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Abstract. SAT stands forStages And Tranformationsand is the name of
an approach to the high-level, performance-directed design of parallel pro-
grams. The target programs obtained with this approach are sequences of
internally parallelstages, i.e., they fall within the SPMD model. Formal
programtransformationsare used for deriving each parallel stage and opti-
mizing the combination of several stages.

The main advantage of the SAT approach is the comparatively high level
of abstraction at which performance-relevant design decisions can be made.
One consequence is that choices become much clearer than at the code level,
enhancing comparability; another is that there is an increased potential for
automation of the programming process.

This paper summarizes the approach and assesses its usefulness, with
emphasis on one basic parallel programming pattern, the list homomor-
phism, which captures the divide-and-conquer paradigm. We survey the
transformational theory, provide a range of practical examples, and discuss
the potential for automation and also the demands made on application pro-
grammers and implementers.

1 Introduction

Parallel machines, consisting of hundreds or thousands processors, offer
great computational power for complex applications. The community of
their potential users is growing tremendously with the emergence of global
networks that bring hardware, software and expertise from geographically
dispersed sources to bear on large scale problems. However, parallel compu-
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ting still has not become a routine way of solving problems faster, but rather
remains the domain of researchers and highly experienced practitioners.

It is the lack of good software that is holding back the proliferation of
parallel computers. Advances in parallel programming technology have not
kept pace with leaps in the complexity of applications.

Performanceis the foremost goal of parallelism and, at the same time,
a major source of its difficulties. To design an efficient parallel solution of
a problem, the programmer must decompose the problem into a collection
of processes that can run simultaneously, map the processes to the availa-
ble processors, synchronize the processors, organize their communication,
etc. To cope with these low-level, machine-specific details, a rich body of
parallel algorithms, languages and implementation techniques has been de-
veloped for various parallel architectures. However, parallel programming
still requires specific expertise from the user each time one moves to a new
parallel machine or even just changes the configuration of a machine.

Abstraction, i.e., hiding low-level details, has been the major way of
coping with the software crisis for sequential computers. In the parallel
setting, the quest for abstraction is traditionally even stronger, due to the
fundamental complexity of the objects studied. While abstraction is wanted
badly by the application programmers, implementers of parallel software
have often felt that it conflicts with performance.

In the last decade, parallel programming has made progress towards
closing the gap between the requirements of performance and abstraction.

On the performance side, there is a trend towards parallel programs
which are better structured, more predictable and more portable: (1) program
libraries standardize the set of parallel primitives to achieve portability;
(2) research in parallel algorithms is increasingly aiming at well-structured
schemas for classes of problems, rather than at individual solutions; (3) the
predictability of parallel program behaviour on different machines is often
viewed as more important than just raw performance.

On the abstraction side, the trend is towards identifying higher-level con-
structs that enable formal reasoning about parallelism: (1) functional pro-
gramming calculi offer the power of higher-order functions for specifying
parallel algorithms and of equational rewriting rules for algorithm trans-
formation; (2) these calculi are gradually being equipped with methods for
predicting the target performance; (3) new, so-called “bridging” models of
parallelism abstract from the architectural details of parallel machines.

Our approach, calledSAT (Stages And Transformations), builds on this
development and seeks to combine the goals of abstraction and performance
in the design of parallel programs in a systematic way:
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Abstraction is achieved by basing the design process on higher-order func-
tional programming, which facilitates the formal description of and reaso-
ning about parallelism.

Performanceis addressed by directing the design process towards programs
which have an efficient implementation on different parallel architectures.

Reconciliationof abstraction and performance is achieved by using a com-
mon framework for dealing with both:

– Abstract specifications and target programs have a common control struc-
ture – a sequential composition of parallelstages.

– The parallelism in a stage is captured by the commonly occurring pattern
of ahomomorphism, which plays a key r̂ole in the extraction of abstract
parallelism and in its efficient implementation.

– The design process is based on formaltransformations, which guarantee
the correctness of the transition from abstract specifications to efficient
parallel implementations and influence target performance in a predic-
table way.

The main purpose of this paper is to summarize the results obtained within
the SAT approach and published in [28],[32]–[43], place our work in the
contemporary research terrain of parallel processing, discuss the lessons
learned, and outline our vision of the future development in the field. For
much technical detail – in particular, for proofs – we refer to said papers.

The power of the approach is demonstrated in several case studies, which
have been suggested in the literature as testbeds for program design methods:
scan (parallel prefix), the maximum segment sum (MSS), polynomial mul-
tiplication, the Fast Fourier Transform (FFT) and numerical integration on
sparse grids. We either give new parallel solutions or, more often, demon-
strate a systematic way of arriving at the optimal solutions which were
obtainedad hocpreviously.

The paper is structured as follows:

Section 2outlines the SAT approach and related work. We describe the
class of target programs, the formalism and the programming model based
on stages, and explain how abstraction and performance are dealt with in a
common transformational framework.

Section 3introduces our basic parallel pattern, thelist homomorphism, and
formulates the problems to be studied: the extraction, composition and im-
plementation of this pattern.

Section 4presents a new homomorphism extraction method, based on a
generalization of two sequential definitions, shows how it can be mechanized
in a term rewriting framework, and applies it to the MSS problem in a case
study.
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Section 5derives optimizing transformations for two practical homomor-
phism compositions, reduction with scan and scan with scan, and demon-
strates their use on the MSS problem.

Section 6deals with the formal derivation of an efficient, generic implemen-
tation for the class of distributable homomorphisms (DH) and illustrates its
use on scan and FFT.

Section 7considers specific aspects of the divide-and-conquer parallelism.
We classify divide-and-conquer algorithms and derive an implementation
for the case of a mutually recursive specification. For binary divide-and-
conquer, we propose a new interconnection topology, theN -graph, with the
properties of a fixed node degree, balanced load and local communications.
Finally, we demonstrate a systematic design method on the case study of
polynomial multiplication, for which a time- and cost-optimal solution is
developed.

Section 8summarizes the findings of the SAT approach and outlines future
research.

2 Outline of the SAT approach

This section outlines the SAT approach as a common framework for dealing
with performance and abstraction, and pinpoints its place in the research
area of parallel programming.

2.1 Performance view

To ensure competitive target performance, the design process should result
in a program which can be implemented directly and efficiently on a wide
variety of parallel machines. We call such a representation of the parallel
target program theperformance view.1 Following the current practice of
parallel programming, the SAT approach adopts a performance view based
on the SPMD model and the MPI standard.

SPMD (Single Program Multiple Data) [53,70] is the most popular and,
as is widely believed, the only feasible way of programming massively par-
allel machines. An identical program drives all the processors, but the path
through the program is determined by the logical coordinate of the proces-
sor which is a parameter of the program. MPI (Message Passing Interface)
[47] is a library of parallel primitives; recently, it has become thede facto
standard for parallel programming in the SPMD style. It is portable across

1 Earlier, we called it thetarget view[34].
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practically all kinds of parallel and distributed platforms. Attempting to co-
ver a possibly wide variety of parallel primitives, MPI is becoming too rich
and, therefore, hard to use. A new perspective is being offered by recent
theoretical results on coarse-grain algorithms with global communications
[25,30] and also by the practice of MPI programming with a restricted set
of collective communications [45,71].

To liberate the performance view from unimportant details, we represent
it in simplified, MPI-like pseudocode. This code comes in three types of
statements:

Computationsare represented as sequential function calls, e.g.,CALL
f(a,b) .

Communicationsare restricted to the collective communication primitives,
like BCAST for broadcasting,ALL-TO-ALL for the exchange between
every pair of processors, etc.

Combinationsare collective primitives, which prescribe both computati-
ons in the processors and communications between them. Examples are
REDUCE(+) for computing a sum of elements across the processors, and
the parallel prefixSCAN(+) .

Note that we try to avoid point-to-point communications in the performance
view; we use them mostly for the efficient implementation of collective
patterns on particular machines. Collective operations can be restricted to a
particular group of processors, e.g., the reductionREDUCE(+) in ROW
is restricted to a row of a virtual processor matrix, and is applied for all rows
simultaneously.

2.2 Abstraction view

For the purpose of abstraction, SAT makes use of the Bird-Meertens for-
malism (BMF) on lists [8]. Originally created for the design of sequential
programs, BMF is becoming increasingly popular in the parallel setting
[74]. In BMF, higher-order functions (functionals) capture, independently
of the parallel architecture, general idioms of parallel programming which
can be composed for representing algorithms. BMF functionals use ele-
mentary operators and functions as parameters. A BMF expression usually
represents a class of programs which can be reasoned about, either taking
into account particular properties of the customizing functions or not. This
style of programming is called generic [64] or skeleton-based [4,20].

Let us introduce the BMF notation used in this survey. As the basic data
structure, we take the non-empty list which is implemented as an array in the
performance view. Function application is denoted by juxtaposition, binds
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most tightly and associates to the left. For the sake of brevity, we define the
BMF functionals informally.

The simplest and at same time the most “parallel” functional of BMF is
map, which applies a unary functionf , defined on elements, to each element
of a list, i.e.,

map f [x1, x2, . . . , xn] = [ f x1, f x2, . . . , f xn ] (1)

There is alsored (for reduction) with a binary associative operator⊕:

red (⊕) [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ . . . , ⊕xn (2)

Reduction can be computed on a binary tree, with⊕ in the nodes, optimally
in log n time for an argument list of lengthn.

