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Abstract
Feature-oriented programming (FOP) is a paradigm that incorpo-
rates programming language technology, program generation tech-
niques, and stepwise refinement. In their GPCE’07 paper, Thaker
et al. suggest the development of a type system for FOP to guaran-
tee safe feature composition, i.e, to guarantee the absence of type
errors during feature composition. We present such a type system
along with a calculus for a simple feature-oriented, Java-like lan-
guage, called Feature Featherweight Java (FFJ). Furthermore, we
explore four extensions of FFJ and how they affect type soundness.

Categories and Subject Descriptors: D.3.1 [Software]: Program-
ming Languages—Formal Definitions and Theory; D.3.3 [Soft-
ware]: Programming Languages—Language Constructs and Fea-
tures

General Terms: Design, Languages, Theory

Keywords: Feature-Oriented Programming, Safe Feature Compo-
sition, Stepwise Refinement, Featherweight Java, Type Systems

1. Introduction
Feature-oriented programming (FOP) aims at the modularization
of software systems in terms of features. A feature implements a
stakeholder’s requirement and is typically an increment in program
functionality [40, 10]. Different variants of a software system are
distinguished in terms of their individual features [26]. Contem-
porary feature-oriented programming languages and tools such as
AHEAD [10], FSTComposer [9], and FeatureC++ [7] provide a va-
riety of mechanisms that support the specification and composition
of features properly. A key idea is that a feature, when added to
a software system, introduces new structures, such as classes and
methods, and refines existing ones, such as extending methods.

Stepwise refinement is a related software development paradigm
that aligns well with FOP [45, 10]. In stepwise refinement, one
adds detail to a program incrementally using refinements in order
to satisfy a program specification. Refinements applied previously
cannot affect the refinements applied subsequently, which is called
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henceforth the principle of stepwise refinement. In terms of FOP,
the individual refinements implement features.

In prior work, features have been modeled as functions and fea-
ture composition as function composition [10, 31]. The function
model tames feature composition in that it prevents features from
affecting program structures that have been added by subsequent
development steps, i.e., by features applied subsequently. This re-
striction is supposed to satisfy the principle of stepwise refinement.
It decreases the potential interactions between different program
parts (i.e., features) and avoids inadvertent interactions between
present features and program elements that are being introduced
in subsequent development steps [31, 35, 4].

In their GPCE’07 paper, Thaker et al. raised the question of how
the correctness of feature-oriented programs can be checked [43].
The problem is that feature-oriented languages and tools involve
usually a code generation step during composition in that they
transform code into a lower-level representation. For example,
the AHEAD Tool Suite transforms feature-oriented Jak code into
object-oriented Java code by translating refinements of classes into
subclasses [10]. Other languages and tools work similarly [7, 5, 9].

A problem of these languages and tools is that errors can be
detected only at compilation time, not at composition time. While
the compiler may detect errors caused by improper feature com-
position, it cannot recognize the actual cause of their occurrence.
For example, a feature may refer to a class that is not present be-
cause the feature the class belongs to is not present in a program
variant, or a feature may affect a program element that is being
introduced in a subsequent development step, which violates the
principle of stepwise refinement. The problem is that information
about features and their composition is lost during translation to the
lower-level representation. Knowledge about features would help
to identify an improper feature composition and to create a precise
error message.

Consequently, Thaker et al. suggested the development of a type
system for feature-oriented languages and tools that can be used to
check for the above errors at composition time. We present such
a formal type system along with a soundness proof. To this end,
we develop a calculus for a simple feature-oriented language on
top of Featherweight Java (FJ) [23], called Feature Featherweight
Java (FFJ). The syntax and semantics of FFJ conform to common
feature-oriented languages. The type system not only incorporates
language constructs for feature composition, but also guarantees
that the principle of stepwise refinement is not violated.

FFJ is interesting insofar as it is concerned partly with the pro-
gramming language level (it provides language constructs for class,
method, and constructor refinement on top of FJ) and partly with
the composition engine at the meta-level (it relies on information
about features that is collected outside the program text during
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composition). Prior work on mixins, traits, and virtual classes did
not make this distinction, which is discussed in Section 5.

2. An Overview of FFJ
Before we go into detail, we give an informal overview of FFJ.
FFJ builds on FJ. FJ is a language that models a minimal subset of
Java. FJ provides basic constructs like classes, fields, methods, and
inheritance, but it does not support interfaces, exceptions, access
modifiers, overloading, etc., not even assignment. In fact, FJ repre-
sents a functional core of Java and, therefore, every FJ program is
also a regular Java program, but not vice versa.

FFJ extends FJ by new language constructs for feature compo-
sition and by corresponding evaluation and type rules. Although it
is an extension of FJ, FFJ’s key innovations can be used with other
languages, e.g., with C#.

As with other feature-oriented languages [10, 7, 9], the notion
of a feature does not appear in the language syntax. That is, the
programmer does not state explicitly in the program text that a class
or method belongs to a feature. Features are merely represented
by containment hierarchies that are directories which aggregate
the code artifacts belonging to a feature [10]. This is necessary
since a feature may contain, beside code, also further supporting
documents, e.g., documentation, test cases, or design documents.
By superimposing containment hierarchies, the code artifacts of
different features are merged [10, 9].

In FFJ, a programmer can add new classes to a program via the
introduction of a new feature, which is trivial since only a new class
file with a distinct name has to be supplied by the feature’s contain-
ment hierarchy. Furthermore, using a feature, one can extend an
existing class by a class refinement. A class refinement is declared
like a class but prefixed with the keyword refines. During com-
position, classes and refinements with the same name are merged,
i.e., their members are merged. Finally, a class refinement may re-
fine existing methods, which is similar to overriding a superclass’
method by a subclass’ method.

