
Challenges in Finding an Appropriate Multi-Dimensional
Index Structure with Respect to Specific Use Cases

Alexander Grebhahn
Institute of Technical and

Business Information Systems
University of Magdeburg

grebhahn@st.ovgu.de

David Broneske
Institute of Technical and

Business Information Systems
University of Magdeburg

dbronesk@st.ovgu.de

Martin Schäler
Institute of Technical and

Business Information Systems
University of Magdeburg
schaeler@ovgu.de

Reimar Schröter
Institute of Technical and

Business Information Systems
University of Magdeburg
rschroet@st.ovgu.de

Veit Köppen
Center for Digital Engineering

University of Magdeburg
vkoeppen@ovgu.de

Gunter Saake
Institute of Technical and

Business Information Systems
University of Magdeburg

saake@ovgu.de

ABSTRACT
In recent years, index structures for managing multi-dimen-
sional data became increasingly important. Due to hetero-
geneous systems and specific use cases, it is a complex chal-
lenge to find an appropriate index structure for specific prob-
lems, such as finding similar fingerprints or micro traces in a
database. One aspect that should be considered in general is
the dimensionality and the related curse of dimensionality.

However, dimensionality of data is just one component
that have to be considered. To address the challenges of
finding the appropriate index, we motivate the necessity of
a framework to evaluate indexes for specific use cases. Fur-
thermore, we discuss core components of a framework that
supports users in finding the most appropriate index struc-
ture for their use case.

Keywords
index structures, evaluation, multi-dimensional data

1. INTRODUCTION
In the last years, data storage and management in com-

puter-aided systems became more advanced, because of an
increasing amount of unstructured data being stored. For
example, in multimedia databases images or videos are stored
and analyzed to find similar data items. A special use case
is the Digi-Dak Database Project1, where multi-dimensional
feature vectors of fingerprints and micro traces are stored in
a database. To manage these data items, methods are re-
quired to handle unstructured data in an appropriate way.

1https://omen.cs.uni-magdeburg.de/digi-dak

24th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 29.05.2012 - 01.06.2012, Lübbenau, Germany.
Copyright is held by the author/owner(s).

It is possible to extract feature vectors from an item to man-
age the data in a compressed and meaningful way. For man-
aging these feature vectors, multi-dimensional index struc-
tures can be used. In general, the question arises, which
index structure supports managing data best. Throughout
this paper, index structure performance describes suitability
with respect to a specific use case. However, we analyze core
aspects that have to be considered, if trying to answer this
for a specific use case. In order to achieve a reconstructible
and valid comparison, we present the idea of a framework
that allows the comparison of different index structures in a
homogeneous test environment.

This paper is organized as follows: In Section 2, we give
a short overview of basic components that have to be con-
sidered for evaluating the performance of index structures.
Within Section 3, we give an overview of additional chal-
lenges, which have to be handled by using index structures
in a specific use case. Finally, in Section 4, we present core
components that a framework needs for quantitatively eval-
uation of multi-dimensional index structures with respect to
different use cases.

2. BASIC CHALLENGES
Querying multi-dimensional data in an efficient way is

a complex challenge. Within the last decades, new index
structures are proposed and existing once are improved to
solve this challenge. Regarding a specific use case, it is not
suitable to consider an index structure in isolation. Addi-
tionally data properties, used query types, and underlying
distance metrics have to be taken into account. In this sec-
tion, we give a short overview of these four basic challenges.

2.1 Data Properties
Characteristics of data cause main challenges of querying

data within a database system. For instance, data dimen-
sionality has to be considered, because existing index struc-
tures are generally effected by the curse of dimensionality
[7, 23]. As a result, index structures, that are suitable for
a small number of dimensions are not necessarily suitable
for a larger amount of dimensions. An additional important
property is the data distribution, because some index struc-
tures are more practicable for clustered data than others.

Furthermore, value domain and the type of the data has to
be considered.

2.2 Query Types
Based on the work of Böhm et al. [8], query types can be

categorized into two groups: ε-similarity queries and Nearest-
Neighbor-similarity (NN-similarity) queries. The former de-
scribes a query, resulting in a set of data points being situ-
ated in a defined ε-distance to the query point, whereas the
latter results in a data point being the nearest item to the
query point. Describing these two groups, the ε-similarity
and NN-similarity has to be defined.