There are some other functionals which will be introduced later. Indivi-
dual functions are composed in BMF by means of functional composition
◦, such that(f ◦ g) x = f (g x), which represents sequential execution
order on (parallel) stages.

2.3 Design in SAT: stages and transformations

Our ultimate goal is to mediate between the functional abstraction view and
the imperative performance view in the program design process. To do so,
the SAT approach is based on the following two concepts which give it its
name:

Stagesare building blocks of both the abstraction view and the performance
view: a program is always a sequence of stages. Each stage encapsulates par-
allelism of a possibly different kind and involves potentially all processors.

Transformations support program design and optimization. They are
correctness-preserving transitions – either between different abstraction
views, or from an abstraction view to a performance view.

2.3.1 Stages

The traditional formal model of parallelism, the PRAM [80], facilitates the
description and comparison of parallel algorithms, but it does not always
reflect the real costs of parallelism. In a more practical model, which also
takes account of the network by which processors are connected, a program
is viewed as a collection of communicating processes, each with a local
memory. It can be called the “PAR-SEQ” model (PARallel composition of
SEQuential processes). This model corresponds directly to SPMD; it results
usually in efficient programs but involves too many low-level details.

A key feature of SAT is that the PAR-SEQ model is imposed solely
on the target program. The program design process is based on the dual
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programming model, SEQ-PAR. This model, which has its origins in SIMD
parallelism [12], is extended in SAT to the class of coarse-grain SPMD-like
programs. We adopt the idea of communication-closed layers, introduced
originally in the CSP setting [12,24]: no communication is allowed between
different stages. In particular, data (re)distributions are stages themselves.

The restrictions imposed by the SAT model simplify the program struc-
ture significantly: the overall control becomes sequential, and parallel pieces
of the program become smaller and easier to understand. Similar ideas can be
found in the group-SPMD model [71], in the concept of coarse-grain algo-
rithms [30], and in the so-called “bridging” models of parallelism, including
the bulk-synchronous parallelism in the BSP model [59], asynchronous ac-
tivity in LogP [22] and a number of scalable operations in the WPRAM
[65].

2.3.2 Transformations

The general idea of transformational programming [14] is to start with an
intuitively clear and correct algorithm for a problem and to proceed by step-
wise transformation until a semantically equivalent solution with sufficient
performance is reached [6]. Although elegant and promising, this approach
still has not been a real practical success. One of the reasons is, in our opi-
nion, that the user is expected to become an expert in the transformational
formalism.

A way to shield the user from the underlying transformational formalism
is offered by theskeletonapproach, whose original motivation was to cap-
ture common schemas of parallelism found in different applications [20].
Skeletons can be viewed as higher-order functions: e.g., the BMF skeleton
map, defined by equation (1) with parameter functionf , can be customi-
zed for a particular application. If a high-quality parallel implementation is
offered for a skeleton, then the only task remaining for the user is to cast
the particular problem in the given schema. The user need not be aware of
which particular steps were used to obtain the implementation. Skeletons
have been studied vigorously recently; related work includes experimental
skeleton systems [3,11,23], different kinds of recursion [50,81], transfor-
mations of skeletons [27,79], etc.

BMF expressions – and, therefore, also the programs specified by them
– can be manipulated by applying rules of the formalism. A simple example
of a BMF transformation rule is the map fusion law:

map (f ◦ g) = map f ◦ map g (3)

If the composition of two stages on the right-hand side of (3) is implemented
via a barrier, then it should be transformed into the left-hand side which is
more efficient. A cost calculus can be applied to predict the impact of parti-
cular choices on the parallel performance [75]. There is a rich body of BMF
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transformations which can be used in the design process (see Subsection 5.2
and [74] for examples).

2.4 SAT and homomorphisms

The scope of the SAT approach includes algorithms working on recursively
constructed data types, such as lists, arrays, trees and so on. The basic parallel
skeleton used in this survey is thehomomorphism. Introduced by Bird [8]
in the constructive theory of lists, it has been studied extensively in the
category-based theory of data types [60,74]. Our interest in homomorphisms
is due to their direct correspondence to data parallelism [12,53] and to the
divide-and-conquer paradigm which is used extensively in both sequential
and parallel algorithm development [13,72].

An important completeness property of the BMF framework is that any
formulation of a homomorphism on a recursively constructed data type
can be transformed in the formalism into any other formulation of that
homomorphism by equational substitution [73]. Whether the world of “all
parallel programs” has a similar property is an intriguing open question.
Homomorphisms and, more generally, divide-and-conquer algorithms are
the main building blocks in SAT and the focus of our interest in the rest of
this survey.

3 List homomorphisms

The homomorphism principle is well known and widely used in different
areas: intuitively, a homomorphic function preserves the structure of its
domain in the codomain.

In the SAT approach, we apply the homomorphism principle to capture
the pattern ofdata parallelismin the abstraction view: (1) domains represent
data structures, constructed inductively of smaller parts (lists, trees, etc.);
(2) codomains represent the results of computing functions on the structured
data; (3) a function is a homomorphism if its image of a data structure can
be computed from the images of the function on the parts of the structure.
Dually, homomorphisms express thedivide-and-conquerparadigm: to solve
a problem,dividedata into parts, solve the problem on the parts and combine
the results to yield the overall solution (conquerthe problem). Divide-and-
conquer is a fundamental principle of algorithm design, both in theory and
in practice [72].

Our basic data structure is the non-empty list, with list concatenation++
as constructor.



Abstraction and performance in the design of parallel programs 769

Definition 3.1 (Bird [8]) A list functionh is a homomorphism iff there exists
a binary operator�∗ such that, for all listsx andy:

h (x ++ y) = h x �∗ h y (4)

In words: the value ofh on a concatenated list can be computed by applying
the combine operator�∗ to the values ofh on the pieces of the list. Since
the computations ofh x andh y are independent of each other, they can be
carried out in parallel. Note that�∗ in equation (4) is necessarily associative
on the range ofh, because++ is associative.

As a running example, we take the scan function, also called parallel
prefix [10]. This simple function has been extremely useful in many app-
lications; at the same time it is easy to parallelize. These, at first glance,
surprising properties can be explained by the fact that scan expresses a ge-
neral pattern of linear recursion and, thus, inherits its expressive power and
potential for parallelization.

Example 1 (Scan as a homomorphism)Functionscanyields, for an asso-
ciative binary operator� and a list, the list of “prefix sums”. For example,
on a list of three elements:

scan(�) [a, b, c] = [ a , a � b , a � b � c ] (5)

Scan is a homomorphism with combine operator�∗ :

scan(�) (x ++ y) = S1 �∗ S2 = S1 ++ (map((lastS1) �) S2) (6)

whereS1 = scan(�) x , S2 = scan(�) y.

In (6), we use a shorthand, the operator section: we fix one argument of�
and obtain a unary function,((lastS1) �), which is supplied as an argument
to map.

Theorem 1 (Bird [8]) A list functionh is a homomorphism iff it can be
factored into the composition:

h = red(�∗ ) ◦ mapf (7)

where, for any elementa, f a = h [a], and�∗ is as in(4).

Each homomorphism is uniquely determined byf and�∗ . Thus, all homo-
morphisms can be viewed as instances of a singlehomomorphism skeleton,
with customizing functionsf and�∗ . This skeleton – and, consequently,
all its instances – can be computed by a two-stage program, the right-hand
side of (7), composed of the highly parallel BMF functionalsmap andred
introduced in Sect. 2.

Thus, the homomorphism skeleton provides the abstraction view of a
class of functions on lists, together with a common parallelization schema,
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given by (7), for this class. Homomorphisms can be positioned between
two main kinds of skeletons studied in the literature: elementary skeletons
like mapor fold, on the one hand, and more elaborate, application-oriented
skeletons, such as diverse flavors of divide-and-conquer, on the other hand.

To use homomorphisms in the SAT design process, the following pro-
blems should be addressed:

– Extraction: Check whether a given function can be expressed as an in-
stance of the homomorphism skeleton, i.e., construct the customizing
functionsf and�∗ of (7).

– Adjustment: If a function is not a homomorphism, try to make it one, at
the expense of additional computations.

– Composition: Find an efficient way to compose several homomorphisms
as stages in a larger abstract program.

– Implementation: For an extracted/adjusted homomorphism, find an ef-
ficient performance view, which may depend on the properties of the
customizing functions.

In the following sections, we study the problems listed. Each section ends
with a brief statement about the impact of its findings on the program design
process.

4 Extraction and adjustment

In this section, we present a way of extracting homomorphic parallelism
from a given functionh, or adjusting the function to the homomorphism
skeleton. Functionh is a homomorphism if we can construct two customi-
zing functions of (7): functionf , which yields the image ofh on a singleton
list, and the combine operator�∗ . Whereasf can be found easily, the problem
of constructing�∗ is not trivial: e.g., for the scan function (5), an elaborate
correctness proof of a parallel algorithm is presented [66] or someeureka
steps are applied [46].