The distinction between code artifacts (classes and class refine-
ments) and features (containment hierarchies) requires a special
treatment in FFJ’s semantics and type system, which is different
from prior work (see Section 5). Consequently, we use in the type
system information about features that has been collected by the
composition engine and that does not appear in the program text.

We begin with a description of basic FFJ, a language that pro-
vides constructs for feature composition, and proceed with four ex-
tensions for stepwise refinement. The extensions are largely orthog-
onal and can be combined individually and in any order with basic
FFJ.

2.1 Basic FFJ
Figure 1 depicts a simple FFJ program that implements an expres-
sion evaluator,1 which is a solution to the infamous “expression
problem”.2 It consists of three features, whose implementations are
separated by horizontal lines. The feature Add is a basic feature
that supports only addition of simple expressions; it introduces two
classes Expr and Add (Lines 1–7). The feature Sub adds support
for subtraction by introducing a class Sub (Lines 8–11). The fea-
ture Eval adds to each class a method eval for expression evaluation
(Lines 12–23).

As usual in FOP, the actual composition specification is not part
of the program but expressed using a separate composition speci-

1 Although not part of FJ and FFJ, we use basic data types, constants, and
operators in our examples for sake of comprehensibility.
2 The expression problem was named by Phil Wadler in 1998 but has been
known for many years [41, 15]; see Torgerson [44] for a retrospective
overview.

1 class Expr extends Object { // Feature Add ...
2 Expr() { super(); }
3 };
4 class Add extends Expr {
5 Expr a; Expr b;
6 Add(Expr a, Expr b) { super(); this.a=a; this.b=b; }
7 }

8 class Sub extends Expr { // Feature Sub ...
9 Expr a; Expr b;

10 Sub(Expr a, Expr b) { super(); this.a=a; this.b=b; }
11 }

12 refines class Expr { // Feature Eval ...
13 refines Expr() { original(); }
14 int eval() { return 0; }
15 }
16 refines class Add {
17 refines Add(Expr a, Expr b) { original(a,b); }
18 refines int eval() { return this.a.eval()+this.b.eval(); }
19 }
20 refines class Sub {
21 refines Sub(Expr a, Expr b) { original(a,b); }
22 refines int eval() { return this.a.eval()−this.b.eval(); }
23 }

Figure 1. A solution to the “expression problem” in FFJ.

fication, called a feature expression [10, 8]. Knowledge about the
feature composition order is managed by the composition engine
and used for evaluation and typing.

The above example illustrates the main constructs of FFJ. Like
in FJ, an FFJ program consists of a set of classes that, in turn, con-
tain a single constructor each, as well as methods and fields. Unlike
in FJ, an FFJ program may contain class refinements each of which
refine an existing class, which we call henceforth the base class
of the refinement. A class refinement contains a constructor refine-
ment, a set of methods and fields that are added to the base class,
and a set of method refinements that refine the base class’ methods.
A base class, along with its refinements, has the semantics of a com-
pound class that contains all fields and methods of its constituents,
and constructor refinements extend the base class’ constructor and
method refinements replace base class’ methods. That is, class re-
finements add new and change or extend existing members. Note
that it is not possible to instantiate a base class in isolation, but only
together with all refinements applied subsequently.

A feature may contain several classes and class refinements, but
we impose some restrictions. First, for the sake of consistency, a
feature is not allowed to introduce a class that is already present
in a program it is composed with. Second, a feature is not allowed
two apply two refinements to the same class because, otherwise,
the order of applying class refinements would be arbitrary.

Like in FJ, each class must declare exactly one superclass,
which may be Object. In contrast, a class refinement does not
declare (additional) superclasses. Later on, we will extend FFJ such
that class refinements declare further superclasses. Again, with
‘base class’ we refer to the class that is refined by a class refinement
and with ‘superclass’ we refer to the class that is extended by a
subclass.

Typically, with a sequence of features, a programmer can apply
several refinements to a class, which is called a refinement chain. A
refinement that is applied immediately before another refinement
in the chain is called its predecessor. Conversely, a class refine-
ment that is applied immediately after another refinement is called
its successor. The order of refinements in a refinement chain is de-
termined by the selection of features and their composition order.
Figure 2 depicts the refinement and inheritance relationships of our
expression example.

Fields are unique within the scope of a class and its inheritance
hierarchy and refinement chain. That is, a refinement or subclass
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Figure 2. Relationships in the expression example.

is not allowed to add a field that is already defined. With methods
this is different. A property that FFJ has inherited from FJ is that
subclasses may override methods of superclasses. Similarly to FJ,
FFJ does not allow the programmer to use super inside a method
body, as is allowed in Java. That is, method overriding in FFJ means
essentially method replacement.

A method in FFJ (and FJ) is similar to a Java method except that
its body is an expression (prefixed with return) and not a sequence
of statements. This is due to the functional nature of FFJ (and FJ).
Furthermore, overloading of methods (methods with equal names
and different argument types) is not allowed in FFJ (and FJ).

Unlike classes, class refinements are not allowed to define meth-
ods that have been defined before in the refinement chain. That is,
class refinements cannot override methods. This is to avoid inad-
vertent replacement. But, instead, a class refinement may declare
a method refinement using the keyword refines. This enables the
type checker to recognize the difference between method refine-
ment and inadvertent overriding/replacement and, possibly, to warn
the programmer. Note that refinements may also refine methods
that have been introduced by any superclass of the base class or
by previous refinements of the refinement chain. The difference
between method refinement and method overriding becomes more
useful in an extension of basic FFJ that allows a method refinement
to reuse the body of a refined method (see Section 2.2).