Definition: ε-similarity Query.
Two data points p1 and p2 are ε-similar if and only if

d(p1, p2) ≤ ε. The function d defines a similarity measure
for two points. In literature, similarity measures are of-
ten replaced by distance metrics, which we review in Sec-
tion 2.3. For finding all points in the data base being ε-
similar, an ε-similarity query is executed. A special case of
the ε-similarity is represented for ε = 0, because this implies
two identical points and an exact match is executed [8].

Definition: NN-similarity Query.
The data point p1 is NN-similar to p2 with respect to a

data base of points DB if and only if ∀p ∈ DB, p 6= p1 :
d(p2, p1) ≤ d(p2, p). For NN-similarity queries, all points
in a database are retrieved that are NN-similar to the query
point. An extension to the NN-similarity query is presented,
when instead of a nearest neighbor, k nearest neighbors have
to be retrieved. In this paper, we call the resulting query
k-NN query.

Apart from the mentioned similarity range query, window
queries are common queries and often called range queries in
literature [24]. These window queries are defined by intervals
for every queried dimension.

2.3 Distance Metrics
To execute similarity queries, we require a function com-

puting the similarity of two data items. To this end, similar-
ity for equal points is 1 whereas the maximum dissimilarity
is expressed by 0. Equivalent information is delivered from
distance metrics, whereupon two data items are more simi-
lar, the smaller their distance is.

The most common distance metrics are Minkowsky class
metrics, also called Lp distance metrics. The distance of two
data items x and y is computed by:

Lp(x, y) =
(d∑
i=1

(xi − yi)p
)1/p

.

By choosing different values for p, different representatives
of this class are produced. For p = 2, the Euclidean distance
metric is generated, which dominates common database sys-
tems according to Bugatti et al. [9].

Beneath these distance metrics, there are many other met-
rics, such as Canberra [9] or Dynamical-Partial [16] dis-
tance function. In contrast to Minkowsky distance func-
tions, Dynamical-Partial distance metric dm uses only the
m smallest distances for the computation of the distance of
data items [16]. As a result, in some specific use cases, it
can be a great benefit using the Dynamical-Partial distance
metric, because the influence of particular dimensions can
deteriorate the distance of data items.

R1

R2

R3

R4

R5 R6

R7

R8

R9
R10

R11

R12

A B

C

Figure 1: R-Tree with overlapping MBRs.

2.4 Index Structures
Since we aim at providing a comprehensive set of indexes,

we want to consider different types of index structures. Thus,
we use the classification of Weber et al. [23] to address a
broad variety of different approaches. Thus, index struc-
tures are classified by partitioning of the data space. Index
structures that partition the whole space are called space
partitioning methods, whereas data partitioning methods
partition the necessary space according to the location of
data points [8, 23]. Consequently, there are regions that
are not taken into account by performing a query on data
partitioning methods.

Alternatively, Andoni and Indyk [2] classify index struc-
tures by query results. There are exact index structures that
guarantee to retrieve the exact result of a query. Although,
this behavior is usually preferred, there are approximation-
based index structures, guaranteeing to retrieve points that
are similar to the correct result of a query. For instance for k-
NN queries, approximation-based index structures provide k
near neighbors to the query point instead of all exact nearest
neighbors. Hereby, the quality of the retrieved results, called
precision, can differ significantly, because approximate in-
dex structures aim at improving the query performance by
decreasing the precision. Nevertheless, an approximation-
based index should hold a threshold, because resulting data
would not be useful. In the following sections, we present
some representatives of index structures. First, exact index
structures, such as R-Tree [11], Pyramid Technique [5], and
VA-File [22] are introduced. Subsequently, p-stable Local-
ity Sensitive Hashing [12] as an approximation-based index
structure is presented.

2.4.1 Exact Index Structures
Giving an overview of existing index structures, we intro-

duce promising exact index structures in this section. Fur-
thermore, the difference between space partitioning and data
partitioning methods is stated by presenting at least one in-
dex structure for each category.

