
On Index Set Splitting

Martin Griebl
FMI, Universität Passau
94030 Passau, Germany
griebl@fmi.uni-passau.de

Paul Feautrier
PRiSM, Université de Versailles

45 avenue des États-Unis
78035 Versailles, France

Paul.Feautrier@prism.uvsq.fr

Christian Lengauer
FMI, Universität Passau
94030 Passau, Germany

lengauer@fmi.uni-passau.de

Abstract

There are many algorithms for the space-time map-
ping of nested loops. Some of them even make the opti-
mal choices within their framework. We propose a pre-
processing phase for algorithms in the polytope model,
which extends the model and yields space-time map-
pings whose schedule is, in some cases, orders of mag-
nitude faster. These are cases in which the dependence
graph has small irregularities. The basic idea is to split
the iteration domain of the loop nests into parts with
a regular dependence structure and apply the existing
space-time mapping algorithms to these parts individu-
ally.

This work is based on a seminal idea in the more
limited context of loop parallelization at the code level.
We elevate the idea to the model level (our model is
the polytope model), which increases its applicability by
providing a clearer and wider range of choices at an
acceptable analysis cost.

Index set splitting is one facet in the e�ort to ex-
tend the power of the polytope model and to enable the
generation of competitive target code.

1 Introduction

Space-time mapping methods for the automatic par-
allelization of loop nests relate every instance of ev-
ery statement to a virtual point in time (schedule) and
a virtual processor (allocation) [9, 14]. Linear algebra
and linear programming are typically employed in the
search for schedules and allocations. The information
this search is based on is the set of dependences be-
tween di�erent instances of the statements.

For the case of uniform dependences, Darte and Vivien
[6] proved that there are methods which yield a sched-
ule with (asymptotically) optimal latency. However,
for the case of a�ne, non-uniform dependences, this

optimum is sometimes missed by orders of magnitude.
The use of di�erent schedules for di�erent iterations of
the same statement frequently improves this situation.
Thus, the idea of this paper is, to partition the index
sets of all statements independently of the problem size
into a �xed number of parts and compute individual
schedules for each part.

In the same way, it turns out that a piecewise de�ned
placement function might improve the quality of an
allocation, but this has never been pointed out in the
literature.

2 De�nitions

We are given a dependence graph whose nodes are
statements and whose edges are dependences. Each
node S is associated with a subset I(S) of INpS , where
pS is the nesting depth of S. An edge e from S to T is
associated with a dependence de, a relation from I(S)
to I(T ).

The elements of I(S) are called iteration vectors.
Each iteration vector is associated with an execution
of statement S, which we also call an operation. The
execution of S for iteration vector x is denoted hS; xi.
In more abstract contexts, operations are denoted by
letters like u; v; : : :. The fact that v depends on u is
written u Æ v. The set of operations, i.e., the disjoint
union of all I(S) is named 
.

In the following, all iteration domains and depen-
dence relations are parametric polytopes. In other
words, they are de�ned by systems of a�ne constraints
with parameters. To simplify the presentation, only
one parameter, named n, is taken into account, mean-
ing that the size of the iteration domain increases with
n. We assume n to be unbounded.

A schedule is a function � from the set of opera-
tions to the set of integers which satis�es the following

1



causality condition:

8u; v 2 
 : u Æ v ) �(u) + 1 � �(v) (1)

As a matter of fact, one can omit the integrity con-
dition on schedules since, if � satis�es the causality
condition, then so does �0(u) = b�(u)c [18].

From a causal schedule, one can deduce a parallel
program whose �gure of merit is its latency:

L = max
u2


�(u)�min
u2


�(u)

The latency can be interpreted either as the running
time on a parallel computer with �enough� processors,
or as the minimum number of synchronization points.
Whatever the interpretation, it is clear that the latency
must be minimized.