As shown in Figure 2, refinement chains grow from left to right
and inheritance hierarchies from top to bottom. When looking up a
method body, FFJ traverses the combined inheritance and refine-
ment hierarchy of the object the method belongs to and selects
the right-most and bottom-most body of a method declaration or
method refinement that is compatible. That is, first, FFJ looks for a
method declaration or method refinement in the refinement chain of
the object’s class, starting with the last refinement back to the class
declaration itself. The first body of a matching method declaration
or method refinement is returned. If the method is not found in
the class’ refinement chain or in its declaration, the methods in the
superclass (and then the superclass’ superclass, etc.) are searched,
each again from latest refinement to the class declaration itself.

Finally, each class must declare exactly one constructor that is
used solely to initialize the class’ fields. Similarly, a class refine-
ment must declare exactly one constructor refinement that initial-
izes the class refinement’s fields. A constructor expects values for
all fields that have been declared by its class and the class’ super-
classes. The values for the superclass are passed via super. Simi-
larly, a constructor refinement expects values for all fields that have
been declared by its class refinement, by previous refinements in
the refinement chain, and by the base class. The values for the pre-
decessor in the refinement chain are passed via original.

2.2 Extensions for Stepwise Refinement
Method Extension
In FOP, the replacement of methods is considered inelegant [43].
In FFJ, method refinements may override methods and effectively
replace them (same for method overriding in subclasses). This pre-

vents programmers from extending existent functionality and leads
to code replication in that programmers repeat code of extended
methods. In order to foster extension [43], we allow programmers
to invoke the refined method from the method refinement, which
has been first used in the BETA programming language [32]. The
keyword original is used to refer to the refined method from within
the refining method, and it may occur multiple times but at least
once; otherwise a warning or error is reported.

For example, a feature might refine the eval methods of our ex-
pression evaluator in order to log their invocation. Using original,
the method refinement of eval can extend the existing method in-
stead of replacing it:

1 refines class Add { // Feature Logging ...
2 refines int eval() { return new Log().write(original()); }
3 } ...

The method write expects an integer, logs its value, and returns the
integer unchanged.

Default Values
A class refinement in FFJ may add new fields to a class and the
corresponding constructor refinement extends the class’ construc-
tor initializing these fields. The problem of this simple mechanism
is that a class cannot be used anymore by client classes that have
been added before the class refinement in question. This is because
the class refinement extends the constructor’s signature and, for a
client class that has been introduced before, knowing about these
new fields in the first place is unlikely.

Suppose a refinement of Expr that adds a new field and that
refines the base class’ constructor accordingly:

1 refines class Expr {
2 int id;
3 refines Expr(int id) { original(); this.id=id; }
4 }

Applying this refinement breaks the constructor of Add; the con-
structor’s call of super receives an empty list of arguments,
whereas the refined constructor of Expr expects an integer.

There are four options of solving this problem: (1) the construc-
tor of Add can be modified expecting a value for id, (2) the con-
structor of Add can be refined expecting a value for id that is passed
to Expr via super, (3) a class may have multiple constructors, or
(4) the field id can be initialized with some sort of default value.
Option (1) requires invasive changes to earlier features (violates
the principle of stepwise refinement), (2) requires additional effort
in refining clients of the class, and (3) would be possible but change
the FJ core calculus significantly. Therefore, we choose the fourth
option: providing default values for uninitialized fields.

When instantiating a class, a programmer does not need to pass
values for all arguments of the class’ constructor but only for some
of them (i.e., for a subsequence of the argument list). The remaining
arguments are filled with default values supplied in another way by
the programmer or by the type system. As we will see later on,
default values can be supplied by the programmer before invoking
the constructor or even generated automatically.

Superclass Declaration
In basic FFJ, class refinements may add new field and method
declarations and refine existing methods. A practice that has proved
useful in stepwise refinement is that subsequent features may also
alter the inheritance hierarchy [39]. Therefore, in an extension of
FFJ, we let each class refinement declare a superclass, much like a
class declaration. For example, we can refine the class Add in order
to inherit additionally from Comparable:



1 class Comparable extends Object {
2 Comparable() { super(); }
3 boolean equals(Comparable c) { return true; }
4 }
5 refines class Add extends Comparable {
6 refines Add(Expr a, Expr b) { super(); original(a, b); }
7 refines boolean equals(Comparable c) {
8 return ((Add)c).a == this.a && ((Add)c).b == this.b;
9 }

10 }

Note that Add inherits now from both Expr and Comparable. In
order to pass arguments properly, the constructor of Add’s refine-
ment uses super for passing arguments to the superclass and orig-
inal for passing arguments to the base class.

Effectively, a class that is merged with its class refinements in-
herits from multiple classes. However, our intention is not to solve
the tricky problems of multiple inheritance [42], so we impose
some restrictions. First, a class refinement is only allowed to de-
clare a superclass that has not been declared before in the refine-
ment chain, except for Object. Second, all further superclasses of
this superclass must not be declared before. Third, the superclass
(incl. all its superclasses) must not introduce a field or method that
has been introduced before in the refinement chain. All these con-
ditions avoid name clashes and ambiguities.

Backward References
Finally, we enable the type system to check whether all classes,
class refinements, methods, method refinements, and fields contain
only references to features that have been added before, which we
call backward references. In contrast, the type checker rejects pro-
grams containing forward references. This is in line with the prin-
ciple of stepwise refinement disallowing code of previous develop-
ment steps to affect code of subsequent development steps [45, 31].

For example, in Figure 1, the base class Add may contain a
reference to the class Expr but must not contain a reference to
the class Sub and its members because they are being introduced
subsequently. We can enforce this property by checking superclass
and field declarations, as well as bodies and signatures of methods
and method refinements for the direction of their type or member
references.

3. The Basic FFJ Calculus
In this section, we describe the syntax, evaluation, and type rules of
basic FFJ. For a better understanding of the changes and extensions
that FFJ makes to FJ, in the colored version of the paper, we
highlight modified rules with shaded yellow boxes and new rules

with shaded purple boxes .