R-Tree.
One of the most important multi-dimensional index struc-

tures is the R-Tree [11], introduced by Guttmann in 1984.
Since this time, many new index structures are proposed
based on the ideas used in the R-Tree. For instance R+-
Tree [21], R∗-Tree [4], X-Tree [6], A-Tree [19], and SR-
Tree [13]. Beside these structures, there are many more
index structures which are not mentioned here. For fur-
ther informations, see Samet [20], giving a comprehensive
overview of existing index structures.

(0; 1)

(1; 0)(0; 0)

(0,5; 0,5)

(a)

(0; 1)

(1; 0)(0; 0)

(0,5; 0,5)

(b)

Figure 2: Space partition of a 2-d space by Berchtold
et al. [5] (a) and Lee and Kim [15] (b).

However, the basic idea of these index structures is to ad-
ministrate points hierarchically in a tree. The R-Tree par-
titions the data space using minimum bounding rectangles
(MBR). A minimum bounding rectangle can be described
by two points, being the end of the diagonal of the rectan-
gle. Stepwise, the space is partitioned by MBRs, so that the
superordinate MBR encloses all of its subordinate MBRs, as
we visualize in Figure 1.

With increasing dimensionality, R-Trees face the challenge
of overlapping MBRs. A query rectangle, situated in a re-
gion, where two or more MBRs overlap (like the MBR R2
and R3 in Figure 1), forces the R-Tree to follow up two or
more different routes in the tree. Thus, the query perfor-
mance decreases [6]. To overcome this disadvantage other
index structures that we mentioned before, are developed.

Pyramid Technique.
An example for an exact space partitioning index struc-

ture is the Pyramid Technique, which was introduced by
Berchtold et al. [5]. The Pyramid Technique divides an n-
dimensional space into 2d pyramids [5]. A d dimensional
normalized point x is inserted into a pyramid according to
the dimension jmax with its maximum distance to the center
of the data space. Thus, the pyramid number pi is computed
as follows:

i =

{
jmax if xjmax < 0, 5
(jmax + d) if xjmax ≥ 0, 5

Second, for managing the space enclosed by a pyramid,
the pyramids are divided in pyramid slices. According to the
query types supported by the index structure, the partition
of pyramids can be done in different ways. In Figure 2,
we present two different possible methods for partitioning a
pyramid, for a two dimensional normalized space.

In particular, the partition of Figure 2 (a) is proposed
by Berchtold et al. [5] to support range queries. The other
partition, shown in Figure 2 (b), is used by the approach of
Lee and Kim [15] to support k-NN queries. It is possible to
use the partitioning from Berchtold et al. for k-NN queries as
well, but not in an efficient way. Anyway, a point is inserted
into the slice depending on its distance to the center of the
space. To sum up, for supporting different query types in
an efficient way, different pyramid partitions are required.

VA-File.
In 1997, Weber and Blott [22] introduce the VA-File to

overcome the curse of dimensionality. The VA-File is an
improved sequential scan, because Weber et al. noticed a

00 01 10 11

00

01

10

11
A B D

C

E
FH

I

J

K

M

L

G

N

O

P

Q

RST

U

V

W

X Y

Z

Approximation File

A 00 11

B 01 11

C 01 11

D 10 11

E 01 10

F 01 10

G 01 10

H 00 10

I 00 10

J 10 11

K 11 11

L 11 10

M 11 10

N 11 01

O 11 01

P 11 00

Q 10 01

R 11 00

S 10 00

T 01 00

U 10 00

V 10 01

W 10 10

X 00 01

Y 01 01

Z 00 00

Figure 3: Partitioning of the VA-File.

degeneration of most index structures to a sequential scan, if
the dimensionality of data points exceeds a certain limit [23].
Hence, the authors propose to accelerate the sequential scan
by using vector approximation.

The VA-File divides each dimension of the space into 2b

equally filled cells, where b is an user defined amount of bits
per dimension. Each cell is labeled with a unique bit string,
being the concatenation of the corresponding bit strings for
every dimension. For every point, the bit string of the cell is
stored, which the point is inserted into. Thus, the VA-File
uses two lists: an approximation file that stores the bit string
of the cells for every point and a vector file with the vector
data for each point. An exemplary space partitioning and
the corresponding approximation file can be seen in Figure 3.

