Code Generation to Support Static and Dynamic Composition
of Software Product Lines

Marko Rosenmiiller, Norbert Siegmund,
Gunter Saake

School of Computer Science,
University of Magdeburg, Germany

{rosenmue,nsiegmun,saake}@ovgu.de

Abstract

Software product lines (SPLs) are used to create tailor-made soft-
ware products by managing and composing reusable assets. Gen-
erating a software product from the assets of an SPL is possi-
ble statically before runtime or dynamically at load-time or run-
time. Both approaches have benefits and drawbacks with respect
to composition flexibility, performance, and resource consumption.
Which type of composition is preferable should be decided by tak-
ing the application scenario into account. Current tools and lan-
guages, however, force a programmer to decide between static and
dynamic composition during development. In this paper, we present
an approach that employs code generation to support static and dy-
namic composition of features of a single code base. We offer an
implementation on top of FeatureC++, an extension of the C++ pro-
gramming language that supports software composition based on
features. To simplify dynamic composition and to avoid creation of
invalid products we furthermore provide means to (1) validate the
correctness of a composition at runtime, (2) automatically instanti-
ate SPLs in case of stand-alone applications, and (3) automatically
apply interaction code of crosscutting concerns.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors—Code Generation, Preprocessors

General Terms Design, Languages

Keywords Software product lines, feature-oriented programming,
static feature binding, dynamic feature binding

1. Introduction

Software product lines (SPLs) provide means to compose soft-
ware products that match the requirements of different applica-
tion scenarios from a single code base. SPLs can be developed us-
ing a variety of implementation techniques. Well known concepts
are preprocessor definitions, components, collaboration-based de-
signs, aspect-oriented programming (AOP) [25], feature-oriented
programming (FOP) [36, 8], and aspectual feature modules [3]. A
main difference between implementations of these approaches is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’08, October 19-23, 2008, Nashville, Tennessee, USA.

Copyright (© 2008 ACM 978-1-60558-267-2/08/10. .. $5.00

Sven Apel

Dept. of Informatics and Mathematics,
University of Passau, Germany

apel@uni-passau.de

the type of composition used to create a concrete product or SPL
instance. Some of them support static composition of program code
at compile time or in a preprocessing step and others support dy-
namic composition, e.g., using components, at application startup
or at runtime.

Dynamic composition provides a certain flexibility by allow-
ing a programmer to select the needed functionality at runtime.
For example, loading only required functionality on a mobile de-
vice from a network according to the underlying hardware or user
preferences can reduce network load and avoids the necessity to
provide any variant of a program. Unfortunately, dynamic compo-
sition has typically a negative effect on performance because it in-
troduces an overhead. In contrast, static composition avoids such an
overhead needed to support dynamic composition and enables opti-
mizations on the source code level (e.g., function inlining) [21, 12].
However, a static approach is not as flexible as a dynamic approach
since the functionality of a software product has to be known before
deployment. Hence, both compositional approaches are useful for
different application scenarios but the concrete application scenario
might not be known until deployment.

Using current implementation techniques, the developer of an
SPL is forced to choose between static and dynamic composition
at development time. Changing the type of composition at deploy-
ment time is only supported by a few approaches [18, 12]. As a
result, source code developed for static composition cannot be eas-
ily reused for dynamic composition and vice versa. In this paper,
we present an approach that supports static and dynamic compo-
sition of features of a single code base which allows us to choose
the type of composition at deployment time. While static composi-
tion is usually supported by tools [6, 37, 9] dynamic composition of
features can be a complex task. This includes manual instantiation
of features and has to cover crosscutting concerns, feature interac-
tions, and the validation of correct SPL instantiation. To solve this
problem we provide an infrastructure for dynamic instantiation and
validation of SPLs.

Our approach is based on FOP which allows us to generate
SPL instances by composing modularized features. We have im-
plemented the presented approach using FeatureC++", an FOP ex-
tension for the C++ programming language [2]. We provide means
to:

e compose features of an SPL statically or dynamically from a
single code base,

e automate dynamic instantiation of SPLs with an extensible ap-
proach,

e apply code for feature interactions automatically,

e validate the correctness of an SPL configuration at runtime.

Uhttp://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/

OR

Graph-SPL /O\ alternative

optional

| Color ” Weighted || Synchonized |

mandatory

Figure 1. Feature diagram of a graph product line with optional
features COLOR, WEIGHTED, and SYNCHRONIZED.

| Node | Edge | | UEdge ‘\

I I | [| I

BASEGRAPH | ‘ ‘ :—<>< ‘ “K}—< ‘ ‘ I
I I I I

e s NS S i

T | T T I T T I

I I | I | I

CoLor [‘ ‘ [[‘ ‘ L \
| | | A | I |

| | I \ |

| | | | | |

WEIGHTED I I | |:| I | I
| | L | | 1

Figure 2. Decomposition of classes (vertical bars) with respect to
features (horizontal bars) in feature-oriented designs.

2. Background

An SPL is used to create similar programs that share some common
features. A feature of an SPL represents a functional requirement
on a software that is of interest to some stakeholder [8]. SPLs can
be described using feature models [22], e.g., represented as feature
diagrams, as shown for a product line of graph data structures in
Figure 1. The root of a feature diagram represents the SPL itself
and remaining nodes represent features of that SPL (e.g., feature
COLOR represents coloring of Edges). Features can be optional (de-
picted with an empty dot) or mandatory (depicted with a filled dot).
Optional and alternative features introduce variability into an SPL
that provides means to create tailor-made software products. For
example, in applications for mobile devices alternative implemen-
tations for different hardware may exist and an optional feature like
DATACOMPRESSION might be provided to reduce network traffic.

2.1 Feature-oriented Programming

FOP treats the features of a software as fundamental units of ab-
straction and composition. It allows programmers to compose pro-
grams based on modularized features. Feature modules implement
features as increments in functionality [8]. They are kept separate
from each other to comply with the principle of separation of con-
cerns [15]. To derive a concrete program a user selects the needed
features from an SPL. The corresponding feature modules are com-
posed which results in an SPL instance.