3.1 Syntax
In Figure 3, we depict the syntax of FFJ, which is a straightforward
extension of the syntax of FJ [23]. An FFJ program consists of a set
of class and refinement declarations, an expression, and informa-
tion about features collected externally by the composition engine.
As mentioned, the actual composition specification is not part of
the program but expressed with a separate composition specifica-
tion.

A class declaration CD contains a list C f of fields,3 a con-
structor declaration KD, and list MD of method declarations. A
class refinement CR contains a list C f of fields, a constructor re-
finement KR, a list MD of method declarations, and a list MR of

3 We abbreviate lists in the obvious way: C f is shorthand for
C1 f1, . . . , Cn fn; C f; is shorthand for C1 f1; . . . ; Cn fn; and this.f=f;
is shorthand for this.f1=f1; . . . ; this.fn=fn;.

Navigating the refinement chain

S is the successor of R
succ(R) = S

S is the predecessor of R
pred(R) = S

Subtyping C <: D

C <: C
C <: D D <: E

C <: E

CT(C) = class C extends D { . . . }
C <: D

Figure 4. Subtyping and refinement in basic FFJ.

method refinements; its declaration is prefixed with the keyword
refines. Method and constructor declarations are taken from FJ
without change: A method m expects arguments C x, contains a
body return t, and returns a result of type C. A constructor expects
two lists D g and C f of arguments for the fields of the superclass
(passed via super(g)) and for the fields of its own class (initialized
via this.f=f). A constructor refinement KR expects arguments for
the predecessor refinement (passed via original(h)) and for its own
fields (this.f=f). A method refinement is much like a method decla-
ration; constructor and method refinements begin with the keyword
refines. The remaining syntax rules for terms t and values v are
straightforward and taken from FJ without change.

Class names (meta-variables A–E) are simple identifiers. A re-
finement (meta-variables R–T) is identified by the name of the
base class C and the name of the feature F it belongs to. Decla-
rations of classes and refinements can be looked up via the class
table CT . As in FJ, we impose some sanity conditions on the class
table: (1) CT (C) = class C. . . for every C ∈ dom(CT ); (2)
Object /∈ dom(CT ); (3) for every class name C (except Object)
appearing anywhere in CT , we have C ∈ dom(CT ); and (4) there
are no cycles (incl. self-cycles) in the inheritance relation. The con-
ditions for class refinements are analogous.

3.2 Subtyping and Refinement
In Figure 4, we show the refinement and subtyping relations of FFJ.
There are two auxiliary functions that return the next refinement
(succ) and the previous refinement (pred ) in a refinement chain.
These definitions rely on information collected by the composition
engine, e.g., the features’ composition order. For simplicity, the
two functions may be used with both classes and class refinements,
and they return Object if there is no class refinement that matches.
Finally, shown on the bottom, there is a subtype relation <: identical
to the one of FJ.

3.3 Auxiliary Definitions
For FFJ, we have modified some auxiliary definitions of FJ, and
we have added some, as shown in Figure 5. The function fields re-
turns the fields of a class including the fields of its subclasses and,
in extension to FJ, the fields added by its refinements. The function
rfields is similar except that the refinement chain is searched from
right to left. This is useful later to determine the fields that have
been introduced before a given refinement. The function mtype re-
turns the type of a method. In contrast to FJ, in FFJ first the re-
finement chain is searched from left to right and, if an appropriate
method is not found, the search is continued in the correspond-
ing superclass. Like rfields, the function rmtype is used to look for
a method type from right to left in a refinement chain. Function
mbody looks up the most specific and most refined method body.
That is, it returns the method body that is right-most and bottom-



CD ::= class declarations:
class C extends C { C f; KD MD }

CR ::= class refinements:

refines class C { C f; KR MD MR }

KD ::= constructor declarations:
C(D g, C f) { super(g); this.f=f; }

KR ::= constructor refinements:

refines C(E h, C f) { original(h); this.f=f; }

MD ::= method declarations:
C m(C x) { return t; }

MR ::= method refinements:

refines C m(C x) { return t; }

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values:
new C(v) object creation

Figure 3. Syntax of basic FFJ.

most in the combined refinement and inheritance hierarchy of an
object, as explained in Section 2.1. The function override estab-
lishes whether a method of a superclass is appropriately overrid-
den in a subclass, i.e., whether their signatures match. The function
introduce establishes whether a method introduced by a class re-
finement has not been introduced before in its refinement chain. Fi-
nally, the function extends establishes whether a method refinement
refines a method properly, i.e., whether a corresponding method has
been introduced before and their signatures match.

Note, for all auxiliary functions f , applications of f(x) or
¬f(x) mean the function is defined or undefined for the value x.

3.4 Evaluation
The evaluation rules of FFJ, shown in Figure 6, are identical to
those in FJ – the differences between FJ and FFJ are entirely im-
plemented by the extended/modified auxiliary functions. In rule E-
PROJNEW, fields looks up all fields of a class, including the fields
of its refinements. The fact that each class refinement must refine
the constructor makes sure that the number of supplied values in a
class instantiation is equal to the number of fields that fields re-
turns. With the ‘default values’ extension, this will be different
(see Section 4.2). In rule E-INVKNEW, mbody returns the appropri-
ate method body also considering method refinements, so nothing
changes compared to FJ. The remaining rules are straightforward
and equal in FJ and FFJ.

3.5 Typing
Figure 7 displays the type rules of FFJ. Rules for term typing are the
same as in FJ (left side). Again, this was possible since we changed
the auxiliary functions incorporating class, method, and constructor
refinement properly. However, we extended the well-formedness
rules (right side). The two rules for well-formed methods enforce
that the type of the method body’s term is a subtype of the declared
return type, that a method of a superclass is being overridden ap-
propriately, and that no subsequent refinement introduces a method
with the same name. That is, override considers methods that are
overridden by the given method and introduce considers methods
that are introduced later and establishes whether they replace the
given method or not. The well-formedness rule of method refine-
ment enforces, beside the standard properties, that a corresponding
method is being introduced before (and not in the same class re-
finement) and that the signatures of the two methods match. The
well-formedness rule for classes is similar to that of FJ. It enforces
the well-formedness of the constructor, the fields, and the meth-
ods. The well-formedness rule for class refinements enforces, in
addition, that all method refinements are well-formed and that ap-
propriate values are passed for the fields of the refinement and its
predecessor.