Generally, the query algorithm of the VA-File traverses
the whole approximation file to collect suitable candidates
for the query result at first. After that, exact comparisons
between the vector data of the candidates and the query are
performed.

The approximation technique of the VA-File helps to re-
duce hard-disk accesses, because small bit strings can be
kept in main memory. Even if the whole approximation
file does not fit into the main memory, the sequential ex-
amination of the approximations reduces disk access costs
compared to random accesses to many data items [22]. An-
other advantage is, in contrast to the Pyramid Technique,
the availability of different algorithms to efficiently support
all query types being executable on a sequential scan with-
out adaption of the space partitioning of the VA-File.

2.4.2 Approximation-based Index Structures
Typical representatives for an approximation-based index

structure are based on hash schemes. Apart from common
hashing algorithms, scattering inserted data points over the
amount of buckets is not applicable for similarity queries.
Consequently, there is a need for hash functions, causing
collisions when hashing locally near situated points. This
challenge is handled by Locality Sensitive Hashing (LSH).
The aim of LSH is to map the key to a one dimensional
hash value. Thus, all comparisons are made on the hash
value instead of a high dimensional key. Supporting nearest
neighbor queries, LSH uses (P1, P2, r, cr)-sensitive functions
h to compute the hash value. These functions h have to fulfill
the following constraints [12]:

For every dataset in a d-dimensional space p, q ∈ Rd:

1. if ||p− q|| ≤ r, then Pr[h(p) = h(q)] > P1

2. if ||p− q|| ≥ cr, then Pr[h(p) = h(q)] < P2

The first constraint demands that the probability for two
points to be hashed into the same bucket has to be larger
than P1 if their distance is smaller than r. Whereas, if their
distance is bigger than cr, the probability should be smaller
than P2. In order to be an useful locality sensitive function,
P1 should be much bigger than P2.

Improving the precision of the index structure, usually
several hash tables with different hash functions are used.
Consequently, the need for (P1, P2, r, cr)-sensitive functions
is obvious. A promising family of hash functions is used in
p-stable LSH.

p-stable LSH.
The approach of p-stable LSH is based on p-stable distri-

butions. A distributionD is p-stable for p ≥ 0 if for any n the
real numbers v1, ..., vn and i.i.d. random variables X1, ..., Xn
with distribution D, the following constraint is fulfilled:

n∑
i=1

(viXi) ∼
(n∑
i=1

(‖vi‖p)
)1/p

X,

∼ means the operands have the same distribution and X is
a random variable from the distribution D [18].

Using d random variables from D to form a d-dimensional
Vector ~a, the scalar of vector ~a and the data point ~v result in

a random variable with distribution
(d∑
i=1

(‖vi‖p)
)1/p

X [12].

Several of these scalar products with different vectors can
be used to estimate ‖~v‖p (the Lp distance metric). The
corresponding distributions are:
• The Cauchy Distribution DC(0, 1), defined by the den-

sity function c(x) = 1
(π(1+x2))

is 1-stable and can be

used to estimate the Manhattan distance metric.
• The Gaussian (Normal) Distribution DG(0, 1), defined

by the density function g(x) = 1√
2π
e−x

2/2 is 2-stable

and can be used to estimate the Euclidean distance
metric.

Instead of estimating a distance metric, the scalar prod-
uct with vectors from p-stable distributions can be used to
compute hash values of the data points, because the scalar
product maps the vectors to a one dimensional space. Fur-
thermore, the result of the scalar product has the same dis-
tribution as the Lp distance metric, which guarantees the
(P1, P2, r, cr)-sensitiveness.

3. ADVANCED CHALLENGES
After giving a short introduction to general challenges of

indexing multi-dimensional data, in this section we provide
existing challenges of evaluating the performance of index
structures for a specific use case. For giving an overview
of possible challenges when evaluating index structures, we
group the challenges into three groups.