3 Statement of the Problem

It is not generally possible to �nd an arbitrary sched-
ule with minimum latency. Usually, one restricts the
search to a subset of all possible functions, the func-
tions which are a�ne in the loop counters. Conceptu-
ally, one builds an a�ne template for every schedule
function (i.e., an a�ne function with unknown coe�-
cients) and writes inequality (1) for all possible values
of u and v. The unknowns are the coe�cients of the
scheduling functions, and it is easy to see that the re-
sulting constraints are a�ne in these unknowns. This
must be done for all values of n, yielding an in�nite
set of constraints. Fortunately, thanks to special prop-
erties of a�ne functions, this set can be shown to be
equivalent to a �nite set of a�ne constraints, which can
be solved by the usual linear programming methods.

For some problems, the resulting linear program is
found to be infeasible. In this case, one resorts to multi-
dimensional schedules. One can �nd a maximal subset
of the dependences which still gives a feasible program.
The resulting function is the �rst component of the
multi-dimensional schedule. Then one applies the same
algorithm to the unsatis�ed dependences, obtaining the
next component of the schedule, and so on until all
dependences are satis�ed.

One may wonder whether the schedule found in this
way bears any relation to the minimum latency sched-
ule. It has been proved [6] that, when all dependences
are uniform, the two schedules are equivalent in the
asymptotic sense. However, there are well known counter
examples showing that this is not true for arbitrary
a�ne dependences.

d t

d a

Figure 1. Simple example showing the neces-
sity of splitting

Example 1 Consider:

do i = 0, 2*n

a(i) = a(2*n-i)

end do

The index set and its dependence graph are given in
Figure 1. The best a�ne schedule is:

�1(i) = i=2 (2)

while the minimum latency schedule is:

�2(i) = 0 if 0 � i � n (3)

= 1 if n < i � 2n (4)

�2 can be found by splitting the iteration domain
into two subdomains, I1 = [0; n] and I2 = [n+1; 2n],
and postulating two separate scheduling functions in
I1 and I2. The details of the resolution method are
not a�ected by the splitting; the number of unknowns,
however, is doubled. This splitting can also be inter-
preted as a code transformation yielding the program:

do i = 0, n

a(i) = a(2*n-i)

end do

do i = n+1, 2*n

a(i) = a(2*n-i)

end do

followed by the application of any convenient schedul-
ing algorithm.

Our aim in this paper is to derive an algorithm for
deciding when splitting is useful, and for �nding these
splits.

4 Related Work

Our notion of index set splitting seems very similar
to tiling [2]: both techniques partition the index sets.
Tiling is still a very active research area [10]. However,
the goal of tiling has been either to increase granularity

2



(e.g., [3]), or to block for cache optimization (e.g., [5]),
or simply to map virtual processors to real processors.
In all these cases, the idea is to enumerate the given
index set in a higher-dimensional space: one set of di-
mensions for the tiles and another set of dimensions for
the points inside a tile; all tiles are treated equally. In
contrast, index set splitting does not change the num-
ber of dimensions but bene�ts from an individual treat-
ment of the various partitions.

Like index set splitting, the scheduling method by
Feautrier [7, 8] can also result in piecewise a�ne func-
tions. However, the schedules found are minima of a
�nite set of a�ne functions, and most piecewise a�ne
schedules cannot be cast in this form. Example 1 is a
case in point.

The idea of index set splitting goes back to Wolfe
[19], and further to Allen/Kennedy [1] and Banerjee
[4]. Our method expands on these seminal e�orts by
incorporating them into the polytope model.

The work most closely related is by Jemni and
Mahjoub [15, 16] and deals with partitioning the index
set at points where the type of a dependence changes,
e.g., from true to anti. Since their method is not based
on a model, they can separate the index domain only
along planes parallel to the coordinate directions.