4.1 The CS-method

A systematic way of addressing the homomorphism extraction problem is
offered in BMF by establishing a connection between two ways of defining
functions on lists. In contrast to homomorphisms, in which the constructor
is the list concatenation, sequential functional programming is based on the
constructorcons , which attaches an element to the front of the list. We
denotecons by ·: and introduce also its dual,snoc , denoted by:·, which
attaches an element at the list’s end.
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Definition 4.1 List functionh is called leftward (lw) iff there exists a binary
operator⊕ such thath (a ·: y) = a ⊕ h(y), for all elementsa and listsy.
Dually, functionh is rightward (rw) iff, for some⊗, h (y :· a) = h(y) ⊗ a.

Note that⊕ and⊗ need not be associative, so many functions are eitherlw
or rw, or both.

Theorem 2 ([29]) A function on lists is a homomorphism iff it is both lw
and rw.

In earlier work [5,29], the existence of leftward and rightward algorithms
for a problem has been used as evidence that a homomorphic algorithm for
that problem exists, but no method of constructing the homomorphism has
been offered.

In [36], we take a step towards finding the combine operator�∗ from
operators⊕ and/or⊗. We start by imposing an additional restriction on the
leftward and rightward functions.

Definition 4.2 Functionh is called left-homomorphic (lh) iff there exists�∗
such that, for arbitrary listx and elementa, h (a ·: y) = h ([a]) �∗ h (y).
Likewise, for right-homomorphic (rh) functions,h (x:·b) = h (x) �∗ h ([b]).

Evidently, everylh (rh) function is alsolw (rw), but not vice versa.

Theorem 3 If functionh is a homomorphism thenh is both lh and rh with
the same combine operator. If functionh is lh or rh, and the combine operator
is associative, thenh is a homomorphism with this combine operator.

In [32], we prove a slightly stronger property. Theorem 3 indicates that
both the left and right homomorphy should be exploited together in the
construction of the combine operator. Examples in [36] demonstrate some
unsuccessful attempts to arrive at an associative combine operator, starting
solely from either acons or asnoc representation.

TheCS-method(for “Cons and Snoc”), proposed originally in [32], is to
request from the user two representations of a function, and to bring them
into a common form, i.e., togeneralizethem.

Definition 4.3 A termtG is called ageneralizerof termst1 and t2 in the
equational theoryE (E-generalizer) if there are substitutionsσ1 and σ2,
such thattG.σ1 ↔∗

E t1 andtG.σ2 ↔∗
E t2.

Here,↔∗
E denotes the semantic equality (conversion relation) in the equa-

tional theoryE, and t.σ denotes the result of applying substitutionσ to
termt. Generalization is the dual ofunificationand is sometimes also called
“anti-unification” [49].

Let us assume that functionh is a homomorphism, i.e., equation (4)
holds, andtH denotes a term overu andv which defines�∗ :

u �∗ v ↔ tH (8)
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Fig. 1. The relationships of the terms after a successful generalization

The following two terms, constructed fromtH by the substitutionstL =
tH .{u 7→ h([a]), v 7→ h(y)} and tR = tH .{u 7→ h(x), v 7→ h([b])},
are semantically equal variants of allcons and snoc definitions ofh,
respectively. Let us pick two arbitrary definitions:

h([a]) ↔ tB and h([b]) ↔ t′B
h(a ·: y) ↔ tC h(x :· b) ↔ tS

According to Theorem 3, functionh is bothlh andrh with combine operator
�∗ , so we can rewrite these two definitions as follows:

tB �∗ h(y) ↔ tC and h(x) �∗ t′B ↔ tS (9)

Figure 1(a) illustrates the relationship between termstH , tC , tS , tL,
andtR. Dotted arrows indicate applications of substitutions; solid arrows
indicate conversion steps. Each substitution is applied totwo terms – this
is a simultaneous generalization problem. In order to work with the defined
notion of generalizer on terms, we introduce a fresh binary function symbol,
⇀, and model pairss ↔ t of terms as termss ⇀ t, calledrule terms. With
this encoding we get the view of Fig. 1(b). In both subfigures,σ1 = {u 7→
tB, v 7→ h(y)}, σ2 = {u 7→ h(x), v 7→ t′B}.

The following theorem states that a generalization of the two rule terms
derived of (9) leads to termtH from (8) – the desired piece of the definition
of h as a homomorphism.
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Theorem 4 LetE be the theory of lists and lett′B = tB.{a 7→ b}. If the two
rule terms,tB �∗ h(y) ⇀ tC andh(x) �∗ t′B ⇀ tS , have anE-generalizer
u �∗ v ⇀ tH w.r.t. substitutionsσ1 andσ2, and the operator�∗ thus defined
is associative, then the function defined bytC and tS is a homomorphism
with �∗ as combine operator.

The generalization in Theorem 4 is called theCS-generalization: it is the
key step of the following CS-method of homomorphism extraction.

CS-Method:
1. The user is requested to provide two sequential definitions for a given

function: acons termtC and asnoc termtS , after which two mecha-
nizable steps follow.

2. CS-generalization, applied to the rule termstB �∗ h(y) ⇀ tC andh(x)�∗
t′B ⇀ tS , yields a rule termu �∗ v ⇀ tH .

3. If associativity of�∗ defined bytH can be proven then, by Theorem 4,
�∗ is the desired combine operator.

Example 1 (Continued)With the CS-method, we can extract a homomor-
phism for the scan function. The rule terms forscanare as follows:

[a] �∗ scan(�) y ⇀ a ·: (map(a�) (scan(�) y))
scan(�) x �∗ [b] ⇀ (scan(�) x) :· (last(scan (�) x) � b)

Their CS-generalization [28] yields:u �∗ v ⇀ u ++ map(last(u) �) v.
One can prove the associativity of operator�∗ thus defined:

u �∗ v ↔ u ++ map(last(u) �) v (10)

Therefore,scanis a homomorphism, with�∗ defined by (10) andf = [.],
where function[.] wraps its parameter into a singleton list.

4.2 Mechanizing the CS-method

To apply the CS-method in practice, its generalization step must be mecha-
nized, i.e., a generalization algorithm is required. In contrast to unification,
properties and methods for generalization in a non-empty equational theory
have largely been neglected in research [21]. This subsection, based on joint
work with Alfons Geser [28], describes, to the best of our knowledge, the
first practical algorithm for generalization in BMF.

We proceed in two steps: first, ageneralization calculusis designed,
which is then turned into ageneralization algorithm. To have a simple tech-
nical apparatus, we restrict ourselves to first-order terms.

The objects of our generalization calculus are triples(σ1, σ2, t0), sa-
tisfying the generalization property: t0 is a generalizer oft1 and t2 via
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the substitutionsσ1 andσ2, respectively. Starting from the triple({x0 7→
t1}, {x0 7→ t2}, x0), wherex0 is the most general generalizer, we specialize
by applying inference rules successively until no inference rule applies. The
basic idea is to repeat, as long as possible, the following step: extract a com-
mon mappingxi 7→ vi in substitutionsσ1 andσ2 and move it tot0. Every
such step specializest0 while maintaining the generalization property. In
the end,t0 is maximally specialized.

The generalization calculus has two inference rules:

– Theancestor decompositionrule reconstructs a common top operation
symbol of a pair of terms, potentially after a few reverse rewrite steps
in the theoryE. First, a common variable,xi, in the domain of the two
substitutions is selected. If the corresponding right-hand sides,ui and
vi, have a common root function symbol,f , then the rule splits mapping
xi 7→ f(u′

1, . . . , u
′
m) of the first substitution intoxi 7→ f(x′

1, . . . , x
′
m)

andx′
j 7→ u′

j , wherex′
j is a fresh variable for each argument position,j,

of f . Likewise,xi 7→ f(v′
1, . . . , v

′
m) of the second substitution is split,

using the samex′
j , to xi 7→ f(x′

1, . . . , x
′
m) andx′

j 7→ v′
j . The common

part of the results,xi 7→ f(x′
1, . . . , x

′
m), is transferred tot0.

– Theagreementrule joins variables that map to the same term. Mappings
xi 7→ u andxj 7→ u with common right-hand sides in the first substitu-
tion can be transformed intoxj 7→ xi andxi 7→ u. Moreover, if there are
xi 7→ v andxj 7→ v in the second substitution, then they are transfor-
med intoxj 7→ xi andxi 7→ v. These transformations are applied only
if both are applicable, and the common part of their results,xj 7→ xi, is
transferred tot0.

To turn the generalization calculus into an algorithm, we propose a stra-
tegy of applying the inference rules: we prefer the agreement rule, apply
a rule always to the smallest possible index, and restrict the ancestor de-
composition rule to at most one reverse rewrite step applied at the top of
terms.

The following results, proven in [28], justify the proposed mechanization
of the CS-method:

Soundnessof the calculus: every derivation yields a generalizer of the given
two terms.

Reliability of the calculus: if the associativity of the generalized operator
can be proven then this operator indeed customizes the function to the
homomorphism skeleton.

Termination of the algorithm: the generalization process terminates under
the imposed strategy.
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Although the worst-case time complexity of the generalization algorithm
is exponential, it is linear on practical examples. The homomorphic repre-
sentation of the scan function is extracted automatically in six steps [28].

4.3 Almost-homomorphisms: the MSS problem

In this subsection, we deal with functions which are not homomorphisms,
and we attempt to adjust them to the homomorphic format. A powerful
method of adjustment is based on the notion of analmost-homomorphism
[16] – a function which can be turned into a homomorphism by phrasing it in
terms of a number of auxiliary functions.2 Our contribution is a systematic
way of constructing suitable auxiliary functions, based on the CS-method
(Subsection 4.1).