FOP can be used as an extension of different programming
paradigms. In this paper, we focus on FOP as an extension of
object-oriented programming (OOP) using classes as implemen-
tation units. In this case, a feature is usually implemented by multi-
ple collaborating classes. However, often only a fraction of a class
belongs to a feature and the remaining part to other features. Con-
sequently, the classes have to be decomposed with respect to the
features of a software in order to generate classes that contain
only needed functionality. In Figure 2, we show a graph product
line adopted from [35] which we will use as an example through-
out the paper. The SPL consists of classes (vertical dashed bars)
that are decomposed along features (horizontal bars). Basic imple-
mentation is located in module BASEGRAPH which is extended by
feature modules COLOR and WEIGHTED that implement coloring

NeECREN B R R S O R S

// Basic implementation based on OOP
class Edge {
Node* nSource, *nDest;
public:
Edge () :nSource (0) , nDest (0) { }
bool isSource(Node* n) {
return n==nSource;
¥
void setSource(Node* n) {
nSource = n;
}
void setDest(Node* n) {
nDest = n;
¥
void print () {
printf ("egde");
}
};

// Extensions needed for feature Color
refines class Edge {

int color;
public:

Edge () : super (), color(0o) { }

void setColor(int c¢) { color = c; }

void print () {
printf("colored,");
super ::print ();
}
}s;

// Extensions needed for feature Weighted
refines class Edge {
int weightSource, weightDest;
public:
Edge () : super (), weightSource(0), weightDest (0) { }
void setSourceWeight (int w) {
weightSource = w;
}
void setDestWeight (int w) {
weightDest = w;
}

};

Figure 3. FeatureC++ source code of class Edge of a Graph prod-
uct line.

of edges and weights for nodes of a graph. As known from OOP,
classes can have members (class Edge has members of class Node)
and can inherit from other classes (class UEdge inherits from class
Edge). Classes Edge and Node are refined to implement function-
ality needed for features COLOR and WEIGHTED (depicted with
filled arrows). Based on this design, different graph data structures
can be generated by composing feature modules. For example, we
can derive a simple graph that contains only the basic implemen-
tation or a colored graph that additionally contains extensions for
feature COLOR by simply combining the according modules.

The approach that we present in this paper is implemented with
FeatureC++, an extension of the C++ programming language that
supports FOP. In Figure 3, we depict the FeatureC++ source code
for class Edge. The basic implementation (Lines 1-15) provides
functionality needed for every graph. It is refined to implement
features COLOR and WEIGHTED (Lines 16-38), which is indicated
by the keyword refines. Refinements can introduce new members
(Line 18 and 29) and extend existing methods (Line 22). In method
extensions, the refined method can be invoked using the keyword
super (Line 24). In FeatureC++, refinements of a class are located
in different files and are grouped with classes and refinements of
the same feature.

2.2 Binding in OOP

In object-oriented languages, objects interact via messages. In com-
piled object-oriented languages the actual type of a message re-
ceiver can be determined statically (early binding) or dynamically
(late binding). These different binding types are important for SPL
development and have benefits and drawbacks [1].

Early Binding. In OOP, early binding is used if the type of an
object that receives a message is already known before execution
(e.g., at link time). In compiled programming languages like C++
it provides possibilities to optimize a program. For example, it
avoids indirections for method invocations by including addresses
of methods directly in the program code and allows the compiler
to inline methods. Early binding, however, also means that code of
methods that are never used may be contained in a program and
thus increase the binary size.

Late Binding. Late binding is used in OOP if the actual type
of a message receiver is not known statically and is determined
dynamically. This is usually done at object creation time or at
method invocation time. Programming languages, like C++, that
support receiver identification at object creation time store the
result until method invocation. In C++, this is done by storing a
pointer to a virtual function table, created by the compiler based
on the virtual methods of a class, within the created object [30].
This results in additional memory that is needed to store the type
of the object implicitly as pointer to the virtual function table.
Nevertheless, it increases flexibility by resolving the method that
is called depending on the dynamic type of a message receiver.

2.3 Feature Binding in SPLs

Early and late binding are also important when composing fea-
tures. Dynamic composition of features requires late binding be-
cause the type of an object changes depending on the configuration
of an SPL, i.e., depending on the selected features. In contrast, early
binding should be preferred in case of static composition to make
use of performance optimizations. There are different possible cat-
egorizations to describe the time of feature binding in SPLs. Kang
et al. distinguish between product build time and product delivery
time [23] and Lee et al. between static and dynamic feature bind-
ing [28]. For this paper a distinction between static and dynamic
binding is sufficient:

Static Binding: Static binding means that features are bound when
building the binary of a software product. This includes source
code transformations or other preprocessing steps as well as
compilation and linking of an SPL.

Dynamic Binding: Dynamic binding means binding in a starting
or running program and can depend on the dynamic context of
that program.

3. Supporting Different Binding Times

There are a number of approaches to implement SPLs that support
static binding, dynamic binding, or a combination of both (for de-
tails see the related work in Section 5). In contrast to most of these
approaches the goal of our work is to provide means for develop-
ing SPLs whose features can be composed statically or dynamically
from a single code base. That is, a programmer implements features
without binding time in mind. At deployment time the programmer
decides how features are bound. Boilerplate code for supporting
different kinds of bindings is generated automatically.

In prior approaches, an SPL developer had to chose the binding
time before implementation and implements the source code ac-
cording to this decision, e.g., using design patterns, etc. [12]. Our
approach implies that all features of an SPL can be bound statically

l Edge l UEdge |
| | | |
BASEGRAPH | K— |
! = | I Edge q—‘ UEdge
l T I l l Composition
| | | |
} A Il + .
N |
| | | |
| [|
1 | | 1

‘ WEIGHTED

Figure 4. Static composition of classes Edge and UEdge for a
colored graph.

or dynamically. We implemented it as an extension of FeatureC++
and apply code transformation to ordinary C++ code. To support
different binding times we use different backends to generate code
according to the chosen binding time. The resulting code is com-
piled to create a statically composed SPL instance or a dynamically
composable SPL. Since dynamic composition of features can be-
come a complex task for an application developer we furthermore
provide assistance for dynamic SPL instantiation and validation.

3.1 Static Composition

Using FOP as an extension of OOP, composition of features can be
reduced to composition of classes and class refinements. There are
different possibilities to implement static composition of classes
that are decomposed in feature-oriented approaches, using code
generation [8, 26]. FeatureC++ generates for each class with all
of its refinements a compound class that consists of:

e the union of all member variables,

e one method for each method refinement,

e one constructor and destructor for each different constructor /

destructor definition, and
e one method for each constructor / destructor refinement.

An illustration of the code transformation for class Edge (cf.
Figure 2) using implementations of modules BASE and COLOR
is shown in Figure 4. Using this kind of transformation, the C++
compiler can easily inline method refinements since they are early
bound and composed into the same file. Based on such optimiza-
tions we could show that FeatureC++ provides the same perfor-
mance as C++ code that does not support customization [38].