3.1 Parameter of the Index Structures
Some index structures have specific parameters for tuning

their performance. Thus, when evaluating the performance
of index structures, these parameter have to be considered
as well. For index structures given in Section 2.4, these pa-
rameter are: the minimum and the maximum number of
points within a MBR for the R-Tree, the number of slices a
pyramid is divided in, for the Pyramid Technique, and the
length of the bit vector for the VA-File. The parameters of

the approximation-based index structure p-stable LSH pre-
sented in Section 2.4 are number of hash functions and width
of hash buckets.

Thus, we have to assume, that these parameters have an
impact on the performance of index structures. Therefore,
it is necessary to analyze suitable parameter values when
trying to identify an appropriate index structure for a given
use case. However, there are some problems considering an
appropriate value of some parameters. For example, the
vectors used for p-stable LSH are randomly chosen from p-
stable distributions. As a result of this random component
it is possible that the performance and precision results of
the same index structure created with different seeds of the
random component can differ very much, within the same
use case. This is problematic when trying to quantitatively
evaluate the index structure.

3.2 Workload and used Queries
Although, two different applications can deal with the

same data, they can have a different workload. For that
reason, they can differ in requirements of index structures.
The workload of an application depends on the used query
types. Yet, it is obvious, not to use the Pyramid Technique
presented from Berchtold et al. [5] for performing a k-NN
query, but the version presented by Lee and Kim [15], be-
cause it is optimized for this query type.

For defining the workload of a database system we use
a definition inspired by Ahmad et al. [1]. As a result, the
workload is defined by the percentage of the query types
used and the amount of concurrent requests performed.

3.3 DBMS Environment
In addition to use cases and workload, the test environ-

ment has an impact on the performance of each index struc-
ture. As already mentioned, the VA-File is optimized for
database systems, storing data items on a disk and not in
main memory. Evaluations of VA-File and sequential scan,
result in different conclusions according to an evaluation
with an in-memory database or a database storing items
on the disk. Consequently, it is necessary to consider the
underlying storage management of the database system as
well.

Beside the storage management of a database, the amount
of main memory and the CPU performance are other impact
factors to the performance.

4. TOWARDS A FRAMEWORK
Since we aim at providing a comprehensive library of use

cases and suitable indexes, we motivate a framework to give
users the possibility to evaluate own use cases with different
index structures. In this paper, we summarize key aspects
of a framework that supports four groups. In Figure 4, we
give an overview of these four groups.

4.1 Extensibility
First, the framework has to be extensible w.r.t. four key

aspect, we present in Section 2. In other words, for an user,
it has to be possible to implement, integrate, and evaluate
own index structures. Furthermore, it has to be possible
to extend the framework and existing index structures with
additional distance metrics and also other query types. Fi-
nally, it has to be possible to integrate existing data in the
framework and to create data with specific properties like a

workload visualization extensibilitytest environment
simulator

FRAMEWORK

USER

Figure 4: Structure of the Framework.

specific data distribution. Thus, creating data distributions
is not trivial, an interface has to be created for importing
existing data sets and communicating with systems like R,
see for instance [14].

4.2 Adaptability to Different Workload
In real world applications, the workload differs quite much.

On the one hand, there are use cases that use only read
transactions. On the other hand, the workload can consist
of read and write transactions. Thus, the performance re-
sults of workloads can differ very much. Hence, an interface
is needed for importing workloads from existing systems. A
further requirement, is to support standardized benchmarks,
e.g. the TPC-H Benchmark2.

Beside the queries used, the desired precision of the query
results have to be defined by the user. Thus, if approximate
results are allowed, the user has to define the accuracy of
the results. Nevertheless, the precision depends on the data
properties, the given distance metric, the used queries and
the parameters of the index structure as well.

4.3 Test Environment Simulator
Existing index structures are created with respect to dif-

ferent optimization criteria. As already mentioned, the VA-
File is optimized for reducing disk accesses. Consequently,
another criteria our framework has to consider is the envi-
ronment the tests are located in. Thus, within the frame-
work a parameter has to exist, for setting whether the test
is for an in-memory database or if a disk access is needed for
accessing the data. Due to an assumption, that the access
time of data differs very much considering Hard-Disk-Drives
and Solid-State-Disks, the framework should have a compo-
nent for virtualizing the disk access. With this component
it is possible to perform tests on one system while simulat-
ing an access delay of another system. In addition to this
storage device simulator, a simulator for all hardware com-
ponents is required to give an useful hint about the best
performing index structure.