5 Analysis

Let us �rst explain why schedule (2) is suboptimal.
An arbitrary a�ne function can be written as follows:

�(S; x) = �S :x+ �S

and obviously has the property that

�(S; x+ v)� �(S; x) = �S :v

depends on v but not on x. Suppose that there is a
dependence from (S; x) to (S; x+ v) for some x and v.
Then:

�(S; x+ v)� �(S; x) = �S :v � 1

Iterating this result k times, we obtain:

�(S; x + kv)� �(S; x) � k (5)

The concept of latency can be extended to individual
statements S:

LS = max
x2I(S)

�(S; x)� min
x2I(S)

�(S; x)

and it is clear that the latency of a statement is a lower
bound on the latency of the program. From (5) we
deduce:

LS � maxfk j x+kv 2 I(S)g�minfk j x+kv 2 I(S)g

Since I(S) depends linearly on a size parameter n, we
may expect that LS also increases linearly with n.

In Example 1, we have a one-dimensional depen-
dence vector, v = (2), from instance n�1 to n+1.
Since v can be iterated n times within the index space,
we have a latency of at least n for the execution of
statement S, which is exactly the latency of schedule
(2).

Suppose now that I(S) has been partitioned into two
subdomains, I1 and I2, and that x 2 I1 and x + v 2
I2. The above reasoning no longer applies, since the
schedule � is not necessarily the same a�ne function
in I1 and I2. Hence, the above estimate of the latency
of S no longer holds, and we may hope for a better
schedule.

If we split the index set of the target statement of
a dependence d into I1, which contains the image of d
(and therefore has to satisfy the schedule constraints
for d), and I2, which contains the rest of the index
space (and therefore need not satisfy constraints which
are due to d), we get a constant schedule for I2 (if d
is the only dependence). If there are no dependences
inside I1, i.e., the domain of d is contained in I2, we
also get a constant schedule for I1.

For our example, the dependence analysis gives us
the information that only the instances n+1; � � � ; 2n are
in the range of the existing dependences. Since itera-
tions 0; � � � ; n are not images of any dependence, they
need not satisfy any scheduling condition and, thus,
should be given an individual schedule template. This
splitting enables us to �nd schedule (3), which has a
constant latency.

The same reasoning applies to placement problems.
Here the goal is to �nd a placement function �(S; x) =
�S :x + �S which gives the number of the processor
that executes operation hS; xi. The goal is that two
operations which access the same memory location are
executed on the same processor. If hS; xi and hS; x+vi
access the same memory cell, we must have

�(S; c) = �(S; x + v) ) �S :v = 0

and all operations hX; x+kvi will use the same proces-
sor as hS; xi, whether there is a reason or not. On the
other hand, putting hS; xi and hS; x + vi in di�erent
subsets of the iteration space invalidates this reasoning
and may result in better parallelism. In the case of Ex-
ample 1, the existence of a dependence vector v = (2)
entails �S = 0, all operations are on the same proces-
sor, and there is no parallelism. After splitting, the
only condition is that operations hS; xi and hS; 2n�xi
are on the same processor, which can be arbitrary. The
degree of parallelism is n.

3



6 A First, Naïve Splitting Algorithm

As we have seen in Section 5, suboptimal schedules
result from the fact that some parts of a statement's in-
dex set are in the image of a dependence, and some are
not. If the distinguished statement is the target of sev-
eral dependences, we should apparently subdivide its
iteration space, each part corresponding to a selection
of the incoming dependences. Furthermore, if there is
a dependence d1 from statement R to statement S and
a dependence d2 from S to T , we should use the com-
posite dependence d2 Æ d1 for splitting I(T ). Thus, a
naïve approach for index set splitting tries to compute
all possible paths in the dependence graph and split
every statement according to all incoming paths.

Even if some drawbacks are obvious, let us analyze
this method in more detail. It will illustrate the limits
of what we can expect from the �nal algorithm to be
presented in Section 7.

6.1 Merging multiple incoming paths

First, we realize that a single statement can be reached
via several paths. Thus, independently from the chosen
splitting algorithm, we will have to merge the splits of
multiple incoming dependences. In principle, we split
the index set according to the �rst incoming depen-
dence, then split every part according to the next in-
coming dependence, and so on.