3.2 Dynamic Composition

To support dynamic composition of classes we extended the Fea-
tureC++ code generation process. It transforms the refinement
chain of a class into a delegation hierarchy using the decorator
pattern [17]. This is quite similar to the Delegation Layers ap-
proach where each layer represents a feature and multiple layers
can be combined dynamically [35]. Thus, a class consists of a
number of class fragments (refinements). Each fragment belongs to
a feature and fragments are composed using the decorator pattern.
A program is created by composing class fragments of all classes
according to the selected features.

In Figure 5 we show the UML representation of code generated
for class Edge for a colored weighted graph. Each refinement is
implemented by a class which is decorated by a class common to
all refinements of the target class. For example, class Edge_Color
represents the refinement of class Edge in feature COLOR. The dec-
orator class (Edge_Decorator) inherits from an interface Edge
representing the composed class which can be used in client ap-
plications.’

2 C++ does not support interfaces and classes are used instead.

Edge

+operator new()
+operator delete()

T

Edge_Decorator super
Edge_Base Edge_Color | |Edge_Weight

Figure 5. UML diagram of generated code of class Edge of a
colored weighted graph.

GraphFeature super Edge_Weight
+newNode()
4 instantiate
BaseGraph ColorGraph WeightGraph
+newNode() +newNode() +newNode()

Figure 6. UML diagram of generated code for features of a
weighted colored graph.

Feature Classes. When dynamically creating an SPL instance,
we have to compose the selected features. We support this feature
instantiation by using classes to represent features. These feature
classes are generated in the code transformation process. Much
like ordinary classes and refinements, the feature classes are also
combined using the decorator pattern. The UML representation of
the generated code for a part of the graph product line is shown in
Figure 6: the classes BaseGraph, ColorGraph, and WeightGraph
represent features. They inherit from a generated decorator specific
to the SPL (class GraphFeature). Each instance of a feature dec-
orator maintains a super pointer to the predecessor feature in a
composed program.

Class Instantiation. The feature decorators provide factory meth-
ods to create instances of ordinary SPL classes (method newNode
in Fig. 6). Class instances are composed from a number of refine-
ments which means creating an instance for each refinement. Re-
finement instances are combined by setting up a pointer to the next
refinement in the decorator (super in Fig. 5). This also enables
modifications of the delegation hierarchy at runtime by readjust-
ing the super-pointers. The refinement chain thus corresponds to a
linked list of class fragments. Changing the configuration of a class
corresponds to insertion, exchange, and deletion of elements of this
refinement list. In each refinement, all calls to super are delegated
to the next object in the refinement chain.

When a class is instantiated in an SPL (e.g., by calling the
new operator) the new object has to correspond to the context of
creation, i.e., to the SPL instance it is created from. An example
for a colored graph and the source code before transformation is
shown in Figure 7. An instance of class Edge is a composition
of base code (Lines 1-7) and its refinement for feature COLOR

O 01NN AW -

1 | class Edge {
riN:)dieii‘ riEidaeii‘ 2 Noclle *nSource, *nDest;
i t i 3 void CreateNodes () {
BASE }|:|‘,—<>}|:|} 4 nSource = new Node ();
I | I s nDest = new Node();
LT LT e }
LI
COLOR | .] ;
1 ! 1 1 8 | //feature Color
************ 9 | refines class Edge {...};

Figure 7. Class Edge that creates new instances of classes Node of
a colored graph.

class Edge_Base public Edge_Decorator {
Node *nSource, *nDest;
void CreateNodes () {
nSource = GetSPLInstance ().newNode ();
nDest = GetSPLInstance ().newNode ();
}
}s
// feature Color

class Edge_Color public Edge_Decorator {...}

Figure 8. Class instantiation: code generated for class Edge.

(Line 9). In Lines 4 and 5 new nodes are created. Because class
Edge is part of a colored graph the created nodes also have to be
colored. To solve this problem all classes are created by factory
methods of the corresponding SPL instance (method newNode in
Fig. 6). The generated code for class Edge is shown in Figure 8.
In Lines 4 and 5 instances of class node are created by calling
the factory method of the SPL instance. Each implementation of
this factory method creates the corresponding refinement instance
of class Node and appends it to the refinement list. For example,
method newNode in feature class WeightGraph creates an instance
of Edge_Weight and appends it to the refinement instances created
by its super classes BaseGraph and ColorGraph.

Using dynamic composition means that all classes are virtual
classes [32] of enclosing objects, i.e., the instances of feature
classes. In FeatureC++ there is no special representation for vir-
tual classes on the source code level (e.g., using nested classes as
in other collaboration approaches) and the SPL developer does not
have to care about this fact.

Inheritance. 'When using the decorator pattern for dynamic com-
position of classes, we also have to support inheritance in an appro-
priate way. The needed solution also has to provide polymorphism
of classes. In FeatureC++, we combine the generated decorators
with inheritance of their interfaces to support polymorphic use of
classes. The UML representation of the code generated for classes
Edge and UEdge (cf. Section 2.1) is shown in Figure 9. Every class
is represented by an interface with the same name (Edge, UEdge).
Inheritance of classes (class UEdge inherits from class Edge) is rep-
resented by inheritance of the corresponding interfaces which sup-
ports polymorphic use of that interfaces. In Figure 9, the classes
inherit from their interfaces Edge and UEdge. For a developer of
a client application only the interfaces are visible and the concrete
implementation is hidden. In client code, classes can be instantiated
by using the new operators of the interfaces (Figure 9), as we will
see below.

To delegate operations of a derived class to its super class the
super pointer of the first fragment of a derived class refers to the
last fragment of the super class. For example, the super pointer in
UEdge_Base in Figure 9 refers to an instance of Edge_Color. The
corresponding object diagram for an instance of class UEdge using

Base Color

| e S I Il
| super |
| = |
| 9e Edge_Decorator |
| <| 1 |
| +operator new() ™ : : |
: +operator delete() Edge_Base Edge_Color :
| |
| Edge [
_—— e e e e e — — — — =])
r—-———|—"—(="~~~ === ———{ - ———— M
| -super |
|

|
: UEdge UEdge_Decorator |

|
i = H— |
| [toperator new() UEdge Base |
| [toperator delete() 9e_ |
|

|
: UEdge |
_________________________________)

Figure 9. UML diagram of code generated for classes Edge and
UEdge of a colored graph.

Edge_Base_|Inst| Edge_Color_lInst UEdge_Base_Inst
< super < super

Figure 10. Object diagram of an instance of class UEdge of a
colored graph.

feature COLOR is shown in Figure 10. To allow calls to methods
implemented in other refinements all references to the this pointer
in the composed object refer to the actual instance, i.e., the last
refinement of a class.