We demonstrate our approach by considering the famousmaximum seg-
ment sum(MSS) problem – aprogramming pearl[7], studied by many
authors [8,16,74,76,78].

The MSS Problem. Given a list of numbers, functionmssreturns the largest
sum across all contiguous list segments, e.g.,

mss[ 2,−4, 2,−1, 6,−3 ] = 7

where the result is contributed by the segment[2,−1, 6].
The CS-method starts with defining functionmssovercons lists, i.e.,

writing a sequential functional program formss. Let function↑ return the
larger of its two arguments. For some elementa and listy, it may well be
the case thatmss(a ·:y) = a ↑ (mssy). But the true segment of interest may
also include botha and some initial segment ofy; so we have to introduce
an auxiliary functionmis, which yields the sum of themaximum initial
segment. The next step of the CS-method, thesnoc definition, requires
the introduction of a new auxiliary function,mcs(for maximum concluding
segment).
We obtain the following definitions ofmss:

mss(a ·: y) = a ↑ mssy ↑ (a + misy)
mss(x :· b) = mssx ↑ (mcsx + b) ↑ b

Augmenting functionmsswith both auxiliary functions, we obtain a triple:
〈mss, mis, mcs〉. For each function of the triple, the CS-method requires both
cons andsnoc definitions, and this leads to one more auxiliary function,
ts, which computes the total sum over the list [39].

2 By using the identity function, every function can be turned into a trivial homomorphism;
however, no useful parallelism results from that.
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In all, we have introduced three auxiliary functions which, together with
mss, constitute a quadruple:〈mss, mis, mcs, ts〉 . Thecons andsnoc de-
finitions of the four functions are closed, i.e., they refer exclusively to the
functions of the quadruple. Our generalization algorithm, applied for each
function of the quadruple, requires 27 steps in total, and yields the following
combine operator [28]:

(mssx, misx, mcsx, tsx) �∗ (mssy, misy, mcsy, tsy) =(
mssx ↑ (mcsx + misy) ↑ mssy , misx ↑ (tsx + misy) , (11)

mcsy ↑ (mcsx + tsy) , (tsx + tsy)
)

Since�∗ is associative, the quadruple is a homomorphism with two cu-
stomizing functions: operator�∗ defined by (11), and functionf defined as
follows:

f a = 〈mss, mis, mcs, ts〉 [a] = (a , a , a , a) (12)

The abstract program for themssproblem is obtained immediately using
schema (7):

mss = π1 ◦ red(�∗ ) ◦ mapf (13)

where projectionπ1 yields the first component of a tuple, in our case,mss.
Program (13) coincides with the results of [16,76] but, unlike them, our
solution has been obtained systematically, by using the CS-method and
the standard homomorphic parallelization, rather than by relying on our
intuition about parallelism in the derivation process. The mechanization of
the adjustment process is discussed in the next subsection.

Let us estimate the parallel time complexity of the derived homomor-
phic algorithm, whose performance view in MPI-like pseudocode is given
in Subsection 6.1. Since bothf and�∗ require a constant number of com-
municated elements and executed operations, the total time onn processors
is O(log n). The number of processors can be reduced ton/ log n by si-
mulating lower levels of the processor tree sequentially, based on Brent’s
theorem [70]. Therefore, program (13) is both time- and cost-optimal.

4.4 Impact on program design

The CS-method of homomorphism extraction and adjustment, graphically
depicted in Fig. 2, has two practical advantages: (1) it requires from the
user only sequential representations of the problem in question; (2) it offers
a potential for mechanization. For proofs of associativity, we have used
the induction proverTiP [26]. For the scan example,TiP produced an
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Snoc-Program

TIP
Representation
Homomorphic

difficult to write not found not associative

Cons-Program
Generalization

Algorithm

Fig. 2. Application of the CS-Method

inductive proof of associativity without any user interaction. Of course,
there are cases in which the method does not succeed, as indicated in the
figure by the downarrows which are labeled with the reasons for the failure.

The rewriting approach seems to be especially useful in the case of
almost-homomorphisms, i.e., when a non-trivial adjustment is necessary.
The maximum segment sum problem requires only three auxiliary functi-
ons but, in other cases, there may be more. For example, there are eleven
functions in the two-dimensional case of MSS [76].

The CS-method applies also to the adjustment of so-callednested almost-
homomorphisms, whose combine operators turn out to be, again, almost-
homomorphisms. An example is the multi-bracket matching problem [32],
for which we obtain two levels of homomorphic parallelism, with an overall
time complexity ofO(log2 n).

5 Composition of homomorphisms

This section addresses the composition of homomorphisms in the abstraction
view – an important issue in the SAT design process, where programs are
typically composed of several stages.

5.1 Rules of composition

We study two compositions which are often used in practice: scan with re-
duction and scan with scan. Since both composed functions are homomor-
phisms, it is natural to try and fuse them into one, more complex parallel
stage. We consider both the conventional scan, or prefix, defined by (5), and
its symmetric version, called suffix:

suf (�) [x1, x2, x3] = [x1 � x2 � x3 , x2 � x3 , x3 ]

We do not proceed by inventing a solution and then verifying it, but rather by
systematic adjustment to the homomorphism skeleton using formal trans-
formations in BMF [38]: (1) the scan-reduction composition is defined for
a concatenation of two lists; (2) since the obtained format is not homomor-
phic, the composition is augmented with reduction as an auxiliary function;
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(3) the resulting pair of functions is transformed into a homomorphic format
under additional assumptions about the customizing operators.

Thus, the composition of scan with reduction is shown to be an almost-
homomorphism. Further BMF-calculations yield an almost-homomorphic
format for the composition of scan with scan. Both results are combined in
the following theorem:

Theorem 5 (Composition Rules [38])For arbitrary associative binary
operators,⊕ and⊗:

(a) if ⊗ is left-distributive over⊕ then

red (⊕) ◦ scan(⊗) = π1 ◦ red (〈⊕,⊗〉) ◦ map pair (14)

scan (⊕) ◦ scan (⊗) = map π1 ◦ scan (〈⊕,⊗〉) ◦ map pair(15)

(b) if ⊗ is right-distributive over⊕ then

red (⊕) ◦ suf(⊗) = π1 ◦ red (<⊕,⊗>) ◦ map pair (16)

suf (⊕) ◦ suf (⊗) = map π1 ◦ suf (<⊕,⊗>) ◦ map pair (17)

where functionspair, 〈⊕,⊗〉 and<⊕,⊗> are defined as follows:3

pair a
def= (a, a) (18)

(p1, r1) 〈⊕,⊗〉 (p2, r2)
def= (p1 ⊕ (r1 ⊗ p2) , r1 ⊗ r2) (19)

(s1, r1) <⊕,⊗> (s2, r2)
def= ((s1 ⊗ r2) ⊕ s2 , r1 ⊗ r2) (20)

The theorem extends previous results in the general theory of homomor-
phisms [60] and in sequential program design [9,78]. To the best of our
knowledge, the transformation of two scans is new; a version of the scan-
reduction composition was used in [15] for parallelizing linear recurrences.
Our formulation is arguably more convenient for direct use in practical par-
allel programming. In the sequential case [9], the scan-reduction fusion is
expressed more simply, due to the use of thefoldl functional which, however,
prescribes a particular order of computation.

5.2 Derivation by transformation: MSS revisited

This subsection demonstrates program derivation in SAT: a problem is first
specified in an intuitively clear, but inefficient abstraction view; this view
is then transformed into a more efficient view by means of the composition
rules, developed in the previous subsection, and other BMF–based trans-
formations. This approach can be viewed as an alternative to an extraction

3 Please note that two similarly looking notations –< , > and〈 , 〉 – are used for different
functions.
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via the CS-method of Subsection 4.3, which proceeds by generalizing two
sequential programs.

The following equational rules of BMF will be used:

scan (⊕) = map (red (⊕)) ◦ inits (21)

suf (⊕) = map (red (⊕)) ◦ tails (22)

inits ◦ map f = map (map f) ◦ inits (23)

map f ◦ red (++) = red (++) ◦ map (map f) (24)

red (⊕) ◦ red (++) = red (⊕) ◦ map (red (⊕)) (25)

Functionsinits andtails are introduced informally:

inits [x1, x2, . . . , xn] = [ [x1], [x1, x2], . . . , [x1, x2, . . . , xn] ]
tails [x1, x2, . . . , xn] = [ [x1, x2, . . . , xn], . . . , [xn−1, xn], [xn] ]

For comparison with the CS-method, let us consider again the MSS pro-
blem formulated in Subsection 4.3. We start with the following intuitive
abstraction view of functionmss:

mss = red (↑) ◦ map (red (+)) ◦ segs (26)

Specification (26) consists of three stages, from right to left:

segs : yields the list of all segments of the original list;

map (red (+)) : for each segment, computes the sum of its elements;

red (↑) : computes the largest sum by reducing with↑ (maximum).

A constructive method for producing all segments of a list, i.e., for imple-
menting functionsegs, is given by:

segs = red (++) ◦ map tails ◦ inits (27)

Specification (26) with functionsegs defined by (27) is obviously correct.
However, it has a poor time complexity:O(n3) for a list of lengthn [75].