It is important to see that the order of treating
the incoming dependences is irrelevant: to merge splits
means to compute a conjunction of the image (or its
complement which we call the non-image) of an in-
coming dependence and the parts already split, and
conjunction is associative and commutative.

The complexity of merging the splits of k arbitrary
incoming (composite) dependences is 2k, i.e., in gen-
eral, we must expect an algorithm with at least expo-
nential time complexity. Therefore, our main concern
must be to reduce the number k of di�erent incoming
(composite) dependences as much as possible, in order
to get an e�cient algorithm.

Note that, if the dependence graph is a tree, the
complexity is only linear in the length of the paths, i.e.,
the depth of the tree: various incoming paths can only
di�er in length (for two di�erent paths reaching a tree
node, one must be a post�x of the other). Therefore,
the image of the longer path is a subset of the image of
the shorter path, i.e., we never need to split the non-
images, which avoids the exponential growth.

2

3 3

6

1

1 1

1

s

t

Figure 2. A dag with an exponential number
of paths

6.2 Numbers of paths

We have just seen that in a tree the number of dif-
ferent paths to a given node is linear in the depth
of the tree, i.e., logarithmic in the number of nodes.
How many paths are there in a directed acyclic graph
(DAG)?

There can be exponentially many paths between two
statements in a DAG. For an illustration, consider Fig-
ure 2. For every node, we annotate the number of
possible paths to node t. As we can see, the numbers
correspond to Pascal's triangle, i.e., the numbers are

the binomial coe�cients
�
l
k

�
, where l is the length of

the path from the considered node to t, and k is the
horizontal position in the graph. In other words, the
DAG in Figure 2 has O(l2) nodes but O(2l) paths.

Hence, if we consider all di�erent paths from s to
t, we end up with exponentially many incoming splits
in t, which must then be merged with the exponential
method as explained in Section 6.1. All in all, this
results in a doubly exponential algorithm, which we
consider impractical.

Obviously, the naïve method is not e�ective if there
are loops in the statement dependence graph since,
within strongly connected components, the number of
di�erent possible paths is unbounded. As simplest ex-
ample, take a single statement with one self loop: every
di�erent number of loop traversals results in a di�erent
path. Note that, in this simple situation of only one
self loop, the number of splits would increase linearly
instead of exponentially (like in the case of the tree
above), but it is still unbounded.

4



6.3 Preparing an effective algorithm

As we have just seen, directly using paths as descrip-
tions of composite dependences results, in general, in
a doubly exponential algorithm. Hence, our splitting
algorithm must abstract from precise paths in order to
be e�cient.

For this purpose, we treat composite dependences
systematically by associating a �nite automaton with
the dependence graph. The states of this automaton
are the statements and the transitions are the depen-
dences. There are well known algorithms (e.g., by
Kleene [11]) for associating any two states S and T with
a regular expression representing all paths from S to T .
The letters in this regular expression are dependence
names, and the operators are the dot (concatenation),
the vertical bar (set union), and the Kleene star. The
composite dependence from S to T is obtained by re-
placing in this expression each dependence name by the
dependence itself, the dot by relation composition, the
vertical bar by relation union, and the Kleene star by
transitive closure. In suitable cases, one can compute
the composite dependence in closed form by using, for
instance, the Omega calculator [17]. However, since
the transitive closure of an a�ne relation is not always
a�ne, the above computation does not always succeed.
Our proposal is to ignore a composite dependence when
a closed form cannot be computed.

However, if we base our splitting algorithm on the
path descriptions given by the Kleene algorithm, we
�nd many practical examples which cannot but should
be split. This is because the use of the operators j
and � entails a loss of precision. In fact, we lose all
information on the delay associated with the composite
dependence.