Note that FJ’s type system is not modular such that features can
be checked in isolation. The reason is that the auxiliary functions
search all classes and refinements. Modular type checking has been

addressed in prior work on module systems [34, 21], and it is part
of further work to explore the implications for FOP.

3.6 Type Soundness
FFJ is type sound. We state this with the standard theorems Preser-
vation and Progress [46]. The proofs are the same as the one of
FJ [23], except for some minor modifications. This is the case be-
cause the changes and extensions basic FFJ makes to FJ are largely
concerned with the method and field lookup and do not interfere
too much with the evaluation order and type system. In some of
our extensions this will be different, as we will explain in the next
section. See our technical report for the complete proof and further
explanations [6].

4. Extensions for Stepwise Refinement
In this section, we integrate each extension individually into FFJ,
obtaining FFJME for method extensions, FFJDV for default values,
FFJSD for superclass declarations, and FFJBR for backward ref-
erences. For each extension, we show how the syntax, evaluation,
and type rules change and if and how the type soundness proof is
affected. As the extensions are largely orthogonal, they can be com-
bined freely to obtain a consistent and type sound variant of FFJ.

4.1 FFJME—Method Extension
In basic FFJ, a method refinement replaces the body of the method
that is refined. In FFJME , method bodies must invoke original (at
least once); otherwise a method is not well-formed. The keyword
original refers to the method that is refined.

First, we extend the syntax such that original may occur in
terms:

t ::= . . . basic FFJ terms
original(t) original invocation

Second, we modify mbody such that it substitutes every oc-
currence of original with the method body that is being refined
(arguments are renamed); if the refined body contains original in
turn, the process is repeated. The evaluation rule E-PROJINVK (Fi-
gure 6) is divided into two new rules as follows:

mbody(m, C) = (x, t0) succ(C) = Object
(new C(v)).m(u) −→

[x 7→ u, this 7→ new C(v)] t0

(E-PROJINVK1)

mbody(m, C) = (x, t0)
R is the final refinement of C

(new C(v)).m(u) −→
[x 7→ u, this 7→ new C(v)] eval(m, R, t0)

(E-PROJINVK2)

The latter rule uses an auxiliary function eval that performs the
actual substitution. It begins with the final refinement R in the
refinement chain of C and searches the method bodies for original.
Each occurrence of original is substituted with the method body



Field lookup fields(C) = C f

fields(Object) = •

CT (C) = class C extends D { C f; KD MD }
fields(C) = fields(D), C f, fields(succ(C))

CT (R) = refines class C { C f; KR MD MR }
fields(R) = C f, fields(succ(R))

Reverse field lookup rfields(R) = C f

rfields(Object) = •

CT (C) = class C extends D { C f; KD MD }
rfields(C) = fields(D), C f

CT (R) = refines class C { C f; KR MD MR }
rfields(R) = rfields(pred(R)), C f

Method type lookup mtype(m, C) = C→C

CT (C) = class C extends D { C f; KD MD }
B m(B x) { return t; } ∈ MD

mtype(m, C) = B→B

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD mtype(m, succ(C))

mtype(m, C) = mtype(m, succ(C))

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD ¬mtype(m, succ(C))

mtype(m, C) = mtype(m, D)

CT (R) = refines class C{ C f; KR MD MR }
B m(B x) { return t; } ∈ MD

mtype(m, R) = B→B

CT (R) = refines class C { C f; KR MD MR }
m is not defined in MD

mtype(m, R) = mtype(m, succ(R))

Reverse method type lookup rmtype(m, C) = C→C

CT (C) = class C extends D { C f; KD MD }
B m(B x) { return t; } ∈ MD

rmtype(m, C) = B→B

CT (R) = refines class C { C f; KR MD MR }
B m(B x) { return t; } ∈ MD

rmtype(m, R) = B→B

CT (R) = refines class C { C f; KR MD MR }
m is not defined in MD

rmtype(m, R) = rmtype(m, pred(R))

Method body lookup mbody(m, C) = (x, t)

CT (C) = class C extends D { C f; KD MD }
B m(B x) { return t; } ∈ MD ¬mbody(m, succ(C))

mbody(m, C) = (x, t)

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD ¬mbody(m, succ(C))

mbody(m, C) = mbody(m, D)

mbody(m, C) = mbody(m, succ(C))

CT (R) = refines class C { C f; KR MD MR }
B m(B x) { return t; } ∈ MD or

refines B m(B x) { return t; } ∈ MR
¬mbody(m, succ(R))

mbody(m, R) = (x, t)

CT (R) = refines class C { C f; KR MD MR }
mbody(m, R) = mbody(m, succ(R))

Valid method overriding override(m, D, C→C0)

mtype(m, D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)

Valid method introduction introduce(m, C)

¬mtype(m, succ(C))
introduce(m, C)

Valid method refinement extend(m, R, C→C0)

rmtype(m, pred(R)) = B→B0 implies C = B and C0 = B0

extend(m, R, C→C0)

Figure 5. Auxiliary definitions of basic FFJ.



fields(C) = C f
(new C(v)).fi −→ vi

(E-PROJNEW)

mbody(m, C) = (x, t0)

(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] t0
(E-PROJINVK)

C <: D
(D)(new C(v)) −→ new C(v)

(E-CASTNEW)

t0 −→ t′0
t0.f −→ t′0.f

(E-FIELD)

t0 −→ t′0
t0.m(t) −→ t′0.m(t)

(E-INVKRECV)

ti −→ t′i
v0.m(v, ti, t) −→ v0.m(v, t′i, t)

(E-INVKARG)

ti −→ t′i
new C(v, ti, t) −→ new C(v, t′i, t)

(E-NEWARG)

t0 −→ t′0
(C)t0.f −→ (C)t′0.f

(E-CAST)

Figure 6. Evaluation of basic FFJ.