Additionally, within the framework a parameter has to
exist for defining the values of some index structure param-
eters such as the maximum number of data items of leaves
of the R-Tree.

4.4 Visualization
In case the index structure has to struggle with a specific

data distribution or query type, it can be useful to visualize
the space partitioning of the index structure. With this vi-
sualization, further hypothesis can be drawn on the benefits

2http://www.tpc.org/tpch/

or pit-falls of the chosen index structure. For instance, the
user is able to follow the split of MBRs in the R-Tree and
can easily identify overlapping regions while the tree is be-
ing constructed. Another aspect, being worth to visualize,
is a statistic on query performance. These statistics help to
analyze the performance of different index structures for a
given workload or an index structure under different work-
loads. Apart form the query performance, other interesting
values may be worth visualizing. The time spent on con-
structing the index structure is important for systems with
many delete and update queries, because a reconstruction of
the index is sometimes necessary when a certain threshold
of changed data is reached. Furthermore, when using an ap-
proximate index structure, the precision of executed queries
and the overall precision of the index structure is worth vi-
sualizing, because it has an impact on the suitability of an
index structure for a special use case.

4.5 Working with the Framework
Finally, our framework shall help finding the most suit-

able index structures for a given use case. For this, the
expected workload has to be known. These parameters in-
clude supported query types, exact or approximate results,
data dimensionality and distribution, amount of data, the
delay of the data access, and the environment. By finding
suitable index structures for the given parameters, there are
index structures that do not have to be taken into account,
because they do not support certain query types or work
approximately although the result is restricted to be exact.
After excluding unsuitable index structures, the remaining
index structures are evaluated under the given workload. By
reviewing the performance results, the user can choose the
suitable index structure for her use case.

5. RELATED WORK
In the last decades, many new index structures are cre-

ated [5, 10, 22]. In addition, existing index structures are
improved for supporting new query types [15] or to increase
performance [6]. However, within the presented evaluation
of these index structures only a small set of existing in-
dex structures is considered. For example, within Berchtold
et al. [5], the Pyramid Technique is evaluated against X-
Tree, Hilbert R-Tree, and sequential scan. Therefore, it is
problematic to identify, which is the most appropriate in-
dex structure for a given problem. Additionally, different
performance evaluations are done in different environments
with different data characteristics. So, it is problematic to
generalize the results of an evaluation.

For giving a comparison of the performance of multi-di-
mensional index structures, there already exists some frame-
works, like the GiST 3 framework or the MESSIF [3] frame-
work. In contrast to the framework we present here, these
frameworks have some additional constraints. For example,
the GiST framework only focuses on trees, hence no other
multi-dimensional index structures such as the VA-File or
the Pyramid Technique are considered, while the MESSIF
framework only focuses on metric data. Another framework
limiting the available index structures is introduced by Muja
et al. [17]. The aim of this framework is to optimize param-
eters of approximate index structures in order to match the
required precision under given data distributions.

3http://gist.cs.berkeley.edu/

6. CONCLUSION
In this paper, we provide an overview of existing chal-

lenges in finding an appropriate index for multi-dimensional
data for a specific use case. First, we explain distance met-
rics and common query types that have to be considered.
Second, the parameters of the index structures can have an
impact on the performance of an index structure. Third, for
users, it has to be possible to define own workload pattern
and the environment, the application is located in.

For supporting these characteristics of real-world use cases
we present requirements of a framework we intend to de-
velope. Our framework has to support four key aspects.
Namely, it has to be extensible, support different workload
patterns, virtualize different use case environments, and con-
tain a visualization component for improving user experi-
ences.

7. ACKNOWLEDGMENTS
The work in this paper has been funded in part by the

German Federal Ministry of Education and Science (BMBF)
through the Research Programme under Contract No.
FKZ:13N10817 and FKZ:13N10818. Additionally we want
to thank Sandro Schulze for giving us useful comments.