Note that our concrete operators,↑ and+, are both associative; moreover,
+ distributes backwards over↑, because(a ↑ b) + c = (a + c) ↑ (b + c).
Therefore, we can use Theorem 5 for composing suffix with reduction in
the following derivation:

mss = red (↑) ◦ map (red (+)) ◦ red (++) ◦ map tails ◦ inits

= { Eq. (24),(25)}
red (↑) ◦ map (red (↑)) ◦ map (map (red (+))) ◦ map tails ◦ inits

= { Eq. (3),(22)}
red (↑) ◦ map

(
red (↑) ◦ suf (+)

) ◦ inits



780 S. Gorlatch, C. Lengauer

= { Theorem 5 (b), i.e., Eq. (16) with⊗ = + and⊕ = ↑ }
red (↑) ◦ map

(
π1 ◦ red

(
<↑,+>

) ◦ map pair
) ◦ inits

= { Eq. (3),(23),(21)}
red (↑) ◦ map π1 ◦ scan (<↑,+>) ◦ map pair

We have thus arrived at a program whose complexity isO(n) sequentially
andO(log n) in parallel.

In [15], the derivation stops at this point, but we can proceed further:

– Extend↑ to pairs:(a, b) ⇑ (c, d) def= (a↑c , b↑d), and note that:

π1 ◦ red (⇑) = red (↑) ◦ mapπ1 (28)

– Note that<↑,+> distributes (forward) over⇑, which allows us to apply
Theorem 5 (a), with⊗ =<↑,+> and⊕ =⇑.

After three more transformation steps [38], we arrive at:

mss = π2
1 ◦ red

(〈⇑, <↑,+>〉) ◦ map (pair2) (29)

whereπ2
1

def= π1 ◦ π1, andpair2 def= pair ◦ pair. The first stage of program
(29) creates a pair of pairs (quadruple) of each element, and the third stage
picks the first component of a quadruple. These data management stages
obviously require constant parallel time.

The central stage of (29) is the reduction with〈⇑, <↑,+>〉; that operator
is expressed in terms of↑ and+ as follows:

(
(r1, s1), (t1, u1)

) 〈⇑, <↑,+>〉 ( (r2, s2), (t2, u2)
)

= (30)( (
r1 ↑ r2 ↑ (t1 + s2) , s1 ↑ (u1 + s2)

)
,
(
t2 ↑ (t1 + u2) , u1 + u2

) )
Our result (30) is equivalent to solution (11) with logarithmic time com-

plexity, which we have obtained in Sect. 4.3 from two sequential programs by
means of the CS-method. The components of the quadruple have a problem-
specific meaning – maximum initial segment sum, total sum, etc. – but this
meaning is not referred to in our derivation. Again, the solution for the
sequential case can be expressed more simply [9,78].

Our derivation establishes a connection between two parallel solutions
known previously: an application of Theorem 5 for suffix-reduction leads to
a solution similar to [15], which, by a one more application of Theorem 5,
this time for scan-reduction, is improved and transformed into the solution
from [16,76].
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5.3 Impact on program design

The proposed composition rules (14)–(17) fuse two consecutive program
stages, each including a global communication, into one stage. Thereby,
extra communication and synchronization in the performance view are eli-
minated. We have developed analytical estimates of the influence of both
rules on the target performance for various target models [44].

In addition to program derivation as demonstrated with the MSS ex-
ample, composition rules can be applied to optimize target programs. E.g.,
the rules can be readily reformulated as source-to-source transformations of
MPI programs [44].

6 Implementing homomorphisms

This section addresses the problem of implementing a homomorphism– eit-
her a given one, or one obtained as a result of extraction or adjustment.
In SAT, implementation means search for an efficient performance view.
We start with a simple standard performance view for an arbitrary homo-
morphism and proceed to the cases where additional restrictions must be
imposed on the homomorphism skeleton in order to improve the efficiency
of the implementation.

6.1 Standard implementation

The standard method of homomorphism implementation is to use program
(7), which consists of two stages: a map followed by a reduction. This
program may be time-optimal, but only under an assumption which makes
it impractical: the required number of processors must grow linearly with
the size of the data.

A more practical approach is to consider a bounded numberp of pro-
cessors, with a data block assigned to each of them. We introduce the type
[α]p of lists of lengthp, and affix functions defined on such lists with the
subscriptp, e.g.,mapp. Partitioning of an arbitrary list intop sublists, called

blocks, is done by thedistribution function, dist(p) : [α] → [ [α] ]p. The
following obvious equality relates distribution with its inverse, flattening:
red(++) ◦ dist(p) = id.

Our further considerations are valid for arbitrary partitions but, in prac-
tice, one tries to obtain blocks of approximately the same size.

Theorem 6 (Promotion [8]) For a �∗ -homomorphismh:

h ◦ red(++) = red(�∗ ) ◦ maph (31)
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This general result about homomorphisms is useful for the practical issue
of parallelization via data partitioning: from (31), we obtain the following
standard abstraction view of homomorphismh onp processors:

h = red (�∗ ) ◦ mapp h ◦ dist(p) (32)

To illustrate the use of schema (32), let us return to the MSS example,
studied in Subsections 4.3 and 5.2. Since the quadruple〈mss, mis, mcs, ts〉
is a homomorphism with�∗ defined by (11), the promotion theorem can be
applied to it:

mss = π1 ◦ red (�∗ ) ◦ mapp 〈mss, mis, mcs, ts〉 ◦ dist(p) (33)

To simplify the presentation of the performance view, we make the assump-
tion, which is not uncommon in the parallel setting, that the program accepts
the result ofdist(p), i.e., the input list is distributed among the processors.
In the performance view below, programMSS-Dist , the partitioned input
is expressed by the HPF-like annotation(BLOCK) [25], which means that
array list is distributed blockwise, withlist-block being the block
stored locally in a processor:

Program MSS-Dist (mypid);
/* Input: list (BLOCK) */

CALL quadruple (list-block);
REDUCE (�∗ , root);
IF mypid == root THEN OUTPUT (mss);

The three stages of programMSS-Dist are obtained directly from
the stages of the abstraction view (33), which provides confidence that the
generation of this performance view can be mechanized:

mapp 〈mss, mis, mcs, ts〉 is implemented by calling the sequential program
quadruple in each of thep processors on its block of the input list;

red (�∗ ) is implementable by the MPI-like primitiveREDUCEwith the user-
defined operation�∗ which, in this case, is given by (11); the resulting
quadruple is stored in processorroot ;

projection,π1, is performed by processorroot by picking the first com-
ponent of the quadruple, thus yielding the result of the program.

The performance of programMSS-Dist can be predicted by estimating
the complexity of each of its three stages: (1) sequential programqua-
druple has linear complexity and works on a block of sizen/p, which
takes timeO(n/p); (2) reduction overp processors, with a constant-time
basic operation�∗ , takes timeO(log p); (3) the last stage, projection, is ob-
viously constant-time. Therefore, the time complexity of our target program,
MSS-Dist , isO(n/p+log p) – the best one can expect in practice – with the
constants depending on the characteristics of the concrete parallel machine.
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6.2 Distributable homomorphisms (DH)

The standard implementation works well on examples like functionmss,
where the chunks of data, communicated in the reduction stage, remain
constant. The situation is different if a function yields a composite data
structure (list, array, etc.). E.g., the combine operator for scan, (6), contains
concatenation, which induces linear communication costs in the reduction
stage. Thus, we lose the optimality of a logarithmic-time solution. As shown
in [75], this cannot be improved by just increasing the number of employed
processors; moreover, this kind of reduction cannot be implemented using
MPI Reduce .

To improve the implementation, the class of homomorphisms is speciali-
zed in [35] to the subclass DH (for Distributable Homomorphisms), defined
onpowerlists[61], i.e., lists of length2k (k = 0, 1, . . . ), with balanced con-
catenation. The following DH definition makes use of the BMF functional
zip, which combines elements of two lists of equal length with operator� :

zip(�) ( [x1, . . . , xn] , [y1, . . . , yn] ) = [ (x1 � y1), . . . , (xn � yn) ]

Definition 6.1 For binary operators,⊕ and ⊗, the Distributable Homo-
morphism (DH) on lists, denoted⊕l⊗, is defined as follows:

(⊕l⊗) [a] = [a]
(⊕l⊗) (x ++ y) = zip(⊕) (u, v) ++ zip(⊗) (u, v) (34)

where lengthx = lengthy = 2k, u = (⊕l⊗) x , v = (⊕l⊗) y .

Figure 3 contrasts how a general homomorphism (on the left) and a distri-
butable homomorphism (on the right) are computed on a concatenation of
two powerlists. The main difference is the specific, pointwise format of the
combine operator in a DH.

Next, we develop a common implementation schema of the DH skeleton
and illustrate its applications.

6.3 Hypercube implementation

In [35], a generic hypercube implementation of DH is developed by in-
troducing an architectural skeleton,swap, which describes a pattern of the
hypercube (more generally, butterfly) behavior:

hyp (swapd (⊕,⊗) x) i
def={

(hypx i) ⊕ (hypx (xor(i, 2d−1))) , if i < xor(i, 2d−1)
(hypx (xor(i, 2d−1))) ⊗ (hypx i) , otherwise

where length(x) = 2k , 1 ≤ d ≤ k , 0 ≤ i < 2k.
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u �∗ v vs. zip(⊕) (u, v) ++ zip(⊗) (u, v)

Fig. 3. Homomorphism (left) vs. Distributable Homomorphism (right)

Here, functionhyp yields, for listx and indexi, theith element ofx; func-
tion xor is the bitwise exclusive OR. Therefore,swapspecifies a pairwise,
bidirectional communication in one dimension of the hypercube, followed
by a computation with one of the two customizing operators.