Example 2 Consider the following program:

do i = 0, m

do j = 0, 2*n

a(i,j) = a(i,2*n-j) + a(i-1,j+2)

end do

end do

The iteration dependence graph is depicted in Fig-
ure 3. The range of the combined dependence d =
dupwards j ddownwards is [0;m]� [0; 2n] n [0; 0]� [0; n], as
is the range of d+. The desired split into [0;m]� [0; n]
and [0;m] � [n+1; 2n], which leads to a linear execu-
tion time (see Figure 3), is not found if we base the
algorithm on Kleene's path descriptions only.

The di�culty in this example is that the di�erent de-
pendences have individual properties, which are merged

Figure 3. Splitting due to the initial phase

by the union operation, making the distinctions invis-
ible. However, treating all dependences separately is
too costly, in general, as shown in Section 6.2.

Our heuristic solution is to consider (in addition to
all combined paths) every single dependence once, and
split the index set of its target statement into its range
and the rest. This guarantees that the properties of
di�erent dependences are considered at least once, and
that complexity is increased by only a linear factor (D
dependences instead of 2D paths). In other words, by
splitting the target index set I(S) of every single de-
pendence d into the range of d and the rest, we already
have a conservative approximation of the range of all
paths to S whose last dependence is d.

Our idea is then to propagate these ranges of d along
every path to all other statements, where we now ac-
cept the loss of information by using the path descrip-
tions from Kleene's algorithm, in order to keep the
computational e�ort reasonably small.

Practical experiments show that this mixture of work-
ing with separate dependences on the one hand and
combined path descriptions on the other exhibits a
good balance between power and execution complex-
ity of our algorithm.

7 The Proposed Splitting Algorithm

With the ideas in the previous section, we can now
formulate a �rst version of the e�ective splitting algo-
rithm:

1. For all dependences d, compute a polytope Rd (as
small as possible) containing the range of d, and
split the index set I(T ) of the target statement
of d into Rd and I(T ) nRd.

2. Compute a description for the set of all paths in

5



Rd1

d1

S1 p1

p2

S2

Figure 4. An illustration of the splitting algo-
rithm

the statement dependence graph, using Kleene's
algorithm.

3. For every pair of statements (T; S) and for ev-
ery dependence d with target statement T and
every path p from T to S do: interpret path de-
scription p as a composition of relations which
maps points of the index space I(T ) to points
of the index space I(S), and compute the image
p(Rd) of this composed relation when applied to
the polytope Rd computed in Step 1. This will
divide the index set I(S) into a part which is in
the image of Rd under p, and the rest. Usually,
this step can be computed with the Omega cal-
culator [17]. However, if p contains a cycle whose
transitive closure cannot be computed precisely
by Omega, then delete the cycle form p before
the propagation.

4. For any statement S, combine all splits obtained
in this way as in Section 6.1.

The algorithm is illustrated in Figure 4. In Step 1,
the index set of S1 is split into the image Rd1 of d1 and
the rest. Step 2 computes all paths between every pair
of statements. Assume that there are two paths from
S1 to S2, denoted with p1 and p2. Step 3 computes the
image of Rd1 w.r.t. p1jp2 within the index space of S2,
where the possible images are all in the dark subset.

Basically, this algorithm computes, for every state-
ment, the approximate ranges of all (transitively) in-
coming dependences. It is obvious that, for each such
range, we might obtain a di�erent possible schedule
and, thus, want a separate template.

However, in practice, there are some additional con-
siderations:

� It is easy to see that splitting an index set due
to a uniform dependence is worthless, since the
range of a uniform dependence is (approximately)
the complete target index space. Therefore, we

optimize the algorithm by applying Step 1 only to
non-uniform dependences. Note that, in Step 3,
we still need to consider uniform dependences, as
we shall see in Example 4.

� Due to the condensed description of the set of
all paths and the overestimation of the re�ex-
ive transitive closure by Omega, it often happens
that we lose precision and, thus, do not �nd pre-
cise splits and sometimes even not all splits (if
two approximations yield the same set).

Note that these overestimates by Omega are due
partly to the theoretical impossibility of com-
puting the re�exive transitive closure as a �nite
union of polyhedra and partly to technical limi-
tations inside Omega.