A Two-step Configuration Process. Overfeaturing is known
from frameworks and means that libraries often contain features
that are not needed for a particular client application [13]. That
combined with the complex documentation of these frameworks
makes the development of client applications highly complicated.
In our approach this problem is reduced by selecting only a subset
of available features in a first static configuration step. Using Fea-
tureC++, the developer of a client application selects all features
intended for dynamic composition as a part of the code generation
process before SPL compilation. If it is not known which parts of
the SPL are to be used for dynamic composition, all features may
be selected. Selecting only a subset of all features decreases the
binary size of the resulting application, reduces the interface of the
SPL, and thus eases the development of client applications. Further-
more, the FeatureC++ precompiler can generate the documentation
of that minimized interface to remove unneeded information.

3.3 Support for C++

We have seen how dynamic and static composition can be sup-
ported using different code transformations. Since we use Fea-
tureC++ we can use the transformed C++ code also in client ap-
plications written in plain C++.

Static Instances. SPLs may be used as stand-alone applications
or as libraries accessed from a client application. Static composi-
tion of a FeatureC++ SPL instance results in C++ source code that
can be used like traditional object-oriented code. Thus, a client ap-
plication can create class instances without explicitly creating an
SPL instance.

When an SPL itself is used as a stand-alone application the
code of a statically created SPL instance has to be executed after
application startup. When using C++, a global main function is

(oS SRR SR

Edge* connect (GraphSPL& graph, Node* n2) {
Edge* e = mew(graph) Edge();

e->setSource(nl);

e->setDest (n2);

return e;

}

Node* nl,

int main() {
GraphSPL g =
GraphSPL gc =

BaseGraph () ;
Color (BaseGraph());

// create and connect nodes of simple graph g
Node* nA = new(g) Node();

Node*x nB = new(g) Node();

Edge*x e = connect(g, nA, nB);

// create and connect nodes of
Node* nColA = new(gc) Node();
Node* nColB = new(gc) Node();
Edge* eCol = connect(gc, nColA, nColB);

colored graph g

Figure 11. C++ source code of a client application using dynamic
composition of different graph product lines and emulation of vir-
tual classes.

invoked at application startup. In FeatureC++, this main function
can be defined in any feature outside of a class. It is used by the
programmer to create instances of SPL classes and to start the SPL
specific execution.

Dynamic Instances. Using dynamic composition, an SPL in-
stance is composed from code defined outside the dynamically
composable SPL. This also applies to the case where the SPL is
used as a stand-alone application because a static entry point for
the application is needed. This is done in the same way as described
for static composition using a definition of a global main method.

If the SPL is used as a library, SPL instances can be created
from an independently developed client application. In Figure 11,
we show an example for dynamic composition of the graph SPL.
A simple graph is created by instantiating the corresponding class
BaseGraph of the SPL (Line 8) and a colored graph is instantiated
by combining a BaseGraph with feature Color (Line 9). Since
the type of a class depends on an SPL instance we mimic virtual
classes with C++ by overloading the new operator which receives
an instance of the SPL that is to be used. In our example, the type
of a node depends on the type of an instance of the graph SPL
(Lines 12, 13). Nodes can only be instantiated by providing an SPL
instance and cause a compile time error otherwise.

The feature classes can be used polymorphically as shown for
argument graph in method connect (Figure 11, Line 1). SPL
classes can also be instantiated by providing this abstract type in-
stead of a concrete feature class. The correct SPL class instance is
created accordingly as shown for class Edge in method connect
(Line 2) where the new instance of Edge corresponds to the dy-
namic type of graph. Thus, connecting nodes in Lines 14 and 19
results in different edges for a non-colored and a colored graph.

3.4 An Infrastructure for Dynamic Composition

Static composition of SPLs is often provided by tools that allow
programmers to select features and validate a feature selection
based on the description of an SPL [6, 37, 9]. This is mostly not
the case if dynamic composition is used, even if a feature model
is available. Hence, the developer of a client application is respon-
sible for validating the consistency of an SPL instance, which is
tedious and error-prone. To ease SPL instantiation and validation
of instances we have developed an infrastructure that assists a pro-

int main(int argc,
//load PLM
PLM plm;
if (!plm.Open(argv[1]))
return -1;

char*x argv) {

//create instance
GraphSPL* graph = plm.Createlnstance (argv[2]);
if (!graph)

return -1;

//create nodes of the graph PL
Node* n = new (*xgraph) Node();
n->print ();

return 0;

}

$ graph myGraph.xml Base,Weight,bColor

Figure 12. C++ source code using a graph product line and auto-
matic instantiation.

grammer with dynamic feature composition. The infrastructure is
based on an extensible API.

The SPL-API. The SPL-API is a light-weight programming in-
terface that allows a programmer to dynamically create SPL in-
stances and validate configurations before instantiation. Further-
more, it gives client applications access to a product line model
(PLM) stored in an XML file [39]. The PLM basically consists of
a feature model describing the features of the SPL (cf. Figure 1),
domain constraints between features (e.g., mutual exclusion or in-
clusion of features), and implementation constraints including de-
scriptions of feature interactions and a feature composition order.

Access to the model is provided by the class PLM with its main
methods PLM: : Open and PLM: :CreateInstance. Open is used
to open a PLM from an XML file and CreateInstance to create
an SPL instance according to a configuration provided as a list of
features. It implicitly validates a given configuration, applies code
for feature interactions (as we will describe below), and instantiates
the corresponding SPL. The validation process checks a given
configuration against constraints of the feature model. These are
(1) features not found in the model, (2) missing mandatory features,
and (3) invalid feature combinations with respect to feature model
constraints. A configuration is invalid if one of the conditions above
is not fulfilled. In this case, the instantiation process does not return
a new SPL instance but an error. The SPL-API is implemented
as a library that is automatically bound to an application via SPL
specific code generated in the transformation process. The library
is also used to check the validity of an SPL instance in case of static
composition.

An example for an instantiation of an SPL is displayed in Fig-
ure 12. The application can be started as shown in Line 18 pro-
viding the file describing the feature model (myGraph.xml) and
the features to use (Base,Weight,Color). The PLM is opened in
Line 4 and an instance is created and validated in Line 8. The re-
sulting instance can be used to create SPL class instances (Line 13).
Since the configuration is given in textual form (a list of features),
it can be provided at runtime without knowing the needed features
of an SPL at client development time.