The following result relates the abstraction view of DH with the perfor-
mance view expressed byswap.

Theorem 7 (DH on Hypercube [39])Every DH over a list of lengthn = 2k

can be computed on ann-node hypercube by a sequence of swaps, with the
dimensions counting from 1 tok:

⊕l⊗ =
k◦

d=1
(swapd (⊕,⊗)) (35)

Here, expression
k◦

d=1
(swapd (⊕,⊗)) is defined as follows:

k◦
d=1

(swapd (⊕,⊗)) def= (swapk (⊕,⊗)) ◦ · · · ◦ (swap1 (⊕,⊗))

To address the practical situation of a bounded number of processors, we
introduce, for a functionh : [α] → [α], its p-distributed version,

( h̃ )p : [[α]]p → [[α]]p, so that

h = red(++) ◦ ( h̃ )p ◦ dist(p)

Programs for parallel machines are often of type( h̃ )p: either it is as-
sumed that the input and output data distribution is taken care of by the
operating system, or the distributed data are produced and consumed by
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other stages of a larger application. There are many possible implementa-
tions of ( h̃ )p; our task is to find an efficient parallel version in case of a
distributable homomorphism.

Theorem 8 (Distributed DH [39]) For a p-partitioned input list,

(⊕̃l⊗)
p

=
(
(zip⊕)l(zip⊗)

)
p

◦ mapp (⊕l⊗) (36)

To map the abstraction view (36) onto a hypercube ofp processors, we apply
equality (35) withk = log p, which yields:

(⊕̃l⊗)
p

=

(
log p◦
d=1

swapp d (zip(⊕) , zip(⊗) )

)
◦ mapp (⊕l⊗) (37)

Program (37) provides a generic, provably correct implementation of
the DH skeleton on ap-processor hypercube. It consists of two stages: a
sequential computation of the function in allp processors on their blocks
simultaneously, and then a sequence of swaps on the hypercube.

Let T1(n) denote the sequential time complexity of a DH function on a
list of lengthn. Then the first stage of program (37) requires timeT1(n/p).
Theswapstage requireslog p steps, with blocks of sizen/p to be sent and
received and sequential pointwise computations on them at each step; its
time complexity isO ((n/p) · log p). For functions whose sequential time
complexity isO(n log n), e.g., FFT, the first stage dominates asymptotically,
so that program (37) is both time- and cost-optimal.

6.4 Scan as a distributable homomorphism

Let us apply the results on DH from the previous subsection to scan. By
expressing scan as a distributable homomorphism, and then applying rule
(35), we obtain the following hypercube program for an unbounded number
of processors [35]:

scan(�) = mapπ1 ◦
k◦

d=1
(swapd (⊕,⊗) ) ◦ mappair (38)

where functionpair is defined by (18), and

(s1, r1) ⊕ (s2, r2)
def= (s1 , r1 � r2) (39)

(s1, r1) ⊗ (s2, r2)
def= (r1 � s2 , r1 � r2)

Program (38) is the “folklore” implementation [70]. In Fig. 4, it is illustrated
by the two-dimensional hypercube which computesscan(+) [1, 2, 3, 4].



786 S. Gorlatch, C. Lengauer

P0

P2 P3

3
3

1

1 2

2

4

4

1

3

3

3

3

7

7

7

10

10

6

1

10

3

10

10

1 3

6 10

swap 2 map  map pair

P1

swap 1 1π

Fig. 4. Computing scan on a hypercube

Unfortunately, for scan on a fixed number of processors, schema (37)
yields a suboptimal time complexity,O ((n/p) · log p). This indicates that
both skeletons, homomorphism and DH, are too general for scan. A further
specialization, calledlocalization schema[35], yields the following program
for scan(�) onp processors:(

˜scan(�)
)
p

x = zipp (�/) (y , z) ,

where z = mapp (scan(�)) x , and (40)

y =
(
mapp π1 ◦

log p◦
d=1

(swapp d (⊕,⊗)) ◦ mapp (prepair ◦ last)
)

z

with ⊕,⊗ from (39),a �/ u
def= map(a�) u, and prepaira

def= (0�, a).

Abstraction view (40) can be expressed directly as a three-stage SPMD
program which computes scan on a listx, partitioned blockwise acrossp
processors:

– Computez: Each processor computes scan on its block ofx; this yields
blockz.

– Computey: Each processor creates a pair consisting of0� and the last
element of its blockz. Then, each processor performslog p steps, com-
municating at stepi with its neighbour in dimensioni of the hypercube
and performing computations⊕ and⊗ defined by equations (39). Fi-
nally, the first element of the resulting pair is assigned to variabley.

– Compute the result: Each processor computesy �/ z independently.

This is exactly the implementation of scan on a hypercube, with a bounded
number of processors used in practice [70]. The time complexity of the first
and third stage isO(n/p); the second stage consists oflog p steps, with
communications and computations on pairs of elements, which yields time
O(log p). Therefore, the time complexity of program (40) isO(n/p+log p),
the best one can expect for scan onp processors. Our localization schema can
be viewed as a constructive version of the compress-and-conquer technique
[62]. Divide-and-conquer parallelism on powerlists has been also treated
algebraically in [2].
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Fig. 5. Implementation (41) in the two-dimensional case, i.e.,d = 1

6.5 Architecture-independent implementation

In this subsection, based on joint work with Holger Bischof [42], we derive
an architecture-independent, generic implementation of DH, which makes
considerable use of global communication primitives.

We use the type ofd-nested lists with an equal numberm of sublists at

all levels:[α]dm
def= [. . . [α]m . . . ]m. A generalization ofmapdenoted by

mapl h
def= map(mapl−1 h), wheremap0 h

def= h, allows us to map a list
function along an arbitrary dimension of a multidimensional list.

For a functionh defined on lists, itsd-distributed version, denoted̃h(d),
takes the input and yields the result in the(d+1)-dimensional form, i.e.,̃h(1)

is an analogue of( h̃ )p from Subsection 6.3, with the restriction of equal
length in both dimensions.

Theorem 9 (Distributed Implementation of DH [42])
For an arbitrary DH functionh on a list of length2 l, and arbitraryd : 0 ≤
d ≤ l−1:

h̃(d) =
d◦

i=1
chdim(i,i+1) ◦

d+1◦
i=1

(
mapd h ◦ chdim(i,d+1)) (41)

where chdim(a,b) swaps dimensionsa andb of a nested list.

For an input list of length2l, Theorem 9 provides a family ofl abstraction
views, one for eachd ∈ [0, l−1]. Cased=0 covers sequential computation.
Cased = 1 prescribes the 2-dimensional data arrangement, i.e., a matrix
shown in Fig. 5. The computation consists of twomaps and two transposi-

tions since, fori = 2, we havechdim(2,2) = id. Note that the notation
d◦

i=1
is used in [42] and, consequently, in (41) in the opposite order compared to
Subsection 6.3.

The other extreme special case of schema (41) isd = l−1: the input
list is represented as a virtuall-dimensional hypercube, and the computa-
tion proceeds inl steps, similarly to the implementation based onswapin
Subsection 6.3.



788 S. Gorlatch, C. Lengauer

Pp- p

3
1

n

3
1

n

3
1

n

P1 P2 PP0 3

Pp

P
2 p

P
3 p

Pp-1

pP -1

pP +1

map   h2

P
i

P p+i

p+i2P

P pp-    +i

(2,3)
chdim : intercommunication in groups

z

x

y

Fig. 6. Three-dimensional case,d = 2: two first steps

Schema (41) can be mapped onto a bounded number of processors,p,
by partitioning each of the firstd dimensions evenly amongp

1
d processors

and leaving the last dimension undistributed. The initial data distribution in
p blocks and the redistribution between two consecutive steps in the three-
dimensional case are shown in Fig. 6, adapted from [53]. Cased = log p
corresponds to thep-processor hypercube. More details are in [42].

The implementation given by Theorem 9 is always a composition of two
stages. For example, in the two-dimensional case these stages are indicated
in Fig. 5 by dotted rectangles. The second stage ensures solely that the output
is distributed the same way as the input. Following the customary practice,
we skip this stage in the performance view, and annotate the altered output
data distribution.

The performance view for schema (41) reads as follows:

Program DH-Generic (d, h, mypid);
/* Input:(BLOCK,...,BLOCK , * ) */

For i := d+1 To 1 Do
ALL-TO-ALL in GROUP (i,d,mypid);
CALL local-transpose (i);
CALL map-h;

End-Do;
/* Output:(BLOCK,...,BLOCK, * ,BLOCK) */

ProgramDH-Generic implements the first stage of schema (41). The
input and output data distributions are annotated as in Sect. 6.1, with*
denoting an undistributed dimension. The program proceeds in a sequence
ofd+1 stages. The first part of each stage is a transposition of two dimensions,
which is implemented by a personalized all-to-all communication, followed
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by an intraprocessor rearrangement,local-transpose . Functionmap-
h computesh along the undistributed dimension for the whole block.