� Sometimes it is useful to unroll a cycle a �xed
number of times, in order to achieve the optimal
split (cf. Example 6). However, for complex-
ity reasons, we decided not to take this idea into
account in our prototype implementation of the
method. An analysis of when unrolling is useful
in general is left for future work.

8 Examples

Let us reconsider our initial example and modify it
in several ways in order to get a feeling for the perfor-
mance of our method.

Example 3 Let us apply our algorithm to Example 1.
The iteration domain is the set [0; 2n] and the range R
of the two dependences is [n+1; 2n]. The set of all
paths in the statement dependence graph is given by
(dt j da)

�. Propagating R along d+ (+ meaning at least
once) is not possible since the domain of d+ does not
intersect R. Thus, the algorithm already terminates
after the initial step and splits the index set into [0; n]
and [n+1; 2n], as expected.

Example 4 Extending the program of Example 1 to
a two-dimensional example, let us consider:

do i = 0, 2*n

do j = 0, m

a(i,j) = a(2*n-i,j+m) + a(i,j-1)

end do

end do

For the uniform dependence, no split is derived. The
non-uniform true dependence has range [n+1; 2n] �
[0; 0]. Propagating along the combined self-dependence

6



Figure 5. Splitting a two-dimensional index
set by propagation

leads to the desired split into [0; n] � [0;m] and
[n+1; 2n] � [0;m] (see Figure 5). The non-uniform
anti-dependence has the range [n; 2n] � [m;m], which
is not increased by propagation. So, �nally, we end up
with three subdomains: [0; n] � [0;m] n f(n;m)g, the
singleton f(n;m)g, and [n+1; 2n]� [0;m].

Note that, in the previous example, treating the sin-
gleton individually does not improve the schedule and,
hence, should be avoided in practical implementations,
if possible. However, in general, it is impossible to de-
cide locally, i.e., at one given statement, whether a split
is useful or not, since global information of the depen-
dence graph is necessary. In other words, we would
have to run the scheduler in order to detect whether
we should split the input of the scheduler! Thus, in
our current implementation, we accept possibly useless
splits.

Example 5 In order to get a better feeling for the be-
haviour of our algorithm in the case of multiple state-
ments and imperfect loop nests, let us consider:

do i = 0, 2*n

S1: a(i,0) = a(2*n-i,m)

do j = 1, m

S2: a(i,j) = a(i,j-1)

end do

end do

do i = 0, 2*n

do j = 1, k

S3: a(i,j+m) = a(i-1,j+m-1)

end do

end do

Figure 6. Splitting for imperfect loop nests

In this example, we �nd two uniform true depen-
dences and four non-uniform dependences (three true
and one anti), i.e., we obtain four initial splits. Af-
ter propagating each of them along the combined path
to each of the three statements, we have to merge the
four initial splits with the 12 propagated splits. After
simpli�cation, we get the desired splits as indicated in
Figure 6.

Example 6 In the case of a self-dependence d, a con-
stant number of propagations may give us an inter-
esting schedule. Let I be the iteration space of the
dependence. Successive propagation yields subsets I �
d(I); d(I)�d2(I); : : : ; dr(I)�dr+1(I) and, in the inter-
esting case, there exists a constant k such that dk = ;.
It can be proved that k is bounded by the cardinality
of I , but this bound depends on the size parameters of
the program and is not constant. Consider the follow-
ing program:

do i = 0, 5*n-1

a(i) = a(i-n)

end do

If we treated the only existing dependence d as quasi-
uniform, we would not split at all; treating d as non-
uniform, we split the index set initially into [0; n�1]
and [n; 5n�1]. Since the image of [n; 5n�1] under d�

7



is [n; 5n�1], we end up with the two partitions already
given. However, in this case, it is easy to prove that
k = 5, and hence that the latency of the program is 5
instead of 4n+ 1.

We do not know at present whether there exists an
algorithm for �nding k, or whether the problem is un-
decidable. This question is left for future work.