An Extensible Solution for Dynamic Composition. Manual in-
stantiation of SPLs as shown in Figure 12 can be avoided if the
SPL is used as a stand-alone application. We support instantiation
of such SPLs by a code generation process at SPL build-time. The
generated code is similar to the code presented in Figure 12. It val-
idates a configuration, instantiates an SPL, and executes the main
processing method of that SPL. To support arbitrary instantiation

Meta Product Line

OR

alternative

optional

mandatory

Figure 13. Meta product line to support automatic dynamic prod-
uct instantiation.

scenarios, we have developed the instantiation and validation func-
tionality as a product line itself. This meta product line is developed
independently of the domain SPL® and allows us to generate the ap-
propriate instantiation and validation code tailored to the needs of
the application domain.

The feature diagram of the meta product line is presented in Fig-
ure 13. Feature AUTOINST encapsulates the functionality needed
for automatic SPL instantiation. Currently we support command
line arguments (feature COMMANDLINE) or a configuration file
(feature CONFIGFILE) to provide an SPL configuration. Validation
of SPL configurations is implemented by feature PLM. To auto-
matically instantiate products of a particular domain SPL, the meta
product line is extended in the code generation process with code
specific to the domain SPL. To support arbitrary scenarios (e.g.,
loading a configuration from network), classes of the meta product
line can be extended manually. These extensions can be part of the
meta product line itself, the domain SPL (i.e., domain specific in-
stantiation code), or might be developed as an own product line to
support reuse in other SPLs.

Handling Feature Interactions. Crosscutting concerns can be
modularized using languages like FeatureC++; however, interac-
tions between crosscutting features also have to be handled. These
feature interactions often enforce a particular composition order of
features and can result in special interaction code. This is also the
case for dynamic composition and leads to a complicated SPL in-
stantiation process.

A correct ordering of features is needed to create a semantically
correct instance of an SPL. For example, when developing a feature
SYNCHRONIZE for the graph product line it has to be ensured that
synchronization occurs before accessing members of SPL classes
(e.g., accessing weights of nodes). As a result the synchronization
feature has to be applied after other features (e.g., feature WEIGHT)
to ensure correct synchronization. This ordering of features has to
be provided by the SPL developer and is stored as a relative order
in our PLM. Using the composition capabilities of the SPL-API the
correct ordering of features of a concrete SPL instance is created
according to the relative ordering of features at runtime.

If special code is needed to implement the interaction of two or
more features this interaction code (a.k.a. derivatives) can be mod-
ularized and separated from the interacting features [31]. From a
technical point of view, a derivative is not different from other fea-
tures but is only needed if the interacting features are present in an
SPL instance. As an example, consider our graph product line using
features WEIGHT and SYNCHRONIZE. To avoid concurrent setting
of weights we also need to synchronize the access to the weight
members stored in edges. Since arbitrary graphs without weights
and also without synchronization are allowed we have to modu-

3 We refer to the developed SPL as domain SPL to distinguish it from the
meta product line.

larize the interaction between features WEIGHT and SYNCHRO-
NIZE, i.e., the code that synchronizes access to weights. Our PLM
includes derivatives as model elements that are related to the in-
teracting features. At SPL build-time, the FeatureC++ precompiler
generates binary code for derivatives and the SPL-API applies a
derivative in the dynamic composition process if all features that
the derivative belongs to are present in an SPL configuration. For
example, if we instantiate a synchronized weighted graph we also
apply the derivative WEIGHT/S YNCHRONIZE.*

4. Discussion and Evaluation

In the following, we will discuss limitations of the presented ap-
proach and compare static with dynamic composition with respect
to performance and memory consumption.

4.1 Limitations

Our goal is to support static and dynamic composition of SPLs
based on a single code base. Supporting C++ as a client language,
however, introduces specific problems. Furthermore, semantic dif-
ferences between statically and dynamically composed code par-
tially limits our approach.

Static Fields and Methods. Static constructs cause problems
when using dynamic composition. While it is possible to refine
static methods when using static composition this is problematic
in case of dynamic composition since the type of the class is dy-
namic. This raises the question whether a static method or field
should actually be the same for all SPL instances (globally static)
or only static with respect to one SPL instance. To support the latter
option a transformation of static members into members of the SPL
feature classes is needed. Unfortunately, it is not possible to access
such methods or fields from C++ code by using an SPL instance
and the name of the class (e.g., <spl>.<class>::<method>())
as known from virtual classes in other programming languages. We
currently support static fields and methods only in base modules but
think that the correct transformation should use SPL instances as
containers for static fields or methods to allow different variants
of static methods for different SPL instances. A modification of
the FeatureC++ language might be needed to support appropriate
access to such methods. To also support globally static code, func-
tions and values defined outside classes might be used but further
analysis has to follow to find the most appropriate solution.

Virtual Classes. The emulation of virtual classes for C++ has
some deficiencies compared to virtual classes supported directly
by the programming language. For example, the interfaces of our
virtual classes include all methods required for any dynamically
composable feature. This is inherent to the static representation of
a dynamically defined class in source code and can be handled by
dynamic type checking. In our current implementation an exception
is thrown if methods are invoked that are not implemented by the
receiver object, i.e., a runtime type error is generated. However, we
have not implemented a complete runtime type check. Using plain
C++ for compilation of client code does not allow us to statically
type check client code which is in general possible [16]. To fully
support virtual classes in client code this has to be supported on the
language level, e.g., as a future extension of FeatureC++.

C++ Compile Time Constructs. C++ provides constructs that are
evaluated at compile time or are part of the static type system and
are not available at runtime. Examples are typedefs or enumera-
tions. Such constructs can be used in statically composed SPLs
without limitation. When using dynamic composition, however,

4We use a listing of all accompanying features to refer to the actual deriva-
tive unambiguously. The order of features does not matter.

these constructs cannot be changed or introduced depending on a
dynamic configuration since they do not have a representation at
runtime. For example, it is not possible to extend an enumeration
at runtime which is only checked at compile time and corresponds
to an integer value at runtime. For that reason, these constructs can
be used with dynamic composition but are available independent of
the dynamically selected functionality.

A different problem involves the construct sizeof which eval-
uates the size of an object at compile time. In case of dynamic
composition it is not clear how the correct transformation to C++
should look like. There are two possible solutions: the evaluation is
still done statically and results in the size of the referenced object
in memory, i.e., the size of the interface which is used in the trans-
formed code. The second solution uses a dynamic evaluation and
returns the complete size of an object which is composed from sev-
eral subobjects (the instances of refinements). This dynamic eval-
uation results in the actual size of memory an object occupies and
is what a programmer would expect to be returned. However, this
object is not stored in sequence in one memory block but as a list of
subobjects. Furthermore, when using sizeof to calculate the size
of an object to allocate memory for a number of objects of that type
the statically evaluated size of the object (i.e., the size of an instance
of the interface class) has to be used. Hence, both solutions cause
semantic differences between static and dynamic composition.