8. REFERENCES
[1] M. Ahmad, A. Aboulnaga, and S. Babu. Query

interactions in database workloads. In Proc. Int’l.
Workshop on Testing Database Systems, DBTest,
pages 11:1–11:6. ACM, 2009.

[2] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, 2008.

[3] M. Batko, D. Novak, and P. Zezula. Messif: Metric
similarity search implementation framework. In Proc.
Conf. on Digital Libraries (DELOS), 2007.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: An efficient and robust access
method for points and rectangles. In Proc. Int’l. Conf.
on Mgmt. of Data (SIGMOD), pages 322–331. ACM,
1990.

[5] S. Berchtold, C. Böhm, and H.-P. Kriegel. The
Pyramid-Technique: Towards breaking the curse of
dimensionality. SIGMOD Rec., 27:142–153, 1998.

[6] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
X-Tree: An index structure for high-dimensional data.
In Proc. Int’l. Conf. on Very Large Data Bases
(VLDB), pages 28–39. Morgan Kaufmann Publishers
Inc., 1996.

[7] C. Böhm. Efficiently Indexing High-Dimensional Data
Spaces. PhD thesis, Ludwig-Maximilians-Universität
München, 1998.

[8] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Comput. Surv., 33:322–373, 2001.

[9] P. H. Bugatti, A. J. M. Traina, and C. Traina, Jr.
Assessing the best integration between
distance-function and image-feature to answer
similarity queries. In Proc. ACM Symp. on Applied
Computing (SAC), pages 1225–1230. ACM, 2008.

[10] E. Chavez Gonzalez, K. Figueroa, and G. Navarro.
Effective proximity retrieval by ordering permutations.

IEEE Trans. on Pattern Analysis and Machine
Intelligence (TPAMI), 30(9):1647–1658, 2008.

[11] A. Guttman. R-Trees: A dynamic index structure for
spatial searching. In SIGMOD’84, Proc. of Annual
Meeting, pages 47–57, 1984.

[12] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In Proc. Symp. on Theory of Compu.
(STOC). ACM, 1998.

[13] N. Katayama and S. Satoh. The SR-tree: An Index
Structure for High-Dimensional Nearest Neighbor
Queries. In Proc. Int’l. Conf. on Mgmt. of Data
(SIGMOD), pages 369–380. ACM, 1997.

[14] V. Köppen. Improving the Quality of Indicator
Systems by MoSi – Methodology and Evaluation. PhD
thesis, Freie Universität Berlin, 2008.

[15] D.-H. Lee and H.-J. Kim. An efficient technique for
nearest-neighbor query processing on the SPY-TEC.
Trans. on Knowl. and Data Eng. (TKDE),
15:1472–1486, 2003.

[16] B. Li, E. Chang, and Y. Wu. Discovery of a perceptual
distance function for measuring image similarity.
Multimedia Systems, 8(6):512–522, Apr. 2003.

[17] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
Proc. Int’l. Conf. on Computer Vision Theory and
Applications (VISAPP), pages 331–340, 2009.

[18] J. P. Nolan. Stable distributions: Models for heavy
tailed data. Springer-Verlag, 2009.

[19] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima.
The A-tree: An index structure for high-dimensional
spaces using relative approximation. In Proc. Int’l.
Conf. on Very Large Data Bases (VLDB), pages
516–526. Morgan Kaufmann Publishers Inc., 2000.

[20] H. Samet. Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufmann Publishers
Inc., 2005.

[21] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A dynamic index for multi-dimensional
objects. In Proc. Int’l. Conf. on Very Large Data
Bases (VLDB), pages 507–518. Morgan Kaufmann
Publishers Inc., 1987.

[22] R. Weber and S. Blott. An approximation-based data
structure for similarity search. Technical Report
ESPRIT project, no. 9141, 1997.

[23] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proc. Int’l.
Conf. on Very Large Data Bases (VLDB), pages
194–205. Morgan Kaufmann Publishers Inc., 1998.

[24] R. Zhang, B. C. Ooi, and K.-L. Tan. Making the
pyramid technique robust to query types and
workloads. In Proc. Int’l. Conf. on Data Engineering
(ICDE), pages 313–324. IEEE Computer Society,
2004.