For the FFT case study, the experiments with the target program on a
64-transputer network show a competitive speed-up between 20 and 45,
depending on the problem size [42].

6.6 Impact on program design

The implementation schemas presented in this section are of a general nature
and, at the same time, allow the development of optimal and practically
usable parallel algorithms. The key design decisions, e.g., to work on pairs
of values for scan, have become the result of a systematic adjustment to the
corresponding skeleton, rather than of an intuitive process.

Our case studies demonstrate the use of different schemas. A compara-
tively laborious process of adjusting scan to the DH skeleton indicates that
this skeleton is too general for scan. This suggests that scan could itself be
viewed as a primitive skeleton [10], which is the case, e.g., in MPI [47].
For FFT, the mathematical specification can be adjusted systematically to
the DH format and then the generic schema (41) can be applied [38,42].
The power of the approach is demonstrated by the fact that all three algo-
rithms used for computing FFT in practice [53] – the two-dimensional and
three-dimensional transposition and the binary exchange algorithm – are
described in our framework by one abstraction view, schema (41).

7 General aspects of divide-and-conquer

The divide-and-conquer paradigm is often used as a natural way of spe-
cifying problems and algorithms, without explicit consideration of their
data-parallel execution. This section extends our previous considerations by
addressing several aspects of divide-and-conquer not covered by homomor-
phisms:

– How can the diversity of divide-and-conquer algorithms and their poten-
tial for parallelization be classified?

– How can a divide-and-conquer specification be transformed into a par-
allel abstraction view and, further, into a performance view?

– What is the most suitable processor interconnection topology for an
efficient implementation of divide-and-conquer?

– How can the process of making design decisions in the parallelization
of a divide-and-conquer specification be captured and understood in the
SAT framework?
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Although not all of the results presented here fall in the scope of the SAT
approach, they have a direct relation either to the stage-based programming
model or to formal transformations in BMF. The presentation is kept more
cursory than in the previous sections.

7.1 A classification of divide-and-conquer

Let us sketch the classification of divide-and-conquer proposed in [41]:

Static. We identify a class of divide-and-conquer algorithms whose control
structure can be determined at compile time; we call themSDC-algorithms
(Static Divide-and-Conquer). This class is described by a higher-order func-
tion whose parameters are the division degree, the recursion depth and the
tuples of both the divide and the conquer function. Thus,SDC-algorithms
allow different divide and/or conquer functions to be applied in the course
of a computation.

Binary. The most well known and widely used divide-and-conquer schema
is the binary, symmetric version of theSDC-skeleton which, in our classifi-
cation, is calledDC.

One-Sided.The separation of data rearrangements from aDC algorithm,
which we have already used for DH, can be captured in two specialized
schemas. For instance, if the divide phase of an algorithm is a pure data
arrangement, then we view this algorithm as aC-algorithm, for “Conquer
(without Divide)”. The list homomorphisms of Sect. 3 are computable by
C–algorithms: their divide stage can be captured as a partitioning of the
input list, according to the promotion property.

Nested.Divide-and-conquer algorithms may have a nested control structure,
with their divide or their conquer phase being a divide-and-conquer algo-
rithm itself. For example, the problem of parsing many-bracket languages is
a so-called nested almost-homomorphism (mentioned in Subsection 4.3): it
is aC-algorithm, whose conquer function is again aC-function; we denote
this class byC(C). Another well-known example is the bitonic sort [1,63],
which belongs to the classC(D).

An alternative classification of divide-and-conquer in Haskell is presen-
ted in [51].

7.2 Mutually recursive divide-and-conquer

This subsection deals with a case which is relevant in practice: mutually
recursive divide-and-conquer specifications, with numerical integration on
sparse grids as a case study.
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We consider a system ofn functionsf = (f1, · · · , fn) that are mutually,
non-linearly recursive, i.e., there is a functional definition with one equation
for every function off :

fi(x) = if pi(x) then bi(x) else Ei(gi, f, x) fi (i=1, . . . , n)
(42)

Here,g = (g1, . . . , gn) is a collection of what we callauxiliary functions: gi

represents the non-recursive part of the equation forfi. We assume that all
functions in the systemsf , g andb have the same typeτ → σ. The domain
τ and the rangeσ are arbitrary sets; they may be structured, but we ignore
their structural properties. Elements ofτ are calleddomain parameters, the
pi basic predicatesand thebi basic functions. ExpressionEi depends on
the value of auxiliary functiongi(x) and on the results of (possibly several)
recursive calls of functions fromf . Within the equation for functionfi, the
lth call of fj is of the formfj(ϕl

ij(x)), where functionsϕl
ij : τ → τ are

calledshifts. EachEi has a fixed set of shifts.
We view equations (42) as a specification for computing one of the

functionsfi, say,f1. Our goal is to generate a parallel program which, given
a particular domain parameterinput, computesf1(input). Specification (42)
includes special cases that have been studied extensively in the literature.
Systolic algorithms are often specified in this format, whereτ =Zm and the
shifts are of the formϕ(i)= i + a, for some fixeda∈Zm. These and other
restrictions enable the use of linear algebra and linear programming for the
synthesis of a parallel program [55]. The conventional divide-and-conquer
algorithms correspond to system (42) with a single functionf1 and two
recursive calls of it [43].

To develop a SAT abstraction view for specification (42), we construct
an abstract type of trees, which captures the communication structure of the
specification, and choose an arbitrary tree of this type, such that each of its
nodes can be mapped onto a processor. A sequence of BMF transformations
[43] leads to a functionF such that, if all processors computeF simulta-
neously andinput is available at the root processor, then the result obtained
at the root is the desired valuef1(input). Therefore, we obtain an SPMD
performance view on a tree of processors.

The following, efficiency-related aspects are studied in [43]:
(1) an additional, intraprocessor level of parallelism is implemented by mul-
tithreading; (2) the redundant computations of common values on different
processors are eliminated by introducing additional interprocessor commu-
nication; (3) the load balance is improved using additional transformations
at the functional level.
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Our experiments for the case study of numerical integration on a 64-
transputer machine yielded an efficiency ranging from 0.6 to 0.9 (ratio speed-
up/number of processors).

7.3 N -graphs

In this subsection, we present a new interconnection topology, theN -graph,
whose purpose is to implement efficiently the binary divide-and-conquer on
a bounded number of processors.

In the literature, mainly two topologies with a bounded number of nodes
have been considered [13,48,70]. The complete binary tree has the drawback
that the load is not balanced: only half of the processors are busy with
computation of the coarse-grain base case; this entails a 50% loss of speedup.
An alternative, the binomial tree, has a better load balance, but the node
degree becomes non-constant, which makes the topology non-scalable.

In [37], we introduce a new topology, theN -graph, which combines the
advantages of both binary and binomial trees, i.e., balanced load, locality,
and a constant node degree. Locality means that the communications in the
divide and combine stages happen only between neighbours in the graph.

Informally, theN -graph can be viewed as the result of augmenting the
complete binary tree with one auxiliary node and connecting every right leaf
of the tree to its inorder successor; the last leaf is connected to the auxiliary
node.

Figure 7 (the upper part) shows theN -graph with 16 nodes, whose
additional edges are dashed and whose additional node is shaded.

As proved in [37], the node degree of anN -graph is not greater than 4
(e.g., the left son of the root has four edges including the dashed one), and this
fits nicely on, e.g., transputer networks. The balanced load and locality are
demonstrated in the lower part of Fig. 7: (a) shows two leaves of a complete
binary tree, with a common predecessor and a task to be executed at each leaf;
(b) illustrates that, in anN -graph, every leaf can divide its task into two sub-
tasks, keep one of them and dispatch the other subtask to its ancestor; (c)
shows that after this transformation, every node of theN -graph is respon-
sible for exactly one subtask.

This idea is realized in the SAT framework by transforming a general
divide-and-conquer schema into an abstraction view on anN -graph. The
abstraction view is then transformed into a performance view, i.e., an SPMD
program with message passing. The target program behaves similarly to the
functionF of the previous subsection, with the only difference in the leaf
nodes: rather than performing their tasks, the leaves divide them into two
parts and redistribute one of them to their neighbours in theN -graph as
illustrated in Fig. 7(b)-(c).
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b) c)a)

Fig. 7. Upper:N -graph; lower: distribution of tasks amongst processors

We have studied the performance of theN -graph topology for a case
study of the mergesort on a 64-nodeParsytectransputer system under OS
Parix [69]. Both the complete binary tree and theN -graph topology were
implemented as virtual topologies. Even with theN -graph, simulated on the
physical two-dimensional mesh of the machine, we obtain a speed-up close
to 2, with respect to the complete binary tree. While this is an upper bound
on the expected improvement, it provides, in practice, reasonable gains at
low cost.

Though quite simple, the idea ofN -graph seems to be new. There are
explicit differences to the, at first glance, similar concept ofthreaded trees
[58]. In particular, our topology introduces the additional node and also only
half as many additional edges as compared with threaded trees. Moreover,
theN -graph is not a tree at all, due to the loops introduced.