Another approach to this example would be to try to
�nd a scheduler which yields �(S) = bi=nc. Formally,
this schedule has linear execution time but, in practice,
it is constant (�ve steps) if we take the loop bounds
into account. Unfortunately, such a solution cannot
be found in the a�ne mathematical setting; only if n
were a constant number instead of a parameter, exist-
ing schedulers could �nd this solution [7]. It is left for
future work to check whether existing schedulers can be
given the capability of symbolic computations, which
would allow them to solve this example optimally.

9 Conclusions

We have proposed a method to split the iteration do-
main of loop nests into parts in order to obtain better
space-time mappings. It can be used to improve any
space-time mapping algorithm which is based on tem-
plates (templates are typically used, e.g., for dealing
with di�erent statements in the loop body).

Our method can be adapted simply for trading o�
quality of parallelism for analysis time:

� One can search for more splits and, thus, even
satisfy a variety of optimality criteria, but at the
cost of a doubly exponential search.

� One can turn o� the propagation phase in order
to save compilation time at the price of a loss of
some useful splits (e.g., in Example 4).

� Since the proposed method is quite costly, it would
be very interesting to be able to apply it where
and only where it is potentially useful. A sugges-
tion is to iterate between scheduling and split-
ting, but apply this technique only to statements
whose schedule is not satisfactory. This topic is
further considered in [12].

In our experiments, we decided to use the presented
algorithm, which seems to be a good compromise be-
tween analysis time and quality of the resulting splits.
More experiments on practical examples with our pro-
totype will have to con�rm this observation.

For this purpose, we are currently implementing the
described methods in the prototype parallelizer LooPo
[13]. This implementation takes as input the results

of the existing dependence analysis modules and is it-
self very close to the algorithm in Section 7, with the
following technical modi�cations:

� In Step 1, we do not actually execute the splits
but just store them per statement in a list, in
order not to increase the number of statements
in this phase.

� In Step 3, we only compute the images; the com-
putation of the rest (i.e., the non-images) does
not commence before the end of Step 4 and, again,
the derived splits are just stored in lists in order
to limit complexity.

� In Step 4, we �rst merge all stored splits and then
compute the rest, i.e., the non-images � which
may lead to further splitting, due to technical
limitations, if the non-images cannot be described
by a single polytope but only by a union of poly-
topes. Finally, every split, i.e., description of a
subset of the original index space gets a copy of
the body statements and, thus, can be viewed by
all subsequent parallelization phases as if it were
a separate statement with surrounding loops in
the input program. Note that our model-based
approach saves us from computing a loop nest
which really enumerates all these split subsets;
this is advantageous because the construction of
such a loop nest would be very costly.

More details on unrolling self-dependences, as illus-
trated in Example 6, and targetting speci�c statements
for a split can be found in an expanded version of this
paper [12].

Acknowledgements

Financial support was gratefully received from the
German Research Foundation (DFG) under projectRe-
cuR and from the French-German exchange programme
PROCOPE through DAAD and APAPE.

Thanks to Mohamed Jemni for discussing his method
with us in Passau, which started o� this work. We are
grateful to Jean-François Collard and Bernhard Lehner
for fruitful discussions.

References

[1] John R. Allen and Ken Kennedy. Automatic
translation of FORTRAN programs to vector
form. ACM Trans. on Programming Languages
and Systems, 9(4):491�542, October 1987.

8



[2] Corinne Ancourt and François Irigoin. Scanning
polyhedra with DO loops. In Proc. 3rd ACM SIG-
PLAN Symp. on Principles & Practice of Paral-
lel Programming (PPoPP'91), pages 39�50. ACM
Press, 1991.

[3] Ruman Andonov, Sanjay Rajopadhye, and Nicola
Yanev. Optimal Orthogonal Tiling. In David
Pritchard and Je� Reeve, editors, Euro-Par'98:
Parallel Processing, LNCS 1470, pages 480�490.
Springer-Verlag, 1998.

