dn ⊆ im(∆) → OI : α 7→ MH∆,n
· α

with Di ∩Dj = ∅ for i 6= j ∈ {1, . . . , n}.
∆e Equivalence propagating dependences (see Section 3.2).
◦− Subset composition of two relations (see Definition 2.36).
◦+ Superset composition of two relations (see Definition 2.32).
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In addition, we obey some general naming conventions:

• General sets start with capital German letters: A,B,C, . . . Sets defining linear subspaces
are usually named U,V,W, . . .

• (Scalar) variables (whose type may be anything, including a vector type, if we do not use
the fact that the variable is actually a vector) start with lower case Latin letters: a, b, c, . . .
Usually, we further discern:

– Align dummies are usually named i, j, k, . . . .

– Indices (in the program text) are usually named i, i1, i2, . . .

– Parameters (in the program text) are usually named m,m1,m2, . . .

– The number of indices in the source space of a program fragment considered is nsrc,
the number of index variables in the target space (after space-time mapping) is ntgt.

– The number of parameters in a program fragment considered is nblob – we suppose
that the target program fragment contains as many parameters as the source program
fragment.1

– Occurrences are usually named o, o1, o2, . . .

– The number of dimensions of a processor mesh or its corresponding template or of a
processor array is #pdim. The sum of all dimensions of all processor meshes is #pdims.

– The extent of dimension i of a processor mesh or a processor array is #cpu[i], and the
number of physical processors in that mesh is #cpu =

∏#pdim
i=1 #cpu[i].

– Lower bound, upper bound, and stride of a loop are usually named l, u, and s, respec-
tively.

– Dimensionalities of linear subspaces and polyhedra are usually written q, r, s, . . .

– Statements in the program text are denoted S, T, . . .

• Terms (expressions) that constitute the program text (which is more general than a state-
ment) are denoted by lower case German letters: a, b, c, . . .

• Vectors start with lower case Greek letters: α, β, γ, . . . In general, occurrence instances will
be named α, β, . . . , while more general vectors that are not necessarily occurrence instances
start somewhat higher up in the alphabet (µ, ν, ψ, . . . ).

• Functions start with capital Latin letters: F,G,H, . . . .

• Arrays in program fragments presented are also seen as functions; however, they are usually
named A,B,C, . . . Arrays representing templates and processor arrays are usually named
T, P, . . .

• Functions in program fragments considered that are seen as (prefix, infix, or postfix) opera-
tors – i.e., functions that are used mainly inside of a larger expression in the program text
rather than for output through some output arguments – may also be denoted by �,⊗, . . .

• Linear functions and linear relations start with capital Greek letters: A,B,Γ, . . . Special
cases are:

– The h-transformation, defined in Section 2.3, is usually denoted H,H1, H2, . . . Note
that in this case, there is no difference between the capital Greek letter “eta” (H) and
the capital Latin “h” (H). Of course, the name actually stands for “h-transformation”.

1Actually, this implies that we do not introduce additional parameters in the course of parallelization and
optimization. Although our methods do need parameters that do not occur in the source program. However, we
may introduce these parameters in the source program fragment during the first step of program analysis, so that
we can assume the number of parameters to remain constant.
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– The schedule of a set of occurrence instances is usually denoted by Θ.

– The placement of a set of occurrence instances is usually denoted by Φ.

– The space-time mapping of a set of occurrence instances is usually denoted by T – note
that, again, there is no difference between the capital Greek letter “tau” (T) and the
capital Latin “t” (T). The name actually stands for “transformation”.

A genuine exception is the projection π(·) defined above, since the capital Greek letter Π
usually denotes multiplication, while π(·) denotes projection, and we will not break with
these traditions.

• Matrices start with capital Latin letters – usually M . A matrix that defines a linear function
Ψ : ν 7→ MΨ · ν is usually denoted as MΨ. Similarly, a matrix that defines a polyhedron P

or a linear relation P by its roots (P = {ν MP · ν ≥ 0}, P =
{
(µ, ν) MP · (µ, ν)T = 0

}
) is

usually denoted MP, and MP , respectively.

• For better presentation, matrices and vectors are accessed like arrays. We write M [i, j]
for the element in the i-th row of the j-th column of M . Correspondingly, the row vector
consisting of the i-th row of M is M [i, ·], and the j-th column is M [·, j].

• In the algorithms shown, we actually do not discern between a list, a vector, and a one-
dimensional array, and sizes of objects of these structures can be obtained by a function
size; elements of such an object List can be referenced by List[i]; the first element of an
array or list is always 1. In addition, we can search for an element x in a list of array A via
x ∈ A, and it is always possible to append an element x to a list or array A by using the
function append(A, x) or by assigning to an undefined array position or by concatenating
a list containing only that element via a concatenate function: concatenate(A, (x)). The
empty list is represented by ∅.

Other variable names in algorithms presented in this work quite often consist of more than one
letter; these variables usually start with a lower case Latin letter, and no type information can be
deduced from their name. In addition, it is not always simple to choose the correct representation
for a given object, since several characterizations of the same object may be interesting at a given
time – for example, one may want to see some a ∈ Q as both a rational number, and as the
one-dimensional vector (a) = α ∈ Q

1. Often, the excessive use of functions in order to represent
such a conversion obscures the facts even further. We chose, not to use explicit conversions where
they can be avoided; instead the name of an object should let the reader determine at least its
main purpose in the given context.
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[GWI92] R. Gómez, J. Winicour, and R. Isaacson. Evolution of scalar fields from characteristic
data. Journal of Computational Physics, 98(1):11–25, 1992.