Further Semantic Issues. There are more semantic differences
when comparing static and dynamic composition. One reason are
the differing implementations of a class in a statically composed
SPL instance and a dynamically composed one. Hence, an SPL
developer cannot make any assumptions on the memory layout of
objects to avoid semantic errors caused by this difference. This, for
example, has to be assured in operations where objects are copied
or stored by directly accessing the memory (e.g., when serializing).
Another difference caused by the memory layout is the usage of
stack and heap memory. When storing an object on the stack it is
completely stored on the stack in case of static composition. Using
dynamic composition, however, only a small part of the object is
stored on the stack and remaining subobjects on the heap which
results in differences in memory consumption. Such differences
impose restrictions on the source code and require for source code
that is written having both approaches in mind. For most scenarios
these limitations might be small, but this has to be further analyzed.

Most of the semantic issues presented above are caused by
the mixture of high-level and low-level programming constructs
that are supported by the C++ language, e.g., that allow direct
access to the memory that an object utilizes. Low-level features
of the C++ language are useful to support a programming style
used to optimize performance or memory consumption, but are
inappropriate to abstract from binding time. In future versions of
FeatureC++, a new language design has to be applied that removes
low-level constructs and abstracts from different binding times.

4.2 Performance and Memory Consumption

For a comparison of static and dynamic composition we will ana-
lyze binary size (footprint), consumption of working memory, and
performance. In our current implementation, dynamic composition
increases the size of an object to store pointers to the predecessor
refinement of the refinement chain and a pointer to the last refine-
ment which results in 8 bytes additional memory for each refine-
ment or base class. Furthermore, the object size increases by an-
other 4 bytes to store a pointer to the virtual function table in each
refinement. The footprint of dynamically composed SPLs depends
on the static pre-selection of features and includes all code that is
needed for dynamically composed features. As a result, the loaded
binary of a dynamically composable SPL is larger than a statically

of modules app. footprint [byte] object size [byte]

static dynamic static dynamic
1 (BASE) 2.568 7.600 (6.628) 8 20
2 (+ COLOR) 3.400 9.136(8.944) 12 36
3 (+ WEIGHT) 3.448 9.984 (9.856) 20 56
4 (+ NAME) 3.648 10.696 (10.696) 24 72

Table 1. Comparison of application footprint and size of instances
of class Edge for static and dynamic composition. Values in brack-
ets are binary sizes of a statically pre-configured version with dy-
namic composition.

composed instance as long as dynamic loading of features is not
used (e.g., loading features from a dynamic link library).

In Table 1, we show the comparison of the footprint of an ap-
plication using different variants of the graph SPL and the size of
objects for different variants of class Edge for static and dynamic
composition.’ The observed binary size of a statically composed
application is smaller for all variants compared to dynamic compo-
sition. Differences in the footprint of dynamically composed vari-
ants are caused by the compiler which can remove unused code that
is not referenced by the client application (e.g., the client applica-
tion does not use method SetColor of class Edge if the feature is
not available). In statically pre-configured dynamic variants, the bi-
nary size is further decreased (shown in brackets) but it still results
in a larger footprint due to the overhead for dynamic composition.

The size of instances of class Edge increases by 12 bytes per re-
finement in case of dynamic composition. As a result, dynamically
composed instances of class Edge are in general larger than their
statically composed counterparts. However, if the actually needed
features are not known at compile time, all features have to be in-
cluded when using static composition. This would result in a con-
stant object size for static composition of 24 bytes (last variant in
Figure 1) and a variable object size of 20-72 bytes for dynamic
composition. Hence, edges of a minimal dynamically composed
simple graph (only using module BASE) are 17 % smaller than the
edges of a statically composed graph which is important in case of
a high number of edges. The differences in object size highly de-
pend on the actual size of the refinements. It results in quite worse
memory consumption for our example in case of dynamic compo-
sition since we used a very small class. This effect decreases with
an increasing object size. When considering large refinements and
statically not known features, dynamic composition can achieve
much better memory consumption than static composition and vice
versa. This emphasizes the scenario dependent differences in mem-
ory consumption for static and dynamic composition.

Comparing performance, static composition usually does the
better job since additional configuration code and indirections for
dynamic composition are not executed. This includes an indirec-
tion for each refinement if calling a method. Furthermore, stati-
cally composed method refinements are inlined by the compiler
which results in binary code equal to code that does not support
customization. However, dynamic composition can also do better
than static composition if the needed configuration is not known
at SPL build-time and thus the execution of unneeded code can be
avoided. For example, setting colors and weights in edges of our
graph degrades performance if these are actually not used. Also in
case of dynamic composition performance optimizations are possi-
ble and have to be further analyzed.

In summary, the more we know about the needed functionality
the better we can optimize an SPL instance, i.e., remove unneeded

5 The introduced feature NAME stores a name for each Edge.

functionality and choose the correct binding type. Both, memory
consumption and performance, thus depend on the application sce-
nario and have to be evaluated in detailed case studies. Neverthe-
less, it is obvious that a combination of static and dynamic compo-
sition on a feature basis bears the potential for optimal performance
and memory consumption for different application scenarios.

4.3 Composition Scenarios and Applicability

Dynamic composition has some drawbacks regarding the develop-
ment effort for client applications when the developer has to han-
dle different SPL instances and has to care about virtual classes and
their use. This also has to be considered when deciding which com-
position technique should be used. However, virtual classes can be
hidden from the application developer in some scenarios:

1. Static composition: When using static composition the appli-
cation developer does not have to care about SPL instances or
virtual classes at all.

2. Dynamic composition of a single SPL instance: When only
one dynamically composed SPL instance is needed, the appli-
cation developer does not have to handle multiple instances and
SPL instantiation can be automated and hidden from the devel-
oper. An example is a stand-alone application that only depends
on configuration data.

3. Dynamic composition of multiple SPL instances: If multiple
different SPL instances are used the client developer is forced
to handle all instances and virtual classes.

Our approach simplifies client development for the first two
scenarios. In scenario (2) virtual classes can be avoided, if the
client is developed as an SPL. Using FeatureC++, this is possible by
creating a client SPL and combining both SPLs at build-time which
results in one binary. In this case, the client can access classes of
the SPL as if these were classes of the client even though they are
dynamically configured.

We implemented the presented approach as an extension of
FeatureC++; however, it is a general solution and applicable to
other languages, e.g., the feature-oriented Java extension Jak.S Parts
of the implementation are based on C++ language features (e.g.,
overloading the C++ new operator), but these only effect the way
client applications have to be written and do not limit the general
approach. Nevertheless, we think that client applications should
be developed using a language that supports dynamic composition
and it became obvious to us that the support for an object-oriented
language like C++ can only be a solution to achieve compatibility.