Term typing Γ ` t : C
x : C ∈ Γ

Γ ` x : C
(T-VAR)

Γ ` t0 : C0 fields(C0) = C f
Γ ` t0.fi : Ci

(T-FIELD)

Γ ` t0 : C0 mtype(m, C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-INVK)

fields(C) = D f
Γ ` t : C C <: D

Γ ` new C(t) : C
(T-NEW)

Γ ` t0 : D D <: C
Γ ` (C)t0 : C

(T-UCAST)

Γ ` t0 : D C <: D C 6= D
Γ ` (C)t0 : C

(T-DCAST)

Γ ` t0 : D C 6<: D D 6<: C
stupid warning

Γ ` (C)t0 : C
(T-SCAST)

Method typing MD OK in C/R

x : C, this : C ` t0 : E0 E0 <: C0

CT (C) = class C extends D { . . . }
override(m, D, C→C0) introduce(m, C)

C0 m(C x) { return t0; } OK in C

x : C, this : C ` t0 : E0 E0 <: C0

CT (R) = refines class C { . . . } introduce(m, R)

C0 m(C x) { return t0; } OK in R

Method refinement typing MR OK in R

x : C, this : C ` t0 : E0 E0 <: C0

CT (R) = refines class C { . . . MD . . . }
m not defined in MD extend(m, R, C→C0)

refines C0 m(C x) { return t0; } OK in R

Class typing C OK

KD = C(D g, C f) { super(g); this.f=f; }
fields(D) = D g MD OK in C

class C extends D { C f; KD MD } OK

Class refinement typing R OK

KR = C(E h, C f) { original(h); this.f=f; }
rfields(pred(R)) = E h MD OK in R MR OK in R

CT (R) = refines class C { C f; KR MD MR }

refines class C { C f; KR MD MR } OK

Figure 7. Typing in basic FFJ.



that is refined and variables are renamed properly; this recurses
until the method body in question does not contain original. Due to
the lack of space, the definition of eval is relegated to the technical
report [6].

Third, we have to add a premise to the well-formedness rule
MR OK in R to let the type system make sure that every body of a
well-formed method refinement contains a reference to original:

x : C, this : C ` t0 : E0 E0 <: C0

CT (R) = refines class { . . . }
extend(m, R, C→C0) t0 contains original

refines C0 m(C x) { return t0; } OK in R

Analogously, we have to add a premise to the two well-formedness
rules of method typing in order to reject method declarations whose
bodies contain original (see the technical report [6]).

The introduction of original to method bodies does not interfere
with the evaluation order and the type system. Function eval sub-
stitutes all occurrences of original with the method bodies that are
refined, which effectively allows a refinement to extend a method
body. As a consequence, method bodies in FFJME are indistin-
guishable from the ones in basic FFJ. Evaluation and typing in
FFJME can proceed similarly to basic FFJ. Hence, FFJME is type
sound (see the technical report [6] for more details).

4.2 FFJDV —Default Values
In order to include default values, we make some changes to FFJ,
obtaining FFJDV . First, we allow instantiations of classes to supply
only a subsequence of arguments to the constructor. Since the
type checker cannot always recognize which formal arguments are
meant, such a subsequence must match a prefix of the sequence of
expected arguments.

With this mechanism, classes can be instantiated without know-
ledge of refinements that add new fields subsequently. In order to
assign proper values to the fields that have not been initialized, we
use default values generated by the FFJDV calculus. Of course, it
would also be possible to let the programmer provide the default
values, which is done in a related FOP calculus [3], but we generate
default values in order to keep the calculus simple.

Generated default values are in some sense the neutral elements
of a given type. Only bottom-level classes of the class hierarchy can
be instantiated using default values. The reason is that, otherwise,
mapping arguments to fields would be ambiguous.

The auxiliary function default(C) computes the default value
of class C. It does not rely on extra information supplied by the
programmer:

default(Object) = new Object()

fields(C) = C f
default(C) = new C(default(C1), . . . , default(Cn))

Using default values, we divide the evaluation rule E-PROJNEW
for projection of Figure 6 into E-PROJNEW1 and E-PROJNEW2:

fields(C) = C f |v| ≥ i

(new C(v)).fi −→ vi
(E-PROJNEW1)

fields(C) = C f |v| < i

(new C(v)).fi −→ default(Ci)
(E-PROJNEW2)

If the sequence of supplied values contains the value of the pro-
jected field fi (E-PROJNEW1), nothing changes compared to basic
FFJ. On the other hand, if the sequence of supplied values does not
contain the value of the projected field fi (E-PROJNEW2), a default
value v is supplied.

Finally, we have to update the type rule T-NEW to allow a
smaller number of values to be supplied than the number of fields
a class actually contains (incl. its refinements and superclasses):

fields(C) = D f, E h Γ ` t : C C <: D
Γ ` new C(t) : C

(T-NEW)

The modified evaluation and type rules induce some changes in
basic FFJ’s type soundness proof in order to carry over to FFJDV .
Essentially, the cases of instantiations of classes and of projections
of fields change such that also subsequences of arguments for a
constructor are accepted. In the technical report [6], we explain how
the proof changes and show that FFJDV is type sound.