[Hes06] P. Hester. Presentation at 2006 amd analyst day. website, Decem-
ber 2006. http://www.amd.com/us-en/assets/content type/DownloadableAssets/

Dec-06A-DayPhilHester.pdf, visited on 2007-05-19.

[Hig93] High Performance Fortran Forum. High Performance Fortran Language Specification.
Final Version 1.0, Department of Computer Science, Rice University, May 1993.

[Hig97] High Performance Fortran Forum. High Performance Fortran language specification.
Version 2.0, Department of Computer Science, Rice University, January 1997.



218 BIBLIOGRAPHY

[HK91] D. Hofbauer and R.-D. Kutsche. Grundlagen des maschinellen Beweisens. Vieweg,
Braunschweig, 2nd edition, 1991.

[HKT91] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler optimizations for Fortran D
on MIMD distributed-memory machines. In Proc. Supercomputing’91, pages 86–100.
IEEE Computer Society Press, 1991.

[HKT94] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Evaluating compiler optimizations for
Fortran D. J. Parallel and Distributed Computing, 21(1):27–45, April 1994.

[HM95] T. Haupt and M. Miller. Gravitational wave extraction – a benchmark? website,
1995. http://www.npac.syr.edu/projects/bbh/PITT CODES/intro/pitt.ps, visited
on 2007-07-02.

[Hoe07] J. Hoeflinger. Extending OpenMP to clusters, 2007. http://cache-www.intel.com/

cd/00/00/28/58/285865 285865.pdf, visited on 2007-05-29.

[HT92] S. Hiranandani and K. K. C.-W. Tseng. Compiling Fortran D for MIMD Distributed
Memory Machines. Comm. ACM, 35(8):66–80, August 1992.

[Int97] International Organization for Standardization (ISO). ISO/IEC 1539-1:1997,
1997. http://www.iso.org/iso/iso catalogue/catalogue ics/catalogue detail

ics.htm?csnumber=26933, visited on 2008-02-01.

[KD95] K. Knobe and W. Dally. The subspace model: A theory of shapes for parallel systems,
1995. http://citeseer.ist.psu.edu/knobe95subspace.html.

[Kei97] H. Keimer. Datenabhängigkeitsanalyse zur Schleifenparallelisierung: Vergleich und
Erweiterung zweier Ansätze. Master’s thesis, Fakultät für Mathematik und Infor-
matik, Universität Passau, January 1997. http://www.fmi.uni-passau.de/loopo/

doc/keimer-d.ps.gz.
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[KRS94] J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion: Theory and practice. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(4):1117–1155,
July 1994. http://www.acm.org/pubs/toc/Abstracts/0164-0925/183443.html.



BIBLIOGRAPHY 219

[Lam74] L. Lamport. The parallel execution of DO loops. Comm. ACM, 17(2):83–93, February
1974.

[Len93] C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor, CON-
CUR’93, LNCS 715, pages 398–416. Springer-Verlag, 1993.

[LF98] V. Lefebvre and P. Feautrier. Automatic storage management for parallel programs. Par-
allel Computing, 24(3–4):649–671, May 1998. http://www.elsevier.com/cas/tree/

store/parco/sub/1998/24/3-4/1306.pdf.

[LL97] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchronization
with affine transforms. In Proceedings of the Twenty-fourth Annual ACM Symposium
on the Principles of Programming Languages, Paris, 1997. citeseer.ist.psu.edu/

article/lim97maximizing.html.

[LMC02] V. Loechner, B. Meister, and P. Clauss. Precise data locality optimization of nested
loops. J. Supercomputing, 21(1):37–76, January 2002.

[Loe99] V. Loechner. Polylib: A library for manipulating parameterized polyhedra, 1999.
citeseer.ist.psu.edu/loechner99polylib.html.

[MCA97] J. Mellor-Crummey and V. Adve. Simplifying control flow in compiler-generated parallel
code (extended abstract). In Proceedings of the Tenth International Workshop on Lan-
guages and Compilers for Parallel Computing, Minneapolis, MN, 1997. Springer-Verlag.
http://citeseer.ist.psu.edu/87338.html.

[Mes95] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Uni-
versity of Tennessee at Knoxville, 1995.

[Mes97] Message Passing Interface Forum. MPI-2: Extensions to the Message Passing Interface.
University of Tennessee at Knoxville, 1997.

[Mol82] D. I. Moldovan. On the analysis and synthesis of VLSI algorithms. IEEE Transactions
on Computers, C-31(11):1121–1126, November 1982.

[Mor98] R. Morgan. Building an Optimizing Compiler. Butterworth-Heinemann, 1998.

[MP87] S. P. Midkiff and D. A. Padua. Compiler algorithms for synchronization. IEEE Trans-
actions on Computers, 36(12):1485–1495, December 1987.
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and M. Tchuenté, editors, Automata Networks in Computer Science, chapter 9, pages
229–260. Manchester University Press, 1987. Also: Technical Reports 193 and 216,
IRISA (INRIA-Rennes), 1983.

[Qui04] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, 2004.

[Ram06] R. Ramanathan. Extending the world’s most popular processor architecture.
website, October 2006. http://www.intel.com/technology/magazine/computing/

new-instructions-1006.pdf, visited on 2007-05-19.
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