5. Related Work

There are a number of languages and tools that support static as
well as dynamic composition. Some of them employ different tech-
niques or paradigms to achieve this. For example, CaesarJ [4] sup-
ports static composition based on collaborations and dynamic de-
ployment of aspects. Lee et al. propose to decide before develop-
ment which features to implement in one component and to com-
pose the resulting components at runtime [27]. In contrast to these
approaches, our goal is to decide which composition technique is
used not before deployment to enable reuse of source code also
with different composition techniques. Chakravarthy et al. provide
with Edicts a solution that supports different binding times using
different design patterns [12]. The solution, however, is not based
on code generation but on manual development of the pattern code.

Other approaches support static as well as dynamic composition
based on the same implementation. AspectC++ supports weaving

6 http://www.cs.utexas.edu/"schwartz/

at runtime and at compile time using the same aspects [18]. Aspect]
supports weaving advice at compile-time, after compile-time (pos?-
compile weaving), and at load-time (when the according class files
are loaded into memory) [5]. PROSE [34] and Steamloom [10] fur-
thermore support weaving at runtime and may be combined with
Aspect]’s static weaving. These AOP approaches can be used to
support multiple class extensions at the same time like in collabo-
ration based approaches and FOP. However, there is no direct sup-
port for feature composition according to a feature model to support
composition validation or avoid invalid instantiation. It is also not
possible to easily instantiate SPLs from client code by combining a
base product line with class extensions (e.g., defined in an aspect).
This has to be done manually by providing aspects to the runtime
or load-time weaver which is possible via command-line arguments
or configuration files.

Object Teams [19] use dynamic composition of teams which
represent features. Composition is possible by using statically in-
stantiated activation teams which in turn activate other teams [20].
Dynamic composition in Object Teams also considers constraints
in the feature model at composition time to avoid invalid SPL in-
stances. Furthermore, it provides an advanced solution for runtime
modifications by activating and deactivating teams at runtime. This
would also be possible using our approach but is part of further
work. Object Teams do not consider interactions between features
that result in source code which has to be modularized (i.e., deriva-
tives) to support composition of programs that contain arbitrary
combinations also of interacting features. This might be possible
by implementing a derivative as a team which is applied at product
instantiation time. Another difference between Object Teams and
FeatureC++ is the correspondence of implemented features to the
feature model: while in FeatureC++ a mapping of features to all
software artifacts (including implemented roles) defined in fold-
ers is used, in Object Teams features are mapped to teams and the
source code according to the feature model is generated. Since there
is no representation for features in FeatureC++ source code, there
are also no modifications of the source code needed if the feature
model changes. With Object Teams this results in a redefinition of
the mapping from features to roles and collaborations and regener-
ation of the source code.

Our approach focuses on combining static and dynamic com-
position. It is based on Delegation Layers [35] which supports dy-
namic composition of features but currently lacks an implementa-
tion. Other collaboration based approaches and layered designs like
Jak [7], Java Layers [11], Jiazzi [33], Mixin Layers [40], Aspectual
Feature Modules [3], Aspectual Collaborations [29], and Context-
oriented Programming [14] also support either static or dynamic
composition. In contrast to these approaches, our solution supports
both, static and dynamic composition, and assists the developer in
dynamically composing SPLs and validation of SPL configurations
according to a feature model.

Kegel et al. have shown how inheritance can be automatically
refactored into delegation [24]. They showed that both approaches
are quite similar and there is no major benefit when using one or
the other, but delegation sometimes fails to replace inheritance. We
have shown that delegation can replace linear refinement chains
which also can be implemented using inheritance as presented by
Batory et al. [7]. In our case, delegation does not result in problems
when using abstract classes since we do not replace inheritance
in general. Instantiation of incomplete class refinements including
abstract methods is possible because we generate methods that
forward method calls to the next refinement in the refinement chain.
If no refinement of a class implements the method an exception
is thrown if it is invoked. Currently we cannot statically check if
an abstract method is actually implemented by a concrete class
instance which could be part of a static type system for FeatureC++.

6. Conclusion and Further Work

Static as well as dynamic composition of SPLs is possible and
needed for different application scenarios. We presented an ap-
proach to support static and dynamic composition of features from
a single code base. This allows us to reuse source code also if the
type of composition changes. Furthermore, the decision if static
or dynamic composition should be used is postponed until deploy-
ment of an SPL. We have implemented the solution as an exten-
sion of FeatureC++ and support access to dynamically composable
SPLs from client code written in plain C++. When using static com-
position we provide a code transformation that enables compiler
optimizations to achieve high performance.

Another important goal that we wanted to achieve is to assist ap-
plication developers with composing SPLs dynamically by provid-
ing access to a model describing an SPL at a higher level (a product
line model). This allows an application developer to validate SPL
configurations before composition to avoid invalid programs. By
providing support to handle modularized feature interaction code
(also called derivatives) and hiding it from application developers
we can further decrease the complexity of SPL composition at run-
time. In the special case of SPLs used as stand-alone applications
we furthermore automate SPL instantiation with an extensible ap-
proach.

The presented solution is a step toward support for arbitrary
binding times on a feature basis, i.e., choosing the binding type
for each feature of an SPL separately. This will provide maximal
flexibility and opens further possibilities for optimizations tailored
to different application scenarios. As a further extension we want
to support runtime-adaptable SPLs by loading features after SPL
instantiation to further decrease the binary size of an application
and to adapt to changes not anticipated at development time.

Acknowledgments

We thank Sagar Sunkle for comments on earlier drafts of this pa-
per. Marko Rosenmiiller and Norbert Siegmund are funded by Ger-
man Research Foundation (DFG), project number SA 465/32-1.
Sven Apel’s work is funded partly by the German Research Foun-
dation (DFG), project number AP 206/2-1. The presented work is
part of the FAME-DBMS project, a cooperation of Universities of
Dortmund, Erlangen-Nuremberg, Magdeburg, and Passau funded
by DFG.’

References

[1] M. Anastasopoules and C. Gacek. Implementing Product Line
Variabilities. In Proceedings of the Symposium on Software
Reusability (SSR), pages 109-117. ACM Press, 2001.

[2] S. Apel, T. Leich, M. Rosenmiiller, and G. Saake. FeatureC++: On the
Symbiosis of Feature-Oriented and Aspect-Oriented Programming.
In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), volume 3676
of Lecture Notes in Computer Science, pages 125-140. Springer
Verlag, 2005.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. /IEEE
Transactions on Software Engineering (TSE), 34(2):162-180, 2008.

1. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An Overview of
Caesarl. In Transactions on Aspect-Oriented Software Development I,
volume 3880 of Lecture Notes in Computer Science, pages 135-173.
Springer Verlag, 2006.

[4

=

[5] Aspect] Team. The Aspect] Programming Guide. Version 1.5.4.,
Available from http://eclipse.org/aspectj, 2007.

[6] D. Batory. Feature Models, Grammars, and Propositional Formulas.
In Proceedings of the International Software Product Line Conference

7 http://fame-dbms.org/

(SPLC), volume 3714 of Lecture Notes in Computer Science, pages
7-20. Springer Verlag, 2005.

[7] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
Implementing Domain-Specific Languages. In Proceedings of the
International Conference on Software Reuse (ICSR), pages 143—153.
IEEE Computer Society Press, 1998.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. [EEE Transactions on Software Engineering (TSE),
30(6):355-371, 2004.

[9] Big Lever. Gears. http://www.biglever.com.

[10] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual
Machine Support for Dynamic Join Points. In Proceedings of the
International Conference on Aspect-Oriented Software Development
(AOSD), pages 83-92. ACM, 2004.

[11] R. Cardone and C. Lin. Comparing Frameworks and Layered
Refinement. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 285-294. IEEE Computer
Society, 2001.

[12] V. Chakravarthy, J. Regehr, and E. Eide. Edicts: Implementing
Features with Flexible Binding Times. In Proceedings of the
International Conference on Aspect-Oriented Software Development
(AOSD), pages 108-119. ACM, 2008.

[13] W. Codenie, K. D. Hondt, P. Steyaert, and A. Vercammen. From Cus-
tom Applications to Domain-specific Frameworks. Communications
of the ACM (CACM), 40(10):70-77, 1997.

[14] P. Costanza, R. Hirschfeld, and W. de Meuter. Efficient Layer Acti-
vation for Switching Context-Dependent Behavior. In Proceedings of
the Joint Modular Languages Conference (JMLC), volume 4228 of
Lecture Notes in Computer Science, pages 84—103. Springer Verlag,
2006.

[15] E. W. Dijkstra. On the Role of Scientific Thought. In Selected
Writings on Computing: A Personal Perspective, pages 60—66.
Springer Verlag, 1982.

[16] E. Ernst. Family Polymorphism. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), volume
2072 of Lecture Notes in Computer Science, pages 303-326. Springer
Verlag, 2001.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[18] W. Gilani and O. Spinczyk. Dynamic Aspect Weaver Family for
Family-based Adaptable Systems. In Proceedings of Net.ObjectDays,
pages 94-109. Gesellschaft fiir Informatik, 2005.

[19] S. Herrmann. Object Teams: Improving Modularity for Crosscutting
Collaborations. In Proceedings of the International Net.ObjectDays
Conference, volume 2591 of Lecture Notes in Computer Science,
pages 248-264. Springer Verlag, 2002.

[20] C. Hundt, K. Mehner, C. Pfeiffer, and D. Sokenou. Improving
Alignment of Crosscutting Features with Code in Product Line
Engineering. Journal of Object Technology (JOT) — Special Issue:
TOOLS EUROPE 2007, 6(9):417-436, 2007.

[21] F. Hunleth and R. Cytron. Footprint and Feature Management
Using Aspect-Oriented Programming Techniques. In Proceedings
of Joint Conference on Languages, Compilers, and Tools for
Embedded Systems & Software and Compilers for Embedded Systems
(LCTES/SCOPES), pages 38-45. ACM Press, 2002.

[22] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[23] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented Product Line
Engineering. IEEE Software, 19(4):58-65, 2002.

[24] H. Kegel and F. Steimann. Systematically Refactoring Inheritance to
Delegation in Java. In Proceedings of the International Conference

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

(35]

(36]

(37]

[38]

[39]

[40]

on Software Engineering (ICSE), pages 431-440. ACM, 2008.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming.

In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), volume 1241 of Lecture Notes in Computer
Science, pages 220-242. Springer Verlag, 1997.

M. Kuhlemann, S. Apel, and T. Leich. Streamlining Feature-Oriented
Designs. In Proceedings of ETAPS International Symposium on
Software Composition (SC), 2007.

J. Lee and K. C. Kang. A Feature-Oriented Approach to Developing
Dynamically Reconfigurable Products in Product Line Engineering.

In Proceedings of the International Software Product Line Conference
(SPLC), pages 131-140. IEEE Computer Society Press, 2006.

J. Lee and D. Muthig. Feature-oriented Variability Management in
Product Line Engineering. Communications of the ACM (CACM),
49(12):55-59, 2006.

K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual Collaborations
— Combining Modules and Aspects. The Computer Journal,
46(5):542-565, 2003.

S. B. Lippman. [Inside the C++ Object Model. Addison-Wesley,
1996.

J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring of
Legacy Applications. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 112—121. ACM Press, 2006.

O. L. Madsen and B. Moller-Pedersen. Virtual Classes: A Powerful
Mechanism in Object-Oriented Programming. In Proceedings of the
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 397-406. ACM
Press, 1989.

S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-Age
Components for Old-Fashioned Java. In Proceedings of the
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 211-222. ACM
Press, 2001.

A. Nicoara, G. Alonso, and T. Roscoe. Controlled, Systematic, and
Efficient Code Replacement for Running Java Programs. SIGOPS
Operating Systems Review, 42(4):233-246, 2008.

K. Ostermann. Dynamically Composable Collaborations with
Delegation Layers. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 2374 of Lecture
Notes in Computer Science, pages 89—110. Springer Verlag, 2002.

C. Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), volume 1241 of Lecture Notes in
Computer Science, pages 419—443. Springer Verlag, 1997.

pure-systems GmbH. Technical White Paper: Variant Management
with pure::variants, 2003—2004. http://www.pure-systems.com.

M. Rosenmiiller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel,
T. Leich, O. Spinczyk, and G. Saake. FAME-DBMS: Tailor-made
Data Management Solutions for Embedded Systems. In Workshop
on Software Engineering for Tailor-made Data Management (SET-
MDM), 2008.

N. Siegmund, M. Kuhlemann, M. Rosenmiiller, C. Kaestner, and
G. Saake. Integrated Product Line Model for Semi-Automated
Product Derivation Using Non-Functional Properties. In Workshop on
Variability Modelling of Software-intensive Systems (VaMoS), pages
25-31, 2008.

Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2):215-255, 2002.