4.3 FFJSD—Superclass Declaration
In order to obtain FFJSD , we first modify the syntax rules of FFJ
such that a class refinement declares a superclass, possibly Object,
and a constructor refinement passes the values intended for its
superclass via super:

CR ::= class refinements:
refines class C extends D { C f; KR MD MR }

KR ::= constructor refinements:
refines C(D g, E h, C f) { super(g); original(h); this.f=f; }

Second, we extend the subtype relation in order to consider
also the superclasses of a class that have been declared by its
refinements:

CT(R) = refines class C extends D { . . . }
C <: D

Third, we have to modify and extend some auxiliary functions.
Now, the function fields also collects the fields of the superclasses
declared by the class refinements:

CT (R) = refines class C extends D { C f; KR MD MR }
fields(C) = fields(D), C f, fields(succ(C))

Two new rules for method type and body lookup incorporate also
the superclasses of class refinements:

CT (R) = refines class C extends D { C f; KR MD MR }
m is not defined in MD ¬mtype(m, succ(R))

mtype(m, R) = mtype(m, D)

CT (R) = refines class C extends D { C f; KR MD MR }
m is not defined in MD or MR ¬mbody(m, succ(R))

mbody(m, R) = mbody(m, D)

The premises ¬mtype(. . .) and ¬mbody(. . .) are necessary to
make sure that superclasses are only looked up in the case that
there are no matching methods in subsequent class refinements.
The remaining rules of the auxiliary functions are simply updated
to be compatible with the new syntax of class refinements.

Fourth, the well-formedness rules for methods and class refine-
ments change. Method declarations in class refinements must over-
ride methods of the class refinement’s superclasses properly:

x : C, this : C ` t0 : E0 E0 <: C0

CT (R) = refines class C extends D { . . . }
override(m, D, C→C0) introduce(m, R)

C0 m(C x) { return t0; } OK in R

The well-formedness rule of class refinements enforces ad-
ditionally that the arguments for the superclass’ constructor are



passed properly by a constructor refinement:

KR = C(D g, E h, C f) { super(g); original(h); this.f=f; }
fields(D) = D g rfields(pred(R)) = E h

MD OK in R MR OK in R inherit(C, R)

CT (R) = refines class C extends D { C f; KR MD MR }

refines class C extends D { C f; KR MD MR } OK
Note that, using the auxiliary function inherit, the rule checks
whether a class refinement declares a superclass that has been
declared before in the refinement chain and, if this is the case, the
corresponding class refinement is not well-formed; the definition
of inherit can be found in the technical report [6]. The remaining
type and evaluation rules are simply updated considering the new
syntax of class refinements.

Finally, the type soundness proof changes minimally in that, in
the cases of casts, also multiple superclasses are considered. In the
technical report [6], we explain how the proof changes and show
that FFJSD is type sound.

4.4 FFJBR—Backward References
In order to disallow forward references in FFJ, we have to mod-
ify the well-formedness rules for methods, method refinements,
classes, and class refinements, obtaining FFJBR. To this end, we
introduce a function backward . It establishes either whether a ref-
erence to a class/refinement is a backward reference or whether a
term contains backward references. The former case is simple, as
the compiler simply checks whether a class has been introduced be-
fore another class or refinement (i.e., by a previous feature). In the
latter case, the given term is traversed and each subterm is checked
for backward references to classes (in casts and class instantiations)
and to members (in field accesses and method invocations). See the
technical report [6] for the definition of backward .

We use backward in the well-formedness rules of FFJBR for
methods, method refinements, classes, and class refinements. For
brevity, we give here only the rule for method declarations:

x : C, this : C ` t0 : E0 E0 <: C0

CT (C) = class C extends D { . . . }
override(m, D, C→C0) introduce(m, C)

backward(C, C) backward(C0, C) backward(t0, C)

C0 m(C x) { return t0; } OK in C
The remaining well-formedness rules are updated analogously.

The modified well-formedness rules of FFJBR do not interfere
with the type soundness proof of basic FFJ [6]. This is easy to see
since the well-formedness rules of FFJBR reject some programs
that are well-formed in FFJ. That is, the set of well-formed FFJBR

programs is a subset of the set of well-formed FFJ programs.
Consequently, the type soundness theorem also holds for FFJBR,
i.e., FFJBR is type sound.

4.5 Type Soundness of FFJ with all Extensions
We have shown that FFJME , FFJDV , FFJSD and FFJBR are type
sound. As the extensions are largely orthogonal, it is easy to show
that FFJ with all extensions together is type sound as well. For the
complete syntax, evaluation, and typing rules and a type soundness
proof we refer the reader to our technical report [6].

4.6 Supported Language Mechanisms
FFJ and its extensions model several mechanisms of feature-
oriented languages and tools. In Table 1, we compare FFJ with
a selection of these languages, namely Java, FSTComposer [9] and
two versions of Jak: an earlier version included in the AHEAD
Tool Suite [10], which we call Jak1, and an extended version [43],
which we call Jak2.

FJ FFJ FFJME FFJDV FFJSD FFJBR

Java
√

Jak1
√ √ √a √b

Jak2
√ √ √ √b √d

FSTComposer
√ √ √ √b √c

a While Jak1 supports method extensions, in some versions, it does not
inform the programmer that a refinement replaces a method.
b Jak and FSTComposer support user-defined default values (not gener-
ated values).
c In FSTComposer, a class refinement may declare new interfaces but
not superclasses.
d Jak2 does not cover all checks of FFJBR for disallowing forward
references, e.g., method signatures are not checked.

Table 1. Overview of which mechanisms are supported by which
calculus and which language or tool.

It is important to note that the purpose of FFJ and its extensions
is to reason about properties of feature-oriented languages and
tools, like type soundness, formally. The formalizations model only
a small subset of their real-world counterparts, though an important
one with respect to the type system. In some cases, FFJ is more
restrictive than contemporary feature-oriented languages, e.g., FFJ
disallows forward references to types referred to from method
signatures, which is not enforced by Jak [43].