[4] Utpal Banerjee. Speedup of Ordinary Programs.
PhD thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, Oc-
tober 1979. Report 79-989.

[5] Rajeev Barua, David Kranz, and Anant Agar-
wal. Communication-minimal partitioning of par-
allel loops and data arrays for cache-coherent
distributed-memory multiprocessors. In David
Sehr, Utpal Banerjee, David Gelernter, Alex Nico-
lau, and David Padua, editors, Languages and
Compilers for Parallel Computing (LCPC'96),
LNCS 1239, pages 350�368. Springer-Verlag, 1997.

[6] Alain Darte and Frédéric Vivien. On the optimal-
ity of Allen and Kennedy's algorithm for paral-
lelism extraction in nested loops. In Luc Bougé,
Pierre Fraigniaud, Anne Mignotte, and Yves
Robert, editors, Euro-Par'96: Parallel Process-
ing, Vol. I, LNCS 1123, pages 379�388. Springer-
Verlag, 1996.

[7] Paul Feautrier. Some e�cient solutions to
the a�ne scheduling problem. Part I. One-
dimensional time. Int. J. Parallel Programming,
21(5):313�348, 1992.

[8] Paul Feautrier. Some e�cient solutions to
the a�ne scheduling problem. Part II. Multidi-
mensional time. Int. J. Parallel Programming,
21(6):389�420, 1992.

[9] Paul Feautrier. Automatic parallelization in
the polytope model. In Guy-René Perrin and
Alain Darte, editors, The Data Parallel Program-
ming Model, LNCS 1132, pages 79�103. Springer-
Verlag, 1996.

[10] Jeanne Ferrante, Wolfgang Giloi, Sanjay Rajopad-
hye, and Lothar Thiele, editors. Tiling for optimal
resource utilization. Technical Report 221, Schloÿ
Dagstuhl, August 1998.

[11] Robert W. Floyd and Richard Beigel. The Lan-
guage of Machines � An Introduction to Com-
putability and Formal Languages, chapter 4.4.
Computer Science Press, 1994.

[12] Martin Griebl, Paul F. Feautrier, and Christian
Lengauer. Index set splitting. Technical Report
MIP-9908, Fakultät für Mathematik und Infor-
matik, Universität Passau, August 1999.

[13] Martin Griebl and Christian Lengauer. The loop
parallelizer LooPo�Announcement. In David
Sehr, Utpal Banerjee, David Gelernter, Alex Nico-
lau, and David Padua, editors, Languages and
Compilers for Parallel Computing (LCPC'96),
LNCS 1239, pages 603�604. Springer-Verlag, 1997.

[14] Christian Lengauer. Loop parallelization in the
polytope model. In Eike Best, editor, CON-
CUR'93, LNCS 715, pages 398�416. Springer-
Verlag, 1993.

[15] Zaher Mahjoub and Mohamed Jemni. Restructur-
ing and parallelizing a static conditional loop. Par-
allel Computing, 21(2):339�347, February 1995.

[16] Zaher Mahjoub and Mohamed Jemni. On the par-
allelization of single dynamic conditional loops.
Simulation Practice and Theory, 4:141�154, 1996.

[17] William Pugh and Dave Wonnacott. Elimi-
nating false data dependences using the Omega
test. ACM SIGPLAN Notices, 27(7):140�151,
July 1992. Proc. ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation
(PLDI'92).

[18] Patrice Quinton. The systematic design of systolic
arrays. In Françoise F. Soulié, Yves Robert, and
Maurice Tchuenté, editors, Automata Networks
in Computer Science, chapter 9, pages 229�260.
Manchester University Press, 1987. Also: Techni-
cal Reports 193 and 216, IRISA (INRIA-Rennes),
1983.

[19] Michael Wolfe. Optimizing Supercompilers for Su-
percomputers. Research Monographs in Parallel
and Distributed Computing. MIT Press, 1989.

9