7.4 A case study: polynomial multiplication

In this subsection, we apply the SAT approach to a case study: we take the
straight-forward cumulative sum algorithm for polynomial multiplication
and go through all development steps, from the mathematical specification
towards the parallel target program. We pursue two goals: (1) to make all
design decisions systematically, using formal transformations and perfor-
mance considerations within SAT, rather than making the decisionsad hoc,
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Fig. 8. Three stages of the polynomial product

and (2) to compare the resulting performance with the results achieved by
another popular approach to parallelization, systolic design.

We start from the mathematical specification of the product of two poly-
nomials, represented by the lists of their coefficients. Eight design decisions
[33] result in the three-stage program structure shown in Fig. 8. We sketch
the design decisions and explain how they are made in SAT (see [33,56] for
more details):

1. Partition both lists of coefficients intop segments and apply the standard
SAT implementation described in the previous section.

2. Compose the program structure of three stages:distribute,compute and
combine as prescribed by the standard implementation schema (32).

3. Employp2 processors, due to the two-dimensional nature of the available
homomorphism.

4. Broadcast input data segments between the processors in order to exploit
the two-dimensional parallelism.

5. Assume distributed input data, thus arriving at a C-algorithm (see Sub-
section 7.1) and liberating the program structure from an explicit data
distribution step.

6. Based on the performance prediction, organize the reduction step in the
combine stage along the diagonals.

7. As a consequence of the previous design decision, connect the processors
as a mesh of trees with diagonal trees [54].

8. Assume distributed output, and implement the concluding step of
combine as a pairwise exchange between neighbouring processors.

The obtained performance view reads as follows:

/* Input: A, B (BLOCK) */
BCAST (A) in ROW;
BCAST (B) in COLUMN;
CALL PolyProd (A,B);
REDUCE (+) in DIAGONAL;
EXCHANGE-NEIGHBOURS;
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/* Output: C (BLOCK) */

Here, sequential programPolyProd is called in each processor for
multiplying two chunks of the input polynomials. We can choose the number
of processors between 1 andn, wheren is the length of the polynomials.
If p=n/

√
log n then the optimal time complexityt=O(log n) is achieved

onp2 =(n2/ log n) processors. This cost-optimal solution is not possible in
the systolic setting. In practice, the number of processors is bounded, and
the problem sizen is relatively large. Then the term(n/p)2 dominates in
the expression of the time complexity, which guarantees a so-called scaled
linear speed-up [70].

A detailed comparison of some systematic parallelization approaches on
the example of the polynomial multiplication can be found in [57].

Experiments on our Parsytec GCel64 showed quite good performance
for sufficiently large polynomials; see Fig. 9.

7.5 Impact on program design

A classification of divide-and-conquer helps in choosing the right set of
algorithmic skeletons for different application areas. E.g., the usefulness
of our one-sided divide-and-conquer has been demonstrated recently for a
bitonic sort [17].
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A particular algorithm can be adjusted to the general format (42) in
more than one way [43]. E.g., a different adjustment for the integration
example changes the performance view from a heterogeneous to a binary
communication tree, which can be implemented more efficiently on most
multiprocessors.

The r̂ole of the communication topology in program design is demonstra-
ted by theN -graph as an idealized structure for binary divide-and-conquer,
and by the mesh of trees with diagonal trees for the polynomial product. The
latter case study also demonstrates that design decisions, which are usually
made by a software designer based on his or her intuition and experience, can
be explained and substantiated formally, without “handwaving” arguments.

8 Conclusion and outlook

The diversity of parallel computers and the complexity of their software are
calling for portable, tractable and efficiently implementable parallel pro-
gramming models and languages. The SAT approach is an attempt to propa-
gate the use of higher-order programming constructs as the building blocks
of such models.

An analogy can be drawn with the historical development of sequential
programming, in which simple, relatively unstructured mechanisms, closely
tied to the underlying architecture, have given way to more powerful, struc-
tured and abstract concepts. Similar progress in the parallel setting should
raise the level of abstraction from models with explicit communication to a
world in which complex patterns of computation and interaction are com-
bined and presented as parameterized program-forming constructs.

The SAT approach focuses on two orthogonal aspects of parallel pro-
gramming: abstraction and performance. They are reconciled within a pro-
gramming model, which recasts a traditional parallel composition of sequen-
tial processes into a sequential composition of actions on parallel objects.
The price paid is a possible loss in expressiveness and performance. Let
us demonstrate how this is outweighed by major gains for the two main
communities dealing with parallelism.

8.1 Gains for application programmers

Application programmers gain from abstraction, which hides much of the
complexity of managing massive parallelism. They are provided with a set
of basic abstract skeletons, whose parallel implementations have a well-
understood behavior and predictable efficiency. To express an application in
terms of skeletons is usually simpler than to develop a low-level parallel pro-
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gram for it. The CS-method demonstrates an opportunity of automatically
supporting this task for the homomorphism skeleton.

This higher-order approach changes the program design process in se-
veral aspects. First, it liberates the user from the practically unmanageable
task of making the right design decisions based on numerous and mutually
influencing low-level details of a particular application and a particular ma-
chine. Second, by providing standard implementations, it increases the con-
fidence in the correctness of the target programs, for which traditional de-
bugging is too hard to be practical on massively parallel machines. Third,
it offers predictability instead of ana posterioriapproach to performance
evaluation, in which a laboriously developed parallel program may have to
be abandoned because of inadequate efficiency. Fourth, it provides semanti-
cally sound methods for program composition and refinement, which open
new perspectives in software engineering (in particular, in reusability). Last
but not least, abstraction, i.e., going from the specific to the general, gives
new insights into the basic principles of parallel programming.

An important feature of the SAT approach is that the underlying formal
framework – the Bird-Meertens formalism – remains largely invisible to
the application programmers. The programmers are given a set of methods
for instantiating, composing and implementing diverse homomorphic ske-
letons, but the BMF-based development of these methods is delegated to the
community of implementers.

8.2 Gains for implementers

This group includes the experts which develop algorithmic skeletons and
their implementations, as well as the implementers of the basic parallel
programming tools like compilers, communication libraries, etc. The main
concern of this community is performance.

The SAT approach is an example of a programming model developed
largely independently of the parallel execution model. By abstracting from
the details of a particular machine, we unavoidably give up some portion of
potential program efficiency. However, we believe strongly in the feasibility
of this approach, for two reasons: (1) there are positive results in the structu-
red sequential programming, where programs are compiled to codes which
are often faster than programs withgoto or hand-written assembler versi-
ons; (2) performance estimation and machine experiments with structured
parallel solutions demonstrate their competitive performance.

Even more important is the fact that possible losses in absolute perfor-
mance are traded for portability and ease of programming. The design of
parallel skeletons becomes simpler due to the structure imposed on both
skeleton languages (abstraction view) and target languages (performance
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view). The structured performance view simplifies also the task of the im-
plementers of parallel software: they can concentrate on a standard set of
global operations which have to be implemented on each target architecture.
This increases the chance of finding high-performance solutions, which are
portable across different architectural classes.

Thus, the task of the implementer can be formulated more precisely,
and alternative solutions can be compared more systematically than in the
case of an unrestricted variety of parallel architectures, programming sty-
les and implementation tricks. This opens the way for a coming-of-age of
the implementation area and for a gradual transition from largelyad hoc
implementation efforts to an integrated compiler technology for parallel
machines.

8.3 Directions of further research

The promising results in the field of parallel programming with higher-order
constructs raise issues which deserve further study.

Expressiveness.The question is: what might be the right set of types and
operators (or does such a bounded set even exist) and what is the appro-
priate language framework for expressing skeletal schemas? Whereas the
first skeletons in the literature were chosen with an efficient implementation
in mind, it is likely that, with growing experience, designers will want to
include skeletons with greater expressive power, whose implementations are
not obvious.

Cost calculus.The challenge is to build a tractable, compositional cost cal-
culus. The fundamental problem of skeletons is that a common yardstick by
which to evaluate them has not been found as of yet. A promising direction is
to identify and study the relevant properties of cost-based transformation sy-
stems, such as confluence and convexity as proposed recently by Skillicorn
[18].

Techniques.Practical tools should help a programmer to decide what to
do next in a derivation and what would be the right level of abstraction
for making a particular design decision. Possible approaches are based on
abstract parallel machines [67] or on collective operations [31,45]. Two other
important issues are portability and data distribution, for which approaches
like shapes [52] and data distribution algebras [77] have been suggested.

Applications.Irregular computations remain a challenge; progress in this
direction is achieved in the framework of parallel abstract data types at
Imperial College [79] and in the Proteus project [68].
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Component-based programming. In the SAT approach, we concentrate most-
ly on programming-in-the-small. The major way of tackling software com-
plexity should be by means of combining predefined components, which
range from straight-forward libraries to elaborate application frameworks.
Programming-in-the-large, which still receives most attention from industry,
should be addressed also by academia.

8.4 The bottom line

Parallel programming is and will remain a non-trivial task, requiring a fair
amount of ingenuity from the user. The complex trade-offs often reduce the
design process to a black art. The challenge is to support program designers
in their creative activity by providing a formally sound, practically useful
notation, together with tools for making design decisions. In well-understood
cases, the user will be provided with exact rules, or the design process can
be mechanized entirely.

The results presented in this survey illustrate a way of combining ab-
straction and performance, in order to make the design process tractable and
improve the quality of the resulting programs. The higher-order, formally
based approach to parallelism is finding an increasing number of supporters,
and a research community has been forming recently [18,19,40].
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