5. Related Work
Our work on FFJ was motivated by the work of Thaker et al. [43].
They suggested the development of a type system for feature-
oriented programming languages and sketched some basic type
rules. Furthermore, in their case studies, they found hidden errors
using these rules. Nevertheless, their type system is just a sketch,
described only informally, and they do not provide a soundness
proof. We propose here such a type system, along with a soundness
proof, that provides a superset of the rules of Thaker et al.

FFJ is inspired by several feature-oriented languages and tools,
most notably AHEAD/Jak [10], FeatureC++ [7], FSTComposer [9],
and Prehofer’s feature-oriented Java extension [40]. A key aim of
these languages is to separate the implementation of software ar-
tifacts, e.g., classes and methods, from the definition of features.
That is, classes and refinements are not annotated or declared to
belong to a feature. There is no statement in the program text that
defines explicitly a connection between code and features. Instead,
the mapping of software artifacts to features is established via con-
tainment hierarchies, as explained in Section 2. The advantage of
this approach is that a feature’s implementation can include, beside
classes in the form of Java files, also other supporting documents,
e.g., documentation in the form of HTML files, grammar specifi-
cation in the form of JavaCC files, or build scripts and deployment
descriptors in the form of XML files [10]. To this end, feature com-
position merges not only classes with their refinements but also
other artifacts such as HTML or XML files with their respective
refinements [2, 9].

Jiazzi and C# are two languages that are commonly not asso-
ciated with FOP but that provide very similar mechanisms. With
Jiazzi, a programmer can aggregate several classes in a component
and compose them in a feature-oriented fashion [33]. The mapping
between code and components is described externally by means of
a separate linker language. In C#, there is the possibility to spec-
ify a class refinement, which is called a partial class. Aggregating
a set of (partial) classes in a file system directory is very similar
to feature-oriented languages, in which a feature’s constituting ar-



tifacts are aggregated in a containment hierarchy. Thus, the results
of studying FFJ provide insights in Jiazzi’s and C#’s type system.

Another class of programming languages that provide mecha-
nisms for the definition and extension of classes and class hierar-
chies includes, e.g., ContextL [20], Scala [38], and Classbox/J [11].
The difference to feature-oriented languages is that they provide ex-
plicit language constructs for aggregating the classes that belong to
a feature, e.g., family classes, classboxes, or layers. This implies
that noncode software artifacts cannot be included in a feature [8].
However, FFJ models still a subset of these languages, in particular,
class refinement.

Similarly, related work on a formalization of the key concepts
underlying FOP has not disassociated the concept of a feature from
the level of code. Especially, calculi for mixins [18, 12, 1, 25],
traits [30], family polymorphism and virtual classes [24, 17, 22,
13], path-dependent types [38, 37], open classes [14], dependent
classes [19], and nested inheritance [36] either support only the re-
finement of single classes or expect the classes that form a seman-
tically coherent unit (i.e., that belong to a feature) to be located in a
physical module that is defined in the host programming language.
For example, a virtual class is by definition an inner class of the
enclosing object, and a classbox is a package that aggregates a set
of related classes. Thus, FFJ differs from previous approaches in
that it relies on contextual information that has been collected by
the composition engine, e.g., the features’ composition order or the
mapping of code to features.

A different line of research aims at the language-independent
reasoning about features [10, 31, 9, 29]. The calculus gDeep is
most related to FFJ since it provides a type system for feature-
oriented languages that is language-independent [3]. The idea is
that the recursive process of merging software artifacts, when com-
posing hierarchically structured features, is very similar for differ-
ent host languages, e.g., for Java, C#, and XML. The calculus de-
scribes formally how feature composition is performed and what
type constraints have to be satisfied. In contrast, FFJ does not as-
pire to be language-independent, although the key concepts can
certainly be used with different languages. The advantage of FFJ
is that its type system can be used to check whether terms of the
host language (Java/FJ) violate the principles of FOP and stepwise
refinement, e.g., whether methods refer to classes that have been
added subsequently. Due to its language independence, gDeep does
not have enough information to perform such checks; however, FFJ
and gDeep could be combined.

Czarnecki et al. have presented an automatic verification pro-
cedure for ensuring that no ill-structured UML model template in-
stances will be generated from a valid feature selection [16]. They
use OCL (object constraint language) constraints to express and im-
plement a type system for model composition. In this sense, their
aim is very similar to FFJ, but limited to diagram artifacts.

Kästner et al. have implemented a tool, called CIDE, that allows
a developer to refactor a legacy software system into features [28,
29]. In contrast to other feature-oriented languages and tools, the
link between code and features is established via annotations. If
a user selects a set of features, all code that is annotated with
features that are not present in the selection is removed. Kästner
et al. have developed a formal calculus and a set of type rules
that ensure that only well-typed programs can be generated [27].
For example, if a method declaration is removed, the remaining
code must not contain calls to this method. CIDE’s type rules are
similar to the type rules of FFJ. In some sense, our approach and
the approach of CIDE are two sides of the same coin: one aims at
feature composition and the other at feature decomposition.

6. Conclusion
Feature-oriented programming (FOP) is a paradigm that incorpo-
rates programming language technology, program generation tech-
niques, and stepwise refinement. The question of what a type sys-
tem for FOP should look like has not been answered before [43].
We have presented a type system for FOP on top of a simple,
feature-oriented language, called FFJ. The type system can be used
to check before compilation whether a given composition of fea-
tures is safe. FFJ is interesting insofar as it incorporates reasoning
at the programming language level and the composition engine at
the meta level, which is different from previous work. We have been
able to show that FFJ’s type system is sound.

Furthermore, we have explored several variations of FFJ for
stepwise refinement and have shown that they are type sound as
well. FFJ is a promising start in experimenting with further exten-
sions such as separate compilation, method signature extension,
field overriding, feature interfaces, optional method refinements,
and many more.